
A Programming Logic for Sequential Java

Arnd Poetzsch-Heffter and Peter Müller

Fernuniversität Hagen, D-58084 Hagen, Germany
[Arnd.Poetzsch-Heffter, Peter.Mueller]@Fernuni-Hagen.de

Abstract. A Hoare-style programming logic for the sequential kernel
of Java is presented. It handles recursive methods, class and interface
types, subtyping, inheritance, dynamic and static binding, aliasing via
object references, and encapsulation. The logic is proved sound w.r.t. an
SOS semantics by embedding both into higher-order logic.

1 Introduction

Java is a practically important object-oriented programming language. This pa-
per presents a logic to verify sequential Java programs. The motivations for
investigating the logical foundations of Java are as follows:

1. Java plays an important role in the quickly developing software component
industry and the smart card technology. Verification techniques can be used
for static program analysis, e.g., to prove the absence of null-pointer excep-
tions. The Java subset used in this paper is similar to JavaCard, the Java
dialect for implementing smart cards.

2. As pointed out in [MPH97], logical foundations of programming languages
form a basis for program specification technology. They allow for expressive
specifications (covering e.g., abstraction, sharing-properties, and side-effects)
and are needed to assign a formal meaning to interface specifications.

3. Formality is a prerequisite for tool-based verification. Tool support is neces-
sary to keep large program proofs error-free.

4. Java is typical for a large group of OO-languages including C++, Eiffel,
Oberon, Modula-3, BETA, and Ada95. The developed techniques can be
adapted to other languages of that group.

The goal underlying this research is the development of interactive programming
environments that support specification and verification of OO-programs. Some
design decisions have been made w.r.t. this goal.

Approach. Three aspects make verification of OO-programs more complex than
verification of programs with just recursive procedures and arbitrary pointer
data structures: Subtyping, abstract types, and dynamic binding. Subtyping
allows variables to hold objects of different types. Abstract types have different
or incomplete implementations. Thus, techniques are needed to formulate type

properties without referring to implementations. Dynamic binding destroys the
static connection between the calls and the body of a procedure.

Our solutions to these problems build on well-known techniques. Object
stores are specified as an abstract data type with operations to create objects
and to read and write instance variables/attributes. Based on object stores, ab-
stractions of object structures can be expressed which are used to specify the
behavior of abstract types. To express the relation between stores in pre- and
poststates, the current object store can be referenced through a special variable.

Our programming logic refines Hoare logics for procedural languages. To
handle dynamic binding, the programming logic allows one to prove properties
of so-called virtual methods, i.e., methods that capture the common properties
of the corresponding methods in subtypes. The distinction between the virtual
behavior of a method and the behavior of the associated implementations allows
one to transfer verification techniques for procedures to OO-programs.

The logic is proved sound w.r.t. an SOS semantics of the programming lan-
guage. Since the semantics of modern OO-languages tends to be rather complex,
such soundness proofs can become quite long for full-size languages and should
therefore be checkable by mechanical proof checkers. To provide a basis for me-
chanical checking, we embed both semantics into a higher-order logic and derive
the axioms and rules of the logic from those of the operational semantics.

Related Work. In [Lei97], a wlp-calculus for an OO-language similar to our
Java subset is presented. In contrast to our work, method specifications are part
of the programs. The approach in [Lei97] can be considered as restricting our
approach to a certain program development strategy (in [PHM98], we discuss
this topic). Thereby, it becomes simpler and more appropriate for automatic
checking, but gives up flexibility that seems important to us for interactive pro-
gram development and verification. A different logic for OO-programs that is
related to type-systems is presented and proved sound in [AL97]. It is developed
for an OO-language in the style of the lambda calculus whereas we are aiming to
directly support the verification of an existing practical language. The presented
programming logic extends the foundations developed in [PHM98] by covering
encapsulation and subclassing. Furthermore, [PHM98] does not discuss the re-
lation between the logic and a formal semantics and does not prove soundness.

In [vON98], type-safety is formally proved for a Java subset similar to ours.
Corresponding to our soundness proof, both operational semantics and typing
rules are formalized in higher-order logic. However, the type-safety proof has
already been mechanically checked in Isabelle. [JvdBH+98] uses an operational
semantics of a Java subset to verify various properties of implementations with
the PVS proof checker without employing an axiomatic semantics. As will be-
come clear from the presented paper, Hoare-logic provides an additional level of
abstraction. This simplifies the handling of subtyping and abstract methods, and
proofs become more intuitive. In practice, verification requires elaborate specifi-
cation techniques like the one described in [Lea96]. In [MPH97], we outline the
connection between such specifications and our logic.

Overview. Section 2 presents the operational semantics of the Java kernel,
section 3 the programming logic. The soundness proof is contained in Sect. 4.

2 A Semantics for Sequential Java

This section describes the sequential Java kernel, Java-K for short, and presents
its dynamic semantics. Compared to Java, Java-K supports only a simple ex-
pression and statement syntax, but captures the full complexity of the method
invocation semantics. As specification technique we use structural operational
semantics (SOS). We assume that the reader is familiar with Java and explain
only the restrictions of Java-K. The formal presentation concentrates on those
aspects that are needed for the soundness proof in Sect. 4.

