
Soundness and Completeness of a Program Logic for Eiffel

Martin Nordio1, Cristiano Calcagno2, Peter Müller1, and Bertrand Meyer1

(1) ETH Zurich, Switzerland
{Martin.Nordio, Peter.Mueller, Bertrand.Meyer}@inf.ethz.ch

(3) Imperial College, London, UK
ccris@doc.ic.ac.uk

ETH Technical Report 617

March 2009

Abstract

Object-oriented languages provide advantages such as reuse and modularity, but they also
raise new challenges for program verification. Program logics have been developed for languages
such as C# and Java. However, these logics do not cover the specifics of the Eiffel language.
This paper presents a program logic for Eiffel that handles exceptions, once routines, and
multiple inheritance. The logic is proven sound and complete w.r.t. an operational semantics.
Lessons on language design learned from the experience are discussed.

1

CONTENTS 2

Contents

1 Introduction 4

2 A Semantics for Eiffel 4
2.1 The Source Language . 4
2.2 The Memory Model . 5
2.3 Operational Semantics . 7

2.3.1 Basic Instructions . 8
2.3.2 Creation, Routines, Routine Bodies and Routine Invocations 9
2.3.3 Exception Handling . 12
2.3.4 Once Routines . 12

3 A Program Logic for Eiffel 14
3.1 Base Rules . 16
3.2 Creation, Routines, Routine Bodies and Routine Invocations Rules 16
3.3 Exception Handling . 19
3.4 Once Routines . 19
3.5 Language-Independent Rules . 20

4 Application 20

5 Soundness and Completeness Theorems 20

6 Related Work 20

7 Lessons Learned 23

A Appendix: Soundness and Completeness Proof 27
A.1 Definitions and Theorems . 27
A.2 Soundness Proof . 29

A.2.1 Assignment Axiom . 29
A.2.2 Compound Rule . 30
A.2.3 Conditional Rule . 31
A.2.4 Check Axiom . 32
A.2.5 Loop Rule . 32
A.2.6 Read Attribute Axiom . 34
A.2.7 Write Attribute Axiom . 34
A.2.8 Local Rule . 35
A.2.9 Creation Rule . 36
A.2.10 Rescue Rule . 36
A.2.11 Once Functions Rule . 38
A.2.12 Routine Implementation Rule . 41
A.2.13 Routine Invocation Rule . 42
A.2.14 Class Rule . 43
A.2.15 Subtype Rule . 43
A.2.16 Language-Independent Rules . 44

A.3 Completeness Proof . 46
A.3.1 Assignment Axiom . 47
A.3.2 Compound Rule . 47
A.3.3 Conditional Rule . 48
A.3.4 Check Axiom . 48
A.3.5 Loop Rule . 49
A.3.6 Read Attribute Axiom . 49
A.3.7 Write Attribute Axiom . 49
A.3.8 Local Rule . 50

CONTENTS 3

A.3.9 Rescue Rule . 50
A.3.10 Routine Implementation Rule . 52
A.3.11 Routine Invocation Rule . 52
A.3.12 Virtual Routines . 54

B Appendix: Auxiliary Functions to Support Multiple Inheritance 55

1 INTRODUCTION 4

1 Introduction

Program verification relies on a formal semantics of the programming language, typically a program
logic such as Hoare logic. Program logics have been developed for the mainstream object-oriented
languages such as Java and C#. For instance, Poetzsch-Heffter and Müller presented a Hoare-
style logic for a subset of Java [21]. This logic includes the most important features of object-
oriented languages such as abstract types, dynamic binding, subtyping, and inheritance. However,
the exception handling is not treated in their work. Huisman and Jacobs [6] developed a Hoare-
stype logic which treats abrupt termination. It includes not only exception handling but also break,
continue, and return statements. This logic has been developed to verify Java-like programs.

Eiffel has several distinctive features not present in mainstream languages, for instance, a differ-
ent exception handling mechanism, once routines, and multiple inheritance. Eiffel’s once routines
(methods) are used to implement global behavior, similarly to static fields and methods in Java.
Only the first invocation of a once routine triggers an execution of the routine body; subsequent
invocations return the result of the first execution. The development of formal techniques for
these concepts does not only allow formally verifying Eiffel programs but also allows comparing
the different concepts, and analyzing which concepts are more suitable to be applied for formal
verification.

The main contributions of this paper are an operational and an axiomatic semantics for Eiffel.
The semantics includes: (1) basic instructions such as loops, compounds and assignments; (2) rou-
tine invocations; (3) exceptions; (4) once routines, and (5) multiple inheritance. During this work,
we have found that Eiffel’s exception mechanism was not ideal for formal verification. The use of
retry instructions in a rescue clause complicates its verification. For this reason, a change in the
Eiffel exception handling mechanism has been proposed, and will be adopted by a future revision
of the language standard.

Outline. Section 2 describes the subset of Eiffel and its operational semantics. Section 3
presents the Eiffel program logic. An example that illustrates the use of the logic is described
in Section 4. The soundness and completeness theorems are presented in Section 5. Section 6
discusses related work, and Section 7 summarizes the result and describes future developments.
Appendix A presents the soundness and completeness proofs.

2 A Semantics for Eiffel

2.1 The Source Language

The source language is a subset of Eiffel which includes the most important Eiffel’s features, al-
though agents are omitted. The most interesting concepts supported by this subset are: (1) multiple
inheritance, (2) exception handling, and (3) once routines. Multiple inheritance is supported using
the clauses undefine, redefine and rename. The exception handling mechanism is developed using
rescue clauses. Instructions can throw exceptions either in the routine body or the rescue clause,.

An Eiffel program is a sequence of class declaration. A class declaration consist of an optional
inheritance clause, and a class body. The inheritance clause supports multiple inheritance and
allow us to undefine, redefine and rename routines. If the routine is redefined, preconditions of
subclasses can be weaken, and postconditions can be stronger. A class body is a sequence of
attributes declaration or routine declaration. For simplicity, routines are functions that take always
one argument and return a result. Routines are once routine or non-once routines (normal routines).
Once routines are routines that always return the same result after their first execution.

The syntax of the subset of Eiffel is presented in Figure 1. Class names, routine names, variables
and attributes are denoted by ClassId, RoutineId, VarId and AttributeId respectively. The set of
variables is denoted by Var ; VarId is an element of Var . The functions ∗ and + are defined as
usual, and list of denotes a comma-separated list.

Figure ?? presents the syntax of expressions. Boolean expression and expressions (boolExp and
exp) are side-effect-free and do not trigger exceptions. Furthermore, expE denotes expressions that
are side-effect-free but can trigger exceptions. For simplicity, expressions that can trigger exceptions

2.2 The Memory Model 5

(expE) are only allowed in assignments. This assumption simplifies the presentation of the logic,
specially the rules for routine invocation, read and write attribute and if then else and loop
instructions. However, the logic could easily extended.

One of the design goals of our logic is that programs behave in the same way when contracts are
checked at runtime and when they are not. For this reason, we demand contracts are side-effect-free
and do not throw exceptions.

Program ::= ClassDeclaration∗
ClassDeclaration ::= class ClassId [Inheritance] ClassBody end
Type ::= BoolT | IntT | ClassId | VoidT
Inheritance ::= inherit Parent+
Parent ::= Type [Undefine] [Redefine] [Rename]
Undefine ::= undefine list of RoutineId
Redefine ::= redefine list of RoutineId
Rename ::= rename list of (RoutineId as RoutineId)
ClassBody ::= MemberDeclaration∗
MemberDeclaration ::= AttributeId Type

| Routine
Routine ::= RoutineId (VarId : Type) : Type

require BoolExp
[local list of (VarId : Type)]
(do | once)

Instr
[rescue Instr]
ensure BoolExp

end
Instr ::= VarId := ExpE

| Instr ; Instr
| from invariant BoolExp until BoolExp loop Instr end
| if BoolExp then Instr else Instr end
| check BoolExp end
| VarId := create {Type}.make (Exp)
| VarId := VarId .Type@AttributeId
| VarId .Type@AttributeId := Exp
| VarId := VarId .Type : RoutineId (Exp)

Exp,ExpE ::= Literal | VarId | Exp Op Exp | BoolExp
BoolExp ::= Literal | VarId | BoolExp Bop BoolExp | Exp CompOp Exp
Op ::= + | − | ∗ | //
Bop ::= and | or | xor | and then | or else | implies
CompOp ::= < | > | <= | >= | = | / =

Figure 1: Syntax of the subset of Eiffel.

2.2 The Memory Model

The state of an Eiffel program describes the current values of local variables, arguments, the
current object, and the object store $. A value is a boolean, an integer, the void value, or an object
reference. An object is characterized by its class and an identifier of infinite sort ObjId . The data
type Value models values, and it is defined as follows:

2.2 The Memory Model 6

datatype Value = boolV Bool
| intV Int
| objV ClassId ObjId
| voidV

The function τ returns the dynamic type of a value. Its definition is the following:

τ : Value → Type
τ(boolV b) = BoolT
τ(intV n) = IntT
τ(objV cId oId) = cId
τ(voidV) = VoidT

The function init initializes default values to types. The default value of boolean is false, the
default value of integer is zero, and the default value of reference objects is voidV. Its definition is
as follows:

init : Type → Value
init(BoolT) = (boolV false)
init(IntT) = (intV 0)
init(cId) = voidV
init(VoidT) = voidV

The state of an object is defined by the values of its attributes. The sort Attribute defines the
attribute declaration T@a where a is an attribute declaration in the class T .

datatype Attribute = Type AttributeId

We use a sort Location and a function instvar where instvar(V ,T@a) returns the instance of
the attribute T@a if V is an object reference and the object has an attribute T@a; otherwise it
returns undef . The datatype definition and the signature of instvar are the following:

datatype Location = ObjId AttributeId

instvar : Value × Attribute → Location ∪ {undef }

The object store models the heap describing the states of all objects in a program at a certain
point of execution. An object store is modeled by an abstract data type ObjectStore. We use
the object store presented by Poetzsch-Heffter [19]. The following operations apply to the object
store: $(f) denotes reading the location l in store $; alive(o, os) yields true if and only if object o is
allocated in os; new(os,C) yields a reference to a new object in the store os of type C ; alloc(os,C)
denotes the store after allocating the object store new(os,C); update(os, l , v) updates the object
store os at the location l with the value v :

() : ObjectStore × Location → Value
alive : Value → ObjectStore → Bool
new : ObjectStore × ClassId → Value

< := > : ObjectStore × Location × Value → ObjectStore
< > : ObjectStore × ClassId → ObjectStore

Following we present Poetzsch-Heffter’s axiomatization [19] of these functions with a brief
description. The function obj : Location → Value takes a location and yields its value. The
function ltyp : Location → Type yields the dynamic type of a location.

2.3 Operational Semantics 7

Axiom 1 Updating a location does not affect the values of other locations:
∀ OS ∈ ObjectStore, L1,L2 ∈ Location, X ∈ Value : L1 6= L2 ⇒ OS < L1 := X > (L2) = OS (L2)

Axiom 2 Reading a location updated with a value produces the same value if both the location and
the value are alive:
∀ OS ∈ ObjectStore, L ∈ Location, X ∈ Value :
alive(obj (L),OS) ∧ alive(X ,OS) ⇒ OS < L := X > (L) = X

Axiom 3 Reading a location that is not alive produces the default value of the type of the location:
∀ OS ∈ ObjectStore, L ∈ Location : ¬alive(obj (L),OS) ⇒ OS (L) = init(ltyp(L))

Axiom 4 Updating a location that is not alive does not modify the object store:
∀ OS ∈ ObjectStore, L ∈ Location, X ∈ Value : ¬alive(X ,OS) ⇒ OS < L := X >= E

Axiom 5 Allocating a type in the object store does not change their values:
∀ OS ∈ ObjectStore, L ∈ Location, cId ∈ ClassId : OS < cId > (L) = OS (L)

Axiom 6 Updating a location does not affect the aliveness property:
∀ OS ∈ ObjectStore, L ∈ Location, X ,Y ∈ Value : alive(X ,OS < L := Y >)⇔ alive(X ,OS)

Axiom 7 An object is alive if only if the object was alive before or the object is a new object:
∀ OS ∈ ObjectStore, X ∈ Value, cId ∈ ClassId :
alive(X ,OS < cId >)⇔ alive(X ,OS) ∨ X = new(OS , cId)

Axiom 8 Objects held by locations are alive:
∀ OS ∈ ObjectStore, L ∈ Location : alive(OS (L),OS)

Axiom 9 A created object is not alive in the object store from which it was created:
∀ OS ∈ ObjectStore, cId ∈ ClassId : ¬alive(new(OS , cId),OS)

Axiom 10 The dynamic type of a creation object of class id cId is cId:
∀ OS ∈ ObjectStore, cId ∈ ClassId : τ(new(OS , cId)) = cId

Axiom 11 Two object store are equal if we cannot distinguish them by the alive and the reading
location functions:
∀ OS1,OS2 ∈ ObjectStore, L ∈ Location, X ∈ Value :
(∀X : alive(X ,OS1)⇔ alive(X ,OS2)) ∧ (∀L : OS1(L) = OS2(L))⇒ OS1 = OS2

2.3 Operational Semantics

Program states are a mapping from local variables and arguments to values and the current object
store $ to ObjectStore. The program state is defined as follows:

State ≡ Local × Heap
Local ≡ VarId ∪ {Current , p,Result ,Retry} → Value ∪ {Undef }
Heap ≡ {$} → ObjectStore ∪ {Undef }

The current object store is denoted by $. Local maps local variables, Current, arguments,
Result and Retry to values. Arguments are denoted by p. The variables Result and Retry are
special variables used to store the result value and the retry value but they are not part of VarId.
For this reason, these variables are included explicitly.

For σ ∈ State, σ(e) denotes the evaluation of the expression e in the state σ. Its signature is
the following:

σ : Local → Value ∪ {exc}

The evaluation of an expression can return exc meaning that an exception was triggered. For
example, σ(x//0) returns exc. Furthermore, the evaluation σ(y/ = 0 and x//y = z) is different to

2.3 Operational Semantics 8

exc because σ first evaluates y/ = 0 and then evaluates x//y = z only if y/ = 0 evaluates to true.
The state σ[x := V] denotes the state obtained after the replacement of x by V in the state σ.

The operation semantics rules have the following form:

〈σ,S 〉 → σ′, χ

where σ and σ′ are states, S instructions and χ is the current status of the program. The
value of χ can be either the constant normal or exc. The variable χ is required to treat abrupt
termination. The transition σ,S → σ′,normal expresses that executing the instruction S in the
state σ terminates normally in the state σ′. The transition σ,S → σ′, exc expresses that executing
the instruction S in the state σ terminales with an exception in the state σ′.

Following, we present the operational semantics. Subsection 2.3.1 presents the basic instruc-
tions, which are an adaptation of Müller and Poetzsch-Heffter’s work [12, 20, 21] to Eiffel. Sub-
section 2.3.2 presents routine invocation and object creation. Subsections 2.3.3 and 2.3.4 presents
exception handling and once routines. The operation semantics for exception handling and once
routines is one of the contributions of this paper.

2.3.1 Basic Instructions

Figure 2 presents the operational semantics for basic instructions such as assingment and com-
pound. Following, we describe this semantics:

Assignment Instruction. The semantics for assignments consists of two rules: one when the
expression e throws an exception and one when it does not. In rule (2.1), if the expression e throws
an exception, then the assignment terminates with an exception and the state is unchanged. The
state does not change since expressions are side-effect free. In rule (2.2), if e does not throw any
exception, after the execution of the assignment instruction, the variable x is updated with the
value of the expression e in the state σ.

Compound. Compound is defined with two rules: in (2.3) the instruction s1 is executed and an
exception is triggered. Then, the instruction s2 is not executed, and the state of the compound
is the state produced by s1. In (2.4), s1 is executed an terminates normally. The state of the
compound is the state produced by s2.

Conditional Instruction. In rule (2.5) the resulting state is the produced by the execution of
s1 since e evaluates to true. In rule (2.6) the state produced by the execution of the conditional is
the one produced by s2 due to the evaluation of e yields false.

Check Instruction. The check instruction helps to express a property that you believe will be
satisfied. If the property is satisfied then the system does not change. If the property is not satisfied
then an exception is thrown. The semantics for check consist of two rules: if the condition of the
check instruction evaluates to true, then the instruction terminates normally, rule (2.7); otherwise
the check instruction triggers an exception, rule (2.8).

