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1 Introduction

Sharing mutable objects is typical for object-oriented programs. As a direct
consequence of the concept of object identities, it is one of the fundamentals
of the OO-programming model. Furthermore, OO-programs gain much of their
efficiency through sharing and destructive updates.

However, uncontrolled sharing leads to serious problems: Usually several ob-
jects work together to represent larger components such as windows, parsers,
dictionaries, etc. Current OO-languages do not prevent references to objects
of such components from leaking outside the components’ boundaries, a phe-
nomenon called rep exposure. Thus, arbitrary objects can use these references to
manipulate the internal state of components without using their explicit inter-
face. These manipulations can effect both the abstract value of components and
their invariants. This makes OO-programs very hard to reason about. Further-
more, in systems with uncontrolled sharing, basically every object can interact
with any other object. Therefore, such systems lack a modular structure and are
difficult to maintain.

In this extended abstract, we present a type system for Java and similar lan-
guages that enforces a hierarchical partitioning of the object store into so-called
universes and controls references between universes. The universe type system
provides support for preventing rep exposure while retaining a flexible sharing
model. It is easy to apply and guarantees an invariant that is strong enough for
modular verification. Our type system is related to ownership types ([CPN98]),
balloon types ([Alm97]), and islands ([Hog91]). However, it is capable of specify-
ing certain implementation patterns (e.g., binary methods, several objects using
a common representation) which cannot be handled by the other approaches.

Overview. Section 2 presents the universe programming model. The universe
type system is informally described in Section 3. Section 4 demonstrates the
application of universes. Our conclusions are contained in Section 5.

2 Structuring the Object Store

0OO-languages in general allow for arbitrary references between objects. The
universe type system enables the programmer to structure the object store ac-
cording to a component-oriented programming model and provides support for



sharing-control between components. It is a proper refinement of usual type sys-
tems; i.e., the programmer can use the additional power of the type system, but
is not forced to do so.

The Universe Programming Model. Systems usually comprise several compo-
nents. Components consist of one or more objects. Some of these objects are
used to interact with other components. Their interfaces form the interface of the
component. The other objects are the internal representation of the component.
A component’s representation should be modified only through the component’s
interface to control modification of the component’s abstract value ([MPHO00a])
and to guarantee data consistency. Therefore, references to objects of a compo-
nent’s representation must not be passed to other components (rep exposure),
i.e., references to representation objects must be kept inside the component.

Representations and Universes. We associate every component with a partition
of the object store that contains the component’s representation, a so-called uni-
verse. Since a component’s representation may contain other components which
are in turn associated with a universe, universes form a hierarchical structure.
A designated root universe corresponds to the whole object store and encloses
all other universes. Two universes either enclose each other or are disjoint. The
hierarchy of universes introduces a partial order of universes with the root uni-
verse as greatest element. We use the term an object X belongs to universe U if
U is the least universe containing X.

The objects at the interface of a component are not part of the representation
(and therefore not contained in the universe). We call them the owner objects of
the corresponding universe. Owner objects of universe U belong to the universe
directly enclosing U.

Consider a component for a doubly linked list of objects with iterators. The
list header and the iterators are non-representation objects of the component.
They are the owners of the component’s universe which contains the nodes of
the list.

Sharing Control. An owner object may reference objects belonging to its uni-
verse. All other references across universe boundaries are basically prohibited
for the following reasons: (a) Objects outside a universe must not reference ob-
jects inside. Otherwise, they could use these references to manipulate the internal
state of the component.! (b) Objects inside a universe must not reference objects
outside. If the abstract value of the component depended on the state of objects
outside its representation, it could be modified without using the component’s
interface.

These rules guarantee that objects belonging to universe U can only be ref-
erenced by objects belonging to U and U’s owner objects. However, the above
rules are too strong in two situations: (1) Components might want to pass parts

! In this context, local variables and formal parameters behave like instance variables
of the this object. That is, universes control both static and dynamic aliasing.



of their representations to other components, provided that these components
do not use the references for modifications. Such situations occur e.g., when a
component needs to store a representation object in a container or when two
components have to be tested for structural equality. (2) Objects inside a uni-
verse could contain references to objects outside if their abstract values did not
depend on the states of the objects outside. To support both situations, we
introduce so-called read-only references.

Read-only References. Read-only references cannot be used to perform field up-
dates or method invocations on the referenced object?. Reading fields via read-
only references in turn yields read-only references (or values of primitive types).
Abstract values of components must not depend on states of objects referenced
read-only (but can depend on their identities).

Read-only references can be used to pass references across universe bound-
aries. A read-only reference to an object belonging to universe U can be turned
into a normal reference by objects of U and U’s owner objects. For example,
object X can pass a reference to object Y as read-only reference to a container.
When this reference is retrieved later, X can cast it back to a normal reference
and use it for method invocations, etc.

