Logical Foundations for Typed
Object-Oriented Languages

Arnd Poetzsch-Heffter and Peter Miiller
Fernuniversitat Hagen, D-58084 Hagen, Germany
email: [poetzsch,peter.mueller]| @fernuni-hagen.de

Abstract
This paper presents logical foundations for the most important object-oriented
language features, including abstract types, dynamic binding, subtyping, and
inheritance. These foundations are introduced along with an object-oriented
kernel language. We show how object environments of such languages can
be formalized in an algebraic way. Based on this foundation, we develop a
Hoare-style logic for formal verification of object-oriented programs.

Keywords
Programming logic; verification; object-oriented programming language; pro-
gramming language semantics

1 INTRODUCTION

Typed object-oriented programming languages like C++, Java, Eiffel, Oberon,
Modula-3, BETA, and Ada95 form an important practical class of languages.
This paper presents the logical foundations needed to formally verify object-
oriented programs from that class. This introduction sketches the motivation
for this work, the approach taken, and related work.

Motivation The language class mentioned above is increasingly important,
in particular, because OO-techniques support reuse and adaptation via inher-
itance. Reuse and adaptation of software components have been shown to be
very useful for application frameworks and component-based architectures.
There are three reasons why formal verification techniques are especially in-
teresting for OO-programs: 1. Verification techniques are needed for software
certification in the quickly developing software component industry, which is
based on OO-technology. 2. The potential for reuse in OO-programming car-
ries over to reusing proofs. 3. Formal verification is important because of the
complexity of the underlying languages. Without tool support, large program
proofs are tedious to handle and can hardly be kept error-free. Formality is a
prerequisite for the construction of computer-based tools.

©IFIP 1996. Published by Chapman & Hall

2 Logical Foundations for Typed Object-Oriented Languages

Approach Three aspects make verification of OO-programs more complex
than verification of programs with just recursive procedures and arbitrary
pointer data structures: Subtyping, abstract types, and dynamic binding. Sub-
typing allows variables to hold objects of different types. Abstract types have
different or incomplete implementations. Thus, techniques are needed to for-
mulate type properties without referring to implementations. Dynamic bind-
ing destroys the static connection between the calls and body of a procedure.

Our solutions to these problems build on well-known techniques. Object
environments are specified as an abstract data type with operations to cre-
ate objects and to read and write instance variables/attributes. Based on
object environments, abstraction of object structures can be expressed. Us-
ing such abstractions, the behavior of abstract types can be formulated. Our
programming logic refines a Hoare-logic for procedural languages. To express
the relation between environments in pre- and poststates the current object
environment can be referenced through a special variable.

Object-oriented languages use dynamically bound method invocations
where procedural languages use statically bound calls. Consider e.g. the invo-
cation x.m() where variable x is of type T with subtypes T1 and T2 and where
m belongs to the interface of T (and consequently to the interfaces of T1 and
T2). If x holds an object of type T1 at method invocation time, the imple-
mentation associated with T1:m is executed; if it holds a T2-object, T2:m is
executed. The basic idea for the verification of method invocations is to con-
sider them as statically bound calls to virtual methods; e.g., the above method
invocation is considered as a call to the virtual method T:m, the properties
of which are used to verify the call. The distinction between the virtual be-
havior of a method and the behavior of the associated implementation allows
the transfer of verification techniques for procedures to OO-programs.

Related Work In [Lei97], a wlp-calculus for an OO-language is presented
that is semantically similar to the language considered here. But the underly-
ing methodology is different. Method specifications are part of the programs.
The calculus is used to check that programs satisfy their specifications. Chang-
ing the specifications modifies the program and makes a new check of the
entire program necessary. In our approach, programs and specifications are
separated. The programming logic is used to verify theorems about programs.
In section 5, we show that the approach in [Lei97] can be considered as re-
stricting our approach to a certain program development strategy. Thereby,
it becomes simpler and more appropriate for automatic checking, but gives
up flexibility that seems important to us for general program verification.

A different logic for OO-programs that is related to type-systems is pre-
sented and proved sound in [AL97]. It is developed for an OO-language in
the style of the lambda calculus whereas our language aims to be close to
practical OO-languages. In particular, our language supports inheritance.

An Object-Oriented Kernel Language 3

The programming logic presented in the following is essentially an exten-
sion of the partial correctness logic described in [Apt81]. The extension to
object-orientation profited from other papers about verification of imperative
languages with complex data structures, especially [Suz80].

In practice, formal verification requires elaborate formal specification tech-
niques. Our goal is to verify implementations w.r.t. program specifications
according to the two-tiered specification approach developed in the Larch
project (cf. [GH93]). In [MPH97], we outline the connection between Larch-
style program specifications and our logical foundations. To automate proof
steps, weakest precondition transformations are very important (cf. [Gri81]).
We apply such techniques for the classical rules. An extension to the new rules
is considered future work.

Overview Section 2 introduces the simple kernel object-oriented language
SKOOQL. Section 3 contains a formalization of object environments. The ax-
iomatic semantics of SKOOL is presented in section 4. Section 5 demonstrates
how the logic can be used to verify OO-programs. In section 6, SKOOL is ex-
tended by inheritance and the logic is adapted to this new feature.

2 AN OBJECT-ORIENTED KERNEL LANGUAGE

The common features of typed OO-programming languages are (a) type/class
declarations that combine records and type-local procedures, so-called meth-
ods, (b) subtyping, and (c) code inheritance. In this paper, we develop a logic
for a kernel of object-oriented languages called KOOL supporting these fea-
tures. KOOL is presented in two steps. This section presents the sublanguage
SKOOL featuring type declarations and subtyping. Section 6 adds inheritance.

