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7.1 Introduction

Component-based software development means reusing prefabricated components,
adapting them to particular needs, and combining them to larger components or
applications. Reusing components developed by other companies leads to a demand
for high-level component specifications and for certification of the component qual-
ity. Most quality levels beyond syntactic and type correctness need techniques for
formal specification and verification.

Component-based software development requires that the specification and ver-
ification techniques can handle modularity and adaptability. Modularity means
that specifications need to support abstraction from encapsulated implementation
aspects, that they remain valid under composition, and that they are sufficiently
expressive for verifying properties of composed programs from the specifications
of their components. Adaptability means that the programming and specification
framework support techniques to adapt existing components to the needs and in-
terfaces of other components.

In this article, we develop a formal modular specification and verification frame-
work for OO-components. OO-programming provides a good basis for component
technology. It supports adaption by subtyping, inheritance, and dynamic method
binding. Classes form an appropriate basic unit for encapsulation and modular-
ity on the level of types. To demonstrate our techniques, we use a Java subset as
programming language and assume that a component is described by a package.
Syntactically, composition corresponds to the import relation between packages.

The framework builds on specification variables to express abstractions, depen-
dencies between abstract and concrete variables, pre-/postconditions for methods,
and so-called modifies-clauses. The article makes two contributions: (1) It presents
a formally founded, modular sound solution to the frame problem. (2) It develops
a language-supported programming technique to control sharing and structure the
object store. The rest of this section introduces the underlying approach and gives
an overview of the article.

Specification Technique. Specifications of OO-components have to describe the
functional behavior of methods, the effects to the object states, and invariant proper-
ties. The functional behavior is specified by pre-post pairs. The state modifications
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are specified by a modifies-clause listing all variables that are possibly affected by
a method execution. Invariant properties are usually expressed by predicates that
have to be maintained by nonprivate methods. However, to focus on the central
ideas, we omit type invariants in this article. We assume that all properties neces-
sary for the verification of a method are explicitly specified in the precondition.

In general, specifications cannot refer to concrete fields/attributes of objects:
(1) Modularity requires that fields may be private and thus hidden to the user of a
component. (2) Adaptability by inheritance and specialization leads to additional
fields in subclasses (extended state). Since these additional fields are not known in
the superclass, they cannot occur in the modifies-clauses of the superclass meth-
ods. On the other hand, subclass methods have to satisfy superclass specifications,
in particular the modifies-clauses. Thus, without further techniques, a subclass
method would not be allowed to modify the fields added in the subclass.

To solve these problems, we use abstract fields (corresponding to specification
variables in procedural settings). Abstract fields allow one to express abstractions
on the object state and to hide implementation details. The value of an abstract field
depends on concrete fields and possibly other abstract fields. These dependencies
are explicitly declared in the specification. Having the right to modify an abstract
field F includes the right to modify any of the fields ' depends on. Since subclasses
can introduce dependencies for their new fields, subclass methods can gain the right
to modify the extended state without violating the modifies-clause of the superclass.

Composition and Formal Foundation. Composition of packages leads to two
particular problems: (1) Due to dynamic dispatch, a package P might invoke meth-
ods that are not present during the verification of P. (2) An abstract field F' declared
outside P might depend on a field which is modified by a method of P. Since F is
not visible in P, this side-effect cannot be handled within the verification of P. For
problem 1, we follow the classical solution and enforce behavioral subtyping. That
is, subtype methods have to satisfy the specification of the corresponding supertype
methods. This article addresses problem 2. The central contribution is a technique
to control dependencies. By structuring the object store, we can exclude unwanted
dependencies while retaining a powerful program model.

Attacking the above problems requires a precise notion of the meaning of interface
specifications. In our work, the meaning of specifications is founded in an axiomatic
language semantics (cf. [PHM98, PHM99]). Based on this semantics, we have proved
that our specification constructs allow for modular verification.

Overview. Sec. 7.2 provides the formal foundations for programs and specifica-
tions. The specification of functional behavior is sketched in Sec. 7.3. The focus
of Sec. 7.4 is on techniques to specify modifications of the object store. Sec. 7.5
presents a new method to control dependencies and sharing. A discussion of related
work and the conclusions are contained in Sec. 7.6 and 7.7.
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7.2 Foundations for Programs and Specifications

This section summarizes the relevant aspects of the used programming language
and the specification primitives, and explains the formal semantics underlying spec-
ifications and proofs.

Programs and Specifications. To demonstrate the developed techniques, we use
a sequential Java subset that contains classes, interfaces, subtyping, inheritance,
dynamic binding, recursive methods, and instance variables. For simplicity, we
assume that fields are private, and omit static fields.

A software component is assumed to be described by a Java package. A package
declares a set of types and can import other packages. A type is declared either as
an interface or as a class. As a running example, we use types from a tiny window
toolkit, in particular an interface Component, representing the abstract behavior
shared by all window components, and a class Box, representing a rectangular area
on the screen (subclasses could for example extend Box to contain images):

interface Component {
public abstract Dimension prefSize;

public abstract Dimension defaultSize;
public void reset();

}

class Box implements Component {
private int width, height;
private rep X.prefSize by [ $(X.width), $(X.height) 1;
public rep X.defaultSize by [ 40, 70 1;
public void reset() { width = 40; height = 70; }

