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Abstract

Modern object-oriented languages support higher-order implementations through function
objects such as delegates in C#, agents in Eiffel, or function objects in Scala. Function ob-
jects bring a new level of abstraction to the object-oriented programming model, and require
a comparable extension to specification and verification techniques. We introduce a verifica-
tion methodology that equips each function object with side-effect free (pure) methods for
its pre- and postcondition, respectively. These pure methods can be used to specify client
code relatively to the contract of the function object. We demonstrate the expressiveness of
our approach through several non-trivial examples. It can be combined with any verification
technique that supports pure methods, as illustrated by our experiments with Spec#.
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1 Introduction

Object-oriented design makes a clear choice in dealing with the basic duality between objects and
operations (data and functions): it bases system architecture on the object, more precisely the
object types as represented by classes, and attaching any operation to one such class. Functional
programming languages, on the other hand, use functions as the primary compositional elements.
The two paradigms are increasingly borrowing from each other: functional programming languages
such as OCaml integrate object-oriented ideas, and a number of object-oriented languages now
offer a mechanism to package operations (routines, methods) as objects. In the dynamically typed
world, the idea goes back at least to Smalltalk with its blocks; among statically typed languages,
C# has introduced delegates, Eiffel agents, and Scala function objects.

The concept of agent or delegate is, in its basic form, very simple, with immediate applications.
A typical one, in a Graphical User Interface system, is for some part of a system to express its
wish to observe (in the sense of the Observer pattern [7]) events of a certain type, by registering a
procedure to be executed in response:

US map. left click . subscribe (agent show state votes)

This indicates that whenever a left click event occurs on the map, the given procedure show state votes
should be executed. The routine subscribe takes as argument an agent representing a procedure
with two integer arguments, and the mouse coordinates x and y . Since the agent is a formal argu-
ment, subscribe does not know which exact procedure, such as show state votes, it might represent;
but it can call it all the same, through a general procedure call applicable to any agent, and any
target and argument object.

Agents (we will stay with this term but much of the discussion applies to other language
variants) appear in such examples as a form of function pointers as available for example in C and
C++. But they go beyond this first analogy. First, they are declared with a signature and hence
provide a statically typed mechanism, whereas a function pointer just denotes whatever is to be
found in the corresponding memory address. Next, an agent represents a true routine abstraction
with an operation to call the underlying routine.

These mechanisms have proved attractive to object-oriented programmers but they also raise
new verification challenges: how do we prove programs taking advantage of them? These challenges
have been solved for functional languages. However, these solutions cannot be applied to object-
oriented languages with their use of the heap and side effects.

To answer these requirements we introduce a specification and verification technique. Our
approach uses side effect free (pure) routines to specify the pre- and postcondition of agents. To
specify routines that take agents as arguments, we use these pure routines. Using previous work on
pure routines [6, 13], these routines are encoded as mathematical functions, which yields the value
of the agent pre- and postcondition. The basic idea, developed in the following sections, is that to
prove a property of an agent call, a.call(t , arg)1, it suffices to prove that the precondition of the
agent a holds before the invocation, and then we can assume that the postcondition of a holds.

The three main technical contributions are: the idea of using pure routines to model the agent
pre- and postcondition; a specification and verification methodology for function objects; and the
demonstration of the approach’s practicality through a set of proofs, of a sequence of examples of
increasing difficulty, including one previously described as an open problem.

Although we focus on Eiffel agents, it should be straightforward to apply the results to mech-
anisms addressing similar goals in other languages, in particular, C# delegates. One restriction,
however, is that any target language must be equipped or extended with contracts to enable for-
mal reasoning; in particular, the approach relies on the assumption that it is possible to query a
function object for its precondition and postcondition.

Section 2 presents example applications of agents and their verification challenge. Section 3
describes the verification method. Section 6 applies the method to the examples from Section 2.
Section 7 reports the application of these proofs through an automatic prover. Section 8 discusses
related work; Section 9 summarizes the result and describes future developments.

1To simplify the notation, we use a slight variant of the Eiffel.
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2 Agent Examples and their Verification Challenge

We present some typical applications of agents. To simplify the notation, we assume agents are
procedures and have at most one argument.

2.1 Formatter

The first example comes from a paper by Leavens et al. [11] and is recouched in Eiffel below. It is
of particular interest since they describe it as a verification challenge beyond current techniques.
The class FORMATTER models paragraph formatting with two alignment routines. The class
PARAGRAPH includes a procedure to format the current paragraph:

class FORMATTER
align left (p: PARAGRAPH) align right (p: PARAGRAPH)
require not p. left aligned require not p. right aligned
do do

... Operations on p ... ... Operations on p ...
ensure p. left aligned ensure p.right aligned
end end

end

class PARAGRAPH
format (proc: PROCEDURE [FORMATTER, PARAGRAPH ]; f: FORMATTER)

do proc. call ( f , Current) end
end

For illustration purposes, the routines align left and align right require that the paragraph is
not left aligned and not right aligned, respectively. The routines left aligned and right aligned are
pure routines (side effect free) defined in the class PARAGRAPH, and return true if the paragraph is
left aligned or right aligned, respectively. The signature proc: PROCEDURE [FORMATTER, PARA-

GRAPH ] declares a procedure proc with two open arguments (the target of type FORMATTER and
a parameter of type PARAGRAPH ). Open arguments are the arguments provided in the invocation
of the agent. An example of the use of the format routine is shown in the routine apply align left.
This routine is implemented as follows:

apply align left ( f : FORMATTER; p: PARAGRAPH)
require

not p. left aligned
do

p. format (agent { FORMATTER }.align left , f )
ensure

p. left aligned
end

The verification challenge in this case is to specify and verify the routine format in an abstract
way, abstracting the pre and postcondition of the agent. Then, we should be able to invoke the
routine format with a concrete agent, here align left, and to show that the postcondition of align left
holds. If the format routine is called with another routine, say align right, we should be able to
show that the postcondition of align left holds without modifying the proof of format.

2.2 Multi-Level Undo-Redo

The command pattern [7] can be used to implement multi-level undo-redo mechanisms. The stan-
dard implementation uses a class COMMAND with features execute and cancel. This example
involves a history list, of type LIST [COMMAND], such that is possible to undo all previously
recorded commands through the following routine:

undo all ( history list : LIST [COMMAND] )
do
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history list . do if (agent {COMMAND}.cancel, agent {COMMAND}.cancelable)
end

The routine cancelable returns true if the command can be canceled; in other words it satisfies
the precondition of cancel. Iteration routines such as do if, do all, for all, and exists are available to
all list classes through their declaration in the ancestor class LINEAR, where a typical declaration
is:

do if ( f : PROCEDURE [ANY]; test: PREDICATE [ANY])
do

from start until after loop
if test .item (item) then f. call (item) end
forth

end
end

The declaration f: PROCEDURE [ANY] indicates that f can come from any class and takes no
arguments besides the target; similarly for test. (ANY is the most general class, from which all
classes descend; cf. ”Object” in Java.) The loop follows a standard scheme moving a cursor: start
brings the cursor to the first element, forth moves it by one position, after indicates whether the
cursor is past the last element, and item gives the element at cursor position.

The verification challenge in this example is to reason about the pre- and postcondition of
the agent applied to several objects (in this example the elements of the list), where each agent
invocation changes the properties of a single object. Verifying these kinds of examples is challenging
because the invocation of the agent on one target might change the properties of the other targets.
The use of multiple targets also illustrates one of the differences between agents and delegates in
C#: applying an agent to multiple objects requires the ability to pass function objects with open
target.

2.3 Archive Example

In this section we describe the archive example presented by Leavens et al. [11] and proved by Müller
and Ruskiewicz [14]. This example illustrates the application of agents with closed arguments
(closed arguments are the arguments of an agent provided at declaration of the agent).

The class TAPE ARCHIVE defines a tape with a routine store which stores objects if the device
is loaded. An application of agents passed as parameter is implemented in the class CLIENT,
which calls the routine log file with the string s. Finally, the class MAIN shows an example of the
invocation of the routine log in the CLIENT class.

class TAPE ARCHIVE class TAPE
tape : TAPE save(o: ANY) do ... end
is loaded : BOOLEAN −− other routines omitted
ensure end
Result = (tape /= void) class CLIENT

log ( log file :PROCEDURE[ANY;TAPE];
make do create tape end s :STRING)

do log file . call (s) end
store (o: ANY) end

require class MAIN
is loaded main (c: CLIENT)

do local
tape .save (o) t : TAPE ARCHIVE

end do
−− other routines create t.make
−− omitted c. log (agent t.store , ”Hello World”)

end end
end



3 VERIFICATION METHODOLOGY 7

The invocation log file.call(s) invokes the procedure log file with the parameter s. The decla-
ration PROCEDURE[ANY;TAPE]2 indicates that log file is a procedure with closed argument of
type TAPE and one open argument of type ANY. The target of the invocation is defined in the
creation of the agent. In this example, the target object is t defined by agent t.store.

The verification challenge in this case is to verify the routine log in an abstract way, and being
able to show that the precondition of the agent store holds before its invocation. In the routine
log, the methodology has to assume that the target is closed but the exact target is unknown.