Types and Methods A type describes a collection of objects together with
their operations. In the context of OO-programming, it is helpful to distin-
guish between concrete and abstract types: A concrete type is associated with
a complete implementation; an abstract type expresses common behavior of
its subtypes. In SKOQL, an abstract type declaration has the form:

abstract type TA subtype of <AbsTypeList> is <MethSigList> end

A method signature consists of the method name, a parameter list, and a
result type. If the result of a method is irrelevant, the result type may be
omitted. The signature list is called the interface of type TA, denoted by
IF(TA). The declaration of a concrete type has the form:

type TC subtype of <AbsTypeList> is <MethList> <AttrList> end

A method is a type-local procedure with an implicit parameter having the
enclosing type; the implicit parameter is denoted by this. A method definition
consists of a method signature, a list of local variable declarations, and a body:

m(P1:Tpy 5.5 Pg:Tp,):Tm is vi:Ty;;..5v,:Ty,.; <Body> end

4 Logical Foundations for Typed Object-Oriented Languages

The list of local variables implicitly contains a variable result of type T,,.
The value of result is returned as result of m.The body of a method is either
predefined or a (usually compound) statement.

Attribute declarations have the form attr a:TR where a is the attribute
name and TR is a type name, the range type of a. A declaration attr a:TR is
considered as an abbreviation for the following two method declarations:

get_a(): TR is predefined set_a(p:TR) is predefined

In addition to this, a concrete type may contain the predefined method equ
comparing objects of that type with other objects, and new creating objects
of that type. Method new is a typical case of a static or class method, i.e., a
method that does not need an implicit parameter. We avoid a special treat-
ment of such methods here to keep the number of logical rules in later sections
small. Such methods can be called using the null-object that is predefined for
each concrete type (see below).

The interface of a concrete type consists of the signatures of the declared
methods and of the attribute access methods. All method names in interfaces
must be distinct.

A SKOOL program is a finite set of type declarations containing an abstract
type OBJECT with equality equ(p:0BJECT) :BOOL and the concrete types
INT and BOOL with appropriate operations. The subtype-clause defines a
binary relation on the types of a program. The reflexive and transitive closure
of this relation is called the subtype relation (denoted by =<). In SKOOL,
three conditions have to be satisfied: 1. The subtype relation has to be a
partial ordering. 2. Concrete types have to be minimal in the subtype relation.
3. Every type has to be a subtype of OBJECT (for INT and BOOL this
property is only claimed to avoid separate treatment of these types).

A method signature with (explicit) parameter types Si,...,S, and result
type SR is called a subsignature of a signature with (explicit) parameter types
Ty,..., T, and result type TR, if they have the same method name and
T; <S; and SR < TR. An interface IF(S) is called subinterface of interface
IF(T) if for each signature in IF(T) there is a subsignature in IF(S). In SKOOL
programs, IF(S) has to be a subinterface of IF(T) if S < T.

Ezpressions and Statements SKOOL supports only atomic expressions.
An expression is either an INT or BOOL constant, a variable or parameter of
the enclosing method, or a null-object: For each user-declared concrete type
TC there is exactly one null-object denoted by null(TC). Null-objects have
no attributes; they are needed for initialization of attributes and to handle
recursive types. Typed null-objects can also be used to simulate static methods
by using the null-object of the corresponding type as implicit argument in the
invocation. For brevity, compound expressions are not considered here. They
can be broken up into atomic expressions by introducing auxiliary variables
for subexpressions. SKOOL provides if- and while-statements and sequential

Formalizing Object Environments 5

statement composition with the usual syntax. Assignments with casting and
method invocations are written as follows:

v := (T) EXP v := EXPy . T:m(EXPy, ...,.EXP,)

The type T in an assignment must be a subtype of both the left-hand side’s
and the expression’s type. If T equals the expression type, it can be omitted.
Casts are provided by KOOL because they occur in most OO-languages. An
invocation statement is type-correct, if the type of EXPgy equals type T and
the interface of T contains a method m such that the types of the EXP; are
subtypes of the parameter types, and the result type of T:m is a subtype
of the type of the left-hand side. We use the redundant type prefix “T:” for
methods to simplify the verification. If it is clear from the context, it may
be omitted. To come closer to notational conventions, we write v:= EXP.a
instead of v:= EXP.T:get_a(), and v.a:= EXP instead of v.T:set_a(EXP).

3 FORMALIZING OBJECT ENVIRONMENTS

An object environment describes the states of all objects in a program at a
certain point of execution. In particular, it describes how objects are linked
via references and which objects are alive. A formalization of object envi-
ronments is important as the semantic foundation of program specifications
and is central for the verification of OO-programs. This section summarizes
the formal background used and formalizes objects, object states, and object
environments.

Formal Background The general techniques underlying our work can be
formulated in different formal frameworks. In this paper, we use many-sorted
first-order specifications (cf. e.g. [Wir90]) and recursive data type specifica-
tions (see below). A (many-sorted) signature ¥ is a tuple (S, F') where S is
a set of sort symbols and F is a set of function symbols. We assume that all
many-sorted signatures contain a sort Bool with constants TRUE and FALSE
as well as an appropriate integer data type with sort Int.

The set of X-formulas contains (1) every term of sort Bool, (2) =G, (G A
H),(GVH),(G= H),and (G< H), and (3) (VX : G) and (31X : G), where
G and H are X-formulas, and X is a logical variable. Substitution of all free
occurrences of a variable or constant X by a term ¢ in formula P is denoted
by P[t/X], where the sort of ¢ has to be equal to the sort of X.

For the specification of recursive data types, we use the following notation:

data type
DSrt = constr1(USrtl, ..., USrtT™) | ... | constro(USTty, ..., USrtm=)
end data type
Such a definition introduces the sort DSrt with constructor functions constr;.
We assume rules to reason about recursive data types; these rules allow in
particular to prove the in-/equality of two terms and support term induction.

