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Abstract

The execution of mobile code can produce unexpected behavior, which may comprise secu-
rity and correctness of a software system. Proof-Carrying Code allows one to execute mobile
code in a safe way by checking a formal proof before the code is executed. However, automatic
generation of proofs works only for basic safety properties such as type safety.

To apply PCC to functional correctness properties, we propose to verify the source program
interactively and then to translate the proof to bytecode. This proof translation is relatively
straightforward if the source and target language are similar, such as Java and Java byte-
code, but poses challenges for more complex translations. In this paper, we present a proof-
transforming compiler for a subset of Eiffel to the .NET CIL. In particular, we show how the
non-trivial translations of multiple inheritance and Eiffel’s exceptions can be handled.

Keywords: Software verification, program proofs, Proof-Carrying Code, proof-transforming
compiler, Eiffel, CIL
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1 Introduction

Proof-Carrying Code (PCC) [12] enables the safe execution of mobile code. Code producers develop
the code together with a formal proof (a certificate) that the code has certain desirable properties.
The code consumer checks the proof before executing the mobile code.

Code producers can use certifying compilers [13] to generate proofs for basic properties such
as type safety automatically. However, the verification of functional correctness typically requires
interactive verification, which is beyond the capabilities of certifying compilers. Alternatively, code
producers can interactively verify the executable mobile code (that is, the bytecode). However,
reasoning about bytecode is difficult due to its unstructured control ow and weak type system.

We propose to interactively verify the desired properties for the source program and to trans-
late the obtained proof to bytecode. This proof translation can be performed automatically by a
proof-transforming compiler (PTC). A PTC is similar to a certifying compiler, but takes a source
program, its specification, and a source proof as input and produce the bytecode program, specifi-
cation, and proof. On the consumer side, a proof checker ensures that the proof actually guarantees
that the program satisfies its specification.

An important property of proof-transforming compilers is that they are not part of the trusted
code base of the PCC infrastructure. If the compiler produces a wrong specification or a wrong proof
for a component, the proof checker will reject the component. This approach combines the strengths
of certifying compilers and interactive verification. Our proof-transforming compiler consists of two
modules: (1) a specification translator that translates Eiffel contracts to CIL contracts; and (2) a
proof translator that translates Eiffel proofs to CIL proofs. The specification translator takes an
Eiffel contract (based on Eiffel expressions) and generates a CIL contract (based on First order
logic). The proof translator takes a proof in a Hoare-style logic and generates a CIL bytecode proof.

Proof-transforming compilation can be fairly straightforward if the source and the target lan-
guage are very similar. For example, PTCs have been developed from Java to bytecode [1, 3, 14].
The translation is more complex when the subset is extended with finally and break statements
[11]. But the difficulty of the problem grows with the conceptual distance between the semantic
models of the source and target languages. In the present work, the source language is Eiffel,
whose object model and type system differ significantly from the assumptions behind CIL, the
target language. In particular, Eiffel supports multiple inheritance and a specific form of exception
handling. This has required, in the implementation of Eiffel for .NET (which goes through CIL
code), the design of original compilation techniques. In particular [6], the compilation of each Eiffel
class produces two CIL types: an interface, and an implementation class which implements it. If
either the source proof or the source specification expresses properties about the type structure of
the Eiffel program, the same property has to be generated for the bytecode.

The translation of these properties raises challenges illustrated by the following example in-
volving a reflective capability: the feature type, which gives the type of an object.

1 merge (other: LINKED LIST [G]):LINKED LIST [G] is
- - Merge ‘other’ into current structure returning a new LINKED LIST

3 require
is linked list : other. type .conforms to (LINKED LIST [G].type)

5 same type: Current.type.is equal(other.type)
ensure

7 result type : Result.type.is equal(LINKED LIST [G].type)

The function merge is defined in the class LINKED LIST. The precondition of merge expresses
that the type of other is a subtype of LINKED LIST and the types of Current and other are equal.
The postcondition expresses that the type of Result is equal to LINKED LIST.

The compilation of the class LINKED LIST produces the CIL interface LINKED LIST INT and
the implementation class LINKED LIST IMP. A correct PTC has to map the type LINKED LIST
in the clause is linked list (line 4) to the CIL interface LINKED LIST INT because in the target
model decedents of the Eiffel class LINKED LIST inherit from the interface LINKED LIST INT in
CIL and not from LINKED LIST IMP. To translate the postcondition, we use the implementation
class LINKED LIST IMP because this property expresses that the type of Result is equal to
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LINKED LIST. Thus, the PTC has to map Eiffel classes to CIL interfaces or Eiffel classes to CIL
classes depending of the function used to express the source property.

This example illustrates that the proof-transforming compiler cannot always treat Eiffel in the
same way: while in most circumstances it will map them to CIL interfaces, in some cases (such as
this one, involving reflection) it must use a CIL class.

Outline. The source language and its Hoare-style logic are introduced in Sections 2 and 3. We
present the bytecode language and its logic in Section 4 and 5. Section 7 presents the specification
translator. In Section 6, we define the proof transformation. Section 8 illustrates proof transforma-
tions by an example. Section 9 states a soundness theorem. Related work is discussed in Section
10. Section 11 summarizes and gives directions for future work. Appendix A proves the soundness
theorem.

2 The source language

The source language is a subset of Eiffel [8]. Its definition is the following:

exp ::= literal | var | exp op exp
stm ::= x := exp | stm; stm | from stm until exp loop stm end

| if exp then stm else stm end

| inspect x when value1 then s1 ... when valuen then sn else sn+1 end

| check exp end

| debug stm end

| create {Type} x
| x := y .Type@a
| y .Type@a := exp
| x := y .Type : routine name( exp )
| retry

once routine ::= name (var : Type) : Type is

require exp
[ local var : Type, ... ]
once

stm
[ rescue

stm ]
ensure exp

end

non once routine ::= name (var : Type) : Type is

require exp
[ local var : Type, ... ]
do

stm
[ rescue

stm ]
ensure exp

end

routine ::= once routine | non once routine

Expressions are side-effect-free and cannot throw an exception.
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3 The Eiffel Program Logic

Our logic is based on the programming logics presented in [10, 16, 17]. We adapted them to
Eiffel and we proposed new rules for Eiffel’s instructions. The new rules are for rescue and retry
instructions, multi-branch instruction, check and debug instructions, and once routines. In [17], a
special variable χ is used to capture the status of the program such as normal or exceptional status.
This variable is not necessary in the bytecode proof since non-linear control flow is implemented
via jumps. To eliminate the χ variable, we use Hoare triples with two or three postconditions to
encode the status of the program execution. This simplifies not only the translation but also the
presentation.

Properties of routines are expressed by Hoare triples of the form
{

P
}

T.m { Qn , Qe } ,
where P , Qn , Qe are first-order formulas and T.m is a routine m declared in class T . The third
component of the triple consists of a normal postcondition (Qn), and an exceptional postcondition
(Qe). We call such a triple routine specification.

Properties of statements are specified by Hoare triples of the form
{

P
}

S
{

Qn , Qr , Qe

}
, where P , Qn , Qr , Qe are first-order formulas and S is a instruction. For instructions, we have a
normal postcondition (Qn), a postcondition after the execution of a retry (Qr ), and an exceptional
postcondition (Qe).

The triple
{

P
}

S
{

Qn , Qr , Qe

}
defines the following refined partial correctness

property: if S ’s execution starts in a state satisfying P , then (1) S terminates normally in a state
where Qn holds, or S executes a retry instruction and Qr holds, or S throws an exception and Qe

holds, or (2) S aborts due to errors or actions that are beyond the semantics of the programming
language, e.g., memory allocation problems, or (3) S runs forever.

The state of our Eiffel program consists of local variables, parameters and the object store $.
The object store models the heap. It describes the states of all objects in a program at a certain
point of execution. We use the object store presented in [15]. Following we present a short list of
the operation we use for the object store.

• instvar : Value × FieldDeclId → InstVar : It returns the instance variable lookup.

• $ < f := v >: ObjectStore × InstVar × Value → ObjectStore: It returns the object store
after an instance variable update.

• $(f ) : ObjectStore × InstVar → Value: It returns the instance variable load.

• $ < T >: ObjectStore × ClassTypeId → ObjectStore. It returns the object store after the
allocation of a new object of type T .

• new($,T ) : ObjectStore × ClassTypeId → Value: it returns a new object of type T .

In spite of Eiffel not having continue instructions, we need to treat jumps, because the retry
instruction (inside of a rescue clause) allows one to jump to the beginning of the current routine.
For example, we could use a retry instruction in the body of a loop and instead of jumping to the
beginning of the loop as Java or C# (by using continue statements), we jump to the beginning of
the routine.

The Eiffel logic is presented as follows: first the basic rules assign, conditional, multi-branch
and compositional instructions are presented in subsection 3.1. The logic for loops is presented
in subsection 3.2. Rescue and retry instruction are treated in subsection 3.3. The logic for check
and debug instructions are presented in subsection 3.4 and 3.5. The logic for objects and method
invocation is presented in subsection 3.6. The rules for routines are presented in subsection 3.7. We
explain the semantic of once routines and present the corresponding logic in subsection 3.8. The
language-independent rules are presented in subsection 3.9. Finally in subsection 3.10 we present
two examples of the application of the logic.
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3.1 Base Rules

Assign Instruction

{
P [e/x ]

}
x := e

{
P , false , false

}

Conditional Instruction

n
P ∧ e

o
s1

n
Qn , Qr , Qe

o

n
P ∧ ¬e

o
s2

n
Qn , Qr , Qe

o
{

P

}
if e then s1 else s2 end

{
Qn , Qr , Qe

}

Multi-branch instruction

The multi-branch instruction supports a selection between a number of possible instructions. The
order in which the branches are written does not influence the effect of the instruction. If the inspect
expression (x ) is equal to a valuei then the si instruction is executed. The inspect expression must
be of type INTEGER, CHARACTER, STRING or TYPE [T ] for some type T . The values in
different branches are different [7]. We assume the expression x cannot throw an exception and it
does not have side effects.

n
P ∧ x = value1

o
s1

n
Qn , Qr , Qe

o

...n
P ∧ x = valuen

o
sn

n
Qn , Qr , Qe

o
n

P ∧ x 6= value1 ∧ ... ∧ x 6= valuen

o
sn+1

n
Qn , Qr , Qe

o

{
P

}

inspect x

when value1 then s1

...

when valuen then sn

else sn+1

end

{
Qn , Qr , Qe

}

We can extend the rule and assume that the valuei is a list of values. We only need to extend
the premises { P ∧ x = value1 } s1 { Q } to { P ∧ x = value11 ∧ x = value12 ... ∧ x =
value1m} s1 { Q } and the otherwise clause to { P ∧ (x 6= value11 ∧ ... x 6= value1m )... ∧ (x 6=
valuen1 ∧ x 6= valuenm } sn+1 { Q }

Composition Instruction

In the compositional statement, the statement s1 is executed first. The statement s2 is executed if
and only if s1 has terminated normally.

n
P
o

s1
n

Qn , Rr , Re

o

n
Qn

o
s2

n
Rn , Rr , Re

o
{

P

}
s1; s2

{
Rn , Rr , Re

}
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3.2 Loops

First, the instruction s1 is executed. If s1 either throws an exception or executes a retry instruction,
then the postcondition of the loop is the postcondition of s1 (Qr for retry and Re for exceptions).
If s1 terminates normally, then the body of the loop (s2) is executed. If s2 terminates normally then
the invariant In holds. If s2 executes a retry instruction then Qr holds. If s2 throws an exception,
Re holds.

n
P
o

s1
n

In , Qr , Re

o

n
¬e ∧ In

o
s2

n
In , Qr , Re

o
n

P
o

from s1 invariant In until e loop s2 end
n

(In ∧ e) , Qr , Re

o

3.3 Rescue and Retry Logic

retry rule

This rule sets the normal and exception postcondition to false and the retry postcondition to P
due to the execution of the retry instruction.

{
P

}
retry

{
false , P , false

}

rescue rule

This rule is defined for routines with rescue clause. If s1 terminates normally, then the postcondi-
tion of the rule is the postcondition of s1 (Qn). The rescue block can produce two results: either
s2 is executed and terminates in a retry status and In holds or s2 is executed and terminates
normally or exceptional status and Re holds. If the instruction s2 executes an retry instruction,
then control flow is transferred to the beginning of the routine and In holds. If s2 terminates nor-
mally, the exception of s1 is re-throw. If both (s1 and s2) throw an exception, the last one takes
precedence.