3 Verification Methodology

A verification technique should address both the specification of routines that uses function objects
and the verification of invocation of function objects. Section 3.1 considers the first issue; the
remainder of this section examines the second one.

3.1 Specifying Function Objects

The difficulty of specifying the correctness of agents is that while a variable of an agent type
represents a routine, it is impossible to know statically which routine that is. The purpose of
agents is to abstract from individual routines. The specification must reflect this abstraction.

What characterizes the correctness of a routine is its precondition and its postcondition. For
an agent, these are known abstractly through the functions precondition and postcondition of class
ROUTINE and its descendants. These functions enable us to perform the necessary abstraction on
agent variables and expressions. The approach makes it possible for example to equip the routine
format with a contract:

format (proc: PROCEDURE [FORMATTER, PARAGRAPH ]; f: FORMATTER)
require

proc . precondition ( f ,Current)
do

proc . call ( f ,Current)
ensure

proc . postcondition ( f ,Current)
end

Note that the precondition of format uses the routine precondition to query the precondition of
the procedure proc. The ability to query an agent object for its precondition and postcondition is
important for the verification framework, and must be available or emulated in the transposition
of the present work to any other object-oriented language.

Finally, we need to specify the routine call in the class ROUTINE. Its specification is the
following:

call ( target : ANY; p: ANY)
require

Current.precondition (target,p)
ensure

Current.postcondition (target,p)

3.2 Reasoning

This section describes the methodology to reason about agents with open arguments. First, we
introduce the functions3 $precondition and $postcondition to model the agents pre- and postcondi-
tion. Then, we show the assumptions and assertions that are generated when an agent is initialized
and called. The methodology is extended for framing in Section 4. Sections 3.3 and 4.2 extend the
methodology for closed arguments.

2This is a simplification of the declaration in Eiffel. The declaration in Eiffel is PROCE-
DURE[ANY,TUPLE[TAPE]].

3We use the prefix $ in the mathematical functions to distinguish them with the Eiffel routines.
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3.2.1 Agent Pre- and Postconditions.

The methodology uses two functions to model the pre- and postcondition of the agent. The function
$precondition takes three values (the agent, the target and the parameter) and the current heap,
and yields the evaluation of the agent’s precondition. The function $postcondition takes a second
heap to evaluate old expressions. The signature of these functions are defined as follows:

$precondition : Value ×Value ×Value ×Heap ⇀ Bool
$postcondition : Value ×Value ×Value ×Heap ×Heap ⇀ Bool

3.2.2 Initializing Agents.

Given the agent initialization a := agent pr where pr is a procedure, the methodology generates
the following assumptions:

assume ∀t , p : ObjectId ; h1 : Heap : $precondition(a, t , p, h1) = $prepr (t , p, h1)
assume ∀t , p : ObjectId ; h1, h2 : Heap : $postcondition(a, t , p, h1, h2) = $postpr (t , p, h1, h2)

where $prepr and $postpr denotes the pre- and postcondition of the procedure pr , t the target
object, and p the argument respectively.

3.2.3 Invoking Agents.

Invoking an agent a with target t and argument p, a.call(t , p), first asserts the precondition of the
agent, and then assumes the postcondition. The proof obligations are the followings:

assert $precondition(a, t , p,Heap)
h0 := Heap
havoc Heap
assume $postcondition(a, t , p,Heap, h0)

The current heap is denoted by Heap. The assignment h0 := Heap saves the current heap, then
h0 is used to evaluate the postcondition. The havoc command assigns an arbitrary value to the
heap.

This translation is based on the translation of pure routines [6, 13]. The novel concepts are
the introduction of the functions $precondition and $postcondition to model the agent pre- and
postcondition, and the generation of assumptions for the initialization of the agent, which relates
the pre- and postcondition of the agent with the concrete pre- and postcondition of the procedure.

3.2.4 Noninterference.

Agents can be declared with open arguments. If the target is open, the same agent can be invoked
with different target objects. To reason about these invocations, we need the notion of noninterfer-
ence. Given a partial function f : Heap ⇀ X , we call footprints the elements of its domain. In this
work we only consider functions f such that, for each heap h on which f is defined, there exists
a (unique) minimal sub-heap h0, so that the value of f on lager heaps is completely determined
from its value on h0. Functions of type Heap ⇀ X are obtained from preconditions and bodies of
agents by fixing the target and parameter, and from postconditions by also fixing the old heap (we
are interested in the footprint expressed in terms of the new heap only).

Given functions f : Heap ⇀ X and g : Heap ⇀ Y , we write the noninterference predicate
f #g : Heap → Bool which returns true iff both f and g are defined and their minimal footprints
are disjoint.

We now lift the disjointness predicate # to objects. Let C be a class and F the set of state func-
tions (preconditions, postconditions with fixed pre-heap, and bodies of features) which it provides.
For o, o′ ∈ ObjectId objects of class C , we define

o#o′ : Heap → Bool
(o#o′)(h) , ∀v , v ′ ∈ Value,∀f , f ′ ∈ F . (f (o, v)#f ′(o′, v ′))(h)



3.3 Reasoning about Closed Arguments 9

The role of the # predicate is to generalize from concrete mechanisms for establishing noninter-
ference, namely ownership [5, 12], separation logic [18, 16], regional logic [1]. The idea is that each
such formalism is sufficiently expressive to imply instances of o#o′ facts on a per-example basis.

3.3 Reasoning about Closed Arguments

The above two sections present a methodology to reasoning about agents with open arguments. In
this section, we extend the methodology to agents with closed arguments. Framing for agents with
closed arguments is omitted here, however, it is presented in Section 4.2.

To model closed arguments, we introduce two functions: $precondition1 and $postcondition1
4.

These functions yield the evaluation of pre- and postcondition of an agent with one closed argument
(either closed target or closed parameter). The function $precondition1 takes two values (the agent
and the open argument) and the current heap, and yields the evaluation of the precondition of
the agent. The function $postcondition1 takes also a second heap to evaluate old expressions. The
signature of the functions are defined as follows:

$precondition1 : Value ×Value ×Heap ⇀ Bool
$postcondition1 : Value ×Value ×Heap ×Heap ⇀ Bool

To handle arbitrary number of arguments in a routine, say n, the methodology can be extended
by adding the functions $precondition0...$preconditionn and the functions $postcondition0...$postconditionn .
The functions

$preconditioni : Valuei+i × Heap ⇀ Bool
$postconditioni : Valuei+i × Heap ×Heap ⇀ Bool

can be used to model agents with i open arguments.

3.3.1 Initializing Agents.

To handle closed arguments, the methodology generates new assumptions using the functions
$precondition1 and $postcondition1. In the following, we present these assumptions for closed target
and closed arguments.

Closed Target. Given the agent initialization a := agent t1.pr where t1 is the closed target,
and pr a procedure, the methodology generates the following assumptions:

assume ∀p : ObjectId ; h1 : Heap : $precondition1(a, p, h1) = $prepr (t1, p, h1)
assume ∀p : ObjectId ; h1, h2 : Heap : $postcondition1(a, p, h1, h2) = $postpr (t1, p, h1, h2)

These assumptions quantify only over one parameter, p. The target object t1 is known, and it
is used in the function $prepr . The difference with the assumptions generated for open arguments
(Section 3.2) is that the assumptions for open arguments quantify over both the target and the
parameter.

Closed Parameter. Given the agent initialization a := agent pr(p1) where p1 is the closed
parameter, and pr a procedure, the methodology generates the following assumptions:

assume ∀t : ObjectId ; h1 : Heap : $precondition1(a, t , h1) = $prepr (t , p1, h1)
assume ∀t : ObjectId ; h1, h2 : Heap : $postcondition1(a, t , h1, h2) = $postpr (t , p1, h1, h2)

4As a reminder, we assume that routines have only one parameter, although, the methodology can be easily
extended.
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3.3.2 Invoking Agents.

The invocation of an agent with closed arguments takes as arguments the agent and the open
parameter. Given the agent a which declares a procedure with one open argument (it can be open
target or open parameter) the agent invocation a.call(p) with argument p, defines the following
proof obligations:

assert $precondition1(a, p,Heap)
h0 := Heap
havoc Heap
assume $postcondition1(a, p,Heap, h0)

where Heap denotes the current heap.
Note that Eiffel does not distinguish between an agent with open target and an agent with

open parameter. Both agents are declared with the same notation. Thus, the methodology uses the
functions $precondition1 and $postcondition1 to express the precondition and postcondition with
open arguments, and then it uses the assumptions generated in the initialization of the agent. An
example of the application of open arguments is presented in Section 6.3.

4 Framing

This section presents a solution for framing. First, framing is solved for agents with open arguments,
and then the methodology is extended for agents with closed arguments.

4.1 Framing for Agents with Open Arguments

One of the most interesting part of routines’ specification is the modifies clause, which defines
the locations that are modified by the routine. The problem of defining these locations is known
as frame problem. The frame problem has been solved for example using dynamic frames [9, 19].
However, this problem has to be solved for routines that take other routines as arguments (agents).
For example, in the routine format presented in Section 2.1, one need to define what locations this
routine modifies:

format (proc: PROCEDURE [FORMATTER, PARAGRAPH ]; f: FORMATTER)
do

proc . call ( f , Current)
end

A candidate solution to this problem is to assume that format modifies the target of the agent
proc. However, this assumption is too strong since format may only modify a few attributes of
proc’s target. Note that format can be invoked with any routine, and each routine might modify
different locations.

