
Preserving the Correctness of

Object-Oriented Programs under Extension

Peter M�uller and Arnd Poetzsch-He�ter�

Fachbereich Informatik

Fernuniversit�at Hagen

Abstract

In object-oriented programming, software is mainly constructed by composition

and specialization of types. Due to dynamic binding, program correctness may be

invalidated by adding new types to existing programs. Essentially, two problems

can occur: 1. Adding a new subtype S may violate the speci�cation of its supertype

T; thus components using T may be invalidated. 2. In certain cases, type invariants

can be violated by adding new types to existing components. This paper sketches

solutions to these problems. It claims that behavioral subtyping is a solution to the

�rst problem. As a possible solution to the second problem, it proposes techniques

to make interface speci�cations more expressive, to restrict the form of invariants

by semantical constraints (similar to behavioral subtyping), and to re�ne existing

module concepts.

1 Introduction

This paper summarizes a talk held at the \Kolloquium Programmiersprachen und Grund-

lagen der Programmierung" in Fehmarn. The presented work is based on the formal

framework presented in Arnd Poetzsch-He�ter's talk \A Logic for the Veri�cation of

Object-Oriented Programs" in Fehmarn. Thus, it is assumed that the reader is familiar

with the formal foundations which are not repeated here.

The objective of this paper is to describe the problems that can occur when object-

oriented programs exploiting side-e�ects and destructive updates are extended. We focus

on object-oriented programs for three reasons: (1) Object-oriented languages provide

support for component-based program development (see below). (2) The role of object-

oriented languages in industrial software development becomes more and more impor-

tant. (3) Encapsulation and explicit interfaces ease the speci�cation and veri�cation of

programs. We do not exclude side-e�ects, because they are at least important for the

speci�cation and veri�cation of low level program components and occur in most of the

existing class libraries.

Object-oriented programming languages provide means to support component-based

program construction: Specialization through subtyping/subclassing, code inheritance,

and encapsulation mechanisms to guarantee integrity constraints on data representations.

In today's software construction, this support is unfortunately limited to syntactic checks.

�[Peter.Mueller, Arnd.Poetzsch-He�ter]@Fernuni-Hagen.de



Programmers are able to invalidate supertype speci�cations by adding subtypes or invari-

ants of existing types by adding new types. As an example for the �rst problem consider

a subtype LS of a list type where method insert of LS does nothing. Such misbehavior

can in general not be detected by syntactic checking only. As an example for the second

problem consider objects of a type C referencing objects of a type D. Assume that the

invariant for C states that there is never a chain of references from C objects to C objects.

By adding a new subtype of D that has a C attribute this invariant can be invalidated.

The use of semantic-based speci�cation and veri�cation techniques can overcome the

above problems and lead to a systematic construction of correct programs from correct

components.

Overview In the rest of this section, we sketch the formal background needed to make

later explanations su�ciently detailed. In section 2, we describe the problems involved

with the extension of object-oriented programs. In particular, we summarize the proof

obligations for imported and declared code. Sections 3 and 4 discuss how these obligations

can be solved or reduced. Our conclusions are contained in section 5.

Formal Framework Formal veri�cation requires a formal semantics of the program-

ming language and of the speci�cations. In this subsection, we give a quick overview of

our framework. The reader may refer to [PH97, MPH97] or to Poetzsch-He�ter's paper

in this report for a detailed description of the formal basis.

Our speci�cation technique is based upon the two-tiered Larch approach (cf. [GH93]).

Program speci�cations consist of two major parts: (a) A program-independent speci�ca-

tion which provides the mathematical vocabulary (e.g., de�nitions of abstract data types)

and (b) a program dependent part that relates the implementation to universal speci-

�cations. An interface speci�cation of a type C consists of (a) a speci�cation for each

public method of C, and (b) a type invariant. Method speci�cations are given by pre-

and postconditions. Type invariants describe properties that have to hold for each object

of a type in any state where the object is accessible from outside.

