Universes:
A Type System for Alias and Dependency Control

Peter Miiller and Arnd Poetzsch-Heffter
Email: [Peter.Mueller, Arnd.Poetzsch-Heffter|@Fernuni-Hagen.de
Fachbereich Informatik

Fernuniversitat Hagen
D-58084 Hagen

Abstract

We present a type system that allows one to express a hierarchical partitioning of the
object store into so-called universes. The partitioning is used to control aliasing and depen-
dencies. Alias control restricts object sharing. Dependency control is used to limit the set
of objects on which class invariants or abstractions may depend. The type system guaran-
tees an invariant on execution states that enables modular verification. It combines strong
type constraints for read-write references with the flexibility of read-only references. This
combination makes it capable of specifying certain implementation patterns that compara-
ble approaches cannot handle (e.g., binary methods, iterators for containers). The report
introduces the universe type system, shows its application to typical programming patterns,
explains its benefits for modular verification, and provides a formal type safety proof.

1 Introduction

Sharing mutable objects is typical for object-oriented programs. As a direct consequence of
the concept of object identity, it is one of the fundamentals of the OO-programming model.
Furthermore, OO-programs gain much of their efficiency through sharing and destructive
updates.

However, uncontrolled sharing leads to serious problems: Usually several objects work
together to represent larger components such as windows, parsers, dictionaries, etc. Current
00-languages do not prevent references to objects of such components from leaking outside
the components’ boundaries, a phenomenon called representation exposure. Thus, arbitrary
objects can use these references to manipulate the internal state of components without using
the component interface. On the other hand, objects inside the components can reference
objects outside. If the invariants or abstract values of components (in the sense of [Hoa72])
depend on the state of outer objects, modifications of the outer objects can effect properties
of the component. This makes OO-programs very hard to reason about. In particular,
components cannot be verified in a modular way. Furthermore, in systems with uncontrolled
sharing, basically every object can interact with any other object. Therefore, such systems
lack a modular structure and are difficult to maintain.

We present a type system that enforces a hierarchical partitioning of the object store
into so-called universes and controls references between universes. The universe type system
provides support for alias and dependency control while retaining a flexible sharing model. It
is easy to apply and guarantees an invariant that is strong enough for modular verification.
The universe type system is a conservative extension of the Java type system. That is, each
type correct Java program is also type correct w.r.t. the universe type system. Therefore,
programmers can flexibly annotate their programs with refined type information according
to the amount of alias and dependency control they need. Our type system is related to
ownership types [CPN98], balloon types [Alm97], and islands [Hog91]. However, it is capable
of specifying certain implementation patterns (e.g., binary methods, several objects using a
common representation) which cannot be handled by the other approaches.

Overview. Section 2 describes the motivation for the work and the general approach. The
universe type system, its application, and the corresponding invariant on execution states is
introduced in Section 3. Section 4 formalizes the universe type system for a Java subset and
contains the type safety proof. Related work is discussed in Section 5, conclusions are given
in Section 6.

2 Motivation and Approach

Sharing objects through aliasing provides the flexibility of the object-oriented programming
model and simplifies the effective use of computational resources. On the other hand, it
often leads to programming errors (cf. e.g. [BV99] for a bug in the implementation of the
security package of JDK 1.1.1). This section motivates alias and dependency control. In
particular, it demonstrates why we need such control mechanisms for modular verification
of object-oriented programs. It illustrates shortcomings of current techniques and introduces
our approach.

2.1 Modular Verification and Representation Invariants

Whereas alias control is a nice programming feature in general, it is a necessity for modular
verification of object-oriented programs. Modular verification means to prove the behavior
of a program module without knowing the contexts in which the module will be used. As an
example consider a framework to administer the data of companies. It contains a module with
a class Company. Company objects have a field employees referencing the list of employees.
We use the Java library class Vector to implement such lists:

public class Company {
protected Vector employees;
// invariant: i!=j => employees.elementAt(i) != employees.elementAt(j)

-3

As invariant, we want to guarantee that different positions in the list refer to different em-
ployees. This invariant obviously simplifies many algorithms working on the employee vector
(e.g., salary updates). The invariant has to be maintained by all methods in class Company.
This can be proven by classical verification techniques [PH97]. Unfortunately, that does not
guarantee that the invariant holds for all objects of type Company. Other objects outside
the sketched module can get a reference to an employee vector and violate the invariant. As
an example, consider the following module with the subclass OpenCompany and a client class
Violator. Method violate adds a second reference to the first employee in v to the vector,
thereby violating the invariant:

public class OpenCompany extends Company {
public Vector getEmployees() { return employees; }

}

public class Violator {
public void violate() {
OpenCompany ¢ = new OpenCompany () ; // invariant holds
Vector v = c.getEmployees(); // invariant still holds
if (v.size() > 0) v.add(v.elementAt(0)); } // invariant violated

}

The example illustrates that a class invariant can be broken by methods in other modules.
In particular, it is not sufficient to require that subclasses are behavioral subtypes (e.g.,
OpenCompany is a behavioral subtype of Company; cf. [LW94] for an introduction to behavioral
subtyping): The specification of Company is too weak to show that the invariant holds in all
legal program contexts where Company may be used. (A program context is legal if subtypes
are behavioral subtypes according to the given specifications.) To solve this problem, we
have to express that objects of class Company or its subclasses are not allowed to give away
a reference to the employee list that enables the modification of the list. That is, either no
such reference is passed out or the passed out references do not enable modification. We call
this property representation encapsulation.

To a certain extent, we can realize both alternatives by classical access and visibility
restrictions. For example, instead of the library class Vector we could use a class private
to the module of Company to implement the employee list. Thus, classes outside the module
could not invoke methods of this class (making it impossible for a violator to call methods
such as add). However, using private classes requires reimplementation of existing classes.

Furthermore, it does not allow subclasses declared in other modules to access the employee list,
which restricts inheritance and specialization in an unacceptable way. The other alternative
is to make the field employee private, which has similar drawbacks for subclasses and requires
one to specify and prove that the methods of class Company do not pass out a reference to
the employee list. Such a leak is not always as evident as in class OpenCompany since it might
be indirect via other objects as illustrated by the following method of class Company that
indirectly passes a reference to the employee vector to a Bank object, from where it could leak
to a violator:

public void payStockOptions(Bank b, Vector amount) {
Order o = new Order(employees, amount) ;
b.payOptions(o); }

Unfortunately, it is not possible to directly express representation encapsulation by classical
specification techniques based on pre- and postconditions, invariants, modifies-clauses, and
history constraints. These techniques allow one to specify functional properties of given meth-
ods and properties of the object store. In particular, invariants can be used to express aliasing
patterns on the object store (so-called static aliasing [HLW192]). However, the classical tech-
niques are not capable of expressing properties of methods that are added in subtypes. In
particular, the notion of behavioral subtyping is not strong enough to guarantee representa-
tion encapsulation (as illustrated by the OpenCompany example). We need a technique that
allows us to specify that the employee vector belongs to the representation of Company and
may not be passed out, neither by class Company nor by subtypes.

2.2 Ownership Model

To specify representation encapsulation, we build on recently developed techniques for alias
control (cf. Section 5). The basic idea underlying these techniques is to distinguish between
an object X and those objects that are used to implement the behavior of X. The latter
objects form the representation of X.