Fig. 1 shows the object structure of a doubly linked list of objects with two
iterators. (Objects are depicted by boxes; solid and dashed arrows depict normal
and read-only references, resp.; the universe is drawn as ellipse.) The nodes are
the representation of the component and therefore inside the universe. Other
components can interact with the list header and the iterators, which are the
owner objects of the universe. The objects stored in the list are referenced read-
only. Section 4 sketches the implementation of the list/iterator example.
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Fig. 1. Object Structure for List/Iterator Example

? To keep things simple, we do not consider read-only methods here (i.e., methods
without side-effects). For practical applications, they would be helpful.



3 Static Checking of Representation Containment

In the last subsection, we sketched an ideal scenario for alias control for com-
ponents. However, to check reference containment statically, we have to use a
slightly weaker programming model. In this subsection, we present the refined
programming model and informally describe a type system to enforce it.

Component Programming Model and Universes. We simplify the com-
ponent programming model as follows: (1) We associate every object with its
own object universe. That is, each object X is regarded as the interface of a
component with a possibly empty representation. An object is the only owner
object of its object universe. (2) We associate every type with a type universe. If
T is a type declared in module M then every object of a type declared in M is
an owner object of 7”’s type universe. Due to inheritance, objects of subtypes of
types declared in M may also contain references to objects in 7"’s type universe.
However, access control guarantees that subtype methods cannot manipulate
objects via such references. Type universes allow objects of types declared in
the same module to access a common representation. Thus, components with
several owner objects can be realized by implementing them in one module.

The use of type universes reduces the amount of sharing control that can
be done. For instance, type universes do not provide support for keeping the
nodes of two lists disjoint if the lists’ representations are stored in the same
type universe. However, objects in 7’s type universe can only be manipulated by
methods implemented in T’s module. Therefore, type universes provide sufficient
sharing control for modular reasoning, since all “dangerous” code is located in
one module (cf. [MPHO00a] for a discussion).

The Universe Type System. Reference containment for universes is statically
checked by the universe type system. In this subsection, we present the basic
ideas of a universe type system. A formalization of the type system and a sketch
of the type safety proof can be found in [MPH99,MPHQOb].

Universes and Types. There are three kinds of universes: The root universe,
type universes, and object universes. Each class C introduces one type for read-
only references (read-only type) and one type for every universe in a program
execution (reference types); C is called the base class of these types. All types
having the same base class share a common implementation, but are regarded
as different types.

The subtype relation follows the subclass relation in Java. Two reference
types are subtypes if they belong to the same universe and their base classes are
subclasses. Two read-only types are subtypes if their base classes are subclasses.
Each reference type with base class C' is a subtype of the read-only type for C.

Since objects of a class in different universes have different types, objects
of one universe cannot be assigned to variables expecting objects of another.
All reference types are subtypes of the corresponding read-only type. Therefore,
variables of read-only types can hold objects of any universe.



Type Schemes. A class introduces one reference type for each universe (in par-
ticular, for each object universe). Thus, the set of types is not fixed at compile
time. To enable static type checking, we use so-called type schemes to statically
type variables, methods, expressions, etc.

Since the universe of a type T is not known at compile time, the implemen-
tation of the base class of T can refer to other reference types only relatively
to the universe T belongs to. To support the programming model described in
Section 2, the universe type system provides three kinds of type schemes for
reference types: (1) Ground type schemes of the form C to refer to the type for
class C belonging to the same universe as T, (2) object type schemes of the form
C<obj> to refer to the type for class C in the object universe owned by this, and
(3) class type schemes (C<S>) to refer to the type for class C in the type universe
associated with the type for class S in the universe 7" belongs to. Furthermore,
there are type schemes for read-only types (C<ro>), and primitive types.

The subtype relation on type schemes resembles the subtype relation on
types. Since read-only type schemes are supertypes of the corresponding refer-
ence type schemes, the cast operation can be used to downcast expressions of
read-only type schemes to reference type schemes. As for ordinary casts, a dy-
namic check guarantees that the dynamic type of the right-hand-side object is
a subtype of the type of the left-hand-side variable and therefore refers to the
same universe.