In the implementation, values of abstract data types are in general represented by

several linked objects. We consider such object structures as a whole. Going beyond

Larch, the relation between object structures and values of abstract data types is made

explicit by so-called abstraction functions. Modi�cation of an object X possibly changes

the abstractions of all object structures referencing X. As a consequence, the treatment of

side-e�ects becomes very important. The de�nition of abstraction functions and formal

speci�cation of side-e�ects require a formalization of the data and state model of the

programming language. The data model of a programming language de�nes the objects

and values that may be used in programs. The state of an object tells whether the object

is allocated, and it assigns an object to each of its attributes. The collection of all object

states at a point of program execution is called the current object environment, denoted

by the global variable $.

For veri�cation, we assume a Hoare-style programming logic as presented in [PH97].

This logic is a formalization of the axiomatic semantics of the underlying programming

language. Thus, correctness of a program is showed by translating its speci�cation into

Hoare triples and proving these triples in the logic. This translation is described in

section 2.1.



2 Program Extensions

In this section, we present an example program and discuss the problems caused by

composition of modules. In particular, we show that behavioral subtyping is a solution to

some of those and summarize the proof obligations resulting from the remaining problems.

2.1 Discussion of Problems

As a beginning of our discussion, we sketch the problems caused by program extensions.

Example Program As an example, we consider an abstract type ALIST which de-

scribes the interface of a integer list. Furthermore, we have a type DLIST which imple-

ments ALIST via doubly linked lists. We assume a type DLELEM to store the nodes of

this list.

abstract type ALIST is

public empty(): ALIST

public append(i: INT): ALIST

public first(): INT

public rest(): ALIST

end

type DLIST subtype of ALIST is

att head: DLELEM

public empty(): DLIST

public append(i: INT): DLIST

public first(): INT

public rest(): DLIST

end

We assume, that ALIST is formally speci�ed. E.g., the type invariant of ALIST states that

the list contains only positive integer values: invALIST (X;E),def positive entries(X;E)

where X is an ALIST object and E denotes an object environment. The speci�cation of

method ALIST:append states that whenever the parameter is positive, the method will

append the actual parameter to the implicit parameter and return the resulting list. This

is expressed by use of an abstraction function aL (cf. section 1) which maps objects of

type ALIST to values of an abstract data type List (app is a constructor of List):

ALIST:append(i: INT): ALIST

pre aL(this; $) = L ^ i > 0

post aL(result; $) = app(L; i)

Behavioral Subtyping To get a �rst idea of the problems involved with program

extensions, we assume a program P that consists of type ALIST and a type C which

makes use of ALIST. P is assumed to be veri�ed. Now we extend P by type DLIST.

Which conditions have to be ful�lled by DLIST to preserve correctness of P? This question

has two aspects: (1) What is the relation between the method speci�cations of DLIST

and ALIST? (2) What is the relation between the invariants of DLIST and ALIST?

Relation of Method Speci�cations To answer the �rst questions, we consider a

program part of type C which makes use of properties of method ALIST:append:

(1) var v: ALIST;

(2) ...

(3) v := v.append(5);

(4) ...



As this fragment is assumed to be veri�ed, it is guaranteed that the precondition of AL-

IST:append holds before execution of statement (3), and that the postcondition holds

after that. When P is extended by type DLIST, v may hold objects of type DLIST

as DLIST is a subtype of ALIST. Due to dynamic binding, DLIST:append may now

be called in line (3). Thus, preserving correctness requires DLIST:append to work cor-

rectly in contexts where calls to ALIST:append appear. I.e., DLIST:append has to show

the behavior speci�ed for ALIST:append: Whenever the precondition of ALIST:append

holds, and DLIST:append is called, the postcondition of ALIST:append has to hold after

termination of DLIST:append. In general, this can be formulated as follows: Let S be a

subtype of T. For each method m associated with S and T with pre-post-pairs (RS; QS)

and (RT ; QT ), RT implies RS and QS implies QT in case the this object is of type S1.

I.e., S:m shows the behavior speci�ed for T:m.

Relation of Invariants To understand the relation between the invariants of the

super- and the subtype, we consider the following program fragment from type C:

(1) var v: ALIST;

(2) ...

(3) i := v.first().sqrt();

(4) ...

