
DISS. ETH NO. 20126

Automatic Verification of

Heap Structures with Stereotypes

A dissertation submitted to
ETH Zurich

for the degree of
Doctor of Sciences

presented by
Arsenii Rudich

Master of Computer Science

born May 14, 1982
citizen of Ukraine

accepted on the recommendation of

Prof. Dr. Peter Müller, examiner
Prof. Dr. David Basin, co-examiner

Prof. Dr. Anindya Banerjee, co-examiner

2011

Abstract

This thesis is dedicated to the automatic and formal verification of the heap
properties of object oriented programs. Program verification is the check that
a given program satisfies given properties. Program verification is called for-
mal if both the semantics of the specifications and the program execution
are defined formally as mathematical entities. The verification is called au-
tomatic if it is performed automatically without interaction or with limited
interaction with a user.

Our approach is targeted towards the verification of the preservation of
heap-topological properties. It is also aimed towards the verification of the
effects and the frame properties of the program statements.

Automatic verification of heap structures is crucial for the verification
of multi-object invariants, the verification of concurrent programs (e.g., ab-
sence of race conditions and deadlocks), software engineering (e.g., enabling
encapsulation and modular development, handling design patterns), and the
verification of security properties (e.g., isolation).

We present a novel approach to the verification of heap structures. Our
approach is based on the notion of stereotypes. The aim behind a stereotype
is to collect in one entity all reusable specifications which are relevant to the
heap structure. Stereotypes provide, amongst other information, approxi-
mations of the transitive closures of relevant fields; information which is not
generally available in a first-order logic. These approximations enable the
verification of heap properties in automatic fist order logic theorem provers.
The usage of our stereotype based approach has advantages such as reducti-
on of the specification overhead, prevention of specification duplication, the
prevention of proof duplication, and the improvement of the readability of
the specifications.

To evaluate the stereotype based approach we have specified and verified
several design patterns and data structures. All examples are verified in the
verification language Boogie. One of the verified examples is the Priority
Inheritance Protocol. According to our knowledge it is the first automatic
verification of the Priority Inheritance Protocol.

i

ii

Zusammenfassung

Diese Doktorarbeit ist der automatischen formalen Verifikation von Heap-
Eigenschaften objektorientierter Programme gewidmet. Programm-Verifi-
kation ist die Überprüfung, dass ein bestimmtes Programm gegebenen Ei-
genschaften erfüllt. Programm-Verifikation ist formal, wenn die Semantik
der Spezifikation wie auch der Programm-Ausführung mathematisch defi-
niert ist. Die Überprüfung wird als automatisch bezeichnet, wenn sie ohne
oder mit begrenzter Interaktion durch einem Benutzer durchgeführt wird.

Unser Ansatz ist auf die Überprüfung der Erhaltung topologischer Heap-
Eigenschaften ausgerichtet. Auch die Prüfung von Frame-Conditions ist Ziel
dieser Arbeit.

Automatische Überprüfung von Heap-Strukturen ist entscheidend für
die Überprüfung eines Verbundes von Objekt-Invarianten, die Überprüfung
nebenläufiger Programme (z.B. Fehlen von Race-Conditions und Deadlocks),
Software-Engineering Aspekte (z. B. Kapselung, Modularität, Handhabung
von Design Patterns), und die Überprüfung Sicherheit-Eigenschaften (z. B.
Isolation).

Wir präsentieren einen neuartigen Ansatz zur Überprüfung von Heap-
Strukturen. Unser Ansatz basiert auf der Idee von Stereotypen. Das Ziel
eines Stereotyps ist, alle wiederverwendbaren Spezifikationen, für die Heap-
Struktur zusammenzufassen. Dazu gehören unter anderem die Stereotypen-
Annäherungen an die transitive Hülle von entsprechenden Felder in First-
Order Logik. Diese Näherungen ermöglichen die Überprüfung von Heap-
Eigenschaften mittels automatischer First-Order Logik Theorembeweisern.
Die Nutzung unseres Stereotyp Ansatzes bietet Vorteile wie Reduzierung des
Spezifikations-Overhead, Vermeidung von doppelter Spezifikationen, Verhin-
derung von Beweis Vervielfältigung und Verbesserung der Lesbarkeit der
Spezifikationen.

Zur Beurteilung der Stereotyp Ansatz haben wir mehrere Design-Pat-
terns und Datenstrukturen spezifiziert und verifiziert. Alle Beispiele sind in
der Verifikationssprache Boogie überprüft. Eines der überprüften Beispiele
ist das Priority Inheritance Protocol. Nach unserer Kenntnis handelt es sich
um die erste automatische Überprüfung dieses Protokolls.

iii

iv

Acknowledgments

First of all I would like to sincerely thank my professor Peter Müller for his
invaluable contribution, guidance, and attentive supervision. I would like
to specially thank him for the patience, for his support in seeing this thesis
successfully completed, as well as for all the great scientific discussions which
we have had (it was a lot of fun and one of the best parts of the thesis).

