
Using Debuggers to Understand
Failed Verification Attempts

Peter Müller and Joseph N. Ruskiewicz

ETH Zurich, Switzerland
{peter.mueller,joseph.ruskiewicz}@inf.ethz.ch

Abstract. Automatic program verification allows programmers to de-
tect program errors at compile time. When an attempt to automatically
verify a program fails the reason for the failure is often difficult to un-
derstand. Many program verifiers provide a counterexample of the failed
attempt. These counterexamples are usually very complex and therefore
not amenable to manual inspection. Moreover, the counterexample may
be invalid, possibly misleading the programmer. We present a new ap-
proach to help the programmer understand failed verification attempts
by generating an executable program that reproduces the failed verifica-
tion attempt described by the counterexample. The generated program
(1) can be executed within the program debugger to systematically ex-
plore the counterexample, (2) encodes the program semantics used by
the verifier, which allows us to detect errors in specifications as well as
in programs, and (3) contains runtime checks for all specifications, which
allows us to detect spurious errors. Our approach is implemented within
the Spec# programming system.

1 Introduction

A common approach to automatic program verification is to compute verification
conditions, logical formulas whose validity entails the correctness of the program.
The verification conditions are then passed to an automatic theorem prover,
typically an SMT solver such as Simplify [7] or Z3 [6]. If the prover can establish
the validity of the verification condition then verification succeeds; otherwise
verification fails for one of the following reasons:

1. The program is incorrect, that is, the program does not satisfy its speci-
fication, and the specification expresses what the programmer intended. A
typical example is a runtime error such as division by zero.

2. The specification is incorrect or incomplete, that is, the program does not
satisfy its specification, and the program expresses what the programmer
intended. A typical example is a loop invariant that is too weak.

3. The prover was too weak to validate the condition, that is, the verification
error is a false positive, called a spurious error.

All three causes occur frequently in program verification; in particular, incorrect
and incomplete specifications are as common as errors in programs. Spurious
errors are less common, but are more difficult to understand when they do occur.



class IntList {
int[] Elements;
int Count;

void Add (int value)
modifies Count, Elements, Elements[*];
ensures Contains (Elements, value)

{ ... }

void Sort ()
modifies Elements[*];
ensures Sorted (Elements);

{ ... }
}

class SortedList {
IntList list;

// The list is sorted
invariant Sorted (list.Elements);

void AddSorted (int value)
modifies list.Count, list.Elements[*];
ensures Contains (list.Elements,value);

{
list.Add (value);
list.Sort ();

}
}

Fig. 1: Spec# is unable to verify AddSorted. The notation Sorted(a) abbreviates the
condition that array a is sorted and Contains(a,v) abbreviates that v is contained
in a. Both conditions can be expressed in Spec# via quantification over the indices
of a. The modifies-clauses specify frame properties by listing the locations a method
is allowed to modify. For brevity, we omit the method bodies in class IntList, access
modifiers, as well as Spec#’s ownership and non-null annotations.

Consider the small Spec# [11] program in Fig. 1. The method AddSorted

of class SortedList adds the value parameter to the list of integers and then
sorts the list. The specification requires that after the execution of AddSorted,
the list be sorted (by an object invariant) and that it contains value (by a
postcondition). Verifying the method with the Spec# program verifier fails. A
modular verifier such as Spec# verifies each method individually and reasons
about method calls in terms of the callee’s specification, not its implementation.
The specification of Sort states only that the elements of the list will be sorted,
not that they will be preserved. Consequently, the verifier is unable to prove that
value is still contained in list.Elements after the call to list.Sort and, thus,
that the postcondition of AddSorted holds. We will discuss a second verification
error related to AddSorted’s modifies clause in Sec. 5.

A programmer who may not understand the cause of this failure from the
program text can query the program verifier for a counterexample. The coun-
terexample essentially contains a value for each variable in each state—a trace
leading to the failing specification. For programs with non-trivial states (in par-
ticular, heap data structures) these counterexamples can be magnitudes larger
than the program. For our example, the counterexample is over 1,200 lines of
text. It is therefore not amenable to manual inspection and provides little benefit
to the programmer. Moreover, due to the limitations of automatic proving, the
counterexample may be invalid and not representative of a valid execution, thus
misleading the programmer.

