A Type System for Checking Applet Isolation in
Java Card

Peter Miiller and Arnd Poetzsch-Heffter

FernUniversitdt Hagen, 58084 Hagen, Germany,
{Peter.Mueller, Arnd.Poetzsch-Heffter}@Fernuni-Hagen.de

Abstract. A Java Card applet is, in general, not allowed to access fields
and methods of other applets on the same smart card. This applet iso-
lation property is enforced by dynamic checks in the Java Card Virtual
Machine. This paper describes a refined type system for Java Card that
enables mostly static checking of applet isolation. With this type system,
most firewall violations are detected at compile time.

1 Introduction

The Java Card technology allows applications written in a subset of Java—so-
called Java Card applets—to run on smart cards [Che00]. Several applets can
run on a single card and share a common object store. Since the applets on
a card may come from different, possibly untrusted sources, a security policy
ensures that an applet, in general, cannot inspect or manipulate data of other
applets. To enforce this applet isolation property, the Java Card Virtual Machine
establishes an applet firewall, that is, it performs dynamic checks whenever an
object is accessed, for example, by field accesses, method invocations, or casts.
If an access would violate applet isolation, a SecurityException is thrown.

Dynamically checking applet isolation is unsatisfactory for two reasons: (1) It
leads to significant runtime overhead. (2) Accidental attempts to violate the
firewall are detected at runtime, that is, after the card with the defective applet
has been issued, which could lead to enormous costs. In this paper, we sketch a
refined type system for the Java Card language that allows one to detect most
firewall violations statically by checks on the source code level. This type system
serves three important purposes:

1. Tt reduces the runtime overhead caused by dynamic checks significantly.

2. Most firewall violations are detected at compile time. At runtime, only cer-
tain casts can lead to SecurityExceptions. These casts point programmers
and verifiers at the potentially critical spots of a program.

3. The refined type information provides formal documentation of the kinds of
objects handled in a program such as entry point objects, global arrays, etc.,
and complements informal documentation, especially, of the Java Card API.

Overview. In the remainder of this introduction, we describe the applet firewall
and explain our approach. Section 2 presents the refined type system. The con-
text conditions that replace dynamic checking of applet isolation are explained
in Section 3. We offer some conclusions in Section 4.

1.1 Applet Firewall

The applet firewall essentially partitions the object store of a smart card into
separate protected object spaces called contexts [Sun00, Sec. 6]. The firewall is
the boundary between one context and another. It allows object access across
contexts only in certain cases. In this subsection, we describe contexts, object
access across contexts, and the dynamic checks that enforce the firewall.

Contexts. There is one context for each applet installed on a smart card (we
neglect group contexts for brevity). The context for an applet A contains all A
objects and all objects created by methods executed on objects in that context.
The operating system of the card is contained in the Java Card Runtime Envi-
ronment (JCRE) context. At any execution point, there is exactly one currently
active context (in instance methods, this context contains this). When an object
of context C' invokes a method m on an object in context D, a context switch
occurs, that is, D becomes the new currently active context. Upon termination
of m, C is restored as the currently active context

Class objects do not belong to any context. There is no context switch when a
static method is invoked. Objects referenced by static fields are ordinary objects,
that is, they belong to an applet or to the JCRE context.

Firewall Protection. We say that an object is accessed if it serves as target for a
field access or method invocation, or if its reference is used to evaluate a cast or
instanceof expression (we do not treat exceptions and arrays here). In general,
an object can only be accessed if it is in the currently active context (see below
for exceptions to this rule). To enforce this rule, the Java Card Virtual Machine
performs dynamic checks. If an object is accessed that is not in the currently
active context, a SecurityException is thrown.

Object Access Across Contexts. The Java Card applet firewall allows certain
forms of object access across contexts: (1) Applets need access to services pro-
vided by the JCRE. These services are provided by JCRE entry point objects.
These objects belong to the JCRE context, but can be accessed by any object.
In this paper, we only consider permanent entry point objects (PEPs for short).
An extension to temporary entry point objects and global arrays is straight-
forward. (2) To support cooperating applets, applets can interact via shareable
interface objects (SIOs for short). An object is an SIO if its class implements the
Shareable interface. An applet can get a reference to an SIO of another applet
by invoking a static method of the JCRE. It can then invoke methods on this
SIO [Sun00, Sec. 6]. (3) The JCRE has access to objects in any context.

Ezxample. In the following, we explain the dynamic checks for an invocation
e.m(...) of a dynamically-bound method. We assume that T is the compile
time type of e and that the evaluation of e yields an object X. Before the

invocation is executed, it is checked whether at least one of the following cases
applies’. If no case applies, a SecurityException is thrown.