Java-K Programs. A Java-K program is a set of type declarations where a
type is either a class or an interface. A class declares its name, its superclass, the
list of interfaces implemented by the class, and its members. A member is a field,
instance method, or static method. Members can be public, protected, or pri-
vate. Java-K provides the default constructor, but does not support constructor
definitions. Method declarations contain the access mode, the method signature,
a list of local variables, and a statement as method body. To keep things simple,
methods in Java-K have exactly one parameter named p and have always a re-
turn type. Overloading is not allowed. The return type, the name of the method,
and the parameter of the methods are given by the so-called method signature.
An interface declares its name, the list of extended interfaces, and the signatures
of its methods:

data type
JavaK-Program = list of TypeDecl
TypeDecl = ClassDecl(CTypeId CTypeId ITypeIdList ClassBody)

| InterfaceDecl(ITypeId ITypeIdList InterfaceBody)
ClassBody = list of MemberDecl
MemberDecl = FieldDecl(Mode Type FieldId)

| MethodDecl (Mode MethodSig VarList Statement)
| StaticMethDecl (Mode MethodSig VarList Statement)

Mode = Private() | Protected() | Public()
InterfaceBody = list of MethodSig
ITypeIdList = list of ITypeId
MethodSig = Sig(Type MethodId Type)
VarList = list of VarDecl
VarDecl = Vardcl(Type VarId)
Type = booleanT() | intT() | nullT() | ct(CTypeId) | it(ITypeId)

Java-K has the predefined types booleanT, intT, and nullT (the type of the
null reference), and the user defined class and interface types. The subtype re-
lation on sort Type is defined as in Java and denoted by ¹.

An expression in Java-K is an integer or boolean constant, the null reference,
a variable or parameter identifier, the identifier “this” (denoting the reference to
the object for which the non-static method was invoked), or a unary or binary

expression over relational or arithmetic operators. The statements of Java-K are
defined below along with their dynamic semantics.

Capturing Statement Contexts. The semantics of a statement depends on
the context of the statement occurrence. We assume that the program context
of a statement is always implicitly given and that we can refer to method decla-
rations in this context. Method declarations are denoted by T@m where m is a
method name in class T. MethDeclId is the sort of such identifiers. The function

body : MethDeclId → Statement

maps each method declaration to the statement constituting its body. If T is a
class type and m a method of T, the function

impl : Type ×MethodId → MethDeclId ∪ {undef }
yields the corresponding declaration; otherwise it yields undef. Note that T can
inherit the declaration of m from a superclass. Similarly to method declaration
identifiers, we introduce field declaration identifiers of the form T@a where a is a
field name in class T. The sort of such identifiers is denoted by FieldDeclId. They
are needed to distinguish instance variables with the same field name occurring
in one object.

States. A statement is essentially a partial state transformer. A state in Java-K
describes (a) the current values for the local variables and for the method pa-
rameters p and this, and (b) the current object store. Values in Java-K are either
integers, booleans, the null reference, or references to objects of a class type:
data type τ : Value → Type
Value = b(Bool) τ(b(B)) = booleanT

| i(Int) τ(i(I)) = intT
| null() τ(null) = nullT
| ref (CTypeId ,ObjId) τ(ref (T,OI)) = ct(T)

Values constructed by ref represent the references to objects. The sort ObjId
denotes some suitable set of object identifiers to distinguish different objects of
the same type. The function τ yields the type of a value.

The state of an object is given by the values of its instance variables. We
assume a sort InstVar for the instance variables of all objects and a function

instvar : Value × FieldDeclId → InstVar ∪ {undef }
where instvar(V ,T@a) is defined as follows: If V is an object reference and the
corresponding object has an instance variable named T@a, this instance variable
is returned. Otherwise instvar yields undef. The state of all objects and the
information whether an object is alive (i.e., allocated) in the current program
state is formalized by an abstract data type Object Store with sort Store and
the following functions:
〈 := 〉 : Store × InstVar ×Value → Store
〈 〉 : Store × CTypeId → Store
() : Store × InstVar → Value

alive : Value × Store → Bool
new : Store × CTypeId → Value

OS 〈IV := V 〉 yields the object store that is obtained from OS by updating
instance variable IV with value V . OS 〈T 〉 yields the object store that is obtained
from OS by allocating a new object of type T . OS (IV) yields the value of instance
variable IV in store OS. If V is an object reference, alive(V,OS) tests whether
the referenced object is alive in OS. new(OS ,TID) yields a reference to an
object of type ct(TID) that is not alive in OS. Since the properties of these
functions are not needed for the soundness proof in Sect. 4, we do not discuss
their axiomatization here and refer the reader to [PHM98].