Loop Instruction. The operational semantics for the loop instruction is divided into four rules.
In rule (2.9), s1 triggers an exception, the loop is not executed and the state is the state produced
by s1. In rule (2.10) the body of the from terminates normally, and since the condition is true,
then the body of the loop is not executed producing the state σ′. If the until expression is false,
in rule (2.11), the instruction s2 is executed, but it triggers and exception. Thus, the state of the
loop is σ′′ and in the status is exc. Finally, in (2.12), s2 terminates normally and the condition is
evaluated to false, the returned state is the one produced by the new execution of the loop.

Read Attribute Instruction. The semantics of read attribute is defined by two rules depending
if the target object is void or not. In rule (2.13), if the value of y is not Void , x is updated with
the value of the attribute a. In (2.14), if y is Void , the instruction terminates with an exception.

2.3 Operational Semantics 9

Write Attribute Instruction. Similar to read attribute, the semantics for write attribute is
defined with two rules. Let y .T@a := e denotes the updating of the attribute a of the object y
with the value e. In (2.15) the attribute a of the object y is updated with the value e if y is not
void. If y is Void , the instruction terminates with an exception (2.16).

2.3.2 Creation, Routines, Routine Bodies and Routine Invocations

Poetzsch-Heffter and Müller [21] have developed an operational and axiomatic semantics for a Java-
like languages which handle inheritance, dynamic binding, subtyping and abstract types. However,
the source language used in their work has single inheritance. In this section, we extend their logic
to support multiple inheritance.

Poetzsch-Heffter and Müller distinguish between virtual routines and routine implementation.
A class T has a virtual routine T :m for every routine m that it declares or inherits. A class
T has a routine implementation T @m for every routine m that it defines (or redefines). We
assume in the following that every invocation is decorated with the virtual method being invoked.
The semantics of routine invocations uses two functions: body and impl . The function impl(T ,m)
yields the implementation of routine m in class T . This implementation could be defined by T or
inherited from a superclass. The function body yields the instruction constituting the body of a
routine implementation. The signatures of these functions are as follows:

body : RoutineDeclId → Instruction
impl : Type × RoutineId → RoutineDeclId ∪ {undef }

The complications of multiple inheritance can be elegantly captured by a revised definition of
impl . While impl(T ,m) traverses T ’s parent classes, it can take redefinition, undefinition, and
renaming into account. In particular, impl is undefined for deferred routines (abstract methods)
or when an inherited routine has been undefined.

Figure 3 shows an example of inheritance using the features rename and redefine. Table 1
presents an example of the application of the function imp using the class declarations of Figure 3.
Note that if an object o of declared type C is attached to an object of type E , then the invocation
o.m would produce a catcall. This problem is detected using our logic since imp yields undefined .
The definition of this function is presented in Appendix B.

Table 1: Example of the Application of the Function imp.

imp(A,m) = A@m
imp(B,m) = B@m
imp(C,m) = A@m
imp(C,n) = B@m

imp(D,m) = D@m
imp(D,n) = B@m
imp(E,m) = undefined
imp(E,m2) = A@m
imp(E,n) = B@m

Following, we present the operational semantics for creation, routine invocation and local vari-
ables declaration. This semantics is an adaptation of Müller’s work [12].

Given a routine declaration rId (contracts omitted):

rId (x : T) : T ′

local
v1 : T1; ... vn : Tn

do
s

end

the function body returns the following result:

local v1 : T1; ... vn : Tn ; Result : T ′; Retry : Boolean; s

2.3 Operational Semantics 10

Assignment Instruction
σ(e) = exc

〈σ, x := e〉 → σ, exc
(2.1)

σ(e) 6= exc
〈σ, x := e〉 → σ[x := σ(e)],normal

(2.2)

Compound
〈σ, s1〉 → σ′, exc
〈σ, s1; s2〉 → σ′, exc

(2.3)
〈σ, s1〉 → σ′,normal 〈σ′, s2〉 → σ′′, χ

〈σ, s1; s2〉 → σ′′, χ
(2.4)

Conditional Instruction
〈σ, s1〉 → σ′, χ σ(e) = True

〈σ, if e then s1 else s2 end〉 → σ′, χ
(2.5)

〈σ, s2〉 → σ′, χ σ(e) = False
〈σ, if e then s1 else s2 end〉 → σ′, χ

(2.6)

Check Instruction
σ(e) = True

〈σ, check e end〉 → σ,normal
(2.7)

σ(e) = False
〈σ, check e end〉 → σ, exc

(2.8)

Loop Instruction
〈σ, s1〉 → σ′, exc

〈σ, from s1 invariant I until e loop s2 end〉 → σ′, exc
(2.9)

〈σ, s1〉 → σ′,normal σ′(e) = True
〈σ, from s1 invariant I until e loop s2 end〉 → σ′,normal

(2.10)

〈σ, s1〉 → σ′,normal σ′(e) = False 〈σ′, s2〉 → σ′′, exc
〈σ, from s1 invariant I until e loop s2 end〉 → σ′′, exc

(2.11)

〈σ, s1〉 → σ′,normal σ′(e) = False 〈σ′, s2〉 → σ′′,normal
〈σ′′, from skip invariant I until e loop s2 end〉 → σ′′′, χ

〈σ, from s1 invariant I until e loop s2 end〉 → σ′′′, χ
(2.12)

Read Attribute Instruction
σ(y) 6= voidV

〈σ, x := y .T@a〉 → σ[x := σ($) (instvar(σ(y),T@a))],normal
(2.13)

σ(y) = voidV
〈σ, x := y .T@a〉 → σ, exc

(2.14)

Write Attribute Instruction
σ(y) 6= voidV

〈σ, y .T@a := e〉 → σ[$:= σ($) < instvar(σ(y),T@a) := σ(e) >],normal
(2.15)

σ(y) = voidV
〈σ, y .T@a := e〉 → σ, exc

(2.16)

Figure 2: Operational Semantics for Basic Instructions

2.3 Operational Semantics 11

class A
feature m do ... end

end

class B
feature m do ... end

end

class C
inherit A

B rename m as n end
end

class D
inherit C redefine m end

feature m do ... end
end

class E
inherit C rename m as m2 end

end

Figure 3: Example of Inheritance using Rename and Redefine.

Note the function body adds the declaration of the variables Result and Retry . This declaration
allows us to prove properties about the Result . In particular, it allows us to initialize the variables
Result and Retry with their initial values.

Local Variables Declaration

Local variables are initialized using rule (1). The values of the variables v1...vn are updated with
their default value according to their types. The function init , given a type T returns its default
value; init(INTEGER) returns 0; init(BOOLEAN) returns false and init(T) where T is a reference
type returns Void . The rule is the following:

〈σ[v1 := init(T1), ..., vn := init(Tn)], s〉 → σ′,normal
〈σ, local v1 : T1; ... vn : Tn ; s〉 → σ′,normal

(1)

Routine Invocation

In this section, we define the operational semantics of routine invocation for non-once routines.
Once routine invocations are defined in Section 2.3.4. The semantics for routine invocation is
defined as follows:

T:m is not a once routine
σ(y) = voidV

〈σ, x := y .T:m(e)〉 → σ, exc
(2)

T:m is not a once routine
σ(y) 6= voidV 〈σ[Current := σ(y), p := σ(e)], body(impl(τ(σ(y)),m))〉 → σ′, χ

〈σ, x := y .T:m(e)〉 → σ′[x := σ′(Result)], χ
(3)

If the target y is Void , then the state σ is not change and an exception is triggered (2).
Otherwise, the Current object is updated with y , and the argument p by the expression e, and
then the body of the routine is executed (3). To handle dynamic dispatch, first, the dynamic type
of y is obtained using the function τ . Then, the routine declaration is returned by the function
impl . Finally, the body of the routine is returned by the function body.

Creation Instruction

In the creation instruction, first, a new object of type T is created and assigned to Current . The
current object store $ and the argument p are updated in the state σ. Then, the routine make is

2.3 Operational Semantics 12

invoked. Finally, the object x is updated with the Current object in σ′. The semantics is defined
as follows:

〈σ[Current := new(σ($),T), $:= σ($) < T >, p := σ(e)], body(impl(T ,make))〉 → σ′, χ

〈σ, x := create T .make(e)〉 → σ′[x := σ′(Current)], χ
(4)

In Eiffel, when a new object is created, its attributes are initialized with the default value.
In the semantics, this is done by the function new which creates the new object initializing its
attributes.

2.3.3 Exception Handling

Exceptions [9] raise some of the most interesting problems in this paper. A routine execution
either succeeds - meaning terminates normally - or fails, triggering an exception. An exception is
an abnormal event occurred during the execution. To treat exceptions, each routine contains one
rescue clause (either explicit or default). If the routine body is executed an terminates normally,
the rescue clause is ignored. However, if the routine body triggers an exception, control is transfer
to the rescue clause. Each routine defines a boolean local variable Retry (in a similar way as
Result). If at the end of the clause the variable Retry has value true, the routine body (do clause)
is executed again. Otherwise, the routine fails triggering an exception. If the rescue clause triggers
another exception, the second one takes precedence and it can be handled through the rescue
clause of the caller.

This specification slightly departs from the current Eiffel standard, where Retry is an instruc-
tion, not a variable. The change was suggested by this work and will be adopted by a future
revision of the language standard. The Retry variable can be assigned in either a do clause or a
rescue clause; if its value is true at the end of the rescue clause the routine re-executes its body,
otherwise it fails, triggering a new exception.

The operation semantics for the exception mechanism is defined by rules 5-8. If the execution
of s1 terminates normally, then the rescue block is not executed and the returned state is the one
produced by s1 (rule 5). If s1 terminates with an exception and s2 triggers another exception, the
rescue terminates in an exception returning the state produced by s2 (rule 6). If s1 triggers an
exception and s2 terminates normally but the Retry variable is false, then the rescue terminates
with an exception returning the state produced by s2 (rule 7). In a similar situation but when the
Retry variable is true, the rescue is executed again and the result is the one produced by the new
execution of the rescue (rule 8).

〈σ, s1〉 → σ′,normal
〈σ, s1 rescue s2〉 → σ′,normal

(5)

〈σ, s1〉 → σ′, exc 〈σ′, s2〉 → σ′′, exc
〈σ, s1 rescue s2〉 → σ′′, exc

(6)

〈σ, s1〉 → σ′, exc 〈σ′, s2〉 → σ′′,normal ¬σ′′(Retry)
〈σ, s1 rescue s2〉 → σ′′, exc

(7)

〈σ, s1〉 → σ′, exc 〈σ′, s2〉 → σ′′,normal σ′′(Retry) 〈σ′′, s1 rescue s2〉 → σ′′′, χ

〈σ, s1 rescue s2〉 → σ′′′, χ
(8)

2.3.4 Once Routines

The mechanism used in Eiffel to access a shared object is once routines. This section focuses on once
functions; once procedures are similar. The semantics of once functions is as follows. When a once
function is invoked for the first time in a program execution, its body is executed and the outcome
is cached. This outcome may be a result in case the body terminates normally or an exception
in case the body triggers an exception. For subsequent invocations, the body is not executed; the

2.3 Operational Semantics 13

invocations produce the same outcome (result or exception) like the first invocation. Note that
whether an invocation is the first or a subsequent one is determined solely by the function name,
irrespective of its arguments.

To be able to develop a semantics for once functions, finally, we also need to consider recursive
invocations. As described in the Eiffel ECMA standard [10], a recursive call may start before the
first invocation finished. In that case, the recursive call will return the result that has been obtained
so far. The mechanism is not so simple. For example the behavior of following recursive factorial
function might be surprising:

factorial (i : INTEGER): INTEGER
2 require i>=0

once
4 if i<=1 then Result := 1

else
6 Result := i

Result := Result ∗ factorial (i−1)
8 end

end

This example is a typical factorial function but it is also a once function, and the assignment
Result := i ∗ factorial(i − 1) is split into two separate assignments. If one invokes factorial(3) we
observe that the returned result is 9. The reason is that the first invocation, factorial(3), assigns
3 to Result . This result is stored for a later invocation since the function is a once function. Then,
the recursive call is invoked with argument 2. But this invocation is not the first invocation, so the
second invocation returns the stored value (in this case 3). Thus, the result of invoking factorial(3)
is 3 ∗ 3. If we do not split the assignment, the result would be 0 because factorial(2) would return
the result obtained so far which is the default value of Result , 0. This corresponds to a semantics
where recursive calls are replaced by Result .

To be able to develop a sound semantics for once functions, we need to consider all the possible
cases described above. To fulfil this goal, we present a pseudo-code of once functions. Given a once
function m with body b, the pseudo-code is the following:

1 if not m done then m done := true; execute the body b
if body triggers an exception e then m exception := e end

3 end
if m exception /= Void then throw m exception else Result := m result

5 end

We assume the variables m done, m exception and m result are global variables, which exist
one per function and can be shared by all invocations of that function. Furthermore, we assume
the body of the function sets the result variable m result . Now, we can see more clearly why the
invocation of factorial (3) returns 9. In the first invocation, first the global variable m done is set
to false, and then the function’s body is executed. The second invocation returns the stored value
3 because m done is false.

To define the semantics for once functions, we introduce global variables to store the information
whether the function was invoked before or not, to store whether it triggers an exception or not,
and to store its result. These variables are T@m done, T@m result , and T@m exc. Given a once
function T@m defined in the class T , T@m done returns true if the once function was executed
before, otherwise it returns false; T@m result returns the result of the first invocation of m; and
T@m exc returns true if the first invocation of m produced an exception, otherwise it returns
false. Since the type of the exception is not used in the exception mechanism, we use a boolean
variable T@m exc, instead of a variable of type EXCEPTION. We omit the definition of a global
initialization phase T@m done = false, T@m result = default value, and T@m exc = false. This
initialization is performed in the make routine of the ROOT class.

The invocation of a once function is defined in four rules (rules 9-12, Figure 4). Rule (9)
describes the normal execution of the first invocation of a once function. Before its execution, the

3 A PROGRAM LOGIC FOR EIFFEL 14

T@m = impl(τ(σ(y)),m) T@m is a once routine
σ(T@m done) = false

〈σ[T@m done := true,Current := y , p := σ(e)], body(T@m)〉 → σ′,normal

〈σ, x := y .S:m(e)〉 → σ′[x := σ′(Result)],normal
(9)

T@m = impl(τ(σ(y)),m) T@m is a once routine
σ(T@m done) = false

〈σ[T@m done := true,Current := y , p := σ(e)], body(T@m)〉 → σ′, exc

〈σ, x := y .S:m(e)〉 → σ′[T@m exc := true], exc
(10)

T@m = impl(τ(σ(y)),m) T@m is a once routine
σ(T@m done) = true
σ(T@m exc) = false

〈σ, x := y .S:m(e)〉 → σ[x := σ(T@m result)],normal
(11)

T@m = impl(τ(σ(y)),m) T@m is a once routine
σ(T@m done) = true
σ(T@m exc) = true

〈σ, x := y .S:m(e)〉 → σ, exc
(12)

Figure 4: Operational Semantics for Once Routines

global variable T@m done is set to true. Then, the function body is executed. We assume here
that the body updates the variable T@m result whenever it assigns to Result . Rule (10) models
the first invocation of an once function that terminates with an exception. The function is executed
and terminates in the state σ′. The result of the once function m is the state σ′ where the variable
T@m exc is set to true to express that an exception was triggered. In rule 11, the first invocation
of the once function terminates normally, the remaining invocations restore the stored value using
the variable T@m result . In rule 12, the first invocation of m terminates with an exception, so the
subsequent invocations of m trigger an exception, too.

3 A Program Logic for Eiffel

The logic for Eiffel is based on the programming logic developed by Müller and Poetzsch-Heffter [12,
20, 21, 22]. We have added new rules to model exceptions and once routines. Poetzsch-Heffter et
al. [22] uses a special variable χ to capture the status of the program such as normal or exceptional
status. We instead use Hoare triples with two postconditions to encode the status of the program
execution.

The logic is a Hoare-style logic. Properties of routines and routine bodies are expressed by
Hoare triples of the form

{
P
}

S
{

Qn , Qe

}
, where P , Qn , Qe are formulas in first

order logic, and S is a routine or an instruction. The third component of the triple consists of a
normal postcondition (Qn), and an exceptional postcondition (Qe). We call such a triple routine
specification.