D1: X isin the currently active context;

D2: X is an entry point object and T is a class;

D3: T is an interface that extends Shareable;

D4: The JCRE context is the currently active context.

We illustrate these checks by a faulty implementation of two cooperating applets.
Fig. 1 shows the implementation of a client applet. We assume that the client
and a server applet are installed on the same card. The following interaction is
initiated by method Client.process: The client requests an SIO from the server
by invoking JCSystem.getAppletShareableInterfacelbject, which yields an
SIO that is cast to the shareable interface Service. The client then invokes
doService on the SIO. This invocation yields a new Status object that is used
to check whether the service was rendered successfully.

In our implementation, this interaction leads to a SecurityException: The
client and server applets reside in different contexts. The Service SIO and
the Status object belong to the context of the server. Since Status does not
implement Shareable, the Status object is not an SIO. When the invocation
sta.isSuccess() is checked as explained above, cases D1-D4 do not apply.
Thus, the access is denied and the exception is thrown. To correct this error,
one would have to use an interface that extends Shareable instead of class
Status; then case D3 would apply.

1.2 Approach

To detect firewall violations at compile time, we adapt type systems for alias
control such as ownership types and universes [CPN98,MPHO01,Miil01]. Whereas
these type systems focus on restricting references between different contexts, we
permit references between arbitrary contexts, but restrict the operations that
can be performed on a reference across context boundaries.

Our type system augments every reference type of Java with context infor-
mation that indicates (1) whether the referenced object is in the currently active
context, (2) whether it is a PEP, or (3) whether it can belong to any context.
Type rules guarantee that every execution state is well-typed, which means es-
pecially that the context information is correct.

We use downcasts to turn references of kind (3) into references of more spe-
cific types. For such casts, dynamic checks guarantee that the more specific type
is legal. Otherwise, a SecurityException is thrown.

To check an applet with our type system, its implementation as well as the
interfaces of applets it interacts with and of the Java Card API must be enriched

! The checks correspond to the rules explained in the above paragraphs. We have
adopted them from [Sun00, Sec. 6.2.8] although D2’s requirement that T be a class
seems overly restrictive. Please refer to [Sun00] for a more detailed explanation of
the checks.

public class Status {
private boolean success;
public Status(boolean b) { success = b; }
public boolean isSuccess() { return success; }

3

public interface Service extends Shareable {
Status doService();

}
public class Client extends Applet {
private Client() { register(); }

public static void install(byte[] a, short o, byte 1) { new Client(); }

public void process(APDU apdu) {

AID SVr = ...; // server’s AID

Shareable s = JCSystem.getAppletShareableInterfacelbject(svr, (byte)0);
Service ser = (Service)s; // cast is legal

Status sta = ser.doService(); // invocation is legal

if (sta.isSuccess()) // leads to SecurityException

Fig.1. Implementation of a client applet. All classes are implemented in the same
package. package and import clauses are omitted for brevity. We assume that a server
applet is implemented in a different package.

by refined type information. This information is used to impose additional con-
text conditions for field accesses, method invocations, casts, and instanceof
expressions that guarantee that the firewall is respected.

In the execution of a program that is type correct according to our type
system, only the evaluation of downcast expressions requires dynamic firewall
checks and might lead to SecurityExceptions. Thus, casts point programmers
at the critical spots in a program, which simplifies code reviews and testing.
Moreover, they allow standard reasoning techniques to be applied to show that
no SecurityException occurs.

In theory, our type system can replace almost all dynamic firewall checks.
However, if only some applets on a card are checked by our type system, the
dynamic checks have to stay in place to prevent applets from untrusted sources
from violating the firewall. Still, our type system is useful to detect possibly fatal
program errors at compile time, which simplifies reasoning and reduces costs.

In the following sections, we present the refined type system and some of the
additional context conditions. For brevity, we focus on a subset of Java Card and
omit exceptions and arrays. Moreover, we do not treat temporary entry points
and global arrays. An extension of our work to these features is straightforward.

2 The Type System

A type system expresses properties of the values and variables of a programming
language that enable static checking of well-definedness of operations and their
application conditions, in this case, Java Card’s firewall constraints.

Tagged Types. In order to know whether an operation is legal in Java Card,
we need information about the context in which the operation is executed. The
basic idea of our approach is to augment reference types by context information.

In this paper, we are only interested in checking applet code and do not
consider the JCRE implementation. Thus, statements and expressions are either
executed in an applet context (in case of instance methods) or outside all contexts
(in case of static methods). From the point of view of an applet context C, we
can distinguish (a) internal references to objects in C, (b) PEP references, and
(c) external references to objects in applet contexts different from C or to non-
PEP objects in the JCRE.