From the invariant of ALIST, we can deduce that �rst returns a positive integer. Thus,

the computation of the square root is de�ned. To preserve correctness, this argument has

to hold for DLIST objects as well. I.e., each DLIST object has to ful�ll the type invariant

of ALIST. In general, invS(X;E) has to imply invT (X;E) for all X of type S, where S

is a subtype of T.

Subtypes that ful�ll the requirements sketched in the last two paragraphs are usually

called behavioral subtypes (cf. [Ame87] for more details). As shown by the two examples

above, behavioral subtyping is a prerequisite to preserve program correctness under ex-

tension. Unfortunately, behavioral subtyping is not su�cient as type invariants can still

be violated by additional types. We discuss this topic in the following.

Semantics of Type Invariants To motivate the semantics of type invariants, we con-

sider a program P with types ALIST, SLIST, and C. ALIST is de�ned as shown above.

SLIST implements ALIST via acyclic singly linked lists. Type C is assumed to contain

an attribute l of type ALIST. The invariant of C states that the list stored in l has to

be acyclic. As SLIST is the only implementation of ALIST, this invariant certainly holds.

Now we extend P by type DLIST. In addition to the de�nition above, DLIST is assumed

to contain a method make cycle that forms a cyclic list. Although DLIST is a behavioral

subtype of ALIST, correctness of P is violated by adding DLIST as the invariant of C

may no longer hold. To cope with such e�ects, we have to assign a very strong meaning

to type invariants.

We want the type invariant of a type C to hold for all objects of type C in all states

where these objects are accessible from outside. Thus, we require invariants to be invariant

under execution of public methods. I.e., if the invariants hold for all objects in the

1This requirement is stronger than necessary, but su�cient for the purposes of this paper.



precondition of any public method, they should hold in the postcondition. In particular,

they have to hold for objects created during method execution.

Certainly, invariants need not hold in all intermediate states during execution of C's

methods; in particular during the construction of linked object structures, invariants are

usually violated. We require invariance only for public methods, because this guarantees

that the invariant of a type C holds outside the execution of methods of C and because

we want to allow private methods to perform auxiliary operations violating, e.g., well-

formedness properties. To use type invariants as invariants in the proof technical sense,

they have (a) to be true in possible initial program states and they have (b) to be invariant

under all public methods. Requirement (a) is trivially satis�ed because no user-de�ned

objects are allocated in initial program states. Requirement (b) is the proof obligation

resulting from invariants. Although requirement (b) is as well justi�ed from an operational

point of view | a method mC of type C can call a method mD of type D and thus

manipulate D-objects |, the literature often assigns a weaker meaning to invariants

which makes veri�cation much more di�cult and leads to unintuitive situations.2

We de�ne the formal semantics of speci�cations by interpreting them as triples in a

Hoare-style logic. Thus, the connection between speci�cations and programs is precisely

de�ned. Let us assume a program P with types C1 : : : Cn. The speci�cation of P consists

of the type invariants INV Ci
and of a pre-postcondition-pair (Pm; Qm) for each method

m. To verify P, we have to prove a triple of the following form for each public method m,

where $ denotes the current object environment:

fPm ^

n̂

i=1

INV Ci
($) g meth m fQm ^

n̂

i=1

INV Ci
($) g

To prove these properties for an extended program, enforcing behavioral subtyping is not

su�cient. Further proof obligations have to be ful�lled to guarantee that all invariants

hold in the extended program as well. These obligations are summarized in the next

subsection.

2.2 Summary of Proof Obligations

Recall, that specifying a type invariant means that this invariant has to be preserved by

all public methods of a program. Assume a module M with types C1 to Cm. M does not

import any modules. VerifyingM means to prove the triple above for each public method

of M .

Consider a module N which imports M . N contains the types Cm+1 to Cn. I.e., the

resulting program P is a composition of the modulesM and N containing the types C1 to

Cn. What triples have to be shown to verify P? Again, we have to prove that every public

method of P preserves each invariant of any Ci. For most practical applications, this is

equivalent to showing that (1) CM :m preserves INVM , (2) CM :m preserves INVN , (3)

CN :m preserves INVM , and (4) CN :m preserves INVN , where CM :m and CN :m denote

a public method m of a type declared in module M or N , respectively and INVM and

INVN denote the conjunction of all type invariants in module M or N .