There are different techniques to define which objects are considered to represent an
object. We explain one of them in Section 3. Based on a binary relation on objects—the
so-called ownership relation that is given somehow—we recursively define the representation
in terms of ownership. The idea underlying the ownership relation is that an object X is the
owner of all objects that are directly used to represent X. For instance, a Company object
would be the owner of the Vector object referenced by field employees. The representation
of an object X for a given ownership relation contains' all objects owned by X or by objects
belonging to the representation.

The ownership relation can be considered as a directed graph on the allocated objects in
a program state where an edge goes from X to Y if X is the owner of Y. We say a program
realizes the ownership model, if in all states the ownership relation forms a forest, that is, a
set of disjoint trees. At the roots of these trees are the objects that have no owner, that is,
objects that do not belong to any representation. The fact that the ownership relation forms
a forest implies the following facts: 1. Objects do not belong to their own representation.
2. Each representation has a unique owner. 3. Representations of different objects are either
disjoint or one is contained in the other (representation containment). As abbreviation, we

More precisely, it is the smallest set satisfying the recursive equation.

say object Y is inside X if it belongs to the representation of X; Y is outside X if it is not
inside.

The ownership model can be used to formulate restrictions on the permissible reference
structures between objects. This way flexible alias control can be realized. One important
step to integrate the ownership model into programming languages was the work on ownership
types described in [CPN98]. It defines the ownership relation by means of a parametric type
system and uses static type checking to guarantee the following property of the references
between objects: Whenever there is a path in the reference structure from an object outside
some object X to an object inside X, this path goes through X. That is, X can control access
to its representation. We call this property strong alias control. (Note that this property would
be violated by a call to method getEmployees in subclass OpenCompany. Such a call could
create a path to the Vector object that does not pass through the corresponding Company
object.)

Strong alias control cannot be used if we need or want to have multiple references from
outside into a representation. Unfortunately, this situation is fairly common and necessary
for several programming patterns. We consider three such patterns:

1. In container classes, iterators are very desirable to step through the elements of the
container. To work efficiently, iterator objects need to have references into the repre-
sentation of the container. From the perspective of modular verification, such references
are not problematic, because they are usually defined in the same module as the con-
tainer. However, strong alias control forbids iterators.

2. Often methods are needed to compare two objects and their representation. A typical
example is a test whether all elements of two doubly linked lists are equal. Such a
method needs simultaneous access to the representations of the compared objects.

3. In many situations, it is helpful to share information between different objects in a way
that only one object is allowed to modify the information. As an example, we consider
an extension of the company class by a field holding the address of the company:

public class Company {
protected Address address;
public Address getAddress() { return address; }
-}

// Declared in some other module
public class Address {
private String street;
public void setStreet(String s) { street = s; }
.}

Address objects are used to share the address information between a company and
clients. Thus, the company can modify the address without the need to propagate
the changes to the clients. The drawback here is that clients are able to change the
company address as well. Strong alias control forbids such patterns altogether avoiding
unwanted modifications. For modular verification, we do not need to be that strict.
For example, to verify an invariant in class Company saying that all address fields are
properly initialized, it is sufficient to guarantee that clients are provided with read access
to the address only.

2.3 Approach

The goal of our research is to enable modular verification of object-oriented programs which
requires specification techniques that allow us to express representation boundaries and
semantics-based access restrictions as illustrated by the examples above. In this scenario,
the distinction between inside and outside of objects is used in two ways. First, it defines a
boundary for incoming references (alias control). In particular, it provides a mechanism to
specify which references to the representation may be passed to the outside by subclasses.
Second, it defines the set of objects on which invariants and abstractions may depend (cf.
[Lei95] for an introduction to dependencies). For example, the invariant of class Company
depends on the state of the referenced vector. This dependency is permissible, because we
consider the vector to be part of the representation.

Similar to [CPN98], we control aliasing and dependencies by typing mechanisms. How-
ever, our situation is slightly different. We want to annotate and verify existing programs. In
particular, we have to be able to handle container classes with iterators and comparison meth-
ods. On the other hand, we are not limited to typing. In situations where type information
is too weak, we can complement it with information gained by verification. We developed a
type system that follows the ownership model and supports read-only references. Read-only
references are used

e to allow objects to hold references into representations of other objects (e.g., iterators
and the pattern demonstrated by class Address can be implemented using read-only
references);

e to mark outgoing references, that is, references that refer to objects outside; this is
necessary to control dependencies;

e to provide a flexibility similar to the context parameters of ownership types.

The last item needs explanation. In [CPN98], context parameters are used to enable outgoing
references. Context parameters are similar to parametric polymorphism. Instead of parame-
terizing over types, they parameterize over owners. As will be explained in the next section,
our read-only types are supertypes of owner-specific read-write types. This way, they provide
a kind of subtype polymorphism. The price is that we have to provide and use owner-specific
downcasts.

The presented approach is easy to use and sufficiently simple to be integrated into our
programming logic [PHM99]. It is expressive enough to handle subtyping and the mentioned
programming patterns. Last but not least, downcasts are not so critical in a verification
context, because they can be eliminated by proving suitable preconditions for the cast site.

3 Programming with Universe Types

In this section, we informally introduce the universe type system and describe how represen-
tation encapsulation is achieved. Read-only references enable external objects to access the
internal representation of other objects, which is for example necessary to implement iterators
and binary methods. Furthermore, we explain the invariant on the execution states that is
guaranteed by the universe type system and describe its benefits for modular verification.
The formal background of the presented concepts is given in Section 4.

3.1 Representation Encapsulation

The example in Section 2 demonstrated that objects must protect their representations from
unwanted modification via aliases. In this subsection, we describe how we can use typing
mechanisms to delimit the world inside the representation of an object from the world outside.

Universes. To keep things simple for the explanation, let us assume that an object-oriented
program II with classes C4,...,C, is given. The generalization to open programs in which
not all classes are known is straightforward. The classes define a set of types together with
a subtype relation. We call this set of types the standard type universe of II. The basic idea
of the universe type system is to use multiple “copies” of the standard universe (one could
imagine to copy the whole program text and add a suitable postfix to the class names). Such
a copy is called a type universe, or simply a universe. In each universe, there is a type Cj;, but
although structurally identical, the types in different universes are considered to be distinct.
Each object X is created for a type of a given universe. That is, each object belongs to
exactly one universe.

In addition to the standard universe, we assume a universe for each object X in a program
execution (cf. Section 5 for other kinds of universes) and call X the owner of its universe.
Notice that this implies a hierarchical structuring of the universes with the standard universe
at the top. Each object in the standard universe has its own universe. Objects in these child
universes are again owners of universes and so forth.

By type rules, we guarantee that the owner of a universe U is the only object not belonging
to U that can have read-write references to objects belonging to U. Read-write references are
normal object references providing read and write access to objects and their methods. They
are distinguished from read-only references (see below). Consequently, read-write references
either connect objects in the same universe or lead from one universe to a child universe.

Universes can easily be used to implement the ownership model. An object X puts all
objects that are directly used to represent X into its universe. Consequently, the whole
representation of X is contained in its universe and its descendants. The type rules guarantee
that

1. objects inside the representation of X can only be read-write referenced by X or other
objects of the representation; that is, universes guarantee strong alias control of read-
write references;

2. objects inside the representation of X cannot have read-write references to objects
outside the representation; that is, universes provide dependency control.