P ⇒ Inn
In

o
s1

n
Qn , false , I ′n

o
n

I ′n
o

s2
n

Re , In , Re

o

{
P

}
s1 rescue s2

{
Qn , false , Re

}

This rule shows that a rescue and retry instruction is a loop. It iterates over s1; s2 until no
exception is thrown in s1 or s2 does not executes a retry instruction. In is the invariant of the
loop. The normal postcondition is Qn because if s1 is excuted and terminates normally, then the
rescue clause is not executed.

3.4 Check instruction

The check instruction helps to express a property that you believe will be satisfied. If the property
is satisfied then the system does not change. If the property is not satisfied then an exception is
thrown.

{
P

}
check e end

{
(P ∧ e) , false , (P ∧ ¬e)

}
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3.5 Debug instruction

Let D be a program variable used to describe the status of debug. The possible values of D are:
not debug and debug . D = not debug means that the user has defined the debug option of the class
as off. D = debug means that the user has defined the debug option of the class as on. The logic
for debug instructions consist of two rules: one when the debug option is on and another when the
debug option is off.

{
P

}
s1

{
Qn , Qr , Qe

}
{

(P ∧ D = debug) ∨
(P ′ ∧ D = not debug)

}
debug s1 end

{
Qn ∨ P ′ , Qr , Qe

}

3.6 Creation Instruction, read and write attribute, and routine invoca-
tion

This section presents the adaptation of new, read field, write field and invocations rules from
[10, 16] to Eiffel.

Creation Instruction

{
P

}
T@make(p) { Qn , Qe }


 P




new($,T )/Current ,
$ < T > /$,
e/p






 x := create {T}.make(e)

{
Qn [x/Current ] , false , Qe [x/Current ]

}

Read Attribute





(y 6= Void ∧ P [$(instvar(y ,S@a))/x ]) ∨

(y = Void ∧ Qe

"
$ < NullPExc > /$,

new($,NullPExc)/excV

#
)





x := y .S@a
{

P , false , Qe

}

Write Attribute





(y 6= Void ∧ P [$ < instvar(y ,S@a) := e > /$]) ∨

(y = Void ∧ Qe

"
$ < NullPExc > /$,

new($,NullPExc)/excV

#
)





y .S@a := e
{

P , false , Qe

}

Invocation

{
P

}
T : m(p)

{
Qn , false , Qe

}




(y 6= Void ∧ P [y/Current , e/p]) ∨

(y = Void ∧ Qe

"
$ < NullPExc > /$,

new($,NullPExc)/excV

#
)





x := y .T : m(e)
{

Qn [x/result ] , false , Qe

}
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3.7 Routines Rules

Routines implementation

{
P

}
body(T : m)

{
Qn , false , Qe

}
{

P
}

T : m
{

Qn , false , Qe

}

Subtype rule

S ¹ T{
P

}
S : m

{
Qn , false , Qe

}
{

τ(Current) ¹ S ∧ P
}

T : m
{

Qn , false , Qe

}

Local rule

{
P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)

}
s

{
Qn , false , Qe

}
{

P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , false , Qe

}

where P does not refer to v1, ..., vn .

3.8 Once routines: once procedures and once functions

This section presents the logic for once routines. First, we present the logic for once procedure and
afterwards we extend it for once functions.

3.8.1 Once procedures

A once procedure is a procedure that is executed only once. The first invocation executes the
body of the procedure. However, the remaining executions do nothing. Let p be an once procedure
defined in the class C as:

1 p ( i : T) is
an once procedure

3 once
body

5 end

To define the logic for once procedures, we introduce two fresh variables: C p done (of boolean
type) and C p exception (of type EXCEPTION). C p done = true expresses that the procedure
p in the class C has been executed at least one time. C p done = false represents that the
procedure has never been executed. C p exception is used to express whether an exception has
been thrown in the procedure p or not/ It also stores the type of the exception.

For readers not familiar with once routines in Eiffel, following we present a translation to Java
1. This translation also illustrates all the cases we have to consider in the definition of the logic for
once procedures.

1The variables C p done and C p exception are declared in a class DATA and they are static variables.
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1 if ( ! DATA.C p done) {
DATA.C p done = true;

3 try {
Eiffel2Java(body)

5 }
catch (Exception e) {

7 DATA.C p exception = e;
throw e;

9 }
}

11 if (DATA.C p exception != null) {
throw DATA.C p exception;

13 }

The execution of a once routine can produce different results depending on whether it is the
first execution of the once routine or not and whether an exception was thrown or not. We present
them in four cases:

• If it is the first execution of the once routine, then the body of the routine is executed and
produces its result without throwing an exception.

• If it is the first execution of the once routine, then the body of the routine is executed and
produces an exception. The exception is stored to be able to reproduce the same exception
during the next executions of the routine.

• If it is not the first execution of the once routine and the first execution produced an exception
then the same exception is returned.

• If it is not the first execution of the once routine and the first execution did not produce an
exception then it does nothing.

Let S be the following precondition

S ≡





(¬C p done ∧ P) ∨“
C p done ∧ P ′ ∧ C p exception = Void

”
∨

(C p done ∧ P ′′ ∧ C p exception 6= Void)





The rule is defined as follows:

{
P [false/C p done] ∧
C p done

}
body(C : p)

{
(Qn ∧ C p done) , false , (Qe ∧ C p done)

}

{
S

}
C : p(i)





0
BB@

C p done ∧
C p exception = Void ∧
(Qn ∨ P ′)

1
CCA , false ,

0
BB@

C f done ∧
C f exception 6= Void ∧
(Qe ∨ P ′′)

1
CCA





3.8.2 Once functions

The difference between once procedures and once functions is that once functions return a value
and procedures do not. The returned value of once functions is always the same value (which was
obtained in the first invocation).

Let f be an once function defined in the class C as:
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1 f ( i : T1): T2 is
an once function

3 once
body

5 end

Besides the variables C f done and C f exception introduced in the above Section, we use a
fresh variable C f result . Its type is the return type of the once function (T2 for the function f ).
C f result is used to store the returned value of the once function.

Similar to once procedures, we present the translation of once functions to Java. We assume
the result of the body of the function is assigned to C f result in Eiffel2Java(body).

1 if ( ! DATA.C f done) {
DATA.C f done = true;

3 try {
Eiffel2Java(body)

5 }
catch (Exception e) {

7 DATA.C f exception = e;
throw e;

9 }
}

11 if (DATA.C f exception != null) {
throw DATA.C f exception;

13 }
else {

15 return DATA.C f result;
}

Let S be the following a precondition

S ≡





(¬C f done ∧ P) ∨ 
C f done ∧ P ′ ∧ C f result = C F RESULT ∧
C f exception = Void

!
∨

(C f done ∧ P ′′ ∧ C f exception 6= Void)





The rule is defined as follows:

{
P [false/C f done] ∧
C f done

}
body(C : f )

{
(Qn ∧ C f done) , false , (Qe ∧ C f done)

}

{
S

}
C : f (i)





0
BB@

C f done ∧ C f exception = Void ∧

(Qn ∨
 

P ′ ∧ result = C F RESULT ∧
C f result = C F RESULT

!
1
CCA ,

false ,

 
C f done ∧ C f exception 6= Void ∧
(Qe ∨ P ′′)

!




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3.8.3 Discussion

The above rule allows us to write a proof whatever once function we write (even recursive once
functions). The rule is correct and models all possible cases of once functions.

However, verify a program which contains a once function is not simple. We have to know the
execution path of every once function so that we know whether use the result of the first invocation
or invoke it by first time. Furthermore, the verification technique is not modular. We need to add
the information of C f done and C f result for all routine that invokes a once function. This
makes the logic hard to use.

To solve this problem, we have analyzed Eiffel libraries looking for good once routines. We
have found that there hardly exist once procedures and that most of once functions do not have
parameters. Furthermore, most of once functions are used to either create a shared object and
return it or to execute an expensive calculation.

We have proposed a new rule for once functions. It assumes once functions are:

• state independent,

• they do not have arguments, and

• they are pure functions (side effect free)

With these assumptions, we do not need to know whether the once function was executed once
or not. The function returns always the same result.

The rule is defined as follows:

{
P

}
body(C : f )

{
Qn , false , Qe

}
{

P

}
C : f (i)

{
Qn ∧ result = cache f , false , Qe

}

where cachef stores the result of the once function f .
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3.9 Language-independent rules

False axiom


false

ff
s1


false , false , false

ff

Strength Weak

P ′ ⇒ Pn
P
o

s1
n

Qn , Qr , Qe

o


P ′
ff

s1


Qn , Qr , Qe

ff

n
P
o

s1
n

Qn , Qr , Qe

o

Qn ⇒ Q ′n
Qr ⇒ Q ′r
Qe ⇒ Q ′e

P
ff

s1


Q ′n , Q ′r , Q ′e

ff

Invariant Substitution
P

ff
s1


Qn , Qr , Qe

ff


P ∧W

ff
s1


Qn ∧W , Qr ∧W , Qe ∧W

ff


P

ff
s1


Qn , Qr , Qe

ff


P [t/Z ]

ff
s1


Qn [t/Z ] , Qr [t/Z ] , Qe [t/Z ]

ff

Conjunction Disjunctionn
P1

o
s1

n
Q1

n , Q1
r , Q1

e

o

n
P2

o
s1

n
Q2

n , Q2
r , Q2

e

o


P1 ∧ P2
ff

s1


Q1

n ∧Q2
n , Q1

r ∧Q2
r , Q1

e ∧Q2
e

ff

n
P1

o
s1

n
Q1

n , Q1
r , Q1

e

o

n
P2

o
s1

n
Q2

n , Q2
r , Q2

e

o


P1 ∨ P2
ff

s1


Q1

n ∨Q2
n , Q1

r ∨Q2
r , Q1

e ∨Q2
e

ff

all-rule ex-rule
P [Y /Z ]

ff
s1


Qn , Qr , Qe

ff


P [Y /Z ]

ff
s1


∀Z : Qn , ∀Z : Qr , ∀Z : Qe

ff


P [Y /Z ]

ff
s1


Qn , Qr , Qe

ff


P [Y /Z ]

ff
s1


∃Z : Qn , ∃Z : Qr , ∃Z : Qe

ff

where Z , Y are arbitrary, but distinct logical variables. where Z , Y are arbitrary, but distinct logical variables.

3.10 Application

In this section we present two examples of the application of the Eiffel logic. In subsection 3.10.1
we present an example of rescue and retry rules. The application of once routines is presented in
subsection 3.10.2.

3.10.1 Application of rescue and retry rules

This example is a very simple calculator with multiplication and division operations. It requires that
the second operator is different from zero to avoid exceptions. But before applying the operation,
the calculator tries to open a file. Opening a file can throw an exception (for example, because
the file does not exist). For operation 1 (division) it tries to open the file three times, if it cannot
open the file after the third attempt, it does not try again and it applies the division. In the case
of multiplication (operation/=1) it tries to open the file and if the file cannot be opened, it throws
an exception and the exception is propagated. To facilitate the reading, we add the text normal
and exc to indicate that the postcondition is a normal and exceptional postcondition respectively.

Following, we present the source proof for the example of figure 1.