}

Components have a preferred and a default size which are specified by the abstract
fields prefSize and defaultSize. Abstract fields are part of the specification and
may have types defined in the specification framework. The type Dimension in the
example represents a pair of integers (denoted by [x, y]). Components provide a
public method reset to set the preferred size to the default size. Box is a simple
implementation of Component, that is, it inherits the abstract fields and provides im-
plementations for the methods. Box declares two concrete fields width and height
to store the dimensions. The first line with the keyword rep specifies that the pre-
ferred size of a Box is the pair of its fields. (We use $ to refer to the current object
store in specifications. That is, $(X.F) denotes the object which is referenced by
field F' of object X in the current state. Explicitly denoting the execution state
clarifies the meaning of specifications when two execution states are involved.) The
second representation-clause specifies the default size. To keep the example small,
we omitted aspects not related to the size of a component and assume that each
type is contained in one package.
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A package corresponds to a software component. It composes the imported pack-
ages and possibly adds further types. To reflect this view of composition, we require
that the import relation is a partial order; that is, mutually recursive types have to
be contained in one package. If a package P, imports a package Fy, all public pro-
gram and specification elements of Py are visible in Pj, in particular those imported
by Py from other packages. The context of a program or specification element con-
sists of the package it is declared in and all directly or indirectly imported packages.
Private program and specification elements are accessible only within their types
and must not be used in public elements. For example, the representation-clause of
prefSize in class Box must be private, because it refers to private fields.

In summary, the specification of a type consists of its abstract fields, depends-
clauses (shown below), representation-clauses, and the method specifications. A
method specification consists of a pre-post pair and a modifies-clause. In this article,
we focus on these specification primitives. More elaborated specification constructs
are, for example, discussed in [Lea96, PH97].

Formal Foundations. A formal foundation for the specification framework is nec-
essary since (1) the semantics of specifications, in particular of modifies-clauses
and dependencies, relies on some subtle points that require formal precision, and
(2) a mathematical framework is needed to verify general properties of specifica-
tion constructs, in particular their modularity properties. As formal foundation, we
use an axiomatic semantics of the programming language. The meaning of inter-
face specifications is expressed by triples of the corresponding programming logic
(cf. [PH97, PHM99]). For brevity, we focus on the aspects relevant for this article.

To reason about execution states, a formal model of states is required. A state
describes (1) the current values for the local variables and for the method parame-
ters, and (2) the current object store. The types and values of the Java subset are
formalized by the following data types:

data type data type
Type = booleanT() Value = b( Bool)
| intT() | i(Int)
| nullT() | null()
| ct( CTypeld ) | refl CTypeld, ObjId)
| it( ITypeld ) 7 : Value — Type

Besides the predefined types boolean, int, and the type for the null reference,
there are class and interface types where CTypeld and ITypeld denote suitable sets
of type identifiers. The subtype relation on sort Type is defined as in Java and
denoted by <. Data type Value represents the set of values for the types. Values
constructed by ref represent references to objects. The sort Objld denotes some
suitable set of object identifiers to distinguish different objects of the same type.
The function 7 yields the type of a value.
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The state of an object is given by the values of its fields. We assume a sort
Location for the (concrete and abstract) fields of all objects and functions

loc : Value x FieldDeclld — Location U {undef}

where loc(X,F) is defined as follows: If X is an object reference of a class type
with field F', the corresponding location is returned. Otherwise loc yields undef. In
the following, we write X.F for loc(X,F). FieldDeclld is the sort of field identifiers
where two fields with the same name declared in different classes are represented by
distinguished symbols. The type in which a field F' is declared is called the domain
type of F', denoted by dtype(F'); the type of F is called its range type. Accessibility
of field F' in type T according to the context conditions of Java is denoted by
accessible (F,T). In particular, F' is only accessible in 7' if the domain type of F' is
imported by T"s package. For simplicity, we require abstract fields to be public. To
keep formulations short, we will speak of “a location L declared/accessible in type
T” meaning that L = loc(X, F') for some object X and some field F' where F is
declared /accessible in T

The state of all objects and the information whether an object is alive (that is,
allocated) in a program state is formalized by an abstract data type ObjectStore
with sort Store and the following functions:

_{.:=_) : Storex Location x Value —— Store

-(9) : Store x Location — Value U SpecSort
() : Store x CTypeld — Store

new : Store x CTypeld — Value

alive : Value x Store — Bool

OS(L := V) yields the store that is obtained from OS by updating concrete location
L with value V. OS(L) yields the value of location L in store OS. For concrete
locations, the result of OS(L) is of sort Value; for abstract locations, the function
yields a value of sort SpecSort which denotes the supersort of all sorts defined in the
specification framework. Object creation is formalized by two functions: OS(TID)
yields the object store that is obtained from OS by allocating a new object of
type ct(TID). new(OS, TID) yields the reference to this object. If V' is an object
reference, alive(V, OS) tests whether the referenced object is alive in OS.

The value of an abstract location X.F in store OS is determined by its represents-
clause. For a represents-clause rep X.F by r(X,$) declared in type T', we generate
an axiom

VX, 0S : 7(X) X T A alive(X, 0S) = OS(X.F) =r(X, 0S)

The value of an abstract location X.F' can be modified only by updating a con-
crete location that X.F depends on. In particular, we assume abstract locations
not to depend on the liveness of objects. The other axioms of abstract data type
ObjectStore are given in [PHM98|.

In program specifications, we have to refer to types, fields, and variables, which
is enabled by introducing constant symbols for these entities. In particular, we
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provide constant symbols for the types (of sort Type), fields (of sort FieldDeclld),
and parameters as well as program variables (of sort Value). Furthermore, the
symbol § (of sort Store) is used to denote the current object store. A method m of
type T is denoted by T:m.

7.3 Specification of Functional Behavior

A method specification has to cover two aspects: the functional behavior and the
frame properties of the method. The specification of the functional behavior ex-
presses the genuine task of a method, in particular the result a method returns.
Frame properties describe which parts of the environment are left unchanged by
a method execution. In this section, we describe the specification of functional
behavior. Specification of frame properties is treated in the next section.

