
Universes: A Type System for Controlling

Representation Exposure

Peter M�uller and Arnd Poetzsch-He�ter

Fernuniversit�at Hagen, 58084 Hagen, Germany
[Peter.Mueller, Arnd.Poetzsch-He�ter]@Fernuni-Hagen.de

November 23, 1999

Abstract

We present a type system that allows to express a hierarchical partitioning of the object

store into so-called universes. Type checking enforces referencing constraints between objects

in di�erent universes. The universe type system provides support for preventing rep exposure

while retaining a exible sharing model. It is easy to apply and guarantees an invariant

that is strong enough for modular veri�cation. Our type system is related to ownership

types ([CPN98]), balloon types ([Alm97]), and islands ([Hog91]). However, it is capable

of specifying certain implementation patterns (e.g., binary methods, several objects using a

common representation) that cannot be handled by the other approaches.

1 Introduction

Sharing mutable objects is typical for object-oriented programs. As a direct consequence of the
concept of object identities, it is one of the fundamentals of the OO-programming model. Fur-
thermore, OO-programs gain much of their eÆciency through sharing and destructive updates.

However, uncontrolled sharing leads to serious problems: Usually several objects work together
to represent larger components such as windows, parsers, dictionaries, etc. Current OO-languages
do not prevent references to objects of such components from leaking outside the components'
boundaries, a phenomenon called rep exposure. Thus, arbitrary objects can use these references
to manipulate the internal state of components without using their explicit interface. These
manipulations can e�ect both the abstract value of components (in the sense of [Hoa72]) and their
invariants. This makes OO-programs very hard to reason about. Furthermore, in systems with
uncontrolled sharing, basically every object can interact with any other object. Therefore, such
systems lack a modular structure and are diÆcult to maintain.

In this extended abstract, we present a type system that enforces a hierarchical partitioning of
the object store into so-called universes and controls references between universes. The universe
type system provides support for preventing rep exposure while retaining a exible sharing model.
It is easy to apply and guarantees an invariant that is strong enough for modular veri�cation.
Our type system is related to ownership types ([CPN98]), balloon types ([Alm97]), and islands
([Hog91]). However, it is capable of specifying certain implementation patterns (e.g., binary
methods, several objects using a common representation) which cannot be handled by the other
approaches.

Overview. Section 2 describes the universe programming model and discusses related work. In
Section 3, we formalize the universe type system for a Java subset and the invariant it guarantees.
Furthermore, we sketch the proof of type safety. Our conclusions are contained in Section 4.

1

2 Alias Control with Universes

The universe type system allows one to partition the object store into several universes. References
between objects of di�erent universes are restricted in a way that prevents rep exposure. In this
section, we describe the universe programming model. We informally sketch the universe type
system and demonstrate its application with an example. Furthermore, we compare universes to
other approaches to alias control.

2.1 Structuring the Object Store

OO-languages in general allow for arbitrary references between objects. The universe type system
enables the programmer to structure the object store according to a component-oriented pro-
gramming model and provides support for sharing-control between components. It is a proper
re�nement of usual type systems; i.e. the programmer can use the additional power of the type
system, but is not forced to so.

The Universe Programming Model. Systems usually comprise several components. Compo-
nents consist of one or more objects. Some of these objects are used to interact with other compo-
nents. Their interfaces form the interface of the component. The other objects are the internal rep-
resentation of the component. A component's representation should be modi�ed only through the
component's interface to control modi�cation of the component's abstract value ([Hoa72, MPH99])
and to guarantee data consistency. Therefore, references to objects of a component's represen-
tation must not be passed to other components (rep exposure), i.e., references to representation
objects must be kept inside the component.

Representations and Universes. We associate every component with a partition of the ob-
ject store that contains the component's representation, a so-called universe. Since a component's
representation may contain other components which are in turn associated with a universe, uni-
verses form a hierarchical structure. A designated root universe corresponds to the whole object
store and encloses all other universes. Two universes either enclose each other or are disjoint. The
hierarchy of universes introduces a partial order of universes with the root universe as greatest
element. We use the term an object X belongs to universe U if U is the least universe containing
X .

The objects at the interface of a component are not part of the representation (and therefore
not contained in the universe). We call them the owner objects of the corresponding universe.
Owner objects of universe U belong to the universe directly enclosing U .

Consider a component for a doubly linked list of objects with iterators. The list header and the
iterators are non-representation objects of the component. They are the owners of the component's
universe which contains the nodes of the list.

Sharing Control. An owner object may reference objects belonging to its universe. All other
references across universe boundaries are basically prohibited for the following reasons:

� Objects outside a universe must not reference objects inside. Otherwise, they could use these
references to manipulate the internal state of the component.1

� Objects inside a universe must not reference to objects outside. If the abstract value of the
component depended on the state of objects outside its representation, it could be modi�ed
without using the component's interface.

These rules guarantee that objects belonging to universe U can only be referenced by objects

belonging to U and U 's owner objects. However, the above rules are too strong in two situations:

1In this context, local variables and formal parameters behave like instance variables of the this object. I.e.,

universes control both static and dynamic aliasing.

2

(1) Components might want to pass parts of their representations to other components, provided
that these components do not use the references for modi�cations. Such situations occur e.g.,
when a component needs to store a representation object in a container or when two components
have to be tested for structural equality. (2) Objects inside a universe could contain references
to objects outside if their abstract values did not depend on the states of the objects outside. To
support both situations, we introduce so-called read only references.

Read only References. Read only references cannot be used to perform �eld updates or
method invocations on the referenced object2. Reading �elds via read only references in turn
yields read only references (or values of primitive types). Abstract values of components must not
depend on states of objects referenced read only.

Read only references can be used to pass references across universe boundaries. A read only
reference to an object belonging to universe U can be turned into a normal reference by objects of
U and U 's owner objects. E.g., object X can pass a reference to object Y as read only reference
to a container. When this reference is retrieved later, X can cast it back to a normal reference
and use it for method invocations, etc.

Fig. 1 shows the object structure of a doubly linked list of objects with two iterators. (Objects
are depicted by boxes; solid and dashed arrows depict normal and read only references, resp.; the
universe is drawn as ellipse.) The nodes are the representation of the component and therefore
inside the universe. Other components can interact with the list header and the iterators, which
are the owner objects of the universe. The objects stored in the list are referenced read only.
Subsection 2.3 sketches the implementation of the list/iterator example.

List

first

last

Iter

pos

list

elem

prev

next

Node

elem

prev

next

Node

elem

prev

next

Node

elem

prev

next

Node

Iter

pos

list

Figure 1: Object Structure for List/Iterator Example

2.2 Static Checking of Representation Containment

In the last subsection, we sketched an ideal scenario for alias control for components. However, to
check reference containment statically, we have to use a slightly weaker programming model. In
this subsection, we present the re�ned programming model and informally describe a type system
to enforce it.

2To keep things simple, we do not consider read only methods here (i.e. methods without side-e�ects). For

practical applications, it would be helpful.

3

2.2.1 Component Programming Model and Universes

We simplify the component programming model as follows: (1) We associate every object with its
own object universe. I.e., each object X is regarded as the interface of a component with a possibly
empty representation. An object is the only owner object of its object universe. (2) We associate
every type with a type universe. If T is a type declared in module M then every object of a type
declared in M is an owner object of T 's type universe. Due to inheritance, objects of subtypes
of types declared in M may also contain references to objects in T 's type universe. However,
access control guarantees that subtype methods cannot manipulate objects via such references
(see below for details). Type universes allow objects of types declared in the same module to
access a common representation. Thus, components with several owner objects can be realized by
implementing them in one module.

Whereas the �rst simpli�cation does not really a�ect the programming model (additional
universes can't hurt), the use of type universes reduces the amount of sharing control that can be
done. E.g., type universes do not provide support for keeping the nodes of two lists disjoint if the
lists' representations are stored in the same type universe. However, objects in T 's type universe
can only be manipulated by methods implemented in T 's module. Therefore, type universes
provide suÆcient sharing control for modular reasoning, since all \dangerous" code is located in
one module (cf. [MPH99] for a discussion).

2.2.2 The Universe Type System

Reference containment for universes is statically checked by the universe type system. In this
subsection, we present the basic ideas of a universe type system for the Java subset described
in Subsection. 3.1 and apply it to an example. A formalization of the type system is given in
Section 3.

Universes and Types. There are three kinds of universes: The root universe, type universes,
and object universes. Each class C introduces one type for read only references (read only type)
and one type for every universe in a program execution (reference types); C is called the base class
of these types. All types having the same base class share a common implementation, but are
regarded as di�erent types.

The subtype relation follows the subclass relation in Java. Two reference types are subtypes
if they belong to the same universe and their base classes are subclasses. Two read only types are
subtypes if their base classes are subclasses. Each reference type with base class C is a subtype
of the read only type for C.

Since objects of a class in di�erent universes have di�erent types, objects of one universe
cannot be assigned to variables expecting objects of another. All reference types are subtypes of
the corresponding read only type. Therefore, variables of read only types can hold objects of any
universe.

Type Schemes. A class introduces one reference type for each universe (in particular, for each
object universe). Thus, the set of types is not �xed at compile time. To enable static type checking,
we use so-called type schemes to statically type variables, methods, expressions, etc.

Since the universe of a type T is not known at compile time, the implementation of the base
class of T can refer to other reference types only relatively to the universe T belongs to. To
support the programming model described in Subsection 2.1, the universe type system provides
three kinds of type schemes for reference types: (1) Ground type schemes of the form C to refer
to the type for class C belonging to the same universe as T , (2) object type schemes of the form
C<obj> to refer to the type for class C in the object universe owned by this, and (3) class type

schemes of the form C<S> to refer to the type for class C in the type universe associated with the
type for class S in the universe T belongs to. Furthermore, there are type schemes for read only
types (C<ro>), and primitive types (int, boolean, the null type). The subtype relation on type
schemes resembles the subtype relation on types.

4

The Universe Invariant. In every well-typed state, each instance variable and each local
variable/formal parameter holds a value of a subtype of the declared type of the variable. Thus, if
object X references object Y exactly one of the following cases holds:3 (1) X and Y belong to the
same universe; (2) Y belongs to the object universe owned by X ; (3) Y belongs to a type universe
owned by X ; (4) the reference is read only.

2.3 Example

In this subsection, we present two implementations of a doubly linked list. We illustrate the
application of object and type universes, and of read only types. Our examples contain two
patterns that cannot be handled in other type systems for alias control: Binary methods and
cooperating objects that access a common representation.

Doubly Linked Lists. Our doubly linked list component consists of a class Node for the node
structure and a class List for the head of the list. Since the list is supposed to contain objects of
any universe, Node's elem �eld is declared read only. Each node structure exclusively belongs to
one list header. Therefore, the nodes are stored in the object universe of the list header (first
and last use the object type scheme). The equals method in List takes a read only parameter.
Thus, it can access its representation and compare it to the representation of this (we assume
Object to contain a method boolean equals(Object<ro>)).

class Node { Object<ro> elem; Node prev; Node next; }

class List {

Node<obj> first; Node<obj> last;

public List() {

Node<obj> f = new Node<obj>(); Node<obj> l = new Node<obj>();

first = f; last = l;

f.next = l; l.prev = f; }

public void appFront(Object<ro> o) { ... }

public boolean equals(List<ro> l) {

Node n1 = first; Node<ro> n2 = l.first;

Node l1 = last; Node<ro> l2 = l.last;

Object o1 = n1.elem; Object<ro> o2 = n2.elem;

boolean equ = o1.equals(o2);

while (n1 != l1 && n2 != l2 && equ) {

n1 = n1.next; n2 = n2.next;

o1 = n1.elem; o2 = n2.elem;

equ = o1.equals(o2); }

return n1 == l1 && n2 == l2; }

}

Lists with Iterators. We are now going to enhance our list component by iterators. The
iterators allow one to remove elements from the list. Therefore, they must be able to modify
the list representation and cannot be implemented via read only references. To allow lists and
iterators to access a common representation, we use type universes instead of object universes to
store the node structure of the list. To do that, every Node<obj> in the above program has to be
replaced by Node<List>. The same type scheme is used by the implementation of Iter:

class Iter {

List list; Node<List> position; public Iter(List l) { ... }

public boolean hasNext() { ... } public Object<ro> next() { ... }

public void remove() { ... } }

3Again, local variables/formal parameters behave like instance variables of this.

5

2.4 Related Work

Universes have been designed w.r.t. the following objectives: They should (1) have simple seman-
tics, (2) be easy to apply, (3) be statically checkable (4) guarantee an invariant that is strong
enough for modular reasoning, and (5) be exible enough for many useful programming patterns.
In particular, they should provide support for some of the implementation patterns that cannot be
handled by related approaches (e.g., binary methods, several objects sharing one representation).
In this subsection, we compare the universe type system to other approaches to alias control w.r.t.
these objectives.

Ownership types ([CPN98]) provide a very exible means for alias control. Each object is
associated with a context (similar to an object universe) that contains the object's representation.
Context parameters allow objects in one context to hold references to objects in another, which
is useful for many implementation patterns. However, context parameters make ownership types
rather diÆcult to apply (cf. [Bok99]). Read only types can replace context parameters in most
situations and lead to programs that are easier to read and reason about. Since contexts are
associated with objects, they cannot be accessed by several objects. Thus, ownership types cannot
handle binary methods and objects sharing a common representation. As presented in [CPN98],
ownership types do not support subtyping and inheritance.

[NVP98] proposes alias modes to control aliasing. Similar to ownership types, each object
is equipped with a context. Alias modes specify constraints on references. E.g., the mode rep

enforces representation containment (like in object universes). The mode arg provides references
that can be freely passed around, but must not be used to manipulate the referenced object.
Thus, they are similar to read only references. The so-called roles for arg references are similar
to context parameters. Like ownership types, alias modes have been presented for a language
without subtyping and inheritance.

Balloon types ([Alm97]) aim at full representation encapsulation, i.e., all objects reachable
from an object are contained in its balloon (as if every reachable object would be inside an
object universe). This is too restrictive for many programs (e.g., singly linked lists). Balloon
types require a rather complex checking algorithm based on abstract interpretation and cannot be
checked modularly.

Like balloon types, Islands ([Hog91]) also provide only full encapsulation and su�er therefore
from the same lack of expressiveness. Islands are based on a destructive read operation, which
has a rather unintuitive semantics. They allow for dynamic aliases but restrict them to be read
only. Islands have not been formally validated.

Con�ned types ([BV99]) guarantee that objects of a con�ned type cannot be referenced in
or accessed by code declared outside the con�ning package. Thus, con�ned types are similar to
type universes in that they enable aliasing control on the module level. Con�ned types have been
designed for the development of secure systems. They do not support representation containment
on the object level, which makes veri�cation of components with just one interface object diÆcult.

3 The Universe Type System and its Properties

In this section, we present the universe type system in more detail: We describe our programming
language and give formal de�nitions for types and type schemes. Based on formal type rules of
our programming language, we sketch the proof of type safety. From the type safety lemma we
derive that representation containment is an invariant in well-typed programs.

3.1 Formalization of the Universe Type System

Programming Language. Our programming language is a Java subset with the following
features: A program consists of a set of modules. Each module contains a set of classes which
may contain declarations of instance variables and instance methods. The language provides local
variables and statements for reading and writing instance variables, simple assignments (with
casts), object creation, method invocations, sequential statement composition, conditional and

6

loop statement.4 The expressions of our Java subset are literals (integer, boolean, null), local
variables/formal parameters, the this reference, and the usual unary and binary operations.

Type schemes as described in Subsection 2.2.2 are used in wherever types occur in conven-
tional Java programs (declaration of variables and method signatures, casts). In addition to the
context conditions of Java, we impose the following restrictions: (1) The null type scheme (see
below) must not occur in programs. (2) A class type schemes C<T> may only be used in classes
declared in T's module. The latter condition is necessary to restricts access to type universes (see
Subsection 2.2.1).

We omit the abstract syntax and the operational semantics of our language for brevity. For a
very similar Java subset, they can be found in [PHM99].

Type Schemes. Type schemes as described in Subsection 2.2.2 are formalized by the following
data type where sort ClassId denotes the class identi�ers as given in a program. An axiomatization
of the subtype relation on type schemes can be found in App. A.

data type

TypeScheme = grndS(ClassId)

j objS(ClassId)

j typeS(ClassId ClassId)

j roS(ClassId)

j boolS j intS j nullS

Type Rules. The type scheme of an expression or �eld e is denoted by [e]. The type schemes
of method invocations and �eld accesses depend on both the type schemes of the target variables
and the type schemes of the methods (return and parameter type schemes) and �elds. E.g., if [v]
is a read only type scheme and [f] is a reference type scheme, the type scheme of v:f is a read
only type scheme. These combinations of type schemes are described by a partial operation

� : TypeScheme � TypeScheme ! TypeScheme

which is de�ned by the following table (�rst argument: rows, second argument: columns; all
combinations not mentioned in the table yield undef):

grndS(C) objS(C) typeS(C,T) roS(C) boolS intS nullS

grndS(D) grndS(C) objS(C) typeS(C,T) roS(C) boolS intS nullS

objS(D) objS(C) undef undef roS(C) boolS intS nullS

typeS(D,S) typeS(C,S) undef undef roS(C) boolS intS nullS

roS(D) roS(C) roS(C) roS(C) roS(C) boolS intS nullS

The universe-speci�c type rules are displayed below. All other rules for our Java subset are
straightforward and therefore omitted. In the type rules, the judgment P ` stmt expresses that
statement stmt is well-typed in program P .

Three aspects that are important for type-safety of the universe type system are contained
in the rules below: (1) The type scheme combinator � is used to determine the type schemes for
�elds accesses and method invocations. The resulting type scheme must not be undef to guarantee
that an expression does not evaluate to a (non-read only) reference that points \two steps down"
in the universe hierarchy (e.g., by reading an objS �eld on an objS variable). (2) To keep object
universes on the same level of the universe hierarchy disjoint (except for read only references), all
local variables/formal parameters of object type schemes refer to the object universe of this. To
check this property statically, �elds of object type schemes and methods with object type schemes
as result/parameter type schemes may only be accessed/invoked on this. (3) Neither writing �eld
access nor method invocation is allowed on read only references.

4A clone operation that performs a deep copy of an object structure and moves the result to another universe

is convenient to exchange data across universe boundaries (cf. [MPH99]). However, we omit this operation here for

a lack of space.

7

TS �S [v];TS �S [e];

P ` v=(TS)e;

[f] is no objS ; [w] � [f] �S [v]

P ` v=w.f;

[v] is no roS ; [f] is no objS ; [e] �S [v] � [f]

P ` v.f=e;

[par (m)] is no objS ; [res (m)] is no objS ;

[w] is no roS ;

[e] �S [w] � [par (m)]; [w] � [res (m)] �S [v]

P ` v=w.m(e);

TS �S [v];TS is grndS, objS, or typeS

P ` v=new TS();

[f] �S [v]

P ` v=this.f;

[e] �S [f]

P ` this.f=e;

[e] �S [par (m)]; [res (m)] �S [v]

P ` v=this.m(e);

Since read only type schemes are supertypes of the corresponding reference type schemes, the
cast operation can be used to downcast expressions of read only type schemes to reference type
schemes. As for ordinary casts, a dynamic check guarantees that the dynamic type of the right-
hand-side object is a subtype of the type of the left-hand-side variable and therefore refers to the
same universe (see App. A).

3.2 Type Safety and Representation Containment

Executions States. We call a type system type safe, if it guarantees that every valid execution
state is well-typed, i.e., the types of the values held by local variables/formal parameters and
instance variables are subtypes of the declared types. To formalize well-typedness, we use the
following de�nitions of the operational semantics (cf. [MPH99] for details): Objects are described
by a data type Object = obj (Universe ;ClassId ;ObjId), where ObjId is a sort of object identi�ers
to distinguish di�erent objects of the same type. A data type Value is used to formalize the values
of the programming language (references, integers, booleans, null). An object store (sort Store)
maps instance variables to values. The special variable $ of sort Store is used to refer to the current
object store. An execution state (State) maps local variables/formal parameters to Value and $
to Store. Universes and types are formalized below. The function � yields the type of a value.
data type

Universe = rootU()

j typeU(Universe ClassId)

j objU(Object)

Type = refT(Universe ClassId)

j roT(ClassId)

j booleanT()

j intT()

j nullT()

� : TypeScheme �Object ! Type

� (grndS (C); obj (U;D; I)) = refT (U;C)

� (typeS (C; T); obj (U;D; I)) = refT (typeU (U; T); C)

�(objS (C); O) = refT (objU (O); C)

� (roS (C)); O) = roT (C)

� (boolS ; O) = booleanT

� (intS ; O) = intT

� (nullS ; O) = nullT

The types of variables on the stack, the types of instance variables, and the parameter and return
types of method incarnations depend on the corresponding type schemes (of the variables, �elds,
methods) and their universe. This universe is determined by the this object for variables, and
the target objects for instance variables and method incarnations. The appropriate mapping of
type schemes and objects to types is de�ned by � .

Type Safety. An execution state S is well-typed if for every local variable/formal parameter
v and this �(S(v)) � �([v]; S(this)), and for every valid instance variable x.f �(S($)(x.f)) �
�([f]; S(x)) holds. A state S is well-formed if it is well-typed and this references an object
(S(this) 6= null). For simplicity, we assume that program execution starts in an initial state in
which some prede�ned object X is allocated. All instance variables of X are initialized to null.
X is considered to be the owner of the root universe. Execution starts by invoking a designated
method of X . Therefore, the initial state is well-formed.

8

Lemma: For each program execution that starts in a well-formed state, the termi-
nating state and all intermediate states are well-formed.

The proof of the type safety lemma runs by structural induction over the operational semantics.
The central property used in the proof is that in all well-formed states S with S(w) 6= null , the
equality

�([w] � [f]; S(this)) = �([f]; S(w))

holds where w is a variable and f denotes a �eld, or the parameter or result of a method (assuming
that [w] � [f] is de�ned and [f] is not an objS). Basically, this property holds (1) because this and
w belong to the same universe and (2) because of the de�nition of the type scheme combinator �.
The proof runs by case distinction on the type schemes of w and f. For brevity, proofs are omitted
here.

Controlling Representation Exposure. The universe invariant given in Section 2.2.2 is an
almost immediate consequence of the type safety lemma. It expresses the following representation
containment property: All access paths from the root universe to a representation object X that
do not contain read only references pass through owners of X 's universe. It remains to be shown
that an object belonging to a representation, i.e. a universe U , can only be modi�ed by invoking
a method on an owner of U . In particular, it is not possible to bypass owners via read only
references. The following lemma states this fact more precisely:

Lemma: 1) An object obj (U;C; Id) can only be modi�ed by method incarnations in
which S(this) belongs to U or is an owner of U .

2) Method incarnations with S(this) = obj (U;C; Id) can only be invoked
by method incarnations in which S(this) belongs to U or is an owner of U .

The second part of the lemma states in particular that the call tree of methods corresponds
to the universe hierarchy: An invocation either stays in the same universe or goes into a directly
contained universe. The proof of the lemma uses context condition (2) given in Subsection 3.1
and the fact that type schemes of target objects must not be read only.

4 Conclusion

We presented a exible model for object-oriented programming that supports a hierarchical struc-
ture of the object store. It is a proper extension of the classical model in which all objects belong
to one universe. It supports read only references to express restricted access to objects. Read only
references increase the exibility of the programming model and simplify the implementation of
methods that need access to two representations. The programming model is realized by a type
system that enforces a special representation containment property.

The representation containment property guarantees that modi�cation of a representation is
only possible by calling a method on a corresponding owner object. It can be considered as a
further step towards \semantic encapsulation" simplifying program veri�cation and optimization.
In addition to this, the underlying programming model might be helpful for a better understanding
of component-based programming approaches and distributed programming.

The presented techniques form the kernel of work in progress. Currently, we investigate the
relation to modular veri�cation (see [MPH99]) and the integration of the approach with other
encapsulation techniques like module concepts and encapsulation by access modes (e.g. private,
protected, ...).

9

References

[Alm97] P. S. Almeida. Balloon types: Controlling sharing of state in data types. In M. Ak�sit
and S. Matsuoka, editors, ECOOP '97: Object-Oriented Programming, volume 1241 of
Lecture Notes in Computer Science, pages 32{59. Springer-Verlag, 1997.

[Bok99] B. Bokowski. Implementing \object ownership to order". Presented at the Intercontinen-
tal Workshop on Aliasing in Object-Oriented Systems at ECOOP'99), 1999. Available
from http://cuiwww.unige.ch/~ecoopws/iwaoos/papers/index.html.

[BV99] B. Bokowski and J. Vitek. Con�ned types. In Proceedings of Object-Oriented Pro-

gramming Systems, Languages, and Applications (OOPSLA), ACM SIGPLAN Notices,
1999.

[CPN98] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for exible alias protection.
In Proceedings of Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA), volume 33(10) of ACM SIGPLAN Notices, October 1998.

[Hoa72] C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica, 1:271{
281, 1972.

[Hog91] J. Hogg. Islands: Aliasing protection in object-oriented languages. In A. Paepcke,
editor, OOPSLA '91 Conference Proceedings, pages 271{285, October 1991. SIGPLAN
Notices, 26 (11).

[MPH99] P. M�uller and A. Poetzsch-He�ter. Modular speci�cation and veri�cation techniques
for object-oriented software components. In G. T. Leavens and M. Sitaraman, edi-
tors, Foundations of Component-Based Systems. Cambridge University Press, 1999. (to
appear).

[NVP98] J. Noble, J. Vitek, and J. M. Potter. Flexible alias protection. In E. Jul, editor, ECOOP
'98: Object-Oriented Programming, volume 1445 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[PHM99] A. Poetzsch-He�ter and P. M�uller. A programming logic for sequential Java. In S. D.
Swierstra, editor, Programming Languages and Systems (ESOP '99), volume 1576 of
Lecture Notes in Computer Science, pages 162{176. Springer-Verlag, 1999.

A Appendix

Subtype Relation on Type Schemes. The subtype relation �S on type schemes is the small-
est reexive, transitive relation satisfying the following axioms:

nullS �S grndS(C) S �J T , grndS(S) �S grndS(T)

nullS �S objS(C) S �J T , objS(S) �S objS(T)

nullS �S typeS(C,R) S �J T , typeS(S,R) �S typeS(T,R)

grndS(T) �S roS(T) S �J T , roS(S) �S roS(T)

objS(T) �S roS(T)

classS(T) �S roS(T)

Subtype Relation on Types. The subtype relation � an types is the smallest reexive, transi-
tive relation Type �Type ! bool satisfying the following axioms (�J denotes the subclass relation
in Java):

nullT � refT(U,C) S �J T , refT(U,S) � refT(U,T)

refT(U,T) � roT(T) S �J T , roT(S) � roT(T)

10