6 Logical Foundations for Typed Object-Oriented Languages

Notation = We use the following notational conventions: ¥-formulas are
denoted by bold capital letters P, Q, etc. Functions, constants, and program
variables are written in lower case. Logical variables are written in upper case.

Objects The set of objects in a given program depends on the declared
types, attributes, and their relation. The simplest approach is to assume that
a program is fixed and to define the objects for this program. The disadvan-
tage of this approach becomes apparent when new types are added. By such
program extensions, the set of objects is enlarged. Thus, formulas quantifying
over all objects that are valid in the original program may become invalid
in the extended program. To avoid this, we consider a program to be part
of all its extensions. I.e., we assume infinite sorts Typld and ATypId of type
identifiers for concrete and abstract types resp., and an infinite sort AttId of
attribute identifiers where attributes with the same name, but different ob-
ject types, are considered to be different. A program determines the relation
between its types and attributes, but leaves the relation between types and
attributes not occurring in the program un(der)specified. Extending a pro-
gram then means refining the type-attribute relation. To distinguish different
objects of the same type, we assume an infinite sort Objld of object identifiers:

data type data type
Type = BOOL Object = bool(Bool)
| INT | int(Int)
| ct(Typld) | null(Typld)
| at(ATypId) | mkobj(Typld, Objld)
end data type end data type

As can be seen from the definition of data type Object, an object of a declared
type T is either the null-object of T or a typed object identifier. Notice that
all objects are of concrete types. Furthermore, we assume an appropriate
axiomatization of the subtype relation < on sort Type.

Object States Object states are modeled via object locations: For each
attribute of its type, an object has a location. Locations can be considered as
anonymous variables, i.e., variables that can only be referenced through the
object they belong to. Locations are often called instance variables.
data type
Location = mbkloc(Attld, Objld)
end data type

The relations between objects, types, and attributes, and their basic properties
are expressed by the following functions: typ yields the type of an object;
tsnull asserts that an object is a null-object; otyp and rtyp yield the object
and range type of an attribute; ltyp yields the type of a location; obj yields the
object a location belongs to; given an object and an attribute, loc yields the

Formalizing Object Environments 7

corresponding location; static asserts that an object is not subject to object
creation.

typ : Object — Type isnull : Object — Bool
typ (bool(B)) = BOOL —isnull(bool (B))
typ (int(I)) = INT —isnull(int(I))
typ (null(T)) = ct(T) —visnull (mkobj (T, OI))
typ(mkobj(T,0I)) = ct(T) isnull(null(T))
ltyp : Location — Type otyp : Attld — Typld
ltyp(mkloc(A, OI)) = rtyp(A) rtyp : Attld — Type
' ' ' init : Type — Object
obj : Location — Object init(BOOL) = false
obj(mkloc(A, OI)) = mkobj(otyp(A), OI) nit(INT) = int(0)
loc : Object x Attld — Location init(ct(T)) = null(T)

loc(mkobj (otyp(A), OI), A) = mkloc(A, OI) typ(.ini't(qt(T)))jat(T)
static : Object — Bool static(init(at(T)))
static(X) & typ(X) = BOOLV typ(X) = INT V isnull(X)

All functions except otyp and rtyp, are program-independent. The object and
range types of attributes do not change if a program is extended. We assume
that otyp and rtyp are specified by enumeration for all attributes of a given
program.

Object Environments Object environments are modeled by an abstract
data type with main sort ObjEnv and the following operations: E(L := X)
denotes updating the object environment E at location L with object X.
E(L) denotes reading location L in environment E; E(L) is called the object
held by L in E. new(E,T) returns a new object of type T in environment E.
E(T) denotes the environment after allocating a new object of type T in E.
alive(X, E) yields true if and only if object X has been allocated in E:

{_:=_) : ObjEnv x Location x Object — ObjEnv

~{J) : ObjEnv x Typld — ObjEnv
-(9) : ObjEnv x Location — Object
alive : Object x ObjEnv — Bool
new : ObjEnv x Typld — Object

In the following, we present and explain the axiomatization of these functions.
Location update and object allocation construct new environments from given
ones; location read and liveness test allow the observation of environments.
We first consider the properties of environments observable by location reads,
then the liveness properties, and finally the properties of the new-operation.

Axiom envl states that updating one location does not affect the objects
held by other locations. Axiom env2 states that reading a location updated
by an object X yields X, if the object of the location and X are both alive.
We restrict this property to living objects in order to guarantee that loca-

8 Logical Foundations for Typed Object-Oriented Languages

tions never hold non-living objects and that locations of non-living objects
are initialized as described by axiom env3. Axiom env4 states that updates
by non-living objects do not modify the environment. The assumptions and
requirements about the liveness of objects in axioms env2, env3, env4 simplify
the definition of equivalence properties on environments. Axiom env) states
that allocation does not affect the objects held by locations:

envl: L1 #L2 = E(LI!:=X)(L2)=E(L2)

env2: alive(obj(L), E) A alive(X,E) = E(L:=X)(L)=X

env3: —alive(obj(L),E) = E(L) = init(ltyp(L))

envd: —alive(X,E) = E(L:=X)=E

envb: E(T)(L)= E(L)
Axiom env6 states that location updates do not influence liveness of objects.
Axiom env7 specifies that an object is alive after allocation if and only if it
was alive before allocation or it is the newly allocated object. Axiom env8
ensures that objects held by locations are alive. Together with env2, env3,
and env4, this simplifies proofs. Finally, static objects, i.e., objects that are
not subject to creation, are considered to be alive:

env6: alive(X,E(L:=Y)) & alive(X,E)

env7: alive(X,E(T)) & alive(X,E)V X = new(E,T)

env8: alive(E(L),E)

env9: static(X) = alive(X, E)
The following two axioms specify properties of the new-operation. A newly
created object is not alive in the environment in which it was created (env10)
and it has the correct type (envl1l).

envl0: —alive(new(E,T), E)
envll: typ(new(E,T)) = ct(T)

A model for these axioms can be found in [PH97].