The functional behavior of a method is specified by a pre-post pair. For exam-
ple, the functional behavior of the method reset in interface Component could be
specified as follows:

void reset()
pre true
post $(this.prefSize) = $(this.defaultSize)

This specification demonstrates three important issues: (1) The behavior of reset is
described in an abstract way without referring to any implementation. (2) The spec-
ification of functional behavior relies on frame properties: To reflect the intention
that prefSize is set to defaultSize (and not vice versa), one has to specify that
defaultSize remain unchanged. (3) Functional behavior may consist of wanted
side-effects: reset modifies only the abstract field prefSize of the this object and
does not return a value.

Behavioral Subtyping. Since objects of subtypes of a type T' may occur in all
places where T-objects are allowed, we have to guarantee that subtypes of T' behave
according to the specification of T. Otherwise we couldn’t prove properties of types
using T" based on the specification of T'. For this article, it is sufficient to require that
the precondition of the supertype method implies the precondition of the subtype
method and that the postcondition of the subtype method implies the postcondition
of the supertype method. A detailed discussion of behavioral subtyping can be found
in the chapter by Leavens and Dhara and in [DL96].

7.4 Specification and Verification of Frame Properties

This section investigates techniques to specify and verify frame properties. Based
on abstract fields with explicit dependencies, we develop a formal semantics of
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modifies-clauses which meets the requirements of modular specification and verifica-
tion. Finally, we discuss the application of the technique and illustrate a remaining
problem.

7.4.1 Specification of Frame Properties

After explaining the frame problem, we identify the requirements imposed by modu-
lar specification and verification. We describe how explicit dependencies of abstract
locations can be used to enhance the modifies-clause technique such that it is suit-
able for modular software development.

The Frame Problem. Specifications of functional method behavior in general
leave large parts of method behavior unspecified. For example, reset’s specification
does not specify whether the method affects this.defaultSize or this.prefSize.
Since all objects of a program execution share one object store, method executions
can have side-effects on the locations of all reachable objects. For verification, it
is crucial to have precise information about side-effects. Those aspects of method
behavior that concern the absence of side-effects are called the frame properties of
a method. The problem of specifying frame properties is called the frame problem.

Modularity Requirements. If the entire program is known, the specification of
frame properties is relatively simple since the developer has complete knowledge
about all types and fields. Thus, it is possible to directly specify all locations that
are modified by a method execution. Within a modular setting, the frame problem
is more complicated for the following reasons:

(i) Information hiding: Private fields must not be contained in interface spec-
ifications. Thus, abstraction techniques have to be used to specify frame
properties.

(ii) Extended state: The specification of frame properties must be loose enough
to allow overriding methods to modify the extended state. On the other
hand, they have to be rigorous enough to guarantee behavioral subtyping
(see Sec. 7.3).

(iii) Open Programs: A program is called open if it can be extended by adding new
types. that is, in component-based software development, every component
is an open program since it is built to be extended. Therefore, it is never
possible to know all types and fields, and frame properties cannot be specified
by listing all modified locations.

In the sequel of this subsection, we describe how the modifies-clause technique can
be enhanced to cope with these requirements.
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Modifies-Clauses. The modifies-clause of a method m describes a set of (concrete
and abstract) locations that characterizes all locations that may be modified by m.
To cope with the modularity requirements above, we use the following informal
meaning of modifies-clauses:

A method m may modify locations mentioned in its modifies-clause and those locations,
the locations in the modifies-clause depend on.

An abstract location L, depends on a location K if the value of L, is represented
in terms of the value of K. The problems described above can be solved by making
these dependencies explicit as suggested in [Lei95]:

(i) Information hiding: Instead of mentioning a location X.F with a nonpublic
field F' in modifies-clauses, it is now possible to use an abstract location
depending on X.F. Therefore, the permission to modify X.F is granted
without violating encapsulation.

(ii) Extended state: Subclasses are allowed to introduce new dependencies for an
inherited abstract field. Thereby, subtype methods can get the permission
to modify fields of the extended state.

(iii) Open Programs: This problem will be solved by imposing suitable restrictions
on dependencies (see Sec. 7.4.2 and 7.5).

Explicit Dependencies. We require dependencies to be explicitly declared as part
of the (public or private) interface of a type. For verification, these declarations are
used to generate axioms specifying the depends-relation on locations. Since each
program extension may declare further dependencies, the depends-relation in an
open program is heavily underspecified.

An underspecified depends-relation has an important advantage over context-
dependent depends-relations (that is, depends-relations that are—besides so-called
residues—fully specified by the dependencies visible in a given context, cf. [Lei95]):
Context-dependent depends-relations lead to a context-dependent meaning of modi-
fies-clauses (see Subsec. 7.4.3) which causes two problems: (1) It is difficult to cover
context-dependent specifications by Hoare-style programming logics. (2) Proofs for
a smaller context do not necessarily carry over to larger contexts; modular soundness
has to be proven for such techniques.

For modular verification, the (under-)specification of the depends-relation must
guarantee four properties:

1. Consistency with Representation: Explicit dependencies reveal information about
the locations that represent the value of an abstract location without giving away its
actual representation. To be useful to decide which modifications of the object store
might change the value of an abstract location, the value of an abstract location
may only depend on locations it is declared to depend on. This is achieved by a
proof obligation for every represents-clause.

2. Ezxpressiveness: To prove that a location cannot be modified by a method, it is
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crucial to know which locations do not depend on each other. Since the depends-
relation is underspecified, this information cannot directly be concluded from the
specification of the depends-relation. We have to generate axioms expressing that
certain locations do not depend on each other.
3. Modular Soundness: A verification technique is modular sound if all proofs of
an open program stay valid for every admissible program extension. An extension
is admissible if it satisfies behavioral subtyping and the additional axioms for the
specification of the depends-relation. In our framework, modular soundness results
from using underspecification: The programming logic can only verify properties
of a program that hold in all admissible program extensions. To be reasonable,
our technique has to ensure that the new axioms are consistent with the existing
specification.
4. Modularity: With open programs and arbitrary dependencies it is neither possible
to verify a method m w.r.t. its modifies-clause nor can the negation of the depends-
relation be specified. Therefore, dependencies have to be restricted to allow for
modular verification.

