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Abstract. The automation of verification techniques based on first-order
logic specifications has benefitted greatly from verification infrastructures
such as Boogie and Why. These offer an intermediate language that can
express diverse language features and verification techniques, as well as
back-end tools: in particular, verification condition generators.
However, these infrastructures are not well suited to verification techniques
based on separation logic and other permission logics, because they do
not provide direct support for permissions and because existing tools for
these logics often favour symbolic execution over verification condition
generation. Consequently, tool support for these logics (where available)
is typically developed independently for each technique, dramatically
increasing the burden of developing automatic tools for permission-based
verification.
In this paper, we present a verification infrastructure whose intermediate
language supports an expressive permission model natively. We provide
tool support including two back-end verifiers: one based on symbolic
execution, and one on verification condition generation; an inference tool
based on abstract interpretion is currently under development. A wide
range of existing verification techniques can be implemented via this
infrastructure, alleviating much of the burden of building permission-
based verifiers, and allowing the developers of higher-level reasoning
techniques to focus their efforts at an appropriate level of abstraction.

1 Introduction

Over the last 15 years, static program verification has made wide-ranging and
significant progress. Among the many theoretical and practical achievements
that enabled this progress, two have been particularly influential. First, the
development of widely-used common architectures for program verification tools,
simplifying the development of new verifiers. Second, the development of per-
mission logics (of which separation logic [34] is the most prominent example),
simplifying the specification and verification of heap-manipulating programs and
concurrent programs.

Many modern program verifiers use an architecture in which a front-end tool
translates the program to be verified, together with its specification, into a simpler
intermediate language such as Boogie [22] or Why [14]. The intermediate language



provides a medium in which diverse high-level language features and verification
problems can be encoded, while allowing for the development of efficient common
back-end tools such as verification condition generators. Developing a verifier
for a new language or a new verification technique is, thus, often reduced to
developing an encoding into one of these intermediate languages. For instance,
Boogie is at the core of verifiers such as Chalice [26], Corral [20], Dafny [23],
Spec# [25], and VCC [11], while Why powers for instance Frama-C [19] and
Krakatoa [13].

This infrastructure is generally not ideal for verifiers based on permission logics,
such as separation logic. Verification condition generators and automatic theorem
provers support first-order logic, but typically have no support for permission
logics because of their higher-order nature. Therefore, most verifiers based on
these specialised logics implement their own reasoning engines, typically based
on symbolic execution, for each technique independently, increasing the burden
of developing general-purpose automatic tools for permission-based verification.
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Fig. 1. The Viper infrastructure, underlying tools and currently-existing front-ends.
All Viper components are implemented in Scala and can thus be used under Windows,
Mac OS and Linux (Boogie and Z3 can also be compiled for these systems).

In this paper, we present Viper, a verification infrastructure whose intermedi-
ate language includes a flexible permission model, allowing for simple encodings
of permission-based reasoning techniques. The Viper infrastructure provides
two back-end verifiers, one using symbolic execution and one using verification
condition (VC) generation (via an encoding into Boogie); a specification inference
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via abstract interpretation is under development. Currently, Viper is targeted by
four front-end tools: we developed front-ends for a re-implementation of Chalice
and for a small subset of Scala; front-ends for Java and for OpenCL [4] have been
developed in the context of the VerCors project [5]. Several additional front-ends
are under development. Fig. 1 gives an overview of the Viper infrastructure.

The Viper infrastructure serves three main purposes:

1. Viper facilitates the development of program verifiers based on permission
logics, alleviating much of the involved burden by making a large portion of
the tool chain reusable, and allowing the developers of higher-level techniques
to focus their efforts at this level of abstraction. To support this purpose,
Viper provides an expressive intermediate language with primitives that
let front-ends encode a wide range of source languages, specifications, and
verification techniques. Moreover, the Viper back-ends provide a high degree
of automation, aiming to eliminate situations in which tool developers and
users need to understand the internals of the back-ends in order to guide the
verification effort. This automation is crucial to preserving both the abstrac-
tions provided by the Viper infrastructure and the front-ends developed on
top of it.

2. Viper allows researchers to rapidly prototype and experiment with new veri-
fication techniques by encoding them manually in our intermediate language
without (initially) developing a dedicated front-end. To support this purpose,
Viper’s intermediate language is human readable and provides high-level
features such as methods and loops. A parser and type-checker allow one to
write Viper code directly.

3. Viper supports the comparison and integration of different verification back-
ends. To support this purpose, Viper provides two deductive verifiers and
an abstract interpreter. The intermediate language is designed to cater for
different reasoning techniques, for instance by providing a heap model similar
to those of source languages (facilitating, for example, the use of existing
heap analyses).

Outline. This paper gives an overview of the Viper intermediate language. The
next section surveys key features of the language and illustrates how they are
used to encode more abstract languages and verification techniques. The subse-
quent sections provide more details on permissions and predicates (Sec. 3), the
specification of functional behaviour (Sec. 4), and the encoding of mathematical
theories (Sec. 5). We present an evaluation in Sec. 6, summarise related work in
Sec. 7, and conclude in Sec. 8. A comprehensive set of examples, including all
examples presented in this paper, as well as manually encoded examples from
verification competitions, is available in an online appendix [28].

2 Viper in a Nutshell

The Viper infrastructure is centred around a sequential, imperative, object-based
intermediate language. A program in this language consists of a sequence of
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global declarations for fields, methods, functions, predicates, and custom domains.
There is no notion of class; every object has every field declared in the program,
and methods and functions have no implicit receiver. Predicates [30] can be used
both to abstract over concrete assertions and to write recursive specifications of
heap data structures. Custom domains are used to declare mathematical theories.
Verification of Viper programs is method-modular; method calls are verified with
respect to the specification of the callee and not its implementation.

In this section we illustrate the core features of the Viper language using
two examples. We use an implementation of a sorted list to illustrate how Viper
supports the specification and verification of heap data structures. We then use a
client of the list to demonstrate how to encode language features and verification
approaches which are not directly available in Viper.

2.1 Specification and Verification of Heap Data Structures

1 field data: Seq[Int]
2

3 define sorted(s) forall i: Int, j: Int :: 0 <= i && i < j && j < |s|
4 ==> s[i] <= s[j]
5

6 method insert(this: Ref, elem: Int) returns (idx: Int)
7 requires acc(this.data) && sorted(this.data)
8 ensures acc(this.data) && sorted(this.data)
9 ensures 0 <= idx && idx <= old(|this.data|)

10 ensures this.data == old(this.data)[0..idx] ++
11 Seq(elem) ++ old(this.data)[idx..]
12 {
13 idx := 0
14 while(idx < |this.data| && this.data[idx] < elem)
15 invariant acc(this.data, 1/2)
16 invariant 0 <= idx && idx <= |this.data|
17 invariant forall i: Int :: 0 <= i && i < idx
18 ==> this.data[i] < elem
19 { idx := idx + 1 }
20 this.data := this.data[0..idx] ++ Seq(elem) ++ this.data[idx..]
21 }

Fig. 2. A sorted list of integers, implemented via immutable sequences. We will discuss
implementations based on linked lists and arrays later.

Fig. 2 shows the specification and implementation of a sorted integer list.
In this initial version, the list is represented using a mathematical sequence
datatype. Line 1 declares an appropriate field; Int and Seq are built-in datatypes
(along with booleans, references, sets and multisets). To make the example more
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concise, line 3 introduces a parameterised macro that expresses that the argument
sequence is sorted.

Viper controls access to the program heap using permissions. Permissions
simplify framing (that is, proving that an assertion is not affected by a heap
modification), as well as reasoning about concurrency. Permission to a heap
location may be held by a method execution or a loop iteration. A method or
loop body may access the location only if the appropriate permission is held at
the corresponding program point.

Permissions may be transferred between method executions and loop iterations;
the permissions to be transferred are specified as part of method pre- and
postconditions, and loop invariants, respectively. These specifications are based
on implicit dynamic frames [36, 24, 31]. The most fundamental construct is the
accessibility predicate, acc(e.f), which represents permission to a single field
location: the field f of the reference denoted by e.

Method insert in Fig. 2 adds a new element to the list. It returns the index
at which the element was inserted, which is useful both programmatically (to
retrieve the element later), and to simplify the specified postcondition. The
precondition of insert requires that callers provide permission to access the list’s
data field; moreover, the list must be sorted. The first postcondition returns
the permission to the caller and guarantees that the list remains sorted. The
second postcondition constrains the range of the returned index, while the third
postcondition specifies the functional behaviour. This postcondition uses an
old expression to refer to the content of the list in the method pre-state. The
specification of insert reveals implementation details by referring directly to the
data field. We will discuss language features that support information hiding and
data abstraction in Sec. 4.

The implementation of insert iterates over the sequence to determine where
to insert the new element. Besides the expected properties, the loop invariant
requires a fractional permission [7] to this.data, denoted by acc(this.data, 1/2).
Using a half permission here serves two purposes: first, it allows the loop body
to read this.data; second, leaving the other half permission in the method
execution enclosing the loop lets the verifier conclude that the loop does not
modify this.data (for which the full permission is necessary); that is, it can
frame properties of this location such as sortedness of the sequence across the
loop.

Viper supports a flexible permission model which includes fractional permis-
sions, symbolic permissions via permission-typed variables (of the built-in type
Perm), and an approach to constrain such symbolic permissions without using
concrete fractions [16], which can be used to model counting permissions [8].

2.2 Encoding High-level Concepts

The example in the previous subsection shows that Viper can be used to manually
specify and verify programs. However, the focus of the language design has mostly
been on making Viper an effective intermediate language which can be targeted
by a variety of front-ends. To illustrate this use of the language, this subsection
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presents an encoding of a small client of a sorted list, implemented in a Java-like
language.

1 class Client {
2 @GuardedBy("this") List l;
3 @GuardedBy("this") boolean changed;
4

5 monitor invariant forall int i, j :: 0 <= i && i < j &&
6 j < |l.data| ==> l.data[i] <= l.data[j]
7 monitor invariant old(l.data) == l.data || changed
8

9 synchronized void test(int e1, int e2) {
10 l.insert(e1);
11 l.insert(e2);
12 assert l.data[0] <= l.data[1];
13 changed = true;
14 }
15 }

Fig. 3. An example in a Java-like language whose Viper encoding is shown in Fig. 4.
We assume here that class List has a field data whose type is a mathematical sequence.
The @GuardedBy("this") annotation indicates that the receiver must be locked before
accessing the decorated field. The first monitor invariant requires the list to be sorted;
the second is a two-state invariant and requires the changed flag to be set whenever a
thread changes the content of list l between acquiring and releasing the monitor.

Class Client in Fig. 3 stores a reference to a list in field l. We assume here
that class List has a field data whose type is a mathematical sequence; we will
show an alternative encoding using mutable arrays in Sec. 3.3. The client is
thread-safe and uses coarse-grained locking to protect its data representation
(Java’s @GuardedBy("this") annotation indicates that the receiver must be locked
before accessing the field). It maintains two monitor invariants: the first is a
one-state invariant that requires the list to be sorted; the second is a two-state
invariant which states that any thread that acquires the monitor must either
leave the content of the underlying list unchanged or set the changed flag to
true by the time it releases the monitor. In the latter invariant, we use an old
expression to refer to the state in which the monitor was acquired. Method test
acquires the monitor of its receiver (since it is declared synchronized), adds two
elements to the list and asserts that the first two list elements are in order. It
then sets the changed flag and implicitly releases the monitor when it terminates.

Guarded command languages such as Boogie encode high-level language fea-
tures mostly via three primitives: assert statements to introduce proof obligations,
assume statements to state properties which the verifier may use because they
have been justified elsewhere, and havoc statements to assign non-deterministic
values to variables in order to model side effects or interference. Viper provides

6



permission-aware analogues of these primitives: the operation exhale A asserts
all pure assertions in A (that is, assertions that do not include accessibility
predicates). Any permissions specified in A via accessibility predicates are re-
moved from the current program state; if no permission is left for a location then
no information about its value is retained, similarly to havocking the location.
Conversely, inhale A assumes all pure assertions in A and adds permissions.

1 field changed: Bool
2 field l: Ref
3 field held: Int
4

5 method test(this: Ref, e1: Int, e2: Int)
6 ensures [true, forperm[held] r :: false]
7 {
8 // acquire l
9 inhale acc(this.l) && acc(this.l.data) && acc(this.changed) &&

10 sorted(this.l.data)
11 inhale acc(this.held)
12 statelabel acq
13

14 var tmp: Int
15 tmp := insert(this.l, e1)
16 tmp := insert(this.l, e2)
17 assert this.l.data[0] <= this.l.data[1]
18 this.changed := true
19

20 // release l
21 exhale acc(this.l) && acc(this.l.data) && acc(this.changed) &&
22 sorted(this.l.data) &&
23 (old[acq](this.l.data) == this.l.data || this.changed)
24 exhale acc(this.held)
25 }

Fig. 4. A simplified Viper encoding of the source program in Fig. 3.

Fig. 4 shows a simplified Viper encoding of the client from Fig. 3, using exhale
and inhale to encode concurrency features, which are not supported by Viper
directly. We model locks as resources which can be transferred between methods.
To model this, the Viper program includes a field held and uses the permission
to location o.held to represent that the monitor of object o is held by the current
method execution. Consequently, acquiring the receiver’s monitor at the start
of method test is encoded by inhaling permission to this.held (line 11), and
releasing the monitor exhales this permission (line 24). This encoding ensures
that a monitor can be released only when it is held. We do not include checks for
other properties such as deadlock freedom here, but they could also be encoded.
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Note that the only purpose of field held is to use its permission to represent that
a monitor is held; its value and type are irrelevant.

We encode the @GuardedBy annotations by inhaling permission to the client’s
fields when acquiring the monitor (line 9) and exhaling them upon release
(line 21). We interpret @GuardedBy deeply and include the permission to the list’s
data field. Finally, the encoding of acquire and release also takes into account the
monitor invariants declared in the source program. Acquiring a monitor inhales
its (one-state) invariant (line 10). Releasing it exhales the one-state and two-state
invariants (lines 22–23). Checking a two-state invariant requires a way to access
the earlier of the two states: here, the state in which the monitor was acquired.
Viper provides a convenient way to refer to earlier program states: programs can
declare state labels (line 12) and refer to these states in later assertions using
labelled old expressions (line 23). This feature is also useful for encoding other
comparisons across states such as termination measures.

It is often useful to assert or assume properties about the permissions currently
held, without adding or removing permission. Viper supports this via two pure
assertions: perm(o.f) yields the permission amount held for location o.f in the
current state; forperm[f] r :: P prq expresses that all references r to which the
current state has non-zero permission to r.f , satisfy P prq. The example in Fig. 4
uses the latter feature to encode a leak check for monitors; this check fails if
a method terminates without either releasing the monitors that it holds or
explicitly transferring them back to the caller via a postcondition. The leak check
is expressed by the assertion forperm[held] r :: false in line 6.

Since the leak check must be performed after any remaining monitors have
been transferred to the caller via the method’s postcondition, it cannot be placed
at the end of the method body, where it would be checked before exhaling the
postcondition. Therefore, we place it in a postcondition and encode it as inhale-
exhale assertion. These assertions have the form [A1,A2] and are interpreted
as A1 when the assertion is inhaled and A2 when the assertion is exhaled. In
our example, the leak check is performed during exhale, but no corresponding
assumption is made by the caller when inhaling the postcondition after a call.

It is common for encodings of high-level verification techniques to contain
asymmetries between the properties that are assumed and those that are checked.
The leak check is an example of a property that is checked, but not assumed. It
is also common to assume properties that are justified by a different (possibly
weaker or even vacuous) check together with an external argument provided by a
type system, soundness proof or other meta-reasoning. For instance, the following
assertion allows the verifier to use a quantified property in its direct form when
assuming the property, and to use the premises of the corresponding inductive
argument when proving the property:

[forall x: Int :: 0 <= x ==> P(x) ,
forall x: Int :: (forall y: Int :: 0 <= y && y < x ==> P(y)) &&

0 <= x ==> P(x)]
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3 Unbounded Heap Structures

Viper supports several idioms for specifying and reasoning about unbounded
heap structures. There are no specific definitions built in; instead, Viper includes
three features which allow one to provide the relevant definitions as part of the
input program: recursive predicates (the traditional means in separation-logic-
based tools), magic wands (useful for specifying data structures with “missing
parts”), and quantified permissions (for writing pointwise rather than recursive
specifications). We will briefly discuss each of these features in this section, with
respect to variations on our example in Fig. 2. We will focus on the specification
of permissions, and show how to extend these specifications with sortedness
constraints and rich functional properties in Sec. 4 and the online appendix [28].

3.1 Recursive Predicates

Recursive predicates [30] are the classical means in separation logic of specifying
linked data structures such as lists and trees. A predicate definition consists of
a name, a list of formal parameters, and a body, which contains the assertion
defining the predicate. The body is optional; omitting it results in an abstract
predicate, which is useful to hide implementation details from client code. Like
permissions, predicates may be held by method executions and loop iterations,
and may be transferred between them. Exchanging a predicate for its body and
vice versa is done via unfold and fold statements to prevent the automatic prover
from unfolding a recursive definition indefinitely. In expressions, unfolding can
be used to temporarily unfold a predicate.

1 field data: Ref // for the nodes
2 field next: Ref // for the nodes
3 field head: Ref // for the list head
4

5 predicate List(this: Ref)
6 {
7 acc(this.head) && acc(lseg(this.head, null))
8 }
9

10 predicate lseg(this: Ref, end: Ref)
11 {
12 this != end ==>
13 acc(this.data) && acc(this.next) && acc(lseg(this.next, end))
14 }

Fig. 5. Fields and predicates for a linked list structure. The acc syntax around predicate
instances is optional, but needed when specifying fractional permissions to predicates.
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As an example, we consider a variant of Fig. 2, in which the list is implemented
based on a linked list of nodes. The appropriate predicate definitions can be
found in Fig. 5. The List predicate provides the definition for the permissions to
an entire instance of the list. It is defined in terms of the lseg predicate, which
defines a list segment from start to end: in this case, from this.head to null.

List segment predicates can be used to specify iterative traversals of linked
lists, as shown in Fig. 6. The loop invariant at lines 20-21 describes the permissions
to the list nodes in terms of one lseg predicate for the nodes seen so far and one
for the remainder of the list. The former explains the need for a list segment
predicate; tracking permissions for the partial list already inspected is needed to
reassemble the whole list after the loop (the code to do this is omitted at line 29).

Manipulating recursive predicates can be tedious. While it is easy to prepend
an element to a data structure (by folding another instance of the predicate),
extending a data structure at the other end requires additional work to unfold the
recursive predicate until the end and then re-fold it including the new element. In
Fig. 6, this operation is performed by the concat method, which plays the role of
proving the lemma that from lseg(x,y) && lseg(y,z) we can obtain lseg(x,z).
concat is a specification-only method, but Viper does not distinguish between
regular and ghost code. In the next subsection, we will explain an approach that
reduces the overhead of writing and proving such methods in many cases.

3.2 Magic Wands

The magic wand is a binary connective (written A �� B), which describes the
promise that if combined with state satisfying the assertion A, the combination
can be exchanged for the assertion B [29, 34].

Fig. 7 shows an alternative specification of the loop from Fig. 6 (lines 17-31).
The alternative loop invariant uses a magic wand to represent the permissions
to the partial list seen so far. These permissions are expressed indirectly, by the
promise that the wand can be combined with the permission to the remainder
of the list (the list segment acc(lseg(ptr,null))) to obtain permission to the
full list. The permissions implicitly associated with the magic wand instance
are essentially the same as those required by the acc(lseg(hd,ptr)) assertion in
Fig. 6, which is replaced by the wand.

Viper’s support for magic wands [35] includes heuristics to automate (in many
cases) reasoning about magic wand assertions, for example, in establishing our
loop invariant. Magic wands can also be manipulated manually via dedicated
operations, similar to the fold and unfold statements used for predicates [35].
For example, the apply statement in line 12 of Fig. 7 instructs the verifier to
exchange the magic wand assertion and its left-hand side for the right-hand-side,
restoring the full list after the (partial) traversal.

Compared to the solution without magic wands in Fig. 6, we no longer require
the auxiliary concat method to manage lseg predicates. In addition, we could
replace lseg by a simpler predicate that describes only full lists. Magic wands
provide a general means for tracking partial versions of data structures, without
the need to explicitly define or manipulate these partial versions.
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1 method insert(this: Ref, elem: Int) returns (idx: Int)
2 requires acc(List(this))
3 ensures acc(List(this))
4 {
5 idx := 0; var tmp: Ref
6 unfold acc(List(this))
7 if(this.head != null) { unfold acc(lseg(this.head, null)) }
8

9 if(this.head == null || elem <= this.head.data)
10 {
11 ... // allocate new node at this.head, fold predicates
12 } else {
13 var hd : Ref := this.head
14 var ptr: Ref := hd // running variable
15 idx := idx + 1
16

17 fold acc(lseg(hd, hd)) // for loop invariant
18 while(ptr.next != null &&
19 unfolding acc(lseg(ptr.next, null)) in ptr.next.data < elem)
20 invariant acc(lseg(hd, ptr)) && acc(ptr.next) && acc(ptr.data)
21 invariant acc(lseg(ptr.next, null))
22 {
23 unfold acc(lseg(ptr.next, null))
24 idx := idx + 1; var ptrn: Ref := ptr.next
25 fold acc(lseg(ptrn, ptrn)); fold acc(lseg(ptr, ptrn))
26 concat(hd, ptr, ptrn) // add to end of list segment
27 ptr := ptrn
28 }
29 ... // allocate new node at ptr.next, fold predicates
30 concat(hd, ptr, null) // concat two lsegs to obtain full list
31 }
32 fold acc(List(this))
33 }
34

35 method concat(this: Ref, ptr: Ref, end: Ref)
36 requires acc(lseg(this, ptr)) && acc(lseg(ptr, end))
37 requires end != null ==> acc(end.next, 1/2) // not forming a cycle
38 ensures acc(lseg(this, end))
39 ensures end != null ==> acc(end.next, 1/2)
40 {
41 if(this != ptr) {
42 unfold acc(lseg(this, ptr)); concat(this.next, ptr, end)
43 fold acc(lseg(this, end))
44 }
45 }

Fig. 6. The insert method of a sorted linked list with recursive predicates.
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1 while(ptr.next != null &&
2 unfolding acc(lseg(ptr.next, null)) in ptr.next.data < elem)
3 invariant acc(lseg(ptr, null)) --* acc(lseg(hd, null))
4 invariant acc(ptr.next) && acc(ptr.data)
5 invariant acc(lseg(ptr.next, null))
6 {
7 unfold acc(lseg(ptr.next, null))
8 idx := idx + 1; var last: Ref := ptr
9 ptr := ptr.next

10 }
11 ... // allocate new node at ptr.next, fold predicates
12 apply acc(lseg(ptr, null)) --* acc(lseg(hd, null)) // full list
13 }

Fig. 7. Alternative loop specification with magic wands (cf. Fig. 6, lines 17-31).

3.3 Quantified Permissions

In addition to recursive predicates, Viper supports quantified permissions as
a means of specifying unbounded heap structures. Quantified permissions are
similar to separation logic’s iterated separating conjunction [34] and allow the
specification of permissions pointwise. The flat structure of a pointwise specifica-
tion is convenient for specifying data structures that are not limited to traversals
in a single, hierarchical fashion, such as cyclic lists, random access data structures
such as arrays, and general graphs.

We denote quantified permissions by a universal quantifier around the usual
accessibility predicates. For example, forall x: Ref :: x in S ==> acc(x.f) de-
notes permission to the f field of every reference in the set S. The quantified
variable can be of any type, and we permit arbitrary boolean expressions to
constrain its range.

Quantified permissions provide a natural way to specify properties of arrays.
Arrays are not supported natively in Viper but can be encoded. As we show in
Sec. 5, we can introduce a custom type Array which models the ith slot of an array
a as loc(a,i).val, where loc(a: Array, i: Int): Ref is an injective function
provided by the Array type. The type also provides a function len(a: Array): Int
to model the length of an array. One can then denote permission to the array
slots via quantified permissions ranging over the array indices.

Fig. 8 applies this approach to encode an array list. The field elems stores the
array, while size keeps track of the number of used array slots. The quantified
permission assertion at line 9 represents permission to all array slots. These are
used, for instance, to permit the array access in the while-condition in line 20.
Note that the loop invariant is essentially a copy of the AList predicate body
(with the additional constraint on the idx loop variable). We employ fractional
permissions (including fractional quantified permissions in line 23) to specify that
the loop will not modify the corresponding locations.
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1 field val: Int // array slots modelled by loc(this.elems,i).val
2 field elems: Array // see Array domain definition in Sec. 5
3 field size: Int // how many array slots have been used
4

5 predicate AList(this: Ref)
6 {
7 acc(this.elems) && acc(this.size) &&
8 0 <= this.size && this.size <= len(this.elems) &&
9 (forall i: Int :: 0 <= i && i < len(this.elems) ==>

10 acc(loc(this.elems, i).val))
11 }
12

13 method insert(this: Ref, elem: Int) returns (idx: Int)
14 requires acc(AList(this))
15 ensures acc(AList(this))
16 {
17 idx := 0
18 unfold acc(AList(this))
19

20 while (idx < this.size && loc(this.elems, idx).val < elem)
21 invariant acc(this.elems, 1/2) && acc(this.size, 1/2)
22 invariant this.size <= len(this.elems)
23 invariant forall i: Int :: 0 <= i && i < len(this.elems) ==>
24 acc(loc(this.elems, i).val, 1/2)
25 invariant 0 <= idx && idx <= this.size
26 { idx := idx + 1 }
27

28 ... // move the later elements forward by one, resize if necessary
29 loc(this.elems, idx).val := elem
30 this.size := this.size + 1
31 fold acc(AList(this))
32 }

Fig. 8. Array-list, specified using quantified permissions.

4 Functional Behaviour

The specifications shown in Sec. 3 focus on the management of permissions, but
do not constrain the values stored in data structures (for instance, to require
sortedness of the list) or computed by operations (for instance, to express the
functional behaviour of method insert). The examples in Sec. 2 specify such
properties, but in a way which exposes implementation details. In this section,
we explain several ways to express functional behaviour in Viper.

A simple way to specify the values stored in data structures is to include
constraints on the values in the body of a predicate, in addition to permissions. For
example, we could extend the body of the lseg predicate in Fig. 5 by conjoining
the following assertion:
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unfolding acc(lseg(this.next, end)) in
this.next != end ==> this.data <= this.next.data

This assertion specifies sortedness pairwise between list nodes. Maintaining the
augmented predicate entails corresponding additions to the loop invariant and
specification of the concat method in Fig. 6, as shown in the online appendix.

Constraining values via predicates allows one to encode representation in-
variants, but is not suitable to express client-visible invariants or the functional
behaviour of operations. To support such specifications, Viper supports heap-
dependent functions that may be used in program statements and assertions.
Functions (as opposed to methods) have (side-effect free) expressions rather
than statements as a body. A function’s precondition must require sufficient
permissions to evaluate the function’s body; in contrast to methods, invoking
a function does not consume these permissions, and they do not need to be
returned via a function’s postcondition.

Functions are a flexible feature which can play several different roles in a
Viper program. The first major role is to encode side-effect free observer methods
(pure methods in JML [21] and Spec# [1]), which are a part of the interface
of many data structures. For instance, list-style collections typically provide
observer methods such as length and itemAt to retrieve data. As an example,
we extend our lseg-based specification from Sec. 3.1 with the following function
definition:

function lengthNodes(this: Ref, end: Ref): Int
requires acc(lseg(this, end))

{
unfolding acc(lseg(this, end)) in

this == end ? 0 : 1 + lengthNodes(this.next, end)
}

This definition enables us, whenever we hold an lseg predicate instance, to express
its length via an application of lengthNodes. The Viper verifiers carefully (and
automatically) control the unrolling of recursive function definitions, essentially
mimicking the traversal of the corresponding lseg data structure [15].

A second major role of functions is to define abstraction functions [17] pro-
viding abstractions of the underlying data representation, in order to express
specifications without revealing implementation details. For example, the follow-
ing function abstracts the values of a list segment to a mathematical sequence:

function contentNodes(this: Ref, end: Ref): Seq[Int]
requires acc(lseg(this, end))
ensures forall i: Int, j: Int :: 0 <= i && i < j && j < |result|

==> result[i] <= result[j]
{

this == end ? Seq[Ref]() : unfolding acc(lseg(this, end)) in
( Seq(this.data) ++ contentNodes(this.next, end) )

}
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Viper verifiers reason about function applications in terms of the function’s body.
Nevertheless, it is sometimes useful to provide a function postcondition. In the
above example, the postcondition expresses that the sequence of all values stored
in the list is sorted, which is implied by the pairwise sortedness we have added
to the lseg predicate. Note that the inductive argument required to justify this
postcondition is implicit in the checking of contentNodes’s recursive definition.

A similar content function for the overall data structure (described by the
List predicate) allows us to specify the functional behaviour of insert:

ensures content(this) == old(content(this))[0..index] ++
Seq(elem) ++ old(content(this))[index..]

Function bodies are optional in Viper, which allows hiding details when
verifying client code (similarly to predicates). Omitting the body is also useful
for axiomatising a function rather than defining it (assuming the existence of the
function is otherwise justified). In the array list example from Fig. 8, defining
length and itemAt functions is straightforward. However, an analogous content
function would be awkward to define recursively since our specifications for this
random-access example avoid recursive definitions. Instead, we can axiomatise
the function, that is, specify its meaning via a quantified postcondition. Such
quantifiers are supported in Viper assertions in general, and provide another
important tool for writing functional specifications:

function content(this: Ref): Seq[Int]
requires acc(AList(this))
ensures |result| == length(this)
ensures forall i: Int :: 0 <= i && i < length(this)

==> result[i] == itemAt(this, i)

The third major role of heap-dependent functions is to express refinements of
existing predicate definitions. For example, instead of expressing sortedness as
part of a predicate definition, we can write a boolean function (here for the array
list from Fig. 8) and use it in combination with the unchanged AList predicate:

function sorted(this: Ref): Bool
requires acc(AList(this))

{
unfolding acc(AList(this)) in

forall i: Int, j: Int :: 0 <= i && i < j && j < this.size
==> result[i] <= result[j]

}

AList(this) && sorted(this) describes a sorted list, while AList(this) specifies
an array list that may or may not be sorted. In this way, functions can be used to
augment data-structure instances with additional invariants, without requiring
many versions of a predicate definition or resorting to higher-order logic.

The combination of predicates, functions, and quantifiers supported by Viper
provides the means for writing rich functional specifications in a variety of styles,
which are further illustrated by examples in the online appendix [28].
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5 First-Order Theories

Many specification and verification techniques provide their own mathemati-
cal vocabulary, for instance, to encode algebraic data types. To support such
techniques, Viper supports the declaration of custom first-order theories via
domains: each domain introduces a (potentially polymorphic) type and may
declare uninterpreted function symbols and axioms. Organising mathematical
theories into domains allows back-ends to provide dedicated support for certain
theories. For instance, while both Viper verifiers let the underlying SMT solver
reason about domains, an abstract-interpretation-based inference might provide
specialised abstract domains for certain Viper domains.