4 A LOGIC FOR OBJECT-ORIENTED PROGRAMS

This section presents a programming logic for SKOOL. In particular, we show
how method invocation and subtyping can be handled.

Program Specific Signatures To specify program properties, we have to
refer to variables, attributes, and types in formulas. This is enabled by intro-
ducing constant symbols for these entities. More precisely, let II be a SKOOL
program and let ¥ denote a signature that includes the signature of the ob-
ject environment as introduced above, a constant symbol T of sort Typld or
ATypld for each concrete or abstract type T declared in II, and a constant
symbol T:att of sort Attld for each attribute att declared in type T. To refer
to the current object environment in formulas, the constant symbol $ of sort

A Logic for Object-Oriented Programs 9

ObjEnv is used, and T denotes ¥ U {$}. The current object environment $
can be considered as a global variable.

Furthermore, we treat program variables and parameters syntactically as
constant symbols of sort Object to simplify quantification and substitution
rules™. The following signatures are used to define context conditions for pre-
and postconditions (see below). Let m be a method: 1. The extension of T’
by constant symbols for the parameters of m (in particular, this) is denoted
by T'yre(m)- 2. The extension of I' by constant symbols for each parameter
and local variable of m is denoted by ['yoqy(m)- 3. The extension of T' by the
constant symbol result is denoted by I'pos¢.

Triples and Sequents A program component is a method signature oc-
currence or a statement occurrence within a given program. I.e., we assume
that the program context in which each program component occurs is given
implicitly. In particular, we can refer to the method enclosing a statement. A
Hoare triple or simply triple has the form { P } COMP { Q } where COMP
is a program component and P and Q are first-order formulas, called pre-
and postconditions, respectively. If the component in a triple A is a method,
we call A a method annotation; otherwise A is called a statement annotation.
Pre- and postconditions of statement annotations are formulas over I'yoqy(m)
where m is the enclosing method; pre- and postconditions in annotations of
method m are I').¢(y,)-formulas and T'ps¢-formulas, respectively.

A triple { P } COMP { Q } specifies the following refined partial correct-
ness property: If P holds in a state before executing COMP, then execution
of COMP either

1. terminates and Q holds in the state after execution or

2. aborts because of errors or actions that are beyond the semantics of the
programming language (e.g., memory allocation problems, stack overflow,
external interrupts from the execution environment), or

3. runs forever.

In particular, execution of COMP does not abort because of dereferencing of
null-objects or illegal casts. Thus, this refined partial correctness logic can be
used to prove that a program does not produce such runtime errors.

A sequent has the form A+ A where A is a set of method annotations and
A is a triple. Triples in A are called assumptions of the sequent and A is
called the consequent of the sequent. A sequent expresses the fact that we
can prove a triple based on some assumptions about methods. Sequents are
necessary to handle recursive procedures and subtyping (see below).

Aziomatic Semantics The axiomatic semantics of SKOOL consists of ax-
ioms for the predefined methods, a cast axiom that adapts the classical as-

*This treatment imitates the distinction between global (i.e. logical) variables and local
variables in temporal logic (cf. [GU91], p. 233ff.)

10 Logical Foundations for Typed Object-Oriented Languages

signment axiom, and rules explaining statement and method behavior. We
concentrate here on the most interesting axioms and rules.

Predefined Methods In SKOOL, there are predefined methods for equality
test, object creation, and attribute access. The specifications of these methods
illustrate the use of the object environment in triples. In the axioms for the
attribute access methods, we use this.T:a as abbreviation for loc(this, T:a)
and prec(this, T) as abbreviation for —isnull(this) A typ(this) = T :

F { P[bool(this = p)/result] } T:equ(p:OBJECT):BOOL {P }
F { P[new($, T)/result , $(T)/$] } T:mew():T {P}
F { prec(this, T) A P[$(this.T:a)/result] } = T:get_a():TR {P}
F { prec(this, T) A P[$(this.T:a :=p)/$] } T:set_a(p:TR) {P}

Statements Assignments in SKOOL may be combined with casts to narrow
the static type of the right-hand side. The semantics of a cast is only defined
if the (dynamic) type of the object denoted by the right-hand side expression
is a subtype of the given type T:

cast-azxiom:
+{ typ(EXP) < T AP[EXP/v]} v:= (T)EXP {P}

The rules for the loop, conditional, and sequential statement are standard and
not presented here. Because of the syntactical conditions discussed above, the
rule for the invocation statement becomes very intuitive. Formal parameters
are substituted by the actual parameter expressions and the result variable is
substituted by the left-hand side variable:

invocation-rule:

AF{P} Tm(p1:Ti,...,pq: Tg):TR {Q}

AF { P[Eo/thiS,El/pl, R Eq/pq] } v:=Ep. T:m(El, . ,Eq) { Q[v/result] }
The fact that program variables different from v are not modified by an invo-

cation is expressed by the following rule. Local variables and parameters w of
the enclosing method different from v may be substituted for logical variables:

var-rule:
AF{P} v:=Eo. T'm(Es,...,E;) {Q}

AF{P[w/Z]} v:=Eo. T:m(Ey,...,Eq) { Q[w/Z] }

Methods There are two rules explaining the derivation of method anno-
tations in SKOOL. The first rule deals with methods of concrete types, i.e.,
with methods having a body. The second rule deals with methods of abstract
types, i.e., with virtual methods.