We discuss the above properties along with the formalization of dependencies and
modifies-clauses in the next subsection.

7.4.2 Formalization of Dependencies

In this subsection, we present a formalization of the depends-relation.

Declaration of Dependencies. Dependencies are declared by so-called depends-
clauses of the form depends X.A on L, where X is a variable of sort Value and A is
an abstract field. L is a location of the form X.F or $(X.c).F where F is a concrete
or abstract field and ¢ is a concrete field. Following [LN97], we call these forms
of dependencies static and dynamic dependencies, resp. These two forms provide
enough expressiveness to specify linked object structures. On the other hand, they
are restrictive enough to allow for syntactically checkable modularity rules (see
below). The dependencies of an abstract location X.A may be declared in several
depends-clauses. Since A describes an abstraction of objects of the domain type
of A, depends-clauses for X.A may only occur in subtypes of the domain type of
A. The access mode of a depends-clause is the most restrictive access mode of a
mentioned field.

Modularity Rules. If a method T:m modifies a concrete location L., one has to
prove that all abstract locations L, that are affected by this modification are covered
by T:m’s modifies-clause. To enable such proofs, we have to enforce that L, is
accessible in all types in which L. is. Since abstract fields have to be public, it suffices
to enforce the following authenticity rule for every location L: A location L must
be accessible in the domain type of each location it depends on. The requirement is
trivially true for concrete locations, which depend only on themselves.
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If program extensions can declare arbitrary dependencies, it is impossible to spec-
ify the negation of the depends-relation for an open program. Therefore, we intro-
duce the following visibility rule: If a location X.F depends on Y.E, the declarations
of the involved depends-clauses must be contained in each package that contains both
the declarations of F' and E.

Due to the structure of the depends-clauses, both requirements can be checked
syntactically.

Formalization of the Depends-Relation. The depends-relation is formalized
by the function

_— _: Location x Store x Location — Bool

For the definition of —, each depends-clause of the form depends X.A on X.F or
depends X.A on $(X.c).F contributes an axiom of the form

VX, 08 :7(X) < T = x.A4 %% x.F or

VX, 08 :7(X) < T= XA xc n x4 9 05(x.0).F

where T is the type in which the depends-clause is declared, L is a location, and
0OS an object store. We assume — to satisfy these axioms, and to be reflexive and
transitive for all object stores.

Consistency with Representation. Based on —, we can formalize the proof obli-
gation to check whether the dependencies of a location K are completely declared
(see Subsec. 7.4.1). If K is associated with a representation and the modification
of a location L affects the value of K, K must be declared to depend on L (the
obligation is trivially true for concrete locations):

VOS,L,Y: OS(K)+ OS(L:=Y)(K) =K1

Negation of the Depends-Relation. The modularity rules allow us to specify the
negation for all pairs of locations declared in an open program P as follows: A
location X(.Fy depends on a location X,,.F,, if there is a sequence of locations
Xo.Fy, ..., Xpn.Fy such that X;.F; directly depends on X;1.F;11. Due to the struc-
ture of depends-clauses, X, is either identical to X; or obtained from X; by reading
location Xj.c;. Therefore, we can characterize each path from Xy to X, by a reg-
ular expression ag ...a,_1 where a; is either € or a FieldDeclld c;. The set of all
paths from an object X to any object Y such that X.F depends on Y.E can also be
described by a regular expression R(F, E). Union and Kleene closure are used to
describe alternative and cyclic paths. The visibility rule guarantees that R(F, E) is
completely determined by the depends-clauses declared in any context that contains
the declarations of F and E. Therefore, R(F, E) can be specified by enumeration
for all pairs (F, E) of a given context. We assume we have a function

p : Value x Value x Store X RegExpr — Bool
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that expresses reachability of objects via paths described by a regular expression
(for example, p(X,Y, 0S,cd) &Y = 05(0S(X.c).d)).

To specify the negation of the depends-relation of an open program P, we generate
an axiom for every pair (F,E) of fields declared in P:

VX,Y, 08 : ~p(X,Y, 0S, R(F, E)) = ~(X.F % v.B)
These axioms are available for verification of type 7' if all fields named in R are
accessible in T'.

By the axioms for — and its negation, the depends relation is completely spec-
ified w.r.t. all pairs of fields declared in an open program. However, parts of the
specification may not be available for verification due to encapsulation.

Consistency of Program Eztensions. To avoid contradictory specifications, the ax-
ioms generated for a new package P have to be consistent with the axioms gen-
erated for the imported packages. The specification of —» stays valid since all
depends-clauses of an imported package are contained in the extended program.
The specification of the negation stays valid since the value of R(F, E) remains un-
changed for all pairs of attributes (F, E') declared in an imported package: (1) types
of P must not introduce direct dependencies among locations declared in imported
types (visibility rule), and (2) types of P must not declare dependencies from lo-
cations declared in P on locations declared in imported types (authenticity rule).
Therefore, neither direct nor transitive dependencies among locations declared in
imported types can be introduced by P. That is, admissible extensions of an open
program refine the specification of the depends-relation and its negation.

7.4.3 Formalization of Modifies-Clauses

Syntax. The modifies-clause for a method T:m with implicit parameter this and
explicit parameters p1,...,p, has the form modifies M(this,p1,...,pn,$) where
M is an expression of the specification language of sort set of Location. To be able
to denote locations reachable from the parameters, M may depend on the current
object store. We denote the set of locations of T:m’s modifies-clause with parameter
objects Py, ..., P, in store OS by u(T:m,Py,...,P,, OS).

