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SUMMARY

We present a modular specification technique for frame properties. The technique uses
modifies clauses and abstract fields with declared dependencies. Modularity is guaranteed
by a programming model that enforces data abstraction by preventing representation
and argument exposure, and by modularity rules for dependencies. For concreteness, we
adapt this technique to the Java Modeling Language, JML.

1. Introduction

In an interface specification language [31], a frame property describes what locations a method
may modify, and, implicitly, what locations it may not modify [2]. This is often specified using
a modifies clause in a method specification [10, 31].

Such modifies clauses can be written in the Java Modeling Language (JML) [16, 15], which
we use for examples in this paper. We use JML because it is a modern interface specification
language, that supports Leino’s notion of declared dependencies [18, 19, 20]. Such dependencies
connect abstract (specification-only) fields with a program’s concrete fields. Like the Larch
family of interface specification languages [10, 31], JML is tailored to the specification of
Java classes and interfaces, and hence is useful for mathematically precise documentation and
verification [12]. However, to avoid forcing users to learn the Larch Shared Language, JML
hides its mathematical models behind a facade of Java classes. This allows JML to mostly
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2 P. MÜLLER, A. POETZSCH-HEFFTER, AND G. T. LEAVENS

public abstract class List1 {

protected Node first, last;

/*@ public normal_behavior
@ modifies first; @*/

public void initializeFirst() {
first = null;

}

/* ... */
}

Figure 1. A JML specification of the Java class List1, of doubly-linked lists. (However, this
specification violates JML’s visibility restrictions, as explained in Section 1.1.1.) In JML, annotations
for specifications are written in special comments. In this example, the method specification is written
as a comment of the form /*@· · · @*/ that precedes the method header. At-signs (@) on the beginnings

of lines within annotations are ignored.

use Java’s expression syntax for writing assertions, which makes it more practical than Larch-
style languages, and more like Eiffel [24]. As with Eiffel, one can use JML specifications to do
runtime assertion checking.

For example, consider the specification given in Figure 1. The modifies clause in the
specification of the initializeFirst method says that the object’s field first can be modified
by execution of the method. That is, the values stored in this location may differ between the
pre-state (at the beginning of the call) and the post-state. However, it is not required that the
value actually changes; the only obligation is that other locations, such as the field last and
the fields of other objects, cannot be modified by a call to initializeFirst.

This naive semantics of modifies clauses is worth emphasis, as it is the crux of the problems
we address.

Definition 1.1 (Naive semantics of modifies clauses) Only the locations listed in a
method’s modifies clause may be changed by execution of that method (when its precondition
is satisfied). No other locations may be modified by such an execution.

The property that “nothing else changes” is useful in reasoning about calls to methods [2].
For example, the modifies clause of initializeFirst says that calls to that method leave the
values of locations other than the first field of the receiver object unchanged. For example,
let myList be an object of type List1, another an object distinct from myList, and P and Q
predicates that do not refer to myList.first. If the first of the following two assertions holds,
then the second holds as well.
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MODULAR SPECIFICATION OF FRAME PROPERTIES IN JML 3

//@ assert P(myList.last) && Q(another.fld);
myList.initializeFirst();
//@ assert P(myList.last) && Q(another.fld);

Of course for this kind of reasoning to be valid, one must verify that method implementations
meet their specified modifies clauses (when their preconditions hold) in the sense that they do
leave all locations not mentioned unchanged.

1.1. Three Specification Problems and their Solutions

The naive semantics for modifies clauses leads to three problems in the specification of frame
properties, which we discuss in this section. The solutions to these problems lead to the
modularity problem that is the focus of the rest of this paper.

1.1.1. The Information Hiding Problem and Abstract Locations as a Solution

The first problem is an information hiding problem. The problem is that the concrete (e.g.,
protected and private) fields of a class should be hidden from its clients, even in specifications of
frame properties. In JML, client-visible specifications are given the visibility modifier public,
hence in JML information hiding means that public specifications should only mention public
attributes of objects [24]. So in JML terms, the information hiding problem is that public
specifications cannot mention protected and private fields in modifies clauses. For example,
in Figure 1, the public specification of initializeFirst mentions the field first, which is
protected. Since this protected field should not be visible to clients, the specification does not
satisfy JML’s visibility rules.

Leino’s work [18] solves this information hiding problem by introducing abstract fields.
These abstract fields are similar to the standard notion of specification using abstract values
for objects [11], but following Leino JML provides several abstract fields rather than a single
monolithic abstract value for an object, since objects in Java are usually thought of as
composed of fields. So in the semantics used for specification and verification, abstract fields
are considered to denote locations, just like concrete fields, although the locations of these
abstract fields are not present in actual programs. For example, in the legal JML specification
given in Figure 2, we declare listValue as an abstract field, by using the modifier model. The
abstract field listValue is declared to be public, and so can be used in public specifications.
This use of abstract fields solves the information hiding problem, since the concrete fields
used in an implementation can be changed (e.g., they can be renamed), without changing the
specification visible to clients.

The correspondence between the abstract field listValue and the concrete field first is
given by the represents clause in Figure 2. Such a represents clause says how an abstract
location’s value is determined from other abstract and concrete locations. It thus plays the
role of an abstraction function [11, 18]. For example, the represents clause in Figure 2 says
how listValue is determined from the concrete location first and the abstract location
first.values. (The abstract field values is declared in the type Node; see Figure 7.) The
represents clause in Figure 2 is given protected visibility because it involves protected fields.
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//@ model import org.jmlspecs.models.*;
public abstract class List2 {

protected Node first, last;
//@ public model JMLObjectSequence listValue;
/*@ protected represents listValue <-

@ (first == null ? new JMLObjectSequence() : first.values); @*/

/*@ public normal_behavior
@ modifies listValue; @*/

public void initializeFirst() {
first = null;
//@ assert listValue != null && listValue.isEmpty();

}

/* ... */
}

Figure 2. A JML specification of the Java class List2. In JML, annotations can also be written
as comments on lines beginning with //@. The specification of initializeFirst is not technically

satisfiable as it stands, as explained in the text.

It is thus not considered visible to clients. (The type JMLObjectSequence is defined in the
package listed in the model import declaration at the top of Figure 2. Objects of this type are
immutable finite sequences of objects.)

1.1.2. The Modification of Concrete Locations Problem and Dependencies as a Solution

The problem with abstract locations is that they conflict with the naive semantics of the
modifies clause. For example, in the class List2 (shown in Figure 2), how can the code in the
initializeFirst method modify the concrete field first when the method’s modifies clause
only allows the abstract field listValue to be modified? According to the naive semantics
of the modifies clause, it cannot, and so the code is incorrect according to this semantics. It
turns out that this is not merely a technicality, as it is unsound to simply allow modification
of locations that are not visible to clients [17, 18, 19].

Leino introduced a second kind of declaration to solve the modification of concrete locations
problem. These declarations are depends clauses [18, 20]. To a first approximation, a depends
clause says what locations are used to determine an abstract location’s value. More precisely,
a dependency declaration allows dependees to be modified whenever the dependent abstract
location is allowed to be modified.
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MODULAR SPECIFICATION OF FRAME PROPERTIES IN JML 5

In JML, the dependency declarations are written in annotations as follows.

depends absfield <- dependeefield

(See Appendix A for more about JML’s syntax.) This declares a dependency relationship
between fields, namely that absfield depends on dependeefield, a relationship that holds
at runtime between the corresponding locations. Dependency relationships are transitive,
if dependeefield is declared to depend on dependeefield2, then absfield also depends on
dependeefield2, and the set of dependees of absfield includes both dependeefield and
dependeefield2. In JML the represents clause for an abstract field f should only refer to fields
that f depends on.

We call the locations that an abstract location L depends on “the dependees of L”. With
this terminology, we can state a more sophisticated semantics of the modifies clause.

Definition 1.2 (Semantics of modifies clauses with dependencies) Only the locations
listed in a method’s modifies clause and their dependees may be changed by execution of that
method (when its precondition is satisfied). No other locations may be modified by such an
execution.

Using this semantics, the code for initializeFirst in List2 will only be considered to be
correct if one adds the following dependency declaration to Figure 2.

//@ protected depends listValue <- first;

With this declaration, the code for initializeFirst acquires the right to modify first, since
it is a dependee of listValue.

Leino and Nelson [20] distinguish static dependencies, such as “depends f <- g”, from
dynamic dependencies, of the form “depends f <- p.g”, in which abstract field f depends
on field g of the pivot field p. All the dependency declarations shown so far have been static
dependencies. However, in Figure 2, the represents clause for List2’s abstract field listValue
uses first.values; consequently, a change of first.values might cause a modification of
listValue. Hence we must add the following dynamic dependency declaration to Figure 2.

//@ protected depends listValue <- first.values;

In the above declaration, first is the pivot field.
Leino and Nelson handle static and dynamic dependencies in different ways, that is, they are

treated differently in the semantics of modifies clauses and have to obey different modularity
rules. Although Müller’s thesis [26] treats both cases uniformly, in this paper, to avoid
introducing additional concepts, we also distinguish them.

Dependency declarations can be made even if the abstract location’s value is not determined
by the concrete location’s value. This often occurs in subtypes, which is the subject of the next
problem.

1.1.3. The Extended State Problem and Dependencies as a Solution

The third specification problem arises from subtyping in object-oriented languages. In such
languages, a subtype often extends the state of its supertypes, by adding additional fields. To
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public abstract class LengthCachingList extends List2 {

protected int len = 0;
//@ public model int absLength;
//@ protected represents absLength <- len;

//@ public invariant absLength == listValue.length();

/*@ also
@ public normal_behavior
@ modifies absLength; @*/

public void initializeFirst() {
super.initializeFirst();
len = 0;
//@ assert absLength == 0;

}

/* ... */
}

Figure 3. A JML specification of the Java class LengthCachingList, of doubly-linked lists with abstract
field absLength. The specification of initializeFirst is not technically satisfiable as it stands, as

explained in the text.

deal with this extended state, the subtype’s methods often need to modify these additional
fields, yet the naive semantics of the modifies clause and the demands of behavioral subtyping
(e.g., [22, 8]) would seem to prohibit their modification [19]. This is because the methods
of a behavioral subtype must obey the specifications of any methods they override from
their supertypes.† For example, if one specifies LengthCachingList as a subtype of List2
as in Figure 3, then its initializeFirst method needs to modify absLength to preserve the
invariant. However, the modifies clause of the supertype’s method specification, which must
be obeyed in a behavioral subtype, would prohibit absLength from being modified, since it is
not one of the locations named by that specification.