Program states are formalized as mappings from identifiers to values. To have
a uniform treatment for variables and the object store, we use $ as identifier for
the current object store:

State ≡ (VarId ∪ { this, p } → Value ∪ {undef })× ({ $ } → Store ∪ {undef })

For S ∈ State, we write S(x) for the application to a variable or parameter
identifier and S($) for the application to the object store. By S[x := V] and
S[$:= OS] we denote the state that is obtained from S by updating variable x
and $, respectively. The canonical evaluation of expression e in state S is denoted
by ε(S, e) yielding an element of sort Value or undef (note that expressions in
Java-K always terminate and do not have side-effects). The state in which all
variables are undefined is named initS.

Statement Semantics. The semantics of Java-K statements is defined by in-
ductive rules. S : s → S′ expresses the fact that executing Statement s in State
S terminates in State S′. In the rules, x and y range over variable or parameter
identifiers, and e over expressions.

In order to keep the size of the specification manageable, we assume that some
Java-K statements are given in a syntax that is decorated with information from
type and name analysis. An access to an instance variable a of static type T
is written as T@a. Java-K provides statements for reading and writing instance
variables with the following semantics (note that the context conditions of Java
and the antecedent of the rule guarantee that instvar (y, T@a) is defined):

S(y) 6= null

S : x = y.T@a; → S[x := S($)(instvar(y, T@a))]

S(y) 6= null

S : y.T@a=e; → S[$:= S($)〈instvar(y, T@a) := ε(S, e)〉]
In Java, there are four kinds of method invocations: (a) invocations of public
or protected methods, (b) invocations of private methods, (c) invocations of su-
perclass methods, and (d) invocations of static methods. Invocations of kind (a)
are dynamically bound, the others can be bound at compile time. To make the
context information visible within the SOS rules, we distinguish kind (a) and (b)
syntactically: y.T:m(e) denotes an invocation of kind (a) where T is the static
type of y. A statically bound invocation is denoted by y.T@m(e) where T is the
class in which m is declared. We can use the same syntax to handle invocations of

superclass methods: A Java method invocation of the form super.m(e) occurring
in a class C is in Java-K expressed by a call this.CSuper@m() where CSuper is
the nearest superclass of C containing a declaration of m. This way, semantics
of invocations of kind (b) and (c) can be given by the same rule. Invocations of
kind (d) behave similar, but do not have a this-parameter.

To focus on the interesting aspects, Java-K does not support a return state-
ment. The return value has to be assigned to a local variable “result” that is
implicitly declared in all methods. Thus, method invocation means passing the
parameters and the object store to the prestate, executing the invoked method,
and passing the result and object store back to the invocation environment:

S(y) 6= null , τ(S(y)) ¹ T,
initS [this := S(y), p := ε(S, e), $:= S($)] : body(impl(τ(S(y)), m)) → S′

S : x=y.T:m(e); → S[x := S′(result), $:= S′($)]

S(y) 6= null , initS [this := S(y), p := ε(S, e), $:= S($)] : body(T@m) → S′

S : x=y.T@m(e); → S[x := S′(result), $:= S′($)]

The rule for the invocation of static methods is identical to the last rule, ex-
cept that no this-parameter has to be passed. Besides the statements described
above, Java-K provides if and while statements, assignment statements with
cast, sequential statement composition, and constructor calls. The rules for these
statements are straightforward and given in the appendix.

3 A Programming Logic for Java

This section presents a Hoare-style programming logic for Java-K. The logic al-
lows one to formally verify that implementations satisfy interface specifications.
For OO-languages, interface specifications are usually given by pre- and postcon-
ditions for methods, class invariants, history constraints, etc (cf. e.g. [Lea96]).
The formal meaning of such specifications is defined in terms of proof obliga-
tions for methods (cf. [PH97]). In this paper, we concentrate on the verification
of dynamic properties. For proving properties about the object store, we refer to
[PH97]. This section defines the precise syntax of our Hoare triples and explains
the axioms and rules of the programming logic.

Specifying Methods and Statements. Properties of methods and statements
are expressed by triples of the form {P} comp {Q} where P, Q are sorted first-
order formulas and comp is either a statement occurrence within a given Java-K
program, a method implementation represented by the corresponding method
declaration identifier, or a so-called virtual method. Before we clarify the signa-
ture over which P, Q are built, we explain the concept of virtual methods.

Virtual Methods. Java-K supports dynamically bound method invocations. E.g.,
if T is an interface type, and T1, T2 are classes implementing T, an invocation
y.T:m(e) can lead to the execution of T1@m or T2@m depending of the object

held by y. To verify dynamically bound method invocations, we need method
specifications reflecting the properties of all implementations that might be exe-
cuted. Such specifications express the behavior of the so-called virtual methods.
For every non-private instance method m declared in or inherited by a type
T, there is a virtual method denoted by T:m. (This notation corresponds to the
syntax used for the invocation semantics in Sect. 2.) For private and static meth-
ods, virtual methods are not needed, because statically bound invocations can
be directly handled using the properties of the corresponding method bodies.

Signatures of Pre- and Postconditions. In program specifications, we have to
refer to types, fields, and variables in pre- and postconditions. We enable that
by introducing constant symbols for these entities. For a given Java-K program,
Σ denotes the signature of sorts, functions, and constant symbols as described
in Sect. 2. In particular, it contains constant symbols for the types and fields.
Furthermore, we treat parameters, program variables, and the variable $ for the
current object store syntactically as constant symbols of sort Value and Store to
simplify quantification and substitution rules and to define context conditions
for pre- and postconditions.