Downward-Closures. If a method is allowed to modify a location K then it may
also modify all locations K depends on. Following [Lei95], we call the set of locations
on which K depends the downward-closure of K. Formally, the downward-closure
d of a set S of locations consists of all locations on which an element of S depends
in an object store OS:

5(5,08) = gos (LI € 5 : kK %5 1}
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Like the depends-relation it refers to, the downward-closure is underspecified for
open programs and context-independent. We use the term “a location L is covered
by the modifies-clause of a method m in a store OS” to express that L is an element
of the downward-closure of m’s modifies-clause in OS. We omit the object store if
it’s clear from the context.

Meaning of Modifies-Clauses. The informal meaning of a modifies-clause M
of method T:m is: FEwvery location that belongs to an object that is allocated in
the prestate of T:m is either an element of the downward-closure of M or is left
unchanged by T:m. We formalize this meaning by translating a modifies-clause of
method T:m into a pre-post pair which has to be conjoined to T:m’s functional
specification. The free variables OS and P, ..., P, are used to address the prestate
values of the parameters in the poststate. All free variables in specifications are
universally quantified over the whole pre-post pair. That is, to verify T:m w.r.t.
its modifies-clause, one has to prove that T:m meets the following pre-post pair for
any OS,P;, X, and F":

pre $= 0S Athis =PyAN\._,pi=PF;
post alive(X, 08) = X.F € 0(u(T:m, Py, ..., P, 05),0S) vV OS(X.F) = $(X.F)

In addition to this pre-post pair, we require the verifier to show an additional proof
obligation for every method invocation: If a method T:m invokes a method n,
n’s modifies-clause in n’s prestate has to be a subset of the downward-closure of
T:m’s modifies-clause in T:m’s prestate. (Technically, the requirement is enforced
by incorporating an appropriate proof obligation into the invocation rule of the pro-
gramming logic.) Basically, this requirement is a consequence of the above meaning
of modifies-clauses. However, making this property explicit allows us to prove the
modularity lemma below.

Behavioral Subtyping. Like any other pre-post pair, the specification stemming from
a modifies-clause has to observe the rules of behavioral subtyping. This can be
proved by showing that the modifies-clause of an overriding method is a subset of
the downward-closure of the modifies-clause of the overridden method.

7.4.4 Verification of Frame Properties

In the last subsection, we introduced a specification technique for frame proper-
ties that is inherently modular sound. However, the usage of an underspecified
depends-relation gives rise to the question whether the pre-post pair stemming
from a modifies-clause can be proven in a modular way. Therefore, this subsection
presents a lemma that allows for modular verification of modifies-clauses.

t It is a slightly stronger requirement for methods that modify a location and reestablish its initial value.
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Modularity Lemma. To verify a method T:m w.r.t. its modifies-clause, it is suf-
ficient to prove the following pre-post pair.

pre $= OS A this =P0/\/\?:1pi:P,~
post alive(X, OS) A accessible (F,T) = (%)
X.Fed(u(T-m,Py,...,P,,08),08)Vv OS(X.F) = $(X.F)

Proof Sketch. We show that authenticity guarantees that the corresponding prop-
erty holds for all locations not accessible in T":

pre $=0SAthis=P AN ,pi=PF
post alive(X, OS) A —accessible (F,T) =
X.Fedé(u(T-m,Py,...,P,,05),08)Vv OS(X.F) =$(X.F)

The outline of the proof is as follows: T:m can modify a (concrete or abstract)
location X.F only by (1) location update or (2) method invocation.}

Assume that T:m updates a location L. If X.F depends on L, authenticity ensures
that F' is accessible in T. Therefore, the above property is trivially true for X.F.
Otherwise, X.F is not affected by updates of L.

If a method n invoked by T:m modifies X.F, X.F is covered by n’s modifies-clause
since n is assumed to meet its specification. As described above, n’s modifies-clause
in n’s prestate has to be a subset of the downward-closure of T:m’s modifies-clause
in T:m’s prestate. Therefore, X.F is also covered by T:m’s modifies-clause.

By simple programming logic, the conjunction of the two specifications above
yields the pre-post pair stemming from the modifies-clause.

By the modularity lemma, the proof obligation for T:m’s modifies-clause can be
reduced to the pre-post pair (x). The restriction to accessible locations allows one
to rely on a (besides encapsulation) complete specification of the depends-relation
and therefore to prove the specification based on the information available in T’s
package.

7.4.5 Using Modifies-Clauses

In this subsection, we apply the techniques described above to the example of GUI
components introduced in Sec. 7.2. We specify frame properties for interfaces and
subtypes extending the state of their supertypes, and demonstrate the limitations
of the techniques described so far.

Specification Example. Recall that method reset of interface Component sets
the preferred size of a component to a default value. Besides that, it is assumed not
to affect the object store:

public void reset() modifies {this.prefSize};

1 In this context, a constructor call behaves like a method invocation.
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To illustrate the modification of extended state, we revisit class Box. Box stores its
dimensions explicitly in the fields width and height. Thus, X.prefSize depends
on the width and height locations of X:

depends X.prefSize on X.width, X.height;

These dependencies allow Box:reset to modify the new fields (that is, the extended
state).

Using Imported Types. To discuss a more realistic example of OO-programming,
we extend the above program by a class TextComponent. TextComponent makes use
of an imported type StringBuffer which implements mutable strings. We assume
that StringBuffer contains one abstract field length representing the length of
the string. A text component is supposed to display a string in a fixed font size.
Thus, the preferred size of a text component depends only on the length of the
string. reset sets the string to the empty string:

class TextComponent implements Component {
private StringBuffer text;
public rep X.defaultSize by [ 10, 10 ];
depends X.prefSize on $(X.text).length;
public void reset() { text.replace(0, text.length(), ""); }
public TextComponent (StringBuffer s) { text = s; }

}

This example reveals an important problem: With the new dependencies, prefSize
is no longer authentic: In StringBuffer, the length field of StringBuffer is
accessible, but prefSize is not, because the StringBuffer package does not import
Component. The example shows that the authenticity rule forbids abstract fields to
depend on fields of imported types, and thus reasonable reuse, which is unbearable
for OO-programming.

