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Abstract. Executable interface speci�cation languages allow for expres-

sive documentation and e�cient testing and debugging. Since they are

based on expressions of the underlying programming language, they can

easily be applied by programmers without requiring mathematical skills.

In this paper, we present the core of an executable interface speci�cation

language for Java. Its main contributions are an extensive coverage of

side-e�ects on object structures, and a clean semantics. The presented

techniques can be implemented without modi�cations to the Java com-

piler or the virtual machine.

1 Introduction

Language support for the speci�cation of methods and classes is one of the most

wanted extensions to Java (cf. [Sun], Bug Id 4071460). This paper provides an

overview over an interface speci�cation language for Java. The presented tech-

niques improve comparable approaches by making four contributions: (1) clari�-

cation of semantical aspects, (2) speci�cation methodology for executable spec-

i�cations, (3) speci�cation techniques for expressing properties of linked object

structures, and (4) a simple implementation technique for the developed features.

Interface speci�cations of object-oriented programs typically express method

properties by pre- and postconditions and class properties by so-called invariants.

Interface speci�cations are a precise means for documentation. They describe the

contract between the user and provider of a software component (cf. [Mey92a]).

We distinguish between declarative and executable speci�cations (cf. [Luc90]

for an approach to combine these techniques). Declarative speci�cations are

based on an extended logical framework relating the operational world of pro-

grams to the declarative world of theorem provers (cf. [GH93], [PH97]). They

are very expressive (e.g., universal and existential quanti�cation over objects,

explicit abstraction from the program level) and appropriate for mechanical

theorem proving, but in general non-executable. In executable speci�cations,

program properties are usually formulated based on the constructs of the under-

lying programming language, in particular by boolean expressions (cf. [FM98],

[Mey92b]). In an object-oriented context, executable speci�cations have three im-

portant advantages over their declarative counterparts: (1) As direct extension

of the underlying programming language, they are easier to learn and simpler



to use. (2) They provide a powerful support for testing and debugging. (3) The

OO-features of the programming language (in particular dynamic binding) can

be exploited in speci�cations.

Executable techniques have two central drawbacks for the speci�cation of

OO-programs: 1. Abstraction cannot be expressed in the canonical way by func-

tions from data objects of the programming language to values in an abstract

domain. 2. Side-e�ects on and modi�cations of linked object structures are more

di�cult to handle. In this paper, we present new executable speci�cation tech-

niques to overcome these drawbacks without sacri�cing the advantages of exe-

cutable speci�cations.

Overview Section 2 explains the basic speci�cation aspects. Section 3 concen-

trates on techniques for the speci�cation of linked object structures. Section 4

describes the implementation method.

2 Speci�cation Technique

This section explains our speci�cation method, provides an overview over the

Java interface speci�cation language JISL, and illustrates the techniques by an

example.

2.1 Specifying Interfaces

Executable interface speci�cation languages typically use an extended expression

syntax of the underlying programming language to specify method behavior and

class invariants. Sometimes sophisticated additional constructs are provided for

this purpose, e.g., to handle bounded quanti�cation, object creation, reachabil-

ity of objects, etc. (cf. [LBR99]). We make only use of quanti�cation over �nite

integer ranges and so-called old-expressions of the form old(e) where e is an ex-

pression. old expressions may only occur in postconditions. The value of old(e)

is the value of e evaluated in the corresponding prestate.
In this paper, we concentrate on aspects that we consider improvements com-

pared to existing approaches, namely methodological issues, semantical aspects,
and speci�cation of side-e�ects on linked object structures. We illustrate our
techniques by the following two class fragments taken from the Java AWT1:

class Component {

Container parent;

int x; int y;

Object placeHolder;

... }

class Container extends Component {

int ncomponents;

Component component[] = new Component[4];

1 The �eld placeHolder is used to represent all omitted �elds.



public int getComponentCount() { return ncomponents; }

public Component getComponent(int i) { return component[i]; }

public Component add(Component comp) { ... }

... }

Methodology. An interface speci�cation language should support a speci�ca-

tion methodology to provide guidance for developing speci�cations. In particu-

lar, the methodology should support data abstraction for expressing properties

of classes without referring to the actual, possibly private implementation parts.