A triple { P } comp { Q } is called a statement annotation, implementation
annotation, or method annotation if the syntactical component comp is a state-
ment, method implementation, or virtual method, respectively. Pre- and post-
conditions of statement annotations are formulas over Σ ∪{this,p, $}∪VAR(m)
where m is the method enclosing the statement and VAR(m) denotes the set
of local variables of m. Preconditions in method annotations or implementation
annotations are formulas over Σ∪{this,p, $}. Postconditions in such annotations
are formulas over Σ ∪ {result, $}.

To handle recursive methods, we use sequents of the form A |. A where A
is a set of method and implementation annotations and A is a triple. Triples in
A are called assumptions of the sequent and A is called the consequent of the
sequent. Intuitively, a sequent expresses the fact that we can prove a triple based
on some assumptions about methods.

Axiomatic Semantics. The axiomatic semantics of Java consists of axioms
and rules for statements and methods. The new axioms and rules are described
in the following two paragraphs. The standard Hoare rules (e.g., while rule)
are presented in Fig. 1. A more detailed discussion of programming logics for
OO-languages and their applications is given in [PHM98].

Statements. The cast-axiom is very similar to Hoare’s classical assignment ax-
iom. However, to prevent runtime errors, a stronger precondition assures that the
type conversion is legal. The constructor-axiom works like an assignment axiom:
The new object is substituted for the left-hand-side variable and the modified
object store for the initial store. Reading a field substitutes the value held by the
addressed instance variable for the left-hand-side variable. Writing field access
replaces the initial object store by the updated store:

cast-axiom: |. { τ(e)¹T ∧P[e/x] } x = (T) e; { P }
constructor-axiom: |. { P[new($, T)/x , $〈T〉/$] } x = new T(); { P }
field-read-axiom: |. { y 6= null ∧P[$(instvar (y, S@a))/x] } x = y.S@a; { P }
field-write-axiom: |. { y 6= null ∧P[$〈instvar (y, S@a) := e〉/$] } y.S@a = e; { P }

The invocation-rule uses properties of virtual methods to verify invocations of
dynamically bound methods. The fact that local variables different from the
left-hand-side variable are not modified by an invocation is expressed by the
invocation-var-rule that allows one to substitute logical variables Z in pre- and
postconditions by local variables w (w different from x):

invocation-rule:
A |. { P } T:m { Q }
A |. { y 6= null ∧P[y/this, e/p] } x = y.T:m(e); { Q[x/result] }

invocation-var-rule:
A |. { P } x = y.T:m(e); { Q }
A |. { P[w/Z] } x = y.T:m(e); { Q[w/Z] }

Static methods are bound statically. Therefore, method implementations are
used instead of virtual methods to verify invocations. In a similar way, method
implementations are used to verify calls of private methods and invocations using
super. In both cases, the implementation to be executed can be determined
statically. The var-rules for static invocations and calls can be found in Fig. 1.

static-invoc-rule:
A |. { P } T@m { Q }
A |. { P[e/p] } x = T.m(e); { Q[x/result] }

call-rule:
A |. { P } T@m { Q }
A |. { y 6= null ∧P[y/this, e/p] } x = y.T@m(e); { Q[x/result] }

Methods. This paragraph presents the rules to prove properties of method im-
plementations and virtual methods. Essentially, an annotation of a method im-
plementation m holds if it holds for its body. In order to handle recursion, the
method annotation may be assumed for the proof of the body. Informally, this
is sound, because in any terminating execution, the last incarnation does not
contain a recursive invocation of the method:

implementation-rule:
A , {P} T@m {Q} |. {this 6= null ∧P} body(T@m) {Q}
A |. {P} T@m {Q}

Virtual methods have been introduced to model dynamically bound methods.
I.e., a method annotation for T:m reflects the common properties of all imple-
mentations that might be executed on invocation of T:m. If T is a class, there are
two obligations to prove an annotation A of a virtual method T:m : 1. Show that
the corresponding implementation satisfies A if invoked for objects of type T.
2. Show that A holds for objects of proper subtypes of T. The second obligation
and annotations of interface type methods can be proved by the subtype-rule:
If S is a subtype of T, an invocation of T:m on an S object is equivalent to an
invocation of S:m. Thus, all properties of S:m carry over to T:m as long as T:m
is applied to objects of type S:

class-rule:
A |. { τ(this) = T ∧ P } impl (T,m) { Q }
A |. { τ(this)≺T ∧ P } T:m { Q }
A |. { τ(this)¹T ∧ P } T:m { Q }

subtype-rule:

S¹T

A |. { τ(this)¹ S ∧P } S:m { Q }
A |. { τ(this)¹ S ∧P } T:m { Q }

The subtype-rule enables one to prove an annotation for a particular subtype S.
To prove the sequent A |. { τ(this)≺T ∧ P }T:m{ Q } let us first assume that
the given program is not open to further extensions, i.e., all subtypes S1, . . . , Sk

of T are known. Based on a complete axiomatization of the (finite) subtype
relation, we can derive S0≺T ⇔ S0¹S1 ∨ . . . ∨ S0¹Sk. Thus, we can prove
the sequent by applying the subtype-rule for all subtypes of T and by using the
disjunct-rule (see Fig. 1) and strengthening with the above equivalence.