The authenticity requirement is needed to prevent undetected modifications of
fields. For example, a type T might also import StringBuffer. If TextComponent
and T objects share a StringBuffer object, a method of T' could modify prefSize
via the shared string undetectably. With techniques that prohibit certain patterns
of object sharing, we can refine the authenticity requirement to allow for reuse
patterns like the example above. Such techniques are described in the following
section.

7.5 Universes: Effective Control of Sharing

In this section, we analyze the situations in which nonauthenticity leads to unde-
tectable modification of fields. To prevent such situations, we enhance Java’s type
system by so-called universes, which can be used to restrict object sharing. Based
on these restrictions, we refine the relation between modifies-clauses and program
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extensions such that reuse is enabled. Furthermore, we discuss the resulting pro-
gramming model.

7.5.1 Harmful Patterns of Sharing

The TextComponent example in the last section has demonstrated that the authen-
ticity rule is too strong for modular program development. In particular, it entails
two restrictions: (1) Abstract locations cannot depend on fields of imported types.
Our solution to this problem is described in the sequel of this section. (2) Subclasses
must not introduce new abstract locations that depend on inherited locations. If
they did, inherited methods could modify these new locations without explicit per-
mission. In the context of this article, the second restriction is a minor problem.
Since its solution entails some technical subtleties, it is not presented here.

To reuse prefabricated packages, we definitely have to allow abstract fields to
depend on fields of imported types. Imported methods must have the permission
to modify the abstract fields by modifying locations they depend on (cf. the use
of StringBuffer:replace in TextComponent). Therefore we have to refine the
definition of authenticity and the meaning of modifies-clauses.

If both a nonauthentic location L and the locations it depends on are accessible
in the caller of a method m, one can easily detect by verification that L might
be modified by m. However, if we permit nonauthentic dependencies on imported
fields in a general manner, m might modify a field without giving the caller a
chance to detect this modification: Assume a type U which is imported by T" and
S. As illustrated in Fig. 7.1, T and S objects (depicted by boxes) can both reach a
common U-location L (denoted by solid arrows). Nonauthentic locations A and B
both depend on L (dashed arrows), that is, they are codependent. Let the modifies-
clause of method T:m contain location A. Since A depends on L, T:m may modify
L. However, this affects B although B is not contained in T:m’s modifies-clause.

S T S

—~ | — .\\‘G ‘/"'

A e B e A e ‘ B o
”. /U >,

Fig. 7.1. Codependency. Fig. 7.2. Guards.

To prevent undetected modification of locations, objects can be placed into a
so-called guarded universe or universe for short (denoted by the dashed circle in



152 Miiller and Poetzsch-Heffter

Fig. 7.2). Each universe has a guard type G which guarantees that objects outside
its universe can modify objects within only by methods of the guard. Thus, guards
provide centralized access to guarded objects and can therefore be used to detect
the kind of harmful codependencies described above. The next subsection describes
universes and guards.

7.5.2 Universes

In the following, we present a type system and formal model for universes. Besides
the sharing model enforced by universes, we describe related extensions to Java.

Type System and Formal Model. To restrict sharing, we divide the object store
into several universes. We assume there is one instance of each reference type for
each universe of a program. Two instances of type T in two different universes
U and V are regarded as different types Ty and Ty . Thus, it is not possible to
assign objects of type Ty to variables or fields of type 7Ty and vice versa. However,
different instances of one type share a common implementation.

Besides the designated root universe which contains the whole object store, each
universe U is associated with a type, the so-called owner type of U.t For simplicity,
each class is the owner of at most one universe.

Universes form a hierarchic structure: There is one instance of every type for the
root universe. Each instance can in turn be the owner of another universe and so
on. Every owner of a universe enclosing universe U (including U itself) is called a
guard of U. The guard of U that belongs to universe V is called the guard of U
w.r.t. V. Universes are formalized by the following refinement of the data model
described in Sec. 7.2:

data type
Universe = root()
|  mkuniv(CTypld) ) )
univ : Type — Universe
Type booleanT() univ( it( ID, U)) = U
ntT() univ( ct(ID, U)) = U

it( ITypId, Universe )
ct( CTypld, Universe )

univ yields the universe a reference type belongs to (as opposed to mkuniv which

I nullT()
|
|

yields the universe owned by a class). To be subtypes, two types have to belong to
the same universe: S < T = univ(S) = univ(T). We denote the property that a
universe U directly encloses universe V by V' <1 U. The reflexive, transitive closure
of < is denoted by <.

Accessibility and Notation. Universes are private to their owner types: A type
Ty of universe U is accessible only in other types of U and the owner type of U.

1 Technically, it would be possible to associate universes with owner packages instead of types. That would
grant more flexibility but leads to a more complex formal model for universes.
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In particular, Ty must not be used in signatures of nonprivate methods or as range
types of nonprivate fields in U’s owner type.

Since each type T has access to at most two universes (univ(T) and mkuniv(T)),
we can use unprimed and primed type identifiers to refer to types of the enclosing
and the owned universe, respectively. Note that an unprimed type of a universe U
is identical to the primed type in the universe directly enclosing U. Since Java does
not provide references to values, there is no need for primed versions of primitive
types (for example, int). An occurrence of a primed type T in a type S refers to
the implementation of T" in the universe owned by S. That is, all unprimed reference
types in T’s implementation are primed types w.r.t. S (there is no correspondence
for primed types of T in S, since those types are not accessible in S).

