
T U M
I N S T I T U T F Ü R I N F O R M A T I K

A Brief Study in Automating Proofs
Based on a Refined Hoare-logic

Peter M̈uller
Arnd Poetzsch-Heffter

ABCDE
FGHIJ
KLMNO

TUM-I9635
November 96

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N



TUM-INFO-11-96-I9635-200/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
96

Druck: Fakultät für Mathematik und
Institut für Informatik der
Technischen Universität München



A Brief Study

in Automating Proofs

Based on a Re�ned Hoare-logic

Peter M�uller1

Arnd Poetzsch-He�ter2

Institut f�ur Informatik

Technische Universit�at

M�unchen

November 12, 1996

1
muellerp@informatik.tu-muenchen.de

2
poetzsch@informatik.tu-muenchen.de



Abstract

This report deals with program veri�cation based on a re�ned Hoare-logic

which allows to handle procedure calls.

A certain speci�cation technique allows to specify these procedures by pre-

and postconditions. To do that, the data model of the programming language

is formalized and objects of the programming language are mapped to abstract

values. Speci�cations can thus refer to these abstract values and describe the

behavior of a procedure on a higher level of abstraction.

As basic operations of the programming language can cause exceptions they

are considered as procedures. This allows to specify their behavior and prove

the absence of certain exceptions. The disadvantage of this approach is that

procedure calls play an even more prominent role in veri�cation.

Handling procedures makes automation of correctness proofs much harder

because it is not possible to compute the weakest precondition of a procedure

call in most cases. Two examples show how suitable preconditions can be found.

On the one hand, the enhancement of the programming logic enables our

framework to deal with realistic programs by handling e. g. side-e�ects or recur-

sion. On the other hand it leads to larger and more complex correctness proofs.

It is shown that this additional e�ort can mostly be done by a veri�cation system.



1 Introduction

Increasing use of computer systems in safety-critical areas leads to a strong de-

mand for extremely reliable software. This level of reliability can only be achieved

by means of formal methods, in particular by correctness proofs (cf. [Hoa96]).

Previous work (cf. [PHB96]) has shown that carrying out correctness proofs |

even for very small programs | tends to become very strenuous. Therefore a high

grade of automation is required to make proving more e�cient and economically

reasonable.

Examination of correctness proofs has shown that most proof steps are

straightforward. This leads to the notion of interactive program veri�cation where

most parts of the proof are carried out automatically by a computer. Human in-

teraction is required in cases where intuition is needed to solve more di�cult

problems.

The whole work is embedded in the Lopex research project3. It is concerned

with tools for the support of formal methods in program development. In partic-

ular, it deals with so-called logic based programming environments which allow

the speci�cation and veri�cation of object-oriented programs.

2 Speci�cation

In our framework speci�cations are split into two interacting parts: A program-

independent part which contains e. g. the speci�cation of abstract data types

and a program-dependent part which links parts of the program to parts of the

abstract speci�cation.

The program-independent part is formalized by the speci�cation language

of a proof checker like e. g. PVS (cf. [PVS95]). This allows to prove program-

independent lemmata automatically.

Program-dependent properties are speci�ed by so-called annotations as known

from [Hoa69]. These are formulae of the predicate calculus. Annotations can

occur as pre- or postconditions of procedures or as class invariants. To keep things

simple we neglect class invariants in this report and concentrate on imperative

programs rather than on object-oriented ones.

To build the link between the world of objects and the world of abstract spec-

i�cations, our speci�cation technique has to support data abstraction. Therefore

we use so-called abstraction functions to map objects or whole object structures

to terms of abstract data types. This allows to specify the behavior of procedures

on a higher level of abstraction.

Basically, our speci�cation technique is very similar to Larch's two-tiered ap-

proach (cf. [GH93]). As we aim to program veri�cation we are forced to give

3
http://wwweickel.informatik.tu-muenchen.de/forschung/lopex/lopex e.html

1



our speci�cations precise semantics and overcome some of Larch's shortcomings

(cf. [CGR96]). A more detailed comparison can be found in [PH96].

To illustrate our technique we look at a small example. Suppose that the

abstraction function for integer objects is denoted by � and that range is a unary

predicate that holds if its argument lies within the boundaries of the integer

representation of the programming language.