To solve the frame problem for agents, we adapt dynamic frames. Instead of using a set of
locations as in Kassios’s work [9], we define a routine modifies (in the source language) which takes
an agent a, its target and argument’s values, and returns the locations modified by the agent a
with target t and argument p. Thus, the modifies clause of format can be defined as follows (pre
and postconditions are omitted):

format (proc: PROCEDURE [FORMATTER, PARAGRAPH ]; f: FORMATTER)
modify

modifies (proc , f , Current)
do

proc . call ( f , Current)
end

This modifies clause expresses that the routine format modifies the locations that are modified
by the procedure proc. Depending of the routine used to invoke format , the function modifies will
yield a different set of locations.
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4.1.1 Modifies Clauses.

We have extended Eiffel with modifies clauses. Each routine contains a modifies clause which is
defined as a comma separated list of locations. To express what locations are modified by an agent,
we introduce the function modifies. The definition of modifies clauses and routines declarations is
the following:

modifies clause ::= modifies clause,modifies clause
| VarId
| modifies(VarId ,VarId ,VarId)

routine ::= RoutineId (VarId : Type) : Type
require boolExp
modify modifies clause
do

instr
ensure boolExp
end

where boolExp are boolean expressions, RoutineId routine identifiers, VarId variable identifiers,
and instr instructions.

4.1.2 Encoding of Modifies Clauses.

To encode the modifies clauses, we introduce a function $modifies which takes an agent a, its target
and argument’s values, the current heap, an object value o, and a field name f , and yields true if
the agent a with its target and argument modifies the field f of the object o. The signature of this
function is the following:

$modifies : Value ×Value ×Value ×Heap ×Value × FieldId ⇀ Bool

For example, the modifies clause of the routine format can be encoded using this function as
follows:

free ensures ∀o : ObjectId ; fId : FieldId :
not $modifies(proc, f ,Current ,Heap, o, fId)⇒ Heap[o, fId ] = old(Heap)[o, fId ]

This property expresses that for all object o, and all field fId that are not modified by the agent
proc with the target f and argument Current , then the value of the field o.fId in the current heap
is equal to the value of o.fId in the old heap. A free ensures postcondition is a postcondition that
is assumed by the callers, and it does not have to be proven when the implementation is verified.
The expression Heap[o, fId ] yields the value of the field fId of the object o in the current heap,
and Heap denotes the current heap.

Generalizing, modifies clauses are list of application of the function $modifies and variable
identifiers. Given the modifies clause:

$modifies(a1, t1, p1), ..., $modifies(an , tn , pn), v1, ..., vm

this clause is encoded as:

free ensures ∀o : ObjectId ; fId : FieldId :0BB@
not $modifies(a1, t1, p1,Heap, o, fId)
∧...∧
not $modifies(an , tn , pn ,Heap, o, fId)
∧ o! = v1 ∧ o! = vm

1CCA⇒ Heap[o, fId ] = old(Heap)[o, fId ]

4.1.3 Initializing Agents.

To solve the frame problem for agents, one need to link the function $modifies(proc, t , p) with
the locations that the routine proc modifies. We solve this by applying the same approach to
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reasoning about agent’s pre- and postcondition. Thus, our methodology generates assumptions of
the function $modifies, when the agent is initialized. Given a procedure pr , the agent initialization
a := agent pr generates the following assumptions:

assume ∀t , p : ObjectId ; h1 : Heap : $precondition(a, t , p, h1) = $prepr (t , p, h1)
assume ∀t , p : ObjectId ; h1, h2 : Heap :

$postcondition(a, t , p, h1, h2) = $postpr (t , p, h1, h2)

assume ∀t , p, o : ObjectId ; fId : FieldId ; h1 : Heap :
$modifies(a, t , p, h1, o, fId) = $modifiespr (t , p, o, fId)

The assumptions for the functions $precondition and $postcondition are the same assumptions
described in Section 3.2. The third assumption relates the function $modifies with the modifies
clause of pr . The function $modifiespr yields true if the procedure pr modifies the field o.fId
for the target t and argument p. For example, assuming that the routine align left in the class
FORMATTER (Section 2.1) modifies its argument p, then modifiesalign left is defined as follows:

$modifiesalign left(Current , p, o, fId) , (o = p)

Generalizing, the function modifiespr takes a target object, an argument, and the object id and
field id. The definition of this function can be generated from the modifies clause of each procedure
pr .

4.2 Framing for Agents with Closed Arguments

4.2.1 Modifies Clauses.

To define the locations that an agent with closed arguments modifies, we introduce a function
modifies1. This function takes an agent a and its open argument, and returns the locations modified
by the agent a with the argument p. The definition of the modifies clause is extended as follows:

modifies clause ::= modifies clause,modifies clause
| VarId
| modifies(VarId ,VarId ,VarId)
| modifies1(VarId ,VarId)

Using the function modifies1, the modifies clause of the routine log (Section 2.3) can be defined
as follows:

log ( log file : PROCEDURE [ANY;TAPE];
s : STRING)

modify
modifies1( log file ,s)

do
log file . call (s)

end

4.2.2 Encoding of Modifies Clauses.

The encoding of the modifies clauses follows the same ideas of the above section. We define a
function $modifies1 which takes an agent a, its open argument’s value, the current heap, an object
value o, and a field name fId , and yields true if the agent a with argument p modifies the field
o.fId . The signature of this function is the following:

$modifies1 : Value ×Value ×Heap ×Value × FieldId ⇀ Bool

For example, the modifies clause of log can be encoded as follows:
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free ensures ∀o : ObjectId ; fId : FieldId :
not $modifies1(log file, s,Heap, o, fId)⇒ Heap[o, fId ] = old(Heap)[o, fId ]

4.2.3 Initializing Agents.

To conclude with the framing for closed arguments, the methodology generates assumptions in a
similar way to the above section. We describe the assumptions generated for initialization of agents
with closed target, closed parameter is analogous.

Given the agent initialization a := agent t1.pr where t1 is the closed target, and pr a procedure,
the methodology generates the following assumptions:

assume ∀p : ObjectId ; h1 : Heap : $precondition1(a, p, h1) = $prepr (t1, p, h1)
assume ∀p : ObjectId ; h1, h2 : Heap : $postcondition1(a, p, h1, h2) = $postpr (t1, p, h1, h2)

assume ∀o, p : ObjectId ; fId : FieldId :
$modifies1(a, p, o, fId) = $modifiespr (t1, p, o, fId)

5 Extending the Methodology for Functions

In the above section, we have described a verification methodology for agents assuming the agents
are prodecures. In this section, we extend the methodology to function agents. We describe it
using agents with open arguments, however, the methodology for agents with closed arguments is
analogous.

5.1 Basics

Since functions return a result, they can access to an special variable Result . For example, a
function sum that adds two integers can be write as follows:

sum (op1, op2: INTEGER): INTEGER
do

Result := op1 + op2
ensure

Result := op1 + op2
end

If we apply the same approach defined in the above sections, one would introduce a function
postconditionsum to express the postcondition of sum. This function takes only the arguments and
the target of the object. However, if we invoke x := sum(4, 5) we would need to replace Result by
x . To model this, we introduce a new argument to the function postcondition. Then, we can write
the postcondition of the invocation x := sum(4, 5) as postconditionsum(Current , 4, 5, x ).

The same problem raise with function agents: one need to add the result value of the agent.
Thus, we introduce a new function postconditionR which takes an extra parameter: the result. Its
signature is the following:

$postconditionR : Value ×Value ×Value ×Value ×Heap ×Heap ⇀ Bool

5.1.1 Initializing Agents.

Given the agent initialization a := agent f , then the methodology generates the following as-
sumptions:

assume ∀t , p : ObjectId ; h1 : Heap : $precondition(a, t , p, h1) = $pref (t , p, h1)
assume ∀t , p, r : ObjectId ; h1, h2 : Heap :

$postconditionR(a, t , p, r , h1, h2) = $postf (t , p, r , h1, h2)
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where $pref and $postf denotes the pre- and postcondition of the function f , t the target object,
p the argument, and r the result of the function. Note that postf takes an extra argument: the
result of the function.