In the following refined version of TextComponent, we store StringBuffer objects
in a separate universe owned by TextComponent. Since primed type names must
not occur in signatures of nonprivate methods/constructors, the constructor takes
an unprimed StringBuffer object (see below for the constructor body):

class TextComponent implements Component {
private StringBuffer text;

public TextComponent (StringBuffer s) {...}

}

Sharing Model. Universes guarantee the following invariant for every execution
state: If object X reaches object Y by a chain of references, then the universe of
the type of X is equal to or encloses the universe of Y'’s type. The invariant holds
because (1) objects of type Ty (belonging to universe U) can be created only by
types of U and U’s owner type, and (2) a reference to an object of Ty cannot be
passed to an object of a type not belonging to U except to U’s owner type. Both
properties are a direct consequence of the type and accessibility rules described
above. For brevity, we omit a formal proof of this property.

The structure of the depends-clauses enforces that a location X.F can only depend
on Y.FE in state OS if X reaches Y in OS, and therefore, the universe of the type
of X is equal to or encloses the universe of Y’s type.

Language Extensions. To support universes, the Java type system has to be
extended as described above.

Clone Operation. Since the universe type system does not allow one to pass refer-
ences across universe boundaries (except to objects of owner types), we provide a
special clone operation to still be able to exchange data across universe boundaries.
This operation (1) clones a whole object structure (that is, performs a deep copy)
and (2) moves the new structure from one universe to another. We provide an
upclone and a downclone operation to clone objects and transfer the result from
the primed to the unprimed universe respectively vice versa. These operations are
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denoted like method invocations (for example, x.upclone()). The static type of a
clone operation is determined from the static type of its argument (by priming or
unpriming).

In TextComponent, the constructor has to clone the StringBuffer parameter
and move it to the primed universe: text = s.downclone();

Translation into Java. Although universes require some changes to the program-
ming language, they are rather a specification technique than a language modifica-
tion. Programs using universes can easily be translated into ordinary Java programs
with identical behavior. To do that, we replace every primed type by its unprimed
version and the clone operations by an invocation of the method clone with an
appropriate cast. The clone method has to guarantee that its result is completely
disjoint from its argument which can be enforced by a suitable specification for
Object:clone. The result of the translation is an ordinary Java program which at
runtime adheres to the partition of object stores enforced by universes.

7.5.3 A Weaker Definition of Authenticity

Universes have been introduced to enable reuse without permitting undetected mod-
ification of locations: Instead of simply importing a type 7', a client imports 7" into
a separate universe. Since the client is the guard of that universe, it controls ac-
cess to T'. To support this reuse pattern, the authenticity rule and the meaning of
modifies-clauses have to be refined.

Authenticity. Locations outside a universe U must be allowed to depend on loca-
tions inside. With the above definition of authenticity this is not permitted since
fields outside a universe are not accessible in types inside. An object of universe
V' can modify locations of a universe U enclosed by V only via invoking a method
m of U’s guard w.r.t. V. To meet its specification, m has to guarantee in partic-
ular that V-locations are not modified undetectedly. Therefore, every location of
V depending on a U-location must be accessible in the guard of U w.r.t. V.t This
is achieved by the following refined authenticity rule. If X.F depends on Y.E and
U and V are the universes containing the types of X and Y then: (1) if V = U,
then X.F must be accessible in the domain type of E, and (2) if V < U, then X.F
must be accessible in the guard of V w.r.t. U. Requirement 1 corresponds to the
old authenticity requirement. Requirement 2 enforces the accessibility in guards
described above. Both requirements can be checked syntactically.

t Recall that the sharing model of universes guarantees that V' < U (cf. Subsec. 7.5.2).
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Negation of the Depends-Relation. To avoid contradictions, the axioms generated
for the negation of the depends-relation have to be adapted to the weaker form of
authenticity:

VX,Y, 08 : univ(r(X)) = univ(r(Y)) A ~p(X, Y, OS, R(F, E)) = ~(X.F %5 v.B)
The new visibility rule only has to hold for pairs of locations belonging to the same
universe. With the new rules, it is again guaranteed that program extensions do
not introduce axioms contradicting the specification of imported packages (by the
argument described in Subsec. 7.4.2).

Modifies-Clauses. Methods of a type inside a universe U must be allowed to
change abstract locations outside by modifying locations they depend on, even if
the locations outside are not covered by the modifies-clause. Therefore, we have to
exclude locations of outer universes from the proof obligation stemming from the
modifies-clause of T:m (cf. Subsec. 7.4.3):

pre $=0SAthis=P AN, pi=PF

post alive(X, 0OS) A univ(dtype(F)) < univ(T) =

X.F € 6(u(Tm,Py,..., P, 08),08)V OS(X.F) = $(X.F)

The adaption of the modularity lemma (cf. Subsec. 7.4.4) to the refined semantics of
modifies is straightforward. The adapted proof makes use of the sharing properties
enforced by universes (see Subsec. 7.5.2). In particular, it is important that methods
of a type in universe U can only be invoked by types of U or U’s owner type. If
a type invokes a method of the same universe, the proof is as in Subsec. 7.4.4.
Otherwise, an owner type invokes a method of the universe it owns. In that case,
the new definition of authenticity guarantees that all abstract locations that might
be affected by the method invocation are either declared in the modifies-clause of
or accessible to the caller. Thus, we have traded flexible reuse for a slightly weaker
semantics of modifies-clauses.

Example. In the text component example, the dependency

depends X.prefSize on $(X.text).length;

is now authentic because (1) prefSize is accessible in TextComponent, which is
the domain type of text, and (2) the length field belongs to the primed uni-
verse of TextComponent (since the range type of text is StringBuffer’). That is,
TextComponent is the guard of length w.r.t. the universe of prefSize. Therefore,
TextComponent has a legal specification.