This invariant on the reference structure holds as well for local variables and formal parameters
if they are considered as instance variables of the this object. Therefore, we can apply
universes to control both static and dynamic aliasing [HLW+92].

Fig. 1 illustrates how the representation of a Company object can be encapsulated to protect
it from modifications. (Objects are depicted by boxes; arrows depict read-write references;
the representation of the Company object is encircled.) Note that neither references from
objects outside the representation to the inside nor references from inside to the outside are
permitted.

Conpany Soned ass

errglfoyees . /.

addr exs

Vect or Addresx String

street

!
L

Figure 1: A Company Object and its Representation.

Programming with Universes. In programs, types have to be interpreted relative to the
current this object Xipis. A type identifier C' without modifier refers to the type C' in the
universe to which Xipnis belongs. A type identifier C' with modifier rep refers to the type C
in the universe owned by Xinis.

Expressions of type rep C cannot be assigned to variables of type C since C and rep C
correspond to different types. References of a type rep C always point into the universe
owned by Xinis. To prevent them from leaking into other universes, fields having rep-types
and methods that have rep-types as return or parameter types can only be accessed/invoked
on this (we will relax this restriction for read-only references, see below; the precise rules are
given in Section 4.1). To illustrate this concept, we declare the vector of employees and the
address to be part of the company’s representation.

protected rep Vector employees;
protected rep Address address;

This prevents the owner from giving away a reference to the employee vector. For instance,
OpenCompany cannot declare a method getEmployees as shown in Section 2 since the re-
sult type is not compatible with the type rep Vector of the field. On the other hand, if
getEmployees had return type rep Vector, the method could only be invoked on this,
which prevents the reference from leaking.

public Vector getEmployees() { return employees; } // type error
public rep Vector getEmployees() { return employees; } // safe

3.2 References across Representation Boundaries

The universe type system as described in the previous subsection enables modular verification
by enforcing representation encapsulation. However, it is too restrictive for many applica-
tions. One needs the capability of having references that leave an object’s representation. For
example, the representation of a list should not be forced to include the element objects of
the list. In most cases, the list only stores references to its elements. The element objects are
outside the list representation. In addition, several common programming patterns require
that the representation of an object can be accessed by other objects, for example to imple-
ment iterators or test for structural equality. To support such idioms, we provide read-only
references and functional methods. Read-only references are allowed to point into arbitrary
universes. Functional methods enable one to observe aspects of the representation and are
guaranteed not to make any modifications.

Read-Only References. Read-only references cannot be used to perform field updates or
invocations of methods that potentially have side-effects (as opposed to functional methods,
see below). Read-only references allow objects to make part of their representation accessible
or at least referable without taking the risk that the representation is being modified. In
addition to that, we use read-only references as markers in our specification framework for
modular verification: The specification of a class (in particular invariants and abstractions)
must not depend on the states of objects reachable only via read-only references.

Figure 2 shows how read-only references can be used to expose parts of a representation
(here, the address) in a safe way (dashed arrows depict read-only references). Furthermore,
they allow objects inside a representation to reference objects outside. For example, an
address might contain data which is shared by all addresses (e.g., the domain of the email
address).

Conpany Soned ass
2
errgl/:yees
e
4
addr&s e
.
'
e
1
.
Vect or Address \x’ String
[4 []
street

\
Figure 2: A Company Object with its Representation and Read-Only References.

In programs, we use readonly C for read-only references to objects of class C independent
of the universe. Read-only types have three important properties:

1. They are supertypes of the corresponding read-write types. That is, readonly C is a
supertype of type C in every universe.

2. Tt is not possible to use an expression of a read-only type as target for a field update or
an invocation of a non-functional method. This is checked by context conditions.

3. Reading fields or invoking functional methods via read-only references yields again read-
only references. Thus, it is not possible to gain a read-write reference through a read-
only reference. Consequently, we can allow fields of rep-types and functional methods
with rep-types as return types to be accessed/invoked on read-only references without
violating representation encapsulation.

We support downcasts to convert a read-only reference into a read-write reference. If a read-
only reference points into universe U, only the owner of U and objects belonging to U can
downcast the read-only reference into a read-write reference. As with conventional downcasts,
such casts need dynamic type checking which requires owner information to be stored for each
object. However, dynamic checks can obviously be eliminated by static analysis or verification
techniques.

Example. In the following, we discuss the implementation of a doubly linked list with
iterators. The example demonstrates the application of universes and read-only types. In
particular, it shows how multiple references into a representation can be realized, and how
references to objects outside the representation are handled. The list nodes belong to the rep-
resentation of the lists and are therefore protected from modifications. The elements, however,
are declared of type readonly Object and can reside in any universe. Consequently, method
LinkedList.add takes and Iter.next yields a read-only reference. Since the elements are
not part of the list’s representation, the list invariant may only depend on the identities of
the elements, but not on their state. By using read-only references, iterators can have refer-
ences to the internal node structure of the list. As illustrated by LinkedList.remove, the list
(which is the owner of the node structure) can downcast these references to modify the node
structure. The implementation of the equals method shows that read-only references can be
used to simultaneously access two representations. In a similar way, other binary methods
can be implemented as long as they do not require modification of the explicit parameter and
its representation. Fig. 3 shows the object structure of a LinkedList with two iterators.

Iter Li st Iter
list fué? list
posi ti‘on | ast post tion
Node "+ (Node Node y Node
° ® ® ®
prev prev prev prev
next next next next
° ° ° [
el em. el em. el em. el em
< < v »

Figure 3: Object Structure for LinkedList Example.

class Node {
public Node prev, next;
public readonly Object elem; 3}

public class LinkedList {
protected rep Node first, last;
// invariant: first and last are nodes of a doubly linked node structure

public void add(readonly Object o) { ...}
public Iter getIter() { return new Iter(this); }
protected void remove(readonly Node np) { rep Node n = (rep Node) np; ... }
public boolean equals(readonly LinkedList 1) {

readonly Node f1 = first;

readonly Node f2 = 1.first;
while (f1 != last && f2 '= 1l.last && fl.elem==f2.elem)

10

{ f1 = fl.next; f2 = f2.next; }
return f1 == last && f2 == 1.last && fl.elem==f2.elem; }
-}

public class Iter {
protected LinkedList 1list;
protected readonly Node position;
// invariant: position belongs to the universe owned by list

Iter(LinkedList 1) {
list = 1; readonly LinkedList rol = 1;
position = rol.first; }

public readonly Object next() {
readonly Object result = position.elem;
position = position.next;
return result; }

public void remove() { list.remove(position); }

-}

Functional Methods. Read-only references cannot be used to manipulate objects. Thus,
methods that cause side-effects must not be invoked on read-only references. This property
can be statically checked by either forbidding all method invocations on read-only references,
or by introducing functional methods that can be statically checked to be side-effect free.
Obviously, the former solution is not satisfactory since for example one would like to use
equals to compare two objects referenced read-only.