Dependencies also solve this extended state problem: i.e, the problem of how to write
specifications that allow modification of extended state in subtypes. For example, to solve

†Technically, the modifies clauses of overridden methods only have to be obeyed when the supertype’s
precondition holds [8].
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MODULAR SPECIFICATION OF FRAME PROPERTIES IN JML 7

the extended state problem for LengthCachingList, one would add the following declaration
to Figure 3.

//@ protected depends listValue <- absLength;

This allows absLength to be modified whenever listValue is modifiable.
For correctness, one also needs to add the following depends declaration to Figure 3.

//@ protected depends absLength <- len;

This makes the concrete variable len a dependee of listValue, and as such, len can be
modified by initializeFirst, according to the specification in List2.

1.1.4. Summary of the Specification Problems and their Solutions

In sum, to solve these specification problems, JML follows Leino and Nelson [18, 20] by using
abstract fields (declared using the modifier “model”) and by explicitly declaring dependencies
[16, 15].

Compared to the naive semantics of modifies clauses, the semantics of modifies clauses with
dependencies requires some changes in reasoning [20]. For example, the modifies clause of
initializeFirst now says that calls to that method leave the values of all locations other
than the listValue field of the receiver object, and its dependees, unchanged. Similarly, for
this kind of reasoning to be valid, one must verify that the implementation of this method
only modifies listValue and its declared dependees. All other locations not mentioned must
remain unchanged.

1.2. The Modularity Problem

The problem we address in the rest of this paper is a modularity problem. This modularity
problem arises when one adopts the solutions to the specification problems described above.
In particular, it arises when clients of an abstraction can declare abstract locations whose
value is represented by locations at a lower level of abstraction. In such a case, the value
of these abstract locations may be modified when the values of the lower level locations are
modified. For example, suppose we define an abstract datatype of sets, Set2, using List2 as
its representation, as shown in Figure 4. In the figure, Set2 has an abstract field setValue,
which is represented by an object theList of type List2. The elements in the abstract set are
determined by the elements in theList.listValue. Hence, the depends clause of Set2 says
that setValue depends on both theList and theList.listValue.

The modularity problem is that the call to initializeFirst in Set2’s emptyOut method
may change the value of the abstract location setValue. However, this location was not listed
in the modifies clause of initializeFirst in Figure 2, and is not a dependee of the locations
listed there. Thus it would seem that initializeFirst has suddenly become incorrect, since
its implementation no longer satisfies its modifies clause when used in a program containing
Set2. This indicates that the semantics of modifies clauses with dependencies is not modular;
in a modular reasoning system, conclusions would be valid in every well-formed program in
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//@ model import org.jmlspecs.models.*;
public abstract class Set2 {

protected /*@ non_null @*/ List2 theList;
//@ public model non_null JMLObjectSet setValue;
/*@ protected represents setValue \such_that

@ (\forall Object o; o != null;
@ theList.listValue.has(o) <==> setValue.has(o)); @*/

//@ protected depends setValue <- theList, theList.listValue;

/*@ public normal_behavior
@ modifies setValue; @*/

public void emptyOut() {
theList.initializeFirst();

}

/* ... */
}

Figure 4. The JML specification of the Java class Set2.

which a class or interface was reused. A modular solution to the frame problem must allow
one to precisely specify the frame properties of methods and to verify their implementations,
without knowing the program context in which the methods will be used. The problem is that,
in general, one cannot know what locations might be found in a program that extends or uses
a given class or interface. Looked at another way, the problem is that either we need a different
semantics, or we need to restrict dependencies, or both [26].

Leino and Nelson have addressed this problem using scope-dependent depends relations
[18, 20], which lead to a scope-dependent meaning of modifies clauses. That is, the meaning
of a modifies clause is determined by the declarations that are visible in a module. Soundness
of reasoning with such a semantics is not immediate, because proofs for smaller scopes do not
necessarily carry over to larger scopes; indeed, Leino and Nelson have not yet proved modular
soundness of their technique for dynamic dependencies.

This paper builds on Leino’s work and provides a modular sound solution to this problem.

1.3. Approach

Our solution to the modularity problem entails four steps:
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MODULAR SPECIFICATION OF FRAME PROPERTIES IN JML 9

1. We define a programming model that hierarchically structures the object store (i.e., the
program’s memory) into “contexts” (see Section 2). The model also restricts references
between contexts [26, 28, 29].

2. We loosen the semantics for modifies clauses using underspecification; instead of talking
about all locations, only the modification of “relevant” locations (and their dependees)
is specified by the modifies clause (as explained in Section 3). The notion of relevant
locations is defined using the hierarchical programming model.

3. We also underspecify the theory generated by the dependency declarations in a given set
of modules; this theory is underspecified in the sense that it does not specify dependencies
for extensions to the given set of modules (sketched in Subsections 4.1.1 and 4.4). Because
of this underspecification one can only prove properties about dependencies in a module
that hold in all well-formed extensions.

4. We impose modularity rules to restrict the permissible dependencies of abstract locations
(see Subsection 4.3).

Taking these steps makes modular soundness much simpler to prove than with a scope-
dependent semantics of the modifies clause. The restricted programming model guarantees
that this weaker semantics is still strong enough to verify method invocations, as we explain
below.

A detailed presentation of a more general version of these ideas, including all formalizations
and proofs, but not their application to JML, is found in [26]. The goal of this paper is to
convey the main ideas behind this work and to apply them to Java and JML. For simplicity, we
focus on a subset of sequential Java and omit inner classes, static fields, and static methods.
Our technique can be extended to these features, however.

The rest of this paper is organized as follows. Section 2 explains the programming model.
Section 3 informally presents our refined semantics of the modifies clause that solves the
modularity problem. Section 4 formalizes these ideas, and presents the technical restrictions
on dependencies and the modular soundness theorem. Section 5 presents further discussion,
including a discussion of related work, and Section 6 presents conclusions.

2. The Programming Model

This section introduces a restricted programming model. The concepts of this model are used
to define the notion of relevant locations needed for our refined semantics of the modifies clause
and for controlling dependencies.

Modularity can only be achieved if the dependencies are controlled. There are two problems,
both of which involve aliasing [30]: (1) Representation exposure occurs when objects inside the
representation of an object X may be referenced by objects outside of X’s representation.
(2) Argument exposure occurs when an object X’s abstract value‡ is determined by the values
of locations in objects, called argument objects, that are outside X’s representation. Both

‡The abstract value of an object is a record that contains all the abstract locations specified for that object.
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10 P. MÜLLER, A. POETZSCH-HEFFTER, AND G. T. LEAVENS

problems allow modification of an object’s abstract value in ways that cannot be controlled by
its implementation. For example, if a client of Set2 has a reference to the list that is used in
the representation of an object of type Set2, then the client can change the abstract value of
the set without calling any of Set2’s methods. Similarly, if the abstract value of a set object
depends on the abstract values of its elements, then a client could modify the set’s abstract
value by modifying its elements, again without calling any methods of the set type.

In the next two subsections, we explain how representation and argument exposure can be
avoided by structuring the object store into contexts and marking references as readonly. In
the third subsection, we show how this additional structure and the underlying invariant can
be enforced by our universe type system.

2.1. Preventing Representation Exposure: Contexts and Owner Objects

To prevent representation exposure, memory is structured into a hierarchy of contexts. Object
contexts or simply contexts are disjoint groups of objects. There is a root context. All other
contexts have an owner object in their parent context. Aliasing is controlled by the following
invariant for this “ownership model” [4, 5, 30].

Definition 2.1 (Ownership model invariant) Every reference chain from objects in the
root context to an object in a context C different from the root context passes through C’s
owner. For purposes of this invariant, local variables and method parameters are treated like
locations of the corresponding this-object.

The ownership model allows an owner object to control access to objects in its context,
since this object acts as a gateway from the rest of the program to the objects in the context
it owns. This directly prevents representation exposure. Ownership types [5] or universes [29]
can be used to enforce the ownership model statically.

2.2. Preventing Argument Exposure: Readonly References and the Locality of
Dependencies

The ownership model is not sufficient to prevent dependencies on argument objects: It allows
objects inside a context to directly reference argument objects in ancestor contexts. Thus,
objects can transitively reference argument objects and locations can transitively depend on
locations of argument objects in arbitrary contexts. On the other hand, the ownership model
prevents the implementation of collection types, such as sets, since it prevents objects inside
a context from directly referencing objects that are not in ancestor contexts.

To solve these problems, we refine the ownership model [26, 29]. Fields may be declared
as readonly. Locations that are instances of a readonly field are called readonly locations.
They can hold references to any object independent of its context. References obtained from
readonly locations are called readonly references. They can only be used for direct read access
and invocation of operations without side-effects. In terms of the work of Boyland, Noble, and
Retert [3, p. 18], readonly references are transitive in the sense that locations accessed via a
readonly reference can only be read, not written, and any references read through them are
also readonly.
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Figure 5. Nodes in a context (the oval). The owner object sits atop the context it owns. Readonly
references are indicated by dashed arrows.

In the refined ownership model, every reference leaving a context has to be readonly. Thus
references to argument objects are readonly. The refined model is more general than the original
one in that it allows readonly references into contexts bypassing the owner. It is characterized
by the following invariant:

Definition 2.2 (Refined ownership model invariant) If object X holds a reference to
object Y , then either X and Y belong to the same context, or X is the owner of Y ’s context, or
the reference is readonly. For purposes of this invariant, local variables and method parameters
are treated like locations of the corresponding this-object.

Figure 5 illustrates the refined ownership model. The nodes of a linked list are contained in
a context owned by the list header. The objects stored in the list are outside the context and
are referenced readonly (dashed arrows).

Based on the refined ownership model, we can prevent dependencies on argument objects
by forbidding dependencies via readonly references. We will explain this in Subsection 4.3. For
the example in Figure 5 this means that abstract fields of the list must not depend on locations
of these objects.

Flexible alias protection [30] features an arg mode that is similar to the readonly mode of
our refined ownership model. An arg mode reference transitively restricts access to fields of an
object that are not modifiable. This has a similar effect as our model. The difference is that
we focus on specification dependencies, whereas they focus on implementation dependencies.
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12 P. MÜLLER, A. POETZSCH-HEFFTER, AND G. T. LEAVENS

2.3. The Universe Type System

The refined ownership model structures the objects into contexts and distinguishes between
readwrite and readonly references. In Sections 3 and 4, we show how the additional structure
and the properties expressed by the invariant are used to define the semantics of modifies
clauses and to enable modular verification. Here, we explain the technique by which we
establish and enforce the refined ownership model and its invariant. We use an extended
typing discipline, the so-called universe type system [26, 29]. A program that is type correct
with respect to the universe type system is guaranteed to maintain the refined ownership model
invariant in all execution states. Thus, the invariant can be used as a background property for
program verification.

The universe type system provides for each context a universe of types, i.e. an object of class
T in one context is considered to be of a different type from an object of class T in another
context. It is beyond the scope of this paper to explain this idea in detail. Instead, we focus on
the notions that are needed in the rest of this paper. The universe type system distinguishes
three kinds of reference:

• Ordinary references are readwrite references that do not cross context boundaries. They
are declared and used like object references in Java.

• Rep-references are readwrite references to objects in the context owned by the current
this-object. To distinguish them from context-local references, we prefix the ordinary
type with the type modifier rep (see [5]), which stands for “representation”. It indicates
that the objects forming the representation of an owner X are contained and encapsulated
in the descendant context owned by X.

• Readonly references: As explained above, readonly references may cross context
boundaries, but only enable read access. Readonly types are expressed by the type
modifier readonly.

Fields, local variables, and parameters can be declared with an ordinary, a rep-type, or a
readonly-type. Pivot fields with a rep-type are called rep-pivot fields. As we will illustrate,
objects in descendant contexts are created as objects of a rep-type. We restrict the use of
rep-types to classes that have rep-pivot fields or that have superclasses with rep-pivot fields.

For example, consider the specifications of List in Figure 6 and Node in Figure 7. The rep
annotations in Figure 6 specify that first and last refer to objects in a descendant context
owned by the list object. These annotations are also added to the new expressions in the body
of the append method in Figure 6, which are required by the type system to match against
the declarations of the fields first and last. There are no rep annotations in Figure 7, so
the nodes are all in the same context. The readonly annotations in the append method of
Figure 6 and in Node’s constructor in Figure 7 are necessary to mark argument objects. The
type system requires these to be specified to allow such objects to be assigned to Node’s val
field, which is also annotated as readonly.
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MODULAR SPECIFICATION OF FRAME PROPERTIES IN JML 13

//@ model import org.jmlspecs.models.*;
public abstract class List {

//@ public model non_null JMLObjectSequence listValue;
protected /*% rep %*/ Node first, last;
/*@ protected depends listValue <- last, last.next,

@ first, first.values;
/*@ protected represents listValue <-

@ (first == null ? new JMLObjectSequence() : first.values); @*/

/*@ public normal_behavior
@ requires o != null;
@ modifies listValue;
@ ensures listValue.equals(\old(listValue.insertBack(o))); @*/

public void append(/*% readonly %*/ Object o) {
if (last==null) {

first = new /*% rep %*/ Node(null, null, o);
last = first;

} else {
last.next = new /*% rep %*/ Node(null, last, o);
last = last.next;

}
}

/*@ public normal_behavior
@ modifies listValue;
@ ensures listValue != null && listValue.isEmpty(); @*/

public void initializeFirst() {
first = null;

}

/* ... */
}

Figure 6. A JML specification of the Java class List, of doubly-linked lists. Annotations of the form
/*% · · · %*/ enclose constructs that are new with this paper and not yet part of JML.
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14 P. MÜLLER, A. POETZSCH-HEFFTER, AND G. T. LEAVENS

//@ model import org.jmlspecs.models.*;
public class Node {

//@ public model non_null JMLObjectSequence values;
public Node next, prev;
public /*% readonly %*/ Object val;
//@ public depends values <- next, next.values, prev, val;
/*@ public represents values <-

@ (next == null ? new JMLObjectSequence(val)
@ : next.values.insertFront(val)); @*/

Node(Node nextp, Node prevp, /*% readonly %*/ Object valp) {
next = nextp; prev = prevp; val = valp;

}
}

Figure 7. The JML specification of the Java class Node.

3. Informal Semantics of Modifies Clauses in JML

In this section we describe a modular semantics of modifies clauses using the concepts from
the refined ownership model given in the previous section.§

We first define the notion of a relevant location, which is the key concept in the semantics.

Definition 3.1 (Relevant location) A location, L, is relevant to the execution of a method
m with receiver object X iff L is either in the context C containing X or in a descendant
context of C.

For example, if myList is an object of type List, then for the call myList.append(o) the
relevant locations are those in the context that contains myList, and those in descendant
contexts of myList. Since the field first in List is declared using the keyword rep, the
object that myList.first points to is in the context owned by myList (see Figure 5), which
is thus a descendant context of the context that contains myList. Since the next fields of Node
objects are not declared using rep, the objects reachable via next are all in the same context.
It follows that all the nodes are in the context owned by myList, and hence that the locations
of these nodes are also relevant.

Using this concept, we can now give a modular semantics to modifies clauses.

§JML actually uses a stricter interpretation of the modifies clause than that presented here [16], but the
differences are not important for this paper.
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Definition 3.2 (Modular semantics of modifies clauses) Of the relevant locations for a
call to a method, only those locations listed in the method’s modifies clause and their dependees
may be changed by execution of that method (when its precondition is satisfied). No other
relevant locations may be modified by such a call.

For example, the call myList.append(o), may modify the locations myList.first,
myList.first.values, myList.last, and all the fields of the nodes reachable from
myList.first via the next field. This is because the modifies clause of append explicitly
names myList.listValue, which depends on these other locations, all of which are relevant
to the call.

Note that this definition says nothing about the locations that are not relevant to a call.
This is the sense in which the semantics is underspecified, which is key to making the semantics
modular.

To explore the modularity consequences of this semantics, consider an extended program,
in which the type List is used to implement the type Set, specified in Figure 8. (This
specification adds rep and readonly annotations to the specification Set2 of Figure 4, as well
as an additional method.) Set’s abstract field setValue depends on its concrete field theList
and theList.listValue. Since the specification of Set’s insert method lists setValue in
its modifies clause, a call such as mySet.insert(o) may modify mySet.setValue and all
the locations on which it depends. Since theList is declared using rep, it is in the context
owned by mySet, and so is in a descendant context of the one containing mySet (see Figure 9).
Therefore mySet.theList is a relevant location, and since it is also a dependee, it can be
modified. Similarly, mySet.theList.listValue, mySet.theList.first, and the fields of the
nodes are relevant, and so these dependees can be modified.

The modularity of the semantics is shown by the call theList.append(o) in Set’s insert
method. How does the semantics allow List’s append method to modify the set’s abstract
field setValue, which it does when it modifies the abstract value of theList? The semantics
allows this because a modifies clause only describes the modification of relevant locations, and
setValue is not relevant for the call theList.append(o). The reason for this can be seen in
Figure 9. In that figure, the locations relevant to the call are all inside the context that owns
theList, which is the outer oval in the figure. The set object itself, i.e., the object pointed
to by mySet is not in this context, and hence locations in that object are not relevant for the
call. Thus, although the figure does not show the abstract field setValue, since that field is
thought of as part of this set object, it is also not relevant for the call in question.

Responsibility for verifying frame properties is divided. A method’s implementor is
responsible for the locations specified in its modifies clause that are relevant to its executions,
and the method’s caller is responsible for other locations. For example, append’s implementor
is responsible for verifying that, of the relevant locations, only listValue and its dependees
are modified. When verifying the call to append in Set’s insert method, one uses append’s
modifies clause and Set’s depends clauses to reason about modification of Set’s fields theList
and setValue.
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//@ model import org.jmlspecs.models.*;
public abstract class Set {

//@ public model non_null JMLObjectSet setValue;
protected /*% rep %*/ /*@ non_null @*/ List theList;
//@ protected depends setValue <- theList, theList.listValue;
/*@ protected represents setValue \such_that

@ (\forall Object o; o != null;
@ theList.listValue.has(o) <==> setValue.has(o)); @*/

/*@ public normal_behavior
@ requires o != null;
@ modifies setValue;
@ ensures setValue.has(o); @*/

public void insert(/*% readonly %*/ Object o) {
if (!theList.contains(o)) { theList.append(o); }

}
}

Figure 8. The JML specification of the Java class Set.

4. Modularity and Dependencies

In this section, we argue that our specification approach enables modular sound verification of
frame properties. Modular verification means that a method implementation m can be proved
correct with respect to its specification based on the knowledge available in the module of
m. In particular, verification can be done without knowing all program contexts in which m
will be used. Modular soundness means that the proof of m remains valid in all well-formed
program contexts extending the module of m.

To understand the scenarios that threaten modular soundness, let us consider a module M
containing the implementation of a method m and a module Mext that imports M and uses
m. We assume that the modifies clause allows m only to modify the field g of the receiver
object and that m is proved correct based on the knowledge available in M . Essentially, there
are three problematic scenarios that must be avoided to achieve modular soundness.

1. New fields: Let Mext contain the declaration of an abstract field f and dependency
declarations such that a location X.f might depend on a location Y.g. Thus, modifying
Y.g can change X.f . Assuming that X.f can be relevant for a call to m, it has to be
contained in the modifies clause of m. However, f is not available in M , so the modifies
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Node Node Node Node
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theListmySet

Figure 9. Object Structure for a Set object.

clause cannot refer to it. In particular, the proof of m might no longer be valid in Mext.
(See Subsection 1.2 for an example for this scenario.)

2. New dependencies: Let’s assume that a location X.h does not depend on a location Y.g
according the dependency declarations of M or modules imported by M . However, in
Mext dependencies might be added such that X.h becomes dependent on Y.g in Mext.
Thus, a modification of Y.g could modify X.h which is not allowed according to m’s
modifies clause.

3. Hidden dependencies: Let f and g be visible in M , but the dependency between them
not be visible to the developer of m. Then, the developer might wrongly conclude that
location X.f does not depend on Y.g.

In the following, we explain how our specification and verification framework for frame
properties addresses these problems. The basic ideas are:

• An underspecified depends relation ensures that one can only prove properties about a set
of modules’ dependencies that hold in all well-formed extensions of this set of modules.

• Modularity rules restrict the declaration of fields and dependencies in modules that
import other modules.

A module that is type correct w.r.t. the universe type system and that satisfies the
modularity rules is called well-formed.

The rest of this section is structured as follows. Subsection 4.1 explains the module
system and provides the basic definitions for the depends relation. Subsection 4.2 formulates
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modularity properties that ensure modular soundness. In modules that have the modularity
properties the problematic scenarios sketched above cannot occur. The remaining subsections
develop the modularity rules, illustrate them by an example, and show that modules that
are well-formed w.r.t. these rules have the modularity properties, that is, enable modular
verification.

4.1. Module System and Depends Relation

To make the following presentation more precise, we introduce a simple module system and
define what it means for one location to depend on another.

4.1.1. A Simple Module System

To talk about modular soundness and verification, one needs a module system. The module
system has to define for each class C the precise program context that is used for the verification
of C. Unfortunately, the package mechanism of Java provides a bad basis for this purpose. Java
packages are essentially a naming mechanism. They are not (necessarily) sealed — a package
can be extended by new types in new compilation units at any time. Thus, if a compilation unit,
CU, imports classes from a package P , the set of classes available in the program at runtime
from P might change after verification of CU. Additional classes can in particular introduce
more dependencies with problematic consequences for modular soundness (see below).

To avoid these soundness problems, we introduce a simple module system that directly
provides the needed notions. A module is just a uniquely named finite set of classes and
interfaces. A module can import a list of other modules. Cyclic imports are not allowed. This
gives a sufficiently precise notion of program contexts. We leave as future work an adaptation
of this module system that would deal with Java’s existing package system.

Classes and interfaces in different modules are considered to be distinct. For modular
reasoning, it is important to know which declarations are available in a module, because only
the available declarations can be used in proofs. Any declaration D in a class or interface C
declared in module M is available in M and in all modules that directly or indirectly import
M . A declaration D is visible in a class C, if and only if it is available in the module of C
and the rules for access modifiers of Java and JML allow its use in C. In the following, we are
mainly interested in the visibility of field and dependency declarations.

By the range of a module¶ M , we refer to the set of all classes and interfaces that are
contained in M or that are directly or indirectly imported by M . We say that a module N is
an extension of M , if it directly or indirectly imports M . If N extends M , the range of N is
a superset of the range of M .

For simplicity, we say that a location X.f is declared/available/visible in a class C, a module
M , or a range R, iff its field named f is declared/available/visible in C, M , or R, respectively.

¶We use this term instead of saying “the scope of M” as it is e.g. done in [20], because in the programming
language literature “scope” often refers to the part of a program text where an identifier is visible.
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4.1.2. The Depends Relation

The dependency declarations on fields induce a dependency relation on locations. Static
dependency declarations of the form “depends f <- g”, where f and g are fields of a type T
lead to dependencies where locations of the form X.f depend on locations X.g, where X is an
object of type T . Dynamic dependency declarations of the form “depends f <- p.g” lead to
dependencies between locations of different objects: If X.p = Y in an execution state S, then
location X.f depends on Y.g in S. That is, whereas dependency of fields is a static property,
dependency of locations is in general a dynamic property. The transitive, reflexive closure of
this relation on locations is called the depends relation. We use the dependency declarations
in modules to axiomatize the depends relation (see Subsection 4.4).

For a given module M , the depends relation is underspecified in two respects: (1) It is only
specified for the locations available in M , and not for locations corresponding to fields that are
declared in modules extending M . (2) It is only specified w.r.t. the dependency declarations
available in M , and not for dependency declarations contained in modules extending M . The
first point is a consequence of modular programming and we have to cope with it. The problems
resulting from the second point will be dealt with by restricting the dependencies that might
be added in modules importing M (see Subsection 4.3).

We say that a method m’s modifies clause mc covers a location X.g iff the field g is listed
in mc for an object that denotes X in m’s pre-state, or is a dependee of such a location in M .

4.2. Modularity Properties

To prove that the implementation of a method m in module M satisfies its modifies clause,
we need to know about the relevant locations that m might modify. For modular reasoning,
this knowledge has to be available in M and may not change in modules extending M . The
availability of sufficient knowledge in M is necessary to prove m’s modifies clause is satisfied
in M . The claim for stable knowledge is necessary for modular soundness.

The proof of m done in M guarantees that relevant locations available in M are either
covered by m’s modifies clause according to the dependency declarations available in M or
remain unchanged under execution of m. To show that the locations remain unchanged one
has to prove that they do not depend on concrete locations modified in m and do not depend
on locations listed in modifies clauses of methods that are called in m.

As demonstrated by the problematic scenarios above, in a naive approach it is not possible
to use the proof of m done in M to infer that all relevant locations in any extension of M are
covered by m’s modifies clauses or remain unchanged. However, if the verification framework
satisfies the following three modularity properties, then such a proof generalizes to all extensions
of M .

Property 4.1 (Field visibility) Whenever an execution of a method m modifies an abstract
location X.f , at least one of the following three cases applies:
1. X.f is not relevant for the execution of m,
2. The declaration of f is visible in the module where m is declared, or
3. m modifies X.f by invocation of a method n, and X.f is covered by n’s modifies clause.
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This property guarantees that fields (and the corresponding locations) are visible whenever
they are needed to prove frame properties.

Property 4.2 (Local completeness) The depends relation of module M is locally complete
in M . That is, for all locations X.f and Y.g such that the fields f and g are available in M
and in all states S, it is specified whether X.f depends on Y.g in S or not.

This property is needed to show that two locations do not depend on each other and
especially to show that a method does not modify a given location. Further explanation of
this property will be given in Subsection 4.4.

Property 4.3 (Consistency) The depends relation of module M is consistent with the
depends relation in all extensions of M . That is, in every state, X.f depends on Y.g in M if
and only if X.f depends on Y.g in all extensions of M .

This property guarantees that proofs based on the formalization of the depends relation in
M remain valid in extensions of M .

Properties 4.2 and 4.3 allow us to formalize that two locations available in M are independent
in M and all extensions of M iff there are no dependency declarations available in M that make
them dependent. They guarantee that knowledge available in M remains valid in extension of
M . And they provide sufficient knowledge to show that locations not covered by the modifies
clause of a method m do not depend on locations modified by m. This is a critical part of
proving method implementations correct. Especially, verification frameworks that have the
above properties are modular sound.

Theorem 4.4 (Modular soundness) A verification framework that satisfies Properties 4.1
and 4.3 is modular sound. That is, if there is a proof done in module M that method m satisfies
its modifies clause, then m also satisfies its modifies clause in every well-formed module Mext

that extends M .

According to the modular semantics of modifies clauses (see Definition 3.2), we have to show
that whenever an execution of m in the program context given by Mext modifies a location
X.f , then either X.f is not relevant or X.f is covered by m’s modifies clause according to the
dependency declarations available in module M .‖ In the case that X.f is not relevant nothing
has to be shown. Otherwise, Property 4.1 leaves us with two cases:

Case 1: X.f is visible in M . Thus, since m satisfies its modifies clause in M , X.f is covered
by m’s modifies clause according to the dependency declarations available in M . Since the
dependency declarations available in M are also available in Mext, Property 4.3 guarantees
that X.f is also covered by m’s modifies clauses according to the dependency declarations
available in Mext.

Case 2: m modifies X.f by invocation of a method n, and X.f is covered by n’s modifies
clause. In this case, n and the locations listed in its modifies clause are visible in M and are,

‖This informal argument simplifies matters in two respects. First, we do not consider the properties given in
preconditions. Second, we use the term “a modifies clause covers a location” which is a bit sloppy; to be precise,
coverage has to be taken w.r.t. the method’s pre-state.
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according to the proof for m done in M , covered by m’s modifies clause. Consequently, X.f
is covered by m’s modifies clauses according to the dependency declarations available in M .
Again, Property 4.3 allows us to derive that X.f is also covered by m’s modifies according to
the dependency declarations available in Mext. (Note that in this case, X.f does not need to
be available in M .) 2

The above theorem shows that the modularity properties are sufficient for modular
verification and guarantee modular soundness. In particular, these properties rule out the
problematic scenarios sketched at the beginning of this section as explained in the following.

In the first scenario (New Fields), we know that the location X.f is relevant to the execution
of m and that X.f is not visible in M . Thus, Cases 1 and 2 of Property 4.1 do not apply and
we can conclude that Case 3 applies: X.f is modified by an invocation of a method n and is
covered by n’s modifies clause. This case is identical to Case 2 of the proof of the soundness
theorem.

The second scenario (New Dependencies) cannot happen, because it contradicts
Property 4.3: If X.h does not depend on Y.g according to the depends clauses in M , then it
does not depend on Y.g in extensions of M . That is, adding dependencies in the way assumed
in the second scenario is not possible in verification and specification frameworks that satisfy
the modularity properties.

The third scenario (Hidden Dependencies) cannot happen, because we use a formal approach
in which it is only allowed to infer properties from the formalization of the depends relation,
but not by informal meta reasoning. Nevertheless, the third scenario illustrates an interesting
aspect: What happens if there are dependency declarations available in M that are not visible?
In that case, certain axioms are also hidden and cannot be used in proofs with the consequence
that one might neither be able to prove that X.f depends on Y.g nor that it does not. Thus,
some proofs cannot be accomplished.

So far, we have shown that the above modularity properties ensure modular soundness. The
following subsections explain the concepts and restrictions we use in our verification framework
to establish the modularity properties.

4.3. Authenticity

Property 4.1 ensures that the verifier of a method m can prove that all relevant locations that
m might modify are covered by m’s modifies clause.

This property is trivial for locations that are not relevant for m (Case 1 of Property 4.1).
For locations modified by method invocations (Case 3), we assume the following property for
all method invocations:

Property 4.5 (Caller coverage) All locations that are covered by the modifies clause of the
invoked method are also covered by the modifies clause of the invoking method.

Although this property is not technically necessary [26], it simplifies the treatment of method
invocations significantly. We assume this property to hold since it has, in general, to be proved
for every method invocation during verification of a method body anyway.
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The interesting case is how to achieve Property 4.1 for relevant locations that are modified
through field updates. Assume that a method m declared in module M updates a location Y.g.
To ensure Property 4.1, we must guarantee that all abstract locations that are relevant for the
execution of m and that might be affected by the update of Y.g (that is, depend on Y.g) are
visible in M . This requirement is called authenticity in Leino’s and Müller’s work [20, 26].

In a naive approach, we could achieve authenticity by requiring that all dependents of Y.g are
visible wherever g is. Such a requirement works for static dependencies and certain visibility
modifiers, but rules out important implementation patterns such as the List2-Set2 example
in Subsection 1.2, where setValue can certainly not be visible in the module that declares
listValue (see Figures 2 and 4).

To establish Property 4.1 and still enable such implementations, we use a weaker requirement
which consists of four major parts:

1. Locality : We prevent dependencies on locations of argument objects (see Subsection 2.2)
to restrict the contexts to which dependees of a location can belong.

2. Ownership: We exploit the fact that the refined ownership model (see Definition 2.2)
permits access to contexts only through owner objects.

3. Visibility : We impose a restriction on depends clauses that guarantees that abstract
locations are available in all methods that could modify them and for which they are
relevant.

4. Accessibility : We require abstract fields to be public, so that abstract fields are visible
wherever they are available.

In the following we explain how these requirements can be enforced by statically checkable
rules and how they allow one to determine the effects of a field update on relevant locations.

4.3.1. Locality

As explained in Subsection 2.2, locality of dependencies means that locations do not depend on
argument objects. We can achieve locality by forbidding dependencies via readonly references:

Definition 4.6 (Locality rule) Pivot fields must not be readonly.

This rule and the invariant of the refined ownership model guarantee that a location in
a context C only depends on locations in C or C’s descendants: According to the forms of
depends clauses we allow in this paper, X.f can only depend on Y.g if X and Y are the same
object or if there is a reference chain from X to Y . X and Y are the same object when there
is a static dependency; dynamic dependencies involve reference chains. Such a reference chain
can only leave the context that owns X if it contains a readonly reference.

4.3.2. Ownership

According to the invariant of the refined ownership model (see Definition 2.2), each context
except the root context has an owner object that controls access to the objects in the context
it owns. In analogy to owner objects, the universe type system introduces the notion of an
owner type.
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The owner type of a field is a class that is visible in every module that contains code that
directly accesses the field. In most programs, such as in our examples, the owner type of a
field is its declaration type. In other cases, it is the most general super class of the declaration
type that contains a field of a rep type. The universe type system guarantees the following
properties (see [26] for a precise definition of owner types).

Property 4.7 (Owner type property)
1. There is an owner type for each field.
2. All fields of rep types that could hold references to objects in the same context have the same
owner type.

For instance, in class Set (see Figure 8), the owner type of theList is Set, which is also
the type of the owner object of the context theList-references point to.

4.3.3. Accessibility

To achieve that abstract fields are visible wherever they are available, we require that abstract
fields be public.

Definition 4.8 (Access rule) Abstract fields have to be public.

The access rule is a simple way to guarantee the following transitivity property for abstract
fields f and g, and a program point P : If f is visible at the declaration of g, and g is visible
at P , then f is visible at P . This would for instance not be the case, if f was private, g was
public, f and g were declared in the same class C, and P was outside C.

More sophisticated rules that allow the hiding of abstract fields can be used to achieve
transitivity. However, the given rule suffices for our purposes without violating information
hiding: The declaration of an abstract field only reveals its name, not its representation.

4.3.4. Visibility

According to the refined ownership model, a method m executed in context C can update
concrete locations of objects in C and immediate descendants of C.

If m updates a location Y.g in C, locality guarantees that all relevant locations that might
be affected by this updates are also in C. Thus, we can achieve authenticity by requiring that
for each dependency where the dependent and the dependee belong to the same context, the
dependent must be visible wherever the dependee is. In this case, the dependees have to be
visible where Y.g is, especially in m.

If m updates a location Y.g in an immediate descendant of context C, we need a weaker
requirement to enable implementation patterns such as the List2-Set2 example. In this case,
we can exploit the fact that the owner type of a field is visible in every module that contains
code that directly accesses the field. Thus, it suffices to require that all dependents of Y.g in
C are visible in g’s owner type and, thus, in m.

These two requirements can be statically checked using the following visibility rule.
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Definition 4.9 (Visibility Rule) Let D be a dependency declaration of the form “depends
f <- g” or “depends f <- p.g”. If D is static or if its pivot field is not of a rep type, then
D must be visible in the module where g is declared. If D is dynamic and its pivot field is of a
rep type, then D must be visible in the module that contains the declaration of p’s owner type.

For authenticity, we do not need the visibility rule, but a consequence of it and the access
rule:

Lemma 4.10 (Authenticity) Let D be a dependency declaration of the form “depends f
<- g” or “depends f <- p.g”. If D is static or if its pivot field is not of a rep type, then
the declaration of f must be visible in the module where g is declared. If D is dynamic and
its pivot field is of a rep type, then the declaration of f must be visible in the module that
contains the declaration of p’s owner type.

The lemma holds since (1) the field of the dependent in a depends clause is visible wherever
the depends clause is and (2) the access rule guarantees transitivity of visibility for abstract
fields.

In summary, the locality, access, and visibility rules act together to allow one to determine
all relevant abstractions that might be affected by the modification of a concrete location Y.g
by the execution of a method m. The locality rule enforces that the abstractions that might
depend on Y.g belong to certain contexts. Most of these abstractions are not relevant for the
execution of m. For the remaining abstractions, the access and visibility rules require that the
involved depends clauses be visible in the module that contains m’s declaration. Therefore,
the verifier can refer to the dependencies declared in the range of that module to reason about
the modification. That is, the rules guarantee that authenticity and, thus, Property 4.1 holds
in all well-formed programs. We will prove this in Subsection 4.7.

4.4. Locally Complete Depends Relations

Our approach to establishing Property 4.2 in our verification framework is to (almost)
completely specify the depends relation for all locations available in a module M . We
axiomatize both the depends relation and its negation as follows. (See [26] for a full
formalization of the depends relation and its negation.)

As explained in Subsection 4.1, the depends relation for a module M is specified by

• an appropriate axiom for each depends clause available in M that relates the dependent
and the dependee,

• a reflexivity axiom,
• a transitivity axiom.

According to Property 4.2, the axiomatization of the depends relation and its negation
for a module M should be complete for all fields available in M . However, such a complete
axiomatization rules out a common implementation pattern that is illustrated in Figures 10
and 11.
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//@ model import org.jmlspecs.models.*;
public abstract class AbstractSet {

//@ public model non_null JMLObjectSet setValue;
}

Figure 10. The JML specification of the Java class AbstractSet. This abstract class declares only the
abstract field setValue.

//@ model import org.jmlspecs.models.*;
public abstract class Set3 extends AbstractSet {

protected /*% rep %*/ /*@ non_null @*/ List theList;
//@ protected depends setValue <- theList, theList.listValue;
/*@ protected represents setValue \such_that

@ (\forall Object o; o != null;
@ theList.listValue.has(o) <==> setValue.has(o)); @*/

}

Figure 11. The JML specification of the Java class Set3. Besides the extends clause and the missing
declaration of setValue, Set3 is an extract of class Set.

Assume that List, AbstractSet, and Set3 are declared in different modules. By following
Property 4.2, Set3 would not be allowed to introduce the depends clause setValue <-
theList, theList.listValue for the following reason: There are modules in which setValue
and listValue are available, but the class Set3 is not (think of a module that imports the
modules of List and AbstractSet and nothing else). If we would conclude from such modules
that a setValue-location cannot depend on a listValue-location because no such dependency
is declared, adding class Set3 to the program would lead to an inconsistency since it introduces
such a dependency.

To avoid this inconsistency and still enable the implementation pattern used in the example,
we slightly underspecify the negation of the depends relation, that is, we use the following weak
local completeness property in our verification framework:

Property 4.11 (Weak local completeness) Let X.f and Y.g be locations with fields
available in M and let S be any state. If no set of dependencies that would declare a dependency
of X.f on Y.g contains a depends clause with a rep pivot the owner of which is not available
in M , then it is specified in M whether X.f depends on Y.g in S or not. Otherwise, M does
not need to specify whether X.f depends on Y.g.
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Based on this weaker property, the negation of the depends relation for a module M is
axiomatized as follows: For each pair of locations X.f and Y.g available in M , an axiom is
generated that states that X.f does not depend on Y.g if the following two requirements are
met.

1. The dependency cannot be derived from the depends clauses available in M , reflexivity,
and transitivity.

2. Let D be an arbitrary set of depends clauses that declare a dependency of X.f on Y.g.
For each depends clause in D with a rep pivot p, the owner of p is available in M .

The first requirement directly describes the negation of the depends relation. The second
requirement slightly weakens the axiomatization, that is, it leaves parts of the negation of the
depends relation underspecified: If X and Y belong to the same context, the second property
always holds since no depends clause with a rep pivot can be involved. However, if X belongs
to an ancestor of the context to which Y belongs, extensions of M may introduce a dependency
of X.f on Y.g, thereby enabling the implementation pattern described above.

The weak local completeness property is still strong enough for modular verification:
Because of our hierarchical programming model, verification is in general only concerned
with dependencies between locations that belong to the same context or where the dependent
belongs to the ancestor context of the dependee with the owner type of the dependee available.
Both cases are not affected by the slightly underspecified depends relation.

In particular, the strong local completeness property is not necessary to achieve modular
soundness. Therefore, the proof of Theorem 4.4 is also valid for verification frameworks with
the weak local completeness property.

4.5. Consistent Depends Relations

Achieving consistency (Property 4.3) is more difficult than local completeness. The basic idea
is to restrict the placement of dependency declarations in such a way that modules extending
M must not add further dependencies between fields available in M (besides the exception
discussed above). Note that it is not sufficient to simply forbid dependency declarations in
extensions of M that directly declare a dependency between fields available in M . Assuming
that f and h are fields available in M that are independent, the two dependency declarations
“depends f <- g” and “depends g <- h” in a module extending M could generate an
inconsistency.

In [20], Leino and Nelson used the so-called the visibility requirement to avoid inconsistencies
for static dependencies: A declaration “depends f <- g” has to be visible in every scope in
which f and g are. For dynamic dependencies they use additional requirements.

The universe type system with its notion of owner types allows us to use a uniform rule
for both static and dynamic dependencies. Our axiomatization of the depends relation and
its negation together with the visibility rule (see Definition 4.9) guarantees that the axioms
introduced for an extension Mext of a module M are consistent with the axiomatization for
M .
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To illustrate how the visibility rule works, we argue that Mext cannot declare dependencies
that contradict the axiomatization of the negation of the depends relation in M . A more
comprehensive proof sketch of Property 4.3 can be found in Subsection 4.7.