I would like to thank my reviewers Dr. David Basin and Dr. Anindya
Banerjee for their truly heroic efforts in reading this thesis. The provided
feedback was instrumental in the formation of this thesis.

I am very grateful to Dr. Alex Summers and Dr. Sophia Drossopoulou
for the extremely useful meeting which we had in Imperial College in 2009.
During that time we had multiple discussions, which were crucial for crys-
tallization of the ideas presented in this thesis.

After Alex moved to ETH Zurich from Imperial College he continued
to provide me with the extremely useful comments regarding the theory
described in this thesis. I also would like to thank Alex for his linguistic
comments.

Dr. Hermann Lehner was my ETH officemate for the past 6 years. I truly
believe that it was one of my biggest luck in ETH to get such a fantastic
officemate. Herman constantly helped me during my work in ETH starting
from meeting me at the airport during my first visit to ETH, finding my
first apartment in Zurich, and finishing with the translation of my thesis’
abstract to German. Hermann gave me a great deal of moral support, and
needless to say how many exciting scientific discussions we have had all these
years. Not only he is my ex- officemate but also a great friend.

I would also like to thank Dr. Adam Darvas, whom I had a very pro-
ductive scientific collaboration with. Much gratitude also goes to my col-
leagues Joseph Ruskiewicz, Dr. Laura Kovac, Dr. Werner Dietl, Cédric
Favre, Valentin Wüstholz, Uri Juhasz, Milos Novacek, Dr. Ioannis Kassios,
Dr. Pietro Ferrara from the Programming Methodology Group; with them
I shared teaching obligations, scientific discussions and lunches.

Marlies Weissert is like a mother for the PM group. She takes care of
all these scientific nerds, solves the bureaucratic stuff, helps with German
translation and gives us both moral and administrative support. Many
thanks to her.

v

I would like to thank students Benjamin Lutz, Annetta Schaad, Mathias
Ottiger, Yoshimi Takano, Christoph Studer whom I had the honor to super-
vise during my work in ETH. Yoshimi Takano is the coolest master student
ever.

There many people whom I am grateful to for the moral support and
useful advice of various nature. I do not have enough space here to mention
all of them, but nevertheless thanks a lot to all of you buddies. I would like
to especially thank Alexander Vezhnevets, with whom I shared an apart-
ment for several years and had a lot of exiting discussions. He considerably
affected my perception of science and life. Also a special thank goes to Ro-
man Mitin with whom I had inspiring discourses about the perspectives of
programming languages and shared some extra curriculum activities (e.g.
probability theory learning). I am very grateful to Jevgeny Chinkarev for
wonderful conversations regarding philosophy, religion and life, and many
of good moments we shared together. It would be unfair not to mention
Schostka’s buddies whom it was always nice to reset my brain from time to
time with.

I would like to show much gratitude to my family; to my father Rudich
Ievgen, to my mother Korotchenko Tetiana, to my sister Ruslana Yanovich
and my niece Arina Yanovich. Thank you very much my loved ones for all
the moral support and encouragement you gave me to finish my Ph.D., for
being with me in good and bad times and for your visionary advices.

This chapter would not be complete without saying thank you to my
beautiful wife Margarita Timofeeva, the one that brings meaning into my
life, the one that inspires me every day, the one that I am going to share
the rest of my life with.