Usually, object-oriented programs are open to extensions; i.e., they are de-
signed to be used as parts of bigger programs containing additional subtypes.
Typical examples of such open programs are libraries. Intuitively, open OO-
programs are more difficult to verify because extensions can influence the be-
havior of virtual methods. To handle open programs, the proof obligations for
later added subtypes are collected. When a subtype is added, the corresponding
obligations have to be shown. A detailed discussion of this topic and a technique
how such obligations can be treated as assumptions are given in [PHM98].

Language-Independent Axioms and Rules. Besides the axiomatic seman-
tics, the programming logic for Java contains language-independent axioms and
rules to handle assumptions and to establish a connection between the predicate
logic of pre- and postconditions and triples of the programming logic (cf. Fig. 1).

4 Towards Formal Soundness Proofs for Complex
Programming Logics

The last sections presented two definitions of the semantics of Java-K. The ad-
vantage of the operational semantics is that its rules can be used to generate
interpreters for validating and testing the language definition (cf. [BCD+89]).
The axiomatic definition can be considered as a higher-level semantics and is
better suited for verification of program properties. Its soundness should be
proved w.r.t. the operational semantics.

Since such soundness proofs can be quite long for full-size programming lan-
guages, it is desirable to enable mechanical proof checking (cf. [vON98] for the
corresponding argumentation about type safety proofs). That is why we built on
the techniques developed by Gordon in [Gor89]: Both semantics are embedded
into a higher-order logic in which the axioms and rules of the axiomatic semantics
are derived from those of the operational semantics. The application of Gordon’s
technique to Java-K made extensions necessary: a systematic treatment of SOS
rules, and handling of virtual methods and recursion.

while-rule:
A |. { e = b(true) ∧ P } stm { P }
A |. { P } while (e) { stm } { e = b(false) ∧ P }

if-rule:
A |. { e = b(true) ∧ P } stm1 { Q }
A |. { e = b(false) ∧ P } stm2 { Q }
A |. { P } if (e) { stm1 } else { stm2 } { Q }

seq-rule:
A |. { P } stm1 { Q }
A |. { Q } stm2 { R }
A |. { P } stm1 stm2 { R }

call-var-rule:
A |. { P } x=y.T@m(e); { Q }
A |. { P[w/Z] } x=y.T@m(e); { Q[w/Z] }

where x and w are distinct program
variables and Z is an arbitrary logical
variable.

static-invoc-var-rule:
A |. { P } x=T.m(e); { Q }
A |. { P[w/Z] } x=T.m(e); { Q[w/Z] }

where x and w are distinct program
variables and Z is an arbitrary logical
variable.

false-axiom:

|. { FALSE } comp { FALSE }
assumpt-axiom:

A |. A

assumpt-intro-rule:
A |. A

A0 , A |. A

assumpt-elim-rule:
A |. A0

A0 , A |. A

A |. A

conjunct-rule:
A |. { P1 } comp { Q1 }
A |. { P2 } comp { Q2 }
A |. { P1 ∧ P2 } comp { Q1 ∧ Q2 }

disjunct-rule:
A |. { P1 } comp { Q1 }
A |. { P2 } comp { Q2 }
A |. { P1 ∨ P2 } comp { Q1 ∨ Q2 }

strength-rule:

P′ ⇒ P

A |. { P } comp { Q }
A |. { P′ } comp { Q }

weak-rule:
A |. { P } comp { Q }
Q ⇒ Q′

A |. { P } comp { Q′ }

inv-rule:
A |. { P } comp { Q }
A |. { P ∧ R } comp { Q ∧ R }

where R is a Σ-formula, i.e. doesn’t
contain program variables or $.

subst-rule:
A |. { P } comp { Q }
A |. { P[t/Z] } comp { Q[t/Z] }

where Z is an arbitrary logical
variable and t a Σ-term.

all-rule:
A |. { P[Y/Z] } comp { Q }
A |. { P[Y/Z] } comp { ∀Z : Q }

where Z, Y are arbitrary, but
distinct logical variables.

ex-rule:
A |. { P } comp { Q[Y/Z] }
A |. { ∃Z : P } comp { Q[Y/Z] }

where Z, Y are arbitrary, but
distinct logical variables.

Fig. 1. Additional axioms and rules

This section outlines the translation of SOS rules into higher-order formulas;
it embeds the programming logic of Java-K into higher-order logic and relates it
to the operational semantics. Furthermore, it presents the soundness proof for
the most interesting rules of the programming logic.