5.1.2 Invoking Agents.

Agent functions are invoked using the routine item. The invocation of an agent a with target t
and argument p, x := a.item(t , p), first asserts the precondition of the agent, and then assumes
the postcondition hold with result x . The proof obligations are defined as follows:

assert $precondition(a, t , p,Heap)
h0 := Heap
havoc Heap
assume $postconditionR(a, t , p, x ,Heap, h0)

5.2 Framing for Functions

Invocations of agent functions can be used in contracts. For example, a routine r can define the
following precondition:

r ( f : FUNCTION [ANY, ANY; BOOLEAN])
require

f .item (t , p)

To solve the frame problem, one need to know what are the locations the agent f reads. To
know the locations that the agent f reads, we introduce the function $reads. This function takes
an agent a, its target and argument’s values, the current heap, an object value o, and a field name
f , and yields true if the agent a with target t and argument p reads the field f of the object o.
The signature of this function is the following:

$reads : Value ×Value ×Value ×Heap ×Value × FieldId ⇀ Bool

Then, the location that the expression f .item(t , p) reads is defined by:

$reads(f , t , p)

5.2.1 Initializing Agents.

Applying the same approach to reason about framing for procedures, we generate assumptions for
the function $reads when the agent is initialized. Given the agent initialization a := agent f , then
the methodology generates the following assumptions:

assume ∀t , p : ObjectId ; h1 : Heap : $precondition(a, t , p, h1) = $pref (t , p, h1)
assume ∀t , p : ObjectId ; h1, h2 : Heap : $postcondition(a, t , p, h1, h2) = $postf (t , p, h1, h2)

assume ∀o, t , p : ObjectId ; fId : FieldId :
$reads(a, t , p, o, fId) = $readsf (t , p, o, fId)

where $readsf yields true if the function f reads the field o.fId for the target t and argument
p.

This concludes the methodology to reasoning about functions objects. The methodology uses
four side-effect free (pure) functions to express the agent pre and postcondition, and to express
what the agent reads and modifies. Next section presents applications of the methodology.
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6 Applications

In this section we study the applicability of our methodology to a range of examples which illustrate
challenging aspects of reasoning about function objects.

6.1 Formatter Example

In this section, we show how to verify the formatter example presented in Section 2.1. This routine
generates the following proof obligations:

format(proc : PROCEDURE [FORMATTER,PARAGRAPH ]; f : FORMATTER)
1 assume $precondition(proc, f , current ,Heap)
2 assert $precondition(proc, f , current ,Heap)
3 h0 := Heap
4 havoc Heap
5 assume $postcondition(proc, f , current ,Heap, h0)
6 assert $postcondition(proc, f , current ,Heap, h0)

The agent invocation is translated in the lines 2-5. The pre- and postcondition of format are
translated in the lines 1 and 6 respectively. The proof is straightforward since the assume and
assert instructions in lines 1-2 and 5-6 refer to the same heap.

The most interesting case in the verification of function object is the verification of clients that
use function object, such as apply align left. Applying our methodology to this routine generates
the following assumptions and assertions:

apply align left(f : FORMATTER; p : PARAGRAPH )
1 assume not p.$left aligned
2 a := agent{FORMATTER}.align left
3 assume ∀t1, p1 : ObjectId ; h : Heap :

$precondition(a, t1, p1, h) = $prealign left(t1, p1, h)
4 assume ∀t1, p1 : ObjectId ; h, h ′ : Heap :

$postcondition(a, t1, p1, h, h
′) = $postalign left(t1, p1, h, h

′)
5 assert $precondition(a, f , p,Heap)
6 h0 := Heap
7 havoc Heap
8 assume $postcondition(a, f , p,Heap, h0)
9 assert p.$left aligned

Similar to the previous example, lines 1 and 9 are generated by the translation of the pre-
and postcondition. The declaration agent {FORMATTER}.align left generates lines 2-4. The pre-
condition and postcondition of the routine align left is denoted by $prealign left and $postalign left

respectively. The invocation of the routine format produces lines 5-8. The current heap is stored
in h0 in line 6 to be able to evaluate the postcondition in line 8.

The key points in the proof are the assert instructions at lines 5 and 9. By the definition of
$prealign left and $postalign left , we know:

∀t1, p1 : ObjectId ; h : Heap : $prealign left(t1, p1, h) = not p1.$left aligned (1)
∀t1, p1 : ObjectId ; h, h ′ : Heap : $postalign left(t1, p1, h, h ′) = p1.$left aligned (2)

In particular, $prealign left(f , p,Heap) = not p.$left aligned . Then, the assertion at line 5 is
proven using the assumptions at lines 1 and 3, and (1). The assertion at line 9 is proven in a similar
way using the assumptions at lines 4 and 8, and (2).

6.2 Multi-Level Undo-Redo Example

In this section, we discuss how to prove the routine do if presented in Section 2.2. The proof of
routine cancel all is similar to apply align left. Due to space restrictions, the proof of cancel all is
omitted (but it is presented in our technical report [15]).
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The first step is to give an specification of the routine do if . The idea of do if (f , test) is to
execute f on all the elements which satisfy test. There is, however, a problem in specification of this
routine in the EiffelBase library: test can be arbitrary and it might not imply that the precondition
of f holds. A first try at improving the contract of the routine do if could be the following:

do if ( f : PROCEDURE [ANY]; test: FUNCTION [ANY])
require

forall 1≤i≤count: test ( ith ( i)) implies f.precondition( ith ( i))
ensure

forall 1≤i≤count: ( old test ( ith ( i)) implies f.postcondition( ith ( i)) )

This contract uses two more features of the class LINEAR: ith and count. Function ith returns
the i-th element of the current structure, and attribute count contains the length of the structure.

However, this improved contract is still not sufficient. Consider list l = [c, c] where c satisfy
the query cancelable. Consider an invocation of do if with the agents cancel and cancelable. Since
we know that the precondition of cancel holds for all the elements of the list l, we can invoke
the routine. Thus, the first agent is invoked. But assume that this invocation breaks the property
cancelable, then since the list contains two repeated elements, the second agent invocation does
not satisfy cancelable and an exception is trigged.

The root of the problem lies in the fact that the invocation of the agent on one element of the list
could break the precondition of the next element. To prevent the problem we must impose further
conditions. We do that using the noninterference predicate # presented in Section 3.2. These asser-
tions are then treated as proof obligations which need to be discharged by appropriate mechanisms
in the target language. Example mechanisms are richer type systems based on ownership [2, 5] (as
in our experiments with Spec#), or richer program logics based on separation logic [18, 16]. In
other words, the # operator specifies that objects do not interfere (they occupy disjoint memory
in case of separation logic, or they belong to different contexts in case of ownership). Here, we use
the property that agent invocations only modify the target object, and that noninterference still
holds after the invocation. Using this extension, we can have another go at writing the contract
for do if :

do if ( f : PROCEDURE [ANY]; test: FUNCTION [ANY])
require

forall 1≤i≤count: test ( ith ( i)) implies f.precondition( ith ( i)) and
forall 1 ≤ i < j ≤ count: ith ( i) # ith(j)

ensure
forall 1≤i≤count: ( old test ( ith ( i)) implies f.postcondition( ith ( i)) )

The new precondition says in addition that there is no interference between the elements of the
list. We now present a sketch of the proof of the routine do if. Section 7 shows how this example
is encoded and automatically proved in Spec#.

Let do if pre be the precondition of the routine do if and loop invariant be the loop invariant
defined as follows:

do if pre , Inv(α) ∧ forall 1 ≤ i < j ≤ count : ith(i)#ith(j ) ∧
forall 1 ≤ i ≤ count : ((αi .$test ⇒ $precondition(f , αi ,Heap)) ∧ (αi .$test = βi))

loop invariant , 1 ≤ j ≤ count + 1 ∧ forall j ≤ i < k ≤ count : ith(i)#ith(k) ∧
forall 1 ≤ i ≤ j − 1 : (βi ⇒ $postcondition(f , αi ,Heap, h0) ∧
forall j ≤ i ≤ count : (αi .$test ⇒ $precondition(f , αi ,Heap))

We use the auxiliary variable α to represent the current structure, which is a sequence of
length count . The i -th element is denoted αi . The expression Inv(α) denotes the invariant of the
class parameterized by the sequence α. To translate away the old operator, we introduce auxiliary
variable β, also denoting a sequence of length count . In the precondition, we assume αi .$test = βi .
In the postcondition, expression old αi .test is translated as βi .

Figure 1 presents the sketch of the proof of the routine do if. The auxiliary variable j represents
the index of the current structure. After the invocation f.call(item), we have to show that there is
still no interference between the elements of the list. This is exactly the property of the operator #,
which we have introduced in Section 3.2. The assertion at line 6 is proved using the loop invariant.
The loop invariant is reestablished using the property of the # operator.
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do if (f : PROCEDURE [ANY ]; test : FUNCTION [ANY ])
do

2 assume do if pre
h0 := Heap

4 from start until after loop
if test(item) then

6 assert $precondition(f , αj ,Heap)
h1 := Heap

8 f .call(item)
assume $postcondition(f , αj ,Heap, h1)

10 end
forth

12 assert loop invariant
end

14 assert

„
Inv(α) ∧ forall 1 ≤ i < k ≤ count : ith(i)#ith(k) ∧
(forall 1 ≤ i ≤ count : (βj ⇒ $postcondition(f , αj ,Heap, h0))

«
end

Figure 1: Sketch of the proof of the routine do if.