In declarative speci�cations, abstraction (1) is implicitly assumed (cf. [GH93])

or (2) has to be described within the speci�cation framework (cf. [PH97]). Both

solutions are inappropriate for executable speci�cation frameworks: The �rst

one is incomplete and would destroy executability. The second cannot be used,

because executable speci�cations based on Java expressions do not provide a

su�ciently abstract language layer.

Therefore, we exploit the basic idea of observability in abstract data type

theory: Instead of mapping object structures to complex values, abstraction of

objects and object structures is expressed by so-called observer methods that

allow one to inspect the states of objects and object structures without modifying

them. The methodology is as follows: Each class has a set of observer methods

(observers for short). E.g., a list has two observers: the length and the ith element

with i less or equal to the length. Observers can be existing methods of a class

or they can be introduced to characterize the abstract properties of a class.

Observers are usually simple methods that correspond to informal properties of

the abstract type implemented by a class. Observers abstract from the concrete

implementation and allow one to change the implementation without a�ecting

the interface speci�cation by adapting the observers to the new implementation.

Non-observer methods of a class are speci�ed using the observers.
We add the following observers to the above classes.2 The methods

getComponentCount and getComponent of class Container are observers. The
following speci�cation of getComponent illustrates the application of observers:

public observer Component getComponent(int i)

PRE 0 <= i && i < getComponentCount()

POST true

Furthermore, we add an observer contains that yields whether a Container

object contains a given component:

public observer boolean contains(Component comp) { ... }

The well-formedness of components is expressed by wf which yields whether the
component is correctly linked to its container:

public observer boolean wf()

{ return (parent == null || parent.contains(this)); }

2 For reasons that are described later, we mark observer methods with the keyword

observer.



A well-formed container must ful�ll additional constraints which can be speci�ed
by overriding wf in Container:

public observer boolean wf() {

for (int i = 0; i < ncomponents; i++)

if (!(component[i] != null && component[i].wf() &&

component[i].parent == this)) return false;

return super.wf(); }

This example demonstrates another aspect of the abstraction provided by the

observer technique: By overriding, observers can easily be adapted to the re-

quirements of subclasses. Due to dynamic binding, a speci�cation requiring e.g.

the well-formedness of a parameter of static type Component will always refer to

the appropriate de�nition of wf.

Clari�cation of Semantics. Executable interface speci�cations are checked

at runtime. To be useful for testing and debugging, it is crucial that evaluating

speci�cations does not a�ect program behavior (except for performance). Thus,

speci�cations must not produce side-e�ects on the speci�ed program. Although

this rule seems almost trivial, it is not enforced by other executable speci�cation

languages. To guarantee the absence of side-e�ects during execution of speci�ca-

tions, we require that speci�cations do not contain writing �eld accesses. Since

all observers are marked with a keyword, this property can easily be checked:

Observers, pre- and postconditions must neither contain writing �eld accesses

nor invocations of non-observer methods. This fairly strict but simple rule caused

no problems in the examples we considered so far. A more elaborate technique

would be to use data 
ow analysis to check that a speci�cation does not a�ect

the program behavior.

2.2 Example

To demonstrate the expressivity of our interface speci�cation language, we spec-

ify the behavior of method add in class Container. This method is supposed to

behave as follows (slightly simplifying the original AWT method):

1. The method guarantees the following properties under the precondition that

both the container and the parameter component are well-formed upon in-

vocation of add, and the component is not contained in any container.

2. The number of contained components is increased by one.

3. comp is added as component with highest index to this.

4. add returns comp.

5. Components contained before execution of add stay unchanged.

6. Except for the parent �eld, the parameter component is not modi�ed.

Properties 1{4 are expressed by the following pre-post-pair (note that well-
formedness of the container includes well-formedness of all associated compo-
nents, in particular the parent �eld of comp has to be updated):



public Component add(Component comp)

PRE wf() && comp.wf() && comp.getParent() == null

POST wf() && getComponentCount() == old(getComponentCount()) + 1 &&

this.getComponent( old(getComponentCount())+1 ) == old(comp) &&

result == old(comp)

The identi�er result refers to the value returned by a method. Properties 5

and 6 cannot be expressed by the language features described so far since they

require to compare whole object structures in two di�erent execution states

whereas old allows only for the comparison of values. We address this important

aspect in the next section.