To modularly verify TextComponent, one has to guarantee that objects of type
StringBuffer’ cannot be shared among several text components. Otherwise, reset
would modify the prefSize field of all text components sharing a StringBuffer.
Such fine-grained sharing control can be achieved by appropriate type invariants,
which are not dealt with in this article.
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7.5.4 Programming Model

Universes allow for modular verification by restricting sharing of object structures.
In this subsection, we describe the influence of universes on the programming model
and discuss the limitations of the approach.

Authenticity requires using universes when a location depends on a location de-
clared in an imported type. This requirement reveals three aspects of universes:
(1) Universes are only required when there actually are dependencies. For example,
container data structures such as lists of objects usually don’t depend on locations
of contained objects and can therefore be implemented conventionally. (2) Universes
are not required when both the source and target location of a dependency are de-
clared in the same package. In particular, this allows one to implement (mutually)
recursive types. Therefore, universes provide far more flexibility than a part-of re-
lation. (3) In addition to the situations where universes must be used to achieve
authenticity, they are helpful to ease verification of many implementation patterns.

Authenticity and the use of universes, as described above, impose two limitations
on programs: (1) With the universe model presented in this article, it is not possible
to share universes and their locations among objects of different types (since uni-
verses are private to types). However, the accessibility of universes can be extended
to packages (we omitted this generalization to obtain an easier formal model). This
allows for sharing of universes among objects of types declared in the same package,
and provides enough flexibility for most implementation patterns. (2) The clone
operation is required to exchange information across universe boundaries. Besides
the runtime overhead to copy objects, information about object identities is lost by
cloning.

In summary, the authenticity requirement and universes do not enforce a major
shift in the programming model: Universes are only required in designated situations
and do still allow for many sharing patterns.

7.6 Related Work

Combinations of formal techniques and OO-concepts have been investigated w.r.t.
different development and abstraction levels ranging from requirement and design
specification languages (cf. for example [DvK92, CDD*89]) to executable asser-
tions extending OO-programming languages ([Mey92]). Our approach lies in the
middle of this range. Like the former frameworks it uses declarative techniquest to
formalize pre- and postconditions, and aims to support complete specifications of
functional properties. However the foci are different. Design frameworks concen-
trate on development steps (for example, refinement techniques, [LH92]). We want
to specify and verify interfaces of components implemented in existing programming
languages. Consequently, we have to deal with the less abstract semantics of pro-

t We use first-order logic in contrast to the model-based approach of VDM and Z.
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grams, in particular with sharing which is essential in practice, but often neglected
in design languages.

Our specification technique builds on the two-tiered approach introduced by
Larch (cf. [GH93]). To be suitable for verification, we provide explicit abstraction.
The formal semantics of interface specifications used in this article is presented in
[PH97]. A similar semantics is used in the Larch/C++ language (cf. [Lea96]). The
programming logic on which our specification technique is based is presented in
[PHM98, PHM99]. The rest of this section discusses research related to the specific
contributions of this article.

Frame Properties. [Lei95] provides a basis for our work by introducing explicit
dependencies and downward-closures for modifies-clauses. In his approach, the
translation of a modifies-clause into a pre-post pair depends on the context in which
the translation takes place. Therefore, it is difficult to handle this semantics by
Hoare-style programming logics. Furthermore, Leino’s soundness proof does not
yet cover dynamic dependencies.

An alternative approach to the extended state problem is presented in [Lei98].
Instead of abstract fields, so-called data groups are used to represent a set of concrete
fields. Like abstract fields, data groups can be mentioned in modifies-clauses and
provide support for information hiding and modification of extended state. They are
a natural way to reflect a programmer’s intention. In contrast to abstract fields, data
groups do not have a value. This allows one to drop the authenticity requirement.
But on the other hand, data groups cannot be used to specify functional behavior
in terms of abstract values which is crucial for verification of OO-programs.

Type Systems for Sharing Control. [CPN98] and [Alm97] present type systems
(so-called ownership types and balloon types) that can be used to partition the
object store (into contexts and balloons, respectively) and provide flexible alias
control. In contrast to universes, contexts and balloons are owned by objects instead
of types which allows for a more fine-grained sharing control. However, our intention
was to clarify the requirements for modular verification. Therefore, we wanted to
use as little syntactic support as possible to put the focus on the essential semantics.
Although type invariants can be used to express sharing properties, elaborated type
systems can be used to dramatically decrease the verification effort. Therefore, they
are a good supplement to the techniques presented in this article.

7.7 Conclusions

We presented modular specification and verification techniques for OO-software
components. To enable modularity, specifications have to support abstraction from
encapsulated implementation aspects, remain valid under composition, and be suffi-
ciently expressive to verify properties of composed programs from the specifications
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of their components. Concerning functional behavior of methods, behavioral sub-
typing is a suitable technique to enforce modularity of specifications and proofs.

Information hiding, the extended state problem, and program extensions make
modular specification of frame properties delicate. Based on abstract fields with
explicit dependencies, we enhanced the modifies-clause technique to meet these
modularity requirements. Our semantics enables one to verify a method w.r.t. its
modifies-clause locally in the context of the method. Authenticity guarantees that
locations declared outside this context are not modified by the method.

Since authenticity is too strong to allow for effective reuse, we introduced a
type system providing universes. By preventing certain patterns of sharing and
codependencies of locations, universes allow us to weaken the authenticity require-
ment and enable reuse. The price for these benefits is that object structures have to
be cloned to move data from one universe to another. Furthermore, objects usually
cannot be shared among data structures implemented in different packages.

In a nutshell, the described techniques allow for modular specification and verifi-
cation of functional behavior and frame properties. They can be extended to cover
type invariants. Therefore, they provide a basis for formal treatment of object-
oriented software components.
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