6.3 Archive Example

In the archive example, the most interesting proof is the proof of the routine main. The routine
log is interesting to show how to specify and prove closed arguments. To prove these routines, we
apply the methodology described in Section 3.3. The proof for the routine log is similar to the
proof of the format routine. The only change is the use of the function $precondtion1 which takes
only three arguments (the procedure log file, the string s and the heap):

log(log file : PROCEDURE [ANY ; TAPE ]; s : STRING)
1 assume $precondition1(log file, s,Heap)
2 assert $precondition1(log file, s,Heap)
3 log file.call(s)

The proof of routine main translates the agent in lines 3-5. The function precondition1 is used
to express the precondition of the agent with closed target. Using the assumption at line 4 and the
knowledge of line 2, we can prove the assert instruction at line 7.

main(c : CLIENT )
1 create t .make
2 assert t .$is loaded
3 a := agent t .store
4 assume ∀p1 : ObjectId ; h : Heap :

$precondition1(a, p1, h) = $prestore(a, t , p1, h)
5 assume ∀p1 : ObjectId ; h, h ′ : Heap :

$postcondition1(a, p1, h, h
′) = $poststore(a, t , p1, h, h

′)
6 assert $precondition1(a, ”HelloWorld”,Heap)
7 c.log(a, ”HelloWorld”)

7 Automatic Proofs

The goal of the verification effort is to support automatic verification of programs using function
objects. Although an implementation of a complete tool chain is still work in progress, we were
able to perform significant experiments through the Boogie [3] verifier.

To apply Boogie, we converted the Eiffel examples into Spec# [3]. Although the main reason
for this decision is that our Eiffel proof framework was not yet able to meet our needs, another
motivation was to check the language independence of the proof technique. After translation, we
used the Boogie verifier to prove the correctness of the examples. For the present work the trans-
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lation from Eiffel to Spec# was performed manually. The translation is mostly straightforward,
the only aspect whose automation would require work is the annotation of modifies clauses (and
annotations related to Spec#’s ownership system).

Proving the examples requires having an implementation of the Eiffel class ROUTINE in Spec#.
We have written a Spec# interface Routine with methods precondition, postcondition and call.
To pass agent expressions as arguments, we provide a class, implementing the Routine inter-
face, for every agent expression. For example, in the formatter example, the translation of agent
{FORMATTER}.align left relies on a class AlignLeftRoutine implementing Routine; one may then
pass an object of type AlignLeftRoutine to represent the original agent {FORMATTER}.align left.

The routines precondition, postcondition and call in the class AlignLeftRoutine are implemented
by invoking the precondition, postcondition and the routine align left itself. The method postcon-
dition needs extra work to eliminate the old keyword. We solved this problem by introducing
an extra field in the class. After addition of suitable modifies clauses to express what locations
the method modifies, Boogie was able to prove the Spec# versions of all the previous examples
(Section 6) automatically.

The example of Section 6.2 requires a proof of noninterference. To prove this example in Spec#,
we used ownership [5, 12]. The technique represents the structure of the class LINEAR using an
array, where each element is owned by the current structure (elements are rep), and all array
elements are different. This made the automatic proof of the Spec# version possible after addition
of type annotations. The example of Section 6.3 is encoded in a similar way to the formatter adding
the functions precondition1 and postcondition1.

Using the same techniques we have proved a significant number of other examples, including
all those presented by Leavens et al. [11]. The details of our proofs using Spec# can be found in
our technical report [15].

8 Related Work

Jacobs [8] as well as Müller and Ruskiewicz [14] extend the Boogie verification methodology to
handle C# delegates. They associate pre- and postconditions with each delegate type. When the
delegate type is instantiated, they prove that the specification of the method refines the specification
of the delegate type. At the call site, one has to prove the precondition and may assume the
postcondition of the delegate. By contrast, the methodology presented here “hides” the specification
behind abstract predicates. Callers will in general require the predicates to hold that they need
in order to call an agent. The approach taken by Jacobs, Müller, and Ruskiewicz splits proof
obligations into two parts, the refinement proof when the delegate is instantiated and the proof
of the precondition when the delegate is called. This split makes it difficult to handle closed
parameters, in particular, the closed receiver of C# delegates. Both previous works use some form
of ownership [12] to ensure that the receiver of a delegate instance has the properties required by
the method underlying the delegate. Our methodology requires only one proof obligation when the
agent is called and, avoids the complications and restrictions of ownership and can be generalized
to several closed parameters more easily.

Parkinson and Bierman [17] introduce abstract predicates to verify object-oriented programs in
separation logic. Abstract predicates are a powerful means to abstract from implementation details
and to support information hiding and inheritance. They are similar to the predicates that we use
for the preconditions and postconditions of agents. Even though Parkinson and Bierman’s work
does not handle function objects, we believe that the ideas presented in this paper also apply to
their setting.

Birkedal et al. [4] present higher-order separation logic, a logic for a second-order programming
language, and use it to verify an implementation of the Observer pattern [10]. In contrast to
separation logic, the methodology presented in this paper works with standard first-order theorem
provers.

A key issue of reasoning about object-oriented programs is framing, that is, how to conclude
which heap changes affect which predicates. In this paper, we simply assumed a noninterference
predicate # without prescribing a particular way of enforcing it. Suitable candidates are separation
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logic [18, 16], dynamic frames [9, 19], or regions [1]. Separation logic offers separating conjunction
to express noninterference. Both dynamic frames and regions effect specifications for predicates
and routines.

Our encoding of the routines precondition and postcondition is based on previous work on pure
routines by Darvas and Leino [6], and Leino and Müller [13].

9 Conclusions and Future Work

We have introduced a verification methodology to verify higher-order functions. To invoke function
objects, we use the ordinary call mechanism through the special routine call of class ROUTINE, with
its contract given by precondition and postcondition. Our attempts at automatic proofs (preceded
by manual translation) suggest that the methodology is able to specify and verify function objects
by introducing side effect free routines which model the pre- and postcondition of the function
objects.

The experience so far suggests that a complete verification chain leading to fully automatic
verification of object-oriented programs with function objects is possible. Clearly a number of
links must still be filled to make this chain a reality, in particular removing the limitations and
simplifications described in this article, and automating the steps that are still currently manual.
This work is now proceeding as part of the development of an Eiffel Verification Environment
(EVE) at ETH.

Although tried out on Eiffel, the verification methodology is not dependent on a specific pro-
gramming language; we see no major obstacles in applying it to other languages supporting function
objects, an increasingly popular mechanism for modern programming languages, object-oriented
or not.
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A More Applications

A.1 Formatter Example using Closed Arguments

This section shows a variant of the formatter example presented in Sections 2.1 and 6.1 using closed
arguments. The format routine takes an agent with closed target of type FORMATTER, and open
parameter of type PARAGRAPH :

class PARAGRAPH
format (proc: PROCEDURE [FORMATTER, PARAGRAPH ] )

do proc. call (Current) end
end

The routine apply align left is implemented using closed target as follows:

apply align left ( f : FORMATTER; p: PARAGRAPH)
require

not p. left aligned
do

p. format (agent f. align left )
ensure

p. left aligned
end

To prove these routines, we apply the methodology described in the above section. The proof
for the routine format is similar to the previous proof. The only change is the use of the function
target :

format(proc : PROCEDURE [FORMATTER,PARAGRAPH ]; f : FORMATTER)
1 assume precondition(proc, current , h0)
2 assert precondition(proc, current , h0)
3 proc.call(current)
4 assume postcondition(proc, current , h0, h1)
5 assert postcondition(proc, current , h0, h1)

The new proof for the routine apply align left adds a new assumption (line 3). This assumption
is used to proof the assert instructions at lines 6 and 9.

apply align left(f : FORMATTER; p : PARAGRAPH )
1 assume not p.$left aligned
2 a := agent f .align left
3 assume ∀p1 : ObjectId ; h : Heap :

$precondition(a, p1, h) = $prealign left(f , p1, h)
4 assume ∀p1 : ObjectId ; h, h ′ : Heap :

$postcondition(a, p1, h, h
′) = $postalign left(f , p1, h, h

′)
5 assert $precondition(a, p,Heap)
6 h0 := Heap
7 p.format(a, f )
8 assume $postcondition(a, p,Heap, h0)
9 assert p.$left aligned

A.2 Fold Left

We have presented three examples that show the challenges of verifying object functions. The
first example, the formatter example, illustrates how to prove function objects in an abstract way,
using the pure methods precondition and postcondition. The second one, the multi-level undo-redo
example, shows the application of agents to a sequence of objects, where every invocation affects
the state of a single object. To prove this example, we use the noninterference predicate #. Finally,
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the last example, the archive example, illustrates the problem of verifying function objects with
open arguments. To fulfill this goal, we introduce the pure methods target and parameter.

This section describes a forth example, typical of higher-order languages, where the invocation
on each element of a list produces a result which is dependent on the result of the previous
invocation. This example can be found in your technical report [15].

The fold left routine of class LIST takes as arguments a procedure which implements a binary
operation in-place on the receiver object, and an initial object. The call, where represents the list,
executes the following steps

Result := init ; f .call(Result , o1); . . . f .call(Result , on);

If for example f (n) belongs to a class with an integer field val and the body of f is val := val +n,
the final result will be ((init + o1) + · · · on). The Eiffel implementation of fold left is the following.

fold left ( f : PROCEDURE [ANY, ANY], init: ANY) : ANY
do

from start; Result := init until after loop
f . call (Result, item)
forth

end
end

The verification challenge here is finding an abstract way to describe the state change after
each application of f, and being able to show that the state change is applied n times, where n is
the length of the list.