3 Speci�cation of Frame Properties

In this section, we present a 
exible technique for specifying the absence of side-

e�ects on object structures. The basic idea is to explicitly mark those parts of

the heap memory that are supposed to be left unchanged by method execution.

Dynamic checks are used to detect modi�cations of marked objects.

3.1 Specifying the Absence of Side E�ects

In this subsection, we argue that speci�cation languages should allow one to

specify the absence of side-e�ects and sketch two basic approaches to this task.

Malevolent Side-E�ects. A side-e�ect is a modi�cation of a �eld instance

(a so-called location). In Java, side-e�ects are caused by �eld updates. The use

of side-e�ects is very common in OO-programming since they allow for e�cient

implementations. However, many program errors are due to unwanted or over-

looked side-e�ects. In contrast to errors in the functional behavior of methods,

unwanted side-e�ects are very hard to detect since their malevolence often be-

comes evident long after the side-e�ect happened.

Therefore, an interface speci�cation language should allow one to specify the

absence of side-e�ects on certain object structures (so-called frame properties).

Violations of these speci�cations should be detected as early as possible to inform

the programmer or tester which �eld update caused the unwanted side-e�ect.

Approach. There are two basic approaches to the speci�cation of frame prop-

erties: (1) One can explicitly mention those locations in the speci�cation, that

must not be modi�ed by a method. (2) One can enumerate the locations that

may be modi�ed by a method in a so-called modi�es-clause. All locations not

contained in the modi�es-clause have to remain unchanged. This technique is

very common in declarative interface speci�cation languages (cf. e.g. [MPH99]),

but for OO-programs, it requires a rather complex speci�cation framework. Fur-

thermore, in the context of observer-based speci�cations, the �rst approach is

more natural, since it uses observers that allow one to compare the value of a

location in two di�erent execution states (the pre- and poststate of a method).

Therefore, we will elaborate on the �rst approach in this paper.



3.2 A Speci�cation Technique for Frame Properties

Checking frame properties requires the ability to compare an object struc-

ture in two execution states. To do that, we introduce a speci�cation prim-

itive unchanged(S) where S denotes an object structure. In this subsection,

we explain how object structures can be described in a 
exible way, and how

speci�cations containing unchanged can be dynamically checked.

Speci�cation of Object Structures. An object structure is a set of objects

linked by references. Since objects consist of locations which hold either values or

references to other objects, object structures can be modeled as sets of locations

and their values. The �gure below illustrates the object structure of a Container

which contains one Component (boxes denote locations, arrows denote references;

the shaded areas depict objects).
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The illustrated structure consists of all locations that are reached from a given

Container object by following chains of references. Such structures are useful to

specify that a whole object structure is not modi�ed by a method. However, to

specify that a method performs some updates on a structure but leaves the bigger

part unchanged, means are required to describe restricted object structures. E.g.,

for method setLocation of class Component one would like to specify that the

object structure of this is left unchanged except for locations x and y.

To allow programmers to specify arbitrary object structures in a 
exible

way, we introduce a primitive type structure with three operations: The empty

structure is denoted by <>. <e.f> describes the structure consisting only of the

location e.f where e is an expression and f is a �eld name. The join operation

of two structures is denoted by +. Object structures are described in observer

methods that consist only of a single return statement with a structure-valued

expression (see below for an example). Restricting the body of such observers

simpli�es the implementation of JISL without seriously limiting the expressiv-

ity (the conditional operator ? and method invocations can be used instead of

conditional statements and loops). For a more convenient notation, we assume

a public observer getReachLocs() to be prede�ned for every class. It describes

the structure of all locations that are reachable from this.

To enable e�cient checking of speci�cations, we do not really create values

of type structure (cf. next section). For this reason, it is not allowed to use

structure as type of local variables, formal parameters, �elds, or anywhere else

except as return type of observer methods.