vi

Contents

1 Introduction 1

1.1 Applications of the verification of heap properties 4

1.1.1 Verification of multiple objects invariants 4

1.1.2 Verification of concurrent programs 4

1.1.3 Software engineering 5

1.1.4 Verification of security properties 5

1.2 Existing approaches for the verification of
heap properties . 6

1.3 Approaches based on user-provided updates of a transitive
closure . 8

1.4 Stereotypes . 12

1.5 The project context . 16

1.6 Outline . 17

2 Motivating example: priority inheritance protocol 19

3 Stereotype-based verification methodology 29

3.1 Motivating example . 30

3.2 Stereotypes . 33

3.2.1 Stereotype items . 34

3.2.2 Stereotype invariants 38

3.2.3 Stereotypes . 44

3.3 Stereotype operations . 45

3.3.1 Basic stereotype operations 47

3.3.2 Specification language of specifications 54

3.4 Usage of stereotypes for source code specification 57

3.4.1 Participation of a class in a stereotype slice 68

3.4.2 Ghost updates . 70

3.4.3 Glue invariants . 77

3.4.4 Stereotype operations for source code specification . . 81

3.4.5 Behavioral invariants 83

3.4.6 Summary . 85

vii

4 Stereotype examples 87

4.1 Sequence . 87

4.2 Tree . 98

5 Examples of stereotype-based verification 115

5.1 List . 115

5.2 Composite . 120

5.3 Disjoint-set forests . 125

5.4 PIP . 128

5.5 Boogie experiments . 136

5.5.1 Composite design pattern 138

5.5.2 PIP . 141

5.5.3 List with iterator . 144

5.5.4 Universal transformation of the sequence stereotype . 146

6 Stereotype operations 149

6.1 Methodology for set description 151

6.2 Standard stereotype operation representation 161

6.3 Specification language of specifications 171

6.4 SLS-to-SSOR translation . 182

6.4.1 Basic operation call 188

6.4.2 Composite operation call 194

6.4.3 skip operator . 197

6.4.4 Conditional statement 198

6.4.5 Sequential composition 199

6.4.6 Parallel composition 205

6.5 Universal transformation . 208

7 Related work 211

7.1 Approaches based on decidable procedures 212

7.1.1 Limits of decidable procedures 213

7.1.2 Type systems for alias control 215

7.1.3 Decidable heap logics 216

7.1.4 Abstract interpretation of heap 220

7.2 Approaches based on automatic theorem
proving . 223

7.2.1 Automatic theorem provers for FOL 225

7.2.2 Approximation of induction in FOL 226

7.2.3 User provided updates of a transitive closure 227

7.2.4 User provided inductive proofs 230

7.3 Inductive theorem provers . 232

7.3.1 Explicit induction . 233

7.3.2 Proof by consistency 235

viii

7.4 Approaches based on interactive theorem
proving . 238

7.5 Mixed approaches . 239

8 Conclusion 241

8.1 Summary and contributions 241
8.2 Directions for future work . 245
8.3 Applications and consequences 250

A Universal transformations for sequence stereotype 257

A.1 Operation addSetSequenceRelation 257
A.2 Operation removeSetSequenceRelation 261

B Universal transformations for the tree stereotype 265

B.1 Level 1 . 265
B.1.1 Operation addSetTreeRelation1 265
B.1.2 Operation removeSetTreeRelation1 268

B.2 Level 2 . 270
B.2.1 Operation addSetTreeRelation2 270
B.2.2 Operation removeSetTreeRelation2 275

B.3 Level 3 . 278
B.3.1 Operation addSetTreeRelation3 278
B.3.2 Operation removeSetTreeRelation3 283

ix

x

Chapter 1

Introduction

This thesis is dedicated to the automatic and formal verification of heap
properties of object oriented programs. Let us explain this problem
step by step.

Program verification is the check that a given program satisfies given
properties. The program properties are also called specifications. If each ex-
ecution of a program satisfies the given specifications it is called correct. A
program is called totally correct if each of its executions terminates and sat-
isfies the given specifications. A program is called partially correct if some
of its executions may not terminate but all executions which terminate sat-
isfy the specifications. In this thesis we consider only partial correctness and
when we say that the program is correct we always mean partial correctness.
The result of the program verification is the answer to the question whether
the given program is correct or not with regards to the given specifications.

The program verification is called formal if both the semantics of spec-
ifications and the program execution are defined formally as mathematical
entities [62]. The semantics of the program execution is usually formalized
as an operational or a denotational semantics. An operational semantics
consists of the formal definition of the program state and the description of
how various program statements change the program state. A denotational
semantics defines the semantics of a program by translating it to a formally
defined function which maps the program input to the program output.

The specifications are usually formalized by means of various logics. A
program specification is the logic expression which describes the program
state in a given program point or establishes a relation between the program
states in the various program points. For instance, a method pre-condition
is a specification which describes the program state before the execution
execution of a method. Another example of a program specification is a
method post-condition which relates the program states before and after a
method execution.

The formal semantics of the specifications and the program execution

1

2 CHAPTER 1. INTRODUCTION

can be used to reduce program verification to theorem proving. Usually it
is achieved by means of Hoare logic [64] or the weakest pre-condition calcu-
lus [43] (we denote it as WPC). Hoare logic is a logic in which deduction
rules can be used to prove the validity of the following specifications. If the
property P holds before the execution of a program statement S and the
execution of S terminates, then the property Q holds after the execution of
S. Such a specification of the program statement S is called Hoare triple
and denoted as {P}S{Q}. The Hoare logic can be directly applied to verify
a program annotated with certain specifications.

The weakest pre-condition calculus is a predicate transformation which
for a given program statement S and post-condition Q produces the weakest
pre-condition P such that {P}S{Q} holds. The WPC can be used to
produce from a program annotated with specifications a formula which holds
if and only if the program correct. This formula is called proof obligation.
Program verification can be reduced to checking the validity of the proof
obligation.

The validity of a proof obligation can be checked with the help of an
interactive [116, 113, 15] or an automatic [27, 37] theorem prover. In the
first case a user provides a proof of the program correctness and an interac-
tive theorem prover checks its validity. This verification is called interactive.
On the other hand the proof obligation can be given to an automatic theo-
rem prover. It tries to prove the proof obligation without interaction with
the user. This verification called automatic. The obvious benefit of au-
tomatic verification is the essential reduction of the amount of work which
has to be done by the user to verify the program. Nevertheless, automatic
theorem plovers can proof validity of formulas of limited complexity. More
complicated formulas cannot be verified automatically. The main challenge
in automatic verification is to avoid formulas which cannot be handled by
automatic theorem provers. As we mentioned above this thesis is dedicated
to automatic verification.

