
Towards Trustworthy Automated Program Verifiers:
Formally Validating Translations into an Intermediate
Verification Language

GAURAV PARTHASARATHY, ETH Zurich, Switzerland

THIBAULT DARDINIER, ETH Zurich, Switzerland

BENJAMIN BONNEAU, Université Grenoble Alpes - CNRS - Grenoble INP - VERIMAG, France

PETER MÜLLER, ETH Zurich, Switzerland

ALEXANDER J. SUMMERS, University of British Columbia, Canada

Automated program verifiers are typically implemented using an intermediate verification language (IVL),

such as Boogie or Why3. A verifier front-end translates the input program and specification into an IVL

program, while the back-end generates proof obligations for the IVL program and employs an SMT solver

to discharge them. Soundness of such verifiers therefore requires that the front-end translation faithfully

captures the semantics of the input program and specification in the IVL program, and that the back-end

reports success only if the IVL program is actually correct. For a verification tool to be trustworthy, these

soundness conditions must be satisfied by its actual implementation, not just the program logic it uses.

In this paper, we present a novel validation methodology that, given a formal semantics for the input

language and IVL, provides formal soundness guarantees for front-end implementations. For each run of the

verifier, we automatically generate a proof in Isabelle showing that the correctness of the produced IVL program

implies the correctness of the input program. This proof can be checked independently from the verifier, in

Isabelle, and can be combined with existing work on validating back-ends to obtain an end-to-end soundness

result. Our methodology based on forward simulation employs several modularisation strategies to handle the

large semantic gap between the input language and the IVL, as well as the intricacies of practical, optimised

translations. We present our methodology for the widely-used Viper and Boogie languages. Our evaluation

shows that it is effective in validating the translations performed by the existing Viper implementation.

CCS Concepts: • Software and its engineering → Formal software verification; Semantics; • Theory of
computation → Program verification.

Additional Key Words and Phrases: Software Verification, Intermediate Verification Languages, Formal Se-

mantics, Proof Certification

ACM Reference Format:
Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers. 2024.

Towards Trustworthy Automated Program Verifiers: Formally Validating Translations into an Intermediate

Verification Language. Proc. ACM Program. Lang. 8, PLDI, Article 208 (June 2024), 25 pages. https://doi.org/10.
1145/3656438

Authors’ addresses: Gaurav Parthasarathy, ETH Zurich, Department of Computer Science, Zurich, Switzerland, gaurav.

parthasarathy@inf.ethz.ch; Thibault Dardinier, ETH Zurich, Department of Computer Science, Zurich, Switzerland, thibault.

dardinier@inf.ethz.ch; Benjamin Bonneau, Université Grenoble Alpes - CNRS - Grenoble INP - VERIMAG, Grenoble,

France, Benjamin.Bonneau@univ-grenoble-alpes.fr; Peter Müller, ETH Zurich, Department of Computer Science, Zurich,

Switzerland, peter.mueller@inf.ethz.ch; Alexander J. Summers, University of British Columbia, Vancouver, Canada, alex.

summers@ubc.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART208

https://doi.org/10.1145/3656438

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0002-1816-9256
HTTPS://ORCID.ORG/0000-0003-2719-4856
HTTPS://ORCID.ORG/0009-0005-9688-1299
HTTPS://ORCID.ORG/0000-0001-7001-2566
HTTPS://ORCID.ORG/0000-0001-5554-9381
https://doi.org/10.1145/3656438
https://doi.org/10.1145/3656438
https://orcid.org/0000-0002-1816-9256
https://orcid.org/0000-0003-2719-4856
https://orcid.org/0009-0005-9688-1299
https://orcid.org/0000-0001-7001-2566
https://orcid.org/0000-0001-5554-9381
https://doi.org/10.1145/3656438

208:2 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

1 INTRODUCTION
Program verifiers are tools that try to automatically establish the correctness of an input program

with respect to a specification. A standard approach for achieving automation is to reduce the input

program and specification to a set of first-order formulas whose validity implies the correctness of

the input program; the validity of formulas is automatically checked using an SMT solver. Instead of

directly producing logical formulas, many program verifiers are translational verifiers: they translate
an input program and specification into a program in an intermediate verification language (IVL);
we call this a front-end translation. An IVL comes with its own back-end verifier that ultimately

reduces IVL programs to logical formulas. This translational approach via an IVL allows for the

reuse of the IVL’s back-end technology across multiple front-end verifiers, and makes for a more

understandable target representation than direct mappings to logical formulas, simplifying the

development of state-of-the-art program verifiers.

A very wide variety of practical program verifiers are translational verifiers; e.g. Corral [26],

Dafny [29], SMACK [7], SYMDIFF [25], and Viper [34] target the imperative Boogie IVL [28],

while Creusot [10] and Frama-C [23] translate to the functional Why3 IVL [17]. Multiple layers of

front-end translations and IVLs can also be composed (e.g. Prusti [2] builds on Viper as an IVL).

To ensure that successful verification indeed implies that the input program satisfies its specifi-

cation, any translational verifier must meet two soundness conditions: (1) Front-end soundness: the
translation into the IVL is faithful, i.e. correctness of the produced IVL program implies correctness

of the input program, and (2) IVL back-end soundness: if the back-end IVL verifier reports success,

the IVL program is correct. Trustworthiness of program verifiers requires formal guarantees for

both soundness conditions. It is not sufficient to prove soundness of the program logics they employ

in principle: automated verifiers are complex systems, and it is essential that formal guarantees

also cover their actual implementations, where soundness bugs can and do arise.

Existing work on ensuring front-end soundness is based on idealised implementations that are

formalised on paper or in an interactive theorem prover. In practice, practical front-end transla-

tions are implemented in efficient mainstream programming languages, use diverse libraries and

programming paradigms, and include subtle optimisations omitted from idealised implementations;

there is a very large gap between the translations proved correct and the actual translations used

in practice. In this paper, we bridge this gap for the first time, developing an approach to formally

validate the front-end soundness of translations used in existing, practical verifier implementations.

IVL back-end verifier soundness, which includes the soundness of the underlying SMT solver, is

a better-studied and orthogonal concern; our results can be combined with work in that area to

obtain end-to-end guarantees for an entire verification toolchain [5, 16, 18, 19, 39].

Proving front-end soundness once and for all for a realistic verifier implementation is practically

infeasible, since such implementations are large (e.g. 17.2 KLOC and 8.5 KLOC for the Dafny-to-

Boogie and Viper-to-Boogie front-ends, respectively) and are typically written in languages that lack

a full formalisation (C# and Scala, in the examples above). Instead, we develop a translation validation

approach that, given a formal semantics for the input language and IVL, automatically generates a

formal proof on every run of the verifier via an instrumentation of the existing implementation. Our

proofs are expressed in the Isabelle theorem prover [35], and thus can be checked independently,

effectively removing the (substantial) front-end translation from the trusted code base of the verifier.

Challenges. Formally validating front-end translations is challenging for three main reasons:

1. Semantic gap: There is a large semantic gap between a front-end language and an IVL, which

concerns the state model (e.g. neither Boogie nor Why3 have a heap, but most front-end languages

do), the execution model (e.g. Viper heap accesses are partial operations that must be guarded by

semantic conditions ultimately checked by verification, while Boogie andWhy3 use syntactic checks

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

Formally Validating Translations into an Intermediate Verification Language 208:3

to guard state accesses such as disallowing global variables in Boogie axioms and restricting aliasing

between mutable variables in Why3), and the program logics used to reason about programs (e.g.

front-ends use complex logics, such as dynamic frames [22] in Dafny, a flavour of separation logic [36,

41] in Viper, and prophetic reasoning in Creusot [10], whereas Boogie and Why3 do not have

built-in support for such logics). To bridge the semantic gap, front-ends translate input programs

into a complex combination of low-level operations and background logical axiomatisations of input

language concepts; validation needs to precisely account for the combination of these ingredients,

while allowing the separation of translation aspects for the sake of modularity and maintainability.

2. Diverse translations: Practical front-end translations are diverse in the sense that they use

multiple alternative translations for the same feature, e.g. more efficient translations that are sound

only in certain cases. These translations also evolve frequently over time, as new techniques and

features are developed or optimised; ideally a formal approach to validation should provide means

of minimising the impact of the exchange of one translation for another.

3. Non-locality: The soundness of the translation of a fragment of the input program may depend

on several checks that are performed at different places in the IVL program. For instance, the

translation of a procedure call might be sound only because well-formedness of the procedure

specification has been checked elsewhere in the generated IVL code. Such non-local checks are

commonly used to speed up verification, for instance, to check well-formedness conditions once

and for all rather than each time a specification is used. However, they complicate the soundness

argument, which needs to somehow track the dependencies on properties checked elsewhere.

This paper. We present the first approach for enabling automatic formal validation for existing

implementations of the front-end translations employed in many practical program verifiers.

This validation guarantees front-end soundness and, thus, makes automated program verifiers

substantially more trustworthy.

The core of our approach is a general methodology for generating forward simulations [32]
between the statements of the input and the IVL program in a modular way. Our methodology

provides solutions to the three challenges above. It (1) bridges the semantic gap with a novel

approach by which the simulation proof is split into smaller simulations, (2) supports diverse

translations by expressing simulations abstractly, and (3) handles non-locality by systematically

and formally tracking dependencies during a simulation proof.

For concreteness, we present our methodology for the translation from a core fragment of Viper

to Boogie, as implemented in an existing and actively-used verification tool [12]. This translation is

significant because it exhibits all of the challenges discussed above and because both Viper and

Boogie are widely used. For instance, Viper is used in Gobra (Go) [47], Prusti (Rust) [2], Nagini

(Python) [14], VerCors (Java) [4], and Gradual C0 [13]. The soundness of each of these tools relies on

the Viper verifiers being sound. Note that these tools use Viper as an IVL, but for the purpose of this

paper, we will treat it as a front-end language that is translated to Boogie. While our methodology

is phrased in terms of Viper and Boogie, we have designed our approach, which solves the key

challenges above, to generalise to other front-end translations (e.g. the Dafny-to-Boogie translation).

Contributions. We make the following technical contributions:

• We develop a general methodology for the automatic validation of front-end translations

based on forward simulation proofs. We present this methodology for the translation from

Viper to Boogie. As a foundation for the proofs, we formalise a semantics for a core subset of

Viper in Isabelle and connect this with an existing Isabelle formalisation for Boogie [39].

• We instrument the existing Viper-to-Boogie implementation such that, for a subset of Viper,

it automatically generates an Isabelle proof justifying the soundness of the translation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

208:4 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

VExpr ∋ 𝑒 ::= 𝑥 | lit | 𝑒.𝑓 | 𝑒 bop 𝑒 | uop(𝑒) VAssert ∋ 𝐴 ::= 𝑒 | acc(𝑒.𝑓 , 𝑒) | 𝐴 ∗𝐴 | 𝑒 ⇒ 𝐴 | 𝑒 ? 𝐴 : 𝐴

VStmt ∋ 𝑠 ::= 𝑥 := 𝑒 | 𝑒.𝑓 := 𝑣 | ®𝑦 :=𝑚(®𝑥) | 𝑚(®𝑥) | var 𝑥 : 𝜏 | inhale 𝐴 | exhale 𝐴 | assert 𝐴 |
𝑠; 𝑠 | if(𝑒) {𝑠} else {𝑠}

BExpr ∋ 𝑒𝑏 ::= 𝑥 | lit𝑏 | 𝑒𝑏 bop 𝑒𝑏 | uop(𝑒𝑏) | 𝑓 [®𝜏𝑏] (®𝑒𝑏) | ∀𝑥 : 𝜏𝑏 . 𝑒𝑏 | ∃𝑥 : 𝜏𝑏 . 𝑒𝑏 | ∀ty 𝑡 . 𝑒𝑏 | ∃ty 𝑡 . 𝑒𝑏
BSimpleCmd ∋ 𝑐𝑏 ::= assume 𝑒𝑏 | assert 𝑒𝑏 | 𝑥 := 𝑒𝑏 | havoc 𝑥 BStmtBlock ∋ 𝑏𝑏 ::=

−→𝑐𝑏 ; if𝑏
BIfOpt ∋ if𝑏 ::= if(𝑒𝑏) {𝑠𝑏 } else {𝑠𝑏 } | if(∗) {𝑠𝑏 } else {𝑠𝑏 } | 𝜖 BStmt ∋ 𝑠𝑏 ::=

−→
𝑏𝑏

Fig. 1. The syntax of our formalised Viper subset (top, blue keywords) and corresponding Boogie subset

(bottom, with subscript 𝑏, orange keywords) without top-level declarations. 𝜏 (𝜏𝑏), bop, and uop denote types,

binary and unary operations, respectively.

These generated proofs can be checked independently in Isabelle, which ensures front-end

soundness of the Viper verifier.

• Our evaluation on a diverse set of Viper programs demonstrates our approach’s effectiveness:

we were able to generate proofs and check them in Isabelle fully automatically in all cases.

• As part of justifying the axioms used in Boogie programs, we provide the first approach to

formally deal with a restricted version of Boogie’s (impredicatively-)polymorphic maps [30].