The unchanged Expression. We express the fact that a structure S is left un-

changed by a method m by adding unchanged(S) to m's postcondition. unchanged

is an operator of the speci�cation language which takes an argument of type

structure and yields a boolean value. Since unchanged compares a structure

in the prestate to the corresponding structure in the poststate, two restrictions

apply: (1) unchanged may only appear in postconditions. (2) The argument of

unchanged must be de�ned in both states. I.e., it must not contain result, and

the ranges of quanti�ed variables must stay unchanged during method execu-

tion. This can be achieved by using constants and old expressions to denote the

ranges (see below for an example).

There are two possibilities for evaluating the unchanged operator:

1. Upon entry of a method the postcondition of which contains an

unchanged(X) expression, the structure X is copied and stored. When the

postcondition is checked, the stored structure is compared to the current

structure of X. unchanged(X) yields whether both structures are identical.
2. When a method m with an unchanged(X) expression in its postcondition is

entered, all locations of X are marked to be unmodi�able. Every writing �eld

access is dynamically checked not to modify marked locations. Otherwise,

an exception is thrown. When m's postcondition is evaluated, the marks

are removed. This behavior guarantees that m does not modify the object

structure X. Thus, unchanged(X) always yields true.

The above possibilities di�er in two important aspects:

Semantics: Solution 1 allows one to temporary modify an object structure

and re-establish its initial value before the postcondition containing unchanged

is evaluated. This seems natural, but defers detection of unwanted side-e�ects

until the postcondition is checked. That makes debugging di�cult.

Performance: Solution 1 requires to store object structures for every incarna-

tion of a method containing unchanged expressions in its postcondition. This

is very time-consuming and leads to an extreme waste of memory, in particular

for recursive methods. In contrast, solution 2 can be implemented with far less

overhead: Each �eld has to be supplemented by a mark. Writing �eld access has

to check for a mark before updating a location. That leads to a time and memory

overhead of about 100%, which is an acceptable value for debug runs.

Therefore, we favor solution 2. Its implementation is described in Section 4.

3.3 Example

In this subsection, we revisit the example introduced in Section 2. In the follow-

ing, we will specify the frame properties of Container's add method: (1) The

parameter component stays unchanged except for the parent �eld. (2) Compo-

nents that are already part of the container are not modi�ed.
For the �rst property, we specify a substructure for Componentwhich contains

the whole object structure except the locations reachable via the parent �eld:

public observer structure woParent()

{ return this.placeHolder.getReachLocs() + <this.x> + <this.y>; }



This observer method allows us to specify property (1) by conjoining

unchanged(comp.woParent()) to add's postcondition.
Execution of add modi�es the container in several ways (see Section 2). How-

ever, the object structures of components that are referenced by the container
before add is invoked stay almost unchanged: only the enclosing container (reach-
able via parent) is modi�ed. Thus, we can again use the woParent substructure
to specify this behavior:

FORALL (i: 1..old(getComponentCount())):

unchanged(getComponent(i).woParent())

This example demonstrates that the proposed speci�cation technique is expres-

sive enough to describe the absence of side-e�ects in an intuitive and 
exible way,

even for mutually recursive object structures. The next section will describe how

our techniques can be implemented in Java.

4 Implementation Aspects

In this section, we describe the implementation of JISL. In particular, we present

a purely Java-based technique to realize the unchanged operation with an ac-

ceptable space and runtime overhead.

Execution of Interface Speci�cations. To enable a purely Java-based imple-

mentation of JISL, a preprocessor translates speci�cations into Java code that

is inserted into the speci�ed program. The generated code checks the pre- and

postconditions and throws a RuntimeException if a speci�cation is violated.

In the following, we focus on the unchanged expression which is the most

interesting speci�cation primitive. For details on the implementation of the other

constructs, the reader is referred to [M�ul95].

Realization of the unchanged Operation. An unchanged(X) expression in

a postcondition describes that the structure X has not been changed since the

control 
ow has passed the corresponding precondition. As described in Sec-

tion 3, this property can be checked by (1) marking all locations of X in the

corresponding precondition, (2) allowing updates for unmarked locations only,

and (3) unmark the locations of X when evaluating the postcondition. We explain

the realization of these steps in the following.