Using the initial state from the counterexample to construct a unit test for
the failing method is helpful only if the error is in the program; errors caused
by incorrect or incomplete specifications cannot be reproduced by a unit test.
For example, a test that executes AddSorted with the initial state from the
counterexample and then asserts the postcondition will succeed because the im-



plementation does satisfy its postcondition. It is the incomplete specification of
list.Sort that causes the verification to fail, not the implementation. So suc-
cessful tests are inconclusive about the presence and cause of verification errors.

In this paper, we present a technique that enables programmers to use stan-
dard debuggers to inspect program verification and counterexamples just as they
use debuggers to inspect program executions and execution states. Our tech-
nique enables programmers to step through the verification of a method, check
the validity of assertions, and observe the evolution of the state described by
the counterexample. It detects verification failures caused by all three reasons
mentioned in the introduction and notifies the programmer of invalid counterex-
amples. This tool support allows programmers to understand, locate, and fix
verification errors more easily. We believe that applying a familiar tool for this
task is crucial for making program verification more efficient and for increasing
acceptance among practitioners. Our approach is implemented within the Spec#
programming system. The tool, examples, and a demo video are available online
at http://www.pm.inf.ethz.ch/publications/cee.

Outline. In Sec. 2 we give an overview of our approach. We explain how we
reproduce counterexample states in Sec. 3. Sec. 4 describes how we rewrite the
program to simulate its verification semantics and to reproduce the execution
described by the counterexample. In Sec. 5 we extend the runtime assertion
checker to handle all relevant specifications and show how it can be used to check
the validity of the verification failure in Sec. 6. We discuss experiences using our
approach and give a debugging procedure in Sec. 7. We present related work in
Sec. 8 and conclude with Sec. 9.

2 Approach

Given a Spec# program and a counterexample produced by Z3, we construct
an executable .NET program that simulates the verification semantics and re-
produces states given by the counterexample. The constructed program can be
executed in a program debugger, allowing the programmer to systematically and
efficiently explore the counterexample. By executing the constructed program,
we are able to detect spurious errors and validate failed verification attempts.
The three key features of our approach are as follows:

(1) The constructed program simulates the verification semantics of the pro-
gram as defined by the verifier rather than the concrete execution semantics
as defined by the .NET platform. The semantics used by a program verifier is
typically an abstraction of the execution semantics. Loops are typically verified
via loop invariants rather than by considering the actual iterations, and modu-
lar verifiers reason about method calls in terms of method specifications rather
than the implementation of the called method. By simulating the verification
semantics rather than the execution semantics, we can detect verification errors
caused by incorrect or incomplete specifications.

(2) The constructed program reproduces the states given by the counterex-
ample. We execute the constructed program in the initial state described by the

http://www.pm.inf.ethz.ch/publications/cee


counterexample. For each statement whose verification semantics differs from
the execution semantics, we reproduce the effect of executing the statement by
creating a program stub that alters the state as described by the counterex-
ample. This allows programmers to use the debugger to explore and navigate
through the counterexample.

(3) The constructed program contains runtime checks for specifications that
are relevant for the verification error. For those specifications that generally can-
not be checked efficiently at runtime (for instance, frame specifications, which
universally quantify over all allocated objects), we use the counterexample to
determine which objects are relevant for the verification error and focus the
runtime checks on those. Moreover, checking the relevant specifications at run-
time allows us to determine whether or not a verification error is spurious. This
is the case if the constructed program terminates without a runtime error or
specification violation.

Our approach enables the programmer to understand the failed verification
attempt in method AddSorted as follows: We extract the initial state from the
counterexample and construct a program driver that will create a SortedList

object that contains an IntList object (in field list) with a list containing the
elements, say, 0 and 1. We then rewrite the body of AddSorted so that it sim-
ulates Spec#’s verification semantics. That is, we replace the calls to Add and
Sorted with program stubs that change the program state to the state given
by the counterexample. The stub for the call to Add changes list.Elements

to contain the elements [0,1,-3]1. The stub for the call to Sort updates the
state of list.Elements to some sorted array, say [7,7,7]. We finish by con-
structing a runtime check for the invariant of SortedList and the postcondition
(and modifies clause) of AddSorted. For each step in the construction, we insert
debugger directives that allow the programmer to control the execution of the
of the original program, but observe the states of the constructed program.