Informal Type Rules. Three basic rules guarantee type safety of the universe
type system (cf. [MPHOOD] for a formalization): (1) A type scheme combinator
(see appendix) is used to determine the type schemes for fields accesses and
method invocations. The resulting type scheme must not be undefined to guar-
antee that an expression does not evaluate to a (non-read-only) reference that
points “two steps down” in the universe hierarchy (e.g., by reading an object
scheme field on an object scheme variable). (2) To keep object universes on the
same level of the universe hierarchy disjoint (except for read-only references),
all local variables/formal parameters of object type schemes refer to the object
universe of this. To check this property statically, fields of object type schemes
and methods with object type schemes as result/parameter type schemes may
only be accessed/invoked on this. (3) Neither writing field access nor method
invocation is allowed on read-only references

The Universe Invariant. In every well-typed state, each instance variable and
each local variable/formal parameter holds a value of a subtype of the declared
type of the variable. Thus, if object X references object Y exactly one of the
following cases holds:® (1) X and Y belong to the same universe; (2) Y belongs
to the object universe owned by X; (3) Y belongs to a type universe owned by
X; (4) the reference is read-only.

This invariant guarantees the following representation containment property:
All access paths from the root universe to a representation object X that do not
contain read-only references pass through owners of X’s universe.

3 Again, local variables/formal parameters behave like instance variables of this.



4 Example

We illustrate the application of object and type universes, and of read-only
types by two implementations of a doubly linked list. Our examples contain two
patterns that cannot be handled in other type systems for alias control: Binary
methods and cooperating objects that access a common representation.

Doubly Linked Lists. Our list implementation consists of a class Node for the
node structure and a class List for the head of the list. Since the list is supposed
to contain objects of any universe, Node’s elem field is declared read-only. Each
node structure exclusively belongs to one list header. Therefore, the nodes are
stored in the object universe of the list header (first and last use the object
type scheme). The equals method in List takes a read-only parameter. Thus,
it can access its representation and compare it to the representation of this.

class Node { Object<ro> elem; Node prev; Node next; }

class List {
Node<obj> first; Node<obj> last;
public List() {

Node<obj> f = new Node<obj>(); Node<obj> 1 = new Node<obj>();
this.first = f; this.last = 1;
f.next = 1; l.prev = f; }
public void appFront(Object<ro> o) { ... }
public boolean equals(List<ro> 1) {
Node<obj> mnl1 = this.first; Node<ro> n2 = 1.first;
Node<obj> 11 = this.last; Node<ro> 12 = 1.last;
Object 01l<ro> = nl.elem; Object<ro> 02 = n2.elem;
while (nl1 != 11 && n2 != 12 && ol==02) {
nl = nl.next; n2 = n2.next;
ol = nl.elem; 02 = n2.elem; }
return nl == 11 && n2 == 12; }

}

At first sight, the above example does not require the usage of universes since no
List method returns a reference to a Node object. However, the universe type
system guarantees that subclasses of List cannot introduce additional methods
that violate representation containment. And, what is even more important, it
prevents programmers from accidently writing classes that give away references
to representation objects.

Lists with Iterators. By a variant of the above example, we demonstrate the
use of type universes. The example shows how list iterators can be realized.
Iterators allow one to remove elements from the list. Therefore, they must be
able to modify the list representation and cannot be implemented via read-only
references. To allow lists and iterators to access a common representation, we
use type universes instead of object universes to store the node structure of the
list. To do that, every Node<obj> in the above program has to be replaced by
Node<List>. The same type scheme is used by the implementation of Iter:



class Iter {

List list; Node<List> position; public Iter(List 1) {...}
public boolean hasNext() { ... } public Object<ro> next() { ... }
public void remove() {...} }

5 Conclusion

We presented a flexible model for object-oriented programming that supports a
hierarchical structure of the object store. It is a proper extension of the classical
model in which all objects belong to one universe. It supports read-only refer-
ences to express restricted access to objects. Read-only references increase the
flexibility of the programming model and simplify the implementation of meth-
ods that need access to two representations. The programming model is realized
by a type system that enforces a special representation containment property.
The representation containment property guarantees that modification of a
representation is only possible by calling a method on a corresponding owner
object. It can be considered as a further step towards “semantic encapsulation”,
simplifying program verification and optimization. In addition to this, the un-
derlying programming model might be helpful for a better understanding of
component-based programming approaches and distributed programming.
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A Appendix

Type Scheme Combinator. To determine the type scheme of method invo-
cations and field accesses, the following table is used, where the type scheme of
the target of the method invocation/field access determines the line, and the re-
sult/parameter /field type scheme determines the column (all combinations not
mentioned in the table yield undefined). For instance, the field access expression
v.f with v and f having type schemes D<obj> and C, resp., has type scheme
C<obj>.
||C |C<obj> |C<T> |C<ro>|boolean|int
D C C<obj> |[CLT> C<ro>|boolean|int
D<obj>||C<obj>|undefined|undefined|C<ro>|boolean|int
D<S> ||C<S> |undefined|undefined|C<ro>|boolean|int
D<ro> |[C<ro> |[C<ro> C<ro> C<ro>|boolean|int