Functional methods can be implemented very easily. If a method is declared to be func-
tional, it must not contain field updates, or invocations of non-functional methods?. Fui-
thermore, functional methods can only be overridden by functional methods. For example
LinkedList.equals can be declared functional:

public functional boolean equals(readonly LinkedList 1) { ... }

3.3 The Universe Invariant and its Benefit for Verification

In this subsection, we explain the invariant on reference structures guaranteed by the universe
type system and sketch its application to modular verification of classes.

Universe Invariant. In every execution state, the following invariant holds: If object X
holds a direct reference to object Y3 then either (1) X and Y belong to the same universe,
or (2) X is the owner of Y, or (3) the reference is read-only. The invariant is an immediate
consequence of the type safety lemma which is presented in the next section.

Modular Verification of Classes. The universe invariant simplifies modular verification.
It is not the topic of this report to explain the underlying logical details. However, since we
used modular verification as a major motivation of the presented type system, we want to
illustrate the benefits of the universe invariant for verification. A central property in this

*Instead of forbidding all modifications of the object store, more sophisticated techniques (e.g., based on
data flow analysis) can be used to provide functional methods that can create and modify temporary objects.
8 Again, local variables and formal parameters behave like instance variables of the this object.

11

respect is formulated by the following modularity lemma for class invariants. Essentially, it
says that class invariants cannot be broken by reasonable program extensions. The proof
sketch demonstrates where the universe invariant provides necessary information.

Lemma: Let C be a class in program II, and X an instance of C. We assume that (1) the
invariant of X only depends on nonpublic fields of X that are declared in C, and fields of
objects inside the representation of X; (2) all methods in II preserve the invariant of X if
they are invoked on objects outside the representation of X; (3) all subtypes are behavioral
subtypes. That is, (a) all overriding methods meet the specifications of the overridden ones,
and (b) subtype methods preserve the invariants of their supertypes. If I’ is an extension of
IT then every method of II' preserves the invariant of X if it is invoked on objects outside the
representation of X, that is, in calls where the this object is outside the representation.

Proof Sketch: For simplicity we assume here, that our program does not contain recursive

methods. That is, there is an order on methods such that every method invokes only methods
that are less according to this order. We can prove the lemma by induction on this order.
Let m be a method of class D in IT'.
Induction Basis: m does not contain method invocations. If D is in Il or D is a subtype of
C, the property holds (assumption 2 resp. 3). Otherwise, the only way m can violate the
invariant of X is by field updates. Let’s assume that m contains a field update v.f=w; . We
prove the property by case distinction on the three disjuncts of the universe invariant:

(1) this and v belong to the same universe: Since this is outside the representation
of X, v is also outside. Thus, the invariant of X can only depend on v.f if v holds X
and f is a nonpublic field of C (assumption 1). In this case, f is not accessible in D, in
contradiction to the existence of the update.

(2) this is the owner of v: That is, v is inside this. this and X are different objects
since D is not in II. Thus, v is outside X because this is outside X. Therefore, the
invariant of X does only depend on v.f if v holds X (assumption 1). The rest of the
proof is identical to case (1).

(3) v is read-only: Field updates are not allowed on read-only references.

Induction Step. Again, the property holds if D is in IT or D is a subtype of C, (assumptions 2
and 3). Otherwise, m can violate the invariant of X by field updates or method invoca-
tion. The proof for field updates is identical to the induction basis. For method invocations
w=v.n(...); we conclude in analogy to the induction basis by case distinction on the three
disjuncts of the universe invariant:

(1) this and v belong to the same universe: Since v is not inside X, the invocation of
v.n(...) preserves the invariant of X (induction hypothesis).

(2) this is the owner of v: v is not inside X (see induction basis). Therefore, v.n(...)
preserves the invariant of X (induction hypothesis).

(3) v is read-only: Functional methods do not cause side-effects and can therefore not vi-
olate the invariant of X. O

The lemma above illustrates the use of the universe invariant for modular verification. A more
elaborate treatment of modular verification based on universes can be found in [MPHO00a].

12

4 The Universe Type System and its Properties

In this section, we present the universe type system in more detail: We describe our program-
ming language and give formal definitions for types and type schemes. Based on formal type
rules and an operational semantics of our language, we prove type safety and the universe
invariant.

4.1 Formalization of the Universe Type System

Programming Language. To simplify the description of the formalization of the universe
type system, we concentrate on a Java subset enhanced with universe-specific constructs. The
resulting language provides classes and inheritance, instance methods (functional and non-
functional), instance fields, and local variables as well as statements for reading and writing
instance variables, simple assignments (with casts), object creation, method invocation, se-
quential statement composition, conditional, and loop statement. The expressions of our
Java subset are literals (integer, boolean, null), local variables/formal parameters, and the
this reference. For simplicity, we assume that every method has exactly one explicit formal
parameter p. We do not provide overloading and static method binding (no static or private
methods, no invocations on super). Field names are assumed to be unique for each program
(this can be achieved by prefixing each field name with the name of the class it is declared
in). The extension of the formalization to a richer language is straightforward. The abstract
syntax of the Java subset is presented in the appendix.

As described in the last section, the universe type system enables types to be annotated
with universe modifiers. We call the annotated types type schemes. They are used wherever
types occur in conventional Java programs (declaration of variables and method signatures,
casts). Type schemes are described in more detail in the next paragraph.

Type Schemes. The universe type system provides ground type schemes (of the form C),
rep type schemes (rep C), read-only type schemes (readonly C), and type schemes for the
primitive types (int, boolean, the null type). The null type scheme must not occur in
programs. Type schemes are formalized by the following data type where sort Classld denotes
the class identifiers as given in a program.

data type
TypeScheme = grndS(Classld)
| repS(Classld)
| r0S(Classld)
|

boolS | intS | nullS

The subtype relation on type schemes follows the subclass relation in Java: Two ground
schemes/rep schemes/read-only schemes are subtypes if the corresponding classes are sub-
classes. In addition, every read-only scheme is a supertype of the ground and rep scheme
with the same class. An axiomatization of the subtype relation can be found in the appendix.

The Type Scheme Combinator. Type schemes describe the type of a program element
(expression, field, method) relatively to the universe to which this belongs: Ground schemes
denote that the referenced object belongs to the same universe as this, rep schemes indicate
that the referenced object belongs to the universe owned by this, and read-only schemes

13

stand for references into arbitrary universes. Consequently, when a field or method is ac-
cessed /invoked on other variables than this, the type scheme of the field access or method
invocation expression has to be determined by combining the type schemes of the target vari-
able and the type scheme of the field, method result, or method parameter. For example, if
a local variable v is declared to be of type scheme rep T (i.e., it holds a reference into the
universe owned by this) and class T contains a field f of type scheme S, the type scheme of
v.f is rep S. That is, the field holds a reference to an instance of class S or subclasses of S
in the universe owned by this. Such combinations of type schemes are described by the type
scheme combinator