A programmer using our approach is presented with the original implemen-
tation of AddSorted highlighted by the program debugger. The programmer can
either use the debugger to inspect the initial (counterexample) state or execute
the method until either the runtime assertion checker notifies them of a failing
assertion or the method terminates, notifying the programmer of a spurious er-
ror. In our example, the runtime assertion checker will notify the programmer
of the failing postcondition AddSorted, thus confirming the verification failure.
The programmer can then inspect the post-state of the method and observe the
value [7,7,7] for list.Elements. However, the initial state contained the state
[0,1] for list.Elements and -3 for value. The programmer can now single-
step through the body of AddSorted inspecting the (counterexample) state of
each step. Stepping over the call to list.Add adds value to list.Elements,
as expected. Stepping over the call to list.Sort changes list.Elements to
[7,7,7]. This unexpected change points the programmer to the cause of the
verification failure, namely the incomplete specification of Sort. Note that it is

1 Given the weak specification of Add, the counterexample could provide any array
that contains the initial value of value, which we assume here to be -3.



the simulation of the verification semantics that enables us to identify the in-
complete specification as the cause of this verification error. Using the execution
semantics, for instance in a test case, could exhibit only errors in the code.

3 State Construction

To simulate the verification semantics of the failing method, we replace each
statement whose verification semantics differs from the execution semantics by a
program stub that alters the state as prescribed by the counterexample. Both for
this purpose and to set up the initial state of the method execution, we extract
information from the counterexample and construct the corresponding state.

A counterexample contains values for all local variables in each execution
state; we use those to extract the method arguments. Moreover, it contains
function interpretations, in particular, for the select and store functions that are
used to encode the heap; we use those to extract field values. The extraction is
relatively simple and works for all counterexamples

In this section we describe the construction of mock types that replace the
original types in the program with versions that enable flexible initialization, of
program stubs that construct the state given by the counterexample, and of the
entry point to the failing method, the driver.

3.1 Type Mocking

For variables of built-in types such as primitive types and arrays, the state con-
struction consists of straightforward assignments. For variables of user-defined
types such as classes and interfaces, the state construction involves the creation
of objects and the initialization of their fields according to the state given in the
counterexample. Object creation is not possible for abstract types; initialization
is difficult for types that do not provide a suitable constructor.

To address these issues we replace each user-defined type in the program by
a mock type—a concrete class—that contains: (1) a parameterless constructor
with empty body, which allows the program stubs to instantiate the class; (2) a
declaration for each field that is accessible to the failing method or that is men-
tioned in a specification; if the field is of a user-defined type, we replace it by
the corresponding mock type. We declare all fields of mock types public, which
allows the program stubs to initialize them according to the counterexample
via field assignments. Mock types do not contain any methods, except for the
method that simulates the verification semantics of the failing method as we
describe in Sec. 4.

In our example, we construct mock types for SortedList and IntList. Class
SortedList contains a field list, which is accessed in the body of AddSorted.
The type of this field is the mock type for IntList. All the fields of IntList
are of built-in types. The type mocking is performed on the .NET level and
transparent to the programmer.



3.2 Program Stubs

We replace each statement s whose verification semantics differs from the execu-
tion semantics by a program stub. This stub simulates the verification semantics
of s by constructing the state after the execution of s as described by the coun-
terexample. For this purpose, we extract the state before and after the execution
of s from the counterexample. For each variable or field in which these two states
differ, the program stub contains an assignment that updates the variable to re-
flect the state change.

When updating variables of reference types, we must preserve any alias prop-
erties contained in the counterexample, that is, when two variables contain the
same symbolic reference in the counterexample, they must also contain the same
reference in the constructed state. So when we update a variable of a reference
type, we first check if we have already constructed an object for the symbolic
reference in the counterexample. If so, we assign a reference to that object. If
not, we create and initialize a new object, making use of the type mocking.

3.3 Driver

To begin executing the failing method we have to generate a driver, which con-
structs the initial state, attaches itself to the program debugger, and then calls
the failing method. The initial state consists of values for the receiver, the method
arguments, and all objects reachable from them (an extension to global data
is straightforward). Its construction is a special case of the state construction
described in the previous subsection; the only difference is that the driver con-
structs the entire state and not just the changes since a previous state. The
programmer does not see the driver, but only the effects the driver produces.

// Construct the array for IntList.Elements
int[] Elements = new int[2];
Elements[0] = 0;
Elements[1] = 1;

// Construct an instance of IntList
IntList list = new IntList ();
list.Elements = Elements;
list.Count = 2;

// Construct receiver of failing method
SortedList rcvr = new SortedList ();
rcvr.list = list;

// Attach to the program debugger
Debugger.Launch ();

// Set the first step of the debugger
Debugger.Step ("rcvr.AddSorted (-3)");

// Call the failing method
rcvr.AddSorted (-3);

Fig. 2: The driver for our example first constructs the initial state, then launches the
debugger, and finally calls the failing method. The types IntList and SortedList

denote the mock types generated for the classes with the same names, which declare
parameterless constructors and public fields.

The driver for our example creates the initial state for the failing method
AddSorted, in particular, the receiver of type SortedList (Fig. 2, left column).



In order to initialize this object, it first constructs and initializes an IntList

object that will be assigned to the receiver’s list field. For this purpose, we
create an integer array of the length given in the counterexample (2) and directly
initialize its elements with the values from the counterexample ([0,1]). We
use this array to initialize the new IntList object. After the initialization of
the IntList object, the driver creates and initializes the receiver of the failing
method.

After the initial state construction, the driver launches the debugger, and
then calls the failing method AddSorted on the constructed receiver with the
argument value from the counterexample, -3 (Fig. 2, right column).

4 Verification Semantics

Program verifiers such as Spec# reason about a program using a verification se-
mantics, which abstracts from the execution semantics. The two main abstrac-
tions are to reason about method calls in terms of the method’s specification
rather than its implementation (for the sake of modularity) and to reason about
loops in terms of a loop invariant rather than actual iterations (to avoid imprac-
tical fixpoint computations). To help the programmer detect verification errors
caused by incorrect or incomplete specifications, we replace in the failing method
all method calls and loops by program stubs that simulate the verification se-
mantics. The counterexample indicates which path through the failing method
lead to the verification error; we use this information to eliminate all branches,
jumps, and loops from the failing method. The resulting method body contains
only straight-line code.

Although we rewrite the body of the failing method, the program debugger
displays the original method body; the rewriting is transparent to the program-
mer. We achieve this effect by injecting debugger directives (in the form of calls
to Debugger.Step) into the program stubs. These directives highlight the code
in the original method body and allow the programmer to control the execution
of the stubs from the original method body.

4.1 Method Calls

The verification semantics of a call to a method m is (1) to assert m’s pre-
condition, (2) to assign arbitrary values to all memory locations that may be
changed by m (according to its modifies clause), and then (3) to assume m’s
postcondition. To simulate this semantics, we replace each call to a method m
in the failing method, including recursive calls and constructor calls, with a pro-
gram stub that contains: (1) a runtime check for m’s precondition (2) code that
updates the state of the program to reflect the state given by the counterexam-
ple as described in Sec. 3.2, and (3) a runtime check for m’s postcondition; the
motivation for this check will be explained in Sec. 6.

Method AddSorted contains calls to list.Add and list.Sort. For each call
the counterexample contains a state describing the effect of the call. We replace



// Step over the method list.Add
Debugger.Step (list.Add);

// Construct the poststate of list.Add
int[] Elements = new int[3];
Elements[0] = 0;
Elements[1] = 1;
Elements[2] = -3;
list.Elements = Elements;
list.Count = 3;

// Check postcondition of list.Add
... // See Sec. 6.2

// Step over the method list.Sort
Debugger.Step (list.Sort);

// Construct the poststate of list.Sort
list.Elements[0] = 7;
list.Elements[1] = 7;
list.Elements[2] = 7;

// Check postcondition of list.Sort
... // See Sec. 6.2

Fig. 3: The program stubs replacing the calls to list.Add and list.Sort in the failing
method AddSorted. The debugger directives instruct the program debugger to highlight
the calls. The stubs construct the post-states of the calls given by the counterexample.

these method calls with the stubs in Fig. 3. The stub for the call to list.Add

(left column) constructs the state as prescribed by the counterexample. In the
counterexample, Elements contains a new symbolic reference; so we construct a
new Elements array. The list field has not changed since the pre-state of the
call, so we update only the state of the referenced object with the new values
given by the counterexample. The stub then checks the postcondition of method
Add, which we discuss in Sec. 6.

The stub for the call to list.Sort (right column) is analogous; however, we
do not update list.Elements because the counterexample does not contain a
value that is different from the pre-state (because the modifies clause of Sort
does not permit modifications of the field Elements, only of the elements within
the array). Note that the two stubs do not contain precondition checks because
neither of the two methods has a precondition.

Specification languages such as Spec# allow specifications to contain calls to
side-effect free (pure) methods. The verification semantics of such calls is to en-
code the pure method as a mathematical function that is axiomatized based on
the specification of the pure method and not on its implementation [5]. Calls to
pure methods in specifications are then encoded as applications of these math-
ematical functions. To simulate this semantics, we replace all occurrences of a
pure method within a specification with the result value contained in the coun-
terexample. Since pure methods are not allowed to change the heap, this simple
replacement is sufficient to capture the effects of the pure method.

4.2 Loops

The verification semantics of a loop is: (1) to assert the loop invariant before
the loop, (2) to simulate the state after an arbitrary number of (possibly zero)
loop iterations by assigning arbitrary values to all locations that may be mod-
ified by the loop and assuming that the resulting state again satisfies the loop
invariant. The verification semantics then considers two possibilities to continue
the execution: (3) an arbitrary execution of the loop body by assuming that the
condition of the loop holds, executing the loop body, and asserting that the loop



invariant holds again after the body, or (4) exiting the loop by assuming that
the condition of the loop does not hold and proceeding to the statement after
the loop. Checking an arbitrary iteration of the loop suffices to ensure that any
execution of the loop preserves the loop invariant.

To simulate this semantics we replace each loop with a program stub that
contains: (1) a runtime check for the loop invariant, and (2) code that updates
the state of the program to reflect the state given by the counterexample as
described in Sec. 3.2 and another runtime check for the loop invariant, which we
discuss in Sec. 6. From the counterexample, we know whether the verification
error occurred on the path that contains the arbitrary loop iteration (branch (3))
or the path that exits the loop (branch (4)). In case (3), the stub contains a
runtime check for the loop condition (see Sec. 6), the loop body (replacing any
method calls or inner loops), another runtime check for the loop invariant, and
then terminates the execution of the method. In case (4), the stub just contains
a runtime check for the negation of the loop condition (see Sec. 6) and then
proceeds with the code following the loop.

As we mentioned above, a programmer using our approach will not see the
program stubs, but only the effect they have on the state of the program. If the
error is located in the loop body, the execution as presented to the programmer
enters the loop body; upon entry, the programmer will observe a sudden change
of the state to the arbitrary state prescribed by the counterexample (satisfying
the loop invariant and the loop condition). If the error is located after the loop,
execution skips the loop entirely, also with a sudden change of the state (to
an arbitrary state that satisfies the loop invariant and the negation of the loop
condition).

5 Extended Runtime Checking

We rely on the runtime assertion checker to reproduce failed verification at-
tempts. An execution of the rewritten failing method that does not lead to an
assertion violation indicates a spurious error. To be conclusive about a verifica-
tion failure, the runtime checker must be able to check any failing assertion.

Most assertions in Spec# programs are executable. In particular, quantifiers
that range over finite integer intervals, such as array indices, are checked by
iterating over the range. However, the verification semantics of Spec# also makes
use of assertions that quantify over possibly unbounded sets, for instance, over
all allocated objects in the assertions for modifies clauses and object invariants.
Such assertions cannot be checked efficiently at runtime.

Nevertheless, we can generate useful runtime checks for most failed quantified
assertions. When an assertion with a universal quantifier fails to verify, the
counterexample contains instantiations of the quantified variables for which the
assertion does not hold. In order to check whether a verification error is spurious,
it is sufficient to generate a runtime check for those specific instantiations, which
is straightforward. For unbounded existential quantifiers, the counterexample
does not contain useful information because one would have to check all values



of the unbounded set, not just one. However, automatic program verifiers avoid
unbounded existential quantifiers because they are not handled well by SMT
solvers. Therefore, not checking them at runtime is not a limitation in practice.

In our example, method AddSorted does not satisfy its modifies clause be-
cause the call to list.Add may modify list.Elements but AddSorted must not.
Therefore, the static verification of AddSorted leads to a second verification er-
ror. The counterexample for this error contains instantiations for the quantified
variables in the assertion for AddSorted’s modifies clause. Here, these instan-
tiations indicate that the Elements field of the object list is being modified
without permission by the modifies clause. Using this information, we generate
code that stores the initial value of list.Elements upon entry to AddSorted

and then checks that list.Elements has not been modified upon termination
of the method. Since the program stub for the call to list.Add changes the
value of list.Elements (see Fig. 3), this runtime check fails and confirms the
verification error.

The programmer debugging this verification failure can localize the error ef-
ficiently by attaching a data breakpoint to list.Elements. If a statement then
modifies list.Elements, the debugger stops the execution notifying the pro-
grammer of the modification; in our example, at the call to list.Add. The pro-
grammer, now aware of the location of the failure, can fix the error by weakening
the modifies clause of AddSorted.

6 Error Validation

In this section we explain how our approach detects spurious errors and invalid
counterexamples.

6.1 Spurious Errors

Since the validity of verification conditions is undecidable, SMT solvers cannot
always determine whether a verification condition is valid or not. Whenever the
SMT solver does not provide a conclusive result, a sound verifier needs to be
conservative and report a verification error, which is possibly spurious. Spurious
errors occur frequently in automatic program verification, for instance, when
specifications include quantifiers or non-linear arithmetic.

By extending the runtime assertion checker to handle all relevant failing as-
sertions in Spec#, we are able to validate verification failures. If the execution
of the rewritten failing method terminates without a failed runtime assertion
check, we can safely conclude that the error is spurious and notify the program-
mer; who can now address the problem by rephrasing the specification, rather
than spending time determining the cause of an error that does not exist.

6.2 Invalid Counterexamples

A counterexample is supposed to satisfy all assumptions that are being made
in the verification semantics of a program. For instance, the initial state in a



counterexample is supposed to satisfy the precondition of the failing method.
However, if the assumptions contain formulas that are beyond the capabilities
of the prover, it might construct an invalid counterexample that contradicts the
assumptions. For example, most automatic provers do not fully support non-
linear arithmetic and might produce an initial state such as -563 for x and 4

for y for the precondition x / y > 0. Simulating the execution described by an
invalid counterexample and, in particular, checking assertions in states extracted
from an invalid counterexample, is not helpful to understand verification errors.

We extract states from the counterexample in three cases: (1) to set up
the initial state in the driver, (2) to reproduce the state changes made by a
method call, (3) and to reproduce the state changes made by a loop iteration. For
these cases, the verification semantics of Spec# makes the following assumptions
about the expected state: (1) the precondition of the failing method, (2) the
postcondition and modifies clause of a called method, and (3) the loop invariant
and the loop condition. To guard against invalid counterexamples, we introduce
runtime checks for each of these assumptions. When such a runtime check fails,
it indicates that the counterexample state does not satisfy the assumption and,
thus, the counterexample is invalid.

The failing method AddSorted of our example assumes its precondition as
well as the postconditions and modifies clauses of the called methods Add and
Sort. The assumption for the precondition would be part of the driver, which
extracts the initial state from the counterexample, but is omitted in Fig. 2 be-
cause AddSorted has no precondition. The assumptions for the postconditions
are part of the program stubs that replace the calls. To the stubs in Fig. 3,
we append the checks assert Contains(list.Elements,value) and assert

Sorted(list.Elements), respectively.

Our approach checks most assumptions in the verification semantics at run-
time, but not all of them. Assumptions that are not checked include for instance
the modifies clause of a called method, which contains an unbounded universal
quantification; the extended runtime checking described in Sec. 5 does not apply
here, because this check does not correspond to a failed assertion and, therefore,
the counterexample does not provide instantiations for the quantifier. Therefore,
our approach might theoretically miss some invalid counterexamples, but that
has not happened in any of the examples we have tried so far.

7 Experience

We have applied our approach in debugging the various verification failures found
in examples from the Spec# tutorial [11], the Spec# test suite (see http://

specsharp.codeplex.com), and our own test suite2. In this section, we outline
a systematic procedure that we have found to be effective for using our approach
to locate the cause of verification failures. We also summarize and evaluate our
experiences using this procedure.

2 Also included in the download of our tool.

http://specsharp.codeplex.com
http://specsharp.codeplex.com


The main observations of our experiments are: (1) Our approach is helpful
for understanding most of the verification failures in the examples. In particular,
we were able to effectively and efficiently detect bugs in the implementation as
well as incorrect or incomplete specifications. The examples where our approach
did not provide any benefit were fairly obvious errors in small methods. For
those verification failures, the error message provided by Spec# was sufficient
to localize and fix the error. (2) Our set of examples contained very few spuri-
ous errors and invalid counterexamples because we took them mostly from the
Spec# tutorial and test suite, both of which focus on examples that are han-
dled well by the verifier. Nevertheless, our runtime checks identified all of the
spurious errors and invalid counterexamples. (3) Most verification failures can
be debugged systematically with a simple procedure, which we outline below.

These initial results are very promising. However, our evaluation may be
biased in two ways. Firstly, the examples were written for Spec# demonstrations
and might not be representative of real application code. Secondly, the evaluation
was performed by people who are familiar with Spec#’s program verifier; it is
possible that programmers might struggle with issues that are obvious to us.
Nevertheless, we are confident that our positive experience will be confirmed by
programmers working on application code.