� : int! Integer

range : Integer! Boolean

In most cases speci�cations of procedures describe a relation between the

parameters passed to the procedure and its return value. As statements in the

body of the procedure are allowed to change the values of the parameters it is

not su�cient to describe the result in terms of the parameters or, in general,

in terms of program variables. Therefore we introduce logical variables4 in the

precondition which denote the abstractions of the parameters' values. Changes

to the parameters do not have any in
uence on these logical variables. They still

contain the abstractions of the parameters' initial values.

Now we can specify a procedure times that takes two arguments and yields

their product. If the abstractions of the parameters are denoted by the logical

variables A and B, we have to assure that A � B does not exceed the limits

of integer representation. In each case the precondition meets this demand we

guarantee that the abstraction of the result, which is denoted by the variable

result, yields A �B.

int times (int n, int m)

pre n = A ^m = B ^ range(A �B)

post result = A �B

Applying times in a correct way (i. e. in states where the precondition is

ful�lled) assures that the multiplication is carried out without the risk of raising

an arithmetic exception.

3 Veri�cation

The fact that [Hoa69] is one of the most widely cited papers in computer science

shows that Hoare-logic is considered to be the best �t veri�cation technique

known by now.

In this report we use parts of the Hoare-style logic that was developed by

A. Poetzsch-He�ter to prove the partial correctness of object-oriented programs.

The reader may refer to [PH96] for a detailed discussion and Appendix A for an

overview of the rules of our calculus.

4
cf. section 3 for the discrimination of logical and program variables

2



Most interesting features of our logic are (a) the discrimination between log-

ical and program variables and (b) how procedure calls are treated. (a) is a

solution to a shortcoming of Hoare logic. As logical and program variables be-

have di�erent they are discerned in our framework. This allows to handle the

rules for substitution and quanti�cation more easily. (b) allows to incorporate the

speci�cation of a procedure into correctness proofs. This is done by the call-rule,

the elim-rule and the inv-rule which can be found in Appendix A.

In order to make it possible to show the absence of most kinds of exceptions,

we give the logic a stronger semantics. In pure Hoare-logic a triple fPg S fQg

means: If P holds in the state before the execution of S, Q will hold in the

state after execution if S terminates regularly (cf. [Hoa69]). In our framework

the semantics is: If P holds in the state before the execution of S, Q will hold in

the state after execution except if S runs forever or causes a memory exception.

Treating memory exceptions would require to include assumptions about the

hardware und software environment in which the program is carried out. For

simplicity these aspects of speci�cation are not addressed in this paper.

The possibility of exceptions during the computation of expressions shows that

most operators of a programming language don't have pure functional behavior.

Therefore it is straightforward to consider those operations as procedure calls

because they behave like procedures rather than like functions. These procedures

can be speci�ed as shown in section 2.

From this point of view, complex expessions are simply nested procedure calls.

They can be reasoned about by splitting them up into single calls (cf. [Cou90]).

This allows to incorporate speci�cations for all basic operations into correctness

proofs and thereby prevent exceptions.

4 Automation of correctness proofs

The basic notion of proving programs correct is to deduce for each procedure

p the triple fPreconditionpg Bodyp fPostconditionpg in the programming logic.

As Dijkstra and Gries showed in [Dij76] and [Gri81] this can be done by the

so-called predicate transformer wp(S;R) which yields the weakest precondition

so that fwp(S;Q)g S fQg holds.

Using wp, correctness proofs are carried out backwards, starting with the last

statement of a block. The predicate transformer allows to step back through

the block until the �rst statement is reached. This means that proving that

fPg S fQg holds is just the same as showing that P ) wp(S;Q).

Carrying out correctness proofs in practice shows that wp is not capable

to deal with the real interesting parts of the proofs. Finding preconditions for

assignments and if statements is quite helpful, but what is really needed is a

method to handle iteration and procedure calls because they form the core of

most programs.

3



As pointed out below, preconditions of while statements and procedure calls

depend on annotations. Thus it is not possible to �nd the weakest precondition in

general. The best guess that can be done is to �gure out the weakest precondition

relative to the speci�cation of a while statement or procedure. We call this

precondition a suitable precondition.

while statement In case of a while statement | as can be seen from the

while-rule (App. A) | the suitable precondition has to meet two demands:

� It has to be an invariant of the loop.

� It must be strong enough to allow the deduction of the desired postcondi-

tion.