2The weaker meaning requires each method to preserve the invariant of the type it belongs to. The
example above sketched a situation where the invariant of type C was violated by a method of type
DLIST. Thus, we cannot make use of invC during the veri�cation of C because it may not hold.



Obligation 1 is ful�lled as M is veri�ed. Obligation 4 causes no further problems as it

can be solved locally in module N (maybe using some speci�cations of M). Obligation 2

means to show properties of an imported module. This is not desirable as the imported

code may come from a library and, thus, be not accessible to the veri�er. Obligation 3

results in a huge amount of proof obligations for complex components as it contains one

triple for each type in the import path of the module. So, in large systems, hundreds or

thousands of triples have to be proved. We will discuss possible solutions to the problems

caused by obligations 2 and 3 in the next two sections.

3 Proving Obligations for Imported Code

If imported code comes from a software library, clients of that code may only have access

to interfaces and speci�cations, not to the implementation. Thus, we have to develop

techniques that allow one to prove obligations of the second kind (see above) without

revisiting imported code. This can be achieved by two approaches: Preservation of the

invariants can be proved using speci�cations of imported methods, or can be achieved by

requiring the invariants of new types to ful�ll certain semantical constraints.

3.1 Expressiveness of Type Invariants

Not every property that is expressible in a speci�cation framework is desirable as type in-

variant. Consider the following invariant of a type T: invT (X;E),def 8Y : alive(Y;E))

typ(Y ) = T . This invariant states that every allocated object Y of a program is of type

T. Of course, invariants of that kind are not desired because they cannot be proved in

any reasonable program. Thus, we'd like to constrain the expressiveness of invariants to

forbid such ill-formed speci�cations.

Type invariants of a type T are meant to express properties of objects of type T

or objects referenced from such objects. This can be enforced by putting semantical

constraints on type invariants. To express reachability, we use a predicate reach(X;L;E)

which holds i� a location L can be reached by an object X in an environment E. A

location is reachable if there exists a chain of references from X to L. Based on reach, we

can de�ne an equivalence on object environments. Environments E and E 0 are equivalent

from the point of view of an object X, if X is alive (i.e. allocated) in E i� it is alive in

E 0 and if all locations reachable from X hold the same objects in E and E 0:

E�X E 0
,def (alive(X;E), alive(X;E 0)) ^ 8L : reach(X;L;E)) E(L) = E 0(L)

This de�nition allows us to constrain invariants:

E�X E 0
) (invT (X;E), invT (X;E

0))

Invariants that ful�ll this constraint can only express properties ofX and objects reachable

from X. This property is used to prove the preservation of invariants in the following.

3.2 Method Speci�cations

To deduce the preservation of invariants from method speci�cations, these have to be

su�ciently strong and detailed. E.g., if the speci�cation of method m states that m only



modi�es objects of type C, and if objects of a type D cannot reach C objects in memory,

the invariant of D cannot be violated by m. This example shows two important aspects

of method behavior: sharing properties and invariance properties.

Specifying Sharing and Invariance Properties Sharing properties describe how

objects in memory are shared by di�erent object structures. E.g., the last object of a

singly linked list is shared by all other list objects of the list structure. Speci�cation of

sharing properties is crucial for veri�cation because, in general, modi�cation of one object

changes the abstract value of all structures that share this object. Basic constructs to

express sharing properties are reachability of objects (see above) or disjointness of object

structures.

Invariance properties are used to describe side-e�ects of methods by specifying which

parts of the object environment remain unchanged under method execution. This can

be done by relating the pre- and poststate of the method. Again, this relation can be

expressed by de�ning an equivalence on object environments. Two environments E and

E 0 are considered equal for a type T, if all objects that are not of type T are alive in E

i� they are alive in E 0 and if all locations that are not part of a T object hold the same

objects in E and E 0. Thus, E and E 0 are equal except that T objects may be created or

modi�ed:

E�T E
0 ,def typ(X) 6� T ) (alive(X;E), alive(X;E 0))^

typ(obj(L)) 6� T ) E(L) = E 0(L)

T-equivalence can be used to specify invariance properties of methods: If the pre- and

poststate of a method m are T-equivalent, m leaves all objects that are not of type T

unchanged. We demonstrate this by method DLIST:append from above:

DLIST:append(i: INT): DLIST

pre $ = E

post $ �DLIST E _ $ �DLELEM E

DLIST:append may only modify (or create) DLIST and DLELEM objects.