The triple
{

P
}

S
{

Qn , Qe

}
defines the following refined partial correctness property:

if S ’s execution starts in a state satisfying P , then (1) S terminates normally in a state where Qn

holds, or S throws an exception and Qe holds, or (2) S aborts due to errors or actions that are
beyond the semantics of the programming language, e.g., memory allocation problems, or (3) S
runs forever.

3 A PROGRAM LOGIC FOR EIFFEL 15

Boolean Expressions.

Preconditions and postcondition are formulas in first order logic. Since expressions in assignments
can trigger exceptions, we cannot always use these expressions in pre- and postconditions of Hoare
triples. For example, if we want to apply the substitution P [e/x] where e is an ExpE expression,
first, we need to check that e does not trigger any exception, and then we can apply the substitution.
To do this, we introduce a function safe that takes an expression, and yields a safe expression. A
safe expression is an expression whose evaluation does not trigger an exception. The definition of
safe expression is the following:

Definition 1 (Safe Expression) An expression e is a safe expression if and only if ∀ σ :
σ(e) 6= exc.

Definition 2 (Function Safe) The function safe : ExpE → Exp yields an expression that ex-
presses if the expression is safe or not. The definition of this function is the following:

safe : ExpE → Exp
safe (e1 oper e2) = safe(e1) ∧ safe(e2) ∧ safe op (oper , e1, e2)

safe op : op × ExpE × ExpE → Exp
safe op (oper , e1, e2) = if (oper = //) then (e2 6= 0) else true

Lemma 1 For each expression e, safe(e) satisfies:

• safe(e) is a safe expression

• σ(safe(e)) = true ⇔ σ(e) 6= exc

Lemma 2 (Substitution) If the expression e is a safe expression, then:

∀ σ : (σ |= P [e/x] ⇔ σ[x := σ(e)] |= P)

We define σ |= P as the usual definition of |= in first order logic but with the restriction that
the expressions in P are safe expressions.

Signatures of Contracts

Contracts refer to attributes, variables and types. The introduce a signature Σ that represent
the constant symbols of these entities. Given an Eiffel program, Σ denotes the signature of sorts,
functions and constant symbols as described in Section 2.1. Arguments, program variables and the
current object store $ are treated syntactically as constants of Value and ObjectStore. Preconditions
and postconditions are formulas over Σ ∪ {Current , p,Result ,Retry} ∪ Var(r) where r is a
routine and Var(r) denotes the set of local variables of r . Note we assume Var(r) does not denote
the result variable and the retry variable, it only denotes the local variables declared by the
programmer. Preconditions are formulas over Σ ∪ {Current , p, $}, and postconditions are formulas
over Σ ∪ {Current , p,Result ,Retry , $}.

We treat recursive routines in the same way as Müller and Poetzsch-Heffter [21]. We use sequents
of the form A |� A where A is a set of routine annotations and A is a triple. Triples in A are
called assumptions of the sequent and A is called the consequent of the sequent. Thus, a sequent
expresses that we can prove a triple based on the assumptions about routines. We assume the
sequent A is constructed before applying the logic. The sequents keep unchanged when the rules
are applied. The sequent is constructed with the precondition and postcondition for verification.
The user pre and postconditions cannot be used because they are too weak (for example, for the
lack of quantifiers). However, we do not discard the user’s pre and postcondition. We show that
the user’s contracts implies the contract used for verifying the program. We denote pre(T@m) and
post(T@m) the user’s pre and postconditions of the routine m.

Following, we present the logic for Eiffel. Subsection 3.1 presents the basic instructions, which
are an adaptation of Müller and Poetzsch-Heffter’s work [12, 20, 21] to Eiffel. Subsection 3.2

3.1 Base Rules 16

presents routine invocation and object creation. Subsections 3.3 and 3.4 presents exception handling
and once routines. The logic for exception handling and once routines is another contribution of
this paper.

3.1 Base Rules

Figure 5 presents the axiomatic semantics for basic instructions such as compound, loop and
conditional et al. Following, we describe these rules.

Assignment Instruction. In the assignment rule, if the expression e is safe (it does not throw
any exception) then the precondition is obtained replacing x by e in P . Otherwise the precondition
is the exceptional postcondition. The function safe is used to ensure that the precondition of the
Hoare triple does not trigger any exception. The evaluation of safe(e) ∧ P [e/x] is left to right,
P [e/x] is evaluated if only if safe(e) is true. Thus, the expression e might trigger and exception
but the pre and postconditions of the Hoare triple not.

Compound. In the composition instruction, first the instruction s1 is executed. If it triggers
an exception, s2 is not executed and Re holds. If s1 terminates normally, s2 is executed and the
postcondition of the compound is the postcondition of s2.

Conditional Instruction. In the conditional instruction, s1 is executed if e evaluates to true,
and the result of the conditional is the postcondition of s1. If e evaluates to false, s2 is executed.

Check Instruction. If the condition of the check instruction evaluates to true, then the instruc-
tion terminates normally and P ∧ e holds. If e is false, an exception is triggered and P ∧ ¬e
holds.

Loop Instruction. In the loop instruction, first the body of the from (s1) is executed. If s1

throws an exception, then the postcondition of the loop is the postcondition of s1 (Re). If s1

finishes in normal execution, then the body of the loop (s2) is executed. If s2 finishes in normal
execution then the invariant I holds, and if s2 throws an exception, Re holds. The implication
I ⇒ I ′ shows that the loop invariant used in the proof (I) implies the user’s invariant (I ′).

Read Attribute Instruction. If y is not Void the value of the attribute a defined in the class
T of the object y is assigned to x . Otherwise, an exception is triggered and Qe holds.

Write Attribute Instruction. Similar to read attribute, if y is not Void , the attribute a defined
in the class T of the object y is updated with the expression e. Otherwise, an exception is triggered
and Qe holds.

3.2 Creation, Routines, Routine Bodies and Routine Invocations Rules

This section presents the adaptation of new, read field, write field and invocations rules from Müller
and Poetzsch-Heffter [12, 20, 21, 22] to Eiffel.

Local

In Eiffel, local variables have default values. To initialize local variables we use the function init .
The following rule is used to initializes default values:

A |�
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Qn , Qe

}
A |�

{
P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}

3.2 Creation, Routines, Routine Bodies and Routine Invocations Rules 17

Assignment Instruction

|�

{
(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

}
x := e

{
P , Qe

}

Compound

A |�
{

P
}

s1

{
Qn , Re

}
A |�

{
Qn

}
s2

{
Rn , Re

}
A |�

{
P
}

s1; s2

{
Rn , Re

}
Conditional Instruction

A |�
{

P ∧ e
}

s1

{
Qn , Qe

}
A |�

{
P ∧ ¬e

}
s2

{
Qn , Qe

}
A |�

{
P
}

if e then s1 else s2 end
{

Qn , Qe

}
Check Instruction

|�
{

P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
}

Loop Instruction
I ⇒ I ′

A |�
{

P
}

s1

{
I , Re

}
A |�

{
¬e ∧ I

}
s2

{
I , Re

}
A |�

{
P
}

from s1 invariant I ′ until e loop s2 end
{

(I ∧ e) , Re

}
Read Attribute Instruction

|�

{
(y 6= Void ∧ P [$(instvar(y ,T@a))/x]) ∨
(y = Void ∧ Qe)

}
x := y .T@a

{
P , Qe

}

Write Attribute Instruction

|�

{
(y 6= Void ∧ P [$ < instvar(y ,T@a) := e > /$]) ∨
(y = Void ∧ Qe)

}
y .T@a := e

{
P , Qe

}

Figure 5: Axiomatic Semantics for Basic Instructions

3.2 Creation, Routines, Routine Bodies and Routine Invocations Rules 18

where P does not contain v1, ..., vn .

Routine Invocation.

Routine invocations of non-once and once routines are verified based on properties of the the virtual
method being called:

A |�
˘

P
¯

T:m
˘

Qn , Qe
¯

A |�


(y 6= Void ∧ P [y/Current , e/p])∨
(y = Void ∧Qe)

ff
x := y.T:m(e)

˘
Qn [x/Result] , Qe

¯
In this rule, if the target y must not beVoid , the current object is replaced by y and the formal

parameter p by the expression e in the precondition P . Then, in the postcondition Qn , Result
is replaced by x to assign the result of the invocation. If y is Void the invocation triggers and
exception, and Qe holds.

To prove a triple for a virtual method T : m, one has to derive the property for all possible
implementations, that is, impl(m,T) and S : m for all sublasses S of T . The corresponding rule
is identical to the logic we extend [21].

The following rule expresses the fact that local variables different from the left-hand-side vari-
able are not modified by an invocation. This rule allows one to substitute logical variables Z in
preconditions and postconditions by local variables w (w different from x).

A |�
{

P
}

x := y .T:m(e)
{

Qn , Qe

}
A |�

{
P [w/Z]

}
x := y .T:m(e)

{
Qn [w/Z] , Qe [w/Z]

}
Routine Implementation.

The following rule is used to derive properties of routine implementations from their bodies.

A, {P} T@m {Qn , Qe} |�
{

P
}

body(T@m)
{

Qn , Qe

}
A |�

{
P
}

T@m
{

Qn , Qe

}
Eiffel pre and postconditions are often too weak for verification, for instance because they

cannot contain quantifiers. Therefore, our logic allows one to use stronger conditions. To handle
recursion, we add the assumption {P} T@m(p) {Qn , Qe} to the set of routine annotations A.

Creation

The creation instruction creates an object of type T and then invokes the routine make. In the
following rule, the object creation is expressed by the replacement new($,T)/Current , $ < T > /$.
The replacement e/p is added due to the routine invocation. Finally, in the postcondition, the
Current object is replaced by x .

A |�
˘

P
¯

T : make
˘

Qn , Qe

¯
A |�

8<: P

24 new($,T)/Current ,
$ < T > /$,
e/p

35 9=; x := create {T}.make(e)
˘

Qn [x/Current] , Qe [x/Current]
¯

Subtype

S � T
A |�

{
P
}

S:m
{

Qn , Qe

}
A |�

{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}

3.3 Exception Handling 19

Class Rule

A |�
{
τ(Current) = T ∧ P

}
imp(T ,m)

{
Qn , Qe

}
A |�

{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
A |�

{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}

3.3 Exception Handling

The operation semantics presented in Section 2.3.3 shows that a rescue clause and the Retry is a
loop. The loop body s2; s1 iterates until no exception is thrown in s1 or Retry is False. To be able
to prove this loop, we use an invariant Ir . We call this invariant rescue invariant. The rule is the
following:

P ⇒ Ir

A |�
n

Ir

o
s1

n
Qn , Qe

o
A |�

n
Qe

o
s2

n
Retry ⇒ Ir ∧ ¬Retry ⇒ Re , Re

o
A |�

n
P
o

s1 rescue s2
n

Qn , Re

o
This rule is applied to any routine with a rescue clause. If the do block, s1, terminates normally

then the rescue block is not executed and the postcondition is Qn . If s1 triggers an exception,
the rescue block executes. If the rescue block, s2, terminates normally and the Retry variable is
true then control flow transfers back to the beginning of the routine and Ir holds. If s2 terminates
normally and Retry is false, the routine triggers an exception and Re holds. If both s1 and s2

trigger an exception, the last one takes precedence, and Re holds.

3.4 Once Routines

To define the logic for once routines, we use the global variables T@m done, T@m result , and
T@m exc, which store if the once routine was executed before or not, the result, and the exception.
Let P be the following precondition, where T M RES is a logical variable:

P ≡

{
(¬T@m done ∧ P ′)∨`

T@m done ∧ P ′′ ∧ T@m result = T M RES ∧ ¬T@m exc
´
∨

(T@m done ∧ P ′′′ ∧ T@m exc)

}

and let Q ′n and Q ′e be the following postconditions:

Q ′
n ≡


T@m done ∧ ¬T@m exc ∧`
Qn ∨ (P ′′ ∧ Result = T M RES ∧ T@m result = T M RES)

´ ff
Q ′

e ≡
˘

T@m done ∧ T@m exc ∧ (Qe ∨ P ′′′)
¯

The rule for once functions is defined as follows:

A, {P} T@m {Q ′
n , Q ′

e} |�˘
P ′[false/T@m done] ∧ T@m done

¯
body(T@m)

˘
Qn , Qe

¯
A |�

˘
P
¯

T@m
˘

Q ′
n , Q ′

e

¯
In the precondition of the body of T@m, T@m done is true to model recursive call as illus-

trated in the example presented in Section 2.3.4. In the postcondition of the rule, under normal
termination, either the function T@m is executed and Qn holds, or the function is not executed
since it was already executed and P ′′ holds. In both cases, T@m done is true and T@m exc false.
In the case an exception is triggered, Qe ∨ P ′′′ holds.

3.5 Language-Independent Rules 20

3.5 Language-Independent Rules

The rules we have presented in the above sections depend from the specific instructions and features
of the programming language, in this case Eiffel. Figure 6 presents rules that can be applied to any
programming language. The false axiom allows us to prove anything assuming false. The strength
rule allows us to proof a Hoare triple with an stronger precondition if the precondition P ′ implies
the precondition P , and the Hoare triple can be proved using the precondition P . The weak rule
is similar but it weakens the postcondition. This rule can be used to weaken both the normal
postcondition Qn , and the exceptional postcondition Qe .

The conjunction and disjunction rule given the two proofs for the same instruction but us-
ing possible different pre- and postconditions, it concludes the conjunction and disjunction of the
pre- and postcondition respectively. The invariant rule conjuncts W in the precondition and post-
condition assuming that W does not contain neither program variables or $. The substitution
rule substitutes Z by t in the precondition and postcondition. Finally, the all-rule and ex-rule
introduces universal and existential quantifiers respectively.

4 Application

Figure 7 presents an example of the application of the logic. The function safe division imple-
ments an integer division which terminates always normally. If the second operand is zero, this
function returns the first operand; otherwise it returns the integer division x//y . This function is
implemented in Eiffel using a rescue clause. If the division triggers an exception, this exception is
handled by the rescue block setting z to 1 and retrying.

To prove this example, we first apply the routine implementation rule (Section 3.2). Then, we
prove the initialization z = 0 using the local rule presented in Section 3.2. Next, we apply the
rescue rule (Section 3.3) to prove the rescue block. Finally, we prove the body of the do block and
the body of the rescue block using the assignment rule.

5 Soundness and Completeness Theorems

We have proved soundness and completeness of the logic. The proofs run by induction of the
structure of the derivation tree for A |�

{
P
}

s
{

Qn , Qe

}
. In this section, we present

the theorems. The soundness proof is presented in Appendix A, and the completeness proof is
presented in Appendix A.3.

Definition 3 The triple |=
{

P
}

s
{

Qn , Qe

}
if and only if:

for all σ |= P : 〈σ, s〉 → σ′, χ then

• χ = normal ⇒ σ′ |= Qn , and

• χ = exc ⇒ σ′ |= Qe

Theorem 1 (Soundness Theorem)

|�
{

P
}

s
{

Qn , Qe

}
⇒ |=

{
P
}

s
{

Qn , Qe

}
Theorem 2 (Completeness Theorem)

|=
{

P
}

s
{

Qn , Qe

}
⇒ |�

{
P
}

s
{

Qn , Qe

}
6 Related Work

Huisman and Jacobs [6] have developed a Hoare-style logic with abrupt termination. It includes
not only exception handling but also while loops which may contain exceptions, breaks, continues,
returns and side-effects. The logic is formulated in a general type theoretical language and not in

6 RELATED WORK 21

Assumpt-axiom False axiom

A |�A |�
n

false
o

s1
n

false , false
o

Assumpt-intro-axiom Assumpt-elim-axiom

A |�A

A0,A |�A

A |�A0

A0,A |�A

A |�A

Strength Weak

P ′ ⇒ P

A |�
n

P
o

s1
n

Qn , Qe

o
A |�

n
P ′

o
s1

n
Qn , Qe

o
A |�

n
P
o

s1
n

Qn , Qe

o
Qn ⇒ Q ′

n

Qe ⇒ Q ′
e

A |�
n

P
o

s1
n

Q ′
n , Q ′

e

o

Conjunction Disjunction

A |�
n

P1
o

s1
n

Q1
n , Q1

e

o
A |�

n
P2

o
s1

n
Q2

n , Q2
e

o
A |�

n
P1 ∧ P2

o
s1

n
Q1

n ∧Q2
n , Q1

e ∧Q2
e

o
A |�

n
P1

o
s1

n
Q1

n , Q1
e

o
A |�

n
P2

o
s1

n
Q2

n , Q2
e

o
A |�

n
P1 ∨ P2

o
s1

n
Q1

n ∨Q2
n , Q1

e ∨Q2
e

o

Invariant Substitution

A |�
n

P
o

s1
n

Qn , Qe

o
A |�

n
P ∧W

o
s1

n
Qn ∧W , Qe ∧W

o A |�
n

P
o

s1
n

Qn , Qe

o
A |�

n
P [t/Z]

o
s1

n
Qn [t/Z] , Qe [t/Z]

o
where W is a Σ− formula, i .e. does not contain where Z is an arbitrary logical variable and

program variables or $. t a Σ− term.

all-rule ex-rule

A |�
n

P [Y /Z]
o

s1
n

Qn , Qe

o
A |�

n
P [Y /Z]

o
s1

n
∀Z : Qn , ∀Z : Qe

o A |�
n

P [Y /Z]
o

s1
n

Qn , Qr

o
Qe

A |�
n

P [Y /Z]
o

s1
n
∃Z : Qn , ∃Z : Qe

o
where Z , Y are arbitrary, but distinct logical variables. where Z , Y are arbitrary, but distinct logical

variables.