Various verification techniques are targeted towards the verification of
different properties. For instance, there are verification techniques which
are targeted towards the verification of numerical properties [69] and infor-
mation flow [106]. These thesis is dedicated to the program verification of

heap properties.
In order to describe what heap properties are, first we have to decide how

we formalize the program heap. The heap formalization includes a definition
of the program heap state and the basic operations which are used for heap
content access and modification.

One possible way to formalize the program heap is to define the program
state as a map from one natural number to another number. The first
natural number represents a memory cell address and the second natural
number is the content of the memory cell. The basic heap operations are:
the extraction of the value of a program cell and the setting of a new value

3

of the program cell. The cell address is used in both operations to identify
program cells. The model also supports address arithmetic. A cell address
can be used in arithmetical expressions to compute a new cell address. These
computed cell addresses can be used in heap operations.

The above model is used for the verification of the low level software,
e.g. operation system or drivers verification. Nevertheless, it is a far too
low level for our proposes. As we mentioned above, our methodology is
targeted towards the verification of object oriented programs (denoted
as OOP). In OOP-languages objects are treated as undividable entities.
Therefore for OOP-languages we use the following heap model.

Each object is identified by its address. A special type reference contains
object address values. A program heap is defined as a polymorphic map from
a pair (object address, object field) to a value of the object field’s type. A
pair (object address, field) is called location. Obtaining a location value and
setting of a new location value are the basic heap operations.

We can think of the heap state as a labeled graph which is constructed
in the following way. The graph nodes are objects. There is a directed edge
between objects o and o′ labeled with the field name f if and only if o.f = o′.
We call this graph heap shape or heap topology.

Our approach is targeted towards the verification of the following prop-
erties:

• Preservation of heap topology properties by a program statement. For
instance, a well-formed linked list has to satisfy certain properties.
E.g. if next is a field of list node which points to the next element
of the list then the transitive closure of the relation induced by next
has to be acyclic. This property has to be preserved by the heap
manipulating program statements. For, instance a list reverse method
has to preserve the list acyclicity property.

• Specification of heap topology modifications by a program statement.
For instance, the list reverse method which we mentioned above has
to specify how exactly it modifies the list. E.g. the method has to
specify that the values of field next after the method execution are
equal to the inversion of the relation induced by the field next before
the method execution.

• Frame properties of the program statements. The frame properties
specify which locations can be affected by a statement execution. Val-
ues of all other locations have to be preserved by the statement exe-
cution. For instance, the reverse method frame is the set of locations
〈o, f〉 where o is a list node of the affected list. Validity of the frame
property guarantees that the only list which is affected by the method
execution is the method receiver. Values of fields of all other objects
are preserved by the method execution.

4 CHAPTER 1. INTRODUCTION

Let us now consider several applications of the verification of heap prop-
erties. The applications illustrate the practical significance of heap proper-
ties.

1.1 Applications of the verification of heap prop-

erties

Verification of the heap properties is crucial for various areas of computer
science. Here is an incomplete list of areas which can benefit or are even
hardly possible without a proper methodology for the specification of heap
structures:

1.1.1 Verification of multiple objects invariants

A multiple objects invariant is a property which relates multiple objects.
The number of objects which participate in a multiple objects invariant is
potentially unbounded. On the other hand the same object can participate
in an unbounded number of invariants. For these reasons verification of
multiple objects invariants is challenging. To enable the verification of such
invariants we have to be able to specify and verify on which objects an
invariant depends and in which invariants an object participates. The heap
topology can be used to extract this information.

1.1.2 Verification of concurrent programs

There are several properties of concurrent programs whose verification relies
on properties of the heap topology:

• Absence of race conditions. A race condition arises when a thread
writes a heap location and another thread reads or writes the same
heap location in a concurrent way. The absence of the race conditions
can be verified by checking the pairwise disjointness of the effects of
the concurrently executed threads. The effect of a thread is defined
by the frame of the thread body.

• Deadlock freedom. A deadlock arises when two or more threads
lock the same objects in a different order. To prevent a deadlock it
is enough to introduce a partial order over locked objects, and check
that each thread locks them according to this order. Quite often such
an order is retrieved from an acyclic data structure e.g. a list or a
tree. Nevertheless, such an approach is sound only if the acyclicity of
the heap structure is preserved during the program execution.

1.1. APPLICATIONS OF THE VERIFICATION OF HEAP PROPERTIES 5

1.1.3 Software engineering

There following aspects of software engineering can be enabled by the veri-
fication of heap properties:

• Encapsulation and modular development. A strongly desired
property for a software engineering project is modularity. It should be
possible to split the whole project in independent modules in such a
way that all communications between modules are going strictly via
predefined module interfaces. The decomposition into independent
modules enables independent module development and modules imple-
mentations interchangeability. Modularity also increases the project
manageability. Nevertheless, modularity can be broken by an undesir-
able aliasing between modules. By an undesirable aliasing we imply
the situation when there is an alias from a module A to a module B
which is not mentioned in the interface of the module B but can be
used by code of module A to change the state of module B. The heap
topology specification can be used to prevent such undesirable aliasing
between modules.