In the type system, we reflect this distinction by the context tags i for inter-
nal, p for PEP, and a for any. The a-tag expresses the fact that it is not known
whether a reference is internal, PEP, or external. A special tag for external is
dispensable, because all operations that are allowed on external references are
allowed on “any” reference. Since static class members do not belong to any
context, the i-tag must not be used for types of static fields or in static meth-
ods. Let Typeld denote the set of declared type identifiers of a given Java Card
program; then the tagged type system comprises the following types:

TaggedType = {booleanT, intT, ..., nullT} U ({i,p, a} x Typeld)

Except for the null-type that is used to type the null literal, all reference types
in the tagged type system are denoted as a pair of a tag and a Java type. The
subtype relation < on tagged types is the smallest reflexive, transitive relation
satisfying the following axioms, where G is a tag, S, T € Typeld, and <; denotes
the subtype relation on Typeld:

(G7 S) = (G’T) S =J T (G’T) = (a7 T) nullT = (G’T)

Tagged Type Rules. We illustrate our approach by presenting the most inter-
esting rules for the tagged type system. Since the type rules for statements are
trivial, we focus on expressions. A type judgment of the form E F e :: TT means
that expression e has tagged type T'T in the declaration environment E of the
method enclosing e.

The type judgment for instance creation expressions without parameters is
E F new T() :: (1, T). The i-tag indicates that the created object belongs to the
currently active context.

The tagged type of a cast expression is the type (H,T') appearing in the cast
operator (see below). For simplicity, we only consider downcasts, that is, (H,T)
has to be a subtype of the expression type. Note that we allow a reference tagged

“any” to be cast into an internal or PEP reference. Recall that dynamic checks
guarantee that the more specific tag is appropriate (see Subsec. 1.2)

Etre:(G,S), (HT)=(G,S)
EF ((H,T))e:: (H,T)

The most interesting and complex rule is the one for invocation expressions. For
simplicity, we assume that methods have exactly one parameter of tagged type
(Fp,Tp) and a (tagged) return type (Fr,Tr):

Etel: (H,T), EFe2:(G,S) , (HT)x*(G,S) < (Fp,Tpr)
Et+ el.m(e2) :: (H,T) * (Fr,Tr)

The operator * : TaggedType x Tagged Type — TaggedType is defined as follows:
(H,T)x(G,S) =(a,9),if H#iand G = i; (H,T)*(G,S) = (G, S) in all other
cases. The x-operator tags the parameter or result as “any” when the invocation
could lead to a context switch (H # i) and an internal reference is passed to or
returned by the method (G = i). This is necessary since an internal reference
is external to the new currently active context, as illustrated by the following
example.

Fig. 2 shows the Service interface and the Client class with tagged type
information. The return type of Service.doServiceis internal since the method
creates a new Status object in the context in which it is executed (the context
of the server applet). When doService is invoked from the client context (see
method Client.process, Fig. 2), the returned Status object is external to the
client context and must, thus, be tagged “any”. This adaption of the tag is
described by the x-operator.

Type Safety. We proved that the tagged type system is type safe in the following
sense: If the evaluation of an expression e starts in a type correct state, it yields
a type correct state upon termination and the resulting value belongs to the
tagged type of e. Informally, this property states that all references are correctly
tagged, which is a prerequisite for statically checking applet isolation (see Sec. 3).
The type safety proof is based on an operational semantics the states of which,
in particular, contain a variable that keeps track of the currently active context.

The type safety proof runs by rule induction. An interesting aspect is the
treatment of context information and their relation to tagged types. Each class
instance “knows” the context it belongs to and whether it is a PEP. Based on
this information, we can assign a tagged type to an object X in a context C
(ctyp(X) denotes the Typeld of X’s class):

ttyp : Object x Context — TaggedType
(p, ctyp(X)), if X is a PEP

ttyp(X,C) = { (i, ctyp(X)), if the context of X is C and X is not a PEP
(a, ctyp(X)), otherwise

3 Checking Applet Isolation

Tagged types provide a conservative approximation of runtime context informa-
tion. This information can be used to impose static checks that guarantee that
an applet respects the applet firewall at runtime. In the following, we present
these checks for method invocations and argue why they enforce applet isolation.

Static Checks. We perform the following static checks for each invocation state-
ment of the form e.m(. . .), where (H,T) is the static tagged type of e. class(T)
yields whether 7" denotes a class.