* : TypeScheme x TypeScheme — TypeScheme U {undef }

which is defined by the following table (first argument: rows, second argument: columns; all
combinations not mentioned in the table yield undef):
| grndS(C) | repS(C) | roS(C) | boolS | intS | nullS
grndS(D) || grndS(C) | repS(C) | roS(C) | boolS | intS | nullS
repS(D) repS(C) | undef roS(C) | boolS | intS | nullS
roS(D) roS(C) roS(C) | roS(C) | boolS | intS | nullS
The definition of the type scheme combinator reveals four important aspects: (1) The class
of the resulting type scheme is the class of the second argument. This is as in Java where the
type of v. £ is the type of £. (2) The combination of two rep schemes is not defined to ensure
that it is not possible to gain read-write references to objects that are neither owned by this
nor belong to the same universe as this. (Combining two rep schemes would mean to go “two
steps down” in the universe hierarchy®.) (3) If one of the arguments is a read-only scheme,
the result is also a read-only scheme. This guarantees that read-only references are transitive,
that is, it is not possible to gain a read-write reference through a read-only reference. (4) If
the first argument is a type scheme for a primitive type, the result is undefined since such
situations cannot occur in Java (e.g., it is not allowed to invoke methods on integer variables).
The definition of the type scheme combinator affects the context conditions for functional
methods. In analogy to Java, the combination of the type scheme of the target and the actual
parameter of a method invocation has to be a subtype of the type scheme of the formal
parameter (see below for the type rules). In cases where the functional method is invoked on
a read-only reference, this combination yields a read-only scheme. To support these cases, we
require that all formal parameters of functional methods must be declared read-only to meet
the requirement above. This rule is no restriction since functional methods must not modify
their parameters anyway.

Type Rules. The universe-specific type rules are displayed in Fig. 4. All other rules for
our Java subset are straightforward and therefore omitted. In the type rules, we use [e] to
denote the type scheme of an expression or field e. For literals, local variables, and fields, [e] is
defined by the program. In methods m of class C, [this] is grndS(C) if m is a non-functional
method, and roS(C) if m is functional (recall that all formal parameters of functional methods
a required to be read-only). We use res(m) and par(m) to refer to the result type scheme
and the type scheme of the formal parameter of method m. =<g is the subtype relation on

It would be type safe if this combination yielded a read-only scheme. However, we think that such a
definition is rather unintuitive. If the read-only scheme is required, it can be achieved by an additional
assignment.

14

TS < [v], TS =<g [e], TS <5 [v], TS is grndS or repS

Fv=(TS)e; F v=new TS(Q);

[£] is repS = [w] is roS, [w] * [f] Zs [V] [this] * [f] <5 [v]

Fv=w.f; F v=this.f;

[v] is no roS,[f] is no repS,[e] <g [v] * [f] [this] is no oS, [e] <X [this] * [f]
Fv.f=e; F this.f=e;

m is not functional,
par (m) is no repS, res(m) is no repS,

[w] is no roS, m is not functional,
[e] =g [W] * par(m), [w] * res (m) <s [v] [e] =g [this] * par (m), [this] * res (m) <g [V]
Fv=w.m(e); b v=this.m(e);

m is functional®,

res (m) is repS = [w] is roS, m is functional
fe] s [w] * par(m), [w] * res (m) <s [v] [e] < [this] * par (m), [this] * res (m) < [+]
Fv=w.m(e); b v=this.m(e);

Figure 4: Type Rules.

type schemes. The judgment I stmt expresses that statement stmt is well-typed in a given
program. If the type scheme combinator occurs within a rule, the statement is only correctly
types if the application of the combinator is defined.

Five aspects of the wuniverse type rules need explanation: (1) The rule for
casts/assignments is like in Java. Note that it allows read-only references to be cast to
read-write references (see Section 3). (2) The rule for the new-statement forbids the creation
of objects of read-only schemes since read-only schemes do not specify the universe the new
object should belong to. (3) Rep schemes indicate that a reference points to an object owned
by this. Therefore, fields of rep schemes or methods with rep schemes as parameter or result
type schemes can only be accessed/invoked on this and read-only references. For example, if
variable v is of a ground scheme (i.e., v and this belong to the same universe) and field f is
of a rep scheme, v.f yields a reference to an object owned by v. That does only correspond to
the universe programming model if (a) the reference is read-only or (b) v and this denote the
same object. To enforce this condition statically, we require that only this and read-only ref-
erences can be used to access/invoke fields/methods of rep schemes. (4) Neither writing field
access nor invocation of non-functional methods is allowed on read-only references. (5) The
type rules do not require functional methods to be side-effect free. However, this requirement
is necessary for modular verification (see Section 3.3).

4.2 Type Safety

In this subsection, we present the operational semantics of our Java subset. Based on this
semantics, we formalize and prove type safety.

SRecall that parameters of functional methods must have primitive or read-only type schemes.

15

Operational Semantics of the Java Subset

Capturing Statement Contexts. The semantics of a statement depends on the context
of the statement occurrence. We assume that the program context of a statement is always
implicitly given and that we can refer to method declarations in this context. Method decla-
rations are denoted by T@m where m is a method name in class T. MethDeclld is the sort of
such identifiers. The function

body : MethDeclld — Stmt

maps each method declaration to the statement constituting its body. If T is a type for class
C and m a method of C, the function

impl : Type x Methodld — MethDeclld U {undef}

yields the corresponding declaration; otherwise it yields undef. Note that C can inherit the
declaration of m from a superclass.

Values. Values in the Java subset are either integers, booleans, the null reference, or refer-
ences to objects. As described in Subsection 3.1, each object belongs to exactly one universe.

data type
Value = b(Bool)
| i(Int)
| null()
|

ref (Classld Objld Universe)

Values constructed by ref represent references to objects. The identity of an object is deter-
mined by its class, its object identifier, and the universe it belongs to. The sort Objld denotes
some suitable set of object identifiers. The sort Universe is defined below.

Universes and Types. A universe is either the standard universe or the universe owned by
an object (identified by its class, object identifier, and universe). As explained in Section 3, a
universe contains one type for every class in a program. Consequently, we formalize read-write
reference types (not type schemes) as tuples of class identifiers and universes. Besides read-
write reference types, we have read-only reference types and the primitive types. The subtype
relation < on types resembles the subtype relation on type schemes. Its axiomatization is
contained in the appendix.

data type
data type Type = refT(ClassId Universe)
Universe = stdU() I Zzgggacrl;l;?)]d)
| repU(Classld Objld Universe) | intT()
| nullT()

The types of variables on the stack, the types of instance variables, and the parameter and
return types of method incarnations depend on the corresponding type schemes (of the vari-
ables, fields, methods) and an object that determines the universe of the type. For variables,
this object is the this object. For instance variables and method incarnations, it is the target
object. The interpretation of a type scheme w.r.t. an object is formalized by function 7. It
maps read-only and primitive schemes to the corresponding types; for ground and rep schemes

16

T, 7(T, X) yields the read-write reference type for T in the universe to which X belongs or
the universe owned by X, resp.

7 : TypeScheme x Value — Type U {undef}
7(grndS(C), ref (C,0,U)) = refT(C,U)

7(repS (C), 0) = refT(C,mkrepU (0))
7(roS(C)), 0) =roT(C)
T(boolS, O) = booleanT
T(intS, 0) = intT
T(nullS, O) = nullT

Furthermore, we use the following auxiliary functions: mkrepU : Value — Universe U{undef }
yields the universe owned by an object; function univ : Value — Universe U{undef } yields the
universe an object belongs to; for non-reference values both functions yield undef. Function
typeof : Value — Type yields the type of a value.

Execution. A statement is essentially a partial state transformer. A state in our Java
subset describes (a) the current values for the local variables and for the method parameters
p and this, and (b) the current object store.