Outline. Sec. 2 provides the necessary background on Viper and Boogie. Sec. 3 introduces our

forward simulation methodology for relating Viper and Boogie statements. Sec. 4 presents how

we formally validate the existing Viper-to-Boogie implementation using our forward simulation

methodology. Sec. 5 evaluates the proofs generated by our instrumentation. Sec. 6 presents related

work and Sec. 7 concludes. Our publicly-available artifact [37] contains the Isabelle formalisation

for Sec. 2, Sec. 3, and Sec. 4, our proof-producing Viper-to-Boogie implementation, and the examples

used for the evaluation. Further details are available in our technical report [38] (hereafter, TR).

2 VIPER AND BOOGIE: BACKGROUND AND SEMANTICS
In this section, we present the necessary background on the Viper and Boogie languages. We

introduce our supported Viper subset and the corresponding Boogie subset targeted by the pre-

existing Viper-to-Boogie implementation (Sec. 2.1), give an overview of the semantics of Boogie

(Sec. 2.2) and Viper (Sec. 2.3), and finally show an example of the translation used by the Viper-to-

Boogie implementation (Sec. 2.4).

2.1 The Viper and Boogie Languages
Viper programs in the subset considered here consist of a set of top-level declarations of fields

(reference-field pairs are used to access the heap) and methods. Boogie programs consist of a set of

top-level declarations of global variables, constants, uninterpreted (polymorphic) functions, type

constructors, axioms (which constrain the constants and functions), and procedures. Both languages

are imperative and separate statements from expressions (whose evaluation have no side-effects).

Viper additionally has separate assertions. The body of each Viper method and Boogie procedure is

a statement. Viper methods have pre- and post-conditions (assertions); method calls are verified

modularly against these assertions.
1
In Viper, scoped variables can be declared within statements;

Boogie procedures declare all variables upfront. Our supported Viper and Boogie statements,

assertions, and expressions are shown in Fig. 1. Both languages have the same control flow elements

1
Boogie supports pre-/post-conditions and procedure calls, but they are not used by the Viper-to-Boogie implementation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

Formally Validating Translations into an Intermediate Verification Language 208:5

and have some built-in types in common (e.g. Booleans and integers). Viper additionally provides a

single reference type, and supports reading from and writing to heap locations via a field access

e.f, where e is a reference expression and f a field.

Our validation generates proofs that connect the abstract syntax tree (AST) of a Viper program

(as represented by the Viper verifier) with the AST of the corresponding Boogie program (as

represented by the Boogie verifier).
2
Proof generation is complicated by the fact that the Viper

and Boogie ASTs are structured differently. As shown in Fig. 1, the Viper AST uses a standard

sequential composition 𝑠1; 𝑠2, whereas a Boogie statement is given by a list of statement blocks. Each
statement block

−→𝑐𝑏 ; if𝑏 consists of a list of simple commands (i.e. no control flow), followed by either

an if-statement or an empty statement (𝜖).

As is typical for verifiers for higher-level languages, Viper’s verification methodology employs a

custom advanced program logic, in this case based on a flavour of separation logic (SL) called implicit
dynamic frames (IDF) [36, 41] which reasons about the heap via permissions. Viper’s assertions
include the accessibility predicate acc(e.f,p), which represents a resource (a logical notion which

can be neither freely fabricated nor duplicated): the fractional (p) amount of permission to access
heap location e.f.3 Fractional permission amounts [6] range between 0 and 1; nonzero permission

is required to read heap locations and full (1) permission is required to write to heap locations.𝐴 ∗𝐵
expresses the separating conjunction from SL, which specifies that the permissions in 𝐴 and 𝐵 must

sum up to an amount currently held. One difference between IDF and SL is that IDF (and thus, Viper)

supports general heap-dependent expressions such as x.val = 5 or x.f.f, whose evaluation
is partial (only allowed with suitable permissions); this necessitates a notion of well-definedness
checks on expressions (see Sec. 2.3). Boogie does not provide built-in heap reasoning, and uses a

much simpler program logic: its assertions are (total) formulas in first-order logic.

The presence of a heap in Viper also results in a very different state model. A Viper state consists

of a variable store, a heap (mapping heap locations to current values) and a permission mask
(mapping heap locations to current permission amounts); a Boogie state is simply a variable store.

The main Viper features not included in our subset are loops, more-complex resource assertions

(predicates, magic wands, iterated separating conjunctions), heap-dependent functions, and domains.

Adding support for loops is straightforward: their semantics can be desugared via their invariant,

in a pattern similar to method calls that we already support. For other features more work would

be required, but we are confident that these extensions would fit within our general methodology.

2.2 Boogie Semantics
We extend our existing operational Boogie semantics formalised in Isabelle [39] to support the

statements in Fig. 1, and reuse many components including the state model and the semantics of

simple commands. The semantics of Boogie statements is expressed via program executions. A finite

program execution has one of three outcomes: (1) it fails, because an assert 𝑒 command is reached

in a state that does not satisfy the Boolean expression 𝑒 , (2) it stops, because an assume 𝑒 command

is reached in a state that does not satisfy the Boolean expression 𝑒 , or (3) it succeeds, because neither
of the first two situations occur. The three outcomes are represented formally via: (1) a failure

outcome F, (2) amagic outcomeM for when the execution stops, and (3) a normal outcome N(𝜎𝑏) in

all other cases, where 𝜎𝑏 is the resulting Boogie state, which is given by a mapping from variables to

values. Assignments and havoc commands always succeed; havoc 𝑥 nondeterministically assigns

a value of 𝑥 ’s declared type to 𝑥 .

2
The Viper-to-Boogie implementation passes the Boogie program to the Boogie verifier via a text file. Targeting the Boogie

AST as represented by the Boogie verifier in the proof avoids the need to trust the Boogie parser, and also generalises to

verifier implementations that directly target the Boogie verifier’s AST such as Dafny.

3
For readers familiar with separation logics, this is analogous to a fractional points-to assertion in a separation logic.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

208:6 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

Formally, executions of Boogie statements are expressed via a small-step semantics. The judge-

ment Γ𝑏 ⊢ (𝛾,N(𝜎𝑏)) →∗
b
(𝛾 ′, 𝑟𝑏) expresses a finite execution w.r.t. Boogie context Γ𝑏 that takes 0

or more steps starting from the program point 𝛾 and Boogie state 𝜎𝑏 , and ending in the program

point 𝛾 ′ and outcome 𝑟𝑏 . A Boogie context includes the interpretation of uninterpreted types and

functions, and the types of declared variables. A program point is given by a pair of the currently

active statement block 𝑏 and the continuation representing the statement to be executed after 𝑏. A

continuation is either the empty continuation (i.e. nothing to execute) or a sequential continuation

(i.e. a statement block followed by a continuation). A continuation-based small-step semantics

avoids the need for local search rules commonly required in a small-step semantics [1].

2.3 Viper Semantics
To our knowledge, there is no mechanised semantics for any fragment of the Viper language;

we outline the main points of the one we have formalised here. We give a big-step operational

semantics to Viper statements via program executions again with three possible outcomes for finite

executions: failure F, magic M, and normal outcomes N(𝜎𝑣) where 𝜎𝑣 is a Viper state. A Viper state

𝜎𝑣 comprises a local variable mapping st(𝜎𝑣), a heap ℎ(𝜎𝑣) (a total mapping from heap locations to

values), and a permission mask 𝜋 (𝜎𝑣) (a total mapping from heap locations to permission amounts).

The judgement Γ𝑣 ⊢ ⟨𝑠, 𝜎𝑣⟩ →v 𝑟𝑣 holds if in the Viper context Γ𝑣 (fixing the declarations of methods,

fields and local variables) the execution of statement 𝑠 in the state 𝜎𝑣 terminates with outcome 𝑟𝑣 .

Determining the outcome of a Viper execution is more involved than for Boogie as we will see

below for the inhale and exhale operations. Our semantics takes care that all Viper states are

consistent, i.e. have consistent permission masks (mapping each location to values between 0 and 1);

executions that would produce inconsistent states in this sense are pruned by going to M.

Formalising expression evaluation requires care for Viper, since, in a given state, not even all type-

correct expressions are well-defined: in our subset this can be either because of (1) division by zero,

or (2) dereferencing a heap location for which no permission is held (subsuming null dereferences).

In our semantics, evaluating an ill-defined expression causes execution to fail (in contrast to Boogie,

where expression evaluation cannot fail). Our judgement ⟨𝑒, 𝜎𝑣⟩ ⇓ V(𝑣) expresses that expression 𝑒
evaluates to a value 𝑣 in state 𝜎𝑣 (in particular, 𝑒 is well-defined in 𝜎𝑣) and ⟨𝑒, 𝜎𝑣⟩ ⇓ expresses

that 𝑒 is ill-defined in 𝜎𝑣 .

Viper uses two main primitives to encode separation logic reasoning: (1) inhale 𝐴 adds the

permissions specified by assertion 𝐴 to the state, and stops any execution where either a logical

constraint in 𝐴 does not hold (these are assumed) or the added permissions would yield an incon-

sistent state. (2) exhale 𝐴 removes the permissions specified by 𝐴, and fails if either insufficient

permissions are held or if a constraint in 𝐴 does not hold; for any heap locations to which all
permission was removed, an exhale also non-deterministically assigns arbitrary values.

4
This non-

deterministic assignment reflects the fact that, while our Viper states employ total heaps (typical

for IDF [36]), the values stored in heap locations without permission should be unconstrained.

inhale and exhale operations are typically used in Viper to encode external or more-complex

operations [34]. For instance, a Viper method call is expressed by exhaling the precondition and then

inhaling the postcondition of the callee; the nondeterministic assignments made by the exhale
model possible side effects of the call. We present here some of the key rules for exhale, which
will be used later in this paper. Additional rules for inhale are presented in the appendix (App. A

of the TR [38]); the complete rules are included in our Isabelle formalisation.

4
For separation-logic-versed readers, the Hoare triples {𝑅} inhale 𝐴 {𝑅 ∗𝐴} and {𝑅 ∗𝐴} exhale 𝐴 {𝑅} reflect this
behavior (assuming the expressions in 𝐴 and 𝑅 are well-defined).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

Formally Validating Translations into an Intermediate Verification Language 208:7

𝜎𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎 ′
𝑣)

nonDet(𝜎𝑣, 𝜎 ′
𝑣, 𝜎

′′
𝑣) (exh-succ)

Γ𝑣 ⊢ ⟨exhale 𝐴, 𝜎𝑣⟩ →v N(𝜎 ′′
𝑣)

𝜎𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc F

(exh-fail)
Γ𝑣 ⊢ ⟨exhale 𝐴, 𝜎𝑣⟩ →v F

𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎 ′
𝑣)

𝜎0

𝑣 ⊢ ⟨𝐵, 𝜎 ′
𝑣⟩ →rc 𝑟𝑣 (rc-sep)

𝜎0

𝑣 ⊢ ⟨𝐴 ∗ 𝐵, 𝜎𝑣⟩ →rc 𝑟𝑣

⟨𝑒, 𝜎0

𝑣 ⟩ ⇓ V(𝑟) ⟨𝑒𝑝 , 𝜎0

𝑣 ⟩ ⇓ V(𝑝)
𝑟𝑣 = if exhAccSucc(𝑟, 𝑝, 𝜎𝑣) then N(𝜎𝑅

𝑣) else F (rc-acc)
𝜎0

𝑣 ⊢ ⟨acc(𝑒.𝑓 , 𝑒𝑝), 𝜎𝑣⟩ →rc 𝑟𝑣

nonDet(𝜎𝑣, 𝜎 ′
𝑣, 𝜎

′′
𝑣) ≜

st(𝜎 ′′
𝑣) = st(𝜎 ′

𝑣) ∧ 𝜋 (𝜎 ′′
𝑣) = 𝜋 (𝜎 ′

𝑣) ∧
∀𝑙 . (𝜋 (𝜎𝑣) (𝑙) = 0 ∨ 𝜋 (𝜎 ′

𝑣) (𝑙) > 0) ⇒ ℎ(𝜎 ′′
𝑣) (𝑙) = ℎ(𝜎 ′

𝑣) (𝑙)
exhAccSucc(𝑟, 𝑝, 𝜎𝑣) ≜ 𝑝 ≥ 0 ∧ (𝑟 = null ? 𝑝 = 0 : 𝜋 (𝜎𝑣) (𝑟 .𝑓) ≥ 𝑝) 𝜎𝑅

𝑣 ≜ rem(𝜎𝑣, 𝑟 , 𝑓 , 𝑝)

Fig. 2. A subset of the rules for the formal semantics of exhale. rem(𝜎𝑣, 𝑟 , 𝑓 , 𝑝) is the state 𝜎𝑣 where permission

𝑝 is removed from 𝑟 .𝑓 .

An exhale 𝐴 must cause the loss of heap value information (via non-deterministic assignments)

in general, but also needs to check that logical constraints were true when the exhale started.

Our semantics for exhale 𝐴 first removes the permissions and checks the constraints specified

in 𝐴 without changing the heap yet via an intermediate operation remcheck 𝐴; only then does

it apply nondeterministic assignments. The inference rule exh-succ in Fig. 2 formalises this

behaviour for the case when exhale 𝐴 succeeds. The big-step judgement 𝜎𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎 ′
𝑣)

defines the successful execution of a remcheck 𝐴 operation from 𝜎𝑣 to 𝜎
′
𝑣 . nonDet specifies the

nondeterministic assignment for all heap locations for which remcheck 𝐴 removed all permission.

The case when remcheck 𝐴 (and thus exhale 𝐴) fails, is captured by the rule exh-fail.

Our semantics for remcheck 𝐴 decomposes the assertion𝐴 from left to right: That is, remcheck
𝐴 ∗ 𝐵 first executes remcheck 𝐴 and then remcheck 𝐵 (rule rc-sep formalises the case when

remcheck 𝐴 succeeds; if remcheck 𝐴 fails, then remcheck 𝐴 ∗ 𝐵 also fails). However, we need

to also take care that the removal of permissions on-the-fly doesn’t cause subexpressions to be

considered ill-defined, e.g. for the subexpression 𝑥 .𝑓 == 1 in remcheck acc(𝑥 .𝑓 , 1) ∗ 𝑥 .𝑓 ==

1 which comes after the permission to 𝑥 .𝑓 is removed. Thus, our judgement carries both an

expression evaluation state (𝜎0

𝑣 in rc-sep) in which expressions are evaluated and a reduction state
(𝜎𝑣 and 𝜎

′
𝑣 in rc-sep) from which permissions are removed. Rule rc-acc for remcheck acc(𝑒.𝑓 , 𝑒𝑝)

models removing 𝑒𝑝 permission for heap location 𝑒.𝑓 . The operation succeeds (expressed by

exhAccSucc(𝑟, 𝑝, 𝜎𝑣)) iff (1) the to-be-removed permission is nonnegative and, (2) there is sufficient

permission. Rule rc-acc is applicable only if 𝑒 and 𝑒𝑝 are well-defined; there is a separate rule (not

shown here) expressing that remcheck acc(𝑒.𝑓 , 𝑒𝑝) fails if 𝑒 or 𝑒𝑝 are ill-defined.

2.4 Example Viper-to-Boogie Translation
To give a flavour of a translation of a Viper statement into a Boogie statement, consider Fig. 3,

which shows a simplified translation used by the existing Viper-to-Boogie implementation. The

Viper statement first adds permission to x.f, then updates y.g, and finally removes the added

permission to x.f and checks that y.g is greater than x.f. This sequence of operations occurs,
for instance, when verifying a method with the permission to x.f as precondition, the field update

as method body, and the exhaled assertion as postcondition.

The corresponding Boogie program is significantly larger. The inhale is encoded on lines 1-4,

the assignment is encoded on lines 5-7, and the exhale is encoded on lines 8-18. The Boogie

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

208:8 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

inhale acc(x.f, q)

y.g := x.f+1

exhale acc(x.f, q) * y.g > x.f

{

1 tmp := q; assert tmp >= 0;

2 assume tmp > 0 ==> x != null;

3 M[x,f] += tmp;

4 assume GoodMask(M);

5 assert M[x,f] > 0; assert M[y,g] == 1;

6 H[y,g] := H[x,f]+1;

7 assume GoodMask(M);

8 WM := M;

9 tmp := q; assert tmp >= 0;

10 if(tmp != 0) {

11 assert M[x,f] >= tmp;

12 }

13 M[x,f] -= tmp;

14 assert WM[y,g] > 0; assert WM[x,f] > 0;

15 assert H[y,g] > H[x,f];

16 havoc H'; assume idOnPositive(H,H',M);

17 H := H';

18 assume GoodMask(M);

Fig. 3. A Viper statement (on the left) and the corresponding (simplified) Boogie statement (on the right)

that is emitted by the current Viper-to-Boogie implementation.

program uses map-typed variables H and M to model the heap and permissions, respectively.
5

The uninterpreted function GoodMask expresses when a permission mask is consistent; an axiom

constrains the function correspondingly. The permission mask of the expression evaluation state

during the remcheck operation is captured by the auxiliary variable WM (line 8). All locations in the

assertion are checked to have positive permission w.r.t. WM. The corresponding nondeterministic

assignment of heap values is performed on lines 16-17, where a heap H' is nondeterministically ob-

tained via havoc H' and then constrained to match the original heap H on all locations where there

is positive permission (w.r.t. M) via the assume statement; an axiom constrains the uninterpreted

function idOnPositive correspondingly. Note that this Boogie encoding overapproximates the

nondeterministic assignment specified by the Viper semantics: assigning new values to all locations

without permission, rather than only those newly without permission. Even this tiny snippet of

code illustrates the explosion in concerns, complexity and the inobvious mapping between concepts

in one language and the other, all of which must be taken care of in a formal validation approach.

3 A FORWARD SIMULATION METHODOLOGY FOR FRONT-END TRANSLATIONS
A front-end translation is sound iff the correctness of an input program is implied by the correctness

of the correspondingly-translated IVL program. In our setting: a Viper program (resp. a Boogie

program) is correct if each of its methods (resp. procedures) is correct. At a high level (details in

Sec. 4.5), a method (resp. procedure) is correct if its body has no failing executions. Thus, proving

soundness of the Viper-to-Boogie translation boils down to proving that if the Viper program has

a failing execution, then the translated Boogie program has one also.

We generate such proofs automatically via a novel general methodology for proving forward
simulations [32] between source and IVL target statements. We observed early on that generating

such proofs directly based on knowledge of the entire translation would require handling the entire

5
The notation m[a] is syntactic sugar here. We describe in Sec. 5 how maps are represented using the subset from Fig. 1.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

Formally Validating Translations into an Intermediate Verification Language 208:9

semantic gap between the source and target languages monolithically in one result, which would

be both infeasible to automate effectively and highly-brittle to any changes in the translation.

Instead, our methodology employs a combination of key strategies that work together to achieve

reliable and robust automation of our formal simulation results: (1) syntactic and semantic de-
compositions into smaller and more-focused simulation sub-results that are easier to automate, (2)

generic simulation judgements which can be instantiated to obtain the diverse simulation notions we

require, (3) generic composition lemmas which factor out common idioms arising in diverse facets of

the translation, and (4) contextual hypotheses which can be injected into simulation proofs to handle

non-locality of certain translation checks. We present these key ingredients of our methodology in

this section. We illustrate them for Viper and Boogie, but they can be naturally ported to other

front-end translations if one provides a formal semantics for the input language and IVL, because

they are designed to abstract over states, relations and statements employed in a translation.

3.1 Focusing Forward Simulation Proofs by Decomposition
Intuitively, a forward simulation between a Viper and a Boogie statement shows that for any

execution of the Viper statement, there exists a corresponding execution of the Boogie statement

that simulates it. By defining the simulation such that a failing Viper execution is simulated only

by failing Boogie executions, a forward simulation implies our desired result in particular.

To tackle the complexity of automatically (and reliably) generating simulation proofs in general

for the Viper-to-Boogie translation, we employ a variety of strategies for aggressively decomposing

the desired simulation result into smaller and simpler sub-goals that are themselves still simulation

results. These decompositions are sometimes intuitive based on the syntax: for example, in the case

of decomposing simulation of a Viper sequential composition into simulations for its constituent

statements. However, we go further than the syntax, decomposing across different semantic concerns
for the same Viper statement, into what we call Viper effects.
For example, we discussed in Sec. 2.3 that the semantics of exhale consists of two effects,

remcheck and a nondeterministic assignment. The simulation proofs for each of these Viper effects

are made separately, and then composed for a simulation proof for the primitive statement as a

whole; this would in turn be composed with simulation proofs for other sequentially-composed

statements, and so on. Note in particular, that simulation proofs may need to relate only a part of
the semantics of a Viper statement to some appropriate Boogie code, a technicality which requires

special care when tracking the relations between corresponding states in the two programs.

Via our decompositions, each resulting simulation proof focuses on a different specific semantic

concern with respect to the translation in question; these proofs can be made simple enough to

discharge automatically, optionally with tailored tactics. However without care, our decomposition

approach could lead easily to an explosion of ad hoc simulation judgements with disparate forms

and parameters. Instead, our simulation methodology defines a single, generic simulation judgement

which can be instantiated appropriately to define each particular simulation judgement required.

We design our generic judgements to support instantiations which reflect not only the semantics

of the particular effect in isolation, but to optionally include additional contextual information to

be propagated to specialise and aid the simulation proof itself.

3.2 One Simulation Judgement to Rule Them All
Our generic forward simulation judgement sim is defined in Fig. 4. All concrete forward simulations

(e.g. for statements, well-definedness checks, etc.) are instantiations of this judgement. As well as

aiding understanding, this approach enables both tactics which manipulate this generic judgement

directly, and generic composition proof rules which embody recurring proof idioms in a way which

is again parametric with the specific simulations in question (Sec. 3.3).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

208:10 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

simΓ𝑏 (𝑅in, 𝑅out, Succ, Fail, 𝛾in, 𝛾out) ≜ ∀𝜏, 𝜎𝑏 . 𝑅in (𝜏, 𝜎𝑏) =⇒(
∀𝜏 ′ . Succ(𝜏, 𝜏 ′) =⇒ ∃𝜎 ′

𝑏
. Γ𝑏 ⊢ (𝛾in,N(𝜎𝑏)) →∗

b
(𝛾out,N(𝜎 ′

𝑏
)) ∧ 𝑅out (𝜏 ′, 𝜎 ′

𝑏
)
)
∧ (Success case)(

Fail(𝜏) =⇒ ∃𝛾 ′ . Γ𝑏 ⊢ (𝛾in, 𝜎𝑏) →∗
b
(𝛾 ′, F)

)
(Failure case)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′, 𝑠, 𝛾,𝛾 ′) ≜
simΓ𝑏 (𝑅, 𝑅′, 𝜆𝜎𝑣 𝜎

′
𝑣 . Γ𝑣 ⊢ ⟨𝑠, 𝜎𝑣⟩ →v N(𝜎 ′

𝑣), 𝜆𝜎𝑣 . Γ𝑣 ⊢ ⟨𝑠, 𝜎𝑣⟩ →v F, 𝛾, 𝛾
′)

wfSimΓ𝑏 (𝑅, 𝑅′, 𝑒𝑠, 𝛾,𝛾 ′) ≜ simΓ𝑏

(
𝑅, 𝑅′, (𝜆𝜎𝑣 𝜎 ′

𝑣 . 𝜎𝑣 = 𝜎 ′
𝑣 ∧ ∃𝑣𝑠. ⟨𝑒𝑠, 𝜎𝑣⟩[⇓]V(𝑣𝑠)),

(𝜆𝜎𝑣 . ⟨𝑒𝑠, 𝜎𝑣⟩[⇓]), 𝛾, 𝛾 ′
)

rcSimΓ𝑏 (𝑅, 𝑅′, 𝐴,𝛾,𝛾 ′) ≜ simΓ𝑏

(
𝑅, 𝑅′, (𝜆(𝜎0

𝑣 , 𝜎𝑣) (𝜎1

𝑣 , 𝜎
′
𝑣) . 𝜎0

𝑣 = 𝜎1

𝑣 ∧ 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎 ′
𝑣)),

(𝜆(𝜎0

𝑣 , 𝜎𝑣). 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc F), 𝛾, 𝛾 ′
)

Fig. 4. The definition of the generic forward simulation judgement and three common instantiations. The

judgement ⟨𝑒𝑠, 𝜎𝑣⟩[⇓]𝑟 lifts the evaluation of an expression (see Sec. 2.3) to a list of expressions 𝑒𝑠 .

sim is defined in terms of multiple parameters: (1) the Boogie context Γ𝑏 , (2) an input relation 𝑅in
and an output relation 𝑅out on Viper and Boogie states, (3) a success predicate Succ characterising the
set of input and output Viper state pairs (𝜏, 𝜏 ′) for which there is a successful Viper execution from

𝜏 to 𝜏 ′, (4) a failure predicate Fail characterising the set of input Viper states that result in a failing

execution, (5) input and output Boogie program points 𝛾in and 𝛾out where the Boogie executions

are expected to start and end, respectively. The success and failure predicate together abstractly

describe the set of Viper executions that must be shown to be simulated.

simΓ𝑏 (𝑅in, 𝑅out, Succ, Fail, 𝛾in, 𝛾out) holds iff for any Viper and Boogie input states related by 𝑅in,

the following two conditions hold: (1) for any successful Viper execution from the input Viper state

to an output Viper state 𝜏 ′, there must be a Boogie execution from program point 𝛾in and the input

Boogie state to program point 𝛾out and some output Boogie state that is related to 𝜏 ′ by 𝑅out , and
(2) if the Viper execution fails in the input state, then there must be a failing Boogie execution from

𝛾in and the input Boogie state (the reached Boogie program point need not be 𝛾out). The second

condition is the end goal that we need to show soundness of the Viper-to-Boogie translation. The

first condition is needed in order to derive sim compositionally; it guarantees, for example, that not

all Boogie executions for a successful Viper execution produce a magic outcome.

Three important instantiations of sim that we use are shown at the bottom of Fig. 4. stmSim is the

forward simulation for Viper statements, where the success and failure predicates are instantiated to

be a successful and a failing Viper statement reduction, respectively. Thus, the resulting failure case

in sim directly gives us the key property to show the soundness of a Viper-to-Boogie translation.

wfSim is the forward simulation for the well-definedness check of a list of Viper expressions.

Here, the instantiation of the success predicate explicitly expresses that the Viper state does

not change during the evaluation of expressions. rcSim is the forward simulation for remcheck.
Here, the instantiation makes use of the fact that the generic simulation judgement sim is in fact

also (implicitly, here) parametric with the notions of states employed: the “Viper state” is in fact

instantiated to be a pair of standard Viper states in this case, where the first Viper state represents

the expression evaluation state and the second Viper state represents the reduction state (see Sec. 2.3

for this distinction). The success predicate expresses that the expression evaluation state does not

change during a remcheck operation. These three common instantiations are all expressed directly

via the Viper reduction judgements introduced in Sec. 2.3. Like the generic simulation judgement,

the three instantiations are themselves generic, abstracting away how the Viper and Boogie states

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

Formally Validating Translations into an Intermediate Verification Language 208:11

simΓ𝑏 (𝑅, 𝑅′, 𝑆1, 𝐹1, 𝛾, 𝛾 ′)
simΓ𝑏 (𝑅′, 𝑅′′, 𝑆2, 𝐹2, 𝛾 ′, 𝛾 ′′)

∀𝜏, 𝜏 ′′ . 𝑆 (𝜏, 𝜏 ′′) ⇒ ∃𝜏 ′ . 𝑆1 (𝜏, 𝜏 ′) ∧ 𝑆2 (𝜏 ′, 𝜏 ′′)
∀𝜏 . 𝐹 (𝜏) ⇒ 𝐹1 (𝜏) ∨ ∃𝜏 ′ . 𝑆1 (𝜏, 𝜏 ′) ∧ 𝐹2 (𝜏 ′) (comp)

simΓ𝑏 (𝑅, 𝑅′′, 𝑆, 𝐹 ,𝛾,𝛾 ′′)

bSimΓ𝑏 (𝑅, 𝑅1, 𝛾, 𝛾1)
simΓ𝑏 (𝑅1, 𝑅2, 𝑆, 𝐹 ,𝛾1, 𝛾2)
bSimΓ𝑏 (𝑅2, 𝑅′, 𝛾2, 𝛾 ′) (bprop)
simΓ𝑏 (𝑅, 𝑅′, 𝑆, 𝐹 ,𝛾,𝛾 ′)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′, 𝑠1, 𝛾, 𝛾 ′)
stmSimΓ𝑣 ,Γ𝑏 (𝑅′, 𝑅′′, 𝑠2, 𝛾 ′, 𝛾 ′′) (seq-sim)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′′, (𝑠1; 𝑠2), 𝛾, 𝛾 ′′)
where

bSimΓ𝑏 (𝑅, 𝑅′, 𝛾, 𝛾 ′) ≜

simΓ𝑏 (𝑅, 𝑅′, 𝜆𝜏 𝜏 ′ . 𝜏 = 𝜏 ′, 𝜆_. ⊥, 𝛾, 𝛾 ′)

Fig. 5. The instantiation-independent rules comp and bprop and the concrete rule for the simulation of 𝑠1; 𝑠2.

are related by taking the input and output state relations as parameters. As we will show in Sec. 3.4,

we also use instantiations that do not just use Viper reduction judgements (e.g. to express the

non-deterministic assignment of heap values in remcheck).

3.3 Instantiation-Independent Rules
Many simulation idioms arise repeatedly in a complex translation. Notions of sequential composi-

tion, conditional evaluation, stuttering steps are all good examples, which require a certain stylised

formal justification to reason about. Our generic simulation judgement allows us to identify and

formalise these idioms once and for all, providing, for example, generic composition lemmas that

can be proved once and instantiated for different purposes. In this subsection, we present these

idioms as inference rules, but in our formalisation they are expressed and proved as regular lemmas.

For example, we prove a single general composition rule from which we derive concrete rules to

combine (1) simulations of 𝑠1 and 𝑠2 to a simulation of 𝑠1; 𝑠2, (2) simulations of remcheck 𝐴1 and

remcheck 𝐴2 to remcheck 𝐴1∗𝐴2, (3) simulations of inhale 𝐴1 and inhale 𝐴2 to inhale 𝐴1∗𝐴2.

The general composition rule comp in Fig. 5 captures the composition of two, possibly different,

instantiations of sim, where the output relation and Boogie program point of the first instantiation

match the input relation and program point of the second one. The two final premises constrain

the resulting success and failure predicates. In particular, the composed Viper execution should fail

only if either the first instantiation fails or if the second instantiation fails in a state successfully

reached by the first one. The rule seq-sim in Fig. 5 shows the concrete composition rule for 𝑠1; 𝑠2,

which is derived from comp. Note that seq-sim does not impose any constraints on the Boogie

program points, which is crucial to handle Viper’s and Boogie’s disparate ASTs (see Sec. 2.1). We

will discuss in Sec. 4.3 how we deal with the AST mismatch when automating proofs.

As a second example, the notion of simulation stuttering steps also arises in many ways, whenever

some auxiliary Boogie code is generated that does not fully correspond to a step in the Viper source.

This includes initialisations of auxiliary variables, or Boogie assume statements for properties from

the current simulation state relation. This idiom is captured by the Boogie propagation rule bprop
in Fig. 5, in which bSim expresses simulations in which the Viper state remains unchanged, and

thus only the Boogie state may change (causing adjustment to the state relations).

3.4 Examples: Generic Decomposition in Action
As outlined above, the general strategy for our simulation methodology is to decompose our

simulation goals as far as possible, while leaving as many parameters generic as we can to enable

maximal reuse of our results and composition lemmas. While decomposition handles the semantic

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

208:12 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

rcSimΓ𝑏 ([𝜆(𝜎0

𝑣 , 𝜎𝑣) 𝜎𝑏 . 𝜎0

𝑣 = 𝜎𝑣 ∧ 𝑅(𝜎𝑣, 𝜎𝑏)], 𝑅′, 𝐴,𝛾,𝛾 ′) (sim. of remcheck 𝐴)
simΓ𝑏 (𝑅′, [𝜆(_, 𝜎𝑣) 𝜎𝑏 . 𝑅′′ (𝜎𝑣, 𝜎𝑏)], Succ2, 𝜆_. ⊥, 𝛾 ′, 𝛾 ′′) (non-det. selection)

(exh-sim)
stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′′, exhale 𝐴,𝛾,𝛾 ′′)

Succ2 ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣) (_, 𝜎 ′
𝑣). nonDet(𝜎0

𝑣 , 𝜎𝑣, 𝜎
′
𝑣) ∧ 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎0

𝑣 ⟩ →rc 𝜎𝑣

Fig. 6. Rule for the simulation of exhale 𝐴. The definition of nonDet is given in Fig. 2.

gap, our use of generic parameterisation provides the abstraction to address the diverse translations

used in practical translational verifiers. In the following, we showcase our methodology on one rule,

but the same ideas apply to all our formal rules (see a second example in App. B of the TR [38]).

Consider the rule exh-sim for the simulation of exhale 𝐴 in Fig. 6. The first premise is expressed

as a simulation of the first effect, remcheck, which we can express via the rcSim instantiation

(see Fig. 4). The second premise models nondeterministic assignment, which is captured by the

first conjunct nonDet of the corresponding success predicate and by the failure predicate, which

reflects that the nondeterministic assignment cannot fail.

By modularly abstracting over the details of these premises, and the precise definitions of the

states and state relations (e.g. the intermediate relation 𝑅′
in this rule), we obtain robustness to

diverse translations: our rules do not constrain which exact Boogie statements correspond to a Viper
effect. For example, the Viper-to-Boogie implementation establishes the nondeterministic heap

assignment premise in exh-sim in two different ways depending on whether the assertion contains

an accessibility predicate acc(𝑒.𝑓 , 𝑝) or not; if not, then the implementation does not emit any

Boogie code for the nondeterministic assignment, which is sound, since no permission is removed.

Note that this genericity does not prevent the rule from exploiting contextual information.

For example, the input state relation of the first premise specifies that at the beginning of the

remcheck 𝐴 effect the expression evaluation state and the reduction state are the same. This

property does not hold in general for executions of remcheck (e.g. it might not hold when executing

the second conjunct of a separating conjunction), but it does hold here, at the beginning of an

exhale. The second premise’s success predicate includes the fact that the current Viper state

was reached via remcheck 𝐴. This allows us, for example, to conclude that the nondeterministic

assignment has no effect if remcheck 𝐴 removes no permissions, which is required to justify the

case when the implementation does not emit Boogie code for the nondeterministic assignment.

3.5 Injecting Non-Local Hypotheses into Simulation Proofs
Our rules are designed to be parametric in the state relation between the Viper and Boogie state

and permit adjusting this state relation at different points in the simulation proof (e.g. via the

Boogie propagation rule bprop in Fig. 5). In principle, this allows the injection of arbitrary non-

locally-justified hypotheses into all of our simulation judgements. However, automating the usage
of general logical assumptions embedded into our state relations can become a challenge in itself.

For example, the Viper-to-Boogie implementation omits the well-definedness checks of expres-

sions in the translation of remcheck 𝐴 and inhale 𝐴 in certain cases (as we will discuss in

Sec. 4.2). This is justified, because 𝐴 is checked to be well-formed non-locally in those cases, but

to use this additional hypothesis requires propagating and adjusting it through the cases of the

definition of remcheck 𝐴 and inhale 𝐴.

As a final ingredient of our methodology, to avoid these recurring adaptations and proof steps, we

allow specialised instantiations of the generic forward simulation judgement sim that encapsulate

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

Formally Validating Translations into an Intermediate Verification Language 208:13

rcInvSim
𝑄

Γ𝑏
(𝑅, 𝑅′, 𝐴1, 𝛾, 𝛾

′) rcInvSim
𝑄

Γ𝑏
(𝑅′, 𝑅′′, 𝐴2, 𝛾

′, 𝛾 ′′)

∀𝜎0

𝑣 , 𝜎𝑣 . 𝑄 (𝐴1 ∗𝐴2, (𝜎0

𝑣 , 𝜎𝑣)) ⇒
(
𝑄 (𝐴1, (𝜎0

𝑣 , 𝜎𝑣)) ∧
∀𝜎 ′

𝑣 . 𝜎
0

𝑣 ⊢ ⟨𝐴1, 𝜎𝑣⟩ →rc N(𝜎 ′
𝑣) ⇒ 𝑄 (𝐴2, (𝜎0

𝑣 , 𝜎
′
𝑣))

)
(rsep-sim)

rcInvSim
𝑄

Γ𝑣
(𝑅, 𝑅′′, (𝐴1 ∗𝐴2), 𝛾, 𝛾 ′′)

rcInvSim
𝑄

Γ𝑏
(𝑅, 𝑅′, 𝐴,𝛾,𝛾 ′) ≜ rcSimΓ𝑏 ((𝜆𝜏, 𝜎𝑏 . 𝑅(𝜏, 𝜎𝑏) ∧𝑄 (𝐴, 𝜏)), 𝑅′, 𝐴,𝛾,𝛾 ′)

Fig. 7. The instantiation for simulating remcheck 𝐴 with assertion predicate𝑄 (bottom) and the correspond-

ing rule for the separating conjunction (top).

these extra hypotheses as additional premises. Thus, applications of the rule can work with a fixed

state relation and replace recurring proof steps by the justification of an additional premise.

For example, Fig. 7 shows (at the bottom) an instantiation of sim that expresses the simulation

of remcheck 𝐴, parameterised with a predicate 𝑄 on assertions. Its definition in terms of rcSim

requires 𝑄 (𝐴, 𝜏) to hold as part of the input state relation. The specialised rule rsep-sim (top of

Fig. 7) for remcheck 𝐴1 ∗ 𝐴2 decomposes the simulation into simulations for 𝐴1 and 𝐴2.
6
Both

sub-simulations use the same predicate 𝑄 , such that applications of the rule do not need to adjust

the state relations explicitly to reflect that, for example, 𝑄 holds for 𝐴1 and 𝐴2 in the respective

states. This property is ensured by the third premise. In practice, for a specific𝑄 , we prove the third

premise once and for all for all assertions 𝐴1 and 𝐴2, which avoids the recurring proof steps that

would be necessary without the specialised rule. Note that the same parameter can be instantiated

in many ways to capture different non-local hypotheses for different applications of the same rule.

In summary, our methodology solves all three challenges outlined in the introduction. The large
semantic gap between the input language and the IVL is handled by decomposing the statements

of the input language into smaller effects and defining for each of them instantiations of a generic

forward simulation relation. The parameterisation of this relation allows us, in particular, to capture

information about the context in which the effects are executed. This parameterisation also supports

diverse translations by abstracting from the details of the translation. Finally, non-locality is handled

by capturing properties checked elsewhere in the state relations, and by devising specialised

rules that simplify the proof generation. All of these ideas are needed to validate the existing

Viper-to-Boogie translation, but apply equally to other front-end translations.

4 PUTTING THE METHODOLOGY TOWORK
This section presents ideas for applying the methodology from Sec. 3 to concrete front-end transla-

tions. In particular, the section presents our instantiation of the state relation (Sec. 4.1), a concrete

instance of non-local reasoning (Sec. 4.2), and how our proof automation works (Sec. 4.3). Finally,

the section discusses the background theory for Boogie (Sec. 4.4), which includes polymorphic

maps, and shows how to use forward simulation proofs to generate the final theorem (Sec. 4.5).

4.1 State Relation
Our rules for deriving forward simulation judgements (Sec. 3) allow us to adjust state relations as

needed during a simulation proof. We use this flexibility in many ways, e.g. when (1) a scoped Viper

variable is introduced, (2) a new auxiliary Boogie variable is introduced, (3) the Boogie variables

6
rsep-sim can be derived from the instantiation-independent composition rule (Fig. 5) and consequence rule cons (App. C

of the TR [38]).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

208:14 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

tracking the Viper state are changed. To facilitate proof automation for handling such adjustments,

we build in a stylised form for expressing state relations for this translation via two parameters: a

partial auxiliary variable map from auxiliary Boogie variables to logical conditions they each satisfy,
and a translation record specifying how key Viper components are represented in the Boogie state;

the scenarios above are all handled by adjusting one of these two parameters. Translation records

comprise: (1) a mapping var (Tr) from Viper variables to their Boogie counterparts, (2) the Boogie

variables representing the Viper heap H (Tr) and permission mask M (Tr) (and whenever we use a

separate expression evaluation state, the corresponding variables representing the heap H 0 (Tr) and
mask M0 (Tr)) and (3) a mapping field (Tr) from Viper fields to corresponding Boogie constants.

The following definition shows a simplified excerpt of our state relation instantiation SR for

translation record Tr and auxiliary variable map AV , where 𝜎𝑣 and 𝜎𝑏 are the Viper and Boogie

states, and 𝜎0

𝑣 is a distinguished Viper expression evaluation state (if there is none, then 𝜎𝑣 = 𝜎0

𝑣):

SR
Tr,AV
Γ𝑏

((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏) ≜ consistent(𝜎0

𝑣) ∧ consistent(𝜎𝑣) ∧
fieldRelΓ𝑏 (field (Tr), 𝜎𝑏) ∧ (∀𝑥, 𝑃 . AV (𝑥) = 𝑃 ⇒ 𝑃 (𝜎𝑏 (𝑥))) ∧
stRelΓ𝑏 (var (Tr), 𝜎𝑣, 𝜎𝑏) ∧ hmRelΓ𝑏 (H (Tr),M (Tr), 𝜎𝑣, 𝜎𝑏) ∧ hmRelΓ𝑏 (H 0 (Tr),M0 (Tr), 𝜎0

𝑣 , 𝜎𝑏) ∧ ...

The first line ensures that the Viper states are consistent. The second line ensures that the Viper

fields are represented in the Boogie state (fieldRel) and that for each (𝑥, 𝑃) in the auxiliary variable

map, 𝑃 holds for the value of 𝑥 . The third line ensures that the Boogie state correctly captures the

Viper state: both in terms of its variable store (stRel) and heap and permission mask (hmRel).

4.2 Non-Locality
For most occurrences of remcheck 𝐴, the Viper-to-Boogie implementation generates well-

definedness checks in the Boogie program corresponding to expressions evaluated in 𝐴. However,

specifically when executing the exhale of a method call’s precondition, the translation omits these

well-definedness checks for the corresponding remcheck operation. This is justified by a non-local
check: the Boogie code for the callee’s translation checks that the callee’s specification iswell-formed,
which implies that expressions evaluated in the precondition will always be well-defined.

7

Given Viper’s semantics, our standard simulation proof for remcheck 𝐴 would fail if we did

not reflect the consequences of this non-local guarantee in a way that is used automatically during
the proof. We instantiate the general strategy outlined in Sec. 3.5 for this purpose, which allows

us to choose a predicate 𝑄pre on assertions that will be applied throughout the simulation proof

for remcheck 𝐴. Our strategy requires us to find 𝑄pre such that (a) it is implied by the non-local

check elsewhere, and (b) it can be propagated identically to sub-assertions of 𝐴 during the proof

(e.g. satisfying the third premise of rsep-sim in Fig. 7, and similarly for other connectives).

In this case, we instantiate the predicate in our strategy with the following definition:

𝑄pre (𝐴, 𝜎0

𝑣 , 𝜎𝑣) ≜ consistent(𝜎0

𝑣) ∧ ∃𝜎 i
𝑣 . 𝜎𝑣 ⊕ 𝜎 i

𝑣 ⪯ 𝜎0

𝑣 ∧ ¬⟨𝐴, 𝜎 i
𝑣⟩ →inh F

Here, ⟨𝐴, 𝜎𝑣⟩ →inh 𝑟𝑣 holds iff Γ𝑣 ⊢ ⟨inhale 𝐴, 𝜎𝑣⟩ →v 𝑟𝑣 , and ⊕ and ⪯ (and later, ⊖) have standard
pointwise meanings on permission masks, leaving heaps and stores identical. This predicate

expresses that possibly after restoring some permissions (in 𝜎 i
𝑣) that we had at the start of the

exhale, at least an inhale of 𝐴 would not fail (i.e. expressions evaluated within 𝐴 will be well-

defined). The non-local check of the method precondition, which effectively checks that an inhale
would not fail starting from an empty state (i.e. no permissions), implies the predicate for an empty

𝜎 i
𝑣 . Showing formally that 𝑄pre can be propagated over connectives occurring in 𝐴 requires in

particular a technical lemma stating a partial inversion property between remcheck and inhale:

7
There is an analogous non-local check for𝑚’s postcondition that we do not discuss here for simplicity of presentation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

Formally Validating Translations into an Intermediate Verification Language 208:15

Proof Tree 𝑇 :

Proof P2 (hint 3)

rcSimΓ𝑏 (𝑅2, 𝑅2, 𝐴1, 𝛾1, 𝛾2)
Proof P3 (no hint)

rcSimΓ𝑏 (𝑅2, 𝑅2, 𝐴2, 𝛾2, 𝛾3)
(rsep2-sim)

rcSimΓ𝑏 (𝑅2, 𝑅2, 𝐴1 ∗𝐴2, 𝛾1, 𝛾3)
Proof P1 (hint 2)

bSimΓ𝑏 (𝑅1, 𝑅2, 𝛾, 𝛾1) (Proof Tree 𝑇)
(rcprop)

rcSimΓ𝑏 (𝑅1, 𝑅2, 𝐴1 ∗𝐴2, 𝛾, 𝛾3)
Proof P4 (hints 4 and 5)

simΓ𝑏 (𝑅2, 𝑅3, Succ2, 𝜆_. ⊥, 𝛾3, 𝛾 ′) (exh-sim︸ ︷︷ ︸
hint 1

)
stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅, exhale 𝐴1 ∗𝐴2, 𝛾, 𝛾

′)

𝐴1 ≜ acc(x.f, q) 𝐴2 ≜ y.g > x.f 𝑅 ≜ 𝜆(𝜎𝑣, 𝜎𝑏). SRTr,AV
Γ𝑏

((𝜎𝑣, 𝜎𝑣), 𝜎𝑏) 𝑅3 ≜ 𝜆(_, 𝜎𝑣) 𝜎𝑏 . 𝑅(𝜎𝑣, 𝜎𝑏)

𝑅1 ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣) 𝜎𝑏 . 𝜎0

𝑣 = 𝜎𝑣 ∧ 𝑅(𝜎𝑣, 𝜎𝑏) 𝑅2 ≜ SR
Tr1,AV
Γ𝑏

Tr1 ≜ Tr (M0 ↦→ WM)

Fig. 8. Proof tree constructed by our proof automation for the simulation of exhale acc(x.f, q) ∗ y.g > x.f
via the Boogie statement in Fig. 3 on lines 8-18. The automation uses generated hints for the application of

rule exh-sim, and for proofs at the leaves (P𝑖 ; left abstract here). The Boogie program points 𝛾 , 𝛾1, 𝛾2, 𝛾3, and

𝛾 ′ are the points in Fig. 3 starting on lines 8, 9, 14, 16, and 18, respectively. SR is our state relation instantiation

introduced in Sec. 4.1. Succ2 is defined in Fig. 6 (where the assertion is 𝐴1 ∗𝐴2). Rules rcprop and rsep2-sim

are derived from bprop (Fig. 5) and rsep-sim (Fig. 7), respectively.

Lemma 4.1. Let 𝐴 be an assertion and 𝜎0

𝑣 , 𝜎
′
𝑣 , 𝜎

𝑖
𝑣 , 𝜎

𝑠
𝑣 be Viper states, where 𝜎

𝑠
𝑣 = 𝜎𝑖𝑣 ⊕ (𝜎𝑣 ⊖ 𝜎 ′

𝑣) and
𝜎𝑠𝑣 is consistent. If 𝜎

0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎 ′
𝑣) and ¬⟨𝐴, 𝜎 i

𝑣⟩ →inh F holds, then ⟨𝐴, 𝜎 i
𝑣⟩ →inh N(𝜎𝑠𝑣).

We prove this result by induction on the reduction of remcheck. The lemma essentially states

that the permissions that get removed by remcheck 𝐴 (expressed by 𝜎𝑣 ⊖ 𝜎 ′
𝑣) are exactly those

that will be added by a corresponding (non-failing) inhale 𝐴 operation.

4.3 Proof Automation
We have extended the Viper-to-Boogie implementation to automatically generate an Isabelle proof

relating the Viper and Boogie programs. To make this automatic generation possible, we instrument

less than 500 lines of the existing implementation to produce hints, which provide extra information

about the Boogie encoding. A core component of our proof automation is an Isabelle tactic that

uses these hints to automatically prove forward simulations. The tactic applies the rules provided

by our methodology (Sec. 3) to decompose simulations into smaller ones and generates proofs for

atomic simulations that are not further decomposed. Our instrumentation generates two kinds of

hints for the tactic: (1) hints indicating which candidate of multiple diverse translations is used,

and (2) hints specifying how to instantiate parameters and discharge premises of a rule.

As a concrete example, consider Fig. 8, which shows the proof generated by our tactic (represented

via a proof tree) for the forward simulation of exhale acc(x.f, q) ∗ y.g > x.f via the Boogie

statement in Fig. 3 on lines 8-18. Hints 1 and 4 in Fig. 8 are hints of the first kind. Hint 1 specifies that

well-definedness checks are not omitted in the translation of remcheck; as a result, the tactic applies
exh-sim, which does not track a separate predicate 𝑄 on assertions for the remcheck simulation

(see Sec. 3.5). Hint 4 specifies that the nondeterministic heap assignment is not omitted in the

Boogie code (see Sec. 3.4 for when it is omitted), which directs the tactic to use a specific rule (not

shown in the figure). Hints 2, 3, and 5 in Fig. 8 are hints of the second kind. Each of them provides

information on temporary Boogie variables (name and lemma showing the declared type is the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

208:16 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

expected one) in Fig. 3. The temporary variables here are (1) WM to set up the expression evaluation

state on line 8 (hint 2), which results in a change of the translation record in 𝑅2 (see Sec. 4.1),

(2) tmp to store the permission on line 9 (hint 3), which is used to adjust the auxiliary variable map

(see Sec. 4.1) in proof P2, and (3) H’ to perform the nondeterministic selection on line 16 (hint 5).

After decomposing the simulation, our tactic must automatically prove the atomic simulations.

In Fig. 8, P1 and P4 are such proofs. P2 and P3 further decompose the simulation before reaching

atomic simulations (P2 does so via the rule shown in App. B of the TR [38]). We use two main

automation approaches for atomic simulations. Firstly, we prove (once and for all) simple lemmas

about the behaviours of small sequences of simple Boogie commands; these are applied (and their

hypotheses discharged) automatically when needed. These lemmas are used for only small parts of

the overall translation. Secondly, we prove (once and for all) lemmas that capture effects simulated

by assume and assert statements for arbitrary expressions. This generality enables a tactic to

automatically prove Viper effects that are simulated via a combination of these two statements.

Our tactic uses both of these approaches for the example in Fig. 8. Proof P2 uses the second

approach for justifying the nonfailure check for remcheck acc(𝑒.𝑓 , 𝑝) shown on lines 9-12 in

Fig. 3.
8
Proofs P1 and P4 use the first approach. As part of proof P4, we use a lemma of the following

form proved once and for all (K is a continuation and the free variables are universally quantified):

Lemma 4.2. If (1) SRTr,AVΓ𝑏
((𝜎𝑣, 𝜎𝑣), 𝜎𝑏), (2) nonDet(𝜎0

𝑣 , 𝜎𝑣, 𝜎
′
𝑣), (3) ℎ = H (Tr) ∧ 𝑚 = M (Tr),

and (4) ... then there is a state 𝜎 ′
𝑏
such that Γ𝑏 ⊢ ((havoc ℎ′ :: assume 𝑓 (ℎ,ℎ′,𝑚) :: ℎ := ℎ′ ::

®𝑐; if ,K),N(𝜎𝑏)) →∗
b
((®𝑐; if ,K),N(𝜎 ′

𝑏
)) and SRTr,AVΓ𝑏

((𝜎 ′
𝑣, 𝜎

′
𝑣), 𝜎 ′

𝑏
).

This lemma captures that a havoc-assume-assignment sequence simulates the nondeterministic

heap assignment w.r.t. our state relation instantiation (see Sec. 4.1). The fourth premise (not shown

here) includes constraints on 𝑓 ’s interpretation and on ℎ′.9

A general challenge when the tactic applies the rules from Sec. 3 is that the Viper and Boogie

ASTs are structured differently (see Sec. 2.1). Thus, the automatic selection of Boogie program

points in the premises of rules is not immediate. For example, when applying rule exh-sim in Fig. 8,

the tactic cannot easily choose the intermediate program point 𝛾3 by inspecting the initial program

point 𝛾 . Instead, the tactic starts proving the first premise with an existentially quantified 𝛾3. Once
the proof reaches the goal of proof P1 (i.e. the first atomic simulation), it becomes clear how to

advance the program point 𝛾 and, by the end of the proof of the first premise of exh-sim, the choice

of 𝛾3 becomes clear. This strategy is enabled by our routine use of schematic variables in Isabelle

(evars in other tools), for postponing the choice of witnesses for existentially-quantified values.

4.4 Background Theory and Polymorphic Maps
Boogie does not have any notion of a heap location or a Viper state. Such Viper (and other front-end)

constructs are translated using particular global declarations in Boogie. A subset of the Boogie

declarations always emitted by the Viper-to-Boogie implementation is given by:

• Uninterpreted types bref and bfield to model references and fields. bfield takes one

type argument indicating the type of the corresponding Viper field.
10

• An uninterpreted function GoodMask that maps a permission map to a Boolean and an axiom

restricting this function to return true only if the permission map models a consistent Viper

permission mask.

8
The approach is designed to work without any changes to the tactic even if the expressions in the two assert statements

were changed to be syntactically different.

9
If the implementation changed the translation for the nondeterministic heap assignment, then we would have to adjust

only the tactic’s proof strategy for this assignment via a new lemma (i.e. proof P4 in Fig. 8); the rest remains unchanged.

10
In practice, bfield takes one more type argument that we ignore for the sake of presentation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

Formally Validating Translations into an Intermediate Verification Language 208:17

Correct
𝐺
𝑏
(𝑝) ≜ ∀T , F , 𝜎𝑏 . [DeclsWf𝐺,𝑝 (T , F) ∧ AxiomSat𝐺 (T , F , 𝜎𝑏)] =⇒

∀𝛾 ′, 𝑟 ′
𝑏
. initCtxt𝐺

𝑏
(𝑝,T , F) ⊢ (init𝑏 (𝑝),N(𝜎𝑏)) →∗

b
(𝛾 ′, 𝑟 ′

𝑏
) ⇒ 𝑟 ′

𝑏
≠ F

Correct
𝐹,𝑀
𝑣 (𝑚) ≜

∀𝜎𝑣 . (∀𝑙 .𝜋 (𝜎𝑣) (𝑙) = 0) =⇒
∀𝑟𝑣 . initCtxt𝑀,𝐹

𝑣 (𝑚) ⊢ ⟨inhale pre(𝑚); body(𝑚); exhale post(𝑚), 𝜎𝑣⟩ →v 𝑟𝑣 ⇒ 𝑟𝑣 ≠ F

Fig. 9. The correctness definitions for a Boogie procedure 𝑝 (top) and Viper method𝑚 (bottom). We ignore

the restriction on well-typed states here, but include the restriction in the Isabelle formalisation.

• Global variables H and M to model the heap and permission mask, respectively. H[x,f] stores

the heap value for heap location x.f and M[x,f] stores the permission value for x.f. The
types of both variables are represented via Boogie’s impredicatively-polymorphic maps [30],
which we explain below.

The correctness of a Boogie procedure guarantees no failing executions of the procedure’s body for

any interpretation of the uninterpreted types and functions (1) that is well-formed (e.g. the function

interpretation respects the declared function signatures), and (2) for which all the Boogie axioms in

the Boogie program are satisfied in the initial Boogie state. The formal correctness definition for a

Boogie procedure 𝑝 reflects this directly (a simplified version is shown at the top of Fig. 9). T and

F are the interpretations of uninterpreted types and functions, respectively. 𝐺 denotes the global

declarations in the Boogie program. init𝑏 (𝑝) is the initial Boogie program point in the procedure

𝑝 . initCtxt𝐺
𝑏
(𝑝,T , F) constructs a Boogie context from the provided parameters. Thus, to use the

correctness of a Boogie procedure, we must choose a type and function interpretation that satisfy

the required conditions. The main challenge here is formally expressing interpretations that deal

with polymorphic Boogie maps, as we discuss next.

Polymorphic maps. The heap and permission maps are represented (via the Viper-to-Boogie

translation) using Boogie’s polymorphic maps; this choice is not unusual (e.g. the Dafny-to-Boogie

implementation also currently uses polymorphic maps with similar polymorphic map types as the

ones used by the Viper-to-Boogie implementation). The Boogie maps used to model Viper heaps

have the polymorphic map type <T>[bref, bfield T]T: a total map storing, for any type T,
values of type T given (as key) a reference and field with type argument T.

To our knowledge, there exists no formal model for Boogie’s polymorphic maps. Providing a

general model is challenging: in particular, Boogie’s polymorphic maps are impredicative: a map𝑚

of type <T>[T]T’ permits any value as a key, including the map𝑚 itself! Instead of providing a

formal model for polymorphic maps in general, we provide one tailored to those that the Viper-to-

Boogie implementation uses. To aid the incorporation of our model, we adjust the implementation

to represent a polymorphic map via an uninterpreted type (e.g. HType for the heap), polymorphic

functions for reading from and updating a polymorphic map (e.g. read and upd), and two axioms

that express the relationship between the two functions. The only change in the translation itself is

to simply rewrite heap and mask lookups and updates into calls to these functions; everything else

remains identical. Then, we provide interpretations of the types and functions, and automatically

prove that the axioms hold for these interpretations for any state that maps constants to their

defined values; the same approach could be used for e.g. the Dafny-to-Boogie translation.

What remains for our simulation proofs is to provide interpretations for these new components

(e.g. HType, read, and upd for the heap) such that the axioms are fulfilled. The challenge here

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

208:18 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

Translation
method𝑚1 { proc 𝑝1
· · ·
method𝑚𝑛 { proc 𝑝𝑛

Relational proofs
Rel

𝐺
𝐹,𝑀 (𝑚1, 𝑝1)

· · ·
Rel

𝐺
𝐹,𝑀 (𝑚𝑛, 𝑝𝑛)

Final proof
(∀𝑝 ∈ 𝑃 . Correct𝐺

𝑏
(𝑝))

=⇒
∀𝑚 ∈ 𝑀. Correct

𝐹,𝑀
𝑣 (𝑚)

𝑀 = {𝑚1,𝑚2, ...,𝑚𝑛} 𝑃 = {𝑝1, ..., 𝑝𝑛}
Rel

𝐺
𝐹,𝑀 (𝑚, 𝑝) ≜ Correct

𝐺
𝑏
(𝑝) ⇒ SpecWf(𝑚)︸ ︷︷ ︸

(C1)

∧
[
(∀𝑚′ ∈ 𝑀. SpecWf(𝑚′)) ⇒ Correct

𝐹,𝑀
𝑣 (𝑚)

]︸ ︷︷ ︸
(C2)

Fig. 10. Proof strategy for the Viper-to-Boogie translation. First, a proof is generated relating each Viper

method with the corresponding Boogie procedure. Second, the final proof is deduced. 𝐹 denotes the Viper

fields, 𝐺 denotes the global constants, variables, Boogie axioms, and functions emitted by the translation.

is avoiding circularities: e.g. if the field provided to read has type parameter HType, then the

instantiation of read must itself return a heap; to construct an initial heap, we already need a

heap of the same type. To break this circularity, we instantiate HType as a partial mapping from

reference and fields to values, and allow the empty map to be of type HType, which provides us

with a concrete heap. read is defined to return a default value for reference and field pairs that are

not in the domain of the partial map; for heaps the default value is the empty map. This is sufficient

to prove the axioms, since in practice the axioms only require read returning specific values when

those values were previously inserted by upd.

4.5 Generating A Proof of the Final Theorem
We will now discuss, given a Viper program and its Boogie translation, how forward simulation

proofs can be used to generate a proof of the final theorem justifying the soundness of the translation:

The correctness of the Boogie program (i.e. the correctness of all contained Boogie procedures)

implies the correctness of the Viper program (i.e. the correctness of all contained Viper methods).

We decompose the proof of the final theorem into smaller parts. At a high level, the Viper-to-

Boogie translation works as follows. Let 𝐹 and 𝑀 be the set of Viper fields and methods in the

Viper program, respectively. The Viper-to-Boogie translation (1) emits global Boogie declarations

𝐺 (see Sec. 4.4) and (2) generates a separate Boogie procedure 𝑝 (𝑚) for every Viper method𝑚

in 𝑀 . The intended relation between𝑚 and 𝑝 (𝑚) is given by Rel
𝐺
𝐹,𝑀 (𝑚, 𝑝 (𝑚)) in Fig. 10, which

states that the correctness of 𝑝 (𝑚) w.r.t. 𝐺 guarantees two things: (C1) the well-formedness of𝑚’s

specification, and (C2) the correctness of𝑚 w.r.t. 𝐹 and𝑀 if the specifications of all methods in

the Viper program are well-formed. The reason that the correctness of𝑚 is not implied directly is

due to the optimised translation of method calls (as explained in Sec. 4.2).

Fig. 10 shows how we generate the proof of the desired theorem in two steps. First, for each

Viper method𝑚 and its translated Boogie procedure 𝑝 (𝑚), we generate a proof for Rel𝐺𝐹,𝑀 (𝑚, 𝑝 (𝑚)),
explained next. Second, we obtain the desired theorem directly from these per-method relational

proofs, since the correctness of all Boogie procedures implies that all Viper method specifications

are well-formed using (C1), which implies that each Viper method is correct using (C2).

Next, we turn the focus to our strategy for proving Rel
𝐺
𝐹,𝑀 (𝑚, 𝑝 (𝑚)). For the sake of presentation,

we focus on the proof of (C2) (correctness of𝑚), and omit the proof of (C1) (well-formedness of𝑚’s

specification). Intuitively, to prove that𝑚 is correct, we have to show that for any state that satisfies

𝑚’s precondition, executing𝑚’s body in this state results in a state that satisfies𝑚’s postcondition.

The correctness definition for a Viper method (shown at the bottom of Fig. 9) expresses this by

requiring that any execution starting in a state 𝜎𝑣 with no permissions that inhales the precondition,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

Formally Validating Translations into an Intermediate Verification Language 208:19

then executes the body, and finally exhales the postcondition, cannot fail. As planned, we obtain this

result via a forward simulation proof between the executed Viper statement and 𝑝 (𝑚)’s procedure
body using our presented methodology. Formally, we show:

∃𝑅′, 𝛾 ′ . stmSimΓ0𝑣 ,Γ
0

𝑏
(𝑅0, 𝑅′, 𝑠0𝑣 , init𝑏 (𝑝 (𝑚)), 𝛾 ′)

where 𝑠0𝑣 ≜ inhale pre(𝑚); body(𝑚); exhale post(𝑚)

In the statement above, Γ0𝑣 ≜ initCtxt
𝑀,𝐹
𝑣 (𝑚) is the initial Viper context. Γ0

𝑏
is a Boogie context

that is defined in terms of our chosen type and function interpretation (see Sec. 4.4). 𝑅0 is an

instantiation of the state relation shown in Sec. 4.1. init𝑏 (𝑝 (𝑚)) is the initial Boogie program point

in 𝑝 (𝑚). The output state relation and output Boogie program point are irrelevant, since we care

only about the simulation of failing Viper executions here. To complete the proof, we choose an

initial Boogie state 𝜎𝑏 such that 𝑅0 (𝜎𝑣, 𝜎𝑏). As a result, if a Viper execution 𝐸𝑣 of statement 𝑠0𝑣 in

𝜎𝑣 fails, the forward simulation provides us with a failing Boogie execution 𝐸𝑏 of 𝑝 (𝑚). Using the

correctness of 𝑝 (𝑚), we conclude that 𝐸𝑏 cannot fail, and thus conclude that 𝐸𝑣 cannot fail, which

concludes the proof of Rel
𝐺
𝐹,𝑀 (𝑚, 𝑝 (𝑚)).

5 IMPLEMENTATION AND EVALUATION
We instrumented the existing Viper verifier implementation to automatically produce an Isabelle

proof justifying the soundness of its translation to Boogie, and evaluated this validation on a diverse

set of Viper benchmarks.

Implementation. Even though Viper passes the generated Boogie program to Boogie as a text file,

our soundness proof directly connects the input Viper AST to the internal AST representation of

the Boogie verifier. Therefore, we do not have to trust the Boogie parser.

We make the following four adjustments to the Viper verifier implementation. First, we desugar

the uses of polymorphic maps as described in Sec. 4.4, since there is no formal model for polymorphic

maps. Second, we adjust the implementation to not emit Boogie declarations or commands that

are used only for features outside of our subset (the implementation always emits those without

checking whether the corresponding features are actually used). Third, we switch off simple

syntactic transformations that the Viper verifier applies to the produced Boogie program (e.g.

constant folding, elimination of if-statements with no branches), since we do not support them

yet; justifying those transformations should be straightforward and is orthogonal to our work.

Fourth, we introduce a havoc statement in the Boogie program at the point when a scoped Viper

variable is introduced, which faithfully models the semantics of such a variable. The original Viper

implementation instead just introduces a fresh Boogie variable at the beginning of the Boogie

procedure. Proving the equivalence of both translations is straightforward.

Evaluation. Our evaluation answers the questions: (RQ1) Does our implementation generate

proofs that Isabelle can check successfully for a diverse set of examples? (RQ2) Does Isabelle check
the generated proofs in reasonable time (e.g. feasible as part of continuous integration)?

To obtain a diverse set of representative examples, we considered the Viper test suite as well as

the test suites of three tools that produce Viper code: Gobra [47] (for Go), VerCors [4] (for Java), and

MPP [15] (a tool performing a modular product transformation on Viper programs). To eliminate

trivial translations, we focused on Viper programs that use the heap, as indicated by the occurrence

of at least one accessibility predicate. Out of those, we included all Viper programs that fall into

our supported Viper subset. We followed different strategies to systematically obtain additional

examples from the different test suites. For Viper and MPP, we additionally included all files that

have an old-expression (by manually removing the corresponding assertion, i.e. verifying weaker

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

208:20 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

Table 1. Overview of benchmarks and results. For each test suite, we report the number of Viper files, the

total number of Viper methods contained in those files, as well as the mean number of non-empty lines of

code for the Viper files, Boogie files, and produced Isabelle proofs. We measured the mean and median time

it took to check the Isabelle proofs in seconds.

Test suite Files Methods Viper Boogie Isabelle Proof Check
no. no. Mean [LoC] Mean [LoC] Mean [LoC] Mean [s] Median [s]

Viper 34 105 33 298 1719 33.8 23.8

Gobra 17 65 60 287 1937 32.7 25.3

VerCors 18 116 63 332 2930 43.1 40.9

MPP 3 13 206 1060 5164 109.0 46.2

Overall 72 299 54 335 2217 39.0 32.9

Table 2. Detailed results of our evaluation for a selection of files showing the number of methods, the

nonempty lines of code for the Viper program, Boogie program, and produced Isabelle proof, and the time it

took to check the proof in seconds.

Test suite File Methods Viper Boogie Isabelle Proof Check
no. Total [LoC] Total [LoC] Total [LoC] Total [s]

Viper testHistoryProcesses 13 205 1711 7035 126.3

Gobra defer-simple-02 9 211 853 4717 60.6

VerCors inv-test-fail2 5 92 514 2596 56.5

MPP banerjee 8 414 2014 9545 242.4

MPP darvas 2 91 582 2800 38.4

MPP kusters 3 112 583 3146 46.2

postconditions) or a new statement (by manually desugaring the allocation primitive into our

subset). Moreover, we made sure that each argument to a method call is a variable (e.g. we rewrote

m(i+1) to var t := i+1; m(t)), since we currently support only variables as arguments. For

Gobra and VerCors, we removed boilerplate code that is emitted for each file and then followed the

same process as for Viper and MPP. Moreover, we additionally included files generated by Gobra

that had at most two occurrences of features outside of our subset if those could be desugared into

our subset (e.g. by eliminating a function by inlining its body).

As summarised in Tab. 1, we collected a total of 72 Viper files (containing 299 methods), with a

mean of 54 and maximum of 414 non-empty lines of code. We ran our implementation on all 72

Viper files to generate the Boogie translations and the Isabelle proofs, and measured the time it took

for Isabelle to check the generated proofs (the mean of five repetitions). The measurements were

run on a ThinkPad X1 Yoga Gen 5 on Ubuntu 20.04 with 16 GB RAM and i7-10510U @ 1.8 GHz

(scaled up to 4.9 GHz using Turbo Boost). The generated Boogie translations are on average 6.2x

larger (335 non-empty LoC on average), illustrating the semantic gap between Viper and Boogie.

Isabelle successfully checked the generated proofs for all Viper files, including the Viper programs

automatically generated by other tools. This shows that our approach is effective for practical

verifiers and answers RQ1 positively. The resulting Isabelle proofs have on average over 2000 lines

and are checked in less than a minute.

Tab. 2 shows the results for a selection of examples (the detailed results for each test suite are

shown in App. D of the TR [38]): All three examples from MPP, as well as the largest example (in

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

Formally Validating Translations into an Intermediate Verification Language 208:21

terms of lines of Viper code) from each of the other test suites. The three MPP examples are drawn

from different research papers and show that our tool can certify challenging programs.

For this selection, the times to check the proofs range from 38 seconds to 4 minutes. No file

in any of the 72 files takes longer than 4 minutes to check. These times are acceptable, since we

expect the validation to be performed occasionally (in particular, before the verified program is

released or as part of continuous integration), but not on every run of the verifier. Thus, we answer

RQ2 positively for the considered 72 files. To obtain additional representative files from the test

suites, we would need to extend the supported Viper subset. Moreover, most of our proofs are not

yet optimised to make proof checking faster. For example, field and variable accesses currently

result in an overhead in the proof that is proportional to the number of fields and active variables,

respectively. This could be improved by constructing and updating lookup tables efficiently.

6 RELATEDWORK
Various works prove the soundness of front-end translations once and for all. For instance, Lehner
and Müller [27] prove a simplified translation from Java Bytecode to Boogie, and Vogels et al. [44]

target a translation from a toy object-oriented programming language to Boogie. Both proofs are

done on paper and do not consider an actual implementation of the translation. Backes et al. [3]

prove a translation sound from the Dminor data processing language to the Bemol IVL in Coq.

They do not provide a proof connecting the formalised translation to their F# implementation.

Herms [21] proves a translation from C to the WhyCert IVL (inspired by the Why3 IVL) sound in

Coq, which they then turn into an executable tool via Coq’s extraction to OCaml. The resulting tool

has similarities to the Jessie Frama-C implementation [33], which translates C programs to Why3;

Herms [21] discusses mismatches between their mechanisation and the Jessie implementation.

In contrast, our certification applies to existing front-end implementations, which are typically

implemented in efficient mainstream programming languages, use diverse libraries, and include

subtle optimisations omitted from idealised implementations. Smans et al. [41] prove soundness of

a verification condition generator for a language with implicit dynamic frames (IDF) assertions

once and for all on paper without using an IVL. They also implement a prototype, but do not

formally connect the proof to the implementation. We also applied our methodology to a verifier

based on IDF, but validate an actual implementation.

Many verifiers perform a series of program transformations, e.g. by translating programs to

a lower-level IVL or internally without changing the language (e.g. monomorphisation). Our

approach can in principle be applied to both kinds of transformations, but is tailored towards the

former, where the semantic gap is large, non-local checks arise, and diverse translations are used.

Existing work for the validation of internal transformations does not provide solutions for these

challenges. For instance, our prior work [39] validates the verification condition (VC) generation

implementation of Boogie programs (also via a proof-producing instrumentation), which includes

internal Boogie-to-Boogie transformations. In these transformations, the semantic gap is small

(the source and target constructs are largely the same), and thus the decomposition into smaller

problems is immediate, while in this paper the decomposition is a challenge. Moreover, our prior

work need not deal with non-local checks and diverse translations. Our prior work uses different

kinds of simulations; it would be interesting future work to apply our methodology to these.

Besides internal transformations, our prior work connects the VC and a Boogie program; this paper

considers only program-to-program transformations. Our prior work can in principle be combined

with this paper to enable end-to-end soundness guarantees for Viper, but requires extending the

Boogie verifier validation to more internal Boogie transformations and to a larger Boogie subset.

Validation has also been used to obtain formal guarantees for implementations of other verifiers,

but none of the existing works target front-end translations and the challenges they entail. Lin

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

208:22 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

et al. [31] and Wils and Jacobs [45] validate verifiers obtained via the K framework and VeriFast,

respectively. These verifiers use symbolic execution, which requires a fundamentally different

validation approach. Garchery [19] validates certain logical transformations in Why3. Cohen and

Johnson-Freyd [9] also prove such logical transformations, but do so once and for all in Coq to

demonstrate their Why3 mechanisation. Neither of the two consider the actual VC generation.

Multiple works also embed programs in an interactive theorem prover (ITP) and then automate

forward simulation proofs. Rizkallah et al. [40] define a refinement calculus for the Cogent compiler

to automatically prove a forward simulation in Isabelle for a Cogent expression and its C transla-

tion. Their calculus includes syntax-directed rules for deriving simulation judgements, but these

rules do not provide the abstraction we needed to handle diverse translations. The compiler was

developed with validation in mind, which simplifies, for instance, the treatment of optimisations.

In contrast, our goal was to validate existing verifier implementations with all their intricacies. The

verification of the seL4 kernel includes two large forward simulation proofs in Isabelle, for which

proof automation was developed [8, 24, 46]. This automation reduces the manual proof overhead,

but still requires user interaction. In contrast, our validation proofs are generated and checked

completely automatically. Like us, they prove rules to decompose the simulation for composite

statements syntactically but, contrary to us, do not decompose statements semantically into smaller

simulations. They turn certain simulation judgements into Hoare triples for which they have

separate automation.

Formal translation validation approaches for compilers express a per-run validator in an ITP [20,

42, 43], prove it correct once and for all, and then extract executable code (the extraction must be

trusted). For many of these validators, the source and target languages are similar. It would be

interesting to test the feasibility of such approaches for front-end translations, where the semantic

gap between the languages is large. Another difference is that front-end translations incorporate

reasoning steps, such as assumptions and proof obligations prescribed by a program logic. This

encoding is achieved via components not present in executable languages such as assume statements,

havoc statements, and axiomatisations. Moreover, front-end translations emit code that checks

nontrivial properties that are then relied upon in other parts of the encoding.

Zimmerman et al. [48] define a formal Viper semantics for a Viper subset in order to prove

formal results for the gradual verifier Gradual C0 that uses Viper. However, in contrast to ours,

their formalisation is not mechanised. Boogie developers have added an option to monomorphise

polymorphic maps in Boogie programs via non-polymorphic maps [11]. This option provides an

alternative to ours for desugaring polymorphic maps, which, in the case of Viper, circumvents

the circularity challenge discussed in Sec. 4.4, since Viper does not permit storing heaps in fields.

However, in general, front-ends may permit storing heaps in fields.

7 CONCLUSION
Wepresented amethodology for the validation of the front-end translations implemented in practical

automated program verifiers. We demonstrated that it handles the complexity and intricacies of the

Viper-to-Boogie translation as implemented in the Viper tool. To the best of our knowledge, this is

the first formal soundness guarantee for a practical front-end translation. Together with existing

work on back-end (and SMT) validation, our work provides a path towards trustworthy automated

verifiers. Two fundamental requirements of our approach are the existence of a formal semantics

for the input language and IVL, and the ability to instrument the verifier implementation. As future

work, we plan to extend the supported Viper subset and to apply our methodology to verifiers that

target Viper as an IVL and that verify, for instance, concurrent or object-oriented programs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

Formally Validating Translations into an Intermediate Verification Language 208:23

ACKNOWLEDGMENTS
We thank Aleksandar Hubanov for work on embedding the Boogie AST in Isabelle, Marco Eilers for

helping with the modular product program tool, João C. Pereira and Felix A. Wolf for helping with

the Gobra verifier, Xavier Denis for clarifications on Why3 and Michael Sammler for feedback on

our formalisation. We thank the anonymous reviewers for their comments. This work was partially

funded by the Swiss National Science Foundation (SNSF) under Grant No. 197065.

DATA AVAILABILITY STATEMENT
Our publicly-available artifact [37] contains:

(1) an Isabelle formalisation for the technical results in Sec. 2, Sec. 3, and Sec. 4.

(2) our proof-producing Viper-to-Boogie implementation, which generates, on every run of the

verifier, an Isabelle proof showing that the correctness of the input Viper program is implied

by the correctness of the corresponding Boogie translation.

(3) the examples used in the evaluation, and scripts for the benchmark selection and evaluation

results (Sec. 5).

REFERENCES
[1] AndrewW. Appel and Sandrine Blazy. 2007. Separation Logic for Small-Step cminor. In Theorem Proving in Higher Order

Logics, 20th International Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Proceedings (Lecture
Notes in Computer Science, Vol. 4732), Klaus Schneider and Jens Brandt (Eds.). Springer, 5–21. https://doi.org/10.1007/978-
3-540-74591-4_3

[2] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2019. Leveraging Rust Types for Modular

Specification and Verification. Proc. ACM Program. Lang. 3, OOPSLA, Article 147, 30 pages. https://doi.org/10.1145/

3360573

[3] Michael Backes, Catalin Hritcu, and Thorsten Tarrach. 2011. Automatically Verifying Typing Constraints for a

Data Processing Language. In Certified Programs and Proofs (CPP), Jean-Pierre Jouannaud and Zhong Shao (Eds.).

https://doi.org/10.1007/978-3-642-25379-9_22

[4] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. 2017. The VerCors Tool Set: Verification of

Parallel and Concurrent Software. In Integrated Formal Methods (IFM), Nadia Polikarpova and Steve Schneider (Eds.).

https://doi.org/10.1007/978-3-319-66845-1_7

[5] Sascha Böhme and Tjark Weber. 2010. Fast LCF-Style Proof Reconstruction for Z3. In Interactive Theorem Proving
(ITP), Matt Kaufmann and Lawrence C. Paulson (Eds.). https://doi.org/10.1007/978-3-642-14052-5_14

[6] John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis (SAS), Radhia Cousot (Ed.).
55–72. https://doi.org/10.1007/3-540-44898-5_4

[7] Montgomery Carter, Shaobo He, Jonathan Whitaker, Zvonimir Rakamaric, and Michael Emmi. 2016. SMACK software

verification toolchain. In Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016 - Companion Volume, Laura K. Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM,

589–592. https://doi.org/10.1145/2889160.2889163

[8] David A. Cock, Gerwin Klein, and Thomas Sewell. 2008. Secure Microkernels, State Monads and Scalable Refinement.

In Theorem Proving in Higher Order Logics (TPHOLS), Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar (Eds.).

https://doi.org/10.1007/978-3-540-71067-7_16

[9] Joshua M. Cohen and Philip Johnson-Freyd. 2024. A Formalization of Core Why3 in Coq. Proc. ACM Program. Lang. 8,
POPL, Article 60 (jan 2024), 30 pages. https://doi.org/10.1145/3632902

[10] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022. Creusot: A Foundry for the Deductive Verification of

Rust Programs. In International Conference on Formal Engineering Methods (ICFEM), Adrián Riesco and Min Zhang

(Eds.), Vol. 13478. 90–105. https://doi.org/10.1007/978-3-031-17244-1_6

[11] Boogie developers. 2022. Monomorphization of polymorphic maps and binders. https://github.com/boogie-org/

boogie/pull/669 Accessed March 19, 2024.

[12] Viper developers. 2024. Viper-to-Boogie implementation. https://github.com/viperproject/carbon Accessed April 4,

2024.

[13] Jenna DiVincenzo, Ian McCormack, Hemant Gouni, Jacob Gorenburg, Mona Zhang, Conrad Zimmerman, Joshua

Sunshine, Éric Tanter, and Jonathan Aldrich. 2022. Gradual C0: Symbolic Execution for Efficient Gradual Verification.

CoRR abs/2210.02428 (2022). https://doi.org/10.48550/ARXIV.2210.02428 arXiv:2210.02428

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

https://doi.org/10.1007/978-3-540-74591-4_3
https://doi.org/10.1007/978-3-540-74591-4_3
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-642-25379-9_22
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/2889160.2889163
https://doi.org/10.1007/978-3-540-71067-7_16
https://doi.org/10.1145/3632902
https://doi.org/10.1007/978-3-031-17244-1_6
https://github.com/boogie-org/boogie/pull/669
https://github.com/boogie-org/boogie/pull/669
https://github.com/viperproject/carbon
https://doi.org/10.48550/ARXIV.2210.02428
https://arxiv.org/abs/2210.02428

208:24 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers

[14] Marco Eilers and Peter Müller. 2018. Nagini: A Static Verifier for Python. In Computer Aided Verification (CAV), Hana
Chockler and Georg Weissenbacher (Eds.). https://doi.org/10.1007/978-3-319-96145-3_33

[15] Marco Eilers, Peter Müller, and Samuel Hitz. 2018. Modular Product Programs. In European Symposium on Programming
(ESOP), Amal Ahmed (Ed.). https://doi.org/10.1007/978-3-319-89884-1_18

[16] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and Clark W. Barrett. 2017.

SMTCoq: A Plug-In for Integrating SMT Solvers into Coq. In Computer Aided Verification (CAV), Rupak Majumdar and

Viktor Kuncak (Eds.). https://doi.org/10.1007/978-3-319-63390-9_7

[17] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 —Where Programs Meet Provers. In European Symposium
on Programming (ESOP), Matthias Felleisen and Philippa Gardner (Eds.). https://doi.org/10.1007/978-3-642-37036-6_8

[18] Mathias Fleury and Hans-Jörg Schurr. 2019. Reconstructing veriT Proofs in Isabelle/HOL. In Workshop on Proof
eXchange for Theorem Proving (PxTP), Giselle Reis and Haniel Barbosa (Eds.). https://doi.org/10.4204/EPTCS.301.6

[19] Quentin Garchery. 2021. A Framework for Proof-carrying Logical Transformations. In Workshop on Proof eXchange for
Theorem Proving (PxTP), Chantal Keller and Mathias Fleury (Eds.). https://doi.org/10.4204/EPTCS.336.2

[20] Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard. 2023. Formally Verifying

Optimizations with Block Simulations. Proc. ACM Program. Lang. 7, OOPSLA2, Article 224 (oct 2023), 30 pages.

https://doi.org/10.1145/3622799

[21] Paolo Herms. 2013. Certification of a Tool Chain for Deductive Program Verification. (Certification d’une chaine de
vérification déductive de programmes). Ph. D. Dissertation. University of Paris-Sud, Orsay, France. https://tel.archives-

ouvertes.fr/tel-00789543

[22] Ioannis T. Kassios. 2006. Dynamic Frames: Support for Framing, Dependencies and Sharing Without Restrictions. In

Formal Methods (FM), Jayadev Misra, Tobias Nipkow, and Emil Sekerinski (Eds.). https://doi.org/10.1007/11813040_19

[23] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2015. Frama-C: A software

analysis perspective. Formal Aspects of Computing 27, 3 (2015), 573–609. https://doi.org/10.1007/s00165-014-0326-7

[24] Gerwin Klein, Thomas Sewell, and SimonWinwood. 2010. Refinement in the Formal Verification of the seL4Microkernel.

In Design and Verification of Microprocessor Systems for High-Assurance Applications, David S. Hardin (Ed.). Springer,

323–339. https://doi.org/10.1007/978-1-4419-1539-9_11

[25] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. 2012. SYMDIFF: A Language-Agnostic

Semantic Diff Tool for Imperative Programs. In Computer Aided Verification - 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings (Lecture Notes in Computer Science, Vol. 7358), P. Madhusudan and

Sanjit A. Seshia (Eds.). Springer, 712–717. https://doi.org/10.1007/978-3-642-31424-7_54

[26] Akash Lal and Shaz Qadeer. 2014. Powering the static driver verifier using corral. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong, China, November
16 - 22, 2014, Shing-Chi Cheung, Alessandro Orso, and Margaret-Anne D. Storey (Eds.). ACM, 202–212. https:

//doi.org/10.1145/2635868.2635894

[27] Hermann Lehner and Peter Müller. 2007. Formal Translation of Bytecode into BoogiePL. Electronic Notes in Theoretical
Computer Science 190, 1 (2007), 35–50. https://doi.org/10.1016/j.entcs.2007.02.059 Workshop on Bytecode Semantics,

Verification, Analysis and Transformation (Bytecode 2007).

[28] K. Rustan M. Leino. 2008. This is Boogie 2. (2008). Available from http://research.microsoft.com/en-us/um/people/

leino/papers/krml178.pdf.

[29] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), EdmundM. Clarke and Andrei Voronkov (Eds.). https://doi.org/10.1007/978-

3-642-17511-4_20

[30] K. Rustan M. Leino and Philipp Rümmer. 2010. A Polymorphic Intermediate Verification Language: Design and Logical

Encoding. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Javier Esparza and Rupak

Majumdar (Eds.). https://doi.org/10.1007/978-3-642-12002-2_26

[31] Zhengyao Lin, Xiaohong Chen, Minh-Thai Trinh, John Wang, and Grigore Rosu. 2023. Generating Proof Certificates

for a Language-Agnostic Deductive Program Verifier. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 56–84. https:

//doi.org/10.1145/3586029

[32] Nancy A. Lynch and Frits W. Vaandrager. 1995. Forward and Backward Simulations: I. Untimed Systems. Inf. Comput.
121, 2 (1995), 214–233. https://doi.org/10.1006/inco.1995.1134

[33] Claude Marché and Yannick Moy. 2018. The Jessie plugin for Deductive Verification in Frama-C. http://krakatoa.lri.fr/

jessie.pdf

[34] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-

Based Reasoning. In Verification, Model Checking, and Abstract Interpretation (VMCAI), Barbara Jobstmann and K. Rus-

tan M. Leino (Eds.). https://doi.org/10.1007/978-3-662-49122-5_2

[35] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL - A Proof Assistant for Higher-Order
Logic. Lecture Notes in Computer Science, Vol. 2283. Springer. https://doi.org/10.1007/3-540-45949-9

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.4204/EPTCS.301.6
https://doi.org/10.4204/EPTCS.336.2
https://doi.org/10.1145/3622799
https://tel.archives-ouvertes.fr/tel-00789543
https://tel.archives-ouvertes.fr/tel-00789543
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-1-4419-1539-9_11
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1145/2635868.2635894
https://doi.org/10.1145/2635868.2635894
https://doi.org/10.1016/j.entcs.2007.02.059
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1145/3586029
https://doi.org/10.1145/3586029
https://doi.org/10.1006/inco.1995.1134
http://krakatoa.lri.fr/jessie.pdf
http://krakatoa.lri.fr/jessie.pdf
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/3-540-45949-9

Formally Validating Translations into an Intermediate Verification Language 208:25

[36] Matthew J. Parkinson and Alexander J. Summers. 2012. The Relationship Between Separation Logic and Implicit

Dynamic Frames. Logical Methods in Computer Science 8, 3:01 (2012), 1–54. https://doi.org/10.2168/LMCS-8(3:1)2012

[37] Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers. 2024. Towards
Trustworthy Automated Program Verifiers: Formally Validating Translations into an Intermediate Verification Language –
Artifact. https://doi.org/10.5281/zenodo.10802176

[38] Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers. 2024. Towards

Trustworthy Automated ProgramVerifiers: Formally Validating Translations into an Intermediate Verification Language

(extended version). https://doi.org/10.48550/ARXIV.2404.03614 arXiv:2404.03614 [cs.PL]

[39] Gaurav Parthasarathy, Peter Müller, and Alexander J. Summers. 2021. Formally Validating a Practical Verification

Condition Generator. In Computer Aided Verification (CAV) (LNCS, Vol. 12760), Alexandra Silva and K. Rustan M. Leino

(Eds.). 704–727. https://doi.org/10.1007/978-3-030-81688-9_33

[40] Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell, Zilin Chen, Liam O’Connor, Toby C. Murray,

Gabriele Keller, and Gerwin Klein. 2016. A Framework for the Automatic Formal Verification of Refinement from

Cogent to C.. In Interactive Theorem Proving (ITP), Jasmin Christian Blanchette and Stephan Merz (Eds.). https:

//doi.org/10.1007/978-3-319-43144-4_20

[41] Jan Smans, Bart Jacobs, and Frank Piessens. 2012. Implicit Dynamic Frames. Transactions on Programming Languages
and Systems (TOPLAS) 34, 1, Article 2 (May 2012), 58 pages. https://doi.org/10.1145/2160910.2160911

[42] Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal verification of translation validators: a case study on instruction

scheduling optimizations. In Principles of Programming Languages (POPL), George C. Necula and Philip Wadler (Eds.).

https://doi.org/10.1145/1328438.1328444

[43] Jean-Baptiste Tristan and Xavier Leroy. 2009. Verified validation of lazy code motion. In Programming Language Design
and Implementation (PLDI), Michael Hind and Amer Diwan (Eds.). https://doi.org/10.1145/1542476.1542512

[44] Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2009. A Machine Checked Soundness Proof for an Intermediate

Verification Language. In Theory and Practice of Computer Science, Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM) (Lecture Notes in Computer Science, Vol. 5404), Mogens Nielsen, Antonín

Kucera, Peter Bro Miltersen, Catuscia Palamidessi, Petr Tuma, and Frank D. Valencia (Eds.). Springer, 570–581.

https://doi.org/10.1007/978-3-540-95891-8_51

[45] Stefan Wils and Bart Jacobs. 2023. Certifying C program correctness with respect to CH2O with VeriFast. CoRR
abs/2308.15567 (2023). https://doi.org/10.48550/ARXIV.2308.15567 arXiv:2308.15567

[46] Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David A. Cock, and Michael Norrish. 2009. Mind the

Gap. In Theorem Proving in Higher Order Logics (TPHOLS), Stefan Berghofer, Tobias Nipkow, Christian Urban, and

Makarius Wenzel (Eds.). https://doi.org/10.1007/978-3-642-03359-9_34

[47] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João Carlos Pereira, and Peter Müller. 2021. Gobra:

Modular Specification and Verification of Go Programs. In Computer Aided Verification (CAV), Alexandra Silva and
K. Rustan M. Leino (Eds.). https://doi.org/10.1007/978-3-030-81685-8_17

[48] Conrad Zimmerman, Jenna DiVincenzo, and Jonathan Aldrich. 2024. Sound Gradual Verification with Symbolic

Execution. Proc. ACM Program. Lang. 8, POPL (2024), 2547–2576. https://doi.org/10.1145/3632927

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 208. Publication date: June 2024.

https://doi.org/10.2168/LMCS-8(3:1)2012
https://doi.org/10.5281/zenodo.10802176
https://doi.org/10.48550/ARXIV.2404.03614
https://arxiv.org/abs/2404.03614
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.1007/978-3-319-43144-4_20
https://doi.org/10.1007/978-3-319-43144-4_20
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/1542476.1542512
https://doi.org/10.1007/978-3-540-95891-8_51
https://doi.org/10.48550/ARXIV.2308.15567
https://arxiv.org/abs/2308.15567
https://doi.org/10.1007/978-3-642-03359-9_34
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1145/3632927

	Abstract
	1 Introduction
	2 Viper and Boogie: Background and Semantics
	2.1 The Viper and Boogie Languages
	2.2 Boogie Semantics
	2.3 Viper Semantics
	2.4 Example Viper-to-Boogie Translation

	3 A Forward Simulation Methodology for Front-End Translations
	3.1 Focusing Forward Simulation Proofs by Decomposition
	3.2 One Simulation Judgement to Rule Them All
	3.3 Instantiation-Independent Rules
	3.4 Examples: Generic Decomposition in Action
	3.5 Injecting Non-Local Hypotheses into Simulation Proofs

	4 Putting The Methodology to Work
	4.1 State Relation
	4.2 Non-Locality
	4.3 Proof Automation
	4.4 Background Theory and Polymorphic Maps
	4.5 Generating A Proof of the Final Theorem

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