Debugging Procedure. We have found the following steps to be an efficient
way to localize and understand the cause of a verification failure. If the verifier
reports several errors for the same method, we debug them in the order of their
source location.

1. Use the error message to check the method for obvious errors. For very
simple programs and specifications our approach usually requires more effort
than simply inspecting the failing method. This is often the case for programs
that contain neither method calls nor loops, which reduces the likelihood that
the verification failure is caused by an incorrect or incomplete specification.

2. Run the rewritten program in the debugger and observe the failure. Before
attempting to localize the error, one should first confirm that the verifier has
found a valid error by running the rewritten program in the debugger. This
run will either result in an assertion violation (confirming the validity of the
error), in a failed assumption check (indicating an invalid counterexample), or
in a message that suggests that the error is spurious. In the latter two cases,
the programmer needs to find an alternative way of expressing the program or
its specification and re-verify the program. In the former case, the debugging
procedure continues with the next step.

3. Inspect the state in which the assertion failed. The runtime check for an
assertion fails either because the assertion is incorrect or because the assertion
was checked in a state the programmer did not expect. We recommend to inspect
the assertion and the state in which the runtime check failed to determine which
case applies. If the assertion is incorrect, we can fix it and re-verify the method.
If the state contains unexpected values, we determine their origin in the next
step.



4. Step through the rewritten program and observe changes to the relevant
variables. From step 3, we know which assertion fails. It is helpful to track the
values of the variables in this assertions to detect unexpected values, for instance,
caused by a weak precondition or loop invariant. This tracking is best performed
by adding these variables to the variable watch window of the debugger and then
single-stepping through the rewritten method. Unexpected initial values point
us to a weak precondition; unexpected modifications during a single step require
further investigation, described in step 5. Single-stepping through the method
is also likely to reveal errors in the code such as incorrect control flow or the
absence of a necessary assignment.

A variation of step 4 is more efficient when the failing assertion contains only
a small number of variables, such as the runtime check for a modifies clause
which focuses on only one heap location (see Sec. 5). In this case, one can avoid
the single-stepping and instead add data breakpoints for the relevant variables.
We can then run the rewritten method in the debugger and get notified whenever
a variable of interest gets updated.

5. Analyze unexpected modifications. Step 4 determines where a variable re-
ceives an unexpected value. If this happens during a method call or in a loop, we
have identified the method’s specification or the loop invariant as the cause of
the unexpected value and can amend them. If the unexpected value comes from
an assignment then we may also need to track the variables in the right-hand
side expression by adding them to the watch window and repeating from step 4.

8 Related Work

The literature contains several proposals for extracting useful information from
counterexamples, but in the context of deductive program verification, these
proposals are generally not sufficient to understand the verification failure. In
particular, they do not support the programmer in detecting incomplete speci-
fications, spurious errors, and invalid counterexamples.

Some verifiers such as Spec# apply heuristics to extract those parts of a
counterexample that are likely to be relevant for the verification error. However,
it is difficult to tune the heuristics such that they provide all necessary infor-
mation without swamping the programmer with irrelevant details. For instance,
Spec# filters too aggressively for the method AddSorted and it provides only
the following excerpt from the counterexample, which does not point us in the
direction of the error: (initial value of: value) == -3.

Trace and distance based techniques [1,8,3] have been applied successfully in
the context of model checking to localize program errors. They compare success-
ful program executions against failing executions to determine which branches
of the program lead to the error. Narrowing down the location of the error is
useful, but may not suffice to determine the actual cause of the error. For in-
stance, since the method body of AddSorted does not contain branches, these
techniques will not provide any benefit. They also do not assist the programmer
in detecting spurious errors. Another localization technique is program slicing



[14], which systematically removes statements that are not relevant for the va-
lidity of the failed verification condition. In practice, however, program slicers
do not effectively reduce the size of programs (and counterexamples) with heap
data structures and specifications containing quantifiers. Slicing the body of
AddSorted will not result in a smaller program because both statements affect
the state of list, which is relevant for the failing postcondition.

Another approach is to construct a test case from a failed verification at-
tempt, using the initial state of the counterexample as test input [4,2,13]. This
approach is only helpful if the test leads to a runtime error or if the violated
specification can be found by a runtime assertion checker. However, when static
verification fails because of incomplete specifications, or when the violated spec-
ification is not checked at runtime (for instance, when the specification contains
unbounded quantification over objects), or when the error is spurious, the test
case will succeed and, thus, not help the programmer to determine the cause
of the verification error and might even mislead the programmer into believing
that the error does not exist [4].

