
A Modular Verification Methodology for C# Delegates

Peter Müller1 and Joseph N. Ruskiewicz2

1 Microsoft Research, USA, mueller@microsoft.com
2 ETH Zurich, Switzerland, joseph.ruskiewicz@inf.ethz.ch

Abstract. Function objects are used to express higher-order features in object-
oriented programs. C# provides the delegate construct to simplify the implemen-
tation of function objects. A delegate instance represents a method together with
a target object. Sound reasoning about delegates requires that the precondition of
the underlying method holds whenever a delegate is invoked. This is difficult to
achieve if the method precondition depends on the state of the target object. Prov-
ing such a precondition when the delegate is invoked is in general not possible
because properties of the target object are typically not known at the invocation
site. Proving the precondition when the delegate is instantiated is not sufficient
either because the state of the target might change before the delegate is invoked.
In this paper, we present a verification methodology for C# delegates. Properties
of the target object are expressed as invariant of the delegate. Our methodology
keeps track when this invariant can be assumed to hold. It enables modular veri-
fication of interesting implementations and is proven sound.

1 Introduction
Higher-order features are a common programming idiom. Typical examples include a
generic sort algorithm whose comparison method is passed as parameter, an algorithm
that approximates an integral of a function which is passed as a method reference, and
a GUI that stores references to methods that are called upon certain events.

In object-oriented programs, references to methods are encoded as function objects.
A function object represents a method, possibly with some actual method arguments.
Function objects are often implemented using the Command pattern, whose class dia-
gram is shown in Fig. 1. A function object is an instance of class ConcreteCommand .
As described by Gamma et al. [8], a function object stores exactly one actual argument
of the underlying method, namely its target. The target is fixed when the function object
is created. The function object is invoked by calling its Execute method, which will
call Action on the stored target object.

In C#, the Command pattern is built into the programming language in the form
of delegates [6]. Each delegate type corresponds to a ConcreteCommand class. It
prescribes the signature of the underlying method, but not its name. The name—like
the target object—is determined when the delegate is instantiated.

We illustrate delegates by an implementation of a simple storage system. We use the
delegate Archiver (Fig. 2) to create function objects for the store methods of different
archives. Method Client .Log takes an Archiver instance as parameter and invokes it.
Class TapeDrive (Fig. 3) implements such an archive. The boolean field IsLoaded is
true if and only if a tape is loaded into the drive. Hence, the Store method requires

Client

Action()

Target ConcreteCommand
Execute()

Command
Execute()

target

target .Action()

Fig. 1: The command pattern.

delegate void Archiver(object p)
requires p 6= null ∧ IsPeerConsistent(this) ;

class Client {
static void Log(Archiver logFile, string s)
requires logFile 6= null ∧ IsPeerConsistent(logFile) ;
requires s 6= null ;

{ logFile(s) ; }
}

Fig. 2: A client of the storage system. We explain the annotations along with the presenta-
tion of our methodology.

IsLoaded to be true , and method Eject sets IsLoaded to false . In method Main
(Fig. 4), Archiver is instantiated with method Store and target tapeDrive .

The invocation of a delegate instance triggers a call of the underlying method on
the stored target object. In our example, the invocation of logfile in method Client .Log
(Fig. 2) triggers a call of tapeDrive.Store . A sound verification methodology has to
ensure that the requires clause of this method holds in the prestate of the call. This is
difficult to achieve if the requires clause of the method depends on the state of the target
object. This verification challenge was pointed out in an earlier paper [10], from which
we took the storage example to show that our methodology can handle it.

The problem is illustrated by method Store , whose second requires clauses refers
to the IsLoaded field of its target. Proving this condition when a delegate instance is
invoked is not possible because properties of the target are typically not known at the in-
vocation site. For instance, method Client .Log does not have any knowledge about the
particular archive used by logFile . In fact, logFile could even represent a static method
such that no target exists. Proving the condition when a delegate is instantiated with
tapeDrive.Store is not sufficient either because the state of tapeDrive might change
before the delegate is invoked. For instance, if method Main called tapeDrive.Eject
before calling Client .Log , the invocation of the delegate would violate Store ’s re-
quires clause, even though the condition held when the delegate was instantiated.

In the Command pattern, the desired condition could be expressed as invariant of
the function object; that is, class ConcreteCommand could declare the object invariant

class TapeDrive {
bool IsLoaded ;

void Store (object p)
requires p 6= null ∧ IsPeerConsistent(this) ;
requires IsLoaded ;

{ . . . }

void Eject ()
requires IsPeerConsistent(this) ∧ IsLoaded ;
ensures ¬IsLoaded ;

{ expose (this for TapeDrive) { IsLoaded := false ; } }

void ChangeMedia ()
requires IsPeerConsistent(this) ∧ IsLoaded ;

{
expose (this for TapeDrive) {

IsLoaded := false ; / ∗ exchange media ∗ / IsLoaded := true ;
}

}

// Constructors and other methods omitted.
}

Fig. 3: An implementation of a tape archive. expose blocks are used by the Boogie
methodology to denote regions in which an object invariant is potentially violated.

static void Main(string[] args) {
TapeDrive tapeDrive := new TapeDrive() ;
Archiver archiver := new Archiver(tapeDrive.Store) ;
Client .Log(archiver , ”HelloWorld”) ;