Figure 6: Language-Independent Rules

6 RELATED WORK 22

1 safe division (x,y: INTEGER): INTEGER
local

3 z : INTEGER
do

5 { z=0 or z=1 }
Result := x // (y+z)

7 { y = 0 implies Result = x and y /= 0 implies Result = x // y , z = 0 }
ensure

9 zero : y = 0 implies Result = x
not zero : y /= 0 implies Result = x // y

11 rescue
{ z=0 }

13 z := 1
{ z=1 , false }

15 Retry := true
{ Retry implies z=1 and not Retry implies false, false }

17 end

Figure 7: Example of an Eiffel source proof.

a specific language such as PVS or Isabelle. Oheimb [26] has developed a Hoare-style calculus for
a subset of JavaCard. The language includes side-effecting expressions, mutual recursion, dynamic
method binding, full exception handling and static class initialization. These logics formalize a
Java-like exception handling which is different to the exception handling presented in this paper.

Logics such as separation logic [23, 15], dynamic frames [7, 25], and regions [2] have been
proposed to solve a key issue for reasoning about imperative programs: framing. Separation logic
has been adapted to verify object-oriented programs [16, 17, 4]. Parkinson and Bierman [16, 17]
introduce abstract predicates: a powerful means to abstract from implementation details and to
support information hiding and inheritance. Distefano and Parkinson [4] develop a tool to verify
Java programs based on the ideas of abstract predicates.

Logics have been also developed for bytecode languages. Bannwart and Müller [3] have de-
veloped a Hoare-style logic a bytecode similar to Java Bytecode and CIL. This logic is based on
Poetzsch-Heffter and Müller’s logic [20, 21], and it supports object-oriented features such as in-
heritance and dynamic binding. The Mobius project [11] has also developed a program logic for
bytecodes. This logic has been proved sound with respect the operational semantics, and it has
been formalized in Coq.

With the goal of verifying bytecode programs, Pavlova [18] has developed an operational seman-
tics, and a verification condition generator (VC) for Java Bytecode. Furthermore, she has shown
the equivalence between the verification condition generated from the source program and the one
generated from the bytecode. Furthermore, Müller and Nordio [13] present a logic for Java and
its proof-transformation for programs with abrupt termination. The language considered includes
instructions such as while, try-catch, try-finally, throw, and break.

An operational semantics and a verification methodology for Eiffel has been presented by
Schöller [24]. The methodology uses dynamic frame contracts to be able to address the frame
problem, and applies to a substantial subset of Eiffel. However, Schöller’s work only presents an
operational semantics, and it does not include exceptions.

Our logic is based on Poetzsch-Heffter and Müller’s work [20, 21], which we extended by new
rules for Eiffel instructions. The new rules support Eiffel’s exception handling, once routines, and
multiple inheritance. This work is based on our earlier effort [14] on proof-transforming compilation
from Eiffel to CIL. In this earlier work, we have developed an axiomatic semantics for the exception
handling mechanism, and its proof transformation to CIL. This earlier work does not present the
operational semantics, and the logic was neither proved sound nor complete. Furthermore, once

7 LESSONS LEARNED 23

routines and multiple inheritance were not covered.

7 Lessons Learned

We have presented a sound and complete logic for a subset of Eiffel. Here we report on some lessons
on programming language design learned in the process.

Exception Handling.

During the development of this work, we have formalized the current Eiffel exception handling
mechanism. In the current version of Eiffel, retry is an instruction that can only be used in a
rescue block. When retry is executed, the control flow is transferred to the beginning of the
routine. If the execution of the rescue block finishes without invoking a retry, an exception is
triggered. Developing a logic for the current Eiffel would require the addition of a third postcon-
dition, to model the execution of retry (since retry is another way of transferring control flow).
Thus, we would use Hoare triples of the form

{
P
}

s
{

Qn , Qr , Qe

}
where s is an instruc-

tion, Qn is the postcondition under normal termination, Qr the postcondition after the execution
of a retry, and Qe the exceptional postcondition.

Such a formalization would make verification harder than with the formalization we use in this
paper, because the extra postcondition required by the retry instruction would have to be carried
throughout the whole reasoning. In this paper, we have observed that a rescue block behaves as
a loop that iterates until no exception is triggered, and that retry can be modeled simply as a
variable which guards the loop. Since the retry instruction transfers control flow to the beginning
of the routine, a retry instruction has a similar behavior to a continue in Java or C#. Our
proposed change of the retry instruction to a variable will be introduced in the next revision of
the language standard [10].

Since Eiffel does not have return instructions, nor continue, nor break instructions, Eiffel
programs can be verified using Hoare triples with only two postconditions. To model object-oriented
programs with abrupt termination in languages such as Java or C#, one needs to introduce extra
postconditions for return, break or continue (or we could introduce a variable to model abrupt
termination). If we wanted to model the current version of Java, for example, we would also need
to add postconditions for labelled breaks and labelled continues. Thus, one would need to add as
many postcondition as there are labels in the program. These features for abrupt termination make
the logic more complex and harder to use.

Another difference between Eiffel and Java and C# is that Eiffel supports exceptions using
rescue clauses, and Java and C# using try-catch and try-finally instructions. The use of
try-finally makes the logic harder as pointed out by Müller and Nordio [13]. The combination
of try-finally and break instructions makes the rules more complex and harder to apply because
one has to consider all possible cases in which the instructions can terminate (normal, break, return,
exception, etc).

However, we cannot conclude that the Eiffel’s exception handling mechanism is always simpler
for verification; although it eliminates the problems produced by try-finally, break, and return
instructions. Since the rescue block is a loop, one needs a retry invariant. When the program is
simple, and it does not trigger many different exceptions, defining this retry invariant is simple.
But, if the program triggers different kinds of exception at different locations, finding this invariant
can be more complicated. Note that finding this retry invariant is more complicated than finding
a loop invariant since in a loop invariant one has to consider only normal termination (and in Java
and C#, also continue instructions), but in retry invariants one needs to consider all possible
executions and all possible exceptions.

Multiple Inheritance.

Introducing multiple inheritance to a programing language is not an easy task. The type system
has to be extended, and this extension is complex. However, since the resolution of a routine name

REFERENCES 24

can be done syntactically, extending Poetzsch-Heffter and Müller’s logic [21] to handle multiple
inheritance was not a complicated task. The logic was easily extended by giving a new definition
of the function impl . This function returns the body of a routine by searching the definition in the
parent classes, and considering the clauses redefine, undefine, and rename. The experience with
this paper indicates that the complexity of a logic for multiple inheritance is similar to a logic for
single inheritance.

Once Routines.

To verify once routines, we introduce global variables to express whether the once routine has
been executed before or not, and whether the routine triggered an exception or not. With the
current mechanism, the use of recursion in once functions does not increase the expressivity of the
language. In fact, every recursive call can be equivalently replaced by Result . However, the rule for
once functions is more complicated than it could be if recursion were omitted.

Recursive once function would be more interesting if we changed the semantics of once routines.
Instead of setting the global variable done before the execution of the body of the once function, we
could set it after the invocation. Then the recursive once function would be invoked until the last
recursive call finishes. Thus, for example, the result of the first invocation of factorial(n) would be
n! (the function factorial is presented in Section 2.3). Later invocations of factorial would return
the stored result. However, this change would not simplify the logic, and we would need to use
global variables to mark whether the once function was invoked before or not.

Analyzing the EiffelBase libraries, and the source code of the EiffelStudio compiler, we found
that the predominant use of once functions is without arguments, which makes sense because
arguments of subsequent calls are meaningless. Even though our rules for once functions are not
overly complicated, verification of once functions is cumbersome because one has to carry around
the outcome of the first invocation in proofs. It is unclear whether this is any simpler than reasoning
about static methods and fields [8].

References

[1] K. R. Apt. Ten Years of Hoare’s Logic: A Survey—Part i. ACM Trans. Program. Lang. Syst.,
3(4):431–483, 1981.

[2] A. Banerjee, D. Naumann, and S. Rosenberg. Regional Logic for Local Reasoning about
Global Invariants. In ECOOP, volume 5142 of LNCS, pages 387–411. Springer-Verlag, 2008.

[3] F. Y. Bannwart and P. Müller. A Logic for Bytecode. In F. Spoto, editor, Bytecode Semantics,
Verification, Analysis and Transformation (BYTECODE), volume 141(1) of ENTCS, pages
255–273. Elsevier, 2005.

[4] D. Distefano and M. J. Parkinson. jStar: Towards Practical Verification for Java. In OOP-
SLA ’08: Proceedings of the 23rd ACM SIGPLAN conference on Object oriented programming
systems languages and applications, pages 213–226, 2008.

[5] G. Gorelick. A Complete Axiomatic System for Proving Assertions about Recursive and Non-
Recursive Programs. Technical Report TR-75, Department of Computer Science, University
of Toronto, 1975.

[6] M. Huisman and B. Jacobs. Java program verification via a hoare logic with abrupt termi-
nation. In E. Maibaum, editor, Approaches to Software Engineering, volume 1783 of Lecture
Notes in Computer Science. Springer-Verlag, 2000.

[7] I. T. Kassios. Dynamic Frames: Support for Framing, Dependencies and Sharing Without
Restrictions. In FM 2006: Formal Methods, pages 268–283, 2006.

REFERENCES 25

[8] K. R. M. Leino and P. Müller. Modular verification of static class invariants. In J. Fitzgerald,
I. Hayes, and A. Tarlecki, editors, Formal Methods (FM), volume 3582 of Lecture Notes in
Computer Science, pages 26–42. Springer-Verlag, 2005.

[9] B. Meyer. Object-Oriented Software Construction. Prentice Hall, second edition, 1997.

[10] B. Meyer (editor). ISO/ECMA Eiffel standard (Standard ECMA-367: Eiffel: Analy-
sis, Design and Programming Language), June 2006. available at http://www.ecma-
international.org/publications/standards/Ecma-367.htm.

[11] MOBIUS Consortium. Deliverable 3.1: Byte code level specification language and program
logic. Available online from http://mobius.inria.fr, 2006.

[12] P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume 2262
of LNCS. Springer-Verlag, 2002.

[13] P. Müller and M. Nordio. Proof-transforming compilation of programs with abrupt termina-
tion. In SAVCBS ’07: Proceedings of the 2007 conference on Specification and verification of
component-based systems, pages 39–46, 2007.

[14] M. Nordio, P. Müller, and B. Meyer. Proof-Transforming Compilation of Eiffel Programs. In
R. Paige and B. Meyer, editors, TOOLS-EUROPE, Lecture Notes in Business and Information
Processing. Springer-Verlag, 2008.

[15] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In POPL ’04,
pages 268–280, 2004.

[16] M. J. Parkinson and G. Bierman. Separation logic and abstraction. In POPL ’05, volume 40,
pages 247–258. ACM, 2005.

[17] M. J. Parkinson and G. M. Bierman. Separation logic, abstraction and inheritance. In
POPL ’08, pages 75–86. ACM, 2008.

[18] M. Pavlova. Java Bytecode verification and its applications. PhD thesis, University of Nice
Sophia-Antipolis, 2007.

[19] A. Poetzsch-Heffter. Specification and verification of object-oriented programs. Habilitation
thesis, Technical University of Munich, 1997.

[20] A. Poetzsch-Heffter and P. Müller. Logical Foundations for Typed Object-Oriented Languages
. In D. Gries and W. De Roever, editors, Programming Concepts and Methods (PROCOMET),
pages 404–423, 1998.

[21] A. Poetzsch-Heffter and P. Müller. A Programming Logic for Sequential Java. In S. D.
Swierstra, editor, European Symposium on Programming Languages and Systems (ESOP’99),
volume 1576 of LNCS, pages 162–176. Springer-Verlag, 1999.

[22] A. Poetzsch-Heffter and N. Rauch. Soundness and Relative Completeness of a Programming
Logic for a Sequential Java Subset. Technical report, Technische Universität Kaiserlautern,
2004.

[23] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, 2002.

[24] B. Schoeller. Making classes provable through contracts, models and frames. PhD thesis, ETH
Zurich, 2007.

[25] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. In Formal Techniques for
Java-like Programs, 2008.

[26] D. von Oheimb. Analyzing Java in Isabelle/HOL - Formalization, Type Safety and Hoare
Logic -. PhD thesis, Universität München, 2001.

REFERENCES 26

[27] D. von Oheimb. Hoare Logic for Java in Isabelle/HOL. In special issue of Concurrency and
Computation: Practice and Experience, volume 13, pages 1173–1214, November 2001.

A APPENDIX: SOUNDNESS AND COMPLETENESS PROOF 27

A Appendix: Soundness and Completeness Proof

To handle recursive calls, we define a richer semantic relation →N where N captures the maximal
depth of nested method calls which is allowed during the execution of the instruction. The transition
σ,S →N σ′,normal expresses that executing the instruction S in the state σ does not lead to
more than N nested calls, and terminates normally in the state σ′. The transition σ,S →N σ′, exc
expresses that executing the instruction S in the state σ does not lead to more than N nested
calls, and terminales with an exception in the state σ′.

The rules defining →N are similar to the rule of → presented in Section 2.3 except for the
additional parameter N . For the rules that do not describe the semantics of neither a routine call,
nor a once routine, nor a creation procedure, we replace → by →N . For example, the compound
rule (2.4) is defined as follows:

〈σ, s1〉 →N σ′,normal 〈σ′, s2〉 →N σ′′, χ

〈σ, s1; s2〉 →N σ′′, χ

Routine Invocations. The routine invocation rule described in Section 2.3.2 is extended using
the transition →N as follows:

T:m is not a once routine
σ(y) 6= voidV 〈σ[Current := σ(y), p := σ(e)], body(impl(τ(σ(y)),m))〉 →N σ′, χ

〈σ, x := y .T:m(e)〉 →N+1 σ
′[x := σ′(Result)], χ

(13)

Once Routines. The only rules of once routines that are extended using the transition →N are
the rules that describe the execution of the first invocation. These rules is extended as follows:

T ′@m = impl(τ(σ(y)),m) T ′@m is a once routine
σ(T ′@m done) = false

〈σ[T ′@m done := true,Current := y , p := σ(e)], body(T ′@m)〉 →N σ′,normal
〈σ, x := y .S:m(e)〉 →N+1 σ

′[x := σ′(Result)],normal

T@m = impl(τ(σ(y)),m) T@m is a once routine
σ(T@m done) = false

〈σ[T@m done := true,Current := y , p := σ(e)], body(T@m)〉 →N σ′, exc
〈σ, x := y .S:m(e)〉 →N+1 σ

′[T@m exc := true], exc

A.1 Definitions and Theorems

To handle recursion, following we extend the semantics of Hoare triples, and the soundness and
completeness theorems.