The weakest precondition suggested in [Gri81] is not practically applicable. It

requires the computation of recursivly de�ned formulae. Each of these formulae

contains the weakest precondition of the loop's body for a di�erent postcondition.

If the body encloses any procedure calls this is too strenuous. So we assume that a

suitable precondition is given as annotation or entered by the user of a veri�cation

system.

Procedure call Finding the suitable precondition of a procedure call is more

complicated. In top-down software development programs are composed of pro-

cedures that are not yet implemented. As we want to allow this development

style, we have to ensure that veri�cation can be done without knowing the code

of such subordinate procedures. I. e. we have to rely completely on their spec-

i�cations. Again, �nding the weakest precondition is, in general, not possible

(cf. [ZHL96]).

Searching for ways to �nd out a suitable precondition we �rst focus on pro-

cedures which don't cause any side-e�ects. In this case we can assume that

postconditions always have the form result = E, where E does not contain any

program variables. A suitable precondition sp of a call of such a side-e�ect-free

precedure p is given below.

sp(v := p(E1; : : : ; En); Q) � PREp[E1=p1 : : : En=pn] ^Q[E=v]

PREp denotes the precondition of p in its speci�cation. The formula above can

be deduced as follows:

4



fPREpg proc p(p1; : : : ; pn) fresult = Eg

call-rule

fPREp[E1=p1 : : : En=pn]g v := p(E1; : : : ; En) fv = Eg

inv-rule

fPREp[E1=p1 : : : En=pn] ^Q[E=v]g v := p(E1; : : : ; En) fv = E ^Q[E=v]g,

v = E ^Q[E=v]) Q

weak-rule

fPREp[E1=p1 : : : En=pn] ^Q[E=v]g v := p(E1; : : : ; En) fQg

2

To use this precondition in practice, you have to get rid of those free logical

variables that occur in PREp but not in Q. Most of these appear in an equation

V = E which makes it possible to replace all occurrences of V by E and discard

the equation.

The remaining free variables can be bound by using the ex-rule (cf. App. A).

This rule may be applied because the variable to be bound does not appear in

Q. Now we have a precondition that contains not more unbound variables than

the postcondition.

5 Example without side-e�ects

To illustrate the techniques described above we'll now introduce a small example

program which computes the factorial of a given number iteratively. We will

specify the properties and prove them.

To reason about a program it is necessary to have a formalisation of the data

model of the programming language it is written in. As our program only deals

with int-values a very small data model su�ces. We use Integer to denote the

in�nite set of integer numbers while int stands for the integer representation of

the programming language.

First we introduce constants to describe the bounadries of integer represen-

tation:

Integer MIN = �215

Integer MAX = 215 � 1

We introduce a predicate range(x) that holds if its argument lies within these

boundaries:

range : Integer! Boolean

range(x) �MIN � x �MAX

Now we can specify the type int:

int = fxjrange(x)g

5



We introduce an abstraction function to map int objects to Integers. As int

is a subset of Integer this is not necessary in this case but it shows the general

use of abstraction functions to �ll the gap between the domain of objects and the

formal speci�cations.

� : int! Integer

For the speci�cation of our program a de�nition of the factorial function is re-

quired:

! : Integer ! Integer

n! =

(
1 : n = 0

n � (n� 1)! : n > 0

Our implementation of the factorial will be based on the arithmetic operators

minus and times which are speci�ed as follows:

int times (int n, int m)

pre m = A ^ n = B ^ range(A �B)

post result = A �B

int minus (int n, int m)

pre m = A ^ n = B ^ range(A� B)

post result = A� B

Both operations are side-e�ect-free and stick to the assumptions we made above.

We can now take a close look to our implementation:

int fac (int n)

pre n = N ^ 0 � n � 12

post result = N !

{

int r := 1;

while (n > 1) {

r := times(r, n);

n := minus(n, 1);

}

return r;

}

The speci�cation states that whenever the argument n lies between 0 and 12,

the procedure will yield n factorial if it terminates. It guarantees that no errors

except memory errors will occur, in particular arithmetic over
ow is ruled out by

limiting n to a maximum value of 12. Otherwise it would be impossible to carry

out a correctness proof.

6



The proof obligation we have to ful�ll is to deduce the tripel

fPREfacg BODYfac fPOSTfacg. We will show this by simulating a mechan-

ical proof system. The �rst step of such a system would be to consider the

program fragment in question. In our case it's a sequence of three statements.

As we want to step through the program backwards, we break up this sequence

between while and return. As we can see from the seq-rule, we have to �nd the

precondition for the return statement. We do this by using wp.

wp(return r, result = N !) � r = N !

So we can split our triple and get two new ones, of which the second can imme-

diately be deduced from the return-rule:

fn = N ^ 0 � n � 12g

int r := 1;

while (n > 1) {

r := times(r, n);

n := minus(n, 1);

}

fr = N !g

and

fr = N !g

return r;

fresult = N !g

The program part of the �rst triple is, again, a sequence. This time we need

the suitable precondition of the while statement which is entered by the user of

our proof system.

In this case the appropriate invariant is 0 � n � 12^0 � N � 12^r = N !=n!.

Again, splitting up the triple delivers two new ones:

fn = N ^ 0 � n � 12g

int r := 1;

f0 � n � 12 ^ 0 � N � 12 ^ r = N !=n!g

and

f0 � n � 12 ^ 0 � N � 12 ^ r = N !=n!g

while (n > 1) {

r := times(r, n);

n := minus(n, 1);

}

fr = N !g

7



The �rst triple can be deduced by applying the the assign-axiom and the

weak-rule.

wp(r := 1, 0 � n � 12 ^ 0 � N � 12 ^ r = N !=n!) �

0 � n � 12 ^ 0 � N � 12 ^ 1 = N !=n!

We now have to show that

n = N ^ 0 � n � 12 implies 0 � n � 12 ^ 0 � N � 12 ^ 1 = N !=n!

which is obviously true and could be done by a proof checker. This completes

the deduction of the �rst triple so that we can switch to the second one.

As the current triple consists of a while statement, we have to transform it in

a way that makes it possible to use the while-rule. Therefore we have to weaken

the postcondition. Is is quite easy to see (and can thus be shown by a mechanical

prover) that

:(n > 1) ^ 0 � n � 12 ^ 0 � N � 12 ^ r = N !=n! implies r = N !

because n has to be 0 or 1. The new triple matches the while-rule:

f0 � n � 12 ^ 0 � N � 12 ^ r = N !=n!g

while (n > 1) {

r := times(r, n);

n := minus(n, 1);

}

f:(n > 1) ^ 0 � n � 12 ^ 0 � N � 12 ^ r = N !=n!g

Applying the rule results in a new triple concerned with the body of the loop:

fn > 1 ^ 0 � n � 12 ^ 0 � N � 12 ^ r = N !=n!g

r := times(r, n);

n := minus(n, 1);

f0 � n � 12 ^ 0 � N � 12 ^ r = N !=n!g

Now we can apply the strategy for the treatment of procedure calls pointed out

above. In a �rst step we compute

sp(n := minus(n, 1), 0 � n � 12 ^ 0 � N � 12 ^ r = N !=n!),

which results in

n = A^1 = B^range(A�B)^0 � A�B � 12^0 � N � 12^r = N !=(A�B)!

Eliminating unbound variables delivers

range(n� 1) ^ 0 � n� 1 � 12 ^ 0 � N � 12 ^ r = N !=(n� 1)!

8



This gives us two new triples:

fn > 1 ^ 0 � n � 12 ^ 0 � N � 12 ^ r = N !=n!g

r := times(r, n);

frange(n� 1) ^ 0 � n� 1 � 12 ^ 0 � N � 12 ^ r = N !=(n� 1)!g

and

frange(n� 1) ^ 0 � n� 1 � 12 ^ 0 � N � 12 ^ r = N !=(n� 1)!g

n := minus(n, 1);

f0 � n � 12 ^ 0 � N � 12 ^ r = N !=n!g

The deduction of a triple of the second kind was shown on page 5. We repeat

the same steps for the �rst triple and receive as weakest precondition:

r = A ^ n = B ^ range(A �B) ^ range(n� 1)^

^0 � n� 1 � 12 ^ 0 � N � 12 ^ A �B = N !=(n� 1)!

Again, we can eliminate unbound variables which results in

range(r � n)^ range(n� 1)^ 0 � n� 1 � 12^ 0 � N � 12^ r � n = N !=(n� 1)!

What remains to show is that

n > 1 ^ 0 � n � 12 ^ 0 � N � 12 ^ r = N !=n!

implies

range(r �n)^range(n�1)^0 � n�1 � 12^0 � N � 12^r �n = N !=(n�1)! ,

which can easily be done by a proof checker like the PVS system.

This completes the veri�cation of our example program. The whole work

could be done automatically except the step where the loop invariant is needed.

9



6 The Treatment of Side-E�ects

As we want to deal with realistic programs, we can't be satis�ed by limiting to

side-e�ect-free procedures. The treatment of side-e�ects requires a much more

elaborated speci�cation and veri�cation technique.

Side-e�ects are changes on the global state of program execution. They can be

caused by the manipulation of global variables or, in object-oriented programming

languages, by attribute updates or the creation of new objects. Side-e�ects can

be handled by making the execution state explicit. Therefore we introduce $ to

denote the current state of program execution. Side-e�ects can thus be described

by specifying the changes made on $.

In a more sophisticated framework we can't any more stick to our assumption

that postconditions always have the form result = E because we want to specify

many di�erent aspects of a procedure's behaviour, e. g. functional behaviour, side-

e�ects, invariant clauses or the relation to other objects. To keep speci�cations

modular und easily tractable we allow to specify di�erent properties in seperate

pairs of pre- and postconditions (cf. [PH95]).

As a consequence of this technique, the computation of a suitable precon-

dition as described above doesn't work any more. Suppose we want to �nd a

precondition P which allows to deduce fPg v := p(E1; : : : ; En) fQg. P should

be as weak as possible. The pre- and postcondition of the ith pre-post-pair of p's

speci�cation are denoted by PREi and POSTi.

To deal with the new situation a mechanical veri�cation system could ei-

ther take the conjunction of all pre-post-pairs which would allow to deduce the

strongest possible postcondition. In turn the precondition would also get very

strong and is thereby maybe unprovable which makes this technique unusable.

The alternative way is to �gure out which of the pairs are needed to deduce

the desired postcondition Q. To do this, the system has to split Q into two parts

Qproc and Qinv such that Qproc^Qinv ) Q. Qproc is established by the procedure

p and Qinv must hold before the call of p and stay invariant during execution of p.

Then a minimal set S of indices has to be computed such that
V
i2S

POSTi ) Qproc.

Q can be reassembled by application of the inv-rule (cf. App. A). As �rst-order

logic is not decidable a machine can neither �nd the decomposition of Q nor

compute the set S.

This shows that, in general, proofs in our logic can't be carried out completely

automated. Therefore our proof system must enable the user to interact and

in
uence the proof. Automation can be increased by �nding heuristics how to

select the parts of a speci�cation that are needed in a certain proof step. Therefore

pattern matching algorithmsmay be applied to compare the desired postcondition

Q with the available pre-post-pairs.

10



7 Example with side-e�ects

To study the treatment of side-e�ects we consider an example which makes use

of global variables. Suppose we have a global variable db of type int and a

procedure set to change its value. set behaves as follows: If its argument is

greater or equal to 0, it is assigned to db. Otherwise db is left unchanged. In

both cases the argument is returned. The speci�cation would look like this:

global int db;

int set(int n)

pre n = N ^N � 0

post db = N

pre n = N ^N < 0 ^ db = DB

post db = DB

pre n = N

post result = N

We now want to �nd a precondition P that allows to deduce

fPg v := set(e) fdb = eg,

where v must not be a global variable (especially v 6= db). Our system will

examine each pair of pre- and postconditions and analyse its relevance for the

next proof step.

First pair Matching the postcondition of the �rst pair against the desired

postcondition makes clear that we have to establish db = N ^ N = e which

implies db = e. Thus we receive Qproc � db = N and Qinv � N = e. This results

in precondition P1 � e = N ^N � 0. which can be simpli�ed to e � 0.

Second pair We can carry out similar steps for the second pair and de-

termine that Qproc � db = DB and Qinv � DB = e. This implies that

P2 � e = N ^N < 0 ^ db = DB ^DB = e. Eliminating free variables results in

e < 0 ^ db = e.

Third pair As v does not appear in the considered formula, we can't match

result against any term. Thus the third pair does not contribute to our goal.

Finding P Our examination of the speci�cation has shown that there are two

possibilities for P namely P1 and P2. As we are interested in a precondition that

is as weak as possible, we deduce P � P1 _ P2.