• Design patterns. A Design pattern is a reusable solution of a typical
problem in software engineering. Since design patterns provide various
benefits they are widely used in everyday software development. One
of the aspects of design patterns is to control aliasing and semanti-
cal relations between the object instances which plays various roles in
the design pattern. E.g. an observer observes a specific subject, an
iterator iterates over a specific container, an adapter owns a specific
adoptee. Nevertheless, modern OOP languages do not provide a way
to define and control these dependencies. A type system can be used
to specify that an observer o observes an instance s of type subject,
but the types cannot specify that s will notify o about all changes.
To specify this kind of dependencies we need the precise definition of
the heap topology between the subjects and the observers. We con-
sider the specification and verification of the observer design pattern
in Section 3.4.

1.1.4 Verification of security properties

One of the valuable security properties which can be guarantied by heap ver-
ification is isolation. The isolation property guarantees that a given piece
of code would not affect the rest of the system. For instance, some operat-
ing systems enforce isolation between different processes. In such a way a
corrupted process with low access rights cannot affect a process with high ac-
cess rights. Another example is the process isolation in web browsers. Quite
often a limited interprocess communication between isolated processes has

6 CHAPTER 1. INTRODUCTION

to be provided. This interprocess communication can create an undesired
aliasing between process. This aliasing can be used by one process to af-
fect the state of another process and therefore compromise the isolation.
The heap topology specification can be used to prevent such an undesired
aliasing between processes.

In Chapter 8 we consider how our heap verification methodology can
be used in each of the above areas.

1.2 Existing approaches for the verification of

heap properties

Bellow we propose a classification of existing approaches according to the
methods which they use to verify logical properties:

• Approaches based on decidable procedures. This group includes
all the approaches which for any given verification problem eventually
terminate. The group consists of the following sub-groups:

– Type systems for alias control. Approaches from the sub-group
use types or types annotations to specify heap properties. Type
system rules check the validity of provided annotations.

– Approaches based on decidable procedures for a logic theory. Ap-
proaches from this sub-group use the weakest pre-condition cal-
culus or a symbolic computation to reduce a given verification
problem to the validation of a formula from a decidable logic.

– Approaches based on abstract interpretation. Approaches from
this sub-group use a finite approximation of possibly infinite sets
of heap sates. A fix-point computation is used to find an approx-
imation of possible heap states for any point of a given program.
Later on these approximations are used to verify validity of heap
specifications of the program.

The main advantage of the decidable procedures is termination. For
any given verification problem the procedure will eventually terminate.
It is still possible that verification of some programs is not feasible be-
cause of a high complexity of the decidable procedure. Nevertheless, it
is much better then semidecidable procedures which do not guarantee
termination at all.

The advantage of the decidable procedures which are mentioned above
comes at a price. The properties which can be verified by the decid-
able procedures are limited and do not cover the essential part of the
desired heap properties. To be precise, most of the existing decidable
procedures are targeted towards the verification of limited properties

1.2. EXISTING APPROACHES FOR THE VERIFICATION OF

HEAP PROPERTIES 7

of various linked lists and trees. Most of the tools are oriented on the
verification of shape preservation properties (e.g the reverse of a list is
a list) but cannot say much about how exactly the heap changes (e.g
how elements of the reversed list are related to the original list).

There is strong evidence that it would be extremely hard or even
impossible to overcome these limitations. In Subsection 7.1.1 we
provide references to publications which support this claim.

We provide a detailed overview of approaches based on decidable pro-
cedures in Section 7.1.

• Approaches based on interactive theorem prover. Approaches
from this group use various higher order proof assistants. The ap-
proaches work in the following way. A user provides a complete proof,
including inductive proofs, that a given program satisfies a given spec-
ification and the proof assistant checks the correctness of the provided
proof.

These approaches can handle heap properties of arbitrary complexity.
On the other hand, a usage of such tool requires a high level of qual-
ification. But even a user of a tool with a proper background and a
way of thinking has to invest essential efforts to verify a practical heap
problem.

We provide a detailed overview of approaches based on interactive
theorem provers in Section 7.4.

• Approaches based on automatic theorem provers. Here we
include all the approaches which use first order logic (denoted as FOL)
theorem provers. The main issue for the tools from this group is
how to verify properties which use transitive closure and inductive
definitions in FOL. On one hand these properties are the only way to
specify most of the heap structures, but unfortunately verification of
such properties requires inductive proofs which cannot be expressed
in FOL. We classify the approaches from this group according to the
way in which they address this issue:

– Approaches based on user provided inductive proofs. Approaches
from this sub-group require a user to explicitly provide all nec-
essary inductive proofs and explicitly specify all program points
where these proofs are necessary. The validity of the user pro-
vided inductive proofs is checked, and the proved FOL formulas
are added to the corresponding program points.