Definition 4 (Triple |=) |=
{

P
}

s
{

Qn , Qe

}
is defined as follows:

• If s is an instruction, then

|=
{

P
}

s
{

Qn , Qe

}
if only if:

for all σ |= P : 〈σ, s〉 → σ′, χ then

– χ = normal ⇒ σ′ |= Qn , and

– χ = exc ⇒ σ′ |= Qe

• If s is the routine implementation T@m, then

for all σ |= P : 〈σ, body(T@m)〉 → σ′, χ then

– χ = normal ⇒ σ′ |= Qn , and

A.1 Definitions and Theorems 28

– χ = exc ⇒ σ′ |= Qe

• If s is the virtual routine T:m , then

for all σ |= P : 〈σ, body(imp(τ(σ(Current)),m))〉 → σ′, χ then

– χ = normal ⇒ σ′ |= Qn , and

– χ = exc ⇒ σ′ |= Qe

The definition of |=
{

P
}

s
{

Qn , Qe

}
(Definition 4) uses the transition →. To handle

recursive routine calls, we extend this definition using the transition →N as follows:

Definition 5 (Triple |=N) |=N

{
P
}

s
{

Qn , Qe

}
is defined as follows:

• If s is an instruction, then

|=N

{
P
}

s
{

Qn , Qe

}
if only if:

for all σ |= P : 〈σ, s〉 →N σ′, χ then

– χ = normal ⇒ σ′ |= Qn , and

– χ = exc ⇒ σ′ |= Qe

• If s is the routine implementation T @m, then

|=0

{
P
}

T@m
{

Qn , Qe

}
always holds; and

|=N+1

{
P
}

T@m
{

Qn , Qe

}
if only if |=N

{
P
}

body(T@m)
{

Qn , Qe

}
• If s is the virtual routine T:m , then

|=N

{
P
}

T:m
{

Qn , Qe

}
if only if |=N

{
P
}

imp(τ(Current),m)
{

Qn , Qe

}
The above definition presents the semantics for Hoare Triples with empty assumptions. The

following definition introduces the semantics of sequent:

Definition 6 (Sequent Holds)

{P1}s1{Q1
n , Q1

e }, ..., {P j}sj{Q j
n , Q j

e} |= {P} s {Qn , Qe} if only if:

for all N: |=N {P1}s1{Q1
n , Q1

e } and ... and |=N {P j}sj{Q j
n , Q j

e} implies

|=N

{
P
}

s
{

Qn , Qe

}
Now, the theorems can be presented using the definition of sequent holds (Definition 6). The

theorems are the followings:

Theorem 3 (Soundness Theorem)

A |�
{

P
}

s
{

Qn , Qe

}
⇒ A |=

{
P
}

s
{

Qn , Qe

}
Theorem 4 (Completeness Theorem)

|=
{

P
}

s
{

Qn , Qe

}
⇒ |�

{
P
}

s
{

Qn , Qe

}
Following, we present the proofs of the soundness and completeness theorems.

A.2 Soundness Proof 29

A.2 Soundness Proof

The followings auxiliary lemmas are used to prove soundness:

Lemma 3 (Triple |=, Triple |=N)

|=
{

P
}

s
{

Qn , Qe

}
if only if ∀N : |=N

{
P
}

s
{

Qn , Qe

}
Lemma 4 (Monotone →N)

〈σ, s1〉 →N σ′, χ ⇒ 〈σ, s1〉 →N+1 σ
′, χ

Lemma 5 (→ iff →N)

〈σ, s1〉 → σ′, χ if only if ∃N : 〈σ, s1〉 →N σ′, χ

Lemma 6 (Monotone |=N)

|=N+1

{
P
}

s
{

Qn , Qe

}
implies |=N

{
P
}

s
{

Qn , Qe

}
The proof of soundness runs by induction on the structure of the derivation tree for:

A |�
{

P
}

s
{

Qn , Qe

}
and the operational semantics. Following, we present the proof for the most interesting rules.

A.2.1 Assignment Axiom

We have to prove:

|�
{

(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

}
x := e

{
P , Qe

}
⇒

|=
{

(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

}
x := e

{
P , Qe

}
Let P ′ be (safe(e) ∧ P [e/x]) ∨ (¬safe(e) ∧ Qe). Applying Definition 5, and Definition 6 to

the consequence of the rule, we have to prove:
∀σ |= P ′ : 〈σ, x := e〉 →N σ′, χ then

χ = normal ⇒ σ′ |= P , and
χ = exc ⇒ σ′ |= Qe

We prove it doing case analysis on χ:
Case 1: χ = exc. By the definition of the operational semantics, we have:

σ(e) = exc
〈σ, x := e〉 →N σ, exc

Thus, we have to prove σ |= Qe . Since σ(e) = exc, applying Lemma 1, we know σ |= ¬safe(e).
Since σ |= P ′, and σ does not change, then σ |= Qe .

Case 2: χ = normal. By the definition of the operational semantics, we get:

σ(e) 6= exc
〈σ, x := e〉 →N σ[x := σ(e)],normal

Thus, we have to prove σ[x := σ(e)] |= P . Since σ(e) 6= exc, applying Lemma 1, we know
σ |= safe(e). Since σ |= P ′, then σ |= safe(e) ∧ P [e/x]. Applying Lemma 2, then σ[x := σ(e)] |= P .

2

A.2 Soundness Proof 30

A.2.2 Compound Rule

We have to prove:

A |�
{

P
}

s1; s2

{
Rn , Re

}
implies A |=

{
P
}

s1; s2

{
Rn , Re

}
using the induction hypotheses:

A |�
{

P
}

s1

{
Qn , Re

}
implies A |=

{
P
}

s1

{
Qn , Re

}
A |�

{
Qn

}
s2

{
Rn , Re

}
implies A |=

{
Qn

}
s2

{
Rn , Re

}
Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents (Defini-

tion 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

s1; s2

{
Rn , Re

}
using the hypotheses:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

s1

{
Qn , Re

}
for all N : |=N A1, and ..., |=N An implies |=N

{
Qn

}
s2

{
Rn , Re

}
Since the sequent A is the same in the hypotheses and the conclusion, and since s1 and s2 are

instructions, applying Definition 5, we have to show:

for all σ |= P : 〈σ, s1; s2〉 →N σ′′, χ then
χ = normal ⇒ σ′′ |= Rn , and

χ = exc ⇒ σ′′ |= Re

(14)

using the hypotheses:

for all σ |= P : 〈σ, s1〉 →N σ′, χ then
χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Re

(15)

and

for all σ′ |= Qn : 〈σ′, s2〉 →N σ′′, χ then
χ = normal ⇒ σ′′ |= Rn , and

χ = exc ⇒ σ′′ |= Re

(16)

We prove it doing case analysis on χ:
Case 1: χ = exc. By the definition of the operational semantics for compound we get:

〈σ, s1〉 →N σ′, exc
〈σ, s1; s2〉 →N σ′, exc

Since σ |= P , then by the first hypothesis (33) we get σ′ |= Re .
Case 2: χ = normal. By the definition of the operational semantics for compound we have:

〈σ, s1〉 →N σ′,normal 〈σ′, s2〉 →N σ′′, χ

〈σ, s1; s2〉 →N σ′′, χ

We can apply the first induction hypothesis (33) we get σ′ |= Qn since σ |= P . Then, we can
apply the second induction hypothesis (16) and get:

χ = normal ⇒ σ′′ |= Rn , and χ = exc ⇒ σ′′ |= Re

2

A.2 Soundness Proof 31

A.2.3 Conditional Rule

We have to prove:

A |�
{

P
}

if e then s1 else s2 end
{

Qn , Qe

}
implies

A |=
{

P
}

if e then s1 else s2 end
{

Qn , Qe

}
using the induction hypotheses:

A |�
{

P ∧ e
}

s1

{
Qn , Qe

}
implies A |=

{
P ∧ e

}
s1

{
Qn , Qe

}
A |�

{
P ∧ ¬e

}
s2

{
Qn , Qe

}
implies A |=

{
P ∧ ¬e

}
s2

{
Qn , Qe

}
Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents (Defini-

tion 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

if e then s1 else s2 end
{

Qn , Qe

}
using the hypotheses:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

s1

{
Qn , Qe

}
for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

s2

{
Qn , Qe

}
Since the sequent A is the same in the hypotheses and the conclusions, and s1 and s2 are

instructions, applying Definition 5 we have to prove:

∀σ |= P : 〈σ, if e then s1 else s2 end〉 →N σ′, χ then
χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

(17)

using the hypotheses:

∀σ |= (P ∧ e) : 〈σ, s1 〉 →N σ′, χ then
χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

(18)

and

∀σ |= (P ∧ ¬e) : 〈σ, s2 〉 →N σ′, χ then
χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

(19)

We prove this rule doing case analysis on σ(e):
Case 1: σ(e) = True. If σ(e) = True then by the definition of the operational semantics we

get:

〈σ, s1〉 →N σ′, χ σ(e) = True
〈σ, if e then s1 else s2 end〉 →N σ′, χ

Then applying the first hypothesis (18) we prove χ = normal ⇒ σ′ |= Qn , and χ = exc ⇒
σ′ |= Qe .

Case 2: σ(e) = False. If σ(e) = False then by the definition of the operational semantics we
get:

〈σ, s2〉 →N σ′, χ σ(e) = False
〈σ, if e then s1 else s2 end〉 →N σ′, χ

Then applying the second hypothesis (19) we prove χ = normal ⇒ σ′ |= Qn , and χ = exc ⇒
σ′ |= Qe .

2

A.2 Soundness Proof 32

A.2.4 Check Axiom

We have to prove:

|�
{

P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
}

⇒

|=
{

P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
}

Applying Definition 5 and Definition 6 to the consequence of the rule, we have to prove:

∀σ |= P : 〈σ, check e end〉 →N σ, χ then
χ = normal ⇒ σ′ |= (P ∧ e), and

χ = exc ⇒ σ′ |= (P ∧ ¬e)
(20)

To prove it, we do case analysis on σ(e):
Case 1: σ(e) = True. By the definition of the operational semantics we have:

σ(e) = True
〈σ, check e end〉 →N σ,normal

Since the state σ is unchanged then σ |= P . Furthermore, σ(e) = True by this case analysis,
then applying the definition of |= we prove σ |= (P ∧ e))

Case 2: σ(e) = False. By the definition of the operational semantics we have:

σ(e) = False
〈σ, check e end〉 →N σ, exc

Similar to the above case, σ |= P since the state is unchanged and σ(e) = False by the case
analysis. Then σ |= (P ∧ ¬e) holds using the definition of |=.

2

A.2.5 Loop Rule

We have to prove:

A |�
{

P
}

from s1 invariant I ′ until e loop s2 end
{

(I ∧ e) , Re

}
implies

A |=
{

P
}

from s1 invariant I ′ until e loop s2 end
{

(I ∧ e) , Re

}
using the induction hypotheses:

A |�
{

P
}

s1

{
I , Re

}
implies A |=

{
P
}

s1

{
I , Re

}
A |�

{
¬e ∧ I

}
s2

{
I , Re

}
implies A |=

{
¬e ∧ I

}
s2

{
I , Re

}
I ⇒ I ′

Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents (Defini-
tion 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

from s1 ...
{

(I ∧ e) , Re

}
using the hypotheses:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

s1

{
I , Re

}
for all N : |=N A1, and ..., |=N An implies |=N

{
¬e ∧ I

}
s2

{
I , Re

}
Since the sequent A is the same in the hypotheses and the conclusions, and s1 and s2 are

instructions, applying Definition 5 we have to prove:

A.2 Soundness Proof 33

∀σ |= P : ∀σ |= P : 〈σ, from s1 invariant I ′ until e loop s2 end〉 →N σ′, χ then

χ = normal ⇒ σ′ |= (I ∧ e), and
χ = exc ⇒ σ′ |= Re

using the hypotheses:

∀σ |= P : 〈σ, s1 〉 →N σ′, χ then
χ = normal ⇒ σ′ |= I , and

χ = exc ⇒ σ′ |= Re

(21)

and
∀σ |= (¬e ∧ I) : 〈σ, s2 〉 →N σ′, χ then

χ = normal ⇒ σ′ |= I , and
χ = exc ⇒ σ′ |= Re

(22)

We prove this rule doing case analysis on χ:
Case 1: χ = exc. Since s1 trigger an exception, by the definition of the operational semantics

we get:

〈σ, s1〉 →N σ′, exc
〈σ, from s1 invariant I until e loop s2 end〉 →N σ′, exc

Since σ |= P , then by the first hypothesis (21) we prove σ′ |= Re .
Case 2: χ = normal. If s1 terminates normally, by the operational semantics we have:

〈σ, s1〉 →N σ′,normal

We have several cases depending if e evaluates to true or not and if s2 terminates normally or
not:

Case 2.a: σ′(e) = True. By the operational semantics, we get:

〈σ, s1〉 →N σ′,normal σ′(e) = True
〈σ, from s1 invariant I until e loop s2 end〉 →N σ′,normal

Applying the first hypothesis (21), we get σ′ |= I and σ′ |= e. Then by the definition of |= we
prove σ′ |= (I ∧ e).

Case 2.b: σ′(e) = False. Then we do case analysis on χ:
Case 2.b.1: χ = exc. By the definition of the operational semantics we have:

〈σ, s1〉 →N σ′,normal σ′(e) = False 〈σ′, s2〉 →N σ′′, exc
〈σ, from s1 invariant I until e loop s2 end〉 →N σ′′, exc

By the first hypothesis (21), we prove σ′ |= I . Then since σ′(e) = False and χ = exc, we prove
σ′′ |= Re .

Case 2.b.2: σ′(e) = False and χ = normal. By the definition of the operational semantics
we have:

〈σ, s1〉 →N σ′,normal σ′(e) = False 〈σ′, s2〉 →N σ′′,normal
〈σ′′, from skip invariant I until e loop s2 end〉 →N σ′′′, χ

〈σ, from s1 invariant I until e loop s2 end〉 →N σ′′′, χ

By the first hypothesis (21), we prove σ′ |= I . Then since σ′(e) = False, we can apply the
definition of |= and the second hypothesis (22), and we get σ′′ |= I . Now we can apply the
induction hypothesis and prove

χ = normal ⇒ σ′ |= (I ∧ e), and χ = exc ⇒ σ′ |= Re

2

A.2 Soundness Proof 34

A.2.6 Read Attribute Axiom

We have to prove:

|�
{

(y 6= Void ∧ P [$(instvar(y ,T@a))/x]) ∨
(y = Void ∧ Qe)

}
x := y .T@a

{
P , Qe

}
⇒

|=
{

(y 6= Void ∧ P [$(instvar(y ,T@a))/x]) ∨
(y = Void ∧ Qe)

}
x := y .T@a

{
P , Qe

}

Applying Definition 5, and Definition 6 to the consequence of the rule, we have to prove:

∀σ |= P ′ : 〈σ, x := y .T@a〉 →N σ′, χ then
χ = normal ⇒ σ′ |= P , and

χ = exc ⇒ σ′ |= Qe

(23)

where P ′ is defined as follows:

P ′ ≡ (y 6= Void ∧ P [$(instvar(y ,T@a))/x]) ∨ (y = Void ∧ Qe)

To prove it, we do case analysis on χ:
Case 1: χ = normal. Applying the definition of the operational semantics we have:

σ(y) 6= voidV
〈σ, x := y .T@a〉 →N σ[x := σ($) (instvar(σ(y),T@a))],normal

Then applying lemma 2 we get σ |= P .
Case 2: χ = exc. Applying the definition of the operational semantics:

σ(y) = voidV
〈σ, x := y .T@a〉 →N σ, exc

we get σ |= Qe .
2

A.2.7 Write Attribute Axiom

We have to prove:

|�


(y 6= Void ∧ P [$ < instvar(y ,T@a) := e > /$]) ∨
(y = Void ∧ Qe)

ff
y .T@a := e

˘
P , Qe

¯
⇒

|=


(y 6= Void ∧ P [$ < instvar(y ,T@a) := e > /$]) ∨
(y = Void ∧ Qe)

ff
y .T@a := e

˘
P , Qe

¯

Applying Definition 5, and Definition 6 to the consequence of the rule, we have to prove:

∀σ |= P ′ : 〈σ, y .T@a := e〉 →N σ′, χ then
χ = normal ⇒ σ′ |= P , and

χ = exc ⇒ σ′ |= Qe

(24)

where P ′ is defined as follows:

P ′ ≡ (y 6= Void ∧ P [$ < instvar(y ,T@a) := e > /$]) ∨ (y = Void ∧ Qe)

A.2 Soundness Proof 35

To prove it, we do case analysis on χ:
Case 1: χ = normal. Applying the definition of the operational semantics we have:

σ(y) 6= voidV
〈σ, y .T@a := e〉 →N σ[$:= σ($) < instvar(σ(y),T@a) := σ(e) >],normal

Then applying lemma 2 we get σ |= P .
Case 2: χ = exc. Applying the definition of the operational semantics:

σ(y) = voidV
〈σ, y .T@a := e〉 →N σ, exc

we get σ |= Qe .
2

A.2.8 Local Rule

We have to prove:

A |�
{

P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
implies

A |=
{

P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
using the induction hypothesis:

A |�
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Qn , Qe

}
implies

A |=
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Qn , Qe

}
Let A be the sequent A = A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of

sequents (Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

˘
P
¯

local v1 : T1; ... vn : Tn ; s
˘

Qn , Qe

¯
using the hypothesis:

for all N : |=N A1, and ..., |=N An implies
|=N

{
P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)

}
s
{

Qn , Qe

}
Since the sequent A is the same in the hypothesis and the conclusion, and since s is an instruc-

tion, applying Definition 5, we have to show:
∀σ |= P : 〈σ, local v1 : T1; ... vn : Tn ; s〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and
χ = exc ⇒ σ′ |= Qe

using the hypothesis:

∀σ |= P ′ : 〈σ, s 〉 →N σ′, χ then
χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

(25)

where P ′ is defined as follows:

P ′ ≡ P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
Applying the definition of the operational semantics for locals, we get:

〈σ[v1 := init(T1), ..., vn := init(Tn)], s〉 →N σ′,normal
〈σ, local v1 : T1; ... vn : Tn ; s〉 →N σ′,normal

Then, applying Lemma 2 we know σ |= P ′. Finally, applying the hypothesis (25) we prove:

χ = normal ⇒ σ′ |= Qn , andχ = exc ⇒ σ′ |= Qe

2

A.2 Soundness Proof 36

A.2.9 Creation Rule

We have to prove:

A |�


P

»
new($,T)/Current ,
$ < T > /$, e/p

– ff
x := create {T}.make(e)

˘
Qn [x/Current] , Qe [x/Current]

¯
implies

A |=


P

»
new($,T)/Current ,
$ < T > /$, e/p

– ff
x := create {T}.make(e)

˘
Qn [x/Current] , Qe [x/Current]

¯
using the induction hypothesis:

A |�
{

P
}

T : make
{

Qn , Qe

}
implies A |=

{
P
}

T : make
{

Qn , Qe

}
Applying Definition 5 and Definition 6 to the consequence of the rule, we have to prove:
∀σ |= P ′ : 〈σ, x := create {T}.make(e)〉 →N+1 σ

′, χ then

χ = normal ⇒ σ′ |= Qn [x/Current], and
χ = exc ⇒ σ′ |= Qe [x/Current]

where P ′ is defined as follows:

P ′ ≡ P
[

new($,T)/Current , $ < T > /$, e/p
]

using the hypothesis:
∀σ |= P : 〈σ, body(imp(T ,make))〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and
χ = exc ⇒ σ′ |= Qe

We prove soundness of this rule with respect to the operational semantics of creation instruction
(defined in Section 2.3 on page 12) for an arbitrary N .

Since σ |= P [new($,T)/Current , $ < T > /$, e/p], then by lemma 2, we know

σ[Current := new(σ($),T), $:= σ($) < T >, p := σ(e)] |= P

Applying the definition of the operational semantics we get

χ = normal ⇒ σ′[x := σ′(Current)] |= Qn , and
χ = exc ⇒ σ′[x := σ′(Current)] |= Qe

Using lemma 2 we prove:

χ = normal ⇒ σ′ |= Qn [x/Current], and χ = exc ⇒ σ′ |= Qe [x/Current]

2

A.2.10 Rescue Rule

We have to prove:

A |�
{

P
}

s1 rescue s2

{
Qn , Re

}
implies

A |=
{

P
}

s1 rescue s2

{
Qn , Re

}
using the induction hypotheses:

A |�
{

Ir
}

s1

{
Qn , Qe

}
implies A |�

{
Ir
}

s1

{
Qn , Qe

}
and
A |�

{
Qe

}
s2

{
Retry ⇒ Ir ∧ ¬Retry ⇒ Re , Re

}
implies

A |=
{

Qe

}
s2

{
Retry ⇒ Ir ∧ ¬Retry ⇒ Re , Re

}
and
P ⇒ Ir

A.2 Soundness Proof 37

Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents (Defini-
tion 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

s1 rescue s2

{
Qn , Re

}
using the hypotheses:

for all N : |=N A1, and ..., |=N An implies |=N

˘
Ir
¯

s1
˘

Qn , Qe

¯
for all N : |=N A1, and ..., |=N An implies |=N

˘
Qe

¯
s2

˘
Retry ⇒ Ir ∧ ¬Retry ⇒ Re , Re

¯
Since the sequent A is the same in the hypotheses and the conclusions, and s1 and s2 are

instructions, applying Definition 5 we have to prove:
∀σ |= P : 〈σ, s1 rescue s2〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and
χ = exc ⇒ σ′ |= Re

using the hypotheses:

∀σ |= Ir : 〈σ, s1 〉 →N σ′, χ then
χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

(26)

and

∀σ |= Qe : 〈σ, s2 〉 →N σ′′, χ then
χ = normal ⇒ σ′′ |= (Retry ⇒ Ir ∧ ¬Retry ⇒ Re), and

χ = exc ⇒ σ′′ |= Re

(27)

We prove this rule doing case analysis on χ:
Case 1: χ = normal. Since s1 terminates normally, by the definition of the operational se-

mantics we get:

〈σ, s1〉 →N σ′,normal
〈σ, s1 rescue s2〉 →N σ′,normal

Then we can apply the first hypothesis (26) since P ⇒ Ir . Thus, we prove σ′ |= Qn .

Case 2: χ = exc. If s1 triggers an exception, then by the operational semantics we have:

〈σ, s1〉 →N σ′, exc

We have several cases depending if Retry evaluates to true or not and if s2 terminates normally
or not:

Case 2.a: χ = exc. By the definition of the operational semantics we have:

〈σ, s1〉 →N σ′, exc 〈σ′, s2〉 →N σ′′, exc
〈σ, s1 rescue s2〉 →N σ′′, exc

By the first hypothesis (26), we prove σ′ |= Qe . Then, we can apply the second hypothesis (27)
and prove σ′′ |= Re .

Case 2.b: χ = normal. Here we do case analysis on σ′′(Retry):
Case 2.b.1: σ′′(Retry) = False. By the definition of the operational semantics we have:

〈σ, s1〉 →N σ′, exc 〈σ′, s2〉 →N σ′′,normal ¬σ′′(Retry)
〈σ, s1 rescue s2〉 →N σ′′, exc

A.2 Soundness Proof 38

By the first hypothesis (26), we prove σ′ |= Qe . Then, we can apply the second hypothesis (27)
and we get σ′′ |= (Retry ⇒ Ir ∧ ¬Retry ⇒ Re). Since σ′′(Retry) = False then by the definition
of |= we prove σ′′ |= Re .

Case 2.b.2: σ′′(Retry) = True. By the definition of the operational semantics we have:

〈σ, s1〉 →N σ′, exc 〈σ′, s2〉 →N σ′′,normal σ′′(Retry) 〈σ′′, s1 rescue s2〉 →N σ′′′, χ

〈σ, s1 rescue s2〉 →N σ′′′, χ

By the first hypothesis (26), we prove σ′ |= Qe . Then, we can apply the second hypothesis (27)
and we get σ′′ |= (Retry ⇒ Ir ∧ ¬Retry ⇒ Re). Since σ′′(Retry) = True then by the definition of
|= we prove σ′′ |= Ir . Now we can apply the induction hypothesis and we prove

χ = normal ⇒ σ′ |= Qn , and χ = exc ⇒ σ′ |= Re

2

A.2.11 Once Functions Rule

The proof of the rule for once functions (defined in Section 3.4 on page 19) is done in a similar
way than the creation procedure. We use the once function rule and the invocation rule, and we
prove they are sound with respect to the operation semantics of once (defined in Section 2.3.4 on
page 12).

Let P be the following precondition, where T M RES is a logical variable:

P ≡

{
(¬T@m done ∧ P ′)∨`

T@m done ∧ P ′′ ∧ T@m result = T M RES ∧ ¬T@m exc
´
∨

(T@m done ∧ P ′′′ ∧ T@m exc)

}

and let Q ′n and Q ′e be the following postconditions:

Q ′
n ≡


T@m done ∧ ¬T@m exc ∧`
Qn ∨ (P ′′ ∧ Result = T M RES ∧ T@m result = T M RES)

´ ff
Q ′

e ≡
˘

T@m done ∧ T@m exc ∧ (Qe ∨ P ′′′)
¯

To prove the once function rule, we have to prove:

A |�
{

P
}

T@m
{

Q ′n , Q ′e
}

implies
A |=

{
P
}

T@m
{

Q ′n , Q ′e
}

using the induction hypothesis:

A, {P} T@m {Q ′
n , Q ′

e} |�
P ′[false/T@m done] ∧
T@m done

ff
body(T@m)

˘ `
Qn ∧ T@m done

´
,
`

Qe ∧ T@m done
´ ¯ implies

A, {P} T@m {Q ′
n , Q ′

e} |=
P ′[false/T@m done] ∧
T@m done

ff
body(T@m)

˘ `
Qn ∧ T@m done

´
,
`

Qe ∧ T@m done
´ ¯

Let A = A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents (Defini-
tion 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

T@m
{

Q ′n , Q ′e
}

A.2 Soundness Proof 39

using the hypothesis:

for all N : |=N A1, and ..., |=N An and |=N {P} T@m {Q ′n , Q ′e}

implies

|=N

{
P ′[false/T@m done]∧
T@m done

}
body(T@m)

{ “
Qn ∧ T@m done

”
,
“

Qe ∧ T@m done
” }
(28)

We prove it by induction on N .
Base Case: N = 0. Holds by Definition 5.
Induction Case: N ⇒ N + 1. Assuming the induction hypothesis

|=N A1, and ..., |=N An implies |=N

{
P
}

T@m
{

Q ′n , Q ′e
}

we have to show

|=N+1 A1, and ..., |=N+1 An implies |=N+1

{
P
}

T@m
{

Q ′n , Q ′e
}

Then, we can prove this as follows:

|=N+1 A1, and ..., |=N+1 An

implies [Lemma 6]
|=N A1, and ..., |=N An

applying induction hypothesis
|=N

{
P
}

T@m
{

Q ′n , Q ′e
}

Using |=N A1, and ..., |=N An , and |=N

{
P
}

T@m
{

Q ′n , Q ′e
}

, we can apply the
hypothesis (28), and we get:

|=N

{
P ′[false/T@m done] ∧
T@m done

}
body(T@m) {

`
Qn ∧ T@m done

´
,
`

Qe ∧ T@m done
´
}

(29)

Since we know (29) holds, we can prove |=N+1

{
P
}

T@m
{

Q ′n , Q ′e
}

using the hypoth-
esis (29). Applying Definition 5, we have to prove

|=N

{
P
}

body(T@m)
{

Q ′n , Q ′e
}

assuming

|=N

{
P ′[false/T@m done] ∧
T@m done

}
body(T@m) {

`
Qn ∧ T@m done

´
,
`

Qe ∧ T@m done
´
}

Then, applying Definition 5 (|=N), we have to prove:
∀σ |= P : 〈σ, body(T@m)〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Q ′n , and
χ = exc ⇒ σ′ |= Q ′e

using the hypothesis:
∀σ |= P ′[false/T@m done] ∧ T@m done : 〈σ, body(T@m)〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn ∧ T@m done, and
χ = exc ⇒ σ′ |= Qe ∧ T@m done

(30)

A.2 Soundness Proof 40

We prove this with respect to the operational semantics of once routines (defined in page 12)
by case analysis on χ and T@m done:

Case 1: σ(T@m done) = false and χ = normal. By the definition of the operational seman-
tics we have:

T ′@m = impl(τ(σ(y)),m) T ′@m is a once routine
σ(T ′@m done) = false

〈σ[T ′@m done := true,Current := y , p := σ(e)], body(T ′@m)〉 →N σ′,normal
〈σ, x := y .S:m(e)〉 →N+1 σ

′[x := σ′(Result)],normal

First, we show that T ′@m = T@m because the operational semantics assigns to T ′@m and
the rule uses T@m. Since the rule is derived applying the invocation rule, and the class rule, we
know T@m = imp(T ,m) and τ(Current) = T . However, T ′@m = imp(τ(y),m), and we now
τ(y) = τ(Current), then we can conclude that T@m = T ; @m.

Then, σ |= P ′[false/T@m done] ∧ T@m done because σ[T ′@m done := true,Current :=
y , p := σ(e)] |= P ′.

Now, we can apply the induction hypothesis 30, and we get σ′ |= Qn ∧ T@m done. Since
Qn ∧ T@m done ⇒ Q ′n then σ′ |= Q ′n .

Case 2: σ(T@m done) = false and χ = exc. By the definition of the operational semantics
we have:

T@m = impl(τ(σ(y)),m) T@m is a once routine
σ(T@m done) = false

〈σ[T@m done := true,Current := y , p := σ(e)], body(T@m)〉 →N σ′, exc
〈σ, x := y .S:m(e)〉 →N+1 σ

′[T@m exc := true], exc

Applying a similar reasoning to Case 1, we know T ′@m = T@m. Since σ |= P ′[false/T@m done]∧
T@m done because σ[T ′@m done := true,Current := y , p := σ(e)] |= P ′, we can apply the induc-
tion hypothesis 30, and we get σ′ |= Qe∧T@m done. Then σ′ |= Q ′e because Qe∧T@m done ⇒ Q ′e

Case 3: σ(T@m done) = true and χ = normal. The definition of the operational semantics
is the following:

T@m = impl(τ(σ(y)),m) T@m is a once routine
σ(T@m done) = true
σ(T@m exc) = false

〈σ, x := y .S:m(e)〉 →N σ[x := σ(T@m result)],normal

We know T ′@m = T@m. Since σ |= P , and the state is unchanged except for the variable x ,
and σ(T@m done) = true and σ(T@m exc) = false, then σ |= P ′′. Then σ |= Q ′n .

Case 4: σ(T@m done) = true and χ = exc. By the definition of the operational semantics
we have:

T@m = impl(τ(σ(y)),m) T@m is a once routine
σ(T@m done) = true
σ(T@m exc) = true

〈σ, x := y .S:m(e)〉 →N σ, exc

We know T ′@m = T@m. Since σ |= P , and the state is unchanged, and σ(T@m done) = true
and σ(T@m exc) = true, then σ |= P ′′′. Then σ |= Q ′e .