S1: H=p = class(T)
S2: H=a = -class(T) AT <; Shareable

To show that these static checks prevent SecurityExceptions, we explain for
each possible tag of e’s type that one of the cases D1-D3 of the dynamic checks
presented in Sec. 1 applies. (D4 is not relevant here since we only consider applet
code, not the implementation of the JCRE.) We assume that e evaluates to an
object X:

H = i: Well-typedness guarantees that X is in the currently active context; that
is, case D1 applies.

H = p: Well-typedness guarantees that X is a PEP, and static check S1 guar-
antees that T is a class; thus, case D2 applies.

H = a: Static check S2 guarantees that T is an interface that extends Shareable;
thus, case D3 applies.

In summary, well-typedness and the above static checks guarantee that execution
of a method invocation does not violate the firewall at runtime. Therefore, the
checks can be used to enforce applet isolation statically. The static checks for
other expressions are analogous.

We proved the following firewall lemma: Each Java Card program with tagged
types that passes the static checks behaves like the corresponding Java Card
program with dynamic checks. That is, every Java Card program that can be
correctly tagged does not throw SecurityExceptions (except for the checks for
casts). The proof of the firewall lemma is based on two operational semantics:
one semantics with dynamic checks, the other without them. It runs by rule
induction and exploits type safety of the tagged type system and the static
firewall checks.

Ezxample. Fig. 2 shows Client’s process method with tagged type information.
Since getAppletShareableInterfacelObject is a static method that does, in
general, not return a PEP, its return type is any Shareable. The any-tag carries
over to sta (the status is extern). Therefore, the invocation sta.isSuccess()
does not pass static check S2 since Status is a class that does not implement
Shareable. That is, the firewall violation caused by this invocation would be
detected at compile time.

public interface Service extends Shareable {
intern Status doService();

}
public class Client extends Applet {

public void process(any APDU apdu) {
intern AID SVr = ...; // server’s applet id is intern
any Shareable s =
JCSystem.getAppletShareableInterfacelbject(svr, (byte)0);

any Service ser = (any Service)s; // ser is in general extern
any Status sta = ser.doService(); // sta is also extern
if (sta.isSuccess()) // static check fails

.}

Fig. 2. Service interface and Client class with tagged type information. In the con-
crete syntax, we use the keywords intern, pep, and any as tags.

4 Conclusions

We presented a refined type system for Java Card that allows one to check applet
isolation statically. The type system is based on the more general approach of
universe types that was developed for the modular verification of Java programs.
Our future goal is to formally verify interesting properties of Java Card applets
such as the absence of SecurityExceptions. To show this property, we would
check the applet by the tagged type system and prove benevolence of the casts.
Since we are interested in source code verification, we designed our checking
technique for the source level, whereas other approaches focus on the byte code
level [BCG100,CHSO01]. It could be adapted to the byte code level as well.

References

[BCGT00] P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V. Wiels, and G. Zanon. Check-
ing secure interactions of smart card applets. In ESORICS, 2000.

[Che00] Z. Chen. Java Card Technology for Smart Cards: Architecture and Program-
mer’s Guide. Addison-Wesley, 2000.

[CHS01] D. Caromel, L. Henrio, and B. Serpette. Context infer-
ence for static analysis of Java Card sharing. Available
from www-sop.inria.fr/oasis/personnel/Ludovic.Henrio/

JavaCardSharingAnalysis.ps.gz, 2001.

[CPN98] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible
alias protection. In Proceedings of Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), volume 33(10) of ACM SIGPLAN
Notices, October 1998.

[MPHO1] P. Miiller and A. Poetzsch-Heffter. Universes: A type system for alias and
dependency control. Technical Report 279, Fernuniversitdt Hagen, 2001.

[Miil0l] P. Miiller. Modular Specification and Verification of Object-Oriented Pro-
grams. PhD thesis, FernUniversitdt Hagen, 2001.

[Sun00] Sun Microsystems, Inc. The Java Card 2.1.1 Runtime Environment (JCRE)
Specification, May 2000.

Biographies

Peter Miiller is a member of the VerifiCard project that is concerned with
the formal verification of Java Card applets. He recently received a Doctorate in
Computer Science from FernUniversitdt Hagen with a thesis on Modular Speci-
fication and Verification of Object-Oriented Programs.

Arnd Poetzsch-Heffter is associate professor at FernUniversitdt Hagen. He
received a Doctor in Computer Science from the Technical University of Mu-
nich in 1991 with a thesis about programming language specification. During
his postdoc year at Cornell University, he began research on the integration of
program specification and verification techniques for OO-programs. In his Ha-
bilitation thesis, he developed the formal foundations for such an integration.
Currently, he is especially engaged in the development of specification and veri-
fication techniques and tools for OO-programs.