SOS rules in HOL. The SOS rules can be directly translated into a recursive
predicate definition of the form:

sem(Si, stm, St) ⇔def

∨

R∈SOS-rules

(stm matches stmpattern(R) ∧ antecedents(R))

where stmpattern(R) is the statement pattern occurring in the succedent of R
and antecedents(R) denotes the antecedents of the rule where free occurrences
of logical variables are existentially bound. E.g., the SOS rule for virtual method
invocation is transformed to:

stm matches (x = y.T:m(e);) ∧ ∃S′ : Si(y) 6= null ∧ τ(Si(y)) ¹ T
∧ sem(initS [this := Si(y), p := ε(Si, e), $:= Si($)], body(impl(τ(Si(y)), m)), S′)
∧ St = Si[x := S′(result), $:= S′($)]

The semantics of Java-K is given by the least fixpoint of the defining equivalence
for sem. To simplify inductive proofs and the embedding of sequents into the
semantics framework, we introduce an auxiliary semantics predicate nsem with
an additional parameter of sort Nat:

nsem(N, Si, stm, St) ⇔def

∨

R∈SOS-rules

(stm matches stmpattern(R) ∧ antecedentsnsem(R))

where antecedentsnsem(R) is obtained from antecedents(R) by substituting all
occurrences of sem(S, stm, S′) by N > 0 ∧ nsem(N − 1, S, stm, S′). It is easy to
show that nsem is monotonous w.r.t. N , i.e., nsem(N,Si, stm, St) ⇒ nsem(N +
1, Si, stm, St). The following lemma relates sem and nsem:
sem(Si, stm, St) ⇔ ∃N : nsem(N, Si, stm, St)

Semantics for Triples and Sequents. To embed triples into HOL, we con-
sider the pre- and postconditions as predicates on states, i.e., as functions from
State to Boolean. A triple of the form { P } comp { Q } is viewed as an abbrevi-
ation for H(λS.P∗, comp , λS.Q∗) where P∗ and Q∗ are obtained from P and
Q by substituting all occurrences of program variables v, parameters p, and the
constant symbol $ by S(v), S(p), and S($) (for simplicity, we assume here that
S does not occur in P or Q). Based on this syntactical embedding, we can define
the semantics of triples in terms of sem:

H(P, stm, Q) ⇔ ∀S, S′ : P (S) ∧ sem(S, stm, S′) ⇒ Q(S′)
H(P, T@m, Q) ⇔ H(λS. S(this) 6= null ∧ P (S), body(T@m), Q)
H(P, T0:m, Q) ⇔ ∧

class (T),T¹T0
H(λS. τ(S(this)) = T ∧ P (S), impl (T, m), Q)

The first equivalence formulates the usual meaning of Hoare triples for state-
ments (cf. [Gor89]). The second defines implementation annotations in terms of
the method body. The third expresses the concept of virtual methods: A vir-
tual method abstracts the properties of all corresponding implementations. The
conjunct ranges over all class types T that are subtypes of T0.

The most interesting aspect of the embedding is the treatment of sequents and
rules. Sequents cannot be directly translated into implications with assumptions
as premises and consequents as conclusions. For the implementation-rule, this
translation would lead to the following incorrect rule:

A ∧ H(P, T@m, Q) ⇒ H(λS. S(this) 6= null ∧ P (S), body(T@m), Q)

A ⇒ H(P, T@m, Q)

Using the second equivalence, we can show that the antecedent is a tautology.
Since A can be empty, the rule would allow one to prove that implementations
satisfy arbitrary properties. The implementation-rule implicitly contains an in-
ductive argument that has to be made explicit in the embedding. This is done
using a predicate K that is related to nsem just as H is related to sem:
K(N, P, stm, Q) ⇔ ∀S, S′ : P (S) ∧ nsem(N, S, stm, S′) ⇒ Q(S′)
K(0, P, T@m, Q) ⇔ true
K(N + 1, P, T@m, Q) ⇔ K(N, λS. S(this) 6= null ∧ P (S), body(T@m), Q)
K(N, P, T0:m, Q) ⇔ ∧

class (T),
K(N, λS.τ(S(this)) = T ∧ P (S), impl (T, m), Q)

T ¹ T0

Using the lemma that relates sem and nsem, it is easy to show that

H(P, comp , Q) ⇔ ∀N : K(N, P, comp , Q)

Based on K, sequents can be directly embedded into HOL. A sequent of the form
{P1}m1{Q1},...,{Pl}ml{Ql} |. {P} comp {Q} is considered as abbreviation for

∀N : (K(N, P1, m1, Q1) ∧ . . . ∧K(N, Pl, ml, Ql) ⇒ K(N, P, comp , Q))

Because of the relation between H and K, a sequent without assumptions is
equivalent to the semantics of triples described by H. The complexity of the
embedding is a strong argument for using Hoare rules in practical verification
instead of the axiomatization of the operational semantics. Many of the proof
steps encapsulated in the soundness proof have to be done again and again when
verification is directly based on the rules of the operational semantics.