Verification techniques based on symbolic execution assist the programmer
in understanding failed verification attempts by presenting the programmer with
the symbolic states used during the verification process [9,10]. Inspecting a sym-
bolic state is very helpful to a verification expert who is familiar with the sym-
bolic representation of the program, whereas our approach seems more appro-
priate for programmers. Moreover, it is not clear to what extent symbolic states
help in detecting spurious errors.

Alternative techniques based on visualizing the counterexample, such as those
based on graph visualization [12,15], are limited by the size of the state presented
and do not help in identifying spurious errors and invalid counterexamples.

9 Conclusions

We have presented our approach to help programmers to understand failed veri-
fication attempts. We generate an executable program that reproduces the veri-
fication error by encoding the verification semantics of the program and by using
variable values from a counterexample. We extend the runtime assertion checker
to reproduce all relevant verification errors, identify spurious errors, and detect
invalid counterexamples. Executing the generated program inside a debugger
allows the programmer to systematically and efficiently explore the counterex-
ample; which is crucial for understanding, localizing, and fixing the verification
failure. The generation of the executable program is entirely automatic and is
transparent to the programmer.

We have implemented our approach in Spec#, but it is applicable to all
program verifiers based on automatic provers that provide counterexamples. Our
experience using our approach is very promising; we are able to understand and
fix verification errors effectively and efficiently. As an additional benefit, we have
found our approach useful to debug the encoding of Spec#. We have indeed found
an error in the Spec# verifier; when inspecting a counterexample in our tool, we



noticed that a variable of type uint contained a negative value, which pointed
us to an omission in the encoding of Spec# programs.

The main direction for future work is to combine our approach with counter-
example-based dynamic program slicing to further reduce the time for localizing
and fixing verification errors. Slicing will in particular allow us to automate
step 5 of our debugging procedure.

Acknowledgments. We are grateful to the reviewers for their insightful com-
ments. We would like to thank Christoph M. Wintersteiger for the various dis-
cussions on the internals of SMT solvers. We are also indebted to Jürg Billeter
for the initial implementation of the tool and Christoph Studer for adding addi-
tional support for pure methods and modifies clauses.

References

1. T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: Localizing errors
in counterexample traces. In POPL, pages 97–105. ACM, 2003.

2. D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumbar. Generating
tests from counterexamples. In ICSE, pages 326–335. IEEE, 2004.

3. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI C programs.
In TACAS, volume 2988 of LNCS, pages 168–176. Springer, 2004.

4. C. Csallner and Y. Smaragdakis. Check ’n’ Crash: Combining static checking and
testing. In ICSE, pages 422–431. ACM, 2005.

5. Á. Darvas and P. Müller. Reasoning about method calls in interface specifications.
Journal of Object Technology, 5(5):59–85, June 2006.

6. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume 4963
of LNCS, pages 337–340. Springer, 2008.

7. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Laboratories, Palo Alto, 2003.

8. A. Groce. Error explanation with distance metrics. In TACAS, volume 2988 of
LNCS, pages 108–122. Springer, 2004.

9. R. Hähnle, M. Baum, R. Bubel, and M. Rothe. A visual interactive debugger based
on symbolic execution. In ASE, pages 143–146. ACM, 2010.

10. R. J. Hall and A. Zisman. Validating personal requirements by assisted symbolic
behavior browsing. In ASE, pages 56–66. IEEE, 2004.

11. K. R. M. Leino and P. Müller. Using the Spec# language, methodology, and tools
to write bug-free programs. In Advanced Lectures on Software Engineering, volume
6029 of LNCS, pages 91–139. Springer, 2010.

12. D. Rayside, F. S.-H. Chang, G. Dennis, R. Seater, and D. Jackson. Automatic
visualization of relational logic models. ECEASST, 7, 2007.

13. N. Tillman and W. Schulte. Mock-object generation with behavior. In ASE, pages
365–368. IEEE, 2006.

14. F. Tip. A survey of program slicing techniques. Journal of Programming Languages,
3(3), 1995.

15. A. Zeller and D. Lütkehaus. DDD—a free graphical front-end for UNIX debuggers.
SIGPLAN Notices, 31(1):22–27, 1996.


	Using Debuggers to UnderstandFailed Verification Attempts