}

Fig. 4: Main method for the storage example.

target 6= null ∧ target .IsLoaded . This invariant is strong enough to guarantee that
Store ’s requires clause is satisfied whenever the function object is invoked. However,
modular reasoning about invariants that depend on the state of several objects (here,
the function object and its target) is difficult, and existing solutions are not suitable for
function objects. Ownership-based invariants [11, 13] would require the function object
to own the target object. This means that the target could be modified only through a sin-
gle function object, which is clearly too restrictive. Solutions based on visibility-based
invariants [13] lead to complicated proof obligations that essentially quantify over all
instances of a delegate type, which are difficult to verify. Solutions based on friend-
ship invariants [3] introduce a ghost state in each target object to keep track of function
objects attached to it. This ghost state is used to impose the appropriate proof obliga-
tions about invariants of function objects whenever the state of the target is changed.
Handling the ghost state leads to significant specification and verification overhead.

In this paper, we present a modular verification methodology for C# 1.0 delegates
using delegate invariants. Our methodology is based on the Boogie methodology for
object invariants [11] and can be adopted by the Spec# programming system [2]. It
exploits the syntactic structure of delegates to generate simple proof obligations while
keeping the annotation burden small. In particular, our methodology does not introduce
any overhead for programs that do not use delegates, and very little overhead for the
common applications of delegates.

Overview. This paper is organized as follows. Sec. 2 summarizes those parts of the
Boogie methodology for object invariants that are used in the rest of the paper. Sec. 3
explains our methodology informally. The technical details including a soundness result
are presented in Sec. 4. We review related work in Sec. 5 and offer conclusions in Sec. 6.

2 Background on Boogie Methodology
In this section, we summarize those parts of the Boogie methodology for object invari-
ants [1] that are needed in the rest of this paper. The motivation for the design and the
technical details are presented in an earlier paper [11].

Meaning of Invariants. To handle temporary violations of object invariants, the Boo-
gie methodology introduces for every object the concrete field inv that represents ex-
plicitly whether the object invariant is required to hold. The inv field ranges over class
names. If o.inv <: T for an object o of type T (where <: denotes the reflexive sub-
type relation), then o ’s invariants declared in class T and its superclasses must hold
and we say o is valid for T . If o is not valid for T then the invariant of o declared in
T is allowed to be temporarily violated and we say o is mutable for T . We say o is
fully valid if it is valid for its dynamic type: o.inv = typeof(o) .

The inv field is modified only by a special block statement: expose (o for T) { S } .
Before executing the statement S , object o is exposed, that is, o.inv is set to T ’s su-
perclass. After the execution of S , o is un-exposed by checking that the object invariant
declared in class T holds for o and then setting o.inv back to T .

Since the update of a field o.f potentially breaks the invariant of o , o.f is allowed
to be assigned to only at times when o is mutable for the class F that declares f . To
enforce this policy, each update of o.f is guarded by an assertion ¬o.inv <: F . The
assertions for field updates and expose statements ensure that throughout the program
execution the following program invariant holds:

P1: (∀ o,T • o.inv <: T ⇒ InvT (o))

where InvT (o) expresses that the invariant declared in class T holds for object o . The
quantification ranges over non-null allocated objects.

Aggregate Objects. The Boogie methodology uses ownership to handle invariants of
aggregate objects, that is, an aggregate object is the owner of its component objects.
Updating a field of a component object potentially affects the invariant of the aggregate
object. Therefore, the Boogie methodology enforces that the aggregate object is mutable
whenever one of its component objects is mutable.

The Boogie methodology encodes ownership by adding a field owner to each ob-
ject. This field ranges over pairs 〈obj , typ〉 , where obj is the owner object and typ is a

superclass of the dynamic type of obj at which the ownership is established. Like inv ,
owner cannot directly be assigned to. The owner of an object is set when the object is
created. Because it would be a distraction in this paper, we omit the program statement
for changing the owner field (but see [11]).
The relation between the validity of an aggregate object and its components is expressed
by the following program invariant:

P2: (∀ o,T • o.inv <: T ⇒ (∀ p • p.owner = 〈o,T 〉 ⇒ p.inv = typeof(p)))

We say that two objects are peers if they have the same owner. A method m typically
requires its target and all of its peers to be fully valid, which allows m to call methods
with the same requires clause on these objects. Moreover, m typically requires the
owner of its target to be sufficiently exposed, that is, the owner object is mutable for
the owner type. This allows m to expose its target. An object o that satisfies these two
requirements, is called peer-consistent. In specifications, peer-consistency of an object
o is expressed by the following predicate:

IsPeerConsistent(o) ≡ (∀ p • p.owner = o.owner ⇒ p.inv = typeof(p)) ∧
(o.owner .obj 6= null ⇒ ¬o.owner .obj .inv <: o.owner .typ)

By the program invariants of the Boogie methodology, peer-consistency of an object o
implies that the invariants of o , o ’s peers, and all objects owned by these objects are
fully valid.