Soundness of the Programming Logic. In the last paragraph, we formal-
ized the semantics of triples and sequents in terms of sem and nsem. Having a
semantics for the sequents, we can prove the soundness of the Java-K logic. The
embedding into HOL was chosen in such a way that the soundness proof can be
done separately for each logical rule. We illustrate the needed proof techniques
by showing the soundness of the implementation- and the invocation-rule. In the
proofs, we abbreviate S(x) 6= null by ν(x).

implementation-rule. The soundness proof of the implementation-rule illustrates
the implicit inductive argument of that rule and demonstrates the treatment of
assumptions. We show:

(
∀M : A(M) ∧ K(M, P, T@m, Q) ⇒ K(M, λS.ν(this) ∧ P (S), body(T@m), Q)

)
⇒ ∀N : A(N) ⇒ K(N, P, T@m, Q)

where A(L) denotes the conjunction of the embedded assumptions and P and Q
abbreviate λS.P∗ and λS.Q∗, respectively. The proof runs by induction on N :

Induction base for N = 0: K(0, P, T@m, Q) is true by definition of K.
Induction step: Assuming that the hypothesis holds for N .

(
∀M : A(M) ∧ K(M, P, T@m, Q) ⇒ K(M, λS.ν(this) ∧ P (S), body(T@m), Q)

)
⇒ [Conjoining the induction hypothesis](
∀M : A(M) ∧ K(M, P, T@m, Q) ⇒ K(M, λS.ν(this) ∧ P (S), body(T@m), Q)

)
∧

(
A(N) ⇒ K(N, P, T@m, Q)

)
⇒ [Instantiate M by N & propositional logic]
A(N) ⇒ K(N, λS.ν(this) ∧ P (S), body(T@m), Q)
⇒ [Definition of K]
A(N) ⇒ K(N + 1, P, T@m, Q)
⇒ [A(N + 1) ⇒ A(N), see below]
A(N + 1) ⇒ K(N + 1, P, T@m, Q)

The implication A(N + 1) ⇒ A(N) follows from the definition of K and the
monotonicity of nsem.

invocation-rule. The soundness proof of the invocation-rule demonstrates how
substitution is handled and why the restrictions on the signatures of pre- and
postcondition formulas are necessary. We simplify the proof a bit by leaving out
the assumptions in the antecedent and succedent of the rule. The extension to
the complete proof is straightforward. Thus, we have to show:

∀M : K(M, λS.P∗, T:m, λS.Q∗)
⇒ ∀N : K(N, λS.ν(y) ∧ (P[y/this, e/p])∗, x=y.T:m(e);, λS.(Q[x/result])∗)

Assuming the premise, we prove the conclusion, i.e., for arbitrary N , S, S′′:

ν(y) ∧ (P[y/this, e/p])∗ ∧ nsem(N, S, x=y.T:m(e);, S′′) ⇒ (λS.(Q[x/result])∗)(S′′)

This is proved by case distinction on N :
Case N = 0: From the definition of nsem we get that the premise is false.
Case N > 0: The following lemma relates substitution and state update:

(P[t1/x1, . . . , tn/xn])∗ = (λS.P∗)(S[x1 := ε(S, t1), . . . , xn := ε(S, tn)])

By this lemma and with P for λS.P∗ and Q for λS.Q∗, the proof goal becomes:

ν(y) ∧ P (S[this := S(y), p := ε(S, e)]) ∧ nsem(N, S, x=y.T:m(e);, S′′)
⇒ Q(S′′[result := S′′(x)])

To show this, we will use the following implication (+):

ν(y) ∧ P (σ) ∧ τ(S(y)) ¹ T ∧ nsem(N − 1, σ, body (impl (τ(S(y)), m)), S′) ⇒ Q(S′)

where σ abbreviates initS [this := S(y),p := ε(S, e), $:= S($)]. The proof of
(+) uses the general proof assumption ∀M : K(M, P, T:m, Q), the definition of
K, and the fact that τ(S(y)) is a class type. τ(S(y)) is a class type, because
the context conditions of Java/Java-K imply that y is of a reference type and
because Java and thus Java-K are type-safe. In addition to (+), we need the fact
that for any state S0 the value of P (S0) only depends on S0(this), S0(p), and
S0($), because other variables are not allowed within P (cf. Sect. 3), i.e.,

S0(this) = S1(this) ∧ S0(p) = S1(p) ∧ S0($) = S1($) ⇒ P (S0) = P (S1)

Similarly, Q only depends on S0(result) and S0($). By this, the remaining goal
can be proved as follows:

ν(y) ∧ P (S[this := S(y), p := ε(S, e)]) ∧ nsem(N, S, x=y.T:m(e);, S′′)

⇒ [Definition of nsem (disjunct for “x=y.T:m(e);”); cf. paragraph “SOS in HOL”]

ν(y) ∧ P (S[this := S(y), p := ε(S, e)]) ∧ N > 0 ∧ ∃S′ : ν(y) ∧ τ(S(y)) ¹ T
∧ nsem(N − 1, σ, body (impl (τ(S(y)), m)), S′) ∧ S′′ = S[x := S′(result), $:= S′($)]

⇒ [case assumption N > 0; general logic]