Consider two locations X.f and Y.g available in M that are independent. To introduce a
dependency of X.f on Y.g, Mext has to declare at least one depends clause where the dependee
Z.h is available in M (Z.h could be Y.g or a dependent of Y.g). The visibility rule guarantees
that this depends clause can neither be a static dependency nor a dynamic dependency where
the pivot is not of a rep type, because in these cases the depends clause would have to be
available in M . Therefore, the new depends clause has to be a dynamic dependency with
rep pivot p where the owner type of p is available in Mext, but not in M . Otherwise,the
visibility rule would again ensure that the depends clause is available in M . However, if the
dependency is established by such a depends clause, it does not contradict the axiomatization
of the negation of the depends relation in M since this case is explicitly excluded by the second
requirement for the negation axioms (see above). That is, extensions lead to a refinement of
the axiomatization of the depends relation and its negation.

As explained in detail in [26], this approach has been extended to reflect the different levels
of visibility (public, protected, default, private). The more access rights a class has, the more
parts of the axiomatization can be used within its proof. For instance, if only the public
declarations of a class A are visible in a class B, the proofs for B may only use the public
parts of the theory formalizing A. This way visibility is reflected in the formalization.

4.6. Example

Before we prove that the modularity rules presented above guarantee the modularity
properties 4.1, 4.11, and 4.3, we illustrate how these rules work by revisiting the List-Set-
example from Section 3. We assume that the classes List and Node are contained in a module
List, which is imported by the module Set of class Set.

In a program that consists only of modules List and Set, List’s append method is correct
since (1) all locations of List and Node objects modified by the method are covered by the
modifies clause, and (2) all locations of Set objects modified by the method are not relevant
for the method execution. These properties follow mainly from the depends relation and the
types of List’s and Set’s fields. For instance, from the depends clause for setValue, the
visibility rule, and the fact that Set’s theList field is of a rep-type, we can conclude that only
the setValue location of the Set object that owns the this object can be modified by the
execution of append. This object is not relevant for the method execution. Similarly, we can
show that only the listValue of the this object is modified by append since the rep-types of
List’s first and last fields indicate that Node objects are not shared between List objects.
Thus, different listValue locations depend on disjoint Node locations. We assume that the
typing of variables and fields is implicitly given in every pre- and postcondition and that we
can refer to these properties in proofs (see [26] for a complete formalization).

However, the above argument does not hold if we import the module List by a module that
provides the alternative implementation of sets given in Figure 12.

In contrast to Set, SetAlt in Figure 12 does not use the rep tag in the declaration of the
field theList. Hence, SetAlt does not store the list in a descendant context (see Figure 13).
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//@ model import org.jmlspecs.models.*;
public abstract class SetAlt {

//@ public model non_null JMLObjectSet setValue;
protected /*@ non_null @*/ List theList;
//@ protected depends setValue <- theList, theList.listValue;
... // identical to class Set

}

Figure 12. The JML specification of the Java class SetAlt.

Node Node Node Node

List

SetAlt

theListmySet

Figure 13. Object Structure for a SetAlt object.

Consequently, List.append might modify relevant SetAlt locations that are not covered by
its modifies clause, because all these locations are in the same context.

In summary, the example illustrates the first problematic scenario from the beginning of this
section, and we would expect our modularity rules to forbid the implementation of SetAlt
since it invalidates the correctness of List.append.

Our first example, with the types List and Set, is well-formed. It is easy to check that the
abstract fields and dependencies declared in Figures 6, 7, and 8 satisfy the modularity rules.
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In particular, the setValue location of a Set object is not relevant for executions of append
on the corresponding List object.

1. Locality rule: Neither of the pivot fields, first of class List, next of class Node, and
theList of class Set, are readonly. Finally, it should be noted that the dependency of
values on val does not contradict the locality rule. The rule would only prohibit a
dependence of values on a field of val.

2. Access rule: The abstract fields values, listValue, and setValue are declared public.
3. Visibility rule: Of course, the depends clause of class Node is visible in Node, where all

fields mentioned in the depends clause are declared. The depends clause of class List
is visible in the module List, which contains the declarations of first and last as well
as their owner type, List. The depends clause of class Set is visible in the module Set,
which contains the declarations of theList and its owner type, Set.

The situation is different for the second example with List and SetAlt. Since theList is
not of a rep type, the depends clause

protected depends setValue <- theList, theList.listValue;

must be visible where the field listValue of the dependee is declared. That is, it must be
visible in class List (rather than in theList’s owner type SetAlt as in the List-Set example),
which is not the case. Therefore, the List-SetAlt example violates the visibility rule and thus
is not well-formed. Consequently, the setValue locations of SetAlt objects are relevant for
the corresponding executions of append, which leads to the unsoundness illustrated previously.

Ruling out the List-SetAlt example is also well justified from programming methodology: A
set object that uses a list object to store its elements should make sure that other objects cannot
manipulate the list in unexpected way and thereby, for instance, break the set’s invariant.
Consequently, the list object should not be exposed, that is, it should be owned by the set
object. This is the case for Set, but not for SetAlt.

4.7. Modularity Theorem

In this subsection, we present the central modularity theorem that, together with Theorem 4.4,
shows how the universe type system and the modularity rules enable modular sound
verification:

Theorem 4.12 (Modularity) The universe type system and the locality, access, and
visibility rules guarantee the modularity properties, that is, field visibility (Property 4.1), weak
local completeness (Property 4.11), and consistency (Property 4.3).

We sketch the proof of the three modularity properties in turn. A formalization of the proof
can be found in [26].

4.7.1. Proof of Field Visibility

This proof part runs by induction over the structure of the body of a method. That is, the
induction base consists of the primitive statements, whereas all compound statements and
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method invocations are handled in the induction step. Here, we present the cases for field
updates (the base case) and method invocations (the inductive case). These are the most
interesting cases since they directly deal with the modification of locations. All other cases are
rather straightforward or necessary to handle the technical problems of recursion.

Field Updates

Let m be executed in context C (i.e., the receiver is in C). Suppose m updates a concrete
location Y.g of some object Y . Then the universe type system guarantees that Y is in C or
in one of C’s immediate descendants. Consider an abstract location X.f that is relevant for
m. If X.f does not depend on Y.g, X.f is not affected by updates of Y.g. Otherwise, we show
that the declaration of f is visible in the module where m is declared:

Case 1: Y is in C. Since X.f is relevant for m, by the locality rule X is in C. Thus, X
and Y are in the same context, which implies that the dependencies between X.f and Y.g do
not involve any rep-pivot fields. Thus, authenticity (Lemma 4.3) ensures that the declaration
of f is visible in the module where g is declared. Since g is visible in m, the declaration of f
is visible in the module where m is declared.

Case 2: Y is in an immediately-descendant context D of C. Due to locality, X is in D or
in C. The former case is analogous to Case 1, since both Y and X are in the same context. In
the latter case a dynamic dependency must be involved with a pivot field p of a rep type. In
this case the owner type of p is visible in the module where m is declared (by the universe type
system), and the declaration of f is visible in the module of p’s owner type (by authenticity,
Lemma 4.3). Thus, the declaration of f is visible in the module where m is declared.

Method Invocations

Let m be executed with a receiver object Z belonging to context C and let D be the context
owned by Z; that is, D is an immediate descendant of C. If m invokes a method Y.n, we can
assume inductively that the modularity theorem holds for Y.n (for mutually recursive methods,
one has to use a more refined proof technique, see [26]). The universe type system guarantees
that either Y.n has no side effects, or that Y is in C or in D. Let X.f be an abstract location
modified by Y.n. If X.f is not relevant for the call Z.m or covered by n’s modifies clause, the
modularity property for Z.m follows directly since Case 1 or Case 3 of Property 4.1 applies
trivially. Otherwise, X.f is relevant for Z.m and not covered by n’s modifies clause. We show
by case distinction that f is visible in the module where m is declared, that is, that Case 2 of
Property 4.1 applies:

Case 1: Y is in C. Because Y and Z belong to the same context and because X.f is
relevant for Z.m, it is also relevant for Y.n. As X.f is relevant for Y.n and not covered by n’s
modifies clause, we know by the induction hypothesis that the declaration of f is visible in the
module where n is declared. Since n must be declared in the range of the module where m is
declared, the declaration of f is also visible in the module where m is declared (by transitivity
of abstract field visibility).

Case 2: Y is in D. The proof for this case depends on the context to which X belongs:
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Case 2a: X is in D or a descendant of D. Thus, X.f is relevant for Y.n and the reasoning
is the same as for Case 1.

Case 2b: X is in a descendant context of C, different from D and its descendants. The
locality rule ensures that X.f cannot depend on locations in D or D’s descendants. Due to
the universe type system, n can only modify concrete locations in D or D’s descendants.
Consequently, n cannot modify a dependee of X.f and, thus leaves X.f unchanged. This is in
contradiction to the assumption that X.f is modified by Y.n, that is, this case does not occur.

Case 2c: X is in C. If X.f does not depend on a location in D, X.f cannot be modified
by the invocation of n. Otherwise, if X.f depends on a location in D, there must be a chain
of dependencies between X.f and Y.g that contains exactly one dynamic dependency depends
f ′ <- p.f ′′ where p is of a rep type (locality rule). Authenticity (Lemma 4.3) guarantees that:

(i) the declaration of f is visible in the module where f ′ is declared (only static dependencies
and dynamic dependencies without rep pivot fields are involved in the dependency chain
from f to f ′), and

(ii) the declaration of f ′ is visible in the module where p’s owner type is declared.

Now from the second property of owner types (Property 4.7), we know that

(iii) p’s owner type is visible in the module where m is declared.

Thus, authenticity (Lemma 4.3) together with items (i)–(iii) implies that the declaration of f
is visible in the module where m is declared and, thus, Case 2 of Property 4.1 applies.

4.7.2. Proof of Weak Local Completeness

Let X.f and Y.g be two locations with fields available in module M and S any state. According
to weak local completeness (see Definition 4.11) we have to show that one of the following three
properties holds in well-formed modules:

1. X.f depends on Y.g, and this dependency can be derived from the axioms generated for
the depends clauses available in M , or

2. X.f does not depend on Y.g, and this independence can be derived from the axioms
generated for the negation of the depends relation for M , or

3. any set of depends clauses that declare a dependency of X.f on Y.g contains a depends
clause with a rep pivot p where the owner type of p is not available in M .

Case 1: X.f depends on Y.g. From the definition of the depends relation, we know that there
is a set of depends clauses d1, . . . , dn(n ≥ 0) such that (1) each depends clause di(1 ≤ i ≤ n)
has the form depends hi <- hi+1 or depends hi <- pi.hi+1; (2) h1 is f ; (3) hn+1 is g.