Table 1: Proof for the example of figure 1.
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calculator (op1, op2, operation : INTEGER):INTEGER is
2 require

not zero : op2 /= 0
4 local

attempt: INTEGER
6 do

if (operation=1) then
8 if (attempt < 3) then

open a file
10 end

Result:=op1 // op2
12 else

open a file
14 Result:=op1 ∗ op2

end
16 rescue

if (operation=1) then
18 attempt:=attempt+1

retry
20 end

Result:=1
22 end

Figure 1: A simple example of rescue and retry instructions.

calculator (op1, op2, operation: INTEGER):INTEGER is

require

not zero: op2 /= 0

local

attempt: INTEGER

do

{ op2 6= 0 ∧ attempt = 0 }
⇒
{ op2 6= 0 ∧ (operation = 1 ⇒ (attempt ≥ 0 ∧ attempt ≤ 3)) }
if (operation=1) then

{ op2 6= 0 ∧ attempt ≥ 0 ∧ attempt ≤ 3 ∧ operation = 1 }
if (attempt < 3) then

{ op2 6= 0 ∧ attempt ≥ 0 ∧ attempt < 3 ∧ operation = 1 }
open a file(

normal : op2 6= 0 ∧ attempt ≥ 0 ∧ attempt < 3 ∧ operation = 1,

exc : op2 6= 0 ∧ attempt ≥ 0 ∧ attempt < 3 ∧ operation = 1

)

end(
normal : op2 6= 0 ∧ attempt ≥ 0 ∧ attempt < 3 ∧ operation = 1 ,

exc : op2 6= 0 ∧ attempt ≥ 0 ∧ attempt < 3 ∧ operation = 1

)

Result:=op1 // op28
>><
>>:

normal :

 
op2 6= 0 ∧ attempt ≥ 0 ∧ attempt < 3

∧ Result = op1//op2 ∧ operation = 1

!
,

exc : (op2 6= 0 ∧ attempt ≥ 0 ∧ attempt < 3 ∧ operation = 1)

9
>>=
>>;

else

Continued on next page
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{ op2 6= 0 ∧ operation 6= 1 }
open a file(

normal : op2 6= 0 ∧ operation 6= 1 ,

exc : op2 6= 0 ∧ operation 6= 1

)

Result:=op1 * op2(
normal : op2 6= 0 ∧ operation 6= 1 ∧ Result = op1 ∗ op2 ,

exc : op2 6= 0 ∧ operation 6= 1

)

end

rescue(
normal :

 
(operation = 1 ∧ op2 6= 0 ∧ attempt ≥ 0 ∧ attempt < 3) ∨
(operation 6= 1 ∧ op2 6= 0)

! )

if (operation=1) thenn
normal : operation = 1 ∧ op2 6= 0 ∧ attempt ≥ 0 ∧ attempt < 3

o

attempt:=attempt+1n
normal : operation = 1 ∧ op2 6= 0 ∧ attempt ≥ 0 ∧ attempt ≤ 3

o

retryn
retry : operation = 1 ∧ op2 6= 0 ∧ attempt ≥ 0 ∧ attempt ≤ 3

o

end(
normal : operation 6= 1 ∧ op2 6= 0

retry : operation = 1 ∧ op2 6= 0 ∧ attempt ≥ 0 ∧ attempt ≤ 3

)

Result:=-1(
normal : operation 6= 1 ∧ op2 6= 0 ∧ Result = −1

retry : operation = 1 ∧ op2 6= 0 ∧ attempt ≥ 0 ∧ attempt ≤ 3

)

end 8
>><
>>:

normal :

 
(operation = 1 ∧ Result = op1//op2) ∨
(operation 6= 1 ∧ Result = op1 ∗ op2)

!

exc : (operation 6= 1 ∧ op2 6= 0 ∧ Result = −1)

9
>>=
>>;

3.10.2 Application of Once functions

In this section we present a simple example of the application of the logic for once functions. It
invokes a once function two times with different parameters and it shows that the result is always
the same. Figure 2 presents the Eiffel program and table 2 presents its proof.

Table 2: Proof for the example of figure 2.

f (p: INTEGER): INTEGER is

- - an example of once function

once

{ true }
Result := p * 2

{ Result = p ∗ 2 }
ensure

Result = p * 2

end

Continued on next page
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f (p: INTEGER): INTEGER is
2 an example of once function

once
4 Result := p ∗ 2

ensure
6 Result = p ∗ 2

end
8

my example is
10 invoke the function f

do
12 x := f(5)

x2 := f(8)
14 end

Figure 2: Source once function.

my example is

- - invoke the function f

do

{ ¬C f done }
x := f(5)

{ x = 5 ∗ 2 ∧ C f done ∧ C f exception = Void ∧ C f result = x }
x2 := f(8)

{ x = 10 ∧ C f done ∧ C f exception = Void ∧ C f result = 10 ∧ x2 = C f result }
⇒
{ x = 10 ∧ C f result = 10 ∧ C f exception = Void ∧ x2 = 10 }

end

4 CIL Kernel Language

The CIL language consists of classes with fields and methods. The methods are implemented as
method bodies consisting of a sequence of labelled intermediate instructions. The instructions are
executed indirectly by means of a Just-in-Time Compiler (JIT). The JIT translates the instructions
into machine code for the particular computer on which the program is to be executed.

The instructions are executed in an abstract stack machine. The instruction set consists of
instructions that push operands on the abstract evaluation stack, instructions that operate on the
top of stack operands, and instructions that pop operands off the stack and store them in memory
or in local variables.

There are about 220 instructions in CIL. Following, we present an informal description of the
instructions we use to translate Eiffel to CIL (more detail about CIL see [5]).

• ldc v : pushes a number constant v onto the stack.

• ldstr v : pushes a string constant v onto the stack.

• ldnull: pushes null onto the stack.

• ldloc x : pushes the value of a local variable x onto the stack.

• ldarg x : pushes the value of a method parameter x onto the stack.

• stloc x : pops the top element off the stack and assigns it to the local variable x .
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• starg x : pops the top element off the stack and assigns it to the method argument x .

• opop : assuming that op is a function that takes n input values to m output values, it removes
the n top elements from the stack by applying op to them and puts the m output values
onto the stack. We write binop if op is a binary function. We consider the following binary
instruction:

1. add, rem, mul, div: take 2 input values, it removes the 2 top elements from the stack
applying the addition, subtraction, multiplication or division operation resp. and put
the result onto the stack.

2. ceq, clt, cgl: take 2 input values, it removes the 2 top elements from the stack applying
the equal, less than, great than operation resp. and put the result onto the stack.

• br l : transfers the control program to the point l .

• brtrue l : transfers the control program to the point l if the top element of the stack is true
and unconditionally pops it.

• brfalse l : transfers the control program to the point l if the top element of the stack is false
and unconditionally pops it.

• checkcast T : checks whether the top element is of type T or a subtype thereof.

• newobj instance void Class::.ctor(). T : allocates a new object of type T and pushes it onto
the stack.

• callvirt M and call M : invokes the method M on an optional object reference and parameters
on the stack and replaces these values by the return value of the invoked method (if M returns
a value). call invokes non-virtual and static methods, callvirt invokes virtual methods. The
code depends on the actual type of the object reference (dynamic dispatch).

• ldfld F : replaces the top element by its field F (an instance field).

• ldsfld F : replaces the top element by its field F (a static field).

• stfld F : sets the field F (an instance field) of the object denoted by the second-topmost
element to the top element of the stack and pops both values.

• stsfld F : sets the field F (a static field) of the object denoted by the second-topmost element
to the top element of the stack and pops both values.

• ret return to caller

• nop: has no effect.

5 The Bytecode Logic

The Hoare-style program logic presented in this section allows one to formally verify that imple-
mentations satisfy interface specifications given as pre- and postconditions. For more detail of the
Bytecode logic see [1].

5.1 Method and Instructions Specifications

A method implementation T@m represents the concrete implementation of method m in class T .
A virtual method T:m represents the common properties of all method implementations that might
by invoked dynamically when m is called on a receiver of static type T , that is, impl(T,m) (if T:m
is not abstract) and all overriding subclass methods.
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Properties of methods and method bodies are expressed by Hoare triples of the form {P} comp
{Q}, where P, Q are sorted first-order formulas and comp is a method implementation T@m, a
virtual method T:m or a method body p. We call such a triple method specification. The triple
{P} comp {Q} expresses the following refined partial correctness property: if the execution of
comp starts in a state satisfying P, then (1) comp terminates in a state in which Q holds, or (2)
comp aborts due errors or actions that are beyond the semantics of the programming language (for
instance, memory allocation problems), or (3) comp runs forever.

The unstructured control flow of bytecode programs makes it difficult to handle instruction
sequences, because jumps can transfer control into and from the middle of a sequence. Therefore,
the logic treats each instruction individually: each individual instructions Il in a method body p
has a precondition El . An instruction with its precondition is called an instruction specification,
written as {El} l : Il .

Obviously, the meaning of an instruction specification {El} l : Il cannot be defined in isolation.
{El} l : Il express that if the precondition El holds when the program counter is at position l , the
precondition El′ of Il ’s successor instruction I ′l holds after normal termination of Il [1].

5.2 Rules for Instruction Specifications

All rules for instructions, except for method calls, have the following form:

El ⇒ wp1
p(Il)

A ` {El} l : Il

wp1
p(Il) is the local weakest precondition of instruction Il . Such a rule express that the precon-

dition of Il has to imply the weakest precondition of Il w.r.t. all possible successor instructions of
Il .

The definition of wp1
p is shown in figure 3. Within an assertion, the current stack is referred to

as s, and its elements are denoted by non-negative integers: element 0 is the top element, etc. The
interpretation [El ] : State x Stack → Value for s is

[s(0)] < S , (σ, v) > = v and

[s(i + 1)] < S , (σ, v) >= [s(i)] < S , σ >

The functions shift and unshift express the substitutions that occur when values are pushed
onto and popped from the stack, resp.:

shift(E ) = E [s(i + 1)/s(i) for all i ∈ N ]
unshift = shift−1

shiftn denotes n consecutive applications of shift .

6 Proof transformation from Eiffel to CIL

Our proof-transforming compiler is based on transformation functions,∇S and∇E , for instructions
and expressions respectively. Both functions yield a sequence of Bytecode instructions and their
specification.∇S generates this sequence from a proof for a source instruction and∇E from a source
expression and a precondition for its evaluation. These functions are defined as a composition of
the translations of its sub-trees. The signatures are the following:

∇E : Precondition × Expression × Postcondition × Label ⇒ Bytecode Proof
∇S : Proof Tree × Label × Label × Label × Label ⇒ Bytecode Proof

In ∇E the label is used to the starting label of the translation.
ProofTree is a proof tree to translate. It is a derivation in the Hoare logic. For example
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Il wp1
p(Il)

ldc v unshift(El+1[v/s(0)])

ldstr v unshift(El+1[v/s(0)])

ldnull unshift(El+1[null/s(0)])

ldloc x unshift(El+1[x/s(0)])

ldarg x unshift(El+1[x/s(0)])

stloc x (shift(El+1))[s(0)/x ]

starg x (shift(El+1))[s(0)/x ]

binop (shift(El+1))[s(1)ops(0)/s(1)]

br l ′ El′

brtrue l ′ (¬s(0) ⇒ shift(El+1)) ∧ (s(0) ⇒ shift(El′))

checkcast T El+1 ∧ τ(s(0)) ¹ T

newobj T unshift(El+1[new($,T )/s(0), $ < T > /$]

ldfld T@a El+1[$(iv(s(0),T@a))/s(0)] ∧ s(0) 6= null

stfld T@a (shift2(El+1))[$ < iv(s(1),T@a) := s(0) > /$] ∧ s(1) 6= null

ret true

aret (shift(Q))[s(0)/result] where Q is the method’s postcondition.

nop El+1

Figure 3: The values of the wp1
p function.

Tree1

{P} s1 {Q}
Tree2

{Q} s2 {R}
{P} s1; s2 {R}

is a proof tree for the compositional rule where P, Q and R are preconditions and postconditions
(predicates in first order logic) and s1, s2 statements.

In ∇S the four labels are: start, next, retry and exc. start and next are used to know the
starting label and the next label of the translation. For example in the translation of if then
else instructions, the next label is used to know where to jump after the end of the else translation
(after the then part). We could eliminate the next label introducing nop instructions after every
if. The retry is used to process a retry instruction. It means that control flow will be transferred
to the label retry when a retry instruction is processed (it represents the beginning of the routine
being processed). exc is used to store the label where to jump if an exception is throw. This label
is used in the soundness theorem.

The BytecodeProof type is defined as a list of InstrSpec, where InstrSpec is an instruction spec-
ification. The translation functions are based on the definition of wp1

p (figure 3). Each translation
was derived using the object-oriented source proof and the wp1

p definition.
In the following, we present the proof translation. Table 3 comprises the naming conventions

we use in the rest of this paper. Section 6.3 presents the translation for expressions. Section 6.4
describes the translation for language-independent rules. Section 6.5 describes the translation for
assignment, conditional and compositional instructions. The translation for create features and
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Type Typical use

Precondition ∪ Postcondition P ,Q ,R,U ,V
Normal Postcondition Qn ,Rn

Retry Postcondition Qr ,Rr

Exception Postcondition Qe ,Re

Label lstart , lnext , lretry , lexc
lb , lc , ..., lg

Table 3: Naming conventions.

read and write attribute is illustrated in Section 6.6. The translation for routines is presented in
Section 6.7. Finally, Section 6.8 presents the translation for instructions specific of Eiffel.

6.1 Compiling Eiffel to CIL

The Eiffel’s object model differs from the CIL’s object model. Eiffel supports concepts like multiple
inheritance which CIL does not. These concepts can be modeled in CIL but in a different way than
in Eiffel.

When an Eiffel class is compiled to CIL, four classes are generated. For example, the Eiffel class
MY CLASS is compiled to an interface MyClass, and tree classes: Impl.MyClass, Create.MyClass,
and Data.MyClass in CIL. The class Impl.MyClass implements the interface MyClass. The class
Create.MyClass is used to compile creation procedures. And the class Data.MyClass is used to
compile once routines.

Creation procedures

Eiffel allows to write creation procedures with the same parameters by renaming or given another
name. However, languages like Java or C# do not. CIL defines constructors using the class name
and does not allow to define several constructors with the same parameters.

The compilation of the creation procedure make(v1 : T1, ...vn : Tn) defined in the Eiffel class
MY CLASS produces four methods in CIL:

• An abstract method make(v1 : T1, ...vn : Tn) in the interface MyClass,

• A method make(v1 : T1, ...vn : Tn) in the class Impl.MyClass,

• A method make(v0 : MyClass, v1 : T1, ...vn : Tn) in the class Impl.MyClass, and

• A method make(v1 : T1, ...vn : Tn) in the class Create.MyClass.

The method make(v1 : T1, ...vn : Tn) in the class Impl.MyClass is defined as follows:

.method public void make(v 0:MyClass, v 1:T 1,...v n:T n) cil managed
2 {

IL 0000: ldarg.0
4 IL 0001: ldarg.1 // load the argument v 1

...
6 IL 000n: ldarg.n // load the argument v n

IL 0002: call void Impl.MyClass::make(MyClass, T 1, ... T n)
8 IL 0007: ret

}
The body of the method make(v0 : MyClass, v1 : T1, ...vn : Tn) contains the creation proce-

dures’ implementation. The method make(v1 : T1, ...vn : Tn) in the class Create.MyClass is defined
as follows:
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1 .method public void make(v 1:T 1,...v n:T n) cil managed
{

3 IL 0000: newobj void Impl.MyClass::.ctor()
IL 0005: dup

5 IL 0006: ldarg.0 // load the argument v 1
...

7 IL 000n: ldarg.n // load the argument v n
IL 0007: callvirt void Impl.MyClass::make(T 1, ... T n)

9 IL 000c: ret
}

Attributes

The Uniform Access Principle states that all services offered by a module should be available
through an uniform notation, which does not depend whether they are implemented using an
attribute or using a query that computes the result.

To compile an attribute item: T defined in the class MyClass, the followings methods and fields
are created:

• Interface MyClass: a .method abstract T item() and a .method abstract void set item(T) are
defined.

• Class Impl.MyClass: a .field public T item is declared. The methods item() and set item(T)
are implemented as follows:

.method public T item() cil managed
2 {

IL 0000: ldarg.0
4 IL 0001: ldfld T Impl.MyClass::$$item

IL 0006: ret
6 }

.method public void set item(T i) cil managed
2 {

IL 0000: ldarg.0
4 IL 0001: ldarg.1

IL 0002: stfld T Impl.MyClass::$$item
6 IL 0007: ret

}

Once Routines

To compile once routines, static fields are used. In the class Data.MyClass three static fields are
defined:

• .field public static bool name done

• .field public static object name exception

• .field public static T name result

where name is the name of the once routine and T its returned type. If the routine is a
procedure, the last field is not declared. name done is used to know whether the once routine
was executed before or not; name exception is used to know whether the once routine throws an
exception or not and it also stores it object; and name result is used to store the result.
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Multiple Inheritance

Due to CIL does not support multiple inheritance, the compilation of a class MyClass generates
an interface MyClass and a class Impl.MyClass which implements the interface. If in Eiffel, the
class MY CLASS inherits the classes C1, C2,...,Cn , then in CIL, the class Impl.MyClass extends
the interfaces C1, C2,..., and Cn .

6.2 Starting the translation

Our Proof-Transforming Compiler takes as input a list of classes with their proof. Each class
consists of a list of routines and its attributes. Each routine consists of a proof tree. The PTC takes
the first class and for every routine of the class it creates a method in the interface and a method
in the implementation class which body is the result of the translation function ∇S setting the
starting label to la (a symbolic label), the next label to lb and the retry and exception label to ∅.

Per every creation procedure, the make methods are created as explained in the above section.
The CIL proof are generated automatically. The CIL proof of these methods are the followings:

.method public void make(v0 : MyClass, v1 : T1, ...vn : Tn) cil managed
{
{P} IL00: ldarg.0
{P ∧ s(0) = this} IL01: ldarg.1

...{
P ∧ s(n − 1) = this ∧
s(n − 2) = v1 ∧ ...s(0) = vn−1

}
IL0n : ldarg.n

{
P ∧ s(n − 1) = this ∧
s(n − 2) = v1 ∧ ...s(0) = vn

}
IL07: callvirt void Impl.MyClass::make(T1, ...Tn)

{Q} IL0c : ret
}

.method public void make(v1 : T1, ...vn : Tn) cil managed
{
{P} IL0a newobj void Impl.MyClass::.ctor()
{P ∧ s(0) = new($,MyClass)} IL0b dup{

P ∧ s(1) = new($,MyClass) ∧
s(0) = new($,MyClass)

}
IL00: ldarg.0





P ∧ s(2) = new($,MyClass) ∧
s(1) = new($,MyClass)
s(0) = this



 IL01: ldarg.1

...





P ∧ s(n + 1) = new($,MyClass) ∧
s(n) = new($,MyClass)
∧ s(n − 1) = this ∧
s(n − 2) = v1 ∧ ...s(0) = vn−1





IL0n : ldarg.n





P ∧ s(n + 1) = new($,MyClass) ∧
s(n) = new($,MyClass)
∧ s(n − 1) = this ∧
s(n − 2) = v1 ∧ ...s(0) = vn





IL07: callvirt void Impl.MyClass::make(T1, ...Tn)

{Q} IL0c : ret
}

Per every attribute, the methods set and get are defined as we described in the above Section.
The CIL proof is also generated. The CIL proof for the attribute item (presented above) is the
following:
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.method public T item() cil managed
{
{true} IL00: ldarg.0
{s(0) = this} IL01: ldfld T Impl.MyClass::$$item
{s(0) = $(iv(this,MyClass@item))} IL06: ret

}
.method public void set item(T i) cil managed
{
{i 6= null} IL00: ldarg.0
{i 6= null ∧ s(0) = this} IL00: ldarg.1
{i 6= null ∧ s(1) = this ∧ s(0) = i} IL01: stfld T Impl.MyClass::$$item
{$(this.@item) = i} IL06: ret

}
In the following we present the translation rules. In Subsection 6.3 we present the expression

translation. In Subsection 6.4, we describe the translation of language-independent rules for the
source logic. In Subsection 6.5 we show the translation for assign, conditional and composition
instructions. The translation of creation instructions, read and write attributes, and routine invo-
cation are described in Subsection 6.6. Routines rules are translated in Subsection 6.7. Finally, we
present the translation of instructions specific to Eiffel in Subsection 6.8.

6.3 Expression Translation

In this section we present the definition of∇E , the translation function for expressions. We consider
constants, variables, unary and binary expressions. To simplify the translation, we use stloc or ldloc
instead of starg and ldarg when the variable is an argument.

Constants and variables are translated using ldloc. In the expressions’ translation, first the
expressions are pushed on the stack and then the instruction for the operation is added. The
translations are defined as follows:

Constants

∇E ( Q ∧ unshift(P [c/s(0)]) , c , shift(Q) ∧ P , la) =

{Q ∧ unshift(P[c/s(0)])} la : ldloc c

Variables

∇E ( Q ∧ unshift(P [x/s(0)]) , x , shift(Q) ∧ P , la) =

{Q ∧ unshift(P[x/s(0)])} la : ldloc x

Expressions: e1 op e2

∇E ( Q ∧ unshift(P [e1 op e2/s(0)]) , e1 op e2 , shift(Q) ∧ P , la) =

∇E ( Q ∧ unshift(P [e1ope2/s(0)]) , e1 , shift(Q) ∧ P [s(0) op e2/s(0)] , la)

∇E ( shift(Q) ∧ P [s(0) op e2/s(0)] , e2 , shift2(Q) ∧ shift P [s(1) op s(0)/s(1)] , lb)

{ shift2(Q) ∧ shift(P [s(1) op s(0)/s(1)]) } lc : binopop
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Expressions: unop e2

∇E ( Q ∧ unshift(P [unop e/s(0)]) , unop e , shift(Q) ∧ P , la) =

∇E ( Q ∧ unshift(P [unop e/s(0)]) , e , shift(Q) ∧ P [unop s(0)/s(0)] , la)

{shift(Q) ∧ P [unop s(0)/s(0)]} lb : unopop

6.4 Translation of language-independent Rules

In this section we present the translation of language-independent rules to CIL.

6.4.1 Strength

In the strength transformation we need translate P ′ ⇒ P and {P} s1 {Q}. P ′ ⇒ P can be
translated by using the nop instruction. To translate {P} s1 {Q} we use the ∇S translation
function.

∇S




Tree1{
P

}
s1

{
Qn , Qb , Qe

}
P ′ ⇒ P{

P ′
}

s1
{

Qn , Qb , Qe

} , lstart , lnext , lretry , lexc


 =

{P ′} la : nop

∇S


 Tree1n

P
o

s1
n

Qn , Qb , Qe

o , lb , lnext , lretry , lexc




6.4.2 Weak

Similar to strength rule, in weak rule we translate Qn ⇒ Q ′
n by using nop

∇S




Tree1{
P

}
s1

{
Qn , Qb , Qe

} Qn ⇒ Q ′
n

Qb ⇒ Q ′
b

Qe ⇒ Q ′
e{

P
}

s1
{

Q ′
n , Q ′

b , Q ′
e

} , lstart , lnext , lretry , lexc




=

∇S


 Tree1{

P
}

s1
{

Qn , Qb , Qe

} , lstart , lb , lretry , lexc




{Qn} lb : nop
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6.4.3 Invariant

∇S




Tree1{
P

}
s1

{
Qn , Qb , Qe

}
{

P ∧ W
}

s1
{

Qn ∧ W , Qb ∧ W , Qe ∧ W
} , lstart , lnext , lretry , lexc


 =

We just add a conjunct W to every specification of the sequence produced by:

∇S

(
Tree1{

P
}

s1
{

Qn , Qb , Qe

} , lstart , lnext , lretry , lexc

)

6.4.4 Substitution

∇S




Tree1{
P

}
s1

{
Qn , Qb , Qe

}
{

P [t/Z ]
}

s1
{

Qn [t/Z ] , Qb [t/Z ] , Qe [t/Z ]
} , lstart , lnext , lretry , lexc


 =

As before, first we generate

∇S

(
Tree1{

P
}

s1
{

Qn , Qb , Qe

} , lstart , lnext , lretry , lexc

)

and then we replace Z by t in each specification and in all proofs for assertions.

6.4.5 Conjunction/disjunction

Conjunction and disjunction are treated identically, so we present only the conjunction rule.
Let Ta be

Tree1{
P1

}
s1

{
Q1

n , Q1
b , Q1

e

}

and let Tb be

Tree2{
P2

}
s1

{
Q2

n , Q2
b , Q2

e

}

∇S


 Ta Tb{

P1 ∧ P2
}

s1
{

Q1
n ∧ Q2

n , Q1
b ∧ Q2

b , Q1
e ∧ Q2

e

} , lstart , lnext , lretry , lexc


 =

∇S

( {P1} s1 {Q1} {P2} s1 {Q2}
{P1 ∧ P2} s1 {Q1 ∧ Q2} , lstart , lnext , lretry , lexc

)
=

We create the two proofs

∇S ( Ta , lstart , lb , lretry , lexc)

and

∇S ( Tb , lb , lnext , lretry , lexc)
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The embedded instructions are by construction the same. With the two proofs, we assemble a
third proof as result by merging, for all instructions, their specification from:

( {A(l)} instr

and

( {B(l)} instr

we obtain

{A(l) ∧ B(l)} instr

6.4.6 nops generated during the translation

The translation of language-independent rules produces nop instructions. javac compiler does not
generated nop instructions and we wish to generate the same code as javac. nop instructions can
be removed in a second pass though the bytecode proof. We replace nops instruction using the
knowledge of the implication. For example, we can replace the following bytecode proof:

{ 0 ≤ i < n } IL 0000 : nop

{ (0 ≤ i < n) ∧ y=y} IL 0001 : ldloc i

by the following bytecode proof without nop instructions:

{ 0 ≤ i < n } 00 : ldloc i

6.5 Translation of assignment, conditional and compositional instruc-
tions

Assignment instruction

In the assignment translation, first the expression is translated using ∇E . Then, the result is stored
to x using stloc. The definition of the translation is the following:

∇S


 {

P [e/x ]
}

x := e
{

P , false , false
} , lstart , lnext , lretry , lexc


 =

∇E ( P [e/x ] , e , (shift(P [e/x ]) ∧ s(0) = e) , lstart){
shift(P [e/x ]) ∧ s(0) = e

}
lb : stloc x

Conditional instruction

In this translation, the expression e is translated using ∇E . If e is true (e is on the top of the
stack), control is transferred to le and the translation of s1 is obtained using ∇S . Otherwise, s2 is
translated and control is transferred to the end (lnext).

Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1{

P ∧ e
}

s1
{

Qn , Qr , Qe

}
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TS2 ≡
Tree2{

P ∧ ¬e
}

s2
{

Qn , Qr , Qe

}

The translation is defined as follows:

∇S

0
BBBBBBBBBBBBBBBBBBBBB@

TS1 TS2

n
P
o

if e then

s1

else

s2

end

n
Qn , Qr , Qe

o

, lstart , lnext , lretry , lexc

1
CCCCCCCCCCCCCCCCCCCCCA

=

∇E ( P , e , (shift(P) ∧ s(0) = e) , lstart)

{shift(P) ∧ s(0) = e} lb : brtrue le
∇S (TS2 , lc , ld , lretry , lexc)

{Qn} ld : br lnext

∇S (TS1 , le , lnext , lretry , lexc)

Compositional instruction

Compositional instructions are the simplest instructions to translate. The translation of s2 is added
after the translation of s1 where the starting label is updated to lb .

Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1
{

Qn , Rr , Re

}

TS2 ≡
Tree2{

Qn

}
s2

{
Rn , Rr , Re

}

The definition of the translation is the following:

∇S


 TS1 TS2{

P
}

s1; s2
{

Rn , Rr , Re

} , lstart , lnext , lretry , lexc


 =

∇S (TS1 , lstart , lb , lretry , lexc)

∇S (TS2 , lb , lnext , lretry , lexc)
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6.6 Creation Instruction, read and write attribute, and routine invoca-
tion translation

In the following we present the translation for creation instruction, read and write attribute and
routine invocation.

6.6.1 Creation Instruction

∇S




˘
P
¯

T@make(p) { Qn , Qe }
8
<
: P

2
4

new($,T )/Current ,
$ < T > /$,
e/p

3
5
9
=
; x := create {T}.make(e)

8
>>><
>>>:

Qn [x/Current ] ,

false ,

Qe [x/Current ]

9
>>>=
>>>;

, lstart , lnext , lretry , lexc




=

{P [new($,T )/Current , $ < T > /$, e/p]} la : newobj root cluster .Impl .T

{(shift(P)[s(0)/Current , e/p])} lb : stloc x

{x 6= Void ∧ P [x/Current , e/p]} lc : ldloc x

∇E ( {x 6= Void ∧ shift(P [x/Current , e/p]) ∧ s(0) = x}, e,

{x 6= Void ∧ shift2(P [x/Current , e/p]) ∧ s(1) = x ∧ s(0) = e}, ld)

{x 6= Void ∧ shift2(P [x/Current , e/p]) ∧ s(1) = x ∧ s(0) = e} le : callvirt T@make

6.6.2 Read Attribute

The translation of read attribute is done invoking the method name() where name is the name of
the attribute. This method returns the field. Let S be the following precondition:

S ≡





(y 6= Void ∧ P [$(instvar(y ,S@a))/x ]) ∨

(y = Void ∧ Qe

[
$ < NullPExc > /$,

new($,NullPExc)/excV

]
)





The translation is defined as follows:

∇S

(
{

S
}

x := y .S@a
{

P , false , Qe

} , lstart , lnext , lretry , lexc

)
=

{y 6= Void ∧ P [$(iv(y ,S@a))/x ]} la : ldloc y
{s(0) = y ∧ Shift(P [$(iv(y ,S@a))/x ])} lb : callvirt S@a()
{s(0) = $(iv(y ,S@a)) ∧ Shift(P [$(iv(y ,S@a))/x ])} lc : stloc x

6.6.3 Write Attribute

To write an attribute, the method set name is used (where name is the name of the attribute to
write). The object and the expression is pushed on the top of stack. Then, the method set name
is invoked. Let S be the following precondition:
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S ≡





(y 6= Void ∧ P [$ < instvar(y ,S@a) := e > /$]) ∨

(y = Void ∧ Qe

[
$ < NullPExc > /$,

new($,NullPExc)/excV

]
)





The definition of the translation is the following:

∇S

(
{

S
}

y .S@a := e
{

P , false , Qe

} , lstart , lnext , lretry , lexc

)
=

{y 6= Void ∧ P [$ < iv(y ,S@a) := e > /$]} la : ldloc y
∇E ({s(0) = y ∧ shift(P [$ < iv(y ,S@a) := e > /$])}, e,
{s(1) = y ∧ s(0) = e ∧ shift2(P [$ < iv(y ,S@a) := e > /$])} , lb)
{s(1) = y ∧ s(0) = e ∧ shift2(P [$ < iv(y ,S@a) := e > /$])} lc : callvirt S@set a

6.6.4 Invocation

Let S be the following precondition:

S ≡





(y 6= Void ∧ P [y/Current , e/p]) ∨

(y = Void ∧ Qe

"
$ < NullPExc > /$,

new($,NullPExc)/excV

#
)





The translation is defined as follows:

∇S




Tree1{
P

}
T : m(p)

{
Qn , false , Qe

}

{
S

}
x = y .T : m(e)

{
Qn [x/result ] , false , Qe

} , lstart , lnext , lretry , lexc




=

{y 6= Void ∧ P [y/Current , e/p]} la : ldloc y

∇E ({shift(P [y/Current , e/p]) ∧ s(0) = y}, e,

{shift2(P [y/Current , e/p]) ∧ s(1) = y ∧ s(0) = e} , lb)

{shift2(P [y/Current , e/p]) ∧ s(1) = y ∧ s(0) = e} lc : callvirt T : m

{Qn [s(0)/result ]} ld : stloc x

6.7 Translation of routines Rules

In this section we present the translation for routines which includes proof translation of body
routines, and class, subtype and locals rules.
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6.7.1 Routines implementation

∇S




Tree1{
P

}
body(T@m)

{
Qn , false , Qe

}

{
P

}
T@m

{
Qn , false , Qe

} , lstart , lnext , lretry , lexc




=

∇S


 Tree1{

P
}

body(T@m)
{

Qn , false , Qe

} , lstart , lb , lretry , lexc




{ Qn } lb : ret

6.7.2 Local rule

∇S




Tree1{
P ∧ v1 = init(T1)

∧ ... ∧ vn = init(Tn)

}
s

{
Qn , false , Qe

}

{
P

}
local T1 v1; ... Tn vn ; s

{
Qn , false , Qe

} , lstart , lnext , lretry , lexc




=

∇S

0
B@ Tree1n

P
o

v1 := init(T1)
n

P ∧ v1 = init(T1) , false , false
o , lstart , lb , lretry , lexc

1
CA

...

∇S

0
BBBBBBBBBBBBBBB@

Tree18
>>>><
>>>>:

P ∧
v1 = init(T1)

∧...∧
vn−1 = init(Tn−1)

9
>>>>=
>>>>;

vn := init(Tn )

8
>>>><
>>>>:

0
BBBB@

P ∧
v1 = init(T1)

∧...∧
vn = init(Tn )

1
CCCCA

, false , false

9
>>>>=
>>>>;

, lb , lc , lretry , lexc

1
CCCCCCCCCCCCCCCA

∇S

0
B@ Tree1n

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn )
o

s
n

Qn , false , Qe

o , lc , lnext , lc , lexc

1
CA

where P does not contain v1, ..., vn .

6.8 Translation of instructions specific of Eiffel

In this section, we present the translation of instructions specific of Eiffel. In Subsection 6.8.1 we
describe the translation of Eiffel loops. rescue and retry instructions are translated in Subsection
6.8.3 and 6.8.2. Translation of check and debug instructions are presented in Subsections 6.8.4
and 6.8.5 resp. Finally, once procedures and once functions are translated in Subsections 6.8.6 and
6.8.7 resp.
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6.8.1 Loop Instruction translation

In the loop translation, first s1 is translated using ∇S . In this translation, the next label is up-
dated to lb and the remaining labels keep unchanged. Then, control is transferred ld and the loop
expression is evaluated. If its value is false, control is transferred to lc where the body of the loop
(s2) is translated. The definition of the translation is the following:

∇S




n
P
o

s1
n

In , Qr , Re

o
n
¬e ∧ In

o
s2

n
In , Qr , Re

o

n
P
o from s1 invariant In

until e

loop s2 end

n
(In ∧ e) , Qr , Re

o
, lstart , lnext , lretry , lexc




=

∇S

( {
P

}
s1

{
In , Qr , Re

}
, lstart , lb , lretry , lexc

)

{In} lb : br ld
∇S

( {
¬e ∧ In

}
s2

{
In , Qr , Re

}
, lc , ld , lretry , lexc

)

∇E ( In , e, {shift(In) ∧ s(0) = e}, ld )

{shift(In) ∧ s(0) = e} le : brfalse lc

6.8.2 Retry

The retry instruction is translated using an unconditional jump to the beginning of the routine
(which is store in the label lretry). The translation is defined as follows:

∇S

(
{

P
}

retry
{

false , P , false
} , lstart , lnext , lretry , lexc

)
=

{ P } la : br lretry

6.8.3 Rescue

The rescue rule is translated using .try and catch CIL instructions. First, the instruction s1 is
translated in a .try block. The exception label is updated to lc because if an exception occurs in
s1, control will be transferred to the catch block at lc . Then, the instruction s2 is translated in a
catch block. To do that, first, the exception object is stored in a temporary variable and then s2
is translated. In this translation, the retry label is updated to la (the beginning of the routine).
Finally, we the exception is pushed on top of the stack and it is re-thrown (in case s2 terminates
normally).

Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1{

In
}

s1
{

Qn , false , I ′n
}

TS2 ≡
Tree2{

I ′n
}

s2
{

Re , In , Re

}

The translation is defined as follows:
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∇S

0
B@ TS1 TS2n

P
o

s1 rescue s2
n

Qn , false , Re

o , lstart , lnext , lretry , lexc

1
CA =

.try{
∇S (TS1 , lstart , lb , lretry , lc )

{Qn} lb : leave lnext

}
catch [mscorlib] System.Exception {

{I ′n ∧ excV 6= null ∧ s(0) = excV } lc : stloc last exception

{I ′n } ∇S (TS2 , ld , le , la , lexc )

{Re } le : ldloc last exception

{Re ∧ s(0) = last exception} lf : rethrow

}

6.8.4 Check instruction translation

When a check instruction is translated, first the expression e is pushed on top of the stack. If e
evaluates to true, control is transferred to the next instruction. Otherwise, an exception is thrown
putting a new exception object on the top of the stack and then using the throw instruction. The
definition of the translation is the following:

∇S

(
{

P
}

check e end
{

(P ∧ e ) , false , (P ∧ ¬e )
} , lstart , lnext , lretry , lexc

)
=

∇E ( P , e, {shift(P) ∧ s(0) = e}, la )

{shift(P) ∧ s(0) = e} lb : brtrue lnext

{P ∧ ¬e} lc : newobj Exception()

{P ∧ ¬e ∧ s(0) = new($,Exception)} ld : throw

6.8.5 Debug instruction translation

To translate the debug instruction, we need to check the value of D. D is a static variable, so there
is not need to generate code that checks the value of D and according to it, executes s1 or not.
Thus, D is checked in compile time. If D = debug , the CIL code and proof for s1 are generated
(using ∇S ). Otherwise, a nop instruction is generated. The translation is defined as follows:

∇S




Tree1˘
P
¯

s1
˘

Qn , Qr , Qe
¯


(P ∧ D = debug) ∨
(P ′ ∧ D = not debug)

ff
debug s1 end

˘
Qn ∨ P ′ , Qr , Qe

¯ , lstart , lnext , lretry , lexc


 =

if D = debug then

∇S


 Tree1{

P
}

s1
{

Qn , Qr , Qe

} , lstart , lnext , lretry , lexc




else

{P ′} la : nop
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6.8.6 Once procedures translation

In this translation, first the variable C p done is evaluated. If its value is true, control is transferred
to the end of the procedure (li) and if the variable C p exception is null the procedure terminates
normally; otherwise the C p exception is thrown. If C p done is false, C p done is set to true and
the body of the procedure is executed. If an exception is throw in the body of the procedure, the
exception is store in C p exception to be able to reproduce the same exception in later executions
of the procedure.

Let S be the following precondition:

S ≡





(¬C p done ∧ P) ∨ 
C p done ∧ P ′ ∧
C p exception = Void

!
∨

(C p done ∧ P ′′ ∧ C p exception 6= Void)





and Q ′
n and Q ′

e be the following postconditions:

Q ′
n ≡

(
C p done ∧ C p exception = Void ∧
(Qn ∨ P ′)

)

Q ′
e ≡

(
C p done ∧ C p exception 6= Void ∧
(Qe ∨ P ′′)

)

Let Tbody be the following proof tree:

Tbody ≡ Tree1

(
P [false/C p done] ∧
C p done

)
body(C : p)

8
>>>>>>><
>>>>>>>:

“
Qn ∧ C p done

”
,

false ,

“
Qe ∧ C p done

”

9
>>>>>>>=
>>>>>>>;

The definition of the translation is the following:

∇S


 Tbodyn

S
o

C : p(i)
n

Q ′n , false , Q ′e
o , lstart , lnext , lretry , lexc


 =
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{S} la : ldsfld C p done

{S ∧ s(0) = C p done} lb : brtrue li
{P ∧ ¬C p done} lc : ldc true

{P ∧ ¬C p done ∧ s(0) = true} ld : stsfld C p done

.try

{
∇S (Tbody , le , lf , lretry , lexc )

{Qn ∧ C p done} lf : leave li
}
catch [mscorlib]System.Exception

{
{shift(Qe) ∧ excV 6= null ∧ C p done} lg : stsfld C p exception

{Qe ∧ C p exception 6= null ∧ C p done} lh : rethrow

}
{Q ′} li : ldsfld C p exception

{shift(Q ′) ∧ s(0) = C p exception} lj : brfalse lm
{C p done ∧ C p exception 6= null ∧ P ′′ } lk : ldsfld C p exception{

C p done ∧ C p exception 6= null ∧ P ′′ ∧
s(0) = C p exception

}
ll : throw





C p done ∧ C p exception = null ∧(
Qn ∨ P ′

)
∧ s(0) = C p result



 lm : ret

where Q ′ ≡





C p done ∧(
(Qn ∨ P ′ ∨
(P ′′ ∧ C p exception 6= null)

)




6.8.7 Once functions translation

The translation of once functions is similar to once routines’ translation. The only difference is that
the result of the first invocation of the function is stored in C f result . Later invocations returns
the value stored in C f result .

Let S be the following precondition

S ≡





(¬C f done ∧ P) ∨0
BB@

C f done ∧ P ′ ∧
C f result = C F RESULT ∧
C f exception = Void

1
CCA ∨

(C f done ∧ P ′′ ∧ C f exception 6= Void)





and Q ′
n and Q ′

e be the following postconditions:
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Q ′
n ≡

8
>><
>>:

C f done ∧ C f exception = Void ∧

(Qn ∨
 

P ′ ∧ result = C F RESULT ∧
C f result = C F RESULT

!
9
>>=
>>;

Q ′
e ≡

(
C f done ∧ C f exception 6= Void ∧
(Qe ∨ P ′′)

)

Let Tbody be the following proof tree:

Tbody ≡ Tree1

(
P [false/C f done] ∧
C f done

)
body(C : f )

8
>>>>>>><
>>>>>>>:

“
Qn ∧ C f done

”
,

false ,

“
Qe ∧ C f done

”

9
>>>>>>>=
>>>>>>>;

The translation is defined as follows:

∇S


 Tbodyn

S
o

C : f (i)
n

Q ′
n , false , Q ′

e

o , lstart , lnext , lretry , lexc


 =



7 SPECIFICATION TRANSLATION 37

{S} la : ldsfld C f done

{S ∧ s(0) = C f done} lb : brtrue lk
{P ∧ ¬C f done} lc : ldc true

{P ∧ ¬C f done ∧ s(0) = true} ld : stsfld C f done

.try

{
∇S (Tbody , le , lf , lretry , lg )

{Qn ∧ C f done} lf : ldloc result

{Qn ∧ C f done ∧ s(0) = result} lg : stsfld C f result

{Qn ∧ C f done ∧ result = C f result} lh : leave lk
}
catch [mscorlib]System.Object

{
{shift(Qe) ∧ excV 6= null ∧ C f done} li : stsfld C f exception

{Qe ∧ C f exception 6= null ∧ C f done} lj : rethrow

}
{Q ′} lk : ldsfld C f exception

{shift(Q ′) ∧ s(0) = C f exception} ll : brfalse lo
{C f done ∧ C f exception 6= null ∧ P ′′ } lm : ldsfld C f exception{

C f done ∧ C f exception 6= null ∧ P ′′ ∧
s(0) = C f exception

}
ln : throw





C f done ∧ C f exception = null ∧(
Qn ∨

(
P ′ ∧ result = C F RESULT ∧
C f result = C F RESULT

) )




lo : ldsfld C f result





C f done ∧ C f exception = null ∧(
Qn ∨

(
P ′ ∧ result = C F RESULT ∧
C f result = C F RESULT

) )
∧

s(0) = C f result





lp : ret

where Q ′ ≡





C f done ∧


(Qn ∨(
P ′ ∧ C f result = C F RESULT ∧
C f exception = null

)
∨

(P ′′ ∧ C f exception 6= null)








7 Specification Translation

To be able to define the specification translation, we need to know the structure of the formula we
are translating. Thus, we have defined a deep embedding of the Eiffel contract language. Then, we
have defined translation functions to FOL. The datatype definitions, the translation functions and
their soundness proof are formalized in Isabelle.
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7.1 Datatype definitions

Eiffel contract are expressed using boolean expressions. Boolean expression are the logical opera-
tor ¬, ∧, ∨, AndThen, OrElse, Xor , implies, expressions equality, <, >, ≤, ≥ or type functions.
Expressions are constants, local variables and parameters, attributes, routine calls, creation ex-
pressions, old expressions, boolean expressions or Void . The type functions are ConformsTo or
IsEqual . We assume routines have only one argument.

datatype EiffelContract = Requires ensures boolExpr
datatype boolExpr = Const bool

| Neg boolExpr
| And boolExpr boolExpr
| Or boolExpr boolExpr
| AndThen boolExpr boolExpr
| OrElse boolExpr boolExpr
| Xor boolExpr boolExpr
| Impl boolExpr boolExpr
| Eq expr expr
| NotEq expr expr
| Less expr expr
| Greater expr expr
| LessE expr expr
| GreaterE expr expr
| Type typeFunc

datatype typeFunc = ConformsTo typeExpr typeExpr
| IsEqual typeExpr typeExpr
| IsNotEqual typeExpr typeExpr

datatype typeExpr = EType EiffelType
| Type expr

datatype expr = ConstInt int
| RefVar varID
| Att objID attribID
| CallR callRoutine
| Create EiffelType routine argument
| Old expr
| Bool boolExpr
| Void

datatype callRoutine = Call expr routine argument

datatype argument = Argument expr
EiffelTypes are Boolean, Integer , classes with a classID or None. The notation (cID : classID)

means, given an Eiffel class c, cID(c) returns its classID .
datatype EiffelType = Boolean

| Integer
| EClass (cID : classID)
| None

Variables are local variables or parameters, Result, or Current:
datatype var = Var vID EiffelType

| Result EiffelType
| Current EiffelType

Attributes are defined with a variable ID and an EiffelType. Routines can take only one argu-
ment. Routines are defined with a routine ID , the argument type and the return type.

datatype attrib = Attr (aID : attribID) EiffelType

datatype routine = Routine routineID EiffelType EiffelType
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7.2 Object store and values

Objects stores are modelled by an abstract data type store. We use the object store presented in
[15]. The Eiffel object store and the CIL object store are the same. The object store contains the
following operations: accessC (os, l) denotes reading the location l in store os; alive(o, os) yields
true if and only if object o is allocated in os; new(os,C ) returns a reference to a new object in
the store os of type C ; alloc(os,C ) denotes the store after allocating the object store new(os,C );
update(os, l , v) updates the object store os at the location l with the value v :

accessC :: store ⇒ location ⇒ value
alive :: value ⇒ store ⇒ bool
alloc :: store ⇒ classID ⇒ store
new :: store ⇒ classID ⇒ value
update :: store ⇒ location ⇒ value ⇒ store

Values are booleans, integers, the void value or references to objects. Objects are characterized
by its class and an identifier of infinite sort objID .

datatype value = BoolV bool
| IntV int
| ObjV classID objID
| VoidV

7.3 Mapping Eiffel types to CIL

To define the translation from Eiffel contracts to FOL, we first define CIL types and mapping
functions that map Eiffel types to CIL. CIL types are boolean, integer, inferfaces, classes and the
null type.

datatype CilType = BooleanCIL
| IntegerCIL
| Interface classID
| CilClass classID
| NullT

We have defined two functions that map Eiffel types to CIL: (1) ∇int maps an Eiffel type to a
CIL interface; (2) ∇class maps the type to a CIL implementation class. The functions are defined
as follows:

∇int :: EiffelType ⇒ CilType
∇int(Boolean) = BooleanCIL
∇int(Integer) = IntegerCIL
∇int(EClass n) = Interface n
∇int(None) = NullT

∇class :: EiffelType ⇒ CilType
∇class(Boolean) = BooleanCIL
∇class(Integer) = IntegerCIL
∇class(EClass n) = CilClass n
∇class(None) = NullT

To translate routine calls, we define method signatures in CIL and a translation function that
maps Eiffel routines to CIL methods. The types t1 and t2 are mapped to CIL types using the function
∇int .

datatype methodIDcil = Method nat CilType CilType
∇r :: routine ⇒ methodCIL

∇r(Routine n t1 t2) = (Method n (∇int t1) (∇int t2))

7.4 Contract translation

The specification translation is performed using five translation functions: (1) ∇b takes a boolean
expression and returns a function that takes two stores and a state an returns a value; (2) ∇exp

translates expressions; (3) ∇t translates type functions (conforms to and is equal); (4) ∇call trans-
lates a routine call; and (5) ∇arg translates arguments. state is a mapping from variables to values
(var ⇒ value). The signatures of the translation functions are the following:
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∇b :: boolExpr ⇒ (store ⇒ store ⇒ state ⇒ value)
∇exp :: expr ⇒ (store ⇒ store ⇒ state ⇒ value)
∇t :: typeFunc ⇒ (store ⇒ store ⇒ state ⇒ value)
∇call :: callRoutine ⇒ (store ⇒ store ⇒ state ⇒ value)
∇arg :: argument ⇒ (store ⇒ store ⇒ state ⇒ value)

The definition of the function ∇b is the following:

∇b(Const b) = λ(h1, h2 :: store) (s :: state) :
(BoolV b)

∇b(Neg b) = λ(h1, h2 :: store) (s :: state) :
(BoolV¬(aB(∇b b h1 h2 s)))

∇b(And b1 b2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aB(∇b b1 h1 h2 s)) ∧ (aB(∇b b2 h1 h2 s)))

∇b(Or b1 b2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aB(∇b b1 h1 h2 s)) ∨ (aB(∇b b2 h1 h2 s)))

∇b(AndThen b1 b2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aB(∇b b1 h1 h2 s)) ∧ (aB(∇b b2 h1 h2 s)))

∇b(OrElse b1 b2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aB(∇b b1 h1 h2 s)) ∨ (aB(∇b b2 h1 h2 s)))

∇b(Xor b1 b2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aB(∇b b1 h1 h2 s)) ∨ (aB(∇b b2 h1 h2 s)))

∇b(Impl b1 b2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aB(∇b b1 h1 h2 s)) −→ (aB(∇p b2 h1 h2 s)))

∇b(Eq e1 e2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aI (∇exp e1 h1 h2 s)) = (aI (∇exp e2 h1 h2 s)))

∇b(NotEq e1 e2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aI (∇exp e1 h1 h2 s)) 6= (aI (∇exp e2 h1 h2 s)))

∇b(Less e1 e2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aI (∇exp e1 h1 h2 s)) < (aI (∇exp e2 h1 h2 s)))

∇b(Greater e1 e2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aI (∇exp e1 h1 h2 s)) > (aI (∇exp e2 h1 h2 s)))

∇b(LessE e1 e2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aI (∇exp e1 h1 h2 s)) ≤ (aI (∇exp e2 h1 h2 s)))

∇b(GreaterE e1 e2) = λ(h1, h2 :: store) (s :: state) :
(BoolV (aI (∇exp e1 h1 h2 s)) ≥ (aI (∇exp e2 h1 h2 s)))

∇b(Type e) = λ(h1, h2 :: store) (s :: state) :
(∇t e h1 h2 s))

The function ∇t is defined as follows:
∇t(ConformsTo t1 t2) = λ(h1, h2 :: store)(s :: state) :

(BoolV (∇int(∇type t1)) ¹c (∇int(∇type t2)))
∇t(IsEqual t1 t2) = λ(h1, h2 :: store)(s :: state) :

(BoolV (∇class(∇type t1)) = (∇class(∇type t2)))
The function ∇type given a type expression returns its Eiffel type:
∇type :: typeExp ⇒ EiffelType

∇type(EType t) = t
∇type(Expression e) = (typeOf e)

The definition of the function ∇exp is the following:
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∇exp(ConstInt i) = λ(h1, h2 :: store)(s :: state) :
(IntV i)

∇exp(RefVar v) = λ(h1, h2 :: store)(s :: state) :
(s(v))

∇exp(Att ob a) = λ(h1, h2 :: store)(s :: state) :
(accessC h1 (Loc (get fieldID a) ob))

∇exp(CallR crt) = λ(h1, h2 :: store)(s :: state) :
(∇call crt h1 h2 s)

∇exp(Precursor t1 rt par) = λ(h1, h2 :: store)(s :: state) :
(invokeValCIL h1 (∇r rt) (s (Currentt1)) (∇arg par h1 h2 s))

∇exp(Create t rt p) = λ(h1, h2 :: store)(s :: state) :
(new (alloc h1 (get classID t)) (get classID t))

∇exp(Plus e1 e2) = λ(h1, h2 :: store)(s :: state) :
(IntV ((aI (∇exp e1 h1 h2 s)) + (aI (∇exp e2 h1 h2 s))))

∇exp(Minus e1 e2) = λ(h1, h2 :: store)(s :: state) :
(IntV ((aI (∇exp e1 h1 h2 s))− (aI (∇exp e2 h1 h2 s))))

∇exp(Mul e1 e2) = λ(h1, h2 :: store)(s :: state) :
(IntV ((aI (∇exp e1 h1 h2 s)) ∗ (aI (∇exp e2 h1 h2 s))))

∇exp(Div e1 e2) = λ(h1, h2 :: store)(s :: state) :
(IntV ((aI (∇exp e1 h1 h2 s))div(aI (∇exp e2 h1 h2 s))))

∇exp(Old e) = λ(h1, h2 :: store)(s :: state) :
(∇exp e h2 h2 s)

∇exp(Bool b) = λ(h1, h2 :: store)(s :: state) :
(∇b b h1 h2 s)

∇exp(Void) = λ(h1, h2 :: store)(s :: state) :
(VoidV )

The function ∇call is defined as follows:
∇call(Call e1 rt p) = λ(h1, h2 :: store)(s :: state) :

(invokeValCIL h1 (∇r rt) (∇exp e1 h1 h2 s)(∇arg p h1 h2 s))
The function invokeValCIL takes a CIL method m and two values (its parameter p and invoker

e1) and returns the value of the result of invoking the method m with the invoker e1 and parameter
p.

The definition of the function ∇arg is the following:
∇arg(Argument e) = λ(h1, h2 :: store)(s :: state) :

(∇exp e h1 h2 s)

8 Example

8.1 Application of rescue and retry logic

Table 4 presents the bytecode proof generated by the translation functions from the source proof
of figure 1.

Table 4: Final Bytecode proof of the source proof of table 1.

{op2 6= 0} l01: ldc 0

{op2 6= 0 ∧ s(0) = 0} l02: stloc attempt

{op2 6= 0 ∧ attempt = 0} l03: nop

.try {
Continued on next page
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{(
op2 6= 0 ∧

(
operation = 1 ⇒ attempt ≥ 0 ∧

attempt ≤ 3

))
≡ I

}
la01: ldarg operation

{shift(I ) ∧ s(0) = operation} la02: ldc 1

{shift2(I ) ∧ s(1) = operation ∧ s(0) = 1} la03: binop=

{shift(I ) ∧ s(0) = (operation = 1)} la04: brfalse la15

{(op2 6= 0 ∧ attempt ≥ 0 ∧ attempt ≤ 3) ≡ Q} la05: ldloc attempt

{shift(Q) ∧ s(0) = attempt} la06: ldc 3

{shift2(Q) ∧ s(1) = attempt ∧ s(0) = 3} la07: binop<

{shift(Q) ∧ s(0) = (attempt < 3)} la08: brfalse la10

{(op2 6= 0 ∧ attempt ≥ 0 ∧ attempt < 3) ≡ Q ′′} la09: call open a file

{Q ′′} la10: ldarg op1

{shift(Q ′′) ∧ s(0) = op1} la11: ldarg op2

{shift2(Q ′′) ∧ s(1) = op1 ∧ s(0) = op2} la12: binop/

{shift(Q ′′) ∧ s(0) = (op1/op2)} la13: stloc Result

{Q ′′ ∧ Result = op1/op2} la14: br la20

{op2 6= 0 ∧ operation 6= 1} la15: call open a file

{op2 6= 0 ∧ operation 6= 1} la16: ldarg op1

{op2 6= 0 ∧ operation 6= 1 ∧ s(0) = op1} la17: ldarg op2

{op2 6= 0 ∧ operation 6= 1 ∧ s(1) = op1 ∧ s(0) = op2} la18: binop∗
{op2 6= 0 ∧ operation 6= 1 ∧ s(0) = op1 ∗ op2} la19: stloc Result

{op2 6= 0 ∧ operation 6= 1 ∧ Result = op1 ∗ op2} la20: leave lc01

} // end .try

.catch System.Exception {






(
(operation = 1 ∧ op2 6= 0 ∧
attempt ≥ 0 ∧ attempt < 3)

)
∨

(operation 6= 1 ∧ op2 6= 0)


 ≡ R





lb01: ldarg operation

{shift(R) ∧ s(0) = operation} lb02: ldc 1

{shift2(R) ∧ s(1) = operation ∧ s(0) = 1} lb03: binop=

{shift(R) ∧ s(0) = (operation = 1)} lb04: brfalse lb10

{(operation = 1 ∧ op2 6= 0 ∧ attempt ≥ 0 ∧ attempt < 3) ≡ R′′} lb05: ldloc attempt

{shift(R′′) ∧ s(0) = attempt} lb06: ldc 1

{shift2(R′′) ∧ s(1) = attempt ∧ s(0) = 1} lb07: binop+

{shift(R′′) ∧ s(0) = attempt + 1} lb08: stloc attempt

{operation = 1 ∧ op2 6= 0 ∧ attempt ≥ 0 ∧ attempt ≤ 3} lb09: leave la01

{operation 6= 1 ∧ op2 6= 0} lb10: ldc -1

{operation 6= 1 ∧ op2 6= 0 ∧ s(0) = −1} lb11: stloc Result

{operation 6= 1 ∧ op2 6= 0 ∧ Result = −1} lb13: newobj instance void

EIFFEL EXCEPTION::.ctor

(int32, string, class System.Exception){
operation 6= 1 ∧ op2 6= 0 ∧
Result = −1 ∧ τ(s(0)) ¹ Exception

}
lb14: rethrow

Continued on next page
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} // end handler{
(operation = 1 ∧ Result = op1//op2) ∨
(operation 6= 1 ∧ Result = op1 ∗ op2)

}
lc01: ldloc Result

{(
(operation = 1 ∧ Result = op1//op2) ∨
(operation 6= 1 ∧ Result = op1 ∗ op2)

)
s(0) = Result

}
lc02: ret

ensures



(
(operation = 1 ∧ Result = op1//op2) ∨
(operation 6= 1 ∧ Result = op1 ∗ op2)

)
∨

(excV 6= null ∧ operation 6= 1 ∧ op2 6= 0 ∧ Result = −1)





9 Soundness theorem

In a PCC environment, a soundness proof is required only for the trusted components. PTCs are
not part of the trusted code base: If the PTC generates an invalid proof, the proof checker would
reject it. But from the point of view of the code producer, we would like to have a compiler that
always generates valid proofs. Otherwise, it would be useless.

We prove the soundness of the proof translator and the specification translator. For the proof
translator, it means that the translation produces valid bytecode proofs. However, it is not enough
to prove that the translation produces a valid proof because the compiler could generate bytecode
proofs where every precondition is false. The theorem expresses that

• if we have a valid source proof for the statement s1, and

• we have a proof translation from the source proof that produces the instructions Ilstart ...Ilend

and their respective preconditions Elstart ...Elend
, and

• the normal postcondition in the source logic implies the next precondition of the last gener-
ated instruction (if the last generated instruction is the last instruction of the method, we
use the normal postcondition in the source logic), and

• the retry postcondition implies the bytecode precondition at the label lretry , and

• the exceptional postconditon in the source logic implies the bytecode precondition at the
label lexc but considering the value stored in the stack of the bytecode,

then we have to prove that every bytecode specification holds (` {El} Il).
The theorem is the following:

Theorem 1

` Tree1{
P

}
s1

{
Qn , Qr , Qe

} ∧

(Ilstart ...Ilend
) = ∇S

(
Tree1˘

P
¯

s1
˘

Qn , Qr , Qe
¯ , lstart , lend+1, lretry , lexc

)
∧

(
Qn ⇒ Elend+1

) ∧(
Qr ⇒ Elretry

) ∧
( (Qe ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc ) ∧
⇒
∀ l ∈ lstart ... lend : ` {El} Il
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The soundness proof of the specification translator has been formalized and proved in Isabelle. As
well as the definition presented the the above Section, we have defined an evaluation function from
Eiffel expressions to values. Given two heaps and a state, the theorem expresses if the expression e
is well-formed then the value of the translation of the expression e is equal to the value returned
by the evaluation of e. The theorem is the following:

Theorem 2

(wellFb b) ⇒ (valueb b h1 h2 s) = ((∇b b) h1 h2 s) and
(wellFt t) ⇒ (valuet t h1 h2 s) = ((∇t t) h1 h2 s) and
(wellFexp e) ⇒ (valueexp e h1 h2 s) = ((∇exp e) h1 h2 s) and
(wellFcall c) ⇒ (valuecall c h1 h2 s) = ((∇call c) h1 h2 s) and
(wellFarg p) ⇒ (valuearg p h1 h2 s) = ((∇arg p) h1 h2 s)

The proof of theorem 1 runs by induction on the structure of the derivation tree for {P} s1 {Qn ,Qe}.
The proof of theorem 2 is done in Isabelle. We present the proof of theorem 1 in appendix A.

10 Related Work

Necula and Lee [13] have developed certifying compilers, which produce proofs for basic safety
properties such as type safety. The approach developed here supports interactive verification of
source programs and as a result can handle more complex properties such as functional correctness.

Foundational Proof-Carrying Code has been extended by the open verifier framework for foun-
dational verifiers [4]. It supports verification of untrusted code using custom verifiers. As in certi-
fying compilers, the open verifier framework can prove basic safety properties.

Barthe et al. [3] show that proof obligations are preserved by compilation (for a non-optimizing
compiler). They prove the equivalence between the verification condition (VC) generated over the
source code and the bytecode. The translation in their case is less difficult because the source and
the target languages are closer. This work does not address the translation of specifications.

Another development by the same group [2] translates certificates for optimizing compilers from
a simple interactive language to an intermediate RTL language (Register Transfer Language). The
translation is done in two steps: first, translate the source program into RTL; then, performed
optimizations to build the appropriate certificate. This work involves a language that is simpler
than ours and, like in the previously cited development, much closer to the target language than
Eiffel is to CIL. We will investigate optimizing compilers as part of future work.

The Mobius project develops proof-transforming compilers [9]. They translate JML specifica-
tions and proof of Java source programs to Java Bytecode. The translation is simpler because the
source and the target language are closer.

This work is based on our earlier effort [11] on proof-transforming compilation from Java to
Bytecode. In that earlier project, the translation of method bodies is more complex due to the
generated exception tables in Java bytecode. However, the source and the target langues are more
similar than the languages used in this paper. Furthermore, our earlier work did not translate
specifications.

11 Conclusion

We have defined proof transformation from a subset of Eiffel to bytecode. The PTC allows us to
develop the proof in the source language (which is simpler), and transforms it into a bytecode
proof. Due to Eiffel supports multiple inheritance and CIL does not, we focused on the translation
of contracts. We showed that our translation is sound, that is, it produces valid bytecode proofs.

To show the feasibility of our approach, we implemented a PTC for a subset of Eiffel. The
compiler takes a proof in XML format and produces the bytecode proof. The compiler is integrated
to EiffelStudio.

As future work, we plan to develop a proof checker that tests the bytecode proof. Moreover, we
plan to analyze how proofs can be translated using an optimizing compiler.
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A Appendix: Soundness proof

In this section we present the soundness proof of the translation. The proof is done by induction
on the structure of the derivation tree for {P} s {Q}. We present the proof for the most important
cases but the remaining cases are similar. Subsection A.2 presents the proof for the translation
of compositional instruction. The proof for the translation of loop instructions is presented in
subsection A.3. The proof for the translation of rescue and retry is presented in subsections A.5
and A.4 resp. The soundness proof for check and debug is presented in subsections A.6 and A.7
resp. Finally we present the proof for the translation of once functions in subsection A.8. We omit
the proof of the translation of once routines because it is similar to the proof of once functions.

A.1 Notation

To make the proof easier to read, we write

∇S

( {
P

}
s1; s2 { Rn , Rr , Re }, lstart , lend , lretry , lexc

)

meaning:

∇S


 TS1 TS2{

P
}

s1; s2
{

Rn , Rr , Re

} , lstart , lend , lretry , lexc


 =

where TS1 and TS2 are the following proof trees:

TS1 ≡
T1{

P
}

s1
{

Qn , Rr , Re

}

TS2 ≡
T2{

Qn

}
s2

{
Rn , Rr , Re

}

and we write

` {
P

}
s1; s2 { Rn , Rr , Re }

meaning

`

{
P

}
s1

{
Qn , Rr , Re

}

{
Qn

}
s2

{
Rn , Rr , Re

}
{

P
}

s1; s2
{

Rn , Rr , Re

}

We use this notation in each proof of theorem 2.

A.2 Compositional instruction

The translation of compositional instruction was presented in section 6.5 on page 28.
We have to prove:
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` TS1 TS2{
P

}
s1; s2 { Rn , Rr , Re } ∧

(Ila ...Ilb ) = ∇S

(
TS1 TS2˘

P
¯

s1; s2 { Rn , Rr , Re }
, lstart , lend+1, lretry , lexc

)
∧

(
Rn ⇒ Elb+1

) ∧(
Rr ⇒ Elretry

) ∧
( (Re ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc )
⇒
∀ l ∈ la ... lb : ` {El} Il

By the first induction hypothesis we get:

` Tree1{
P

}
s1 { Qn , Rr , Re } ∧

(Ila ...Ila end
) = ∇S

(
tree1˘

P
¯

s1 { Qn , Rr , Re }
, lstart , lb , lretry , lexc

)
∧

(
Qn ⇒ Ela+1

) ∧(
Rr ⇒ Elretry

) ∧
( (Re ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc )
⇒
∀ l ∈ la ... la end : ` {El} Il

To be able to apply the first induction hypothesis we have to prove:

Qn ⇒ Ela+1 (1)
Rr ⇒ Elretry (2)
Re ⇒ Elexc (3)

(2) and (3) is proven by hypothesis. Ela+1 is equal to Elb . After the translation, the label
precondition at lb is Qn . So we prove (1). Now we can apply the induction hypothesis and get:

∀ l ∈ la ... la end : ` {El} Il
Applying a similar reasoning to the second induction hypothesis we get:

∀ l ∈ lb ... lbend
: ` {El} Il

Finally, we join both results and we get:

∀ l ∈ la ... lb : ` {El} Il
2

A.3 Loop instruction

The translation of loop instruction was presented in section 6.8.1 on page 32.
We have to prove:

` TS1 TS2{
P

}
from s1... { In ∧ e , Qr , Re } ∧

(Ila ...Ile ) = ∇S

(
TS1 TS2˘

P
¯

from s1... { In ∧ e , Qr , Re }
, lstart , lend+1, lretry , lexc

)
∧

(
(In ∧ e) ⇒ Ele+1

) ∧(
Qr ⇒ Elretry

) ∧
( (Re ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc )
⇒
∀ l ∈ la ... lb : ` {El} Il
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By the first induction hypothesis we get:

` Tree1{
P

}
s1 { In , Qr , Re } ∧

(Ila ...Ila end
) = ∇S

(
Tree1˘

P
¯

s1 { In , Qr , Re }
, lstart , lb , lretry , lexc

)
∧

(In ⇒ Elb ) ∧(
Qr ⇒ Elretry

) ∧
( (Re ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc )
⇒
∀ l ∈ la ... la end : ` {El} Il

Elb is In so In ⇒ Elb . Qr ⇒ Elretry and (Re ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc

hold from the hypothesis. So we can apply the first induction hypothesis and get:

∀ l ∈ la ... la end : ` {El} Il
{In} lb : br ld holds due to the precondition of ld is In . By the second induction hypothesis we

get:

` Tree1{ ¬e ∧ In
}

s2 { In , Qr , Re } ∧

(Ilc ...Ilc end
) = ∇S

(
TS1˘

P
¯

s1 { In , Qr , Re }
, lc , ld , lretry , lexc

)
∧

(In ⇒ Eld ) ∧(
Qr ⇒ Elretry

) ∧
( (Re ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc )
⇒
∀ l ∈ lc ... lc end : ` {El} Il

Due to Eld is equal to In and Qr ⇒ Elretry and (Re ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc

hold from the hypothesis, we get:

∀ l ∈ lc ... lc end : ` {El} Il
Applying a similar reasoning we get the proof for nablaE . Finally, We have to proof {shift(In) ∧

s(0) = e} le : brfalse lc . This hold because lc = ¬e ∧ In . Then applying the definition of wp to
brfalse we get {shift(In) ∧ s(0) = e} implies {shift(In) ∧ s(0) = e}. Joining the proofs we get:

∀ l ∈ la ... le : ` {El} Il
2

A.4 Retry instruction

The translation of retry instruction was presented in section 6.8.2 on page 32.
We have to prove:

` {
P

}
retry { false , P , false } ∧

Ila = ∇S

(
˘

P
¯

retry { false , P , false }
, la , la+1, lretry , lexc

)
∧

(
false ⇒ Ela+1

) ∧(
P ⇒ Elretry

) ∧
( (false ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc )
⇒
` {P} la : br lretry

From the hypothesis we know P ⇒ Elretry . Then we can conclude ` {P} la : br lretry
2
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A.5 Rescue

The translation of rescue was presented in section 6.8.3 on page 32.
We have to prove:

` TS1 TS2{
P

}
s1 rescue s2 { Qn , false , Re } ∧

(Ila ...Ilf ) = ∇S

(
TS1 TS2˘

P
¯

s1 rescue s2 { Qn , false , Re }
, la , lf +1, lretry , lexc

)
∧

(
Qn ⇒ Elf+1

) ∧(
false ⇒ Elretry

) ∧
( (Re ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc )
⇒
∀ l ∈ la ... lf : ` {El} Il

By the first induction hypothesis we get:

` Tree1{
In

}
s1 { Qn , false , I ′n } ∧

(Ila ...Ila end
) = ∇S

(
Tree1˘

In
¯

s1 { Qn , false , I ′n }
, la , lb , lretry , lc

)
∧

(Qn ⇒ Elb ) ∧(
false ⇒ Elretry

) ∧
( (I ′n ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elc )
⇒
∀ l ∈ la ... la end : ` {El} Il

Due to Elb = Qn and Elc = (I ′n ∧ excV 6= null ∧ s(0) = excV ) we can apply the induction
hypothesis and get:

∀ l ∈ la ... la end : ` {El} Il

We can prove {Qn} lb : leave lnext and {I ′n ∧ excV 6= null ∧ s(0) = excV } lc stloc last exception
using the definition of wp1

p presented in figure 3 on page 20.
By the second induction hypothesis we get:

` Tree2{
I ′n

}
s2 { Re , In , Re } ∧

(Ild ...Ild end
) = ∇S

(
Tree2˘

I ′n
¯

s2 { Re , In , Re }
, ld , le , la , lexc

)
∧

(Re ⇒ Ele ) ∧
(In ⇒ Ela ) ∧
( (Re ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc )
⇒
∀ l ∈ ld ... ld end : ` {El} Il

To be able to apply the second induction hypothesis we have to prove:

Re ⇒ Ele

In ⇒ Ela

(Re ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc

The first one holds because Ele = Re . The second one holds due to Ela = In . And the third one
holds from the hypothesis. So, we can apply the second induction hypothesis and get:

∀ l ∈ ld ... ld end : ` {El} Il
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Finally, we have to prove {Re} le : ldloclast exception and {Re ∧ s(0) = last exception} lf :
rethrow. It can be proven using the definition of wp1

p presented in figure 3 on page 20.
Joining the proofs we get:

∀ l ∈ la ... lf : ` {El} Il

2

A.6 Check

The translation of once functions was presented in section 6.8.4 on page 33.
This proof is straight forward, we only have to use the definition of wp1

p . We have to prove:

` {
P

}
check e end { (P ∧ e ) , false , (P ∧ ¬e ) } ∧

(Ila ...Ild ) = ∇S

(
˘

P
¯

check e end { (P ∧ e ) , false , (P ∧ ¬e ) }
, la , ld+1, lretry , lexc

)
∧

(
(P ∧ e ) ⇒ Eld+1

) ∧(
false ⇒ Elretry

) ∧
( (P ∧ ¬e ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc )
⇒
∀ l ∈ la ... ld : ` {El} Il

To prove the instruction at lb we have to show shisft(P ∧ s(0) = e implies wp1
p(brtrueld+1).

Applying the definition of wp1
p , we have to prove:

(shift(P) ∧ s(0) = e) ⇒ (¬s(0) ⇒ shift(Ec)) ∧ (s(0) ⇒ shift(Ed+1))

The first implication holds because shift(Ec) = P ∧ ¬e. The second implication is true due to
from the hypothesis we know (P ∧ e ) ⇒ Eld+1 . Then using the definition of wp1

p we prove the
implication.

The proof of instructions lc and ld is simple and only uses the definition of wp1
p . Then, joining

the proof we have:

∀ l ∈ la ... ld : ` {El} Il

2

A.7 Debug

The translation of once functions was presented in section 6.8.5 on page 33.
This proof is similar to the composition rule but we have two cases: D = debug and D = notdebug.

In the first one, we use a similar reasoning that the compositional case and the knowledge that
D = debug . The second one is trivial because from the hypothesis we know P ′ implies Ela .

2

A.8 Once functions

The translation of once functions was presented in section 6.8.7 on page 352.
We have to prove:

2S , Q ′n and Q ′e are also defined on page 35
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` Tbody{
S

} {C} : f(i) { Q ′
n , false , Q ′

e } ∧

(Ila ...Iln ) = ∇S

(
Tbody˘

S
¯ {C} : f(i) { Q ′n , false , Q ′e }

, lstart , lend+1, lretry , lexc

)
∧

(
Q ′

n ⇒ Eln+1

) ∧(
false ⇒ Elretry

) ∧
( (Q ′

e ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elexc )
⇒
∀ l ∈ la ... ln : ` {El} Il

The proof for la is straightforward using the definition of wp1
p . To prove lb we have to prove the

implication to lc and li preconditions. The first one holds due to ¬C f done holds then P holds.
The second one is similar. lc and ld proof are also straightforward using the definition of wp1

p .
Let Tbody be

Tree1{
P [false/C f done] ∧
C f done

}
{C} : f(i) { Qn ∧ C f done , false , Qe ∧ C f done }

By the first induction hypothesis we get:

` Tbody ∧
(Ile ...Ile end

) = ∇S (Tbody , le , lf , lretry , lg ) ∧(
(Qn ∧ C f done) ⇒ Elf

) ∧(
false ⇒ Elretry

) ∧
( (Qe ∧ C f done ∧ excV 6= null ∧ s(0) = excV ) ⇒ Elg )
⇒
∀ l ∈ la ... ln : ` {El} Il

Due to Elf ≡ (Qn ∧ C f done) and Elg ≡ (shift(Qe) ∧ C f done ∧ excV 6= null ∧ s(0) = excV )
and (shift(Qe) ≡ Qe because Qe does not refer to the stack, we can apply the induction hypothesis
and get:

∀ l ∈ le ... le end : ` {El} Il

Finally, we have to prove lg , ...ln . The proof is straightforward using the definition of wp1
p . Then

we have prove:

∀ l ∈ la ... ln : ` {El} Il

2