Proof of the Fold Left Example

The first difficulty in giving a specification for this example is finding an abstract way to describe
the state change after each application of the procedure f. Our solution is to define a function
compute : G×G → G to model the abstract state transitions, and a redefined class PROCEDURE2

for function objects which manipulate abstract states.
The next challenge is to specify the result of repeated applications of call on the elements of

the list. This would normally require the use of inductive predicates. We introduce an auxiliary5

recursive function inv to compute the result of applying the agent to the first n elements of the
list:

inv : Integer ×G → G
inv(0, v) = v
inv(n, v) = ith(n).compute(inv(n − 1, v), ith(n))

Class PROCEDURE2 redefines the specification of procedure call to model the intuition that
invoking call corresponds to performing an abstract state transition.

call (invok: ANY, p: ANY)
ensure then invok = invok.compute (old invok, p)

The ensure then clause extends the postcondition of the parent with the requirement that the
effect of call is described by function compute.

As in the do if example, noninterference assertions ith(i)#ith(j ) are proof obligations that
agent invocations on one element of the list do not affect properties of other elements of the list. A
sketch of the proof, including the loop invariant, is presented in Figure 2. The only interesting step
is the implication used to re-establish the loop invariant, which uses one unrolling of the definition
of inv.

5auxiliary predicates and functions are purely proof artifacts, and must be side-effect free so that they don’t
change the semantics of the program.
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fold left (f : PROCEDURE2[ANY ,ANY ]; init : ANY ) : ANY
do

start
Result := init
assert Result = inv(0, init)
until

after
loop

assert Result = inv(index , init)
f .call(Result , item)
assume Result = Result .compute(inv(index , init), item)
forth
assert Result = inv(index , init)

end
assert Result = inv(count , init)

end

Figure 2: A sketch of the proof of routine fold left.
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B Experiments in Spec#

This section presents the encoding into Spec# of the examples described in Section 2 and Ap-
pendix A. The formatter example, the multi-level undo-redo and the archiver example presented
in Section 2 are encoded to Spec# in Sections B.1, B.2 and B.3. Then, Section B.4 proves the fold
left example described in Appendix A. Finally, SectionsB.5 and B.6 shows more experiments in
Spec# of applications of agents.

B.1 Formatter Example

To be able to encode the examples into Spec#, we need to write an interface Routine. This interface
models a routine with the routines precondition, postcondition and call. After creating the interface
Routine, we need to extend this class to model routines of target type T . The interface RoutineT
models a routine of target object T . For instance, in the formatter example, the routine format
takes a routine of target type Formatter . Thus, the Spec# class ProcedureFormatter models a
procedure with target type Formatters. This class declares the methods pre, post , call and getTarget
as follows:

using System; using Microsoft.Contracts;

/∗
The class ProcedureFormatter defines an Eiffel procedure with target type Formatters.
∗/
public interface ProcedureFormatter {

[Pure] Formatters getTarget();

[Pure] bool pre() ;

[Pure] bool post() ;

void call ()
requires this.pre() ;
modifies this .∗;
ensures this.post() && getTarget()==old(getTarget());

}

To create agent expressions, the source language uses the expression agent {T}.f. To avoid
extending the Spec# verifier and adding a new translation of agent expressions, agent expres-
sions are modeled using a class ProcedureTF where T is the type of the target object and F
is the routine. For example, the class ProcedureFormatterAlignLeft models the agent expression
agent {Formatter}.AlignLeft. Thus, an agent agent {Formatter}.AlignLeft can be created using
an object of type ProcedureFormatterAlignLeft .

The class ProcedureFormatterAlignLeft implements an agent AlignLeft. The methods pre, post
and call are implemented by invoking the precondition and postcondition of align left. These meth-
ods are implemented using the methods alignLeftPre, alignLeftPost and alignLeft respectivally. The
class is implemented in Spec# as follows:

public class ProcedureFormatterAlignLeft: ProcedureFormatter {
[Rep] public Formatters! target;
[Rep] public Paragraph! argument;

public ProcedureFormatterAlignLeft([Captured] Formatters! t, [Captured] Paragraph! p)
ensures target == t && p==argument;

{
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target = t;
argument = p;

}

[Pure] public Formatters getTarget()
ensures result == target;

{
return target;

}

[Pure] public bool pre()
ensures result == target.alignLeftPre() ;

{
return (target.alignLeftPre ()) ;

}

[Pure] public bool post()
ensures result == (target.alignLeftPost()) ;

{
return target.alignLeftPost () ;

}

public virtual void call ()
{

expose(this)
{

target . alignLeft (argument);
}

}
}

Similar to class ProcedureFormatterAlignLeft , the class ProcedureFormatterAlignRight imple-
ments an agent AlignLeft . The implementation is the following:

public class ProcedureFormatterAlignRight: ProcedureFormatter {
[Rep] public Formatters! target;
[Rep] public Paragraph! argument;

public ProcedureFormatterAlignRight([Captured] Formatters! t, [Captured] Paragraph! p)
ensures target == t && p==argument;

{
target = t;
argument = p;

}

[Pure] public Formatters getTarget()
ensures result == target;

{
return target;

}

[Pure] public bool pre()
ensures result == target.alignRightPre();

{
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return (target.alignRightPre()) ;
}

[Pure] public bool post()
ensures result == (target.alignRightPost()) ;

{
return target.alignRightPost() ;

}

public virtual void call ()
{

expose(this)
{

target .alignRight(argument);
}

}
}

The class Formatters implements the formatters alignLeft and alignRight . The precondition
and postcondition of these methods are implemented in the methods alignLeftPre, alignLeftPost
and alignRightPre, alignRightPost respectivally. These pre- and postconditions are implemented
in these methods to be able to implement the classes ProcedureFormatterAlignLeft and Procedure-
FormatterAlignRight. The formatter is implemented as follows:

public class Formatters {
[SpecPublic] [Rep] bool align ; // true: left ; false : right

public void alignLeft(Paragraph p)
requires alignLeftPre () ;
ensures alignLeftPost () ;

{
align = true;

}

[Pure] public bool alignLeftPre ()
ensures result == (!align);

{
return !align;

}

[Pure] public bool alignLeftPost ()
ensures result == (align);

{
return align;

}

public void alignRight(Paragraph p)
requires alignRightPre() ;
ensures alignRightPost() ;

{
align = false;

}

[Pure] public bool alignRightPre()
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ensures result == (align);
{

return align;
}

[Pure] public bool alignRightPost()
ensures result == (!align);

{
return !align;

}
}

The class Paragraph implements a paragraph with a method format. This method takes a
procedure f with target of type Formatter (ProcedureFormatter ! f ) and invokes it. The method
format requires f .pre and ensures f .post .

public class Paragraph {
char [][] text ;
int width;

public void format(ProcedureFormatter! f)
requires f .pre() ;
modifies f .∗;
ensures f .post() && f==old (f) &&

f .getTarget() == old(f.getTarget()) ;
{

f . call () ;
}

}

Finally, we present an example of the use of class Paragraph. First, format is called with the
agent align left. Spec# was able to prove that the postcondition of the agent align left holds after
the invocation. Then, the method format is called with the agent align right, and Spec# was also
able to prove that the postcondition of align right holds after the invocation.

public class UsingParagraph {
[SpecPublic] [Rep] public Paragraph! p;
[SpecPublic] [Rep] public Formatters! f1, f11 ;
[SpecPublic] [Rep] public Formatters! f2;

public UsingParagraph ()
{

p = new Paragraph();
f1 = new Formatters ();
f11 = new Formatters ();
f2 = new Formatters ();

}

public void exampleParagraph()
{

expose (this) {
Formatters! f = new Formatters ();
Paragraph! p2 = new Paragraph();
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assume f.alignLeftPre() ;
ProcedureFormatterAlignLeft pfal = new ProcedureFormatterAlignLeft (f,p2);

p.format (pfal ) ;

assert pfal . target . alignLeftPost () ;

Formatters! f2 = new Formatters ();
Paragraph! p3 = new Paragraph();
ProcedureFormatterAlignRight pfal2 = new ProcedureFormatterAlignRight (f2,p3);

assume f2.alignRightPre();
p.format (pfal2) ;

assert pfal2 . target .alignRightPost() ;
}

}
}

B.2 Multi-Level Undo-Redo

The process of encoding and proving the multi-level undo-redo example is similar to the formatter
example. First, we implement the class ProcedureCommand which models procedures with target
of type Command .