∃S′ : S′′ = S[x := S′(result), $:= S′($)]
∧ ν(y) ∧ P (S[this := S(y), p := ε(S, e)]) ∧ τ(S(y)) ¹ T
∧ nsem(N − 1, σ, body (impl (τ(S(y)), m)), S′)

⇒ [P (S[this := S(y), p := ε(S, e)]) = P (σ); lemma (+)]

∃S′ : S′′ = S[x := S′(result), $:= S′($)] ∧ Q(S′)

⇒ [S′(result) = S′′(x) = S′′[result := S′′(x)](result), S′($) = S′′[result := S′′(x)]($)]

∃S′ : Q(S′′[result := S′′(x)])

⇒
Q(S′′[result := S′′(x)])

5 Conclusions

We introduced the sequential Java subset Java-K, which provides the typical
OO-language features such as classes and interfaces, subtyping, inheritance, dy-
namic dispatch, and encapsulation. Based on a formalization of object stores as
first-order values, we presented a Hoare-style programming logic for Java-K. A
central concept of this logic is the notion of virtual methods to handle overriding
and dynamic dispatch. Virtual methods represent the common properties of all
corresponding subtype methods. We showed how virtual methods and method
implementations can be used to cover statically and dynamically bound method
invocations, subtyping, and inheritance in programming logics.

The logic has been proved sound w.r.t. an SOS semantics of Java-K. Fol-
lowing the ideas of [Gor89], we embedded both semantics into a higher-order
logic and derived the axioms and rules of the programming logic from those of
the operational semantics. We presented the proofs for two typical rules. This
technique for soundness proofs provides a good basis for applying proof checkers.
Mechanical checking of the soundness proof is considered further work.

References

[AL97] M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In
M. Bidoit and M. Dauchet, editors, TAPSOFT ’97: Theory and Practice of
Software Development, 7th International Joint Conference CAAP/FASE,
Lille, France, volume 1214 of Lecture Notes in Computer Science, pages
682–696. Springer-Verlag, 1997.

[BCD+89] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang,
and V. Pascual. CENTAUR: The system. In ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development En-
vironments, SIGPLAN Notices 24(2), 1989.

[Gor89] M. J. C. Gordon. Mechanizing programming logics in higher order logic. In
G. Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hard-
ware Verification and Automated Theorem Proving. Springer-Verlag, 1989.

[JvdBH+98] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel,
and H. Tews. Reasoning about Java classes. In Proceedings of Object-
Oriented Programming Systems, Languages and Applications (OOPSLA),
1998. Also available as TR CSI-R9812, University of Nijmegen.

[Lea96] G. T. Leavens. An overview of Larch/C++: Behavioral specifications
for C++ modules. In H. Kilov and W. Harvey, editors, Specification of
Behavioral Semantics in Object-Oriented Information Modeling, chapter 8,
pages 121–142. Kluwer Academic Publishers, Boston, 1996.

[Lei97] K. R. M. Leino. Ecstatic: An object-oriented programming language with
an axiomatic semantics. In B. Pierce, editor, Proceedings of the Fourth In-
ternational Workshop on Foundations of Object-Oriented Languages, 1997.
Available from: www.cs.indiana.edu/hyplan/pierce/fool/.

[MPH97] P. Müller and A. Poetzsch-Heffter. Formal specification techniques for
object-oriented programs. In M. Jarke, K. Pasedach, and K. Pohl, edi-
tors, Informatik 97: Informatik als Innovationsmotor, Informatik Aktuell.
Springer-Verlag, 1997.

[PH97] A. Poetzsch-Heffter. Specification and verification of object-oriented pro-
grams. Habilitation thesis, Technical University of Munich, Jan. 1997.
www.informatik.fernuni-hagen.de/pi5/publications.html.

[PHM98] A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object-
oriented languages. In D. Gries and W. De Roever, editors, Programming
Concepts and Methods (PROCOMET), 1998.

[vON98] D. von Oheimb and T. Nipkow. Machine-checking the Java specification:
Proving type-safety. In J. Alves-Foss, editor, Formal Syntax and Semantics
of Java, volume 1523 of Lecture Notes in Computer Science. Springer,
1998. To appear.

Appendix

These are the SOS rules for static method invocations, constructor calls, sequen-
tial statement composition, cast, while, and if statements:
initS [p := ε(S, e), $:= S($)] : body(T@m) → S′

S : x=T.m(e); → S[x := S′(result), $:= S′($)]

true

S : x=new T(); → S[x := new(S($),T), $:= S($)〈T〉]
S : stm1 → S′, S′ : stm2 → S′′

S : stm1 stm2 → S′′
τ(ε(S, e)) ¹ T

S : x=(T)e; → S[x := ε(S, e)]

ε(S, e) = b(true), S : stm → S′, S′ : while(e){stm} → S′′

S : while(e){stm} → S′′
ε(S, e) = b(false)

S : while(e){stm} → S

ε(S, e) = b(true), S : stm1 → S′

S : if(e){stm1} else{stm2} → S′
ε(S, e) = b(false), S : stm2 → S′

S : if(e){stm1} else{ stm2 } → S′