Markers for Locations. To mark a location x.v, we associate each �eld v of a class
with a mark marker$v, which has the same access modi�er as v. Recursive or
concurrent invocations of a method can lead to multiple marking of one location.
Therefore, markers have to be realized as counters. We use marker �elds of type
long. Markers are initialized to zero. A location x.v is marked, if x.marker$v
> 0 holds. E.g., for the Component class, the following markers are introduced:

long marker$parent=0; long marker$placeHolder=0;

long marker$x=0; long marker$y=0;



If the control 
ow of a thread reaches the precondition of a method whose post-

condition contains unchanged(X), X is evaluated and the markers of all locations

of X are incremented by one. When the corresponding postcondition is evaluated,

all markers of structure X
3 are decremented. The code for the increment and

decrement operations is derived from the structure speci�cation (see below).

Controlling Write Access to Locations. Location updates must consider the value
of markers of their target locations. This can be achieved by replacing all writing
�eld accesses by invocations of appropriate access methods. These methods per-
form a normal location update for unmarked locations and throw an exception
if the target location is marked. E.g., for Component's parent �eld, the following
access method is introduced:4

static Container set$parent(Compoent obj, Container value) {

if (obj.marker$parent > 0) throw new UnchangedSpecException();

else return obj.parent = value; }

A �eld access c.parent = e is replaced by Component.set$parent(c, e).

Mark and Unmark Operations. As stated in Section 3, object structures are de-

scribed by structure-valued expressions (SE for short). Structures are marked

and unmarked as follows: Each SE is translated into a Mark and an Unmark

statement. For every structure-valued observer m the methods mark$m and

unmark$m are introduced. Essentially, the body of these methods is obtained by

applying M and U to the expression returned by m. The following table shows

the translation of an SE into the mark operation M (sei denotes an SE and

jexpr a Java expression; m is a structure-valued observer):
<>! ; // empty structure

<jexpr.a> ! jexpr.marker$a++ // instance field

jexpr.m(p1, : : :, pn) ! jexpr.mark$m(p1, : : :, pn) // method invocation

se1 + se2 !M(se1) ; M(se2) // structure union

For the observer woParent, the following mark statement is generated:

{ placeHolder.mark$getReachLocs(); marker$x++; marker$y++; }

Besides executing such statements, mark methods have to perform two tasks:

(1) Marking and unmarking has to be synchronized to prevent concurrent threads

from invalidation marking information. (2) The operations have to take care that

cyclic object structures do not lead to non-terminating mark/unmark operations.

This can be achieved by using standard techniques for graph traversal.

For each unchanged(X),M(X) and U(X) are executed when evaluating the

precondition and the postcondition, resp. The expression itself always evaluates

to true (see Section 3).

3 Note that the postcondition refers to the structure computed in the prestate. I.e.,

unchanged(X) is equivalent to unchanged(old(X)).
4 Access methods have to be static to simulate static binding of attributes in Java.



Problems and Workarounds. By the technique described above, JISL can

be implemented as preprocessor without modifying the Java compiler or virtual

machine. However, the simplicity of this solution entails some problems: (1) By

means of native methods or re
ection, programmers can update locations with-

out using the access methods. To observe location updates by native methods,

the virtual maschine has to be modi�ed. For using re
ection, the Field class

has to be adapted such that it pays attention to marked locations. (2) The gen-

eration of marker �elds and methods produces overhead for even those classes

the �elds of which are never marked to be unmodifyable (e.g., event objects).

Enhanced static analysis of programs can reduce this overhead.

5 Conclusions

We presented an executable interface speci�cation language for Java. Compared

to existing languages, our proposal has three important advantages: (1) Our

methodology provides abstraction from implementation details by using ob-

server methods. (2) Interface speci�cations have a clean semantics since they are

guaranteed not to have side-e�ects. (3) We have developed a new technique for

specifying and checking frame properties of methods by describing and marking

object structures. These features allow for expressive speci�cations and powerful

testing and debugging support. An implementation of the interface speci�cation

language as described in Section 4 is considered further work.
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