The state of an object is given by the values of its instance variables. We assume a sort
InstVar for the instance variables of all objects and a function

iv : Value x Fieldld — InstVar U {undef }

where v(V,f) is defined as follows: If V' is an object reference and the corresponding object
has an instance variable named f, this instance variable is returned. Otherwise v yields
undef. The state of all objects and the information whether an object is alive (i.e., allocated)
in the current program state is formalized by an abstract data type Object Store with sort
Store and the following functions:

{_:=_) : Store x InstVar x Value — Store
{42 : Store x Classld x Universe — — Store
new : Store x Classld x Universe — Value
-() : Store x InstVar — Value
alive : Value x Store — Bool

OS(IV := V) yields the object store that is obtained from OS by updating instance variable
IV with value V. Object creation is described by two functions: OS(T,U) yields the object
store that is obtained from OS by allocating a new object of class T' in universe U, and
new(0S,T,U) yields a reference to an object of type refT (T,U) that is not alive in OS.
OS(IV) yields the value of instance variable IV in store OS. If V is an object reference,
alive(V, OS) tests whether the referenced object is alive in OS. A formalization of these
functions can be found in [PHM98].

Program states are formalized as mappings from identifiers to values. To have a uniform
treatment for variables and the object store, we use $ as identifier for the current object store:

State = (Varld U {this, p } — ValueU {undef}) x ({$} — Store U {undef})

For S € State, we write S(x) for the application to a variable or parameter identifier and
S($) for the application to the object store. By S[x := V] and S[$:= OS] we denote the
state that is obtained from S by updating variable x and $, resp. The canonical evaluation

17

of expression e in state S is denoted by €(S,e) yielding an element of sort Value or undef
(note that expressions always terminate and do not have side-effects). The state in which all
variables are undefined is named initS. The SOS-rules for our Java subset are contained in
the appendix.

Proof of Type Safety

We call a type system type safe, if it guarantees that every valid execution state is well-typed.
An execution state S is well-typed if

1. for every local variable/formal parameter v and this typeof (S(v)) < 7([v], S(this)), and

2. for every valid instance variable v (S(x),f) typeof (S($)(iv(S(x),f))) =< 7([f], S(x))
holds.

A state S is well-formed—denoted by wf(S)—if it is well-typed and in addition
3. S(this) # null holds.

For simplicity, we assume that program execution starts in an initial state in which some
predefined object X is allocated. All instance variables of X that have reference types are
initialized to null. X belongs to the standard universe. Execution starts by invoking a
designated method of X. Therefore, the initial state is well-formed. The proof of type safety
is based on the following lemma about the type scheme combinator *:

Combination Lemma: In all well-formed states S with S(w) # null, the equality
7([w] * [f], S(this)) = 7([f], S(w))

holds where w is a variable and f denotes a field, or the parameter or result of a method
(assuming that [w] [f] is defined, [w] is not a roS, [f] is not an repS, and [this] is a

grnds).

This equality formalizes the fact that the combination [w] % [f] interpreted w.r.t. S(this) yields
the same type as if [f] was interpreted w.r.t. S(w) (see Subsection 4.1). The proof of the
lemma runs by case distinction on the type schemes of w and f. It is straightforward and does
not reveal any interesting aspects.

Type Safety Lemma: For each program execution that starts in a well-formed state, the
terminating state and all intermediate states are well-formed.

Proof Sketch: The proof of the type safety lemma runs by structural induction over the
operational semantics. In the appendix, we present two of the most interesting cases of the
proof: Field update (one case of the induction basis) and invocation of non-functional methods
(one case of the induction step). The other cases are very similar.

18

The Universe Invariant Revisited

The universe invariant (cf. Subsection 3.3) is an immediate consequence of type-safety. Two
read-write reference types can only be subtypes if they belong to the same universe. Therefore,
the type safety statement (parts 1 and 3 for local variables and formal parameters, and part 2
for instance variables) and the definition of 7 imply the universe invariant, where the three
disjuncts of the invariant correspond to ground, rep, and read-only schemes, resp.

5 Related Work

Universes have been designed w.r.t. the following objectives: They should (1) have simple
semantics, (2) be easy to apply, (3) be statically checkable (4) guarantee an invariant that is
strong enough for modular reasoning, and (5) be flexible enough for many useful programming
patterns. In particular, they should provide support for some of the implementation patterns
that cannot be handled by related approaches (e.g., binary methods, several objects holding
references into one representation). In this subsection, we compare the universe type system
to other approaches to alias control w.r.t. these objectives.

Type Systems. Ownership types [CPN98] provide a very flexible means for alias control.
They realize the ownership model with strong alias control by a parametric type system.
So-called context parameters are used to provide references from inside a representation to
the outside. Context parameters are similar to parametric polymorphism. Instead of parame-
terizing over types, they parameterize over owners. Ownership types are statically checkable.
However, context parameters make ownership types rather difficult to apply [Bok99]. Read-
only types can replace context parameters in many situations and lead to programs that are
easier to read and reason about. Furthermore, they allow multiple objects to access one rep-
resentation which is not supported by ownership types. As presented in [CPN98], ownership
types do not support subtyping and inheritance.

[NVP98] proposes alias modes to control aliasing. Similar to ownership types, each object
is equipped with a context. Alias modes specify constraints on references. For example, the
mode rep enforces representation containment (like the rep scheme). The mode arg provides
references that can be freely passed around, but must not be used to manipulate the referenced
object. Thus, they are similar to read-only references. The so-called roles for arg references
are similar to context parameters. The mode free indicates that the referenced object is not
aliased. Therefore, free variables behave like unique variables (see below). Like ownership
types, alias modes have been presented for a language without subtyping and inheritance.

Balloon types [Alm97] aim at full representation encapsulation. That is, all objects reach-
able from an object are contained in its balloon (as if every field was declared as a rep scheme).
This is too restrictive for many programs (e.g., singly linked lists). Balloon types require a
rather complex checking algorithm based on abstract interpretation and cannot be checked
modularly.

Like balloon types, Islands [Hog91] also provide only full encapsulation and suffer therefore
from the same lack of expressiveness. Islands are based on a destructive read operation, which
has a rather unintuitive semantics. Islands permit dynamic aliases but restrict them to be
read-only. Islands have not been formally validated.

Confined types [BV99] guarantee that objects of a confined type cannot be referenced in or
accessed by code declared outside the confining package. Confined types have been designed

19

for the development of secure systems. They do not support representation encapsulation on
the object level, which makes some aspects of verification difficult.

In this report, we associate universes with single objects. For certain applications,
it is interesting to provide multiple owner objects sharing a common representation. In
[MPHO00a, MPHOOb], we presented variants of the universe type system that associate uni-
verses with types or modules such that all objects of one type or all objects of the types
declared in one module own a common representation. That allows several objects outside
a representation to reference and modify objects inside. Therefore, these variants give more
flexibility than universes on the object level, but provide weaker alias control. The type rules
and formalization of universes on the type and module level are very similar to the concepts
presented here.