The obvious disadvantage of this approach is the extra work
which has to be done to perform verification. Another limita-
tion of the approach is that the user has to be qualified enough

8 CHAPTER 1. INTRODUCTION

to be able to produce inductive proofs, and therefore the tool can-
not be used by an average software developer. Overall the pros
and cons of the approaches from this sub-group are similar to
the pros and cons of the approaches based on interactive theorem
prover.

– Approaches based on an approximation of induction in FOL.
These approaches choose a finite set of FOL formulas (whose
proofs require the usage of induction) and use them as axioms.
The approximation is sound but not complete. Any valid formula
can be verified if the chosen set is big enough, otherwise the valid
formula would be rejected.

– Approaches based on user provided updates of a transitive closure.
These sub-group extends the previous one in the following way.
In a single program point approaches from this sub-group use an
approximation of induction in FOL to specify properties of heap
structures. On the other hand updates of transitive closures are
not inferred by a theorem prover but explicitly provided by a
user. In such a way a relation between the heap states before and
after a statement execution is always defined precisely, which is
crucial for the verification of the effects of the statements.

We provide the detailed overview of the approaches based on automatic
theorem provers in Section 7.2.2.

We build our methodology on top of approaches based on the user-
provided updates of a transitive closure. Let us explain our choice. As
it is stated at the beginning of the chapter the goal of this thesis is the auto-
matic formal verification of heap properties of object oriented programs. We
cannot use approaches based on decidable procedures because they are not
expressive enough. We cannot use approaches based on interactive theorem
provers and approaches based on user-provided inductive proofs because
they are not automatic enough. Therefore, the only group of approaches
which fits our goals are the approaches based on user-provided updates of a
transitive closure. Let us consider how they work in more detail.

1.3 Approaches based on user-provided updates of

a transitive closure

Let us demonstrate how approaches based on user-provided updates of a
transitive closure work in the following example. Instances of class Node
form a singly linked list. nextNode is a field of class Node which points to
the next node of the list. As an example we consider a specification of the
program statement n.nextNode = null where n is a variable of type Node.

1.3. APPROACHES BASED ON USER-PROVIDED UPDATES OF A TRANSITIVE CLOSURE 9

The program statement splits the list (to which n belongs) in two; the first
list contains all nodes from the beginning of the list to n, the second list
contains all nodes from n.nextNode till the end of the list.

We would like to verify that if the list before the statement execution is
acyclic then after the statement execution both output lists are also acyclic.
This property can be specified with the help of transitive closure of nextNode.
Nevertheless, as we mentioned above we cannot express transitive closure in
FOL. Therefore we approximate transitive closure of nextNode in FOL.

The approximation of the transitive closure is done in three steps. In
the first step we introduce ghost fields prev of type reference, Next∗ of type
set of references, and Prev∗ of type set of references. Ghost fields are fields
used only for specification and can be dropped during compilation. The
field prev of an object o is supposed to contain the previous element of the
list. The field Next∗ of an object o is supposed to contain the set of objects
which are reachable from o via nextNode. The field Prev∗ of an object o is
supposed to contain the set of objects which are reachable from o via prev.

In the second step we have to specify the properties of the ghost fields.
Some of them can be specified precisely only by means of transitive clo-
sure. Since we cannot specify transitive closure precisely in FOL we have to
provide an approximation of the transitive closure. The provided approxi-
mation has to be precise enough to prove the desired properties. To verify
the above example we introduce the following properties:

• ∀o : o.prev 6= null ⇒ o.prev.nextNode = o

• ∀o : o.nextNode = null ⇒ o.Next∗ = ∅

• ∀o : o.nextNode 6= null ⇒ o.Next∗ =
{o.nextNode} ∪ o.nextNode.Next∗

• ∀o : o.prev = null ⇒ o.Prev∗ = ∅

• ∀o : o.prev 6= null ⇒ o.Prev∗ = {o.prev} ∪ o.prev.Prev∗

• ∀o : o /∈ o.Next∗

• ∀o : o /∈ o.Prev∗

In the above formulas the range of the quantification is non-null refer-
ences of type Node. The first property defines the meaning of prev. The
next two properties define the meaning of Next∗. The next two properties
define the meaning of Prev∗. The last two properties guarantee acyclicity
of the list.