Essentially, an annotation of an implemented method m holds if it holds
for its body. This basic rule is strengthened in two aspects: 1. In order to
handle recursion, the method annotation may be assumed for the proof of the
body. Informally, this is sound, because, in any terminating execution, the

A Logic for Object-Oriented Programs 11

last incarnation does not contain a recursive invocation of the method. 2. The
requirement that local variables are initialized to static objects of the correct
type is established:

implementation-rule:
A, {P} Tim(.) {Q} F {PAA,(vi =1nit(TV;))} BODY(T:m) {Q}

AF{P} T:m(.) {Q}
where v; are the local variables of method T:m and TV; denotes the static
type of v;.

In OO-languages with subtyping and dynamic binding, annotations for vir-
tual methods must be derived. The basic idea is simple: To prove something
for a virtual method T:m, we have to prove it for all the corresponding meth-
ods Ti¢:m in the subtypes. In order to get the type assumptions right, we
consider a pseudo-implementation of T:m and derive the subtype-rule using
the programming logic without a subtype-rule. The pseudo-code performs a
case distinction according to the type of the this-object. Depending on the
type, the this-object is cast to one of T’s subtypes and the corresponding
method associated with the subtype is called. A simple example, in which T
has only two subtypes T1 and T2, is illustrative:

meth T:m(p: TP): TR is
vi: T1 ; v2: T2 ;

if typ(this) X T1 then vl := (T1) this ;
result := v1.T1:m(p)
else if typ(this) < T2 then v2 = (T2) this ;
result := v2.T2:m(p)
else abort end end
end

Applying the programming logic to prove { R } T:m(p:TP):TR { Q } leads
to the following proof obligations:

(r<TIAR} Tim(p:TP1):TR1 {Q}
{r<T2AR} T2:m(p:TP2):TR2 {Q}
{7ATIATAT2AR} abort {Q}

where 7 abbreviates typ(this). The last triple can only be proved for ar-
bitrary R if its precondition is falsified. If the program is complete, we
can use the knowledge that T1 and T2 are the only subtypes of T,
ie. 7TXT = 7<T1V 7=<T2. Substituting 7<T AP for R and applying
the implication, the precondition of the abort statement becomes false so
that this triple can be proved (see false-axiom in appendix). Because of
7=<Ti = 7=<T, this development can be summarized by the following rule:

{r<T1AP} TlLm(mTP1:TR1 {Q}
{r<T2AP} T2m(p:TP2):TR2 {Q}

{rTAP} T:m(p:TP): TR {Q}

12 Logical Foundations for Typed Object-Oriented Languages

This rule can be generalized to abstract types with an arbitrary, but known
number of subtypes. But what happens, if the program is not complete? Ex-
tending a program II means adding new subtypes to some of II’s abstract
types AT. In general, this invalidates the proofs of AT’s methods, since these
proofs were based on the assumption that all subtypes of AT were present.
To handle program extensions, we collect proof obligations that have to be
met by all future subtypes. To cover these obligations in the logic, we weaken
the above rule by adding an assumption to the conclusion. As an aside, the
use of assumptions allows us to avoid an arbitrary number of antecedents
in the subtype-rule. In summary, we get the following compact form for the
subtype-rule:

subtype-rule:
T <T
AF{r<T'AP}T'm{Q}

{T2TATAT AP} Tm{Q}, A F{7XTAP}Tm{Q}
The elimination of the assumptions and the application of the rules for pro-
gram verification is treated in section 5.

Programming Logic The programming logic for SKOOL is the union of
axioms and rules described above and of the language-independent rules given
in the appendix. The language-independent rules are essentially an adaptation
of the proof systems G and Gy presented in [Apt81].

5 VERIFICATION OF OBJECT-ORIENTED PROGRAMS

In this section we discuss the verification of “open” programs, the subtype-
rule, and top-down development of types.

Open vs. Closed Programs 1In section 4, the notion of program execution
was used to explain the meaning of a triple. To be more precise, we have to
define what the executions of a SKOOL program are. We consider two cases:
1. A program may be declared to be closed (e.g., by adding some suitable
keyword to the program). A closed program is considered complete and can
be executed by calling some method of the program that takes only integer and
boolean arguments as explicit parameters (recall from section 4 that methods
can be invoked in a static fashion by using a null-object as implicit parameter).
This defines all executions of a closed program. In a closed program, the
subtype relation is complete; this is axiomatized as follows: For all abstract
types T we add the following axiom to our programming logic:

S<T & S<XT1V ... VST
where Ty,..., Ty are the direct subtypes of T.

Verification of Object-Oriented Programs 13

2. A program that is not closed is called open. It can be extended by adding
new types. Open programs are very common in OO-programming. In partic-
ular, all libraries are open programs. The executions of an open program II
are all executions of all closed extensions of II. Intuitively, open OO-programs
are more difficult to verify because extensions can influence abstract types.

Bottom-up Verification According to the semantics of OO-languages, the
properties of a virtual method in type T depend on the properties of the
corresponding methods in T’s subtypes. This kind of bottom-up verification,
reflected by the subtype-rule, is illustrated in this paragraph: Let us assume
a closed program declaring an abstract container type CO with an insert
method and two subtypes: LI, a list implementation, and AR, an array-based
implementation. LI and AR possess abstraction functions aL and aA that
map their objects in a given object environment to elements of an abstract
data type Multiset with an insertion operation ins. Assume we have proved
{ 7= ct(LI) A aL(this,$) = M Ao = O } Ll:insert(o) { aL(result,$) = ins(M,O) }
i.e., if multiset M is the abstraction of this in the state before execution of
LI:insert and O denotes the actual parameter object, the abstraction of the
result is ins(M, O). In order to prove a similar triple for CO:insert, we have
to define an abstraction function for CO that works for objects of LI and AR
(we write LI, for ct(LI), AR, for ct(AR), and CO, for at(CO)):
aC : Object x ObjEnv — Multiset
typ(X)<Ll, = aC(X,E)=aL(X,E)
typ(X)<AR:. = aC(X,E)=dA(X,E)

Using this definition and the fact that the result of LI:insert is correctly
typed (the latter assumption can be made w.l.g., because we can prove within
the logic that SKOOL is a type-safe language; cf. [PH97] for proving type
annotations), we can derive

F {7 =<LIL A aC(this,$) = M Ao = O } LlLinsert(o) {aC(result,$) =ins(M,0)}
The subtype rule with LI, < CO, yields:
{7=XCO.ATALI. AP } CO:insert(o) { Q } F { 7XCO. AP } CO:insert { Q }

where P abbreviates aC(this,$) = M A o = O and Q abbreviates
aC(this,$) = ins(M,O). If we start from a specification of AR:insert sim-
ilar to that given above for Ll:insert and add 7 A LI, to the preconditions, we
can use the same steps to derive:
{7=<CO. ATZARcATZLIL AP} COtinsert(o) { Q }
F{7=<C0aATALI. AP } CO:insert(o) { Q }
The consequent of the derived sequent equals the assumption of the sequent
derived first. Thus, we conclude:
{7=2CO0aATAARATALI. AP } CO:insert(o) { Q }
F{7=<C0O.AP} CO:insert(o) { Q}

14 Logical Foundations for Typed Object-Oriented Languages

As we assumed that the program is closed, the precondition of the assump-
tion is false, so that the assumption can be eliminated (see false-axiom and
assumpt-elim-rule in appendix). Thus, we have derived a property of the vir-
tual method CO:insert.

Top-down Verification Usually, OO-programs are developed by refining
existing types in open programs, i.e. by adding new subtypes to the program.
Verification then means proving that a new subtype satisfies the specification
of its supertypes. Le., programs are developed together with their verified
properties in a top-down manner. This methodology can be realized in our
logic by the following strategy: 1. Provide a specification for each method of
the program. We assume that a method specification SPEC(T:m) is a triple
of the form {7 <XT A P,y } Tm { Q. }- 2. If a new type S is added to the
program, prove that the methods of S satisfy the specifications of supertype
methods, i.e. for all direct supertypes T of S and all methods T:m show
SPEC(Sm) F {7 =S A Pr.y } Sm{ Q. }- 3. If S is a concrete type prove in
addition that method implementations satisfy their specifications. In these
proofs, the method specifications of the original program can be used.

Lemma: All methods of a closed program II that was developed according
to the strategy sketched above satisfy their specifications.

Proof: To prove the lemma, we show that all methods of II satisfy their
specification under certain assumptions that can be discarded for closed pro-
grams. Let DST(T,II) denote the direct subtypes of type T in program II
and VM(II) the virtual methods of II. By Ap we denote the following set of
triples:

U {TjT N /\ TﬁTI /\PT:m}T:m{QT:m}
T:meVM(I) T/€DST(T,IT)
Ap formalizes the assumption that new subtypes satisfy the supertype spec-
ification. We show that ApF SPEC(T:m) can be derived for all T:m in a
program II that is developed together with its specification according to the
above strategy, i.e. this sequent is a development invariant. The lemma is
proved by induction on the number of extension steps™.

Induction Base: In the minimal program containing the types OBJECT,
BOOL, and INT, the specifications of the predefined methods are given by
axioms.

Induction Step: Let I’ be an extension of IT by type S. We have to prove
A F SPEC(U:m) for all U:m in II'. We distinguish three cases: 1. U:m is a
method of I. 2. U = S and S is a concrete type. 3. U = S and S is abstract. The
last case is trivial because DST(S,II') is empty, so that SPEC(S:m) € A

*To focus on the application of the subtype-rule, we assume here that programs are extended
type by type, i.e., we do not consider extensions by mutually recursive types.

Treating Inheritance 15

For the first two cases we can assume Ay F SPEC(U:m) (induction hypothesis
in case 1, part 3 of strategy in case 2). Thus, it suffices to show A - Ap.
To do that, we prove for each virtual method T:m € VM(II) that the cor-
responding assumption can be derived from Ap: If S ¢ DST(T,II"), then
DST(T,II') = DST(T,II) and the triple about T:m is the same in A and Ay .
The interesting case is S € DST(T, II'). Starting with the subtype requirement
guaranteed by the strategy (part 2), applying precondition strengthening, the
subtype rule, and enlarging the assumption set, we derive (EXT(this) denotes

/\T'eDST(T,H) TAT):

SPEC(S:m) F {7<SAPT.m} Sm {Qpr.m}

SPEC(Sm) F {7=SAEXT(this) A Py} Sm { Qrp.py }

SPEC(S:m) , {7=<T A 72£SAEXT(this) A Pr.y } T:m { Q. }
F {7=T AEXT(this) A Pp.y } T:m {Qqp.p, }

SPEC(S:m) , Ay + {7=T AEXT(this) A Pr.p } T'm { Q. }

If S:m is a virtual method, we are finished because SPEC(S:m) € A . If S:m
has an implementation, we can eliminate SPEC(S:m) from the assumptions
using the implementation-rule together with the fact that part 3 of the strat-
egy guarantees the existence of a proof of An - SPEC(S:m). For brevity, we
omit the technical details here. end of proof

This lemma shows that our logic can be used as the foundation for program
development methods and that the assumptions occurring in the subtype rule
can be kept implicit.

6 TREATING INHERITANCE

This section defines the kernel language KOOL by adding inheritance to
SKOOL and presents the logical rules for verifying KOOL programs.

Inheritance Inheritance means using implementation parts from a type T
to implement a type S. We impose the restriction that S has to be a subtype
of T. (In most OO-languages S has to be a direct subtype.) To keep the
definition of KOOL simple, we support only single inheritance, i.e., a type
may only inherit from one type, as it is e.g. in Java.

A KOOL program is a finite set of type declarations of the following form
(brackets indicate that the surrounded syntactic construct is optional):

[abstract] type T subtype of <AbsTypelList>
inherits from <AbsType>
is <MethDeclList> <AttrList> end

16 Logical Foundations for Typed Object-Oriented Languages

The inherits-clause defines a binary relation on types, denoted by Cipnp, i-€.,
S Cinr T means that the implementation of S directly inherits from T. The
reflexive and transitive closure of this relation is denoted by C. A method
declaration in KOOL is either a method signature or method definition, i.e.,
abstract types may have implementations as well. These are defined as in
SKOOL except that KOOL supports an additional invocation statement (see
below). The interface IF(S) of a type S consists of (1) the signatures of meth-
ods declared in S (including attribute access methods) and (2) all signatures
in the interface of T, S C;,n T, that are not overridden in S where overridden
means that S contains a signature with the same method name. A method
name may appear only once in an interface.

We say that a method S:m in IF(S) is associated with implementations if it
is declared in S and has a (possibly predefined) body or if it is not declared
in S and S Cju, T and T:m is associated with an implementation. In the first
case, we say that S:m is defined in S. In concrete types, all methods must be
associated with an implementation.

It is important to understand the relation between method signatures, im-
plementations, and invocations in OO-programs. The implementation associ-
ated with a method T:m is not necessarily the implementation being executed
on invocations of T:m. We illustrate this by a small example:

abstract type T subtype of OBJECT is
m(): OBJECT is result := false end
mm(x: T): OBJECT is result := x.T:m() end

type S subtype of T inherits from T 1is
m(): S is result := null(S) end
end

Method T:m is overridden in S. An invocation T:mm(null(S)) would lead
to the execution of the implementation associated with S:m. In particular,
to verify properties of invocations like result:= x.T:m() one has to use the
properties of the virtual method T:m that are derived from the subtypes
and cannot rely on the implementation associated with T:m. To be able to
distinguish between a virtual method and its associated implementation, we
write T@m to refer to the implementation associated with m in T.

Most OO-languages make it possible to invoke overridden methods from
overriding methods, mostly via static binding (e.g., in C++ overridden meth-
ods can be invoked using the scope resolution operator, in Java it can be
done using the keyword super). In KOOL, implementations associated with
overridden methods can be called with the following syntax™:

v := this . Tém(..)

*This syntax can be considered as a verbose form of the Java syntax super.m(..), because
super refers to the superclass of the static type of this.

Treating Inheritance 17

Such a call-statement is context-correct, if the parameter types are covariant,
if the result type of T:m is a subtype of v, if the enclosing type of the call
inherits from T, and if T:m is associated with an implementation.

Logic for KOOL The specification of the object environment is as in
SKOOQL. The sort Attld needs clarification: A concrete type TC contains all
attributes being declared in TC or in a type from which TC inherits. As
overriding of attributes is possible, there may exist several different attributes
with the same name in TC. To avoid such ambiguities, attribute identifiers
in KOOL are not only prefixed by the concrete type (as in SKOOL), but as
well by the type the attribute is declared in. I.e., we write TC:T@a for an
attribute a that is declared in type T and belongs to objects of type TC.

KOOL distinguishes between virtual methods and method implementa-
tions. Thus, we introduce implementation annotations as a third form of
triples. Implementation annotations have the form { P} T@m(.) {Q}
where P and Q are ['y,¢(y,)-formulas and I'pos¢-formulas, respectively. They
may be used as assumptions in sequents. The programming logic of KOOL is
described by modifying and extending the logic presented in section 4.

In SKOOL, the predefined implementations could be associated only with
concrete types, but KOOL provides more flexibility. The predefined imple-
mentation of equ can be used for any type and can possibly be overridden
in subtypes. Thus, we have to replace T:equ by T@equ in the axiom for equ,
where T are the types in which equ is defined. In the axiom for new, we replace
T:new by T@new, but T may only range over concrete types. The predefined
implementations of the access methods for an attribute a declared in type T
can operate on all objects of concrete types TC with TC C T . Abbreviating
loc(this, TC:T@a) by this. TC:T@a, we get:

F { prec(this, TC) A TCCT A P[$(this.TC:T@a)/result] } TQget-a():TR {P}
F { prec(this, TC) A TCCT A P[${this.TC:T@Qa := p)/$] } T@set_a(p:TR) {P }
These axioms enable overriding and dynamic binding of attribute access meth-
ods. In Java and C++, attributes are statically bound. We didn’t use this se-
mantics for KOOL since it leads to more rules. On the other hand, such rules
become simpler, at least if inheritance and subtyping are strongly connected

as e.g. in Java and C++.

The two rules given in section 4 for the invocation-statement hold the same
way for the call-statement with method implementations instead of virtual
methods. We show here the call-rule:

call-rule:
AF{P[E1/p1,--.,E;/p:] } v:=this . TQm(Ey,...,E;) { Q[v/result] }

We also use a similar adaptation of the var-rule. An implementation S@Qm is
either defined in S or inherited from a type T. In the first case, properties of

18 Logical Foundations for Typed Object-Oriented Languages

S@m can be proved by the adapted implementation-rule, which is obtained
from the rule for SKOOL by substituting T@Qm for T:m. In the second case,
the properties of S@Qm are derived from those of T@m by the inheritance-
rule, given below. Finally, we have to relate properties of implementations to
properties of virtual methods. This can be done in concrete types where the
behavior of virtual methods is defined by the associated implementation:

inheritance-rule: concrete-type-rule:
AF{P} Tam {Q} AF{P} Tem {Q}
AF{P} Sam {Q} AF{P} Tm {Q}
if S@Qm is inherited from T. if T is a concrete type.

7 CONCLUSIONS

This paper has presented logical foundations for the essential OO-language
features: abstract types, multiple-subtyping, single-inheritance, and dynamic
binding. We have shown how object environments can be formalized as first-
order values. Based on this foundation, we presented a Hoare-style program-
ming logic that allows one to prove properties of OO-programs. In particular,
we discussed how subtyping, inheritance, and abstract types can be handled.

Our logic can be used for verifying OO-programs. This requires specifica-
tions of program properties, which are usually given as pre- and postconditions
of methods, and as class invariants. [PH97] shows how such specifications can
be transformed into triples of the logic and thus be verified.

We validated the logic by simulating dynamic binding via dispatching in
pseudo-code. A formal validation against a complete operational semantics of
the programming language would be desirable, in particular, if logics using
these techniques are to be applied to realistic size languages like Java.

Acknowledgments
We are glad to thank the referees for their helpful comments.

REFERENCES

[AL97] M. Abadi and K. R. M. Leino. A logic of object-oriented programs.
In M. Bidoit and M. Dauchet, editors, TAPSOFT ’97: Theory and
Practice of Software Development, 7th International Joint Con-
ference CAAP/FASE, Lille, France, volume 1214 of Lecture Notes
in Computer Science, pages 682—696. Springer-Verlag, 1997.

[Apt81] K. R. Apt. Ten years of Hoare logic: A survey — part I. ACM
Trans. on Prog. Languages and Systems, 3:431-483, 1981.

Summary of Programming Logic 19

[GH93] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for
Formal Specification. Springer-Verlag, 1993.

[Gri81] David Gries. The Science of Programming. Springer-Verlag, 1981.

[GU91] T. Gergely and L. I’er. First-Order Programming Theories.
Springer-Verlag, 1991.

[Lei97] K. R. M. Leino. Ecstatic: An object-oriented programming lan-
guage with an axiomatic semantics. In B. Pierce, editor,
Proceedings of the Fourth International Workshop on Foun-
dations of Object-Oriented Languages, 1997. Available from:
www.cs.indiana.edu/hyplan/pierce/fool/.

[MPH97] P. Miiller and A. Poetzsch-Heffter. Formal specification techniques
for object-oriented programs. In M. Jarke, K. Pasedach, and
K. Pohl, editors, Informatik 97: Informatik als Innovationsmo-
tor, Informatik Aktuell. Springer-Verlag, 1997. Available from
www.informatik.fernuni-hagen.de/pi5/publications.html.

[PH97] A. Poetzsch-Heffter. Specification and verification of object-
oriented programs. Habilitation thesis, Technical University of
Munich, January 1997.

[Suz80] N. Suzuki, editor. Automatic Verification of Programs with Com-
plex Data Structures. Garland Publishing, 1980.

[Wir90] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 675—
788. North-Holland, Amsterdam, 1990.

APPENDIX 1 SUMMARY OF PROGRAMMING LOGIC

In addition to the axioms and rules described in the sections above, the pro-
gramming logic consists of the usual rules for if, while, sequential statements,
strengthening /weakening of pre-/postconditions, and the following language-
independent axioms and rules:

assumpt-axiom:
AFA

assumpt-intro-rule:
AFA

Ag, AFA

conjunct-rule:
Ar{P;} COMP {Q, }
AF{P2} COMP {Q,}

A"{Pl/\Pg}COMP{Ql/\QZ}

false-axiom:
+ { FALSE } COMP { FALSE }

assumpt-elim-rule:
AF Ag
Ag,AFA

AL A

disjunct-rule:
A-{P1} COMP {Q, }
A+ {P2} COMP {Q, }

A"{Plvpz}COMP{QIVQZ}

20 Logical Foundations for Typed Object-Oriented Languages

inv-rule: subst-rule:
AF{P} COMP {Q} A-{P} COMP {Q}
AF{PAR} COMP {QAR} AF {P[t/Z] } COMP { Q[t/Z] }
where R is a ¥-formula, i.e. does where Z is an arbitrary logical
not contain program variables. variable and ¢t a X-term.
all-rule: ex-rule:

AF{P[Y/Z] } COMP {Q} A+ {P} COMP {Q[Y/Z] }
AF{P[Y/Z]} COMP {VZ:Q} A+ {3Z:P} COMP {Q[Y/Z]}
where Z, Y are arbitrary, but where Z, Y are arbitrary, but
distinct logical variables. distinct logical variables.

BIOGRAPHIES

Arnd Poetzsch-Heffter is Professor at the University of Hagen. He received
a Doctor in Computer Science from the Technical University of Munich in
1991 with a thesis about specification techniques for static semantics of pro-
gramming languages. During a post-doc year at the CS department of Cornell
University he developed an approach to integrate program specification and
verification techniques for object-oriented programs. This is the topic of his
Habilitation thesis. His main research interests include programming tech-
niques and methods, language design, and system support. Currently, his
work focuses on the construction of provably correct programs from correct
components.

Peter Miiller is a member of the Lopex project at the University of Hagen,
Germany. He works in the field of specification and verification of object-
oriented programs. In particular, he studies the verification of component-
based programs. Before that, he worked at the Technical University of Munich,
where he received a diploma in computer science. Topic of his thesis was the
formal semantics of Sather and the development of an operational assertion
language.