Static Verification. The proof rules of the Boogie methodology are formulated as as-
sertions, which cause the program execution to abort if evaluated to false . For static
verification, each assertion is turned into a proof obligation, which is proved using an
appropriate program logic. As justified by earlier work [11], one may assume the pro-
gram invariants for this proof. All of the proof obligations can be generated and shown
modularly. That is, a class C can be verified based on the specifications of the classes
used by C , but without knowing the complete program in which C will be used.

3 Main Concepts
In this section, we present our verification methodology informally. Our presentation
will focus on single cast delegates, that is, delegates with exactly one underlying method
and target. C# also provides for multicast delegates whose invocation triggers calls to
several methods and targets. An extension of our methodology to multicast delegates
follows directly from single cast delegates.

3.1 Delegate Specifications and Refinement

In the Command pattern (Fig. 1), invocations of function objects are verified using the
specifications of method Execute . Since Execute simply calls target .Action , the re-
quires clause of Execute must be strong enough to guarantee Action ’s requires clause,
and the converse holds for ensures clauses. In other words, the specification of Action
must refine the specification of Execute .

To adapt this approach to delegates, we associate each delegate declaration with
a specification similar to method specifications. In this paper, we focus on requires
and ensures clauses for delegates and assume that frame conditions are encoded in the

ensures clause. When a delegate D is instantiated with a method o.m , one has to prove
that m ’s specification (with o for this) refines D ’s specification. More precisely, one
has to prove that D ’s requires clause is stronger than m ’s and that D ’s ensures clause is
weaker than m ’s when D ’s requires clause holds. At the invocation site of the delegate,
it suffices to prove that the requires clause of D holds, which implies that the weaker
requires clause of m holds as well. Conversely, one may assume D ’s ensures clause
after the invocation.

As explained in Sec. 2, most methods in the Boogie methodology require their target
to be peer-consistent. To support this idiom, we arrange for delegate instances and their
target objects to be peers. Therefore, we may assume that the target is peer-consistent
whenever the delegate instance is peer-consistent. The peer relationship between a del-
egate instance d and its target o is established when d is created and maintained
afterwards. Therefore, the following program invariant holds in all execution states.

P3: (∀ o, d • d .target = o ∧ d .inv = typeof(d) ⇒ d .owner = o.owner)

The refinement of specifications is illustrated by the instantiation of delegate Archiver
(Fig. 2) with tapeDrive.Store in method Main (Fig. 4). We ignore for the moment
the second requires clause of method Store (Fig. 3), which will be discussed in the
next subsection. Archiver ’s requires clause implies Store ’s first requires clause be-
cause (1) the first conjunct, p 6= null , appears in both requires clauses, and (2) because
of program invariant P3, the target is peer-consistent whenever the delegate instance
is peer-consistent. The default ensures clause, true , of Store trivially implies the de-
fault ensures clause of Archiver . Still ignoring Store ’s second requires clause, Store ’s
specification refines the specification of Archiver , which allows us to verify the dele-
gate instantiation in method Main . When the delegate is invoked in method Client .Log
(Fig. 2), we have to prove that the requires clause of the delegate is satisfied, which fol-
lows trivially from the requires clause of Client .Log .

Equipping delegates with requires and ensures clauses, and checking a refinement
relation when a delegate is instantiated allows us to verify most applications of dele-
gates. We looked at all delegate instantiations in Microsoft’s compiler framework CCI
and the Spec# compiler. The vast majority of delegates are instantiated with static meth-
ods, for which the methodology introduced so far is sufficient as static methods do not
have target objects. It is also sufficient for instance methods whose requires clauses do
not refer to the state the target besides requiring validity or peer-consistency. In the rest
of this section, we discuss how to handle the remaining cases such as method Store ,
whose second requires clause requires the IsLoaded field of the target to be true .

3.2 Delegate Invariants

We allow delegates to declare invariants that may refer to the state of the target. Anal-
ogously to C#, we assume that each delegate has an immutable field target that holds
a reference to the target. An invariant of the form invariant for T is P(target) ex-
presses that if the target is a non-null object of class T then it satisfies P . Such an in-
variant declared in a delegate type D is desugared into the invariant o.target is T ⇒
P((T)o.target) . Note that our notation implicitly casts target to T . In our example,
an invariant for Archiver could require that if its target is a reference to a TapeDrive
object, then its IsLoaded field is true :

invariant for TapeDrive is target .IsLoaded ;

With this invariant, it is trivial to show that the specification of Store refines the spec-
ification of Archiver , in particular, that Store ’s second requires clause IsLoaded is
implied by Archiver ’s require clause IsPeerConsistent(this) . By program invariant
P1, peer-consistency of the Archiver instance implies that its invariant holds. With
the appropriate substitution, this immediately yields Store ’s second requires clause.
Therefore, the instantiation of Archiver in method Main (Fig. 4) verifies.

Delegate Subtypes. As illustrated by the above invariant, delegate invariants specify
a type for the target object in order to access its fields. This means that the specifier
of the delegate has to foresee that the delegate might be instantiated with a method of
that type. This deprives delegates of their flexibility. In particular, adding a new class
DiskDrive with method Save to the program in general requires an additional invariant
for Archiver , which cannot be added without changing the existing code.