In the third step we have to define how values of the ghost fields change
during the statement execution. In our case the update of ghost fields are
specified by the following ghost statements:

10 CHAPTER 1. INTRODUCTION

• n.nextNode 6= null⇒ n.nextNode.prev := null

• ∀o ∈ n.Prev∗ ∪ {n} : o.Next∗ := o.Next∗ \ n.Next∗

• ∀o ∈ n.Next∗ : o.Prev∗ := o.Prev∗ \ (n.Prev∗ ∪ {n})

In the above ghost statements we denote field assignment as :=. The
ghost statements have to be executed before the program statement
n.nextNode = null. The first ghost statement specifies that if n is not the
last element of the list then prev of the next element has to be nullified.
The second ghost statement specifies that values Next∗ of all nodes which
belong to the left tail of the list starting from n have to be decreased by
removal of n.Next∗. The last ghost statement specifies that values Next∗ of
all nodes which belong to the right tail of the list starting from the next
element of n have to be decreased by removal of n.Prev∗ ∪ {n}. We call
these updates of ghost field ghost updates.

The preservation of properties of ghost fields by the combination of the
assignment to nextNode and the ghost updates can be expressed in FOL

and therefore verified by an automatic FOL theorem prover. Since the
properties of ghost fields guarantee lists acyclicity we achieve verification of
the desired properties in FOL without using transitive closure.

The technique sketched above can be used to verify essential heap prop-
erties with the help of automatic FOL theorem provers. Nevertheless, it
has several essential drawbacks.

• Specification overhead: By specification overhead we mean the
specifications which could be avoided if we used more expressive logics,
but have to be provided by a user to enable verification by an auto-
matic FOL theorem prover. There are several sources of specification
overhead:

– transitive closure approximation: for each usage of transitive clo-
sure the user has to provide properties which approximate it.
Such an approximation has to be precise enough to verify the
desired properties but simple enough to be feasible for automatic
theorem provers. The identification of such an approximation can
be nontrivial.

– ghost updates: for each update of a field which possibly partici-
pates in a transitive closure a ghost update has to be provided.
As we have already seen even a single field update can affect the
values of the ghost fields of an unbounded set of objects. Quite
often ghost fields of all the objects which are reachable from a
modified object or which can reach the modified object have to
be updated. Therefore even for a simple heap update, the ghost
updates can have a significant size.

1.3. APPROACHES BASED ON USER-PROVIDED UPDATES OF A TRANSITIVE CLOSURE 11

• Specification duplication: By specification duplication we mean
the repetition of the same specification in the verified program. There
are serval sources of specification duplication:

– transitive closure approximation: the same approximation of the
transitive closure can be used to specify different heap structures.
The transitive closure approximation duplication consists of the
duplication of ghost fields and their properties. For instance, the
approximation of transitive closure introduced above could be
used to specify a singly or doubly linked lists, cyclic list, a path
in a tree, or an acyclic path in a graph. Nevertheless, each of
those specifications mentions different fields and therefore has to
be repeated multiple times.

– ghost updates: similar updates of fields which participate in an
approximated transitive closure require duplication of ghost up-
dates. For instance, every time when we nullify the nextNode field
we have to repeat the same ghost updates. As we have mentioned
in the previous item the same approximation can be duplicated
multiple times, which implies that the same ghost updates have
to be duplicated by different heap structures but not only by
different updates of the same structure. For instance, for each
nullification of a field which participates in a list, a tree path, or
in an acyclic path in a graph we have to duplicate the same ghost
updates.

– method and loop invariant specification: if a ghost update ap-
pears in a method body then ghost updates have to be specified
in the method post-condition. For instance, if the nullification
described above appears in the method ”get tail” then the ghost
update has to be duplicated one more time in the method post-
condition. If there are several ghost updates in a method body
then the method post-condition has to specify their accumulative
effect. Such accumulative updates, especially for recursive heap
manipulating methods, can be rather complex. Therefore, it is
hardly desirable to avoid their duplication. The same applies for
the loop invariants of the loops whose bodies modify the heap.

• Proof duplication: As it was mentioned above the ghost updates
have to preserve the properties of the ghost fields. As it has been men-
tioned in the previous item there are multiple duplications of the same
ghost statement in the source code of the verified program. The same
proof of the ghost field properties preservation has to be duplicated
for each duplication of the ghost update. Duplication of specifications
results in duplication of proofs.

12 CHAPTER 1. INTRODUCTION

• Readability of specifications: We have seen that in order to enable
verification the source code has to be annotated with multiple ghost
updates; each of them can have significant size. The same applies to
method specifications and loop invariants. The specifications of fields
are mixed with the specifications of ghost fields. Ghost specification
pollutes both source code and specifications. Specification of ghost
fields complicates understanding and modification of source code and
program specifications.

The heap verification technique which we consider in this thesis is de-
signed with the intention to overcome the mentioned drawbacks.

1.4 Stereotypes

We believe that the previously mentioned problems have the same root. It is
the absence of a mechanism which could be used to describe heap properties
in an abstract way without mentioning the actual implementation. To fill
the gap we introduce the notion of stereotype. The aim behind a stereotype
is to collect all reusable specifications regarding the heap structure in one
entity. We call such entities stereotypes.