The precondition and postcondition of the procedure is represented with the methods pre and
post. The method call invokes the current procedure. It requires pre holds and ensures post. The
class is implemented as follows:

using System; using Microsoft.Contracts;

public interface ProcedureCommand {

[Pure] bool pre() ;

[Pure] bool post() ;

void call ()
requires this.pre() ;
ensures this.post() ;

}

The class ProcedureCommandExecute represents the agent execute (declared in the class Command).
A target of type Command is declared in this class. The method pre returns target .executePre,
and post returns executePost . The method call invokes the execute method. The implementation
is the following:

public class ProcedureCommandExecute: ProcedureCommand {
[Rep] public Command! target;

public ProcedureCommandExecute([Captured] Command! t)
ensures target == t;

{
target = t;

}
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[Pure] public bool pre()
ensures result == target.executePre();

{
return (target.executePre()) ;

}

[Pure] public bool post()
ensures result == (target.executePost());

{
return target.executePost();

}

public virtual void call ()
{

expose(this)
{

target .execute() ;
}

}
}

The class ProcedureCommandUndo represents the agent undo. This class is implemented in a
similar way to ProcedureCommandExecute. The implementation is the following:

public class ProcedureCommandUndo: ProcedureCommand {
[Rep] public Command! target;

public ProcedureCommandUndo([Captured] Command! t)
ensures target == t;

{
target = t;

}

[Pure] public Command! getTarget()
ensures ( result == target);

{
return target;

}

[Pure] public bool pre()
ensures result == target.undoPre();

{
return (target.undoPre());

}

[Pure] public bool post()
ensures result == (target.undoPost());

{
return target.undoPost();

}

public virtual void call ()
{
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expose(this)
{

target .undo();
}

}
}

The class Command implements a command with the operations execute and undo. This class
stores the current number of executions in the field executions and the maximum number of
executions in the field maxExecutions. The precondition and postcondition of the method execute
is implemented in the methods executePre and executePost respectively. The pre- and postcondition
of undo is implemented in a similar way. The class Command is implemented in Spec# as follows:

public class Command {
public int executions;
[SpecPublic] int oldExecutions;
[SpecPublic] int maxExecutions;

public Command ()
ensures (executions == 0) && (maxExecutions == 20);

{
executions = 0;
maxExecutions = 20;

}

public virtual void execute ()
requires executePre();
modifies oldExecutions, executions ;
ensures executePost();

{
oldExecutions = executions;
executions ++;

}

[Pure] public bool executePre ()
ensures result == (executions < maxExecutions);

{
return executions < maxExecutions;

}

[Pure] public bool executePost ()
ensures result == (executions == oldExecutions + 1);

{
return (executions == oldExecutions + 1);

}

public virtual void undo ()
requires undoPre();
modifies executions , oldExecutions;
ensures undoPost();

{
oldExecutions = executions;
executions ;

}

[Pure] public bool undoPre ()
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ensures result == (executions > 0);
{

return executions > 0;
}

[Pure] public bool undoPost ()
ensures result == (executions == oldExecutions 1);

{
return (executions == oldExecutions 1);

}

public virtual void dec ()
modifies executions ;
ensures (executions == (old(executions)) 1) &&

maxExecutions == old(maxExecutions);

{
executions ;

}

[Pure] public int getExc()
ensures result == executions;

{
return executions;

}
}

The class Linear implements the Eiffel class LINEAR. The current structure is stored in an
array structure. The routine doOnce takes a generic procedure and invokes it.

public class Linear {
[SpecPublic] [Rep] [ElementsRep] public ProcedureCommand[]! structure;

public Linear ([Captured] ProcedureCommand! p1, [Captured] ProcedureCommand! p2, [
Captured] ProcedureCommand! p3 )
requires p1 != p2 && p2 != p3 && p1!=p3;
ensures structure [0]==p1 && structure[1]==p2 && structure[2]==p3 &&

p1==old(p1) && p2==old(p2) && p3==old(p3) &&
structure .Length==3;

{
structure = new ProcedureCommand [3];
structure [0] = p1;
structure [1] = p2;
structure [2] = p3;

}

public virtual void doOnce(ProcedureCommand! proc)
requires proc .pre() ;
modifies proc .∗;
ensures proc .post() &&

proc == old(proc);
{

proc . call () ;
}

public virtual void doAll2(ProcedureCommand! proc1, ProcedureCommand! proc2 )
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requires proc1.pre() && proc2.pre() ;
requires proc1 != proc2;
modifies proc2 .∗, proc2 .∗;
ensures proc2.post() &&

proc1.post() &&
proc2 == old(proc2) &&
proc1 == old(proc1);

{
proc1. call () ;

assert proc2.pre() ;
proc2. call () ;
assert proc2.post() ;

}

invariant forall {int i in (0: structure .Length);
structure [ i ] != null};

invariant forall {int i in (0: structure .Length), int j in (0: structure .Length);
i!=j ==> structure[i ] != structure [ j ]} ;

}
The class DoUndo shows an example of the use of LINEAR. The method executeOnce invokes

the agent execute using the method doOnce. The method undoOnce does the same using the agent
undo.

The method executeOnce requires c.executePre. This method implements a two experiments.
The first one, an object in a location different to c is called before calling the method doOnce
with the agent execute. This experiment shows that calling other methods do not change the
property of c.executePre and we can prove this program. The second experiments changes c.
But the invocation c.dec() does violate the property c.executePre(). Thus we can also verify this
program. The implementation is the following:

public class DoUndo {

[SpecPublic] [Rep] Command! c1, c2;
[Rep] Linear! l ;

public DoUndo ()
{

// init doOnce
Command! cc1 = new Command();
Command! cc2 = new Command();
Command! cc3 = new Command();

c1 = new Command();
c2 = new Command();

ProcedureCommandExecute! p1 = new ProcedureCommandExecute (cc1);
ProcedureCommandExecute! p2 = new ProcedureCommandExecute (cc2);
ProcedureCommandExecute! p3 = new ProcedureCommandExecute (cc3);
l = new Linear(p1,p2,p3);

}

public virtual void executeOnce ()
requires c2.getExc() > 2;
modifies c2;
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{
expose (this) {

Command c = new Command();
ProcedureCommandExecute! p1 = new ProcedureCommandExecute (c);
assert c.executePre();

c2.dec() ;
c2.dec() ;

l .doOnce(p1);
assert p1. target .executePost();

}

}

public virtual void UndoOnce ()
{

expose (this) {
Command c = new Command();
c.execute() ;
assume c.executions==1;
assert c.undoPre();
ProcedureCommandUndo! p1 = new ProcedureCommandUndo (c);
assert c.undoPre();

l .doOnce(p1);
assert p1. target .undoPost();

}
}

}

B.3 Archive Example

The class ProcedureTapeDrive represents the Eiffel class PROCEDURE for TapeDrive. The pre-
condition and postcondition of the procedure are represented with the methods pre and post . The
method call invokes the current procedure. The class can be implemented in Spec# as follows

using System; using Microsoft.Contracts;

public interface ProcedureTapeDrive {
[Pure] TapeDrive! getTarget();

[Pure] bool pre() ;

[Pure] bool post() ;

void call ( string ! o)
requires this.pre() ;
modifies this .∗;
ensures this.post() ;

}

Agents store is model using the class ProcTapeStore. The methods pre, post and call are imple-
mented implemented in a similar way to the previous examples (by invoking the methods StorePre,
StorePost and Store respectively).
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public class ProcTapeStore: ProcedureTapeDrive {
[SpecPublic] [Rep] TapeDrive! target ;

public ProcTapeStore([Captured] TapeDrive! t)
ensures target == t;

{
target = t;

}

[Pure] public TapeDrive! getTarget()
ensures result ==target;

{
return target;

}
[Pure] public bool pre()

ensures result == target.StorePre();
{

return (target.StorePre()) ;
}

[Pure] public bool post()
ensures result == (target.StorePost());

{
return target.StorePost();

}

public virtual void call ( string ! o)
{

expose(this)
{

target .Store(( string ) o);
}

}
}

The class TapeDrive implements a TapeDrive with methods store, eject and change media. The
implementation is the following:

public class TapeDrive {
[SpecPublic] [Rep] public bool IsLoaded ;
[SpecPublic] [Rep] public bool IsStored ;

public TapeDrive ()
ensures IsLoaded && !IsStored;

{
IsLoaded = true;
IsStored = false;

}
public void Store (object! p)

requires StorePre();
modifies IsStored ;
ensures StorePost();

{
// ...
IsStored = true;

}
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[Pure] public bool StorePre()
ensures result == IsLoaded;

{
return IsLoaded;

}

[Pure] public bool StorePost()
ensures result == (IsStored && IsLoaded);

{
return (IsStored && IsLoaded);

}

public void Eject ()
requires EjectPre();
modifies IsLoaded;
ensures EjectPost() ;

{
IsLoaded = false ;

}

[Pure] public bool EjectPre()
ensures result == IsLoaded;

{
return IsLoaded;

}

[Pure] public bool EjectPost()
ensures result == (!IsLoaded);

{
return !IsLoaded;

}

public void ChangeMedia ()
requires ChangeMediaPre();
modifies IsLoaded;
ensures ChangeMediaPost();

{
expose (this) {

IsLoaded = false ;
/∗ exchange media ∗/
IsLoaded = true ;

}
}

[Pure] public bool ChangeMediaPre()
ensures result == IsLoaded;

{
return IsLoaded;

}

[Pure] public bool ChangeMediaPost()
ensures result == IsLoaded;
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{
return IsLoaded;

}
}

The class Client is based on the example presented by Leavens et al. [11]. Instead of using
delelates, we use ordinary variables of type PROCEDURE . This variable has the precondition,
postcondition and target of the delegate. The method Log is generic, so it can be invoked with any
procedure (in this case a procedure of type ProcedureTapeDrive).

class Client {

public void Log(ProcedureTapeDrive! logFile, string! s)
requires logFile .pre() ;
modifies logFile .∗;
ensures logFile .post() ;

{
logFile . call (s) ;
//assert false ;

