
Formal Speci�cation Techniques for

Object-Oriented Programs

Peter M�uller and Arnd Poetzsch-He�ter?

FernUniversit�at

D-58084 Hagen

Abstract. Speci�cation techniques for object-oriented programs relate

the operational world of programs to the declarative world of speci�ca-

tions. We present a formal foundation of interface speci�cation languages.

Based on the formal foundation, we develop new speci�cation techniques

to describe functional behavior, invariants, and side-e�ects. Furthermore,

we discuss the in
uence of program extensions on program correctness.

1 Introduction

Interface speci�cation techniques have been developed for the precise documen-

tation of program behavior ([GH93, FZZ96, PH95]) and as a tool for program

design ([Jon91]). Interface speci�cations relate the operational, state-based world

of programs to the declarative, state-less world of universal speci�cations.

Interface speci�cations state program properties in an abstract, declarative

way and allow one to formally prove that programs satisfy these properties.

This extended abstract develops a formally-founded interface speci�cation tech-

nique for object-oriented programs that can be used for program veri�cation. It

ful�lls the following requirements entailed by the goal of formal program veri�-

cation: 1. Speci�cations must have a formal semantics to enable formal proofs.

2. Speci�cations of certain program components must enable one to verify pro-

grams that make use of these components. I. e., speci�cations must be detailed

enough to describe all important e�ects, in particular side-e�ects on the environ-

ment. 3. The connection between interface speci�cations and proof obligations

must be clear. 4. Speci�cations and correctness proofs should stay valid if the

underlying program is extended. With subtyping this is in general not the case.

In this extended abstract, we especially show how the requirements above in
u-

ence interface speci�cation techniques. We illustrate the investigation steps by a

small example program written in a C++ subset and use the Larch speci�cation

language for C++ as a starting point of our analysis (cf. [Lea96]), because this

is one of the most advanced interface speci�cation languages. For veri�cation,

we assume a Hoare-style logic (cf. [Hoa69]).

The main contributions of this paper are:

1. Improvement of existing speci�cation techniques towards formal veri�cation.

2. Formal semantics of interface speci�cations, in particular of class invariants.

? [Peter.Mueller, Arnd.Poetzsch-He�ter]@fernuni-hagen.de

3. Short analysis of behavioral subtyping in the context of veri�cation.

4. New techniques to specify sharing and environmental properties of methods.

Related Work A lot of work has been done aiming at the construction of correct

software. Some approaches concentrate on top-down software development by

iteratively re�ning speci�cations until an executable program is reached (cf. the

re�nement calculus by Back [Bac88], the KorSo project [BJ95]). In contrast, our

framework relates universal speci�cations and programs (implementing abstract

data types via concrete and abstract classes) without enforcing a certain style

of software development.

Our work has been inspired by Larch (cf. [GH93]). As in our approach, Larch

speci�cations consist of two major parts: (a) A program-independent speci�ca-

tion of abstract data types and (b) a program dependent part that relates the

implementation to the abstract data types. In the implementation, the ADT val-

ues are in general represented by several linked objects. An interface speci�cation

of a class C consists of an invariant and speci�cations for C's methods.

In Larch-style speci�cations, the functional behavior of methods is speci�ed

by describing the input/output behavior based on the abstract values represented

by the parameter and result objects. This is done by pre- and postconditions,

which are �rst-order formulae. The environmental behavior of methods is ex-

pressed via so-called modi�es clauses. These are lists of all objects that may be

changed by a method. Properties that must hold for all objects of a type can be

speci�ed as class invariants (see section 3.2).

Compared to Larch, our framework has three major advantages: 1. We give

speci�cations a formal semantics, which most Larch speci�cation languages

don't. A formal semantics is indispensable for veri�cation. 2. We provide more

elaborated techniques for the speci�cation of side-e�ects and sharing. 3. We use

explicit abstraction functions. This aspect is crucial for veri�cation and will be

illustrated in the following: Consider the example in appendix A. We have a class

database that implements an abstract type Database2. In Larch, the typical way

to specify the functional behavior of method emptyDB, which returns an empty

database, would be as follows (the example is not in Larch/C++ syntax):

database *emptyDB()

pre true

post result = empty

The important aspect with the above, almost trivial speci�cation is the implicit

abstraction that is applied to the result: The result, which is an object of the

programming language, is equated with a value of the abstract data type. To

verify that emptyDB ful�lls the speci�cation, we have to make the abstraction

explicit using an abstraction function. Abstraction functions map objects of the

programming language to the universal speci�cation framework. Section 2 de-

scribes the basic techniques to de�ne such functions.

2 Identi�ers of programs are printed in typewriter font, whereas names of the abstract

type are printed italic.

Overview This extended abstract is organized as follows: Section 2 investigates

the needed semantical aspects of the underlying programming language. In sec-

tion 3, we show how method behavior and class invariants can be speci�ed.

Furthermore, we present a formal semantics of speci�cations. Section 4 discusses

the e�ects of program extensions. The conclusions are contained in section 5.

2 Formalizing Environments and Abstraction Functions

This section describes how the data and state model of an object-oriented pro-

gramming language can be formalized and how abstraction functions can be

de�ned based on such a formal model. We have to focus on the central tech-

niques and ideas. In particular, we cannot go into details about a formalization

of C++, but assume only a restricted language where each object can be consid-

ered as a pointer to a record. We use many-sorted �rst-order logic with recursive

data types for the speci�cation. For details, we have to refer to [PH97].

Object Environments The data model of a programming language de�nes the

objects and values that may be used in programs. To keep things simple, we

consider prede�ned values like integers or booleans as objects without attributes

that exist in initial program states and cannot be created or deleted. We assume

a sort Type containing a symbol for each type de�ned in a program and a sort

Object containing: (a) for each user-de�ned type an in�nite set of objects, (b) for

each user-de�ned type a null object, and (c) the prede�ned values. The function

typ : Object ! Type yields for each object its type symbol; the predicate isnull :

Object ! Boolean checks whether an object is a null object. Furthermore, we

assume a sort Location: A location is a pair (X;A) | denoted by X:A | where

X is a user-de�ned object and A is an attribute of the class of X . Locations are

the formal counterparts of instance variables (or data members). The function

obj : Location ! Object yields the object a location belongs to (obj (X:A) = X).

Objects have states. The state of an object tells whether the object is alive or

not yet allocated, and it assigns an object to each of its locations. The collection

of all object states at a point of program execution is called the current object en-

vironment. Object environments are modelled via the abstract data type ObjEnv.

The following operations are de�ned on object environments: EhL := Xi denotes

the environment after updating environment E at location L with object X .

E(L) denotes the object read from location L in environment E. new(E; T) re-

turns a new object of type T in environment E. EhT i denotes the environment

after allocating a new object of type T in environment E. alive(X;E) checks

whether object X is alive in environment E. [PH97] presents an axiomatization

of these operations.

Predicates on Object Environments The update of a location L a�ects properties

of all objects that reference L: E. g., modifying a location of a list element X

in a singly linked list a�ects all lists for which X is an element. On the other

hand, if only locations are modi�ed that are not reached by an object X , we

know that the properties of X remain invariant under these modi�cations. Con-

sequently, reachability is a central property for veri�cation. It is formalized as a

predicate expressing that an object X reaches a location L in an environment

E: reach(X;L;E) ,def obj(L) = X _ 9K : obj(K) = X ^ reach(E(K); L; E).

Based on reach, we can de�ne a predicate disj expressing that the set of ob-

jects reachable from object X is disjoint from those objects reachable from Y :

disj(X;Y;E),def 8L : :reach(X;L;E) _ :reach(Y; L;E). Beside being indis-

pensable for veri�cation, the formal speci�cation of object environments allows

to use the vocabulary provided by the abstract data type ObjEnv in interface

speci�cations. Thus, interface speci�cations become more
exible and can sup-

port di�erent levels of abstraction down to the lowest level of abstraction, namely

the object level. An example illustrating this feature can be found in section 3.

Abstraction functions An abstraction function maps an object X in an environ-

ment E to the abstract value that is represented by X (and possibly some other

objects reachable from X) in E. Based on the formalization of object environ-

ments, abstraction functions can be de�ned in a precise way. E. g., the abstrac-

tion function aDB maps objects of class database (see appendix) to values of

sort Database (empty and insert are the constructors of Database, see appendix).

aDB is speci�ed as binary function aDB : Object �ObjEnv ! Database :

typ(X) � database^ E(X:length) = 0) aDB(X;E) = empty

typ(X) � database^ E(X:length) > 0)

aDB(X;E) = insert(aDB(E(X:link); E); aDATA(E(X:elem); E))

where � denotes the subtype relation on the types in a program and aDATA is

the abstraction for objects of type data.

3 Interface Speci�cations

The �rst part of this section focuses on the speci�cation of method behavior.

In the second subsection, we show how well-formedness of data representations

can be expressed by class invariants. After that, we present a formal meaning of

speci�cations by interpreting them as proof obligations in a Hoare-style logic.

3.1 Specifying Method Properties

Method behavior has three di�erent aspects: (a) functional behavior, i. e., the re-

lation between the abstract values represented by the parameters in the prestate

and the abstract value of the result in the poststate; (b) environmental proper-

ties expressing which parts of the environment change under method execution;

(c) sharing properties relating the representations of parameters and result.

Speci�cation of Functional Behavior To refer to the object environment in pre-

and postconditions, we use the symbol $ of sort ObjEnv; $ can be considered as

a global variable and has usually di�erent values in pre- and poststates (one can

think of $ representing the object store). Using this notation and the abstraction

function aDB, the intention of the speci�cation for method emptyDB given in

section 1 can be made explicit. Trivial preconditions (identical to true) will be

omitted in the following:

database *emptyDB()

post aDB(result; $) = empty

The typical speci�cation of functional method behavior expresses the abstraction

of the result as a term over the abstractions of the parameters in the prestate.

The prestate values of parameters and of the environment variable can be used

in postconditions by using a prestate-operator, denoted by \^". We illustrate

this by the speci�cation of method insertDB:

database *insertDB(data *d)

post aDB(result; $) = insert(aDB(this^; $^); aDATA(d^; $^))

Speci�cation of Environmental Behavior In Larch/C++, environmental proper-

ties are expressed by modi�es clauses. A modi�es clause lists all objects which

may be changed under execution of a method by enumeration or by the reach(X)

construct, which denotes all objects reachable from X. The disadvantage of this

technique is that sharing is not taken into account. Consider a method that

updates the last element of a singly linked list l. In fact, it modi�es all lists

referencing the last element, which are at least as many as the length of l. This

property is very di�cult to express by modi�es clauses.

In our framework, the explicit object environment can be used to specify

environmental properties. E. g., the following speci�cation of emptyDB precisely

describes the side-e�ects, namely the creation of a new database object:

database *emptyDB()

post result = new($^; database) ^ $ = $^hdatabasei

The absence of any side-e�ects can be speci�ed by conjoining $ = $^ to the

postcondition. This means that neither any locations nor liveness of any ob-

jects are changed. A more interesting, typical environmental property is that a

method only modi�es objects of the class it belongs to. For the methods of class

database, this can be expressed by conjoining typ(obj (L)) 6= database)

$(L) = $^(L) to the postconditions. More advanced techniques for speci�cation

of environmental properties are presented in [PH97].

Speci�cation of Sharing Properties Many realistic implementations use so-called

destructive updates of data representations to increase e�ciency. E. g., class

database provides a method updateDB manipulating one entry. Such an update

a�ects the abstract values represented by all objects referencing the updated

entry. As a counterpart to destructive updates, we usually �nd methods to clone

or copy whole object structures. We use the predicate disj to specify that copyDB

creates a completely new object structure representing the same abstract value:

database* copyDB()

post aDB(result; $) = aDB(this^; $^) ^ disj (result; this^; $)

Such properties cannot be expressed in many speci�cation frameworks as they

presuppose the distinction between the abstract and the representation level (for

a more detailed treatment of sharing properties, we refer to [PH97]).

3.2 Class Invariants

Abstraction of object structures only works if the object structures are well-

formed. E. g., abstraction of database objects is only de�ned if they are not null

and if the linked object list is acyclic. Well-formedness of database objects can

be de�ned as follows (wfDATA expresses the well-formedness of data elements):

wfDB(X;E) ,def :isnull (X) ^ typ(X) � database ^�
E(X:length) = 0 _ (E(X:length) > 0 ^ wfDATA(E(X:elem)) ^

wfDB(E(X:link)) ^ E(X:length) = E(E(X:link):length) + 1)
�

Well-formedness is a typical invariance property, i. e., a property that has to hold

for all objects of a class. Thus, we use wfDB(X;E) as class invariant of database;

i. e., the invariant is a binary predicate inv : Object �ObjEnv ! Boolean . The

meaning of such invariants is discussed and explained in the next subsection.

3.3 Meaning of Interface Speci�cations

The meaning of invariants can be made precise by answering three questions:

1. For which objects must the invariants hold? 2. In which execution states must

the invariants hold? 3. Which invariant has to hold for which method? The

invariant invC of a class C has to hold for all non-null, living objects of type C;

we abbreviate this by predicate INVC :

INV C(E),def 8X : typ(X) � C ^ alive(X;E) ^ :isnull(X)) invC(X;E)

Concerning the second question, an invariant of class C certainly need not hold

in all intermediate states during execution of C's methods; in particular during

the construction of linked object structures, invariants are usually violated. But

we expect them to express properties that are invariant under method execution:

I. e., if the invariants hold for all objects in the precondition of a public method,

they should hold in the postcondition. In particular, they have to hold for objects

created during method execution. We require invariance only for public methods,

because this guarantees that the invariant of a classC holds outside the execution

of methods of C and because we want to allow private methods to perform

auxiliary operations violating e. g. well-formedness properties.

From a veri�cation point of view, the answer to the third question is fairly

simple: To use class invariants as invariants in the proof technical sense, they

have (a) to be true in possible initial program states and they have (b) to be

invariant under all public methods. Requirement (a) is trivially satis�ed because

no user-de�ned objects are alive in initial program states. Requirement (b) is

the proof obligation resulting from invariants. Although requirement (b) is as

well justi�ed from an operational point of view | a method mC of class C can

call a method mD of class D and thus manipulate D-objects |, the literature

often assigns a weaker meaning to invariants which makes veri�cation much more

di�cult and leads to unintuitive situations.

We de�ne the formal semantics of speci�cations by interpreting them as

triples in a Hoare-style logic which is a formalization of the axiomatic semantics

of the underlying programming language. Thus, the connection between speci�-

cations and programs is precisely de�ned and veri�cation can be done by proving

the resulting triples in the programming logic. Let us assume a program P with

classes C1 : : : Cn. The speci�cation of P consists of the class invariants INV Ci

and of a pre-postcondition-pair (Rm; Qm) for each method m. To verify P, we

have to prove a triple of the following form for each public method m.

fRm ^

n^

i=1

INV Ci
($) g meth m fQm ^

n^

i=1

INV Ci
($) g

4 Program Extensions

In this section, we analyze the e�ects of program extensions on veri�ed pro-

grams. We show how correctness can be preserved by behavioral subtyping.

Furthermore, we summarize and discuss the proof obligations occurring from

program extensions.

Behavioral Subtyping In object-oriented programming languages, correctness of

programs can be a�ected by adding new classes as subtypes of existing classes.

This e�ect is due to dynamic binding: Methods of the new subtype may be

called in contexts where initially only methods of existing types could occur.

Thus, we enforce subtypes to satisfy the speci�cation of their supertypes. In the

literature, this notion is usually called behavioral subtyping (cf. e. g. [LW94]).

To keep things simple, we use the following de�nition: Type S is a behavioral

subtype of T if (1) invS(X;E) implies invT (X;E) for all X of type S and if

(2) for each method m associated with S and T with pre-post-pairs (RS ; QS)

and (RT ; QT), RT implies RS and QS implies QT in case the this object is of

type S. I. e., S :: m shows the behavior speci�ed for T :: m. Classes that are

derived from superclasses for the reason of \pure" subtyping (i. e. not for the

reason of code inheritance) are usually intended to be behavioral subtypes.

We illustrate behavioral subtyping by extending our database example. Class

rdatabase is a subclass and thus a subtype of class database. It extends

database by storing for each element the number of accesses.

class rdatabase : public database {

protected: int access_count;

public: rdatabase *insertDB(data *d);

int freqDB(int i); };

For brevity, the signatures of the constructor and methods emptyDB and

accessDB are omitted. To re
ect the additional information of rdatabase on the

abstract level as well, we assume a corresponding abstract data type RDatabase

having essentially3 the same operations as Database except that they work on

values of sort RDatabase and that there is an additional operation to read out the

access count. To distinguish the RDatabase-operations from those of Database,

we pre�x them with an \r". The abstraction function for rdatabase objects has

the following signature: aRDB : Object � ObjEnv ! RDatabase . Thereby, the

functional behavior of rdatabase::insert can simply be speci�ed as:

rdatabase *insertDB(data *d)

post aRDB(result; $) = rinsert(aRDB(this^; $^); aDATA(d^; $^))

The class invariant of rdatabase is assumed to be the same as that of database.

Does rdatabase::insert obey the rules of behavioral subtyping? The implica-

tion is trivially true for the precondition4. What remains to be shown is

aRDB(result; $) = rinsert(aRDB(this^; $^); aDATA(d^; $^))

) aDB(result; $) = insert(aDB(this^; $^); aDATA(d^; $^))

To prove the implication, we have to relate terms of sort RDatabase to terms of

sort Database. As it is typical for the relation between super- and subtypes,

RDatabase is a specialization of Database. We assume a mapping rdbtodb :

RDatabase ! Database that forgets the access count information. Functions

like rdbtodb are often called coercion functions . They relate the abstract level

of sub- and supertypes and have to satisfy homomorphism properties. E. g.,

to prove the implication resulting from the behavioral subtype constraint, the

following two properties of rdbtodb are needed:

rdbtodb(rinsert(RDB ; D)) = insert(rdbtodb(RDB); D)

typ(X) � rdatabase) aDB(X;E) = rdbtodb(aRDB(X;E))

Based on these two properties, it is easy to show that rdatabase::insert ful�lls

the constraints of behavioral subtyping. Generally spoken, the rules of behavioral

subtyping allow to prove that methods of subtypes behave like the corresponding

methods of supertypes. Therefore, correctness of the extended program is not

a�ected as long as all invariants are preserved.

Invariants and Program Extension Beside the above proof obligations for adding

subtypes, other obligations concerning class invariants occur whenever a new

class is added to a program. Assume, we have a veri�ed program P with classes

C1 : : : Cn. We extend this program by a new class C which is not necessarily a

subtype of an existing class. Let INV denote the conjunction of the invariants of

3 Some minor changes have to be done in order to manage the access count.
4 Recall that omitted preconditions are identical to true.

C1 : : : Cn and let INVC denote the invariant of C. As pointed out above, we have

to prove that every method preserves every invariant; essentially, this results

in the following proof obligations: 1. Ci::m preserves INV . 2. Ci::m preserves

INV C . 3. C::m preserves INV . 4. C::m preserves INVC . Obligation 1 is already

proved as P is veri�ed. Obligations 3 and 4 belong to the veri�cation of the

new methods C::m. Unpleasantly, obligation 2 may cause to revisit an already

proven program. This should be avoided because the implementation of P may

come from a class library and may not be accessible.

Precise speci�cations of environmental properties (see section 3) allow to

prove that methods preserve invariants of new classes without having to revisit

the method implementations themselves.

5 Conclusion

This paper presented formal foundations for interface speci�cations and illus-

trated their use for the veri�cation of object-oriented programs. The bene�ts of

formal foundations can be summarized as follows:

{ An integrated formal foundation for concrete data representations and ab-

stract speci�cations is needed to give interface speci�cations a precise mean-

ing. Abstraction functions are used to relate both worlds.

{ Speci�cations must be able to refer to concrete data representations, e. g., to

express well-formedness and to de�ne abstraction functions. Therefore, the

data and state model should be accessible within interface speci�cations.

{ Veri�cation requires to specify di�erent aspects of methods, in particular

functional behavior and environmental properties.

{ The formal semantics of speci�cations can be described by transforming

them into triples of a Hoare-style logic. Veri�cation is done by proving this

triples in the logic.

{ To preserve correctness of programs under extension, subtypes should be

behavioral subtypes. By a su�ciently strong speci�cation of environmental

properties, proof obligations coming from program extensions can be dis-

carded without having to revisit already veri�ed implementation parts.

Future work will mainly be concerned with the automation of correctness proofs

by using Dijkstra's weakest precondition technique. Furthermore, we aim at the

integration of tools for speci�cation and veri�cation into so-called logic-based

programming environments.

A Appendix

This appendix presents the following C++ example program implementing a

primitive database. The database supports methods to insert, access, and update

database entries. It is represented by a singly linked list of its elements. The

length of the list is stored explicitly.

class database {

protected: data *elem;

database *link;

int length;

public: static virtual database *emptyDB();

virtual database *insertDB(data *d);

virtual void *updateDB(int key, data *d);

virtual database *copyDB(); };

For brevity, we omitted the signatures of the constructor and methods

isemptyDB, iselemDB, and accessDB. Class data is also not showed here. It

provides a method key that returns for each data-object a unique integer-valued

key, which is used to identify elements in the database. To specify the interface

of class database, we use the abstract data type Database. Among others, it

contains the following functions:

empty :! Database

insert : Database� data! Database

key : data! Integer

References

[Bac88] R. J. R. Back. A calculus of re�nement for program derivations. Acta Infor-

matica, 25:593{624, 1988.

[BJ95] Manfed Broy and Stefan J�ahnichen, editors. KORSO: Methods, Languages,

and Tools for the Construction of Correct Software, volume 1009 of Lecture

Notes in Computer Science. Springer-Verlag, 1995.

[FZZ96] A. Frick, W. Zimmer, and W. Zimmermann. Konstruktion robuster und
ex-

ibler Klassenbibliotheken. Informatik | Forschung und Entwicklung, 11:168{

178, 1996.

[GH93] John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal

Speci�cation. Springer-Verlag, 1993.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-

cations of the ACM, 12(10):576{580, 583, 1969.

[Jon91] H. B. M. Jonkers. Upgrading the pre- and postcondition technique. In

S. Prehn and W. J. Toetenel, editors, VDM '91: Formal Software Develop-

ment Methods, LNCS 551, pages 428{456. Springer-Verlag, 1991.

[Lea96] Gary T. Leavens. An overview of Larch/C++: Behavioral speci�cations for

C++modules. In Hiam Kilov andWilliam Harvey, editors, Speci�cation of Be-

havioral Semantics in Object-Oriented Information Modeling, chapter 8, pages

121{142. Kluwer Academic Publishers, Boston, 1996.

[LW94] B. Liskov and J. Wing. A behavioral notion of subtyping. ACM Transactions

on Programming Languages and Systems, 16(6), 1994.

[PH95] Arnd Poetzsch-He�ter. Interface speci�cations for program modules support-

ing selective updates and sharing and their use in correctness proofs. In

G. Snelting, editor, Softwaretechnik 95, 1995.

[PH97] Arnd Poetzsch-He�ter. Speci�cation and Veri�cation of Object-Oriented Pro-

grams. Technische Universit�at M�unchen, 1997. (to appear).