Let us consider stereotypes taking the linked list as an example. The
specifications which we would like to extract are the description of a se-
quence of objects. Therefore we call the constructed stereotype Sequence.
A stereotype consists of stereotype items and stereotype invariants. Stereo-
type items describe a heap structure from the perspective of a participating
object. Stereotype items are ghost fields which are used for heap specifi-
cation. The Sequence stereotype items are prev, Next∗, Prev∗ which we
have already seen in the list specification, plus next of type reference. We
introduce next to avoid the usage of the class field nextNode.

If there are several heap structures which can be specified with the same
stereotype, for each of them we have to add its own copy of stereotype
instances. For instance, if we want to specify with the help of the Sequence
stereotype a class linked list and a class cyclic list then for both of the
classes we have to add ghost fields prev, Next∗, Prev∗, and next. We call
this instantiation of the stereotype stereotype slice.

The second part of the stereotype definition is the stereotype invariants.
Stereotype invariants specify properties of stereotype items. The Sequence
stereotype can be received from the list properties which are defined in
the previous subsection by substituting nextNode by next. In this way we
receive heap-independent specifications of stereotype items. We call them
stereotype invariants because our methodology guarantees their preservation
at every program point.

Since a stereotype item is a heap-independent specification there is no
direct relation between the heap fields of the specified class and stereotype

1.4. STEREOTYPES 13

items. For instance, there is no relation between the class field nextNode and
the stereotype item next. To bind them together we introduce a glue invari-
ant. The glue invariant is responsible for establishing a connection between
stereotype items and class fields of the specified class. The glue invariant is
an extra specification which has to be added to the generic stereotype invari-
ants to adjust them for the verification of a specific class. For instance, to
specify the list example above the only glue invariant which has to be added
is ∀o : o.nextNode = o.next. Since the values of nextNode are equal to next
the set of objects reachable via transitive closure of nextNode is equal to the
set of objects reachable via transitive closure of next and therefore is equal
to Next∗. Every time when we need the transitive closure of next we can
use Next∗.

We provide definitions of the stereotypes Sequence and Tree in Chap-

ter 4.
Stereotype items and invariants can be used to specify heap structures

at a single program point. Nevertheless we need to update values of stereo-
type items during a program execution. As we have seen these updates can
be quite verbose. To avoid duplication of the ghost updates we introduce
stereotype operations. A stereotype operation aggregates updates of stereo-
type items. For instance, the ghost updates which we used to specify can
be aggregated into a stereotype operation removeSequenceRelation which
gets one input parameter n of type reference. The input parameter specifies
for which object we want to nullify the value of the next stereotype item.
The operation updates the rest of the stereotype items in such a way that
the stereotype invariant is preserved. The preservation of the stereotype
invariant is explicitly checked once and for all for each stereotype operation.
The specification of the stereotype operation removeSequenceRelation can
be constructed from the ghost update which we specified in the linked list
example by substituting nextNode by next.

Values of stereotype items can be updated only by a stereotype operation
call. For instance, to specify the program statement n.nextNode = null we
add the stereotype operation call removeSequenceRelation(n) to the source
code. Since all operations preserve the stereotype invariant we can be sure
that the stereotype invariant holds at all program points.

We also use stereotype operation calls to specify class methods and loop
invariants. A stereotype operation call can be represented as a pair of pre-
and post- conditions which can be added to the method specification. For
instance, if the class Node of the linked list has a method which consists
only of the program statement n.nextNode = null then the method can be
specified with the help of the same stereotype operation call
removeSequenceRelation(n) which we use to specify the ghost updates
caused by the statement execution.

Accumulative updates caused by the execution of a heap-manipulating
method, especially by a recursive one, can be rather complex. Therefore we

14 CHAPTER 1. INTRODUCTION

introduce the special language for the specification of stereotype operations.
The language can be used to describe the most general stereotype operations
for a given stereotype. We call such operations universal stereotype trans-
formations. A universal transformation call can be used to specify precisely
an arbitrary heap manipulating method. We provide definitions of univer-
sal transformation for Sequence and Tree stereotypes in Appendix A and
Appendix B, respectively.

The stereotype-based approach addresses the drawbacks of the
approaches based on user-provided updates of a transitive closure in the
following way:

• Specification overhead:

To enable automatic verification we still need redundant descriptions
of ghost fields, their properties, and ghost updates. Nevertheless, we
believe that most of such specifications can be provided in a predefined
standard stereotype library. For instance, in this thesis we provide de-
scriptions of Sequence and Tree stereotypes. These stereotypes from
the standard library can be used to specify a program with minimal
overhead. To specify a given program with the help of stereotypes
from the standard stereotypes library the user has to provide the glue
invariants for each class and the stereotypes operations calls for each
ghost update. In Chapter 5 we demonstrate how Sequence and Tree

stereotypes can be used to verify various design patterns and heap
structures.

• Specification duplication:

The stereotype usage completely prevents duplication of ghost fields,
properties of ghost fields, and ghost updates. Duplication of ghost
fields and their properties is prevented by usage of stereotype items
and stereotype invariants respectively. Duplication of ghost updates,
method specifications, and loop invariