
Automatic Verification of Iterated Separating
Conjunctions using Symbolic Execution

Peter Müller, Malte Schwerhoff, and Alexander J. Summers

Department of Computer Science, ETH Zurich, Switzerland
{peter.mueller, malte.schwerhoff, alexander.summers}@inf.ethz.ch

Abstract. In permission logics such as separation logic, the iterated
separating conjunction is a quantifier denoting access permission to an
unbounded set of heap locations. In contrast to recursive predicates, iter-
ated separating conjunctions do not prescribe a structure on the locations
they range over, and so do not restrict how to traverse and modify these
locations. This flexibility is important for the verification of random-access
data structures such as arrays and data structures that can be traversed
in multiple ways such as graphs. Despite its usefulness, no automatic
program verifier natively supports iterated separating conjunctions; they
are especially difficult to incorporate into symbolic execution engines, the
prevalent technique for building verifiers for these logics.
In this paper, we present the first symbolic execution technique to support
general iterated separating conjunctions. We propose a novel representa-
tion of symbolic heaps and flexible support for logical specifications that
quantify over heap locations. Our technique exhibits predictable and fast
performance despite employing quantifiers at the SMT level, by carefully
controlling quantifier instantiations. It is compatible with other features
of permission logics such as fractional permissions, recursive predicates,
and abstraction functions. Our technique is implemented as an extension
of the Viper verification infrastructure.

1 Introduction

Permission logics such as separation logic [18] and implicit dynamic frames [19]
associate an access permission with each memory location in order to reason
about shared mutable state. Dynamic heap data structures require specifications
to denote access permissions to a statically-unknown set of locations. Such
specifications are typically expressed in existing tools using recursive predicates
[15], which work well so long as the traversal of the data structure matches
the definition of the predicate. However, access patterns that do not follow the
predicate structure (e.g., traversing a doubly-linked list from the end) or that
follow no specific order (e.g., random access into an array) are difficult to handle in
existing program verifiers, requiring programmers to provide substantial manual
proof steps (for instance, as ghost code) to bridge the mismatch between the
program’s access pattern and the imposed predicate structure.

Iterated separating conjunction [18] (hereafter, ISC) is an alternative way to
denote properties of a set of heap locations, which has for instance been used in

by-hand proofs to denote locations of arrays [18], cyclic data structures [3, 23],
the objects stored in linked lists [7], and graph algorithms [23]. Unlike recursive
predicates, an ISC does not prescribe any particular traversal order.

Despite its usefulness and inclusion in early presentations of separation logic,
no existing program verifier supports general ISCs directly. Among the tools based
on symbolic execution, Smallfoot [2] does not support ISC; VeriFast [22] and
jStar [7] allow programmers to encode some forms of ISC via abstract predicates
that can be manipulated by auxiliary operations and lemmas (in VeriFast) or
tailored rewrite rules (in jStar). For arrays, this encoding is partially supported
by libraries. However, in the general case, programmers need to provide the extra
machinery, which significantly increases the necessary manual effort.

Among the verifiers based on verification condition generation, Chalice [12]
supports only a restricted form of ISC (ranging over all objects stored in a
sequence), and VeriCool uses an encoding that leads to unreliable behaviour of
the SMT solver [21, p. 46]. The GRASShopper tool [16] does not provide built-in
or general support for ISC, but some ingredients of the technique we present
(particularly, the technical usage of inverse functions) have been employed there
to specify particular random access to data structures (e.g., arrays). The Dafny
verifier [10] can be used to write similar set and quantifier-based specifications,
but does not support permission-based reasoning or concurrency.

In this paper, we present the first symbolic execution technique that directly
supports general forms of ISC. Our technique is compatible with other features of
permission logics: it supports fractional permissions [5], such that a heap location
may be ranged over by several ISCs, and allows ISC to occur in predicate bodies
and in preconditions of abstraction functions [8].

This combination of features allows one to specify and verify challenging
examples such as graph-marking algorithms (see App. C.2) that so far were
beyond the scope of automated verifiers based on permission logics.

Our main technical contributions are: (1) a novel representation of the partial
heaps that are denoted by an ISC, along with algorithms to manipulate this
representation; (2) a technique to preserve across heap changes (to frame) the
values of expressions that depend on the unbounded set of heap locations denoted
by ISCs; (3) an SMT encoding that carefully controls quantifier instantiations;
(4) an implementation of our approach in the Viper verification infrastructure [14].
Our implementation and several interesting examples are available online [1].

Outline. In the next section, we explain the main technical challenges our work
addresses, and illustrate them with a simple motivating example. Our design for
a symbolic heap that can represent permissions described by ISCs is presented
in Sec. 3. We explain the symbolic evaluation of expressions and framing with
respect to this heap representation in Sec. 4. In Sec. 5, we discuss how we control
quantifier instantiations. Sec. 6 presents an evaluation of our implementation.
We conclude in Sec. 7.

2

2 Technical Challenges

Permission logics ensure that a heap location is accessed only when the corre-
sponding permission is held. Dedicated assertions denote the permission to a
heap location e.f , written as e.f ÞÑ _ in separation logic and as the accessibility
predicate acc(e.f) in implicit dynamic frames; we use the latter in this paper.
These logics include a separating conjunction �, expressing that the permis-
sions denoted by the two conjuncts must be disjoint. For instance, an assertion
acc(x.f) � acc(y.f) implies the disequality x � y. Many permission logics
allow permissions to be split into fractions, and to re-assemble fractions into a
full permission. In these logics, any non-zero permission allows read access to a
location, whereas write access requires the full permission. When appropriate
permissions are held, assertions may also constrain the value of a heap location
(for instance, x.f ¡ 3); assertions that do not contain accessibility predicates are
called pure. We use the terms pure assertion and expression synonymously.

Verification of many program constructs can be modelled by two basic op-
erations. Inhaling an assertion A adds the permissions denoted by A to the
current state and assumes the pure assertions in A. Exhaling an assertion A
checks that the current state satisfies the pure assertions in A; it also checks that
the state contains the permissions denoted by A and removes them. As soon as
permission to a heap location is no longer held, information about its value cannot
be retained. Inhale and exhale can be seen as the permission-aware analogues
of assume and assert statements [12]; they are sometimes called produce and
consume [20]. Using these operations, a method call (for example) can be encoded
by exhaling the method precondition and then inhaling its postcondition.

Building a verification tool for a permission logic requires effective solutions
to the following technical challenges:

1. How to model the program state, including permissions and values?
2. How to check for a permission in a state?
3. How to add and remove permissions to and from a state?
4. How to evaluate (heap-dependent) expressions in a state?
5. When to preserve (frame) an expression’s value across heap changes?

In the remainder of this section, we summarize how existing verifiers solve these
challenges for logics without ISC and then explain how providing support for
ISC complicates these challenges.