Case 1a: If all di are static dependencies, dynamic dependencies where the pivot is not of a
rep type, or dynamic dependencies with a rep pivot the owner type of which is available in M ,
then we can conclude by repeated application of the visibility rule and the authenticity lemma
that each di is available in M . Consequently, the axioms generated for the depends relation
for M suffice to show that X.f depends on Y.g, that is, the first of the above properties holds.
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Case 1b: There is at least one dj with a rep pivot pj the owner type of which is not available
in M . This means that dynamically there is an object Z such that Z.pj .hj+1 is on the chain
of dependencies from X.f to Y.g. Since pivots must not be of readonly types (locality rule),
we know that there is a chain of readwrite references from X to Y that passes through Z, and
since pj is of a rep type, Y belongs to the context owned by Z or one of its descendants.

Now we show by contradiction that the third of the above properties holds: Assume that
there is a set D of depends clauses that declare a dependency of X.f on Y.g and that the
owner type of every rep pivot of a depends clause in D is available in M .

(i) If D does not contain a depends clause with a rep pivot at all, X.f can only depend on
Y.g if X and Y belong to the same context C. In this case, Z would also belong to C (locality
rule), which leads to a contradiction since Y belongs to the context owned by Z or one of its
descendants.

(ii) There are depends clauses with rep pivots in D, and the owner types of these rep pivots
are available in M . From the refined ownership model invariant (see Definition 2.2), we know
that each reference chain from X to Y passes through Z. Thus, there is a location Z.p on the
chain of dependencies from X.f to Y.g, and D contains a depends clause with rep pivot p.
By the second owner type property (see Property 4.7), we conclude that p and pj have the
same owner type T . According to the assumption of Case 1b, T is not available in M which
contradicts the assumption of Case (ii).

Case 2: X.f does not depend on Y.g. M does not contain depends clauses that allow one
to derive that X.f depends on Y.g (otherwise X.f would depend on Y.g). Thus, the first
requirement of the axioms for the negation of the depends relation is met (see Subsection 4.4).
Let D be any possible set of depends clauses that would declare a dependency of X.f on Y.g.

Case 2a: If for each depends clause in D with a rep pivot p the owner of p is available
in M , the second requirement is also met and we can use the axioms for the negation of the
depends relation for M to show that X.f does not depend on Y.g. Thus, the second of the
above properties holds.

Case 2b: D contains a depends clause with a rep pivot the owner of which is not available
in M . In analogy to Case 1b, we can prove that this is the case for every set of depends clauses
that would declare a dependency of X.f on Y.g. Thus, the third of the above properties holds.

4.7.3. Proof of Consistency

To prove that our axiomatization of the depends relation and its negation is consistent, we
essentially have to show that whenever a module Mext extends a module M

1. the axioms for the depends relation for Mext do not contradict the axioms for the negation
of the depends relation for M .

2. the axioms for the negation of the depends relation for Mext do not contradict the axioms
for the depends relation for M .

Case 1: Consider two locations X.f and Y.g available in M such that the depends clauses
available in M do not declare X.f to depend on Y.g. That is, there is an axiom that specifies
that X.f does not depend on Y.g if the second requirement for negation axioms is met (see
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Subsection 4.4). We show that the axiomatization of the depends relation in Mext (i) does not
specify X.f to depend on Y.g or (ii) specifies that X.f depends on Y.g in situations in which
the second requirement for negation axioms is not met.

If the axiomatization of the depends relation for Mext does not allow one to derive that X.f
depends on Y.g, property (i) trivially holds. Otherwise, it specifies that X.f depends on Y.g.
Like in Case 1 of the local completeness proof, we know from the definition of the depends
relation that there is a set of depends clauses d1, . . . , dn(n ≥ 0) available in Mext such that
(1) each depends clause di(1 ≤ i ≤ n) has the form depends hi <- hi+1 or depends hi <-
pi.hi+1; (2) h1 is f ; (3) hn+1 is g.

Case 1a: If all di are static dependencies, dynamic dependencies where the pivot is not of
a rep type, or dynamic dependencies with a rep pivot the owner of which is available in M ,
then we can conclude by the visibility rule that each di is available in M . Consequently, the
dependency of X.f on Y.g can be derived from the axiomatization of the depends relation for
M , which contradicts the assumption of Case 1.

Case 1b: There is at least one dj with a rep pivot pj the owner of which is not available
in M . Therefore, the second requirement for negation axioms is not met, that is, property (ii)
holds.

Case 2: Assume that a dependency of X.f on Y.g can be derived from the depends clauses
available in M , reflexivity, and transitivity. We show that the axiomatization of the negation
of the depends relation for Mext does not specify the independence of X.f and Y.g, that is,
does not lead to an inconsistency.

Each depends clause that is available in M is also available in Mext. Therefore, the
dependency of X.f on Y.g can also be derived from the depends clauses available in Mext,
reflexivity, and transitivity. According to the first requirement for axioms for the negation of
the depends relation (see Subsection 4.4), this implies that the axiomatization for Mext does
not specify the independence of X.f and Y.g.

2

5. Discussion and Related Work

In this article, we have presented a technique for the modular specification of frame properties.
This technique is the first solution to the modularity problem that has been proved sound for
both static and dynamic dependencies. It thus solves the three problems described in the
introduction (the information hiding, modification of concrete locations, and extended state
problems) in a modular way. This has been accomplished by developing and combining:

• A programming model that restricts references to support data abstraction. This
programming model can be statically checked by type systems such as the universe type
system. It is the basis for both the semantics of modifies clauses and the modularity
requirements.

• A scope-independent semantics for modifies clauses that allows us to treat static and
dynamic dependencies in a uniform way, which simplifies formalizations and reasoning.
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• Modularity requirements based on explicit dependencies for abstract fields. These
requirements guarantee modular soundness and, together with our semantics of modifies
clauses, they solve the modularity problem described in Section 1.2.

In this section, we first discuss the expressiveness and limitations of our technique and then
compare it to related work.

5.1. Expressiveness and Limitations

Our solution to the modular frame problem is achieved by restricting references through the
refined ownership model and the admissible dependencies through modularity requirements.
However, these restrictions still provide enough flexibility for many common programming
patterns as we explain in the rest of this subsection.

5.1.1. The Programming Model

The refined ownership model allows one to realize dynamic components with encapsulated
representations. By enforcing the refined ownership model invariant, whole object structures
can be protected from unwanted modifications. Contexts provide encapsulation that is far
beyond what can be directly achieved by Java’s access modes for fields, methods, and type
declarations. In particular, they provide encapsulation at the object level, which cannot be
directly expressed by access modes in Java.

On the other hand, the refined ownership model is flexible enough to express many common
implementation patterns including binary methods (such as equals), iterators, several objects
sharing one representation, mutual recursive types, etc. (see [26] for examples of these
patterns).

However, the programming model is still too restrictive for certain programming patterns.
For instance, the refined ownership model does not allow objects to migrate from one context
to another. Such patterns are for instance used in initialization methods (e.g., the initialization
method of a lexer could take an input stream as parameter [6]). Possible work-arounds are
cloning of object structures (thereby losing object identities) or readonly references (thereby
losing the ability to modify objects). A promising approach to overcome these shortcomings
is the combination of contexts with unique variables. A unique variable guarantees that the
referenced object is not aliased at all and can therefore safely be moved to another context
[25].

5.1.2. Dependencies

The set of admissible dependencies of a location are restricted by the expressiveness of our
depends clauses and the modularity requirements. We discuss the limitations of both in the
following.

5.1.2.1. Depends Clauses. In this article, we use a rather restricted form of depends clauses
for simplicity. That allows us to check all modularity requirements statically, but requires
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recursive data structures to be handled by recursive depends-clauses (i.e., depends-clauses
where the fields of the dependent and the dependee are identical (e.g., in Fig. 7 the clause
depends values <- next.values).

In [26], we show that the approach presented in this paper also works for more general
depends clauses, which allow almost arbitrary predicates to specify the dependees of an
abstraction.

5.1.2.2. Locality rule. The locality rule is fairly natural: Usually, abstractions of dynamic
components abstract from the states of their interface and representation objects. As long as
these objects are reachable from an interface object via read-write references, such abstractions
meet the locality requirement. Objects that are only reachable via readonly references can be
seen as arguments of a dynamic component (e.g., the elements in a container). It seems widely
accepted that abstractions of a dynamic component must not depend on the states of its
arguments (see e.g., the arg mode in [5]).

5.1.2.3. Authenticity. Of all modularity requirements, authenticity entails the restrictions:
(1) Authenticity forces programmers to use rep types whenever a type declaration declares

a dependency where the field of the dependee is declared in an imported module. In such
situations, all restrictions of the universe type system (see above) apply.

(2) Because of authenticity, it is not possible for a location L declared in class C to depend on
a location K of the same object if K’s declaration is inherited by C and contained in a different
module. Otherwise, K and L would belong to the same context, but L’s declaration was not
visible for the declaration of K. Therefore, authenticity does not fully support inheritance.
This problem occurs also in different approaches [17] and is not solved yet. We believe that
in many class libraries, such as the Java API, super- and subclass are often declared in what
would be the same module in our technique, and could be handled by our technique. However,
we need to refine our module system to deal with Java’s package concept before this can be
studied in detail.

5.1.3. Summary

In sum, the main application of abstract fields is the specification of abstract values for
dynamic components. In most cases, the dependencies of such abstractions meet all rules of our
technique and are not affected by the limitations discussed above. In particular, the dependees
are reachable from the interface objects via read-write references, and the representations of
the dynamic components are encapsulated in contexts. Therefore, our modularity rules are
weak enough to handle such abstractions and, hence, support a wide range of Java programs.

5.2. Related Work

In the following, we compare our solution to the frame problem to related work. We focus on
the modularity problem, but begin with a more general discussion.

The frame problem was first described in the context of artificial intelligence [23]. Borgida,
Mylopoulos, and Reiter [2] give a survey of work on the frame problem in design specifications,
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however, they do not discuss issues related to object-oriented programming, such as the
information hiding, modification of concrete locations, extended state, and modular verification
problems. Their proposal would organize the permission to modify variables around variables
instead of around methods. However, the semantics of such specifications in terms of proof
obligations is unclear and its capability to support modular verification has not been addressed.

Several specification languages include frame axioms organized around methods. For
example VDM-SL [1] says what locations a method may read and write. However, VDM-
SL does not solve the information hiding problem and does not support subtyping, so does
not address the modularity problem we address in this paper.

Leino’s work was motivated in large part by the use of abstract locations in interface
specification languages of the Larch family [10]. Larch interface specification languages have
modifies clauses that give frame axioms. Since these abstract locations are client-visible,
they address the information hiding problem. However, they do not typically address the
modification of concrete locations and the extended state problems [19]. Larch/C++ [14]
did adopt Leino’s dependency declarations [18], which solve these two problems. However,
Larch/C++ does not enforce modularity requirements on dependency declarations and thus
does not support modular verification of frame properties.

The most closely related work is that of Leino and Nelson [18, 20], which provides the basis
for our work. In particular we have adopted the notion of explicitly declared dependencies from
Leino and Nelson’s work. As described in our paper’s introduction; this solves the information
hiding, modification of concrete location, and extended state problems. In contrast to our
work, Leino and Nelson adopt a semantics that is not based on a notion of relevant locations
and an underspecified depends-relation; instead, they use a scope-dependent semantics, where
so-called residues are used to represent dependees that are not visible in a given scope. Such
a semantics is not straightforward to handle in Hoare-style programming logics since the
translation of a modifies clause into a pre-post pair depends on the scope in which this
translation takes place. Furthermore, modular soundness of the scope-dependent semantics
is more difficult to prove. Leino and Nelson have proved modular soundness of their approach
for static dependencies; however, they do not claim to have all requirements for dynamic
dependencies and have not yet proved soundness for dynamic dependencies in their technique.

Leino and Nelson use different modularity rules for static and dynamic dependencies. We
used Leino’s and Nelson’s rules for static dependencies and generalized them to dynamic
dependencies. The generalization relies on the concept of relevant locations which is made
possible by the refined ownership model. Most requirements in Leino’s and Nelson’s work
have a direct correspondence in our work, and vice versa. In particular, their modularity
requirements enforce data abstraction by controlling aliasing in ways that are similar to
those of the refined ownership model. However, the universe type system and our semantics
of modifies clauses allow us to formulate the modularity rules in a more syntactic way
which simplifies static checking. The disjoint ranges requirement and the swinging pivot
restriction needed in [20] are essentially based on properties of the semantics. Concerning
the expressiveness of the programming model, the two approaches are not comparable in a
strict sense. Certain restrictions imposed by the universe type system are more severe than
the analogous requirements of [20]. On the other hand, the two different forms of dynamic
dependencies supported by the presented approach provide additional flexibility.
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Leino’s OOPSLA ’98 paper [19] focused on the extended state problem for object-oriented
programs. It described a simpler solution to both the information hiding and extended state
problems, which used the concept of a data group. In terms of Leino’s earlier work [18] and the
solution presented in the present paper, a data group can be modeled by an abstract location
whose value contains no information. Since this location contains no information, there is no
need to use represents clauses to explain how its value is obtained from the values of other
locations. This allows one to relax the authenticity rule. But on the other hand, since data
groups have no value, they cannot be used to specify functional behavior in terms of abstract
values, which is crucial for verification of OO-programs. When one declares that a location
is in a data group, this can be modeled by a dependency declaration, which says that the
abstract location depends on the new location; thus, membership in a data group allows the
locations in the data group to be modified whenever the data group’s name is mentioned in a
modifies clause.

In an extension to earlier work on data groups, Leino, Poetzsch-Heffter, and Zhou [21]
developed two restrictions, pivot uniqueness and owner exclusion, that guarantee modular
soundness for static and dynamic data groups. Pivot uniqueness confines sharing of objects that
are referenced by pivot fields. Owner exclusion is a precondition to procedure calls restricting
the use of pivot values as parameters. This work is similar to our approach in that:

• both are based on a kind of pivot uniqueness (although in [21] it is enforced by restrictions
on the programming languages, whereas we use the universe type system),

• both use a form of authenticity,
• both work with an underspecified depends relation.

Our approach differs in the techniques used to restrict access to representation objects (owner
exclusion vs. universes combined with locality of dependencies).

In our work, the extended state problem is solved by allowing subtypes to introduce
additional dependencies for inherited abstract locations. The same technique is used in
Larch/C++ [13], the Extended Static Checking project [7, 20], and in [27].

Müller’s thesis [26] provides a complete formalization of the technique presented here. It
treats static and dynamic dependencies in a uniform way, which simplifies specifications and
the modularity requirements, in addition to simplifying the theory. The thesis explains how our
approach enables modular verification of frame properties and shows how modular soundness
can be achieved by conservative theory extension. The modular specification and verification
technique is generalized to type invariants. Moreover, Müller presents a formalization of the
universe type system and proves type safety.

The refined ownership model is a basis we build on rather than a contribution of this
paper. Therefore, we do not discuss work on aliasing here. The reader is referred to [26] for a
comprehensive discussion of such work.

6. Conclusions

We extended the Java Modeling Language by constructs to specify frame properties in a
modular way. The extension is based on a refined ownership model: the programmer can
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hierarchically structure the object store into contexts to which only designated owner objects
have direct access. All other references crossing context boundaries into non-descendant
contexts have to be declared as readonly. The refined ownership model is enforced by the
universe type system. It provides the basis to refine the semantics of the modifies clause and
to define modularity rules that guarantee the modularity of specification and verification of
frame properties.

The JML extensions are based on a more general framework that was developed for modular
verification of Java programs [26]. In that work, these ideas are also applied to the modular
treatment of class invariants, by considering invariants to be boolean-valued abstract fields.
Thus these ideas also lead to modular specification and verification of invariants. We expect
that this technique can also be extended to history constraints [22] in JML.

Although our technique can express common implementation patterns such as containers
with iterators and mutually recursive types [26], some extensions might be useful in practice.
For instance, unique variables would allow objects to migrate from one context to another, and
less restrictive modularity rules would provide better support for inheritance [26]. We leave
such extensions for future work.
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APPENDIX A. Depends Clause Syntax in JML

Although Müller’s thesis [26] uses a quite general form of dependencies, we use a syntax for
depends clauses like that in Leino’s thesis [18]. A version of this syntax, adapted to JML, is
shown in Figure A1. Besides simplicity, this syntax also permits the modularity rules discussed
in Section 4 to be statically checked easily. We leave extensions to this syntax as future work.

REFERENCES

1. D. Andrews. A Theory and Practice of Program Development. FACIT. Springer-Verlag, London, UK,
1997.

2. A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure specifications. IEEE
Transactions on Software Engineering, 21(10):785–798, Oct. 1995.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2002; 1:1–1
Prepared using cpeauth.cls



MODULAR SPECIFICATION OF FRAME PROPERTIES IN JML 39

〈depends-decl〉 ::= depends 〈store-ref 〉 <- 〈store-ref-list〉 ;
| 〈p-modifier〉 depends 〈store-ref 〉 <- 〈store-ref-list〉 ;

〈p-modifier〉 ::= public | protected | private
〈store-ref 〉 ::= 〈store-ref-name〉 | 〈store-ref-name〉 〈store-ref-suffix 〉
〈store-ref-name〉 ::= 〈identifier〉 | this . 〈identifier〉 | super . 〈identifier〉
〈store-ref-suffix 〉 ::= . 〈identifier〉 | [ 〈spec-expression〉 ]
〈store-ref-list〉 ::= 〈store-ref 〉 | 〈store-ref-list〉 , 〈store-ref 〉

Figure A1. Simplified grammar for JML’s depends clause.

3. J. Boyland, J. Noble, and W. Retert. Capabilities for sharing. In J. L. Knudsen, editor, ECOOP 2001 —
Object-Oriented Programming: 15th European Conference, Budapest, Hungary, volume 2072 of Lecture
Notes in Computer Science, pages 1–27, Berlin, June 2001. Springer-Verlag.

4. D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for object containment. In J. L. Knudsen,
editor, ECOOP 2001 — Object-Oriented Programming: 15th European Conference, Budapest, Hungary,
volume 2072 of Lecture Notes in Computer Science, pages 53–76, Berlin, June 2001. Springer-Verlag.

5. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In Proceedings of
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), volume 33(10) of ACM
SIGPLAN Notices, October 1998.

6. D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure. SRC Research Report 156,
Compaq Systems Research Center, 130 Lytton Ave., Palo Alto, Dec 1998.

7. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking. SRC Research Report
159, Compaq Systems Research Center, 130 Lytton Ave., Palo Alto, Dec 1998.

8. K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specification inheritance. In
Proceedings of the 18th International Conference on Software Engineering, Berlin, Germany, pages 258–
267. IEEE Computer Society Press, Mar. 1996. A corrected version is Iowa State University, Dept. of
Computer Science TR #95-20c.

9. S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T. Leavens, P. Müller, and A. Poetzsch-Heffter. Formal
techniques for Java programs. In J. Malenfant, S. Moisan, and A. Moreira, editors, Object-Oriented
Technology. ECOOP 2000 Workshop Reader, volume 1964 of Lecture Notes in Computer Science, pages
41–54. Springer-Verlag, 2000.

10. J. V. Guttag, J. J. Horning, S. Garland, K. Jones, A. Modet, and J. Wing. Larch: Languages and Tools
for Formal Specification. Springer-Verlag, New York, NY, 1993.

11. C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica, 1:271–281, 1972.
12. B. Jacobs and E. Poll. A logic for the java modeling language jml. Technical Report CSI-R0018, University

of Nijmegen, Computing Science Institute, Teornooiveld 1, 655 Nijmegen, The Netherlands, Nov. 2000.
13. G. T. Leavens. An overview of Larch/C++: Behavioral specifications for C++ modules. In H. Kilov

and W. Harvey, editors, Specification of Behavioral Semantics in Object-Oriented Information Modeling,
chapter 8, pages 121–142. Kluwer Academic Publishers, Boston, 1996. An extended version is TR #96-01d,
Department of Computer Science, Iowa State University, Ames, Iowa, 50011.

14. G. T. Leavens. Larch/C++ Reference Manual. Version 5.14. Available in
ftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gz or on the World Wide Web at the URL
http://www.cs.iastate.edu/~leavens/larchc++.html, Oct. 1997.

15. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design. In H. Kilov, B. Rumpe,
and I. Simmonds, editors, Behavioral Specifications of Businesses and Systems, pages 175–188. Kluwer
Academic Publishers, Boston, 1999.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2002; 1:1–1
Prepared using cpeauth.cls
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