}
}

Finally, we present an example of the use of TapeDrive. We frist create a TapeDrive, and then
we invoke the Client .Log . Due to the agent satisfies its constract, then Spec# is able to prove this
program. However, if we uncomment the invocation tapeDrive.Eject() the verifier cannot prove the
program (because it is not correct).

class Example {
[SpecPublic] [Rep] Client ! c ;

public Example ()
{

c = new Client();
}

public void main ()
{

expose(this) {
TapeDrive! tape = new TapeDrive();

//tape.Eject() ;
ProcTapeStore! archiver = new ProcTapeStore(tape);
c.Log(archiver , ”hello”) ;

}

}
}

B.4 Abstraction

This section presents the example described in Appendix A.2. The class Procedure2 models a
routine which satisfy the abstract property inv . The class is implemented as follows:

using System; using Microsoft.Contracts;

public interface Procedure2 {
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[Pure] object getTarget() ;

[Pure] bool inv(int i) ;

void call (int i)
requires inv( i) ;
modifies this .∗;
ensures inv( i+1) && getTarget()==old(getTarget());

}

public class Counter {

public int val;

public Counter ()
ensures val==1;

{
val = 1;

}

public void succ ()
ensures val == old(val) + 1;

{
val++;

}
}

public class Counter2 {
public int posval;
public bool positive ;

[Pure] public int val()
ensures result == (positive ? posval : posval) ;

{
if ( positive ) return posval;
else return posval ;

}

public Counter2()
ensures posval==1 && positive==true;

{
posval = 1;
positive =true;

}

public void succ()
ensures val () == old(val()) + 1;

{
if ( positive ) posval++;
else posval ;

}
}

public class ProcGeneral: Procedure2 {
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[SpecPublic] [Rep] public Counter! target;

public ProcGeneral([Captured] Counter! t)
ensures target == t;

{
target = t;

}

[Pure] public object getTarget()
ensures result ==target;

{
return target;

}

[Pure] public bool inv(int i)
ensures result == (i == target.val );

{
return (i==target.val);

}

public virtual void call (int i )
{

expose(this)
{

target .succ() ;
}

}
}

public class ProcGeneral2: Procedure2 {
[SpecPublic] [Rep] public Counter2! target;

public ProcGeneral2([Captured] Counter2! t)
ensures target == t;

{
target = t;

}

[Pure] public object getTarget()
ensures result ==target;

{
return target;

}

[Pure] public bool inv(int i)
ensures result == (i == target.val() ) ;

{
return (i==target.val());

}

public virtual void call (int i )
{

expose(this)
{

target .succ() ;
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}
}

}

public class Threetimes {
public void three (Procedure2! p)

requires p.inv(1) ;
modifies p .∗;
ensures p.inv(4) && p.getTarget() == old(p.getTarget());

{
p. call (1) ;
p. call (2) ;
p. call (3) ;

}
}

public class test {
[SpecPublic] [Rep] Threetimes! t ;

public test()
{

t = new Threetimes();
}

// here is the test
public void example ()
{

expose(this)
{

Counter! c2 = new Counter();
ProcGeneral pg = new ProcGeneral (c2);
assert pg. target==c2;
t . three(pg) ;
assert pg. target==c2;
assert pg.inv(4) ;
assert pg. target . val==4;
assert c2.val==4;

}
}

public void example2()
{

expose(this)
{

Counter2! c2 = new Counter2();
ProcGeneral2 pg = new ProcGeneral2(c2);
assert pg. target==c2;
t . three(pg) ;
assert pg. target==c2;
assert pg.inv(4) ;
assert pg. target . val ()==4;
assert c2.val ()==4;

}
}
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}

B.5 Bank Account Example

The class ProcedureBank represents the Eiffel class PROCEDURE for target objects of type
BankAccount . The precondition and postcondition are represented with the methods pre and post .
The method call invokes the current procedure. The class is implemented as follows:

using System; using Microsoft.Contracts;

public interface ProcedureBank {
[Pure] BankAccount! getTarget();

[Pure] bool pre(int v) ;

[Pure] bool post(int v) ;

void call (int v)
requires this.pre(v) ;
modifies this .∗;
ensures this.post(v) && getTarget()==old(getTarget());

}

The class ProcedureBankDeposit represent the agent deposit (declared in the class BankAccount).
A target of type BankAccount is declared in this class. The method pre returns target .depositPre,
and post returns depositPost . The method call invokes the deposit method. Its implementation in
Spec# is the following:

public class ProcedureBankDeposit: ProcedureBank {
[SpecPublic] [Rep] BankAccount! target;

public ProcedureBankDeposit([Captured] BankAccount! t)
ensures target == t;

{
target = t;

}

[Pure] public BankAccount! getTarget()
ensures result ==target;

{
return target;

}

[Pure] public bool pre(int v)
ensures result == (target.depositPre(v)) ;

{
return target.depositPre(v) ;

}

[Pure] public bool post(int v)
ensures result == (target.depositPost(v)) ;

{
return target.depositPost(v) ;

}

public virtual void call (int v)
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{
expose(this) {

target . deposit(v) ;
}

}

}

Agents withdraw is modeled using the class ProcedureBankWithdraw . This class implements
the interface ProcedureBank by invoking the precondition and postcondition of withdraw . Its im-
plementation is Spec# is the following:

public class ProcedureBankWithdraw: ProcedureBank {
[SpecPublic] [Rep] BankAccount! target;

public ProcedureBankWithdraw([Captured] BankAccount! t)
ensures target == t;

{
target = t;

}

[Pure] public BankAccount! getTarget()
ensures result ==target;

{
return target;

}

[Pure] public bool pre(int v)
ensures result == (target.withdrawPre(v));

{
return target.withdrawPre(v);

}

[Pure] public bool post(int v)
ensures result == (target.withdrawPost(v));

{
return target.withdrawPost(v);

}

public virtual void call (int v)
{

expose(this) {
target .withdraw(v);

}
}

}

Bank accounts are implemented using the class BankAccount. The field oldBalance is used to
refer to the old balance in the postcondition of deposit and withdraw:

public class BankAccount {
[SpecPublic] [Rep] int balance ;
[SpecPublic] [Rep] int oldBalance;

public BankAccount()
{



B.5 Bank Account Example 42

balance = 0;
oldBalance = 0;

}

public void withdraw (int v)
requires withdrawPre(v);
ensures withdrawPost(v);

{
oldBalance = balance;
balance = balance v;

}

[Pure] public bool withdrawPre(int v)
ensures result == (balance > v);

{
return balance > v;

}

[Pure] public bool withdrawPost(int v)
ensures result == (balance == (oldBalance v));

{
return balance == oldBalance v;

}

public void deposit (int v)
requires depositPre(v) ;
ensures depositPost(v) ;

{
oldBalance = balance;
balance = balance + v;

}

[Pure] public bool depositPre(int v)
ensures result == (v > 0);

{
return v > 0;

}

[Pure] public bool depositPost(int v)
ensures result == (balance == (oldBalance + v));

{
return balance == oldBalance + v;

}
}

The class Transfer implements a simple transfer function. The function takes a procedure and
invokes it with the argument val . This procedure can be instantiated with any procedure in bank
account such that the procedure has one integer argument:

public class Transfer {
public virtual void doTransfer(ProcedureBank! proc, int val)

requires proc .pre(val) ;
modifies proc .∗;
ensures proc .post(val) &&

proc == old(proc) &&
old (proc .getTarget())==proc.getTarget();
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{
proc . call (val) ;

}
}

Finally, we present an example of the use of the Transfer class. We first instantiate the transfer
with the deposit procedure, and then we do the same with the procedure withdraw . Spec# has
been able to show that the pre and postcondition of the agent holds before and after the agent
invocation. This example is implemented as follows:

public class testTransfer {

public virtual void transferOnce (int v)
{

expose (this) {
BankAccount! b = new BankAccount ();
Transfer! t = new Transfer();

assume b.depositPre(v);
ProcedureBankDeposit pbd = new ProcedureBankDeposit (b);
t .doTransfer(pbd,v);
assert pbd.getTarget() .depositPost(v) ;

BankAccount! bb = new BankAccount ();
assume bb.withdrawPre(v);
ProcedureBankWithdraw pbd2 = new ProcedureBankWithdraw (bb);
t .doTransfer(pbd2,v);
assert pbd2.getTarget() .withdrawPost(v);

}

}

}

B.6 Simple Agent Invocation

This example implements a single agent invocation. In the method callingSingleAngent, the proce-
dure p is assigned with the agent execute or undo depending whether b is true or not. This method
ensures the postcondition of execute or undo holds (depending if b is true or false).

using System; using Microsoft.Contracts;

public class SingleAgent {
[SpecPublic] [Rep] Command! c1;
[SpecPublic] [Rep] Command! c2;

public SingleAgent ()
{

c1 = new Command();
c2 = new Command();

}

public virtual void callingSimpleAgent(bool b)
{
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expose(this) {
ProcedureCommand! p;
if (b)
{

Command c = new Command();
p = new ProcedureCommandExecute (c);
assert c.executePre();
assume p.pre();
p. call () ;

assert p.post() ;

}
else
{

Command c = new Command();
p = new ProcedureCommandExecute (c);
assert c.executePre();
assume p.pre();
p. call () ;

assert p.post() ;
}

assert p.post() ;
}

}

}
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