A.2 Soundness Proof 41

This concludes the proof.
2

A.2.12 Routine Implementation Rule

To prove this rule, we have to prove:

A |�
{

P
}

T@m
{

Qn , Qe

}
implies A |=

{
P
}

T@m
{

Qn , Qe

}
using the induction hypothesis:

A, {P} T@m {Qn , Qe} |�
{

P
}

body(T@m)
{

Qn , Qe

}
implies

A, {P} T@m {Qn , Qe} |=
{

P
}

body(T@m)
{

Qn , Qe

}
Let A be the sequent A = A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of

sequents (Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

T@m
{

Qn , Qe

}
using the hypothesis:

for all N : |=N A1, and ..., |=N An , and |=N

{
P
}

T@m
{

Qn , Qe

}
implies

|=N

{
P
}

body(T@m)
{

Qn , Qe

} (31)

We prove it by induction on N .
Base Case: N = 0. Holds by Definition 5.
Induction Case: N ⇒ N + 1. Assuming the induction hypothesis

|=N A1, and ..., |=N An implies |=N

{
P
}

T@m
{

Qn , Qe

}
we have to show

|=N+1 A1, and ..., |=N+1 An implies |=N+1

{
P
}

T@m
{

Qn , Qe

}
Then, we can prove this as follows:

|=N+1 A1, and ..., |=N+1 An

implies [Lemma 6]
|=N A1, and ..., |=N An

applying induction hypothesis
|=N

{
P
}

T@m
{

Qn , Qe

}
Using |=N A1, and ..., |=N An , and |=N

{
P
}

T@m
{

Q ′n , Q ′e
}

, we can apply the
hypothesis (31), and we get |=N

{
P
}

body(T@m)
{

Qn , Qe

}
. Then, by Definition 5 we

prove |=N+1

{
P
}

T@m
{

Qn , Qe

}
2

A.2 Soundness Proof 42

A.2.13 Routine Invocation Rule

To prove this rule, we have to prove:

A |�
{

(y 6= Void ∧ P [y/Current , e/p])∨
(y = Void ∧Qe)

}
x := y .T:m(e)

{
Qn [x/Result] , Qe

}
implies

A |=
{

(y 6= Void ∧ P [y/Current , e/p])∨
(y = Void ∧Qe)

}
x := y .T:m(e)

{
Qn [x/Result] , Qe

}
using the induction hypothesis:

A |�
{

P
}

T:m
{

Qn , Qe

}
implies A |=

{
P
}

T:m
{

Qn , Qe

}
Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents (Defini-

tion 6), we have to show:

for all N : |=N A1, and ..., |=N An

implies

|=N

{
(y 6= Void ∧ P [y/Current , e/p])∨
(y = Void ∧Qe)

}
x := y .T:m(e)

{
Qn [x/Result] , Qe

}
using the hypothesis:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

T:m
{

Qn , Qe

}
Let P ′ be (y 6= Void ∧P [y/Current , e/p])∨ (y = Void ∧Qe). Since the sequent A is the same

in the hypothesis and the conclusion, applying Definition 5, we have to show:

for all σ |= P ′ : 〈σ, x := y .T:m(e)〉 →N σ′′, χ then
χ = normal ⇒ σ′′ |= Qn [x/Result], and

χ = exc ⇒ σ′′ |= Qe

(32)

using the hypothesis:

for all σ |= P : 〈σ, body(imp(τ(Current),m))〉 →N−1 σ
′, χ then

χ = normal ⇒ σ′ |= Qn , and
χ = exc ⇒ σ′ |= Qe

(33)

We do case analysis on σ(y):
Case 1: σ(y) = void. By the operational semantics we have:

T:m is not a once routine
σ(y) = voidV

〈σ, x := y .T:m(e)〉 →N σ, exc
Then, σ |= Qe since σ |= P and χ = exc.
Case 2: σ(y) 6= void. By the operational semantics we have:

T:m is not a once routine
σ(y) 6= voidV 〈σ[Current := σ(y), p := σ(e)], body(impl(τ(σ(y)),m))〉 →N σ′, χ

〈σ, x := y .T:m(e)〉 →N+1 σ
′[x := σ′(Result)], χ

Since σ |= P ′, then applying Lemma 2, σ |= P . Then since Current := σ(y), we can apply the
induction hypothesis and Lemma 2 again, and we get

χ = normal ⇒ σ′′ |= Qn [x/Result], and
χ = exc ⇒ σ′′ |= Qe

2

A.2 Soundness Proof 43

A.2.14 Class Rule

We have to prove:

A |�
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
implies

A |=
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
using the induction hypotheses:

A |�
{
τ(Current) = T ∧ P

}
imp(T ,m)

{
Qn , Qe

}
implies

A |=
{
τ(Current) = T ∧ P

}
imp(T ,m)

{
Qn , Qe

}
and
A |�

{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
implies

A |=
{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents (Defini-

tion 6), we have to show:

for all N : |=N A1, and ..., |=N An implies
|=N A |=

{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
using the hypotheses:

for all N : |=N A1, and ..., |=N An implies
|=N A |=

{
τ(Current) = T ∧ P

}
imp(T ,m)

{
Qn , Qe

}
for all N : |=N A1, and ..., |=N An implies
|=N A |=

{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
We prove:

A |�
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
⇒ [definition of τ]
A |�

{
(τ(Current) ≺ T ∨ τ(Current) = T) ∧ P

}
T:m

{
Qn , Qe

}
⇒ [hypothesis]

A |=
{
τ(Current) = T ∧ P

}
imp(T ,m)

{
Qn , Qe

}
and
A |=

{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
⇒ [definition of |=N]

A |=
{
τ(Current) = T ∧ P

}
T:m

{
Qn , Qe

}
and
A |=

{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
⇒

A |=
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
2

A.2.15 Subtype Rule

We have to prove:

A |�
{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}
implies

A |=
{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}
using the induction hypotheses:

A |�
{

P
}

S:m
{

Qn , Qe

}
implies A |=

{
P
}

S:m
{

Qn , Qe

}
S � T

We have to prove:

A.2 Soundness Proof 44

A |=
{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}
iff [definition of |=N]
A |=

{
τ(Current) � S ∧ P

}
imp(τ(Current),m)

{
Qn , Qe

}
Since τ(Current) � S and from the hypothesis we know A |=

{
P
}

S :m
{

Qn , Qe

}
,

then applying the induction hypothesis we prove:

A |=
{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}
2

A.2.16 Language-Independent Rules

In this subsection, we prove the soundness of the language-independent rules.

Assumpt-axiom

We have to show that for all N : |=N A implies |=N A, which is true.
2

False-axiom

Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents (Definition 6),
we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
false

}
s
{

false , false
}

This holds by the definition of |=N .
2

Assumpt-intro-rule

Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents (Definition 6),
we have to show:

for all N : |=N A1, and ..., |=N An , and A0 implies |=N A

using the hypothesis:

for all N : |=N A1, and ..., |=N An implies |=N A

This holds by the hypothesis.
2

Assumpt-elim-rule

Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents (Definition 6),
we have to show:

for all N : |=N A1, and ..., |=N An implies |=N A

using the hypotheses:

for all N : |=N A1, and ..., |=N An implies |=N A0

for all N : |=N A1, and ..., |=N An , and A0 implies |=N A

We prove it as follows:

A.2 Soundness Proof 45

|=N A1, and ..., |=N An (1)
⇒ [applying the first hypothesis]

|=N A0 (2)
⇒ [applying second hypothesis to (1) and (2)]

|=N A
2

Strength Rule

We have to prove:

A |�
˘

P ′ ¯ s1
˘

Qn , Qe

¯
implies A |=

˘
P ′ ¯ s1

˘
Qn , Qe

¯
using the induction hypotheses:

A |�
{

P
}

s1

{
Qn , Qe

}
implies A |=

{
P
}

s1

{
Qn , Qe

}
and
P ′ ⇒ P

Applying the definition of |=N , we have to prove:

for all σ |= P ′ : 〈σ, s1〉 →N σ′′, χ then
χ = normal ⇒ σ′′ |= Qn , and

χ = exc ⇒ σ′′ |= Qe

Since P ′ ⇒ P , then we get σ |= P , then by hypothesis we prove A |=
{

P ′
}

s1

{
Qn , Qe

}
2

Weak Rule

We have to prove:

A |�
˘

P
¯

s1
˘

Q ′
n , Q ′

e

¯
implies A |=

˘
P
¯

s1
˘

Q ′
n , Q ′

e

¯
using the induction hypotheses:

A |�
{

P
}

s1

{
Qn , Qe

}
implies A |=

{
P
}

s1

{
Qn , Qe

}
and
Qn ⇒ Q ′n
Qe ⇒ Q ′e

Applying the definition of |=N , we have to prove:

for all σ |= P : 〈σ, s1〉 →N σ′′, χ then
χ = normal ⇒ σ′′ |= Q ′n , and

χ = exc ⇒ σ′′ |= Q ′e

Applying the hypothesis we get:

χ = normal ⇒ σ′′ |= Qn , and
χ = exc ⇒ σ′′ |= Qe

Since Qn ⇒ Q ′n and Qe ⇒ Q ′e we get then we get

χ = normal ⇒ σ′′ |= Q ′n , and
χ = exc ⇒ σ′′ |= Q ′e

and we prove A |=
{

P
}

s1

{
Q ′n , Q ′e

}
2

A.3 Completeness Proof 46

Conjunction Rule

We have to prove:

A |�
˘

P1 ∧ P2
¯

s1
˘

Q1
n ∧Q2

n , Q1
e ∧Q2

e

¯
implies A |=

˘
P1 ∧ P2

¯
s1

˘
Q1

n ∧Q2
n , Q1

e ∧Q2
e

¯
using the induction hypotheses:

A |�
{

P1
}

s1

{
Q1

n , Q1
e

}
implies A |=

{
P1

}
s1

{
Q1

n , Q1
e

}
A |�

{
P2

}
s1

{
Q2

n , Q2
e

}
implies A |=

{
P2

}
s1

{
Q2

n , Q2
e

}
This holds applying the definition of |=N , and the hypotheses.
2

Disjunction Rule

The proof is similar to the conjunction rule proof.
2

A.3 Completeness Proof

As pointed out by Oheimb [27], the approach using weakest precondition cannot be used to prove
completeness of recursive method calls. The postcondition of recursive method calls changes such
that the induction does not go through. Here, we use the Most General Formula (MGF) approach
introduced by Gorelick [5], and promoted by Apt [1] and others. The MGF of a instruction s gives
for the most general precondition the strongest poscondition, which is the operational semantics
of s.

Following, we prove Theorem 4 by induction on the structure of the instruction s. In this
section, we present the proof for the most important cases.

Lemma 7 (Completeness Routine Imp) Let $ and $′ be object stores, and let {QT@m
n ,QT@m

e }
be the strongest postcondition defined as follows:

{QT@m
n ,QT@m

e } , SP(T@m, $ = $′)

Let A0 be the sequent defined as follows:

A0 =
∧

T@m

{
$ = $′

}
T@m

{
QT@m

n , QT@m
e

}
If |=

{
P
}

s
{

Qn , Qe

}
then A0 |�

{
P
}

s
{

Qn , Qe

}
Before proving Lemma 7, we use it to prove the completeness theorem.

Lemma 8 (Sequent T@m)

A,
{

$ = $′
}

T@m
{

QT@m
n , QT@m

e

}
|�
{

P
}

s
{

Qn , Qe

}
implies

A |�
{

P
}

s
{

Qn , Qe

}
Now, we prove the completeness theorem:
Proof of Completeness Theorem We have to prove:

|=
{

P
}

s
{

Qn , Qe

}
⇒ |�

{
P
}

s
{

Qn , Qe

}
Assume |=

{
P
}

s
{

Qn , Qe

}
. Then, applying the Lemma 7 we get:

A.3 Completeness Proof 47

A0 |�
{

P
}

s
{

Qn , Qe

}
Then by repeated application of Lemma 8 we obtain:

|�
{

P
}

s
{

Qn , Qe

}
In the rest of this section, we prove Lemma 7 by induction on the measure of s, defined as

follows:

• If s is an instruction, the measure is the size of s

• The measure of T:m is 0

• The measure of T@m is −1

With this definition of measure, one can reason about instructions using induction hypotheses
about their sub-parts, about a routine invocation using induction hypotheses of the form T :m ,
and about T:m using induction hypotheses of the form T@m.

A.3.1 Assignment Axiom

We have to prove:

|=
{

(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

}
x := e

{
P , Qe

}
⇒

A0 |�
{

(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

}
x := e

{
P , Qe

}
Let P ′ be (safe(e) ∧ P [e/x]) ∨ (¬safe(e) ∧ Qe).
Assume |=

{
P ′
}

x := e
{

Q ′n , Q ′e
}

, then |= P ′ ⇒ Q ′n [e/x]. Then by the assignment
axiom and the consequence rule we prove:

A0 |�
{

P ′
}

x := e
{

Q ′n , Q ′e
}

2

A.3.2 Compound Rule

We have to prove:

|=
{

P
}

s1; s2

{
Rn , Re

}
⇒ A0 |�

{
P
}

s1; s2

{
Rn , Re

}
using the hypotheses

|=
{

P
}

s1

{
Qn , Re

}
⇒ A0 |�

{
P
}

s1

{
Qn , Re

}
and
|=
{

Qn

}
s2

{
Rn , Re

}
⇒ A0 |�

{
Qn

}
s2

{
Rn , Re

}
Assume |=

{
P
}

s1; s2

{
Rn , Re

}
. Then

|=
{

P
}

s1

{
Tn , Te

}
and

|=
{

Tn

}
s2

{
R′n , R′e

}
where {Tn ,Te} and {R′n ,R′e} are the strongest postconditions defined as follows:

{Tn ,Te} , s1(P)
{Rn ,R′e} , s2(Tn)

By induction hypotheses we have:

A.3 Completeness Proof 48

A0 |�
{

P
}

s1

{
Tn , Te

}
and

A0 |�
{

Tn

}
s2

{
R′n , R′e

}
By the semantics of s1; s2 we have that R′n ⇒ Rn and R′e ⇒ Re and Te ⇒ Re . By the rule of

consequence applied with implications R′n ⇒ Rn and Te ⇒ Re and R′e ⇒ Re , we obtain:

A0 |�
{

P
}

s1

{
Tn , Re

}
and

A0 |�
{

Tn

}
s2

{
Rn , Re

}
The conclusion A0 |�

{
P
}

s1; s2

{
Rn , Re

}
follows by the compound rule.

2

A.3.3 Conditional Rule

We have to prove:

|=
{

P
}

if e then s1 else s2 end
{

Qn , Qe

}
⇒

A0 |�
{

P
}

if e then s1 else s2 end
{

Qn , Qe

}
using the hypotheses

|=
{

P ∧ e
}

s1

{
Qn , Qe

}
⇒ A0 |�

{
P ∧ e

}
s1

{
Qn , Qe

}
and
|=
{

Qn

}
s2

{
Rn , Re

}
⇒ A0 |�

{
P ∧ ¬e

}
s2

{
Qn , Qe

}
Assume |=

{
P
}

if e then s1 else s2 end
{

Q ′n , Q ′e
}

. Then,

|=
{

P ∧ e
}

s1

{
Q ′n , Q ′e

}
|=
{

P ∧ ¬e
}

s2

{
Q ′n , Q ′e

}
where {Tn ,Te} is the strongest postcondition {Q ′n ,Q ′e} , s1(P ∧ e) ∪ s2(P ∧ ¬e)
Then by induction hypotheses, we know:

A0 |�
{

P ∧ e
}

s1

{
Q ′n , Q ′e

}
A0 |�

{
P ∧ ¬e

}
s2

{
Q ′n , Q ′e

}
Since Q ′n ⇒ Qn and Q ′e ⇒ Qe , applying the conditional rule and the rule of consequence we

obtain:

A0 |�
{

P
}

if e then s1 else s2 end
{

Rn , Re

}
2

A.3.4 Check Axiom

We have to prove:

|=
{

P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
}

⇒

A0 |�
{

P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
}

Assume |=
{

P
}

check e end
{

Q ′n , Q ′e
}

. For Q ′n , (P ∧ e) and Q ′e , (P ∧ ¬e), the
conclusion follows by applying the rule of consequence, and the check axiom.