1 domain Array {
2 function loc(a: Array, i: Int): Ref
3 function len(a: Array): Int
4 function loc_a(r: Ref): Array
5 function loc_i(r: Ref): Int
6

7 axiom loc_injective {
8 forall a: Array, i: Int :: {loc(a, i)} 0 <= i && i < len(a)
9 ==> loc_a(loc(a, i))) == a && loc_i(loc(a, i))) == i

10 }
11

12 axiom length_nonneg { forall a: Array :: 0 <= len(a) }
13 }

Fig. 9. A domain definition for arrays, as used in Sec. 3.3. The injective function loc
maps an array and an index to a reference; in combination with a field (such as val in
Fig. 8), an array slot a[i] can be encoded as loc(a, i).val.

Fig. 9 uses a domain to model arrays, which are not natively supported
in Viper. We represent the ith slot of an array a as loc(a,i).val, where loc
is a function introduced by the domain and val is a suitable field. Since each
array slot corresponds to a dedicated memory location, loc must be injective;
this property is expressed by the axiom loc_injective, which axiomatises loc_a
and loc_i as the inverse functions of loc. Axiomatising injectivity via inverse
functions improves performance of the SMT solver by reducing the number of
instantiations of the axiom.

Universal quantifiers in axioms (as well as in assertions) may be decorated with
triggers [27]: terms used as patterns which restrict the potential instantiations.
For instance, the trigger {loc(a, i)} in axiom loc_injective lets the SMT solver
instantiate the quantifier with x and y whenever it knows about a term loc(x,y).
When no trigger is provided, Viper attempts to infer triggers automatically. In
general, however, hand-crafted triggers lead to better performance.

16



The online appendix [28] shows how to encode algebraic data types as domains,
with functions for constructors and selectors, and with appropriate axioms. Such
an encoding is useful when encoding source languages that provide ADTs (such
as Scala’s case classes) or for specification languages that make use of ADTs.

6 Evaluation

In this section, we evaluate the performance of the Viper verifiers on a wide
variety of examples. Moreover, we give preliminary qualitative and quantitative
evidence for Viper’s suitability as an intermediate verification language.

6.1 Performance of the Viper Verifiers

To evaluate the performance of the Viper verifiers, we ran both our symbolic
execution (SE) verifier and our verification-condition-generation (VCG) verifier
on the following collections of input programs: our own Viper regression tests,
Viper programs generated by the VerCors tools [5, 4], and programs generated
from Chalice examples via our Chalice front-end. For the Viper and VerCors
programs, we split the files into those using quantified permissions (for which
only our SE verifier currently provides support), and those which can be run in
both verifiers. The set of VerCors examples was provided to us by the VerCors
developers as representative of their Viper usage.

The results are shown in Fig. 10. Both verifiers perform consistently well in the
average case, with the SE verifier being significantly faster. As the average times
suggest, the maximum times are true outliers—these were typically examples
designed to be complex, in order to test what the tools could handle. The Viper
tests (which are mostly regression tests) tend to be shorter and less challenging
than the VerCors-generated programs, which are representative of real usage of
Viper as a back-end infrastructure.

Number of Average Mean time (s) Max. time (s)
Input programs programs size (LOC) SE VCG SE VCG
Viper tests w/o QPs 208 43.8 0.23 0.81 18.36 34.17
VerCors w/o QPs 43 152.1 0.94 2.24 16.25 31.78
Chalice (no QPs) 221 122.0 0.26 0.97 21.26 29.37
Viper tests with QPs 74 34.0 0.30 - 2.00 -
VerCors with QPs 65 105.6 0.95 - 8.39 -

Fig. 10. Performance evaluation of Viper verifiers. Lines of code (LOC) measurements
do not include whitespace lines and comments. All input programs were run 10 times
and average times recorded. The mean and maximum times were calculated based on
these averages. Timings do not include JVM start-up time: we persist a JVM across test
runs using the Nailgun tool; for the VCG verifier, timings include start-up of Boogie
via Mono. All timings were gathered on a Lenovo Thinkpad T450s running Ubuntu
15.04 64 bit, with 12GB RAM; full details are available in our online appendix [28].
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6.2 Viper as an Intermediate Verification Language
To assess Viper’s suitability as an intermediate verification language, we provide
some observations about Viper’s language design and compare the performance of
Viper as the back-end of the VerCors tools. to the previously-used Chalice-Boogie
tool chain [26].

Language Design. The most comprehensive front-ends for Viper are the Java
and OpenCL front-ends developed in the VerCors project and our own Chal-
ice/Viper front-end. Various language features of Viper have proven essential
for these different front-ends. VerCors’ work on verifying concurrent Java makes
use of Viper’s custom domains for encoding custom ADT-like datatypes along
with additional axioms, and makes heavy use of sequences, recursive functions
and predicates. The VerCors OpenCL front-end instead employs quantified per-
missions along with domains similar to the array encoding shown in Sec. 5, and
pure quantifiers to specify functional properties. Our front-end for Chalice makes
extensive use of inhale and exhale statements to encode high-level features,
similarly to the example in Sec. 2.2. As such, the key language features described
in this paper have all been heavily used in at least one existing front-end.