To solve this problem, we allow programmers to declare subtypes of delegates,
which may refine the specification of the supertype. Instead of adding the above in-
variant to Archiver , we declare the following subtype:

delegate TapeArchiver : Archiver
invariant for TapeDrive is target .IsLoaded ;

Delegate subtypes prescribe identical signatures as their supertypes, which is not re-
peated in the subtype declaration. Moreover, subtypes inherit the specifications of their
supertypes to enforce behavioral subtyping [5], but they may refine the inherited speci-
fications. In particular, delegate subtypes are allowed to declare additional invariants.

To make use of the invariant of TapeArchiver , we have to adapt method Main
(Fig. 4) to instantiate TapeArchiver rather than Archiver :

Archiver archiver := new TapeArchiver(tapeDrive.Store) ;

Since TapeArchiver is a subtype of Archiver , the instance archiver can be passed
to method Client .Log without further adaptations. In particular, Client .Log (Fig. 2)
need not be aware of the existence of the delegate subtype.

Note that delegate subtypes are merely a specification construct that allows us to
associate invariants with delegates. In particular, they do not affect program execution.
When a program is compiled, all occurrences of delegate subtypes can be replaced by
their supertypes, and the subtype declarations can be eliminated.

Maintaining Delegate Invariants. Our verification methodology treats delegate in-
stances basically like other objects. In particular, every delegate instance d has a field
inv that indicates which invariants of d may be assumed to hold.

The invariant of a delegate instance d may depend on the immutable field d .target
and on fields of the object referenced by d .target . Therefore, the only operations that
potentially violate d ’s invariant are modifications of the state of d ’s target. Conse-
quently, programs never have to expose d in order to change its own state, but d must
be exposed before its target object is modified. In other words, whenever a field o.f is
modified, we have to enforce that all delegate instances whose invariants depend on o.f
are exposed. We achieve that as follows:

1. Visibility requirement: If a delegate D declares or inherits an invariant for T then
class T must contain the dependent clause dependent D . Otherwise, D ’s in-
variant is not admissible and will be rejected by the compiler. Conversely, if a class
T contains dependent D then delegate D must declare or inherit an invariant
for T . Otherwise, T ’s specification is not admissible.

2. Automatic expose: We adapt the semantics of expose as follows. Besides object
o , expose (o for T) exposes each instance d of a delegate D where d .target =
o and D is mentioned in a dependent clause of class T . At the end of the expose
block, d ’s invariants are checked and d is un-exposed.

The visibility requirement ensures that the dependent clause of a class T lists all dele-
gates whose invariants are potentially broken by updates of fields of T . This allows us
to determine in a modular way all the invariants that have to be checked at the end of
an expose block.

The automatic expose guarantees that whenever a target object o is mutable for
a class T , then all dependent delegate instances d are also mutable. The following
program invariant states the contraposition of this property. D ∈ dependents(T) ex-
presses that class T contains a depends clause dependent D .

P4: (∀ o, d ,T ,D • d .target = o ∧ d .inv <: D ∧ D ∈ dependents(T) ∧
typeof(o) <: T ⇒ o.inv <: T)

The visibility requirement and automatic expose guarantee that P1 also holds for dele-
gate instances, where InvD denotes the desugared delegate invariant of delegate D .

The visibility requirement seems to be a severe restriction since it forces a class T
and a dependent delegate D to be implemented together as they refer to each other in
their dependent clause and delegate invariant. However, the requirement is not overly
restrictive for the practical examples we have considered. First, as stated above, most
delegates do not have invariants at all. Second, if the implementer of T wants to use
an existing delegate D , they can declare a subtype of D that contains the invariant for
T . This is illustrated by Archiver and TapeArchiver . Third, if a delegate D needs to
declare an invariant for an existing class T , it is not possible to add a dependent clause
to T . In that case, one can declare a subtype S of T or a wrapper class S for T and
establish the relation between D and S .

In our example, the invariant of TapeArchiver refers to the IsLoaded field of class
TapeDrive . Therefore, we have to add the following dependent clause to TapeDrive :

dependent TapeArchiver ;

Method ChangeMedia (Fig. 3) illustrates how delegate invariants are verified. Because
of the above dependent clause, the statement expose (this for TapeDrive) exposes
each TapeArchiver instance d where d .target = this . The subsequent update of
IsLoaded violates the invariant of d . However, since d is exposed, this violation is
permitted by P1. At the end of the expose block, d ’s invariant is asserted. Since
IsLoaded is set to true before the end of the block, this assertion holds.

It is important to understand how our methodology prevents delegate invocations
when the requires clause of the underlying method does not hold. Consider an execution
of method ChangeMedia on target object o , and let d be a TapeArchiver instance
representing o.Store . We show how our methodology prevents ChangeMedia from

invoking d between the two updates of IsLoaded , that is, when IsLoaded is false
and, thus, the second requires clause of Store does not hold. TapeArchiver requires
IsPeerConsistent(this) . Therefore, an invoker of d must prove that d is fully valid.
However, according to program invariant P4, this is not the case while its target o
is mutable, and the invocation does not verify. Note that if TapeArchiver would not
require IsPeerConsistent(this) then an instantiation with Store would not verify
because TapeArchiver ’s invariant is needed to prove the refinement relation.

Disabling Delegates. Method ChangeMedia can be verified because it re-establishes
the invariants of all TapeArchiver instances before the end of the expose block.
Other methods such as Eject violate delegate invariants without re-establishing them.
Such methods can only be verified under the requirement that the target does not have
any dependent TapeArchiver delegate instances. To ensure this requirement, we have
to add the following requires clause to Eject :

requires (∀ d • d .target = this ⇒ ¬d .inv <: TapeArchiver) ;

This strong requires clause enables the verification of the method body, but is difficult to
be satisfied by callers of Eject . In particular, if in some execution state a TapeArchiver
instance d refers to an object o then o.Eject cannot be called in any subsequent exe-
cution state, even if d is not used anymore. This is because program verifiers typically
do not model garbage collection, which means that formally d will never be deleted.

To support methods that violate certain delegate invariants, we provide a statement
disable(D for o) , which disables all delegate instances with target object o that are
valid for a delegate type D . A delegate instance d is disabled by exposing it—such that
its invariant does not have to be maintained anymore—and by making d un-owned.
The change of ownership is necessary to be able to un-expose d ’s owner—recall that
P2 requires owned objects to be fully valid when the owner is valid. We do not provide
a statement to re-enable a delegate instance since one can simply create a new instance.

It is generally necessary to execute disable(TapeArchiver for o) before each call
to o.Eject to establish the above requires clause. This might seem tedious, but is only
necessary if a delegate declares an invariant for class T and T contains methods that
break this invariant. Such delegates are error-prone and we consider the overhead of
adding disable statements acceptable in these rare cases.

4 Technical Treatment
In this section, we present the technical treatment of our methodology. We define pre-
cisely which delegate invariants are admissible, formalize the proof rules, and prove
that our methodology is sound.

4.1 Admissible Delegate Invariants

Our methodology permits the invariant of a delegate instance d to depend on the field
d .target as well as the state of d ’s target object and all objects (transitively) owned
by the target. However, to make the presentation and, in particular, the soundness proof
self-contained; we use a slightly more restrictive definition of admissible delegates in-
variants here, which does not permit dependencies on the objects owned by the target.

Definition 1 (Admissible Delegate Invariant). An invariant for T declared in or in-
herited by a delegate type D is admissible if and only if: (i) its sub-expressions type-
check under the assumption that target is of type T ; (ii) each of the field-access ex-
pressions has the form this.target or this.target .f , where f is declared in T or a
superclass of T and f is not one of the pre-defined fields inv or owner ; (iii) D is
mentioned in the dependent clause of T .

4.2 Proof Rules

We define the proof rules of our methodology by translating the relevant statements into
pseudo code, which makes the assertions and state changes explicit.

Delegate Instantiation. The instantiation of a delegate D with an instance method
o.m (Fig. 5) checks that the target o is non-null and valid for each class T that D
depends on. The latter assertion is necessary to maintain program invariant P4. Note
that the visibility requirement (Sec. 3.2) allows us to determine each dependee T mod-
ularly by inspecting the invariants of D and D ’s supertypes. Next, a fresh object d is
allocated, its target field is set to o , and its owner field is set to o.owner to make
the delegate instance and the target peers. New delegate instances start off being fully
valid. To maintain program invariant P1, we assert the invariant of D and D ’s super-
types before setting the inv field of the new instance to D . Finally, we check that the
specification of m refines the specification of D . PreD(d , p, h) and Prem(o, p, h)
denote the requires clauses of D and m , respectively. The ensures clauses are denoted
by PostD(d , p, r , h, h ′) and Postm(o, p, r , h, h ′) , where d and o are the targets of
D and m , respectively, p is the (only) explicit parameter, r is the result, h is the heap
of the prestate, and h ′ is the heap of the poststate.

d := new D(o.m) ≡
assert o 6= null ;
#foreach T such that D ∈ dependents(T) { assert o.inv <: T ; }
d := new D ;
d .target := o ; d .owner := o.owner ;
#foreach E such that D <: E { assert InvE (d) ;}
d .inv := D ;
assert (∀ p, h • PreD(d , p, h) ⇒ Prem(o, p, h)) ;
assert (∀ p, r , h, h ′ • PreD(d , p, h) ∧ Postm(o, p, r , h, h ′) ⇒ PostD(d , p, r , h, h ′)) ;

Fig. 5: Pseudo code for delegate instantiation.

Delegate Invocation. Delegate invocations are handled just like method calls (Fig. 6).
The invoker must ensure that the requires clause holds before the invocation and may
assume the ensures clause after the invocation. This reasoning is justified by the refine-
ment relationship between the specifications of the delegate and the underlying method,
which is checked when the delegate is instantiated. The havoc statement assigns ar-
bitrary values to the variables for the current heap H and the result of the invocation v .
This is necessary to make the verifier “forget” any prior knowledge about the variables

that are potentially modified by the delegate invocation. Before the havoc, the heap of
the prestate is saved since the ensures clause may refer to it.

v := d(p) ≡
assert d 6= null ∧ PreD(d , p, H) ;
h := H ; havoc H, v ;
assume PostD(d , p, v , h, H) ;

Fig. 6: Pseudo code for delegate invocation. D is the static type of the delegate instance d .

Expose. Our methodology extends the expose statement of the Boogie methodology
to automatically expose and un-expose dependent delegates (Fig. 7). We first discuss
the parts we adopted from the Boogie methodology and then explain the extensions.

expose (o for T) { S } ≡
assert o 6= null ∧ o.inv = T ;
assert o.owner .obj 6= null ⇒ ¬o.owner .obj .inv <: o.owner .typ ;

#foreach D ∈ dependents(T) {
let DepD := { d

 d .target = o ∧ d .inv = D } ;

foreach d ∈ DepD { d .inv := object ;}
}
o.inv := super(T) ;

S ;

assert (∀object p • p.owner = 〈o,T 〉 ⇒ p.inv = typeof(p)) ;
assert InvT (o) ;
o.inv := T ;

#foreach D ∈ dependents(T) {
foreach d ∈ DepD {

#foreach E such that D <: E { assert InvE (d) ;}
d .inv := D ;

}
}

Fig. 7: Pseudo code for expose . The extensions for delegates are highlighted by a shaded
background.

The expose statement of the Boogie methodology implements a protocol that
guarantees that owners are exposed before the objects they own, and that an object
is exposed for a subclass before it is exposed for the superclass. Besides fields of o
declared in T , the protocol allows InvT (o) to depend on fields of objects owned by

〈o,T 〉 and on fields of o that are inherited from a superclass of T . In both cases, the
protocol ensures that o is exposed for T before InvT (o) is potentially violated by a
field update.

In the pseudo code for expose (o for T) , this protocol is implemented as follows.
First, we assert that o is non-null and valid for T , that is, has already been exposed
for T ’s subclasses. Next, we assert that o ’s owner is sufficiently exposed. Finally, o is
exposed by setting o.inv to T ’s direct superclass, super(T) . After the body of the
expose block is executed, we assert that all objects owned by o in the type frame of
T are fully valid. Then we un-expose o by setting o.inv back to T . This update is
guarded by an assertion that InvT (o) holds (to maintain program invariant P1).

The automatic exposing of dependent delegates is done as follows. For each delegate
type D in the dependent clause of T , we determine the set DepD of all delegate
instances whose target is o and that are valid for D . These are the delegate instances
whose invariants are potentially violated by assigning to fields of o declared in class
T . We expose each of these delegate instances by setting its inv field to object . The
automatic un-exposing is done analogously. For each delegate instance that has been
previously exposed, that is, is in one of the sets DepD , we assert its delegate invariant
and set its inv field back to D . While non-delegate objects are exposed for one class
at a time, the automatic exposes for a delegate instance d goes in one step from D to
object and back. Therefore, it is necessary to assert all invariants that are declared in
D and D ’s supertypes when d is un-exposed.

An important virtue of our methodology is that it causes no verification overhead
for programs that do not use delegates, and very little overhead for programs whose
delegates do not have invariants. In particular, the #foreach loops in Fig. 7 can be
unrolled statically by a compiler using the dependent clause of class T . If T does not
have a dependent clause, the pseudo code for expose (o for T) is identical to the
Boogie methodology without delegates.

Disabling Delegates. As explained in Sec. 3, a delegate instance is disabled by expos-
ing it and by making it un-owned, that is, setting its owner object to null . The statement
disable(D for o) (Fig. 8) disables all delegate instances that are attached to a target
object o and valid for delegate type D . Since disabling a delegate instance d changes
its state, d ’s owner has to be sufficiently exposed.

disable(D for o) ≡
assert o 6= null ;
assert o.owner .obj 6= null ⇒ ¬o.owner .obj .inv <: o.owner .typ ;
foreach d such that d .target = o ∧ d .inv <: D {

d .inv := object ; d .owner := 〈null, 〉 ;
}

Fig. 8: Pseudo code for disable .

4.3 Soundness

Soundness of our methodology means that it is justified to assume program invariants
P1–P4 when proving the assertions introduced by the methodology. In the following,
we sketch the proofs of these program invariants. The proofs run by induction over the
sequence of states of an execution of a program that is well-formed: that is, syntactically
correct, type correct, and all invariants are admissible. The induction base is trivial since
there are no allocated objects in the initial program state. For the induction step, we
assume that the program invariant holds before the next statement s to be executed,
and show that s preserves it.

Program Invariant P1. For non-delegate objects, P1 is guaranteed by the Boogie
methodology. The soundness proof [11] remains valid because creation, exposing, and
modification (that is, disabling) of delegate instances are guarded by the same proof
obligations as the corresponding operations on non-delegate objects.

We proceed by proving P1 for delegate instances. That is, we show that statement
s preserves the implication o.inv <: T ⇒ InvT (o) for any delegate instance o and
any type T . We consider all cases where s manipulates the state of an object; we omit
all other cases for brevity.

Delegate Instantiation. Instantiation of a delegate D does not change the state of exist-
ing delegate instances. It remains to prove that the implication is established if o is the
new delegate instance. After the instantiation, we have o.inv = D . The pseudo code
asserts InvE (o) for all E where D <: E , in particular, for E = T . Therefore, the
implication holds.

Expose. The statement expose (x for S) changes the inv field of x as well as each
delegate instance d ∈ DepD , but nothing else. Since admissible delegate invariants do
not refer to inv fields (Def. 1), InvT (o) cannot be affected by these state changes. It
remains to show that the implication is preserved if o = x or o = d .

In both cases, the first update of inv preserves the implication by making its left-
hand side stronger. By the induction hypothesis, the body of the expose block pre-
serves the implication. Setting x .inv from super(S) back to S affects the implication
only if T = S . However, since InvS (x) is asserted before the update of x .inv , the
implication is preserved. Setting d .inv from object back to D affects the implication
only if T = E for some supertype E of D . Again, since InvE (d) is asserted for all
such E before the update of d .inv , the implication is preserved.

Field Update. Consider an update x .f := e , where f is declared in a class F . We may
assume that f is different from inv and target , which must not be directly assigned
to. According to Def. 1, an invariant of T that mentions f must be an invariant for G ,
where G <: F and T is mentioned in G ’s dependent clause (T ∈ dependents(G)).
The update of x .f is guarded by the assertion ¬x .inv <: F . By G <: F , we get
¬x .inv <: G . For o , T ’s invariant for G may depend on x .f only if o.target = x .
Moreover, we may assume typeof(o) <: G , otherwise the desugared invariant holds
trivially. Therefore, by contraposition on P4 , this implies ¬o.inv <: T , and, thus, the
left-hand side of the implication is false .

Disable. The statement disable(D for x) changes the inv and owner fields of each
delegate instance where d .inv <: D and d .target = x , but nothing else. Since admis-
sible delegate invariants do not refer to inv and owner (Def. 1), InvT (o) cannot be
affected by these modifications. It remains to show that the implication is preserved if
o = d . This is trivially the case since the update of d .inv makes the left-hand side of
the implication stronger. �

Program Invariant P2. This program invariant is a consequence of the protocol that
owners are exposed before the objects they own, the block structure of expose , and the
fact that newly created objects and delegate instances are fully valid when the construc-
tor terminates. Since these arguments are identical for objects and delegate instances,
the soundness proof from the Boogie methodology [11] remains valid. �

Program Invariant P3. The owner field of an object is modified when an object
or delegate instance is created and when a delegate instance is disabled. The proof is
trivial for all three cases: (1) Newly created objects do not have any delegate instances
attached. Therefore, the property holds trivially. (2) When a delegate is instantiated,
its owner is set to the owner of its target, which establishes the property for the new
instance. (3) When a delegate instance d is disabled, d .inv is set to object . Therefore,
the left-hand side of the implication becomes false . �

Program Invariant P4. We prove that statement s preserves the implication of P4 for
any object o , delegate instance d , class T , and delegate type D . It suffices to consider
all statements s that modify the inv field.

Object Creation. Newly created objects do not have any delegate instances attached.
Therefore, the implication trivially holds.

Delegate Instantiation. The instantiation e := new E (x .m) does not change the state
of existing objects. We have to show that the implication is preserved for e = d . We
may assume d .inv <: D , D ∈ dependents(T) , and d .target = o , otherwise the
left-hand side of the implication is false . The instantiation establishes e.inv = E . By
d .inv <: D and e = d , we get E <: D .

From D ∈ dependents(T) we conclude that D is mentioned in a dependent clause
of T . By the visibility requirement (Sec. 3.2), D must declare or inherit an invariant
for T . Since E <: D and invariants are inherited, E also declares or inherits this
invariant. By Def. 1, we know that E must also be mentioned in a dependent clause of
T , that is, we have E ∈ dependents(T) . The pseudo code for delegate instantiation
(Fig. 5) asserts x .inv <: T . Since x = d .target = o , this implies the right-hand side
of the implication.

Expose. The statement expose (x for S) changes the inv field of x as well as each
delegate instance e in one of the DepA , but nothing else. This case is trivial if o 6= x
because in that case neither o.inv nor d .inv is changed.

For o = x , setting d .inv to object makes the left-hand side of the implication
stronger and, therefore, preserves the implication. Setting o.inv to super(S) affects
the implication only if S = T . The proof of this case is very similar to the proof for
delegate instantiation. Again, we may assume d .inv <: D , D ∈ dependents(T) , and

d .target = o . Let E = d .inv ; consequently, we have E <: D . Like for instantiation,
we conclude E ∈ dependents(T) and, by S = T , E ∈ dependents(S) . Since
d .target = o and o = x , we know d ∈ DepE such that d .inv is set to object .
Since D is a delegate type, this makes the left-hand side of the implication false .

By the induction hypothesis, the body of the expose block preserves the impli-
cation. The un-exposing after the body precisely un-does the modifications of the inv
fields performed before the body. Therefore, it preserves the implication.

Disable. The statement disable(E for x) modifies the inv field of each delegate
instance where e.inv <: E and e.target = x , but nothing else. The setting of e.inv
to object only makes the left-hand side of the implication stronger. �

5 Related Work
Eiffel agents [7] are similar to C# delegates, but more general since they allow the
programmer to decide for each parameter, including the target, whether the actual argu-
ment is provided when the agent is instantiated (closed parameter) or when it is invoked
(open parameter). Adapting our methodology to agents would require agent invariants
that depend on all closed parameter objects. The corresponding visibility requirement
might be too restrictive for certain applications of agents.