2

A.3 Completeness Proof 49

A.3.5 Loop Rule

We have to prove:

|=
{

P
}

from s1 invariant I until e loop s2 end
{

(I ∧ e) , Re

}
⇒

A0 |�
{

P
}

from s1 invariant I until e loop s2 end
{

(I ∧ e) , Re

}
using the hypotheses

|=
{

P
}

s1

{
I , Re

}
⇒ A0 |�

{
P
}

s1

{
I , Re

}
and
|=
{
¬e ∧ I

}
s2

{
I , Re

}
⇒ A0 |�

{
¬e ∧ I

}
s2

{
I , Re

}
Assume |=

{
P
}

from s1 invariant I until e loop s2 end
{

Tn , Te

}
Let {P0

n ,R
′
e} be the strongest postcondition {P0

n ,P
0
e } , s1(P). Let {P i+1

n ,P i+1
e } be the

strongest postcondition {P i+1
n ,P i+1

e } , s2(P i
n). Let I ′ be the invariant I ′ , ∪iP i

n and R′e be
R′e , ∪iP i

e . Then by induction hypotheses we get:

A0 |�
{

P
}

s1

{
I ′ , R′e

}
A0 |�

{
¬e ∧ I ′

}
s2

{
I ′ , R′e

}
Finally, since I ′ , ∪iP i

n and R′e , ∪iP i
e then I ′ ⇒ I and R′e ⇒ Re . Then applying the loop

rule and the rule of consequence we prove:
A0 |�

{
P
}

from s1 invariant I until e loop s2 end
{

(I ∧ e) , Re

}
2

A.3.6 Read Attribute Axiom

We have to prove:

|=
{

(y 6= Void ∧ P [$(instvar(y ,S@a))/x]) ∨
(y = Void ∧ Qe)

}
x := y .S@a

{
P , Qe

}
⇒

A0 |�
{

(y 6= Void ∧ P [$(instvar(y ,S@a))/x]) ∨
(y = Void ∧ Qe)

}
x := y .S@a

{
P , Qe

}

Let P ′ be P ′ , (y 6= Void ∧ P [$(instvar(y ,S@a))/x]) ∨ (y = Void ∧ Qe).
Assume that |=

{
P ′
}

x := y .S@a
{

Q ′n , Q ′e
}

holds, then
|= P ′ ⇒ Q ′n [(instvar(y ,S@a))/x]. Then, by the read attribute axiom and the consequence rule,

we prove:

A0 |�
{

P ′
}

x := y .S@a
{

Q ′n , Q ′e
}

2

A.3.7 Write Attribute Axiom

We have to prove:

|=
{

(y 6= Void ∧ P [$ < instvar(y ,S@a) := e > /$]) ∨
(y = Void ∧ Qe)

}
y .S@a := e

{
P , Qe

}
⇒

A0 |�
{

(y 6= Void ∧ P [$ < instvar(y ,S@a) := e > /$]) ∨
(y = Void ∧ Qe)

}
y .S@a := e

{
P , Qe

}
Let P ′ be P ′ , (y 6= Void ∧ P [$ < instvar(y ,S@a) := e > /$]) ∨ (y = Void ∧ Qe).

A.3 Completeness Proof 50

Assume |=
{

P ′
}

y .S@a := e
{

Q ′n , Q ′e
}

holds, then
|= P ′ ⇒ Q ′n [$ < instvar(y ,S@a) := e > /$]. Then, by the write attribute axiom and the

consequence rule, we prove:

A0 |�
{

P ′
}

y .S@a := e
{

Q ′n , Q ′e
}

2

A.3.8 Local Rule

We have to prove:

|=
{

P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
implies

A0 |�
{

P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
using the induction hypotheses:

|=
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Qn , Qe

}
implies

A0 |�
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Qn , Qe

}
Assume |=

{
P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
, then

|=
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Q ′n , Q ′e
}

where {Q ′n ,Q ′e} is the strongest postcondition:

{Q ′n ,Q ′e} , s(P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn))

By induction hypothesis we have:

A0 |�
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Q ′n , Q ′e
}

Since {Q ′n ,Q ′e} is the strongest postcondition, then Qn ⇒ Q ′n and Qe ⇒ Q ′e . Then, by the
consequence rule and the local rule, we prove:

A0 |�
{

P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
2

A.3.9 Rescue Rule

Figure 8 shows a diagram of the states produced by the execution of the rescue clause. The
instruction is s1 rescue s2. The arrow with label s1 means that the execution of the instruction
s1 starting in the state P i

n terminates in the state {P ′in , P ′ie } where P ′in is the postcondition after
normal termination, and P ′ie is the postcondition when s1 triggers an exception. In a similar way,
the execution of the instruction s2 stating in the state P ′ie terminates in the state {Q i

n , Q i
e} where

Q i
n is the postcondition after normal termination, and Q i

e is the postcondition when s1 triggers
an exception. If Retry = True then the postcondition Q i

n implies P i
n . If Retry = False then the

postcondition Q i
n implies Q i

n ∧ ¬Retry ∧ Q i
e . Furthermore, Q i

e implies Q i
n ∧ ¬Retry ∧ Q i

e

We have to prove:

|=
{

P
}

s1 rescue s2

{
Qn , Re

}
⇒ A0 |�

{
P
}

s1 rescue s2

{
Qn , Re

}
using the hypotheses

A.3 Completeness Proof 51

Figure 8: Completeness proof

|=
{

Ir
}

s1

{
Qn , Qe

}
⇒ A0 |�

{
Ir
}

s1

{
Qn , Qe

}
and

|=
{

Qe

}
s2

{
Retry ⇒ Ir ∧ ¬Retry ⇒ Re , Re

}
⇒

A0 |�
{

Qe

}
s2

{
Retry ⇒ Ir ∧ ¬Retry ⇒ Re , Re

}
and

P ⇒ Ir

Assume |=
{

P
}

s1 rescue s2

{
Qn , Qe

}
. Let

P0
n , P (34)

{P ′in ,P ′
i
e} , s1(P i

n) (35)

{Q i
n ,Q

i
e} , s2(P ′ie) (36)

P i+1
n , Q i

n ∧ Retry (37)
Ir , ∪iP i

n (38)

Tn , ∪iP ′
i
n (39)

Te , ∪iP ′
i
e (40)

Re , ∪i((Q i
n ∧ ¬Retry) ∨Q i

e) (41)

We have Tn ⇒ Qn and Re ⇒ Qe . Then,

|=
{

P i
n

}
s1

{
P ′in , P ′ie

}
, and

|=
{

P ′ie
}

s2

{
Q i

n , Q i
e

}
, for all i

Therefore,

|=
{
∪i P i

n

}
s1

{
∪i P ′in , ∪i P ′ie

}
and

|=
{
∪i P ′ie

}
s2

{
∪i Q i

n , ∪i Q i
e

}
Then by induction hypotheses

A0 |�
{
∪i P i

n

}
s1

{
∪i P ′in , ∪i P ′ie

}
and

A0 |�
{
∪i P ′ie

}
s2

{
∪i Q i

n , ∪i Q i
e

}

A.3 Completeness Proof 52

Since ∪i P i
n ⇒ P , and ∪i P ′in ⇒ Qn , and ∪i Q i

e ⇒ Qe , and the rule of consequence, we get

A0 |�
{

Ir
}

s1

{
Qn , Te

}
(42)

By (37) we know Q i
n ⇒ (Retry ⇒ P i

n) and by (41) Q i
n ⇒ ((¬Retry) ⇒ Re). Then, since

Ir = ∪iP i
n we get Q i

n ⇒ (Retry ⇒ Ir) and since Re ⇒ Qe we get Q i
n ⇒ ((¬Retry) ⇒ Qe). Then

∪i Q i
n ⇒ (Retry ⇒ Ir ∧ ¬Retry ⇒ Qe .

Then, by (41) ∪i Q i
e ⇒ Re , Re ⇒ Qe , and the rule of consequence, we prove:

A0 |�
{

Te

}
s2

{
(Retry ⇒ Ir ∧ ¬Retry ⇒ Qe , Qe

}
(43)

To finish the proof, we need to prove P ⇒ Ir . This holds because P = P0
n and Ir = ∪iP i

n . Then
from 42 and 43, and applying the rescue rule we get:

A0 |�
{

P
}

s1 rescue s2

{
Qn , Qe

}
2

A.3.10 Routine Implementation Rule

We have to prove:

|=
{

P
}

T@m
{

Qn , Qe

}
⇒ A0 |�

{
P
}

T@m
{

Qn , Qe

}
Assume |=

{
P
}

T@m
{

Qn , Qe

}
.

A0 |�
{

$ = $′
}

T@m
{

QT@m
n , QT@m

e

}
A0 |�

{
$ = $′ ∧ P [$′/$]

}
T@m

{
QT@m

n ∧ P [$′/$] , QT@m
e ∧ P [$′/$]

}
A0 |�

{
$ = $′ ∧ P [$′/$]

}
T@m

{
Qn , Qe

} (44), (45)

A0 |�
{

P
}

T@m
{

Qn , Qe

} ∃$′

where (44), (45) are the following implications:

QT@m
n ∧ P [$′/$] ⇒ Qn (44)

QT@m
e ∧ P [$′/$] ⇒ Qe (45)

A.3.11 Routine Invocation Rule

We have to prove:

|=
{

P
}

x := y .T:m(e)
{

Qn , Qe

}
⇒ A0 |�

{
P
}

x := y .T:m(e)
{

Qn , Qe

}
Assume |=

{
P
}

x := y .T:m(e)
{

Qn , Qe

}
. Then, by definition of |= we obtain:

|= { P [Result ′/Result] } Result := y .T:m(e) { Qn [Result ′/Result ,Result/x] , Qe [Result ′/Result] }

Let P ′,Q ′n and Q ′e be the following pre and postconditions:

P ′ , P
[

Result ′/Result , Current ′/Current ,
Current/y

]
∧ p = e

Q ′n , Qn

[
Result ′/Result , Result/x
Current ′/Current , Current/y

]

Q ′e , Qe

[
Result ′/Result , Current ′/Current ,
Current/y

]

A.3 Completeness Proof 53

By definition of |=, we get:

|=
{

P ′
}

Result := Current .T:m(p)
{

Q ′n , Q ′e
}

Then, by definition of |=, we obtain:

|=
{

P ′
}

T:m(p)
{

Q ′n , Q ′e
}

Then, we obtain the following derivation:

A0 |�
{

P ′
}

T:m(p)
{

Q ′n , Q ′e
}

A0 |�
{

P ′′
}

x := y .T:m(e)
{

Q ′′n , Q ′′e
} invocation rule

where P ′′, Q ′′n , and Q ′′e are defined as follows:

P ′′ ,
y 6= Void ∧ P ′[y/Current , e/p]
y = Void ∧ Q ′e [y/Current]

Q ′′n , Q ′n [y/Current , x/Result]

Q ′′e , Q ′e [y/Current]

Unfolding the definition of P ′, and Q ′e we obtain

P ′′ ,


y 6= Void ∧ P

[
Result ′/Result ,Current ′/Current ,
Current/y , y/Current ,

]
∧ e = e ∧

y = Void ∧ Q ′e

[
Current/y , y/Current ,
Result ′/Result , Current ′/Current

]


≡


y 6= Void ∧ P

[
Result ′/Result
Current ′/Current

]

y = Void ∧ Q ′e

[
Result ′/Result
Current ′/Current

]


Also, unfolding the definition of Q ′n and Q ′e we know:

Q ′′n , Qn

 Result ′/Result ,Current ′/Current ,
Current/y , y/Current ,
Result/x , x/Result


≡ Qn

[
Result ′/Result ,Current ′/Current

]

Q ′′e , Qe

[
Result ′/Result ,Current ′/Current ,
Current/y , y/Current

]
≡ Qe

[
Result ′/Result ,Current ′/Current

]
Thus, the only replacement used in P ′′, Q ′′n , and Q ′′e is Result ′/Result and Current ′/Current .

Now applying the invoc var rule with Result ′ and Current ′ we obtain the following derivation:

A0 |�
{

P ′′
}

x := y .T:m(p)
{

Q ′′n , Q ′′e
}

A0 |�
{

(y 6= Void ∧ P) ∨ y = Void ∧ Qe

}
x := y .T:m(p)

{
Qn , Qe

} invoc var rule

A.3 Completeness Proof 54

Finally, since we know (P ∧ y = Void) ⇒ Qe from the hypothesis, applying the rule of
consequence we prove:

A0 |�
{

P
}

x := y .T:m(e)
{

Qn , Qe

}
A.3.12 Virtual Routines

To prove this case, T:m , we use the following lemma:

Lemma 9 (Subtypes)

∀T ′ � T : |=
{

P ∧ τ(Current) = T ′
}

T:m
{

Qn , Qe

}
then

|�
{

P ∧ τ(Current) = T ′
}

T ′ :m
{

Qn , Qe

}
Now, we prove the case T:m as follows. We know:

|=
{

P
}

T:m
{

Qn , Qe

}
Applying Lemma 9 to all descendants of T , and applying the subtype rule and the consequence

rule get:

|�
{

P
}

T:m
{

Qn , Qe

}
2

B APPENDIX: AUXILIARY FUNCTIONS TO SUPPORT MULTIPLE INHERITANCE 55

B Appendix: Auxiliary Functions to Support Multiple In-
heritance

This section presents the definition of the function imp. While impl(T ,m) traverses T ’s parent
classes, it can take redefinition, undefinition, and renaming into account. In particular, impl is
undefined for deferred routines (abstract methods) or when an inherited routine has been undefined.

Given a class declaration list env (the list of classes that defines the program), a type t , and
a routine r , impl returns the routine implementation where the routine r is defined. To do it, it
takes the class t and looks for the routine declaration in t . If r is defined in t then it returns the
routine implementation t@r ; otherwise it searches in all the ancestors of t . The impl function is
defined as follows:

impl :: ClassDeclaration list × Type × RoutineId → RoutineImp

impl env t rId = if (defined t rId) then t@rId
else (implementation env (list inherits env t rId))

The imp function is generalized using the function implementation. The implementation func-
tion takes a list of types and routines because a routine could be renamed, and one needs to search
for the routine implementation using another routine name. This function is defined as follows:

implementation :: ClassDeclaration list × ((Type × RoutineId) list) → RoutineImp

implementation env (t , rId)#xs = if (deep defined env t rId) then
(impl env t rId)

else (implementation env xs)

The function deep defined yields true if only if given a class declaration list env , a type t , and a
routine r , r is defined in t or in any of its ancestors classes. This function uses the auxiliary function
deep defined list which takes a list of types and routines to handle redefinition. The definitions are
as follows:

deep defined :: ClassDeclaration list × ((Type × RoutineId) list) → Bool

deep defined env cDecl rId = undefined
deep defined env cDecl rId = if (defined cDecl rId) then True

else (deep defined list env (list inherits env cDecl rId))

deep defined list :: ClassDeclaration list × ((Type × RoutineId) list) → Bool

deep defined list env [] = False
deep defined list env (t , rId)#xs = (deep defined env t rId) ∨

(deep defined listenv xs)

Given a type t , and a routine r , the function list inherits yields a list of the parents classes and
routines where the routine r might be defined. This functions considers renaming and undefining
of routines. Its definition is the following:

list inherits :: ClassDeclaration list × Type × RoutineId → (Type × RoutineId) list

list inherits [] t rId = []
list inherits env t rId = (list inh env (parents t) rId)

B APPENDIX: AUXILIARY FUNCTIONS TO SUPPORT MULTIPLE INHERITANCE 56

Given a list of class declarations env , an inheritance clause inh, and a routine r , the function
listInh yields a list of types and routines where the routine r might be defined. If the routine is
undefined in the parent class, the function does not search its implementation. If the routine is
renamed, it searches for the new routine name. This function is defines as follows:

list inh :: ClassDeclaration list → Inheritance → RoutineId →
((ClassDeclaration × RoutineId) list)

list inh env [] rId = []
list inh env ((t1, (undef , redef , rename))#xs) rId =

if (isUndefined undef rId) then
(listInh env xs rId)

else (renamedtypeenv t1 rename rId)#(list inh env xs rId)

where the function is undefined yields true if the routine is undefined in the inheritance clause,
and the function renamed type yields the name of the routine considering renaming (if the routine
r is not renamed, it yields the same routine r).

	Introduction
	A Semantics for Eiffel
	The Source Language
	The Memory Model
	Operational Semantics
	Basic Instructions
	Creation, Routines, Routine Bodies and Routine Invocations
	Exception Handling
	Once Routines

	A Program Logic for Eiffel
	Base Rules
	Creation, Routines, Routine Bodies and Routine Invocations Rules
	Exception Handling
	Once Routines
	Language-Independent Rules

	Application
	Soundness and Completeness Theorems
	Related Work
	Lessons Learned
	Appendix: Soundness and Completeness Proof
	Definitions and Theorems
	Soundness Proof
	Assignment Axiom
	Compound Rule
	Conditional Rule
	Check Axiom
	Loop Rule
	Read Attribute Axiom
	Write Attribute Axiom
	Local Rule
	Creation Rule
	Rescue Rule
	Once Functions Rule
	Routine Implementation Rule
	Routine Invocation Rule
	Class Rule
	Subtype Rule
	Language-Independent Rules

	Completeness Proof
	Assignment Axiom
	Compound Rule
	Conditional Rule
	Check Axiom
	Loop Rule
	Read Attribute Axiom
	Write Attribute Axiom
	Local Rule
	Rescue Rule
	Routine Implementation Rule
	Routine Invocation Rule
	Virtual Routines

	Appendix: Auxiliary Functions to Support Multiple Inheritance