We developed the universe type system systematically from the requirements of modular
verification and formalized it similarly to ownership types [CPN98]. Since the universe type
system provides one type universe for each object, it is closely related to value-dependent
types [XP99]: Type schemes can be seen as types that depend on a value, namely an owner
object. Read-only types correspond to existentially quantified dependent types (there exists
an owner for the referenced object). For future work, we plan to formalize the universe type
system as a restriction of a type system with value-dependent types.

Unique Variables. The reference held by a unique variable is the only reference to the
referenced object [Wad90, Hog91, Min96, Boy00]. Unique variables are usually realized by
a destructive read operation. They provide very strict alias control since they completely
forbid sharing of objects referenced by a unique variable. However, the techniques developed
for uniqueness support programming patterns that cannot be handled by the universe type
system, such as objects that exchange their representations, or capturing, which often occurs
when the representation for a newly created object is passed to the constructor method by a
read-write reference (see [DLN98| for an example). We plan to investigate combinations of
uniqueness and universes to support such idioms in the future.

Read-only Types and Functional Methods. [KT99] realizes read-only types in Java by
implicitly generating an interface for every type declaration. This interface contains only the
signatures of functional methods. To achieve transitive protection, read-only types are used
as result types for these methods. This is a common technique, often proposed as a design
pattern for write-protecting objects. Like in our approach, read-only types are supertypes of
the user-defined types. Read-only types as described in [KT99] have three major drawbacks:
(1) Since they are not directly supported by the type checker or runtime checks, inspection,
reflection, or casts can be used to break the write-protection. (2) Java interfaces provide
only public methods. Thus, they cannot be used to provide read-only access to the protected
interface. (3) Functional methods do not modify the state of this, but are not guaranteed
to be side-effect free. Thus, they are not functional is our sense. This is also true for const
member functions in C++: They only forbid to directly manipulate the state of the implicit
parameter. However, explicit parameters can be modified and thus, via aliasing, also the
object referenced by this [Str91].

20

6 Conclusion

We presented a flexible model for object-oriented programming that supports a hierarchical
structure of the object store. It is a proper extension of the classical model in which all
objects belong to one universe. It supports read-only references to express restricted access
to objects. Read-only references increase the flexibility of the programming model and allow
objects inside a representation to be referenced by arbitrary objects outside. The universe
type system is easy to apply and does not impose much effort on programmers. We proved
type safety of the universe type system and derived an invariant on the execution states.

The representation encapsulation property guarantees that modification of a representa-
tion is only possible by calling a method on the corresponding owner object. It can be con-
sidered as a further step towards “semantic encapsulation” simplifying program verification
and optimization. In addition to that, the underlying programming model might be help-
ful for a better understanding of component-based programming approaches and distributed
programming.

Acknowledgment

We thank John Boyland for his valuable comments on an earlier version of this report.

References

[Alm97] P. S. Almeida. Balloon types: Controlling sharing of state in data types. In
M. Aksit and S. Matsuoka, editors, ECOOP ’97: Object-Oriented Programming,
volume 1241 of Lecture Notes in Computer Science, pages 32-59. Springer-Verlag,

1997.

[Bok99] B. Bokowski. Implementing “object ownership to order”. Pre-
sented at the Intercontinental Workshop on Aliasing in Object-
Oriented Systems at ECOOP’99), 1999. Available from

http://cuiwww.unige.ch/~ecoopws/iwaoos/papers/index.html.

[Boy00] J. Boyland. Alias burying: Unique variables without destructive reads. Software—
Practice and Ezperience, 2000. (to appear).

[BV99] B. Bokowski and J. Vitek. Confined types. In Proceedings of Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), ACM SIGPLAN
Notices, 1999.

[CPN98] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias
protection. In Proceedings of Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), volume 33(10) of ACM SIGPLAN Notices, October
1998.

[DLN98] D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure.
Research Report 156, Digital Systems Research Center, 1998.

21

[HLW*92] J. Hogg, D. Lea, A. Wills, D. de Champeaux, and R. Holt. Report on ECOOP’91

[Hoa72]

[Hog91]

[KT99]

[Lei95]

[LW94]

[Min96]

[MPHO00a]

[MPHO0b]

[NVPYS]

[PH97]

[PHMOS]

[PHM99]

workshop W3: The Geneva convention on the treatment of object aliasing. OOPS
Messenger, 3(2):11-16, 1992.

C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica,
1:271-281, 1972.

J. Hogg. Islands: Aliasing protection in object-oriented languages. In A. Paepcke,
editor, OOPSLA 91 Conference Proceedings, pages 271-285, October 1991. SIG-
PLAN Notices, 26 (11).

G. Kniesel and D. Theissen. JAC — Java with transitive readonly
access control. Presented at the Intercontinental Workshop on Alias-
ing in Object-Oriented Systems at ECOOP’99, 1999. Available from
http://cuiwww.unige.ch/"ecoopws/iwaoos/papers/index.html.

K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995.

B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6), 1994.

N. Minsky. Towards alias-free pointers. In P. Cointe, editor, ECOOP ’96 European
Conference on Object-Oriented Programming, volume 1098 of Lecture Notes in
Computer Science, pages 189-209. Springer-Verlag, 1996.

P. Miiller and A. Poetzsch-Heffter. Modular specification and verification tech-
niques for object-oriented software components. In G. T. Leavens and M. Sitara-
man, editors, Foundations of Component-Based Systems. Cambridge University
Press, 2000.

P. Miiller and A. Poetzsch-Heffter. A type system for controlling representation
exposure in Java. In S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T. Leav-
ens, P. Miller, and A. Poetzsch-Heffter, editors, Formal Techniques for Java
Programs. Technical Report 269, Fernuniversitat Hagen, 2000. Available from
www.informatik.fernuni-hagen.de/pi5/publications.html.

J. Noble, J. Vitek, and J. M. Potter. Flexible alias protection. In E. Jul, editor,
ECOOP ’98: Object-Oriented Programming, volume 1445 of Lecture Notes in
Computer Science. Springer-Verlag, 1998.

A. Poetzsch-Heffter. Specification and verification of object-oriented pro-
grams. Habilitation thesis, Technical University of Munich, Jan. 1997. URL:
www.informatik.fernuni-hagen.de/pi5/publications.html.

A. Poetzsch-Heffter and P. Miiller. Logical foundations for typed object-oriented
languages. In D. Gries and W. De Roever, editors, Programming Concepts and
Methods (PROCOMET), 1998.

A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential Java. In
S. D. Swierstra, editor, Programming Languages and Systems (ESOP ’99), volume
1576 of Lecture Notes in Computer Science, pages 162-176. Springer-Verlag, 1999.

22

[Str91] B. Stroustrup, editor. The C++ Programming Language, 2nd Edition. Addison-
Wesley, 1991.

[Wad90] P. Wadler. Linear types can change the world! In M. Broy and C. B. Jones,
editors, Programming Concepts and Methods (PROCOMET), 1990.

[XP99] H. Xi and F. Pfenning. Dependent types in practical programming. In Proc. 26th
ACM Symp. Principles of Programming Languages, pages 214-227. ACM Press,
New York, 1999.