11



8 Conclusion

We have shown how we can avoid all exceptions but memory errors by consid-

ering expressions as procedure calls. The examples demonstrate that although

procedure calls can't be handled by a veri�cation system in all cases, heuristics

allow the treatment of many of them and thereby ease the work of proving. In

particular, a machine can cope with procedures that don't have very complex

speci�cations. In daily practice this is the most common case. Procedures im-

plementing basic arithmetic and logic operations have very simple speci�cations

even if their properties are speci�ed more entirely than in section 5.

In other words, assuming we have a veri�cation system as described above,

the re�ned Hoare-logic is as easy to handle as pure Hoare-logic although it is a

lot more powerful.

12



A Programming Logic

assign-rule: ` fP[E=v]g v := E fP g

return-rule: ` fP g return v fP[result=v]g

while-rule:
` fEXP ^P g STAT fP g

` fP g while (EXP) f STAT g f:EXP ^P g

seq-rule:
` fP g STAT1 fQ g ; ` fQ g STAT2 fR g

` fP g STAT1 ; STAT2 fR g

call-rule:
` fP g proc p(p1; : : : ; pn) fQ g

` fP[E1=p1; : : : ;En=pn] g v := p(E1; : : : ; En) fQ[v=result] g

rec-rule:
fP g proc p(p1; : : : ; pn) fQ g ` fP g BODY(proc p) fQ g

fP g proc p(p1; : : : ; pn) fQ g

inv-rule:
` fP g v := p(E1; : : : ; En) fQ g

` fP ^R g v := p(E1; : : : ; En) fQ ^R g

subst-rule:
` fP g PART fQ g

` fP[t=X]g PART fQ[t=X]g

ex-rule:
` fP g STAT fQ[Y=X] g

` f 9X : P g STAT fQ[Y=X] g

strength-rule:
P) Q ; ` fQ g STAT fR g

` fP g STAT fR g

weak-rule:
R) Q ; ` fP g STAT fR g

` fP g STAT fQ g

13



References

[CGR96] Patrice Chalin, Peter Grogono, and T. Radhakrishnan. Identi�cation of

and solutions to shortcomings of LCL, a larch/c interface speci�cation

language. In Marie-Claude Gaudel and James Woodcock, editors, FME

'96: Industrial Bene�t and Advances in Formal Methods, volume 1051

of Lecture Notes in Computer Science, pages 385{404. Springer-Verlag,

January 1996.

[Cou90] Patrick Cousot. Methods and logics for proving programs. In Jan

van Leeuwen, editor, Handbook of Theoretical Computer Science, chap-

ter 15, pages 841{993. Elsevier Science Publishers B. V., 1990.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[GH93] John V. Guttag and James J. Horning. Larch: Languages and Tools

for Formal Speci�cation. Springer-Verlag, 1993.

[Gri81] David Gries. The Science of Programming. Springer-Verlag, 1981.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-

munications of the ACM, 12(10):576{580, 583, 1969.

[Hoa96] C. A. R. Hoare. How did software get so reliable without proof? In

Marie-Claude Gaudel and James Woodcock, editors, FME '96: Indus-

trial Bene�t and Advances in Formal Methods, volume 1051 of Lecture

Notes in Computer Science, pages 1{17. Springer-Verlag, January 1996.

[PH95] A. Poetzsch-He�ter. Interface speci�cations for program modules sup-

porting selective updates and sharing and their use in correctness

proofs. In G. Snelting, editor, Softwaretechnik 95, 1995.

[PH96] Arnd Poetzsch-He�ter. Speci�cation and veri�cation of object-oriented

programs. Habilitation thesis, 1996. (to appear).

[PHB96] A. Poetzsch-He�ter and B. Bauer. Veri�cation of class-based programs.

(to appear), 1996.

[PVS95] A Tutorial Introduction to PVS, April 1995.

[ZHL96] Job Zwiers, Ulrich Hannemann, and Yassine Lakhneche. Modular com-

pleteness: Integrating the reuse of speci�ed software in top-down pro-

gram development. In Marie-Claude Gaudel and James Woodcock,

editors, FME '96: Industrial Bene�t and Advances in Formal Methods,

volume 1051 of Lecture Notes in Computer Science, pages 595{608.

Springer-Verlag, January 1996.

14