There are Chalice front-ends for both Boogie and Viper, which support very
similar (but not identical) versions of the Chalice language. For the Chalice
programs from the previous subsection, the Boogie files were between 3.3 and 32.1
times the size of the corresponding Viper files, and on average 11.2 times larger.
This significant difference illustrates the higher level of abstraction provided by
the Viper language, compared with existing intermediate verification languages.

Performance of the Infrastructure. The VerCors project switched from
using Chalice-Boogie as back-end infrastructure, to Viper. This switch was partly
motivated by the available language features; for instance, the VerCors OpenCL
front-end relies heavily on quantified permissions, which are not available in
Chalice. Another reason was the performance of the Viper tools. In the following,
we compare the performance of the two infrastructures on inputs generated by
the VerCors tools.

Running tests through the entire alternative tool chains proved difficult due
to legacy syntactic and implementation differences; however, we identified 17
VerCors examples from the test suite used in Sec. 6.1 that could be run on
the alternative infrastructures. For each of these examples, we generated two
(essentially equivalent) Boogie programs, one using Chalice as a VerCors back-end,
and one using Viper with our VCG verifier.

Fig. 11 shows the results of our comparison. In all cases, the Boogie files
generated via the Viper route were smaller and verified faster. The same example
was slowest via both routes, and more than 4 times faster in the Viper-generated
version. Although our sample size is small, the results suggest Viper enables
a more direct encoding and offers a more streamlined verification condition
generator. In practice, the VerCors team typically use Viper’s SE verifier, which
is substantially faster still, as shown in Fig. 10.
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Average Mean Max.
size (LOC) time (s) time (s)

Boogie file via Chalice 945.0 0.83 3.22
Boogie file via Viper (VCG) 631.1 0.53 0.73
Ratio 66.8% 64.3% 22.5%

Fig. 11. Comparison of alternative back-end infrastructures for the VerCors tools. Using
Viper’s VCG verifier significantly reduces the size and verification time of the generated
Boogie programs compared to the Chalice/Boogie infrastructure.

7 Related Work

Boogie [22] and Why [14] are widely-used intermediate verification languages,
but they do not offer native support for permission-based reasoning. Chalice [26]
demonstrates that permissions can be encoded in such a first-order setting; our
VCG-based back-end makes such a complex encoding reusable. Boogie and Why
front-ends encode heaps as maps. In contrast, the Viper language has a built-in
notion of heap, which is slightly less expressive (for instance, in Viper, heaps
cannot be stored in variables), but enables the development of more-specialised
back-ends, such as verifiers based on Smallfoot-style symbolic execution and
inference engines based on abstract interpretation.

To our knowledge, the only other verification infrastructure for permission-
based reasoning is coreStar [6], which includes an intermediate language for
separation logic and a symbolic execution engine. Front-ends implemented on
top of coreStar encode programs into coreStar’s language and also need to
provide proof rules and abstraction rules to customise the behaviour of coreStar’s
symbolic execution, even for fundamental concepts such as permissions (points-
to predicates). In contrast, Viper has been designed to be expressive enough
to capture a wide variety of languages and verification techniques out of the
box, without requiring front-end developers to descend into the back-end(s).
Furthermore, having a fixed language (with fixed rules) simplifies writing different
back-ends, potentially with specialised handling of certain language features.

Some verifiers for separation logic such as Smallfoot [3], GRASShopper [33],
Asterix [32], and the work by Chin et al. [9], achieve a relatively high degree
of automation by restricting themselves to specific (classes of) theories: often
those of linked lists and trees. Without support for important features such as
fractional permissions or user-defined predicates and functions, they do not offer
the expressiveness needed for an intermediate language which can encode a wide
range of verification techniques.

VeriFast [18], a verifier for C and Java programs, supports an expressive
assertion language, including user-defined higher-order predicates and function
pointers, but it requires significant amounts of user annotations, in particular when
reasoning about functional specifications and abstractions. This complicates the
encoding of front-end languages that try to achieve a higher degree of automation.
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Several verification techniques based on interactive proof assistants such as
Coq or HOL4 [2, 10, 12, 37] provide tactics that automate common proof steps in
separation logic. Viper aims at a higher level of automation, such that users do
not have to interact directly with the verification back-ends.

8 Conclusion and Future Work

We have presented Viper, an infrastructure which facilitates the rapid prototyping
of permission-based verification techniques and the development of verification
tools. Viper’s intermediate language offers a flexible permission model, supports
user-defined predicates and functions, and provides advanced specification features
such as magic wands and quantified permissions. It provides the necessary
expressiveness to encode a wide range of language features and permission-based
verification techniques. In particular, users may choose between and combine
different styles of encodings, as we have demonstrated in Sec. 3 and Sec. 4. Viper
includes two back-end verifiers: one based on verification condition generation and
one based on symbolic execution. An abstract-interpretation-based specification
inference is under development.

Viper is targeted by several front-ends, developed both inside and outside of
our research group. Together with collaborators, we are currently working on en-
codings of verification techniques for JavaScript and for fine-grained concurrency.
Viper is also being used to verify safety and security properties of a network
router implemented in Python.

As future work, we plan to provide a comprehensive variety of specification
inference techniques and to improve the reporting and debugging of verification
failures. We are also interested in integrating alternative, possibly specialised
verification back-ends.
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13. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive
program verification. In W. Damm and H. Hermanns, editors, CAV, volume 4590
of LNCS, pages 173–177. Springer, 2007.
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