APPENDIX
Abstract Syntax of the Java Subset.
data type
Program = list of ClassDecl
ClassDecl = ClassDecl(Classld Classld ClassBody)
ClassBody = list of MemberDecl
MemberDecl = FieldDecl(Mode TypeScheme Fieldld)
| MethodDecl (Mode TypeScheme MethodId TypeScheme VarList Stmt)
| ROMethodDecl (Mode TypeScheme Methodld TypeScheme VarList Stmt)
Mode = Private() | Default() | Protected() | Public()
VarList = list of VarDecl
VarDecl = Vardcl(TypeScheme Varld)
TypeScheme = grndS(Classld) | repS(ClassId) | roS(ClassId) | boolS | intS | nullS
Stmt = Seq(Stmt Stmt)
| While(Exp Stmt)
| If(Expr Stmt Stmt)
| Invoc(Varld Varld Methodld FEzpr)
| New(Varld Classld)
| GetAttr(Varld Varld Fieldld)
| SetAttr(Varld Fieldld Expr)
| CastAssign(Varld Classld Ezxpr)
Expr = Var(Varld) | IntLiteral(Int) | BoolLiteral(Bool) | Null() | This()

Rules of Operational Semantics. To have a compact notation, we treat this like a
formal parameter in the SOS rules.

S(v) # null, initS[this := S(v),p :=€(S,e),$:= S(8)] : body(impl(typeof (S(v)),m)) — S’
S w=v.m(e); = S[w:= S'(result), $:= S'($)]

true
S : v=new C(); — S[v:= new(S($),C,univ(S(this))), $:= S($)(C, univ(S(this))}]
true

S : v=new rep C(); — S[v:= new(S($),C,mkrep U(S(this)))

,$:= S(8)(C, mkrep U(S(this)))]
S:stml — S’ S': stm2 — S” typeof (e(S,e)) = 7(T, S(this))

S : stml stm2 — S” S v=(T)e; — S[v:=€(S,e)]
e(S,e) = b(true), S: stm — S, S': while(e){stm} — S" €(S,e) = b(false)

S : while(e){stm} — S” S : while(e){stm} — S

23

€(S,e) = b(true), S: stml — S’ €(S,e) = b(false), S : stm2 — S’

S : if(e){stm1} else{stm2} — S’ S ¢ if(e){stm1} else{ stm2 } — S’
S(v) # null S(v) # null
S: w=vf, = S[w:=50)(w(S(v),1))] S vi=e; = S[$:=S(8)(w(S(v),f) :=€(S,e))]

Subtype Relation on Type Schemes. The subtype relation <g on type schemes is the
smallest reflexive, transitive relation satisfying the following axioms (<; denotes the subclass
relation as defined by the Java program):

nullS =<s g¢grndS(C) S=<yT & grndS(S) =<s grndS(T)
nullS =<g repS(C) S=<yT < repS(S) =<s repS(T)
grndS(T) =<s 10S(T) S=<;T & r08(S) =<s 10S(T)

repS(T) =g 10S(T)

Subtype Relation on Types. The subtype relation < on types is the smallest reflexive,
transitive relation satisfying the following axioms (< ; denotes the subclass relation as defined
by the Java program):

nullT < refT(T,U) S=<;T < refT(S,U)
refT(T,U) =< roT(T) S=<;T < 10T(S)

< refT(T,U)

< roT(T)

Two Cases of the Type Safety Proof. Each statement transforms a state S into a state S’
as defined by the SOS rules. We have to prove wf(S) = wf(S'), that is, that S’ meets the three
well-formedness conditions presented in Section 4.

Field Update: We consider a field update statement v.f = e;. From the context conditions,
we know that all requirements are met to apply the combination lemma for [v], [f], and S.
ad 1: Let x be a local variable, a formal parameter, or this.

wf (S) = typeof (S(x)) 2 7([x], S(this)) =
typeof (S[$:= S(8) (i (S(v),f) := e(S,e))](x)) 2 7([x], S[$:= S(8)(iw(S(v),) := (S,))](this))

ad 2: Let O and F be a Value and a Fieldld such that iw(O,F)#undef. For w(O,F)#iv(S(v)f), the
proof obligation is a direct consequence of the well-typedness of S. Otherwise, we conclude:

[e] =5 [v]* [f]

= [S(this) # null, type rule]

7([e], S(this)) < 7([v] = [f], S(this))

= [wf(S),e is either a constant or a variable, parameter, or this]
typeof (€(S, e)) = 7([v] * [f], S(this))

= [combination lemmal]

typeof (e(S,) = 7([f], S(v))

=

typeof (S[$:= S(8)(iv (S(v),) := €(S,¢))]($) (i (S(v),1))) 2 7([f], S[$:= S($)(iv(S(v), 1) := €(S, e))](v))
ad 3: wf(S) = S(this) # null = S[$:= 5(8)(iw(S(v),I) := (S, e))](this) # null

24

Method Invocation: We consider an invocation of a non-functional method w=v.m(e) ;. From
the context conditions, we know that all requirements are met to apply the combination lemma for
[v], [p]/res(m), and S. To be able to apply the induction hypothesis, we have to show wf(S) =
wf (initS[this := S(v),p := €(S,), $:= S(9)]):
ad 1: Let x be a local variable or the formal parameter of m, or this. For x # p A x # this, we
conclude S(x) = nitS[this := S(v),p := €(S,e),$:= S(§)](x). For the other cases, we derive (class
yields the ClassId of a Type):

x=this:
typeof (indtS[this := S(v),p := (S, e), $:= S($)](this)) = typeof (S(v)) =
refT (class (typeof (S(v))), univ (S(v)) = 7(grndS (class (typeof (S(v)))), S(v))
=< [Since v is the target of the invocation, the scheme of this is determined by the class of S(v)]
7([this], S(v)) = 7([this], initS[this := S(v),p := (5, ¢), $:= S($)](this))
x=p: We consider only the interesting case that e is not a constant.
[e] =5 [v] * [p]
= [S(this) # null]
7([e], S(this)) = 7([v] * [p], S(this))
= [wf(S), combination lemma]
typeof (S(e)) = 7([p], S(v))
= [e is not a constant = S(e) = €(.5, e)]
typeof (¢(S,e)) = 7([p], initS[this := S(v),p := €(S,e), $:= S($)](this))
=
typeof (initS[this := S(v),p := €(5,e),$:= S($)](p))
=< 7([p], initS[this := S(v),p := €(S, e), $:= S($)](this))

ad 2: The well-typedness of instance variables follows directly from wf(5).
ad 3: initS[this := S(v),p := €(S,), $:= S($)](this) = S(v) # null

Since nitS[this := S(v),p := €(S5,e),$:= S($)] is well-formed, we can assume the induction hypothesis
for S’. Now we have to show wf (S[w := S'(result), $:= S'($)])
ad 1: Let x be a local variable or the formal parameter of m, or this. For x # w, we conclude
S(x) = S[w := S'(result), $:= S'($)](x). For x = w, we derive:

[v] * res (m) <g [w]

= [S(this) # null]

7([v] * res (m), S(this)) < 7([w], S(this))

= [combination lemmal]

7(res (m), S(v)) = 7([w], S(this))

= [wf(S")]

typeof (S'(result)) < 7([w], S(this))

=

typeof (S[w := S'(result), $:= S ($)](w)) < 7([w], S[w := S'(result), $:= S"($)](this))

ad 2: The well-typedness of instance variables follows directly from wf (S').
ad 3: S[w := S'(result), $:= S’($)](this) = S(this) # null O

25