Exploiting Sharing and Invariance Properties To demonstrate the application of

the speci�cation above, we go back to our example program P. P consists of the types

ALIST, DLIST, and DLELEM. We want to extend P by type STACK which implements

an integer stack with the usual operations. The height of the stack is stored explicitly:

type STACK is

att s: STACK

att elem: INT

att height: INT

...

end

STACK contains any invariant invSTACK which meets the constraint described in sec-

tion 3.1. Now we want to prove that DLIST:append preserves the invariant of STACK.

This can be done by the following lemma:

(E�T E
0
^ (reach(X;L;E)) typ(obj(L)) 6� T ))) E�X E 0



If two environments only di�er in locations of T objects and if an object X does not reach

such a location, the environments are X-equivalent (the proof of this lemma is omitted for

brevity). If we can prove that any STACK object X does not reach a DLIST or DLELEM

object, we can derive that the pre- and postcondition of DLIST:append are X-equivalent

(cf. speci�cation of DLIST:append). Because of the constraint for invariants, this implies

that invSTACK(X; $) holds in the poststate of DLIST:append if it held in the prestate; it

is preserved by DLIST:append.

The fact that STACK objects do not reach DLIST or DLELEM objects can be showed

by a syntactic analysis of type STACK. As STACK only contains attributes of types

STACK and INT, STACK objects can only reach STACK and INT objects. In particular,

they cannot reach DLIST or DLELEM objects. Syntactic analysis of that kind often ease

the e�ort of showing proof obligations.

3.3 Semantical Constraints

The argument applied in the last paragraph does no longer hold if we generalize STACK

to an OBJECT stack instead of an integer stack, because STACK object can now reach

any object of a program3:

type STACK is

att s: STACK

att elem: OBJECT

att height: INT

...

end

Thus, method speci�cations as used above are not su�cient to show the preservation of

invariants. Therefore, we have to constrain the invariants of types that are added to a

program.

A typical semantical constraint was presented in section 3.1. By putting stronger

constraints on invariants, we can achieve that the invariants of new types cannot be

violated by imported methods. E.g., if an invariant only states properties of objects of

types that are declared in the current module (i.e., not imported), this invariant can only

be violated by methods of these types or their subtypes, i.e., not by imported methods.

We demonstrate this by our example program P.

The idea is as follows: If the invariant of STACK does not make any statements about

objects reachable through elem, is cannot be violated by an imported method. To express

this constraint, we introduce X-M-equivalence where X is an object an M is a module4:

E�M
X E 0 ,def alive(X;E), alive(X;E 0)^

reach(X;L;E) ^ :M imports mod(typ(obj(L)))) E(L) = E 0(L)

X-M-equivalence is weaker than X-equivalence because only those locations have to hold

the same in location in E and E 0 that belong to an object whose type is not imported by

3Every type is a subtype of OBJECT.
4
mod(T ) denotes the module a type T is declared in.



M . Thus, the following semantical constraint is stronger than the constraint presented in

section 3.1:

E�
mod(T )

X E 0
) (invT (X;E), invT (X;E

0))

This constraint guarantees that the invariant cannot be violated by any imported method.

Despite this strong constraint, many of the desired properties of STACK can still be

speci�ed, e.g. the correct use of attribute height:

invSTACK(X; $),def $(X:height) = 0 _ $(X:height) = $($(X:s):height + 1)

4 Reducing Obligations for New Code

Although it is theoretically possible to prove that every new method preserves the in-

variant of each imported type (as the code is accessible), this is not desired because of

two reasons: (1) In large systems the proof obligations become too big and, thus, un-

manageable. (2) To support encapsulation of implementations, it is desirable to hide

implementation-dependent parts of invariants from client modules. In this section, we

present the idea of semantic module concepts that allow one to drop the proof obligations

about semantically private types.