The work closest to ours is the version of the Boogie methodology described by
Leino and Müller [11]. Besides the ownership-based object invariants that we also use in
this paper, their work also supports visibility-based object invariants. Like our delegate
invariants, visibility-based invariants may depend on fields of peers, provided that a
visibility requirement is met. However, Leino and Müller’s work requires programs to
explicitly expose all objects whose visibility-based invariants are potentially affected
by a field update. In general, without explicit references to the dependent peers, this
obligation is hard to live up to. Our methodology exposes dependent delegate instances
automatically when their target is exposed. Like the Boogie methodology, our work
supports ownership transfer, but we omitted details due to space limitations.

The friendship methodology by Barnett and Naumann [3] simplifies the verification
of visibility-based invariants by introducing ghost state to keep track of all dependent
invariants of an object. This ghost state facilitates the exposing of dependent objects.
The friendship methodology can handle implementations of function objects such as the
Command pattern. Whereas the friendship methodology is very general, our method-
ology exploits the special syntactic structure of delegates to expose dependent delegate
instances automatically, which removes the need to explicitly keep track of dependent
invariants and, thus, reduces the annotation overhead.

Jacobs’s version of Spec#, SpecLeuven [9], permits sound reasoning about dele-
gates. Delegate instances own their target objects, which prevents these objects from
being owned by other objects and, in particular, from being used in other delegate in-
stances. Our solution does not impose this restriction.

Leino and Schulte [12] use history constraints to verify object invariants that are
neither ownership-based nor visibility-based. If a history constraint guarantees that the
state of an object o only evolves in ways that does not affect a dependent object in-
variant then there is no need to expose the dependent object before modifying o . We
expect this approach to be a useful complement of our methodology, but not all targets

have strong history constraints. For instance, Leino and Schulte’s methodology cannot
handle our TapeDrive example, because IsLoaded is not a monotonic property.

Visible state semantics require invariants to hold in the pre- and post-states of all
method executions. When invariants are allowed to depend on several objects such as
delegate invariants, one needs a way of determining which invariants are potentially
affected by a field update. These are exactly the invariants that our methodology exposes
automatically when a target is exposed. Our methodology can be adapted to a visible
state semantics using visibility-based invariants as described by Müller et al. [13].

The work by Börger et al. [4] has captured the semantics of delegates in an ASM
model. This work has been fundamental in understanding the delegate construct. How-
ever, it is not suggestive how to use an ASM model to verify programs modularly.

6 Conclusions
We have presented a methodology for specifying and verifying C# delegates. Our method-
ology uses delegate invariants to express properties of the target object and allows one
to reason about delegate invariants in a sound and modular way.

Our methodology requires significantly less specification and verification overhead
than other techniques that could handle the Command pattern. This simplification is
possible because delegates are essentially a stylized Command pattern, for which we
can build special support into the verification methodology. We expect that similar
methodologies can be developed for other design patterns, provided that the compo-
nents of a design pattern are marked as such or that the idiom is supported by a special
language construct.

Our methodology solves one of the two challenges related to function objects re-
ported earlier [10], namely how to verify invocations of function objects. The other
challenge is how to specify and verify invokers of function objects. We plan to address
this challenge in future work. We also plan to implement our methodology into the
Spec# programming system.

C# 2.0 delegates are more expressive than the delegates of C# 1.0, which we con-
sidered in this paper. For instance, C# 2.0 provides anonymous delegates, which may
refer to local variables of the method body enclosing their declaration. Extending our
methodology to C# 2.0 delegates is future work.

Acknowledgments. We are grateful to Rustan Leino for very helpful discussions and
suggestions, in particular, his idea to use delegate subtypes. Thanks also to Bart Jacobs
for his comments. Müller’s work was funded in part by the Information Society Tech-
nologies program of the European Commission, Future and Emerging Technologies
under the IST-2005-015905 MOBIUS project during his stay at ETH Zurich.

References
1. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of

object-oriented programs with invariants. JOT, 3(6), 2004.
2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.

In CASSIS, volume 3362 of LNCS, pages 49–69. Springer-Verlag, 2004.
3. M. Barnett and D. Naumann. Friends need a bit more: Maintaining invariants over shared

state. In MPC, volume 3125 of LNCS, pages 54–84. Springer-Verlag, 2004.

4. E. Börger, N. G. Fruja, V. Gervasi, and R. F. Stärk. A high-level modular definition of the
semantics of C#. Theoretical Computer Science, 336(2-3):235–284, 2005.

5. K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specification inheri-
tance. In ICSE, pages 258–267. IEEE Computer Society Press, 1996.

6. C# language specification. ECMA Standard 334, June 2005.
7. Eiffel analysis, design and programming language. ECMA Standard 367, June 2005.
8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1995.
9. B. Jacobs. A Statically Verifiable Programming Model for Concurrent Object-Oriented Pro-

grams. PhD thesis, Katholieke Universiteit Leuven, 2007.
10. G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification challenges for

sequential object-oriented programs. Formal Aspects of Computing, 19(2):159–189, 2007.
11. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Odersky, editor,

ECOOP, volume 3086 of LNCS, pages 491–516. Springer-Verlag, 2004.
12. K. R. M. Leino and W. Schulte. Using history invariants to verify observers. In R. de Nicola,

editor, ESOP, volume 4421 of LNCS, pages 80–94. Springer-Verlag, 2007.
13. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered object

structures. Science of Computer Programming, 62:253–286, 2006.