2.1 Smallfoot-style Symbolic Execution

Smallfoot [2] introduced a symbolic execution technique that has become the
state-of-the-art way of building verifiers for permission logics. It provides simple
and efficient solutions to the technical challenges above: (1) A symbolic state
consists of a set of heap chunks, and a set of path conditions. A heap chunk has
the form o.f ÞÑ rv, ps, mimicking separation logic’s points-to predicates. It records
a receiver value o, a field name f , a location value v representing the value stored

3

in location o.f , and a permission amount p. A permission amount is a value
between 0 and 1 (inclusive); intermediate values can be used to support fractional
permissions. Here, o, v, and p are (immutable) symbolic values. Path conditions
are boolean constraints on the symbolic values collected while verifying a program
path such as the branch conditions on that path. Path conditions may constrain
heap values and may be quantified. An SMT solver is used to answer queries
about the path conditions, for instance, equality of symbolic values. (2) Checking
for permission to a heap location entails iterating through the heap chunks and
finding those with matching receiver-field pairs. (3) Removing permissions is
modelled by subtracting permissions from the corresponding chunk(s), and adding
a permission is modelled by adding a heap chunk (with a fresh symbolic location
value) that provides the added permission amount. (4) Evaluating a heap lookup
e.f yields the location value of the chunk for e.f (and is not permitted if no such
chunk exists). (5) Framing the value of such expressions happens implicitly so
long as the same heap chunk provides non-zero permission to the location. When
a chunk no longer provides any permission, it gets removed and its location value
becomes inaccessible.

In order to specify unbounded heap structures, the Smallfoot approach has
been extended to handle user-defined recursive predicates. In successor tools
such as VeriFast [22], jStar [7], and Viper [14], heap chunks may also represent
predicate instances. Smallfoot-style symbolic execution has also been extended
to support heap-dependent pure functions in the assertion language [20]. For
example, the operations of a list class may be specified in terms of an itemAt
function. Such functions include a precondition that requires permission to all
locations read by the function body; this information is used to frame function
applications.

These extensions increase the expressiveness of permission logics significantly,
but are not sufficient to simply specify and automatically reason about important
data structures such as arrays and graphs: this requires support for ISCs.

2.2 Iterated Separating Conjunction

Fig. 1 illustrates the usage of ISCs: method Replace replaces all occurrences of
integer from by integer to in the segment of array a between left and right.
The recursive calls to smaller array segments are performed concurrently using
parallel composition ‖. The second precondition requires access permissions for
all elements in the array segment, and the first postcondition returns these
permissions to the caller; both are expressed using ISC. The second postcondition
specifies the functional behaviour of the method using an old-expression to refer
to the prestate of a method; this pure assertion needs heap-dependent expressions
under a quantifier.

Verifying the example entails splitting the symbolic state described by the
ISC in the precondition in order to exhale the preconditions of the recursive calls,
and to re-combine the states resulting from inhaling the postconditions of these
calls after the parallel composition, in order to prove the callee’s postcondition.

4

method Replace(a: Int[], left: Int, right: Int, from: Int, to: Int)
requires 0 <= left < right <= a.length
requires forall i: Int :: left <= i < right ==> acc(a[i])
ensures forall i: Int :: left <= i < right ==> acc(a[i])
ensures forall i: Int :: left <= i < right ==>

(old(a[i]) == from ? a[i] == to : a[i] == old(a[i]))
{
if (right - left <= 1) {

if(a[left] == from) { a[left] := to }
} else {
var mid := left + (right - left) / 2

Replace(a, left, mid, from, to) ‖ Replace(a, mid, right, from, to)

}
}

Fig. 1. A parallel replace operation on array segments. The second precondition and
the first postcondition denote access permissions to the elements of the array. The
forall quantifier in these conditions denotes an ISC: the body of the quantifier includes
accessibility predicates (of the form acc(a[i])). The second postcondition uses a
regular (pure) quantifier to specify the functional behaviour of the method. Here, old
expressions let the postcondition refer to values in the prestate; the access permissions
for these expressions come from the second precondition.

Providing support for ISCs complicates each of the five technical challenges
discussed above:

1. Heap chunks must be generalised to denote permission to an unbounded
number of locations simultaneously, and encode a symbolic value per location
(for instance, to represent the values of each array location in Fig. 1).

2. Exhaling an ISC requires checking permission for an unbounded number of
heap locations; these could be spread across multiple heap chunks, as in the
case of exhaling the postcondition of Replace.

3. Removing permissions from a generalised chunk may affect only some of the
locations to which it provides permission. For example, when exhaling the
precondition of the first recursive call to Replace, the permissions required
for the second call must be retained in the symbolic state.

4. Evaluating heap-dependent expressions under quantifiers may rely on sym-
bolic values from multiple heap chunks. For example, proving the second
postcondition of Replace requires information from both recursive calls.

5. Framing in existing Smallfoot-style verifiers requires that heap-dependent
expressions depend only on a bounded number of symbolic values (which can
include representations of predicate instances [20]). However, this requirement
is too strong for pure quantifiers over heap locations and for functions whose
preconditions use ISCs to require access to an unbounded set of locations
(see for instance the client of our running example, either online [1] or in
App. C.1).

Our technique is the first to provide automatic solutions to these challenging
problems. Sec. 3 tackles the first 3 problems; Sec. 4 tackles the remaining 2.

5

3 Treatment of Permissions

We consider the following canonical form of source-level assertion for denoting
an ISC: forall x : T :: cpxq ñ acc(epxq.f,ppxq), in which cpxq is a boolean
expression, epxq a reference-typed expression, and ppxq an expression denoting a
permission amount. More complex assertions can be desugared into this canonical
form, for instance, iterating over the conjunction of two accessibility predicates
can be encoded by repeating the quantification over each conjunct. For simplicity,
we do not consider nested ISCs, but an extension is possible. Our canonical form
is sufficient to directly model quantifying over receivers in a set (useful for graph
examples, see App. C.2) or over integer indices into an array, as shown in Fig. 1.

The permission expression ppxq may be a complex expression including con-
ditionals, and need not evaluate to the same value for each instantiation of x.
This enables us to model complex access patterns such as requiring non-zero
permission to every nth slot of an array, which is for instance important for the
verification of GPU programs [4]. ISCs are complemented by unrestricted pure
quantifiers over potentially heap-dependent expressions, which are essential for
specifying functional properties.

In this section, we present the first key ingredient of our symbolic execution
technique: a representation for ISCs as part of the verifier’s symbolic state along
with algorithms to manipulate this representation.

3.1 Symbolic Heap Representation

As explained in Sec. 2.1, Smallfoot-style heap chunks o.f ÞÑ rv, ps consist of a
receiver value o, a field name f , a location value v and a permission amount
p. A naïve generalisation of this representation would be to make o, v, and p
functions of the bound variable of an ISC. However, such a representation has
severe drawbacks. Checking whether a heap chunk provides permission to a
location y.f (challenge 2 above) amounts to the existential query Dx.opxq � y;
SMT solvers provide poor support for such existential queries. In the presence
of fractional permissions, determining how much permission such a heap chunk
provides is worse still, requiring to calculate the sum of all ppxiq such that xi
satisfies the existential query.

Our design avoids these difficulties with a simple restriction: we require the
receiver expressions epxq in an ISC to be injective in x, for all values of x to
which the ISC provides permission. Under this restriction, we can soundly assume
that the mapping between the bound variable x and receiver expression epxq is
invertible for such values, by some function e�1. We can then represent an ISC
over receivers r � epxq directly, essentially by replacing x by e�1prq throughout.

Our resulting design is to use quantified chunks of the form r.f ÞÑ rvprq, pprqs,
in which r (which is implicitly bound in such a chunk) plays the role of a quantified
(reference-typed) receiver. Such a quantified chunk represents pprq permission to
all locations r.f ; pprq may be any expression denoting a permission amount. The
domain of a quantified chunk is the set of field locations r1.f for which ppr1q ¡ 0.
The values of these locations are modelled by the function v, which we call a

6

inhale(h0, π0, forall x : T :: cpxq ñ acc(epxq.f,ppxq)) ;

Let y be a fresh symbolic constant of type T
/* Symbolically evaluate source-level expressions */
var pπ1, cpyqq :� eval(h0, π0, cpyq)
var pπ2, epyqq :� eval(h0, π1 Y tcpyqu, epyq)
var pπ3, ppyqq :� eval(h0, π2, ppyq)
var π4 :� π3 z tcpyqu

/* Introduce inverse function */
Let e�1 be a fresh function of type T Ñ Ref
var π5 :� π4 Y t@r : Ref � cpe�1prqq ñ epe�1prqq � ru /* (Inv-1) */
var π6 :� π5 Y t@x : T � cpxq ñ e�1pepxqq � xu /* (Inv-2) */
Let v be a fresh value map
var h1 :� h0 Y tr.f ÞÑ rvprq, cpe�1prqq ? ppe�1prqq : 0su
return ph1, π6q

exhale(h0, π0, forall x : T :: cpxq ñ acc(epxq.f,ppxq)) ;

Let y be a fresh symbolic constant of type T
/* Symbolically evaluate source-level expressions */
var pπ1, cpyqq :� eval(h0, π0, cpyq)
var pπ2, epyqq :� eval(h0, π1 Y tcpyqu, epyq)
var pπ3, ppyqq :� eval(h0, π2, ppyq)
var π4 :� π3 z tcpyqu

/* Check injectivity of receiver expression */
Let y1, y2 be fresh symbolic constants of type T
check π4 (cpy1q ^ cpy2q ^ epy1q � epy2q ñ y1 � y2

/* Introduce inverse function */
Let e�1 be a fresh inverse function of type T Ñ Ref
var π5 :� π4 Y t@r : Ref � cpe�1prqq ñ epe�1prqq � ru /* (Inv-1) */
var π6 :� π5 Y t@x : T � cpxq ñ e�1pepxqq � xu /* (Inv-2) */
/* Remove permissions */
var h1 :� remove(h0, π6, f , pλr � cpe�1prqq ? ppe�1prqq : 0q)
return ph1, π6q

Fig. 2. Symbolic execution rules for inhaling and exhaling ISCs. The check instruction
submits a query to the SMT solver. If the proof obligation does not hold, it aborts with
a verification failure. The eval function evaluates an expression in a symbolic state and
yields updated path conditions and the resulting symbolic expression, see Sec. 4. In
both rules, the constraint cpyq is temporarily added to the path conditions used during
the evaluation of epyq and ppyq; these expressions may be well-formed only under this
additional constraint.

value map and explain in Sec. 4. A symbolic heap is a set of quantified chunks; a
symbolic state is a symbolic heap plus a set of path conditions, as usual.

Under our injectivity restriction, we represent a source-level assertion of the
form forall x : T :: cpxq ñ acc(epxq.f,ppxq) using a quantified chunk of the
form r.f ÞÑ rvprq, pcpe�1prqq ? ppe�1prqq : 0qs for a suitable value map v and

7

inverse function e�1. Whenever necessary to avoid ambiguity, we use underlined
expressions to denote the results of symbolically evaluating corresponding source-
level expressions; with the exception of heap-dependent expressions (see Sec. 4.1),
this evaluation is orthogonal to the contributions of this paper.

Our injectivity restriction does not limit the data structures that can be
handled by our technique, provided specifications are expressed appropriately.
The restriction applies to memory locations, not to the values stored in the
locations. Many examples such as ISCs ranging over array indices or elements of
a set naturally satisfy the restriction. Ranges that may contain duplicates (for
instance, the fields of all objects stored in an array) can be encoded by mapping
them to a set (thereby ignoring multiplicities) or by using complex permission
expressions p that reflect multiplicities appropriately.

3.2 Inhaling and Exhaling Permissions

Using the symbolic heap design explained above, we define the operations for
inhaling and exhaling ISCs in Fig. 2. The inhale operation takes a symbolic
heap h0, path conditions π0, and an ISC, and returns an updated heap and
path conditions. Following the encoding described in the previous subsection,
the operation introduces a (fresh) inverse function e�1, which is constrained
as the partial inverse of the (evaluated) receiver expression epxq by adding the
constraints Inv-1 and Inv-2 to the path conditions. We will discuss controlling
the instantiation of these quantifiers (and others introduced by our technique)
in Sec. 5. The fresh value map v models the (thus far unknown) values of the
heap locations in the domain of the new quantified chunk, which is added to the
symbolic heap h0.

To encode our example (Fig. 1) in a tool without native array support, we
model the array slots as a set of ghost objects, each with a field val (representing
the slot’s value). That is, an array location aris is modelled by the location
A(i).val, where A is an injective function mapping indices to these ghost objects.
Full details of the encoding of the running example are given online [1, Example
Parallel Array Replace], or in App. C.1. Following Fig. 2, inhaling the second
precondition (at the start of checking the method body) entails introducing an
inverse function a�1 mapping array locations back to corresponding indices, and
then adding a quantified chunk r.val ÞÑ rvprq, pleft ¤ a�1prq right ? 1 : 0qs.
Correspondingly, at the program point after the two recursive calls, the symbolic
heap will contain two quantified chunks: one for each array segment.

The exhale operation is initially similar to inhale, one difference being that
the injectivity of the receiver expression is checked before defining the inverse
function. Removing permissions is more complex than adding permissions because
it may involve updates to many existing quantified chunks in the symbolic state.
This operation is delegated to the auxiliary operation remove, shown in Fig. 3.

The injectivity check performed by exhale guarantees that the introduced
inverse functions exist and satisfy the constraints added to the path conditions,
which is required for soundness. We assume here that each inhale operation
has a corresponding exhale; for instance, inhaling a method precondition at the

8

def remove(h0, π0, f , q):
Let hf � h0 be all chunks in the given state for field f
var h1f :� H /* Processed chunks */
var qneeded :� q /* Permissions still to take */
foreach pr.f ÞÑ rviprq, qiprqsq P hf do:

/* Determine the permissions to take from this chunk */
var qcurrent :� pλr � minpqiprq, qneededprqqq

/* Decrease the permissions still needed */
qneeded :� pλr � qneededprq � qcurrentprqq

/* Add an updated chunk to the processed chunks */
h1f :� h1f Y tr.f ÞÑ rviprq, pqiprq � qcurrentprqqsu

end

/* Check that sufficient permissions were removed */
check π0 (@r � qneededprq � 0

return ph0zhf q Y h1f

Fig. 3. The remove operation. The argument q maps references to permission amounts.
The operation checks that the symbolic heap contains at least qprq permission for each
location r.f and removes it.

beginning of a method body corresponds to exhaling the precondition at the call
site. Therefore, the check performed by exhale also covers the inverse functions
introduced in corresponding inhale operations.

remove takes as inputs an initial symbolic heap h0 and path conditions π0,
a field name f , and a function q that yields for each reference r the permission
amount for location r.f to be removed. remove fails with a verification error if
the initial heap does not contain the permissions in q, and otherwise returns an
updated symbolic state. This is achieved by iterating over all available chunks
for field f , greedily taking as much of the still-required permissions (qneeded) as
possible from the current chunk (qcurrent). Updating the chunks is expressed via
pointwise-defined functions describing the corresponding permission amounts;
they involve permission arithmetic, but no existential quantifiers, and can be
handled efficiently by the underlying SMT solver. After this iteration, remove
checks that all requested permissions have been removed.

In our array example (Fig. 1), we exhale the second precondition before each
recursive call; this requires finding the appropriate permissions from the (single)
quantified chunk in the state at this point, and removing them. Dually, when
exhaling the postcondition at the end of the method body, all permissions from
both of the two quantified chunks yielded by the recursive calls must be removed:
the iteration in the remove algorithm achieves this.

Note that remove’s permission accounting is precise, which is important
for soundness and completeness: it maintains the invariant that (for all r), the
difference between the permissions held in the original state and those requested

9

predicate Graph(nodes: Set[Ref]) {
(forall n: Ref :: n in nodes ==> acc(n.left))

&& (forall n: Ref :: n in nodes ==> acc(n.right))
&& (forall n: Ref :: n in nodes && n.left != null ==> n.left in nodes)
&& (forall n: Ref :: n in nodes && n.right != null ==> n.right in nodes)

}

Fig. 4. A predicate defining a graph in terms of ISCs and closure properties over a
given set of nodes (that form the graph).

via parameter q is equal to the difference between those held in the updated state
and those still needed. If the operation succeeds, we know (from the last check)
that those still needed are exactly 0, from which we conclude that precisely the
correct amounts were subtracted.

3.3 Integrating Predicates with Iterated Separating Conjunctions
Predicates are a standard feature of verification tools for permission logics
(including the Viper infrastructure on which our implementation is built); they
integrate simply with our support for ISCs. Fig. 4 shows an example of a predicate
definition, parameterised by a set of nodes, that defines a graph in terms of ISCs
and closure properties over the given set of nodes. Viper requires explicit ghost
operations to exchange a predicate instance P peq for its body (via an operation
unfold P peq), and vice versa (via an operation fold P peq); this is a standard
way to handle possibly-recursive predicates. In terms of the underlying verifier,
an operation fold P peq essentially corresponds to exhale Pbodypeq followed by
inhale P peq, and dually for unfold P peq. Since our support for ISCs is expressed
in terms of inhale and exhale rules, it naturally integrates with Viper’s existing
way of handling predicates; our implementation supports predicates with ISCs
and pure quantifiers in their bodies, as illustrated by the graph predicate.

Our implementation does not yet support predicates inside ISCs, but our
presented technique extends straightforwardly to support this. Inhaling an ISC
which ranges over predicate instances yields, just as for accessibility predicates for
fields, a new quantified chunk. An unfold of a predicate belonging to such a chunk
can be handled by exhaling the predicate instance (removing it from the chunk’s
permissions), and then inhaling the predicate’s body. Folding an instance inhales
a quantified predicate chunk that provides permissions to the single instance.
We plan to extend our implementation to also support this feature combination,
which will allow one to denote an unbounded number of predicate instances.

4 Treatment of Symbolic Values

So far we have addressed the first three technical challenges described in Sec. 2
by presenting a novel heap representation for ISCs together with algorithms that
let the verifier efficiently add, as well as check for and remove permissions. In
this section we present our solution to the remaining two challenges, concerned
with the evaluation and framing of expressions.

10

def summarise(h0, f):
Let hf � h0 be all quantified chunks in the given heap for field f
Let v be a fresh value map
var def :� H /* Value summary path conditions */
var perm :� λr � 0 /* Permission summary */
foreach pr.f ÞÑ rviprq, qiprqsq P hf do:

def :� def Y t@r � 0 qiprq ñ vprq � viprqu /* (VmDefEq) */
perm :� λr � ppermprq � qiprqq

end
return pv, def , permq

Fig. 5. The summarise operation introduces a fresh value map for field f and constrains
it according to the value maps of all heap chunks for f . It also returns a function
summarising the permissions held for the field f .

4.1 Symbolic Evaluation of Heap-Dependent Expressions

Quantified chunks r.f ÞÑ rvprq, qprqs represent value information via the value
map v. The existence of such a chunk in a symbolic heap allows the evaluation
of a read of field f for any receiver in the domain of the heap chunk, to an
application of the value map. Intuitively, v represents a partial function from this
domain to values (of the type of the field f). Since SMT solvers typically do not
natively support partial functions, we model value maps as under-specified total
functions from the receiver reference (the field f is fixed) to the type of f . We
apply these functions only to references whose f field location is in the chunk’s
domain. This is why the exhale algorithm (Fig. 2) does not need to explicitly
remove information about the values stored in the locations whose permissions
are removed; the underlying total function still represents appropriate values for
the new (smaller) domain.

Summarising Value Maps. Inhaling permissions adds a fresh heap chunk
with a fresh value map (see Fig. 2). Therefore, a symbolic heap may contain
multiple chunks for the same field, each with its own value map. In the presence
of fractional permissions, the domains of these chunks may overlap such that the
value of one location x.f may be represented by multiple value maps. Similarly,
the value of x.f may be represented by multiple maps when the receiver x is
quantified over and the permissions to different instantiations of the quantifier
are recorded in different chunks. Therefore, all of these value maps need to be
considered when evaluating such a field access.

In order to incorporate information from all relevant chunks, and provide a
simple translation for field-lookups, we summarise the value maps for all chunks
for a field f lazily before we evaluate an expression e.f . This summarisation is
defined by the summarise operation in Fig. 5. For each quantified chunk with the
appropriate field, it equates a newly-introduced value map with the value map
in the chunk at all locations in the chunk’s domain. Analogously, it builds up a
permission expression summarising the permissions held per receiver, across all

11

heap chunks for the field f ; we use this permission expression to check whether a
field access is permitted.

Note that the definition of summarise does not depend on path conditions,
only on the symbolic heap; it can be computed without querying the SMT
solver. Our implementation memoizes summarise, avoiding the duplication of
the function declarations and path conditions defining the value and permission
maps.

Symbolic Evaluation. Symbolic evaluation of expressions is defined by an
operation eval, which takes a symbolic heap, path conditions, and an expression,
and yields updated path conditions and the symbolic value of the expression; the
cases for field lookup and pure quantifiers are given in Fig. 6 (some additional
cases can be found in App. A). Using the summarise operation, we can simply
define the evaluation of a field lookup, as shown first in Fig. 6. To evaluate
such an expression, we check that at least some permission to the field location
is held in the current symbolic heap, and use the value map generated by
summarise to define the value of the field lookup. Via the path conditions
generated by summarise, any properties known about the value maps of any
of the corresponding quantified chunks will also be known about the resulting
symbolic value. In each reachable state, these properties are consistent, which
implies in particular that there exists a value for the field lookup that satisfies
all of them. Viper regularly checks for inconsistent path conditions and prunes
the current program path if it detects an unreachable state.

Evaluating pure quantifiers is handled by replacing the bound variable with a
fresh constant and evaluating the quantifier body. Additional path conditions
generated during this recursive evaluation might mention the fresh constant;
these are universally quantified over when returning the path conditions.

Inhale, Exhale, and Field Writes. Inhaling and exhaling pure boolean ex-
pressions is implemented by first symbolically evaluating the expression and then
either adding the resulting symbolic expression to the path conditions or checking
it, respectively (see App. A).

A field write e1.f := e2 is desugared as: exhale acc(e1.f); inhale acc(e1.f);
inhale e1.f == e2. The exhale checks that the heap has the required permission
and removes it; the inhales create a new chunk with the previously-removed
permission and constrain the associated value map such that it maps receiver e1
to the value of e2. For example, the field write a[left] := to in Fig. 1 is executed
in a symbolic heap with a single quantified chunk that provides full permissions
to each array location. After the field write has been executed, the heap contains
two quantified chunks: the initial one, still providing full permissions to each
array location except for a[left] (and with an unchanged value map), and a
second one that provides permissions to a[left] only, with a fresh value map
representing the updated value.

12

eval(h0, π0, e.f) ;

var pπ1, eq :� eval(h0, π0, e)
var pv, def , permq :� summarise(h0, f)
check π1 (0 permpeq
return pπ1 Y def , vpeqq

eval(h0, π0, forall x :: epxq) ;

Let y be a fresh symbolic constant
var pπ1, epyqq :� eval(h0, π0, epyq)
return ptb P π1 | y R FV pbqu Y t@x � p

�
bPπ1,yPFVpbq brx{ysqu, @x � epxqq

Fig. 6. Symbolic evaluation of field reads and pure quantifiers.

4.2 Framing Heap-Dependent Expressions

Permissions provide a straightforward story for framing the values of heap
locations (and pure quantifiers over these): so long as the symbolic state contains
some permission to a field location, its value will be preserved. However, framing
heap-dependent functions is more complicated [20, 8]. The value of a function
can be framed so long as all locations the function depends on remain unchanged.
To express a function’s dependency on the heap, its precondition must require
permission to all locations its implementation may read. For any given function
application, the symbolic values of these locations are called the snapshots of
the function application. Consequently, two function applications yield the same
result if they take the same arguments and have equal snapshots. One can thus
model a heap-dependent function at the SMT level by a function taking snapshots
as additional arguments [20].

ISCs complicate this approach because a function whose precondition contains
an ISC may depend on an unbounded set of heap locations. The values of these
locations cannot be represented by a fixed number of snapshots. It is also not
possible to represent them as a value map since these are modelled at the SMT
level as total functions, causing two problems. First, requiring equality of total
functions would include locations the heap-dependent function does not actually
depend on; since the values for these locations are under-specified, the equality
check would often fail even when the function value could be soundly framed.
Second, a function cannot be used as a function argument, nor compared for
equality in the first-order logic supported by SMT solvers.

We address the first problem by modelling snapshots as partial functions
called partial value maps, and the second by applying defunctionalisation [17].
That is, we model a partial value map for a field f of type T as a value of an
(uninterpreted) type PVM , together with a function domainf : PVM Ñ SetrRef s
for the domain of the partial value map, and a function applyf : PVM �Ref Ñ T
for the result of applying a partial value map to a receiver reference. We also
include an extensionality axiom for partial value maps, allowing us to prove
equality when two partial value maps are equal as partial functions.

13

@r : Ref � { vprq}{ viprq} 0 qiprq ñ vprq � viprq /* (VmDefEq) */
@r : Ref � {e�1prq} cpe�1prqq ñ epe�1prqq � r /* (Inv-1) */
@x : T � {epxq} cpxq ñ e�1pepxqq � x /* (Inv-2) */

Fig. 7. Example triggers used in our SMT encoding.

Following the prior work, we model a heap-dependent function via a function
at the SMT level, with a partial value map as additional snapshot argument for
each ISC required in the function’s precondition. For each application of such a
function, we check that the current state contains all permissions required by the
function precondition. If this is the case, we process each ISC in the precondition
in turn. For an ISC for a field f , we employ the summarise operation (Fig. 5) to
summarise the value information v for the field f in the current symbolic state,
and introduce a fresh constant pvm of type PVM . We constrain domainf ppvmq
to yield the set of references in the domain of the ISC, and for all receivers r
in this domain, assume applyf ppvm, rq � vprq. pvm is then used as a snapshot
argument to the translated function.

5 Controlling Quantifier Instantiations

When generating quantifiers for an SMT solver, it is important to carefully
control their instantiation [8, 11, 13] by providing syntactic triggers. A quantifier
@x � P pxq may be decorated with a trigger tfpxqu, which instructs the solver to
instantiate x with a term e only if fpeq is a term encountered by the solver during
the current proof effort. Triggers must be chosen carefully: enabling too few
instantiations may cause examples to fail unexpectedly, while too many may lead
to unreliable performance or even non-termination of the solver (see also Sec. 6).

We carefully select triggers for all quantifiers generated by our technique
(although we have omitted them from the presentation so far). Fig. 7 shows three
representative examples. The path condition VmDefEq relates the value map
introduced by the summarise operation to the value maps of heap chunks (Fig. 5).
The two triggers express alternatives: they allow instantiating the path condition
if either of the two value maps have been applied to the term instantiating r. This
design allows us to derive relationships between two evaluations of an expression,
which introduce two summary value maps. Instantiating VmDefEq in both
directions allows us to relate these value maps via the value maps of heap chunks.

The next two examples define the inverse function of a receiver expression
(see Fig. 2). The trigger e�1prq for Inv-1 is essential for relating occurrences of
the inverse function to the original expression e. The case of Inv-2 is almost
symmetrical, but with extra technicalities. Since e comes from the source program,
it may not be an expression allowed as a trigger. Trigger terms must typically
include at least one function application (if epxq were simply x, this could not
be used), and no built-in operators such as addition. In the former case, we use
vpxq as a trigger, where v is the value map of the relevant chunk; the quantifier

14

Program Size (LOC) Time (s) w/o memoization w/o triggers
arraylist 114 1.93 �7.29% �16.53%
quickselect 132 2.51 �24.44% �4.23%
binary-search 47 0.31 �14.15% �8.94%
graph-copy 120 1.81 �14.93% �21.21%
graph-marking 53 1.71 �41.29% �30.95%
longest-common-prefix 34 0.19 �6.51% �10.73%
max-elimination 59 0.50 �45.41% �0.07%
max-standard 53 0.24 �16.40% �2.43%
parallel-replace 56 0.27 �3.71% �6.12%

Fig. 8. Performance evaluation of our implementation on verification challenges. Lines
of code (LOC) does not include blank lines and comments. Column “Time (s)” gives
runtimes of the base version of our implementation; columns “w/o memoization” and
“w/o triggers” show the % difference in time relative to the base version.

will then be instantiated whenever we look up a value from the chunk, which
is when we need the definition of the inverse function. In the latter case, we
resort to allowing the underlying tools select trigger terms, which may lead to
incompleteness. However, we did not observe any such incompletenesses in our
experiments.

Instantiating either of the two axioms Inv-1 and Inv-2 gives rise to potentially
new function application terms suitable for triggering the other axiom. For
example, when instantiating Inv-2 due to a term of the shape epxq, we learn the
equality e�1pepxqq � x in which the function application e�1pepxqq matches the
trigger for the Inv-1 axiom. Instantiating this axiom, in turn, will provide the
equality epe�1pepxqqq � epxq. Note however, that this will not cause an indefinite
sequence of instantiations of these two axioms (a so-called matching loop): SMT
solvers consider quantifier instantiations modulo known equalities. Thus, the
function application epe�1pepxqqq does not give rise to a new instantiation of
Inv-2, since the term to be matched against the quantified variable (e�1pepxqq)
is already known to be equal to x, which was used for the prior instantiation.

6 Evaluation

We have implemented our technique as an extension of the Viper verification
infrastructure [14]; the implementation is open source and can be tried online [1].
To evaluate the performance of our technique, we ran experiments with three kinds
of input programs: (1) 9 hand-coded verification problems involving arrays and
graphs, including our running example (see the Viper examples page [1] or App. B
for details, and App. C for two encodings), (2) 65 examples generated by the
VerCors project at the University of Twente [4], which uses our implementation
to encode GPU verification problems, and (3) 82 additional regression tests.

Fig. 8 shows the results for (1), and Fig. 9 those for (2) and (3). We performed
our experiments on an Intel Core i7-4770 3.40GHz with 16GB RAM machine
running Windows 7 x64 with an SSD. The reported times are averaged over 10

15

No. Size Time w/o memoization w/o triggers

Program Set
Files
(#)

Mean
(LOC)

Mean
(s)

Max
(s)

Mean
(�)

Max
(s)

Mean
(�)

Max
(s)

VerCors 65 104 0.72 11.81 +0.92% 15.71 -4.40% 8.83
Regressions 82 34 0.22 3.41 +0.58% 3.81 -2.24% 3.38

Fig. 9. Performance evaluation of our implementation on two sets of programs: the
“VerCors” set contains (non-trivial) programs generated by the VerCors tool, “Regres-
sions” contains (usually simple) regression tests; column “No. Files” displays the number
of files per program set. All input files are available as part of the Viper test suite.

runs of each verification (with negligible standard deviations). Timings do not
include JVM start-up: we persist a JVM across test runs using the Nailgun tool.

Our experiments show that our implementation is consistently fast: all ex-
amples verify in a few seconds. Since SMT encodings sometimes exhibit worse
performance for failed verification attempts, we also tested 4 variants of each
example from Fig. 8 in which we seeded errors; in all cases the errors were
detected with lower runtimes (the verifier halts as soon as an error is detected).

To measure the effect of memoizing calls to summarise, we disabled this
feature and measured the difference in runtimes over the same inputs. As shown
in the “w/o memoization” columns, disabling this optimisation typically increases
the runtime, but not enormously; a likely explanation for the relatively small
difference is that summarise performs the iteration over quantified chunks effi-
ciently, without querying the SMT solver. The number of quantified chunks in
a given symbolic state is also typically kept small: the tool performs modular
verification per method/loop body, and we eagerly remove any quantified chunks
that no longer provide permissions (after an exhale).

To evaluate the importance of our use of triggers for controlling quantifier
instantiations (see Sec. 5), we also compare with a variant of our implementation
in which triggers are omitted, leaving this task to the underlying tools (that is,
Viper and Z3 [6]). The relative times are shown in the “w/o triggers” columns.
We observe that this variant typically improves verification time. However, the
triggers chosen automatically by Viper and Z3 are too strict: 7% of the programs
(11 out of the 156 original programs) fail spuriously in this version. This, as
well as a general reduction in quantifier instantiations, explains the effect on the
runtime: the longest-running example in our base implementation (averaging
11.82s) takes only 3s without our triggers, but wrongly fails to verify. The
longest-running example in the variant without triggers takes 8.83s but also has
a high standard deviation of 4.71s, suggesting that performance also becomes
unpredictable when triggers are selected automatically. The triggers that we
choose thus avoid spurious errors and provide predictable, fast performance.

7 Conclusions and Future Work

We have presented the first symbolic execution technique that supports ISCs.
This feature provides the possibility of specifying random-access data structures

16

and provides an alternative mechanism to recursive definitions which is essential
in the common case when a data structure can be traversed in multiple ways. Our
technique generalises Smallfoot-style symbolic execution and is, thus, applicable to
other verifiers for permission logics using this common implementation technique.

Two of the authors participated in the recent VerifyThis verification com-
petition at ETAPS’16 (see http://etaps2016.verifythis.org/) using our imple-
mentation, and won the Distinguished User-assistance Tool Feature for the ISC
support described in this paper: this prize was awarded for a feature that proved
particularly useful during the competition.

As future work, we plan to build on our verification technique in four ways.
First, we plan to extend our technique to support predicates under ISCs, as
discussed in Sec. 3.3. Second, we plan to combine our verification technique with
inference techniques that make use of ISCs, such as the shape analysis developed
by Lee et al. [9]. Third, we plan to support foreach statements that perform an
operation (e.g., unfolding a predicate) on each instance of a quantifier without
requiring a loop (and invariant). Such statements require permissions that can
be expressed using ISCs. Fourth, we plan to integrate support for aggregates
in pure assertions [11], which provide another means for specifying functional
properties over locations described by an ISC.

References

1. Viper Online: try examples in the browser. http://viper.ethz.ch/examples/.
2. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic

assertion checking with separation logic. In FMCO, volume 4111 of LNCS, pages
115–137. Springer, 2006.

3. L. Birkedal, N. Torp-Smith, and J. C. Reynolds. Local reasoning about a copying
garbage collector. In N. D. Jones and X. Leroy, editors, POPL, pages 220–231.
ACM, 2004.

4. S. Blom and M. Huisman. The VerCors tool for verification of concurrent programs.
In C. B. Jones, P. Pihlajasaari, and J. Sun, editors, FM, volume 8442 of LNCS,
pages 127–131. Springer, 2014.

5. J. Boyland. Checking interference with fractional permissions. In SAS, volume
2694 of LNCS, pages 55–72. Springer, 2003.

6. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrishnan
and J. Rehof, editors, TACAS, volume 4963 of LNCS, pages 337–340. Springer,
2008.

7. D. Distefano and M. J. Parkinson J. jStar: Towards practical verification for Java.
In OOPSLA, pages 213–226. ACM, 2008.

8. S. Heule, I. T. Kassios, P. Müller, and A. J. Summers. Verification condition
generation for permission logics with abstract predicates and abstraction functions.
In G. Castagna, editor, ECOOP, volume 7920 of LNCS, pages 451–476. Springer,
2013.

9. O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using
grammar-based shape analysis. In S. Sagiv, editor, ESOP, LNCS, pages 124–140,
2005.

10. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In
Proceedings of LPAR’10, pages 348–370, Berlin, Heidelberg, 2010. Springer-Verlag.

17

11. K. R. M. Leino and R. Monahan. Reasoning about comprehensions with first-order
SMT solvers. In S. Y. Shin and S. Ossowski, editors, SAC, pages 615–622. ACM,
2009.

12. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
G. Castagna, editor, ESOP, volume 5502 of LNCS, pages 378–393. Springer-Verlag,
2009.

13. M. Moskal. Programming with triggers. In SMT, volume 375 of ACM International
Conference Proceeding Series, pages 20–29. ACM, 2009.

14. P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors,
VMCAI, volume 9583 of LNCS, pages 41–62. Springer-Verlag, 2016.

15. M. Parkinson and G. Bierman. Separation logic and abstraction. In J. Palsberg
and M. Abadi, editors, POPL, pages 247–258. ACM, 2005.

16. R. Piskac, T. Wies, and D. Zufferey. GRASShopper—complete heap verification
with mixed specifications. In E. Ábrahám and K. Havelund, editors, TACAS,
volume 8413 of LNCS, pages 124–139. Springer, 2014.

17. J. C. Reynolds. Definitional interpreters for higher-order programming languages.
In ACM Annual Conference—Volume 2, ACM ’72, pages 717–740. ACM, 1972.

18. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS. IEEE Computer Society Press, 2002.

19. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In ECOOP, volume 5653 of LNCS, pages 148–172.
Springer, 2009.

20. J. Smans, B. Jacobs, and F. Piessens. Heap-dependent expressions in separation
logic. In J. Hatcliff and E. Zucca, editors, FMOODS, volume 6117 of LNCS, pages
170–185. Springer, 2010.

21. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. ACM Trans.
Program. Lang. Syst., 34(1):2:1–2:58, 2012.

22. J. Smans, B. Jacobs, and F. Piessens. Verifast for Java: A tutorial. In D. Clarke,
J. Noble, and T. Wrigstad, editors, Aliasing in Object-Oriented Programming. Types,
Analysis and Verification, volume 7850 of LNCS, pages 407–442. Springer, 2013.

23. H. Yang. An example of local reasoning in BI pointer logic: the Schorr-Waite graph
marking algorithm. In Proceedings of the SPACE Workshop, 2001.

A Additional Definitions and Symbolic Execution Rules

Partial Value Maps. Fig. 10 shows background definitions related to partial
value maps (see Sec. 4.2), which are emitted to the SMT solver before the
verification starts. The background definitions include a type PVM and, per field
declaration, a function domainf that denotes the domain of a partial value map,
a function applyf that denotes applying a partial value map to a receiver to
obtain the value of the corresponding field location, and an extensionality axiom
stating that two partial value maps are equal if their domains agree and if they
agree on the values in their domain.

The trigger of the extensionality axiom {toSnapppvm1q, toSnapppvm2q} en-
sures that the extensionality axiom is instantiated whenever it is necessary to
reason about the equality of partial value maps that are used as snapshots. Wrap-
ping partial value maps by toSnap is necessary because Viper requires snapshots

18

1. Let FD be the set of all field declarations f : T of a given program for which
ISCs are used

2. Declare a type PVM
3. Declare a function domainf : PVM Ñ SetrRef s per declaration f : T P FD

4. Declare a function applyf : PVM �Ref Ñ T per declaration f : T P FD

5. Declare the following extensionality axiom per declaration f : T P FD:
@ pvm1, pvm2 : PVM � {toSnapppvm1q, toSnapppvm2q}

domainf ppvm1q � domainf ppvm2q^
@r : Ref � r P domainf ppvm1q ñ applyf ppvm1, rq � applyf ppvm2, rq

ñ pvm1 � pvm2

Fig. 10. Background definitions related to partial value maps (see Sec. 4.2). domainf
denotes the domain of a partial value map, applyf its application to a reference.

inhale(h0, π0, e) ;

var pπ1, eq :� eval(h0, π0, e)
return (h0, π1 Y teu)

exhale(h0, π0, e) ;

var pπ1, eq :� eval(h0, π0, e)
check π1 (e
return (h0, π1)

Fig. 11. Symbolic execution rules for inhaling and exhaling pure assertions.

to uniformly be of type Snap; function toSnap embeds values into the Snap type
(a corresponding inverse function exists as well). This external requirement (of
Viper, not of our technique) turned out to be beneficial for us, since it allows
choosing triggers that are permissive, yet yield good performance.

Inhaling and Exhaling Pure Assertions. Fig. 11 shows the symbolic exe-
cution rules for inhaling and exhaling potentially heap-dependent (but pure)
assertions such as pure quantifiers. Both rules use eval to evaluate the assertion;
the result is then added to the path conditions or asserted to hold in the current
state, respectively.

Symbolic Evaluation of Expressions. Fig. 12 shows selected symbolic exe-
cution rules for evaluating expressions. Evaluating an implication e1 ñ e2 starts
by evaluating e1, and temporarily assuming e1 while evaluating e2 (see also
the discussion of Fig. 2 in Sec. 3.1). From the path conditions obtained from
evaluating e1 (πδ), all instances of VmDefEq are extracted (πv). The final set
of path conditions, with which the verification proceeds (π3), includes the path
conditions obtained from the evaluation of e1, all instances of VmDefEq that
were obtained from evaluating e2 (this allows memoizing summarise because value

19

eval(h0, π0, e1 ñ e2) ;

var pπ1, e1q :� eval(h0, π0, e1)
var pπ2, e2q :� eval(h0, π1 Y te1u, e2)
var πδ :� π2zpπ1 Y te1uq
var πv :� tb P πδ | b is instance of VmDefEqu
var π3 :� π1 Y πv Y te1 ñ

�
pπδzπvqu

return pπ3, e1 ñ e2q

eval(h0, π0, funpe1, . . . , enq) ; /* fun is heap-independent */
var pπ1, e1q :� eval(h0, π0, e1)
. . .
var pπn, enq :� eval(h0, πn�1, en)
return pπn, funpe1, . . . , enqq

eval(h0, π0, e1 ^ e2) ;

var pπ1, e1q :� eval(h0, π0, e1)
var pπ2, eñq :� eval(h0, π1, e1 ñ e2)
return pπ2, e1 ^ eñq

Fig. 12. Additional symbolic execution rules for evaluating pure expressions.

map definitions are always in scope, that is, are not nested under implications),
and — conditionally on e1 — the remaining path conditions from evaluating e2.

Viper’s remaining symbolic execution rules for evaluating expressions did
not need to be changed when we implemented our technique. For illustrative
purposes, we show the rule for evaluating heap-independent functions (including
arithmetic and other operators), and for evaluating short-circuiting conjunction.

20

B Descriptions of Examples

– arraylist is an encoding of a list implemented on top of an array, with
operations to append an element to the list, and to insert an element into
the list such that the list, if it was sorted before, remains sorted afterwards.

– array-quickselect is an encoding of a (recursive) quickselect implementa-
tion over an array, with strong specifications such as “the array has been
permuted”, and “the n-th smallest element has been selected”.

– binary-search-array is an encoding of an (iterative) binary search performed
over a sorted array.

– graph-copy is the encoding of an algorithm that copies a graph. Its speci-
fications make use of a custom axiomatisation of maps to record relations
between original and copied nodes.

– graph-marking is the encoding of a graph marking algorithm, in the spirit of
mark-and-sweep garbage collectors, with strong specifications such as “nodes
reachable from marked nodes are marked themselves”.

– longest-common-prefix is a challenge from the VerifyThis Verification Com-
petition 2012: finding the longest common prefix of two arrays.

– max-array-elimination is a challenge from the COST Verification Competi-
tion 2011: finding the maximum in an array by elimination.

– max-array-st & & ard is an encoding of the straightforward way of finding the
maximum in an array; it uses the same interface specifications and the same
client as the previous example.

– parallel-array-replace is the running example from this paper: replace
each occurrence of an element in an array segment by recursing over the two
half-segments in parallel.

C Examples

C.1 Running Example: Parallel Array-Replace

Fig. 13 shows the encoding of our running example (parallel-replace from our
test set) in Viper. Here, loc(a,i) is the injective function mapping an array
a to the ghost objects modelling its array slots. So, a source-level expression
a[i] is translated to loc(a,i).val (see also Sec. 3.2). Our code defines the pre-
and postconditions of the Replace method as parameterised macros (occurrences
of which are inlined, similar to C-style macros), for reuse when encoding the
recursive parallel calls. Viper does not support parallel composition, but fork-
join-style concurrency can be modelled by appropriate exhale (fork) and inhale
(join) statements.

Fig. 14 shows the background definitions for the array encoding that is
used in Fig. 13 (as well as in other array-related examples from our test suite).
Axiom all_diff constrains function loc to be injective in both arguments by
axiomatising first and second to be the inverse functions for the first and second
parameter of loc, respectively.

21

Fig. 15 shows a client that uses Replace, and a heap-dependent boolean
function Contains that yields true if an array contains a given value in the array
prefix [0..before). Contains is intentionally left abstract (i.e., it has no body)
to demonstrate that the only way of reasoning about the function is via function
framing, which indeed allows us to prove the final assertion.

C.2 Graph-Marking

Fig. 16 shows an encoding of a graph-marking algorithm (graph-marking from
our test set) in Viper. In Viper, the double ampersand (&&) is overloaded: it
denotes the separating conjunction (�) as well as the usual boolean conjunction
(^); in the conjunction of two impure assertions, it always denotes the separating
conjunction.

The macro INV describes a graph in terms of accessibility predicates and
closure properties over a given set of nodes (of the graph): the first three foralls
are ISCs, denoting permissions to the fields of each node in the set of nodes. The
remaining two foralls are pure quantifiers; they express that the set of nodes
is closed under following the left and right fields. The two quantifiers have
been annotated with triggers to improve performance, as is common for Viper
encodings.

22

define pre1(a, l, r) 0 <= l & & l < r & & r <= len(a)
define pre2(a, l, r) forall i: Int :: l <= i & & i < r ==>

acc(loc(a, i).val)
define post1(a, l, r) forall i: Int :: l <= i & & i < r ==>

acc(loc(a, i).val)
define post2(a, l, r) forall i: Int :: l <= i & & i < r ==>

(old(loc(a, i).val == from)
? loc(a, i).val == to
: loc(a, i).val == old(loc(a, i).val))

method Replace(a: Array, left: Int, right: Int, from: Int, to: Int)
requires pre1(a, left, right)
requires pre2(a, left, right)
ensures post1(a, left, right)
ensures post2(a, left, right)

{
if (right - left <= 1) {

if(loc(a, left).val == from) {
loc(a, left).val := to

}
} else {
var mid: Int := left + (right - left) / 2

//fork-left
exhale pre1(a, left, mid)
exhale pre2(a, left, mid)

//fork-right
exhale pre1(a, mid, right)
exhale pre2(a, mid, right)

//join-left
inhale post1(a, left, mid)
inhale post2(a, left, mid)

//join-right
inhale post1(a, mid, right)
inhale post2(a, mid, right)

}
}

Fig. 13. Our running example, encoded in Viper. Inlined macros are used to reuse the
pre- and postcondition of Replace when encoding the parallel recursive calls.

23

field val: Int

domain Array {
function loc(a: Array, i: Int): Ref
function len(a: Array): Int
function first(r: Ref): Array
function second(r: Ref): Int

axiom all_diff {
forall a: Array, i: Int :: {loc(a, i)}

first(loc(a, i)) == a & & second(loc(a, i)) == i
}

axiom length_nonneg {
forall a: Array :: len(a) >= 0

}
}

Fig. 14. Background definitions for our array encoding. It declares a type Array, an
injective function loc denoting the ghost object representing the array slot at a given
index, and a function len that denotes the length of an array.

method Client(a: Array)
requires 1 < len(a)
requires forall i: Int ::

0 <= i && i < len(a) ==> acc(loc(a, i).val)
requires Contains(a, 5, 1)

{
Replace(a, 1, len(a), 5, 7)
assert Contains(a, 5, 1) // Requires function framing

}

function Contains(a: Array, v: Int, before: Int): Bool
requires 0 <= before && before <= len(a)
requires forall i: Int ::

0 <= i && i < before ==> acc(loc(a, i).val)

Fig. 15. Client of the Replace method from Fig. 13. Function framing allows us to
prove the assertion in method Client.

24

field left: Ref; field right: Ref; field marked: Bool

define INV(nodes)
!(null in nodes)

&& (forall n: Ref :: n in nodes ==> acc(n.left))
&& (forall n: Ref :: n in nodes ==> acc(n.right))
&& (forall n: Ref :: n in nodes ==> acc(n.marked))
&& (forall n: Ref :: {n.left in nodes}{n in nodes, n.left}

n in nodes && n.left != null ==> n.left in nodes)
&& (forall n: Ref :: {n.right in nodes}{n in nodes, n.right}

n in nodes && n.right != null ==> n.right in nodes)

method trav_rec(nodes: Set[Ref], node: Ref)
requires node in nodes && INV(nodes) && !node.marked
ensures node in nodes && INV(nodes)

/* Marked nodes are not unmarked */
ensures forall n: Ref :: {n in nodes, n.marked}

n in nodes ==> (old(n.marked) ==> n.marked)
ensures node.marked

/* The graph structure is not modified. */
ensures forall n: Ref :: {n in nodes, n.left}

n in nodes ==> (n.left == old(n.left))
ensures forall n: Ref :: {n in nodes, n.right}

n in nodes ==> (n.right == old(n.right))
/* Propagation of the marker */
ensures forall n: Ref :: {n in nodes, n.marked}

{n in nodes, n.left.marked}
n in nodes ==>

(old(!n.marked)
&& n.marked ==> (n.left == null || n.left.marked))

ensures forall n: Ref :: {n in nodes, n.marked}
{n in nodes, n.right.marked}

n in nodes ==>
(old(!n.marked)
&& n.marked ==> (n.right == null || n.right.marked))

{
node.marked := true

if (node.left != null && !node.left.marked) {
trav_rec(nodes, node.left)

}

if (node.right != null && !node.right.marked) {
trav_rec(nodes, node.right)

}
}

Fig. 16. An encoding of a simple graph-marking algorithm in Viper.

25