Syntactic module concepts support the encapsulation of types. E.g., type DLELEM

would be declared private in the module containing type DLIST. As the list can only be

accessed via DLIST, DLELEM can be hidden from clients of the module. From a semantic

point of view, this is no longer true, as clients of the module might violate the invariant of

DLELEM or vice versa: A private type C may contain an attribute a of a public type D.

Thus, the invariant of C, denoted by invC , may state properties of the objects stored in

a. All methods of the moduleM containing C and D preserve invC . But, a client module

N may contain a subtype of D providing a method that violates invC . Thus, we need a

module concept which provides semantically private types, i.e., types that can be hidden

from clients of the module in the sense that their invariants are not part of the interface

of the module.5 This helps to solve the two problems sketched above: (1) Semantically

private types do not contribute to the proof obligations for client modules, which eases

veri�cation. (2) It is no longer necessary to reveal details of the implementation by

exporting invariants which specify properties of the data representation.

Semantical privacy can be achieved by enforcing certain syntactical restrictions of the

implementation or by putting semantical constraints on invariants. To illustrate this

approach, we introduce a predicate P on types. P (T ) holds, i� T is �nal (i.e., has no

subtypes) and P holds for the type of each attribute of T . The invariant of a type for

which P holds can not be a�ected by program extensions as subtyping is ruled out. This

simple syntactical limitation is of course too restrictive as it forbids the use of subtyping.

By combining this idea with a simple constraint on the invariant, the situation becomes

better: The invariant of T may only state properties of objects which are reachable

via attributes whose types ful�ll P . This combination enables semantical privacy and a

restricted use of subtyping.

Pushing the constraints on invariants further leads to the following notion: The in-

variant of a type C has only access to the invariants of reachable objects, not to their

5Note, that a type can be semantically private despite being syntactically public.



implementation. In combination with behavioral subtyping, this constraint assures the

preservation of the invariant. The disadvantage of this approach is that it leads to an

increasing number of types as showed by the following example: Assume, we have a

type fraction with two attributes numerator and denominator of type int. The in-

variant states that the denominator is non-zero. Now we implement a type C which

has an attribute a of type fraction. We want to specify that the fraction stored in a

is non-negative. Because of the constraint sketched above, this can not be speci�ed in

the invariant of C as it is a property of fraction. Thus, we have to build a new type

which essentially behaves like fraction but has a stronger invariant.6 This approach

fully supports subtyping.

5 Conclusion

Extension of object-oriented programs may violate program correctness. We showed that

behavioral subtyping is a prerequisite to preserve correctness. Furthermore, certain obli-

gations for imported and newly declared methods have to be proved to show preservation

of type invariants.

Properties of imported methods can be proven without knowing their implementation.

This can be achieved by exploiting sharing and invariance properties of imported methods

or by putting semantical constraints on the invariants of newly declared types. We claimed

that proof obligations for newly declared methods can be reduced by semantic module

concepts supporting semantically private types. Further work will be concerned with

elaborating the ideas sketched in this paper.

References

[Ame87] Pierre America. Inheritance and subtyping in a parallel object-oriented lan-

guage. In Jean Bezivin et al., editors, ECOOP '87, European Conference on

Object-Oriented Programming, Paris, France, pages 234{242, NY, June 1987.

Springer-Verlag. Lecture Notes in Computer Science, Volume 276.

[GH93] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Speci-

�cation. Springer-Verlag, 1993.

[MPH97] P. M�uller and A. Poetzsch-He�ter. Formal speci�cation techniques for object-

oriented programs. In M. Jarke, K. Pasedach, and K. Pohl, editors, In-

formatik 97: Informatik als Innovationsmotor, Informatik Aktuell. Springer-

Verlag, 1997.

[PH97] A. Poetzsch-He�ter. Speci�cation and Veri�cation of Object-Oriented Programs.

PhD thesis, Technische Universit�at M�unchen, 1997. (Habilitationsschrift).

6The stronger invariant requires stronger preconditions for some methods, e.g., the multiplication
method. Thus, the new type is not a behavioral subtype of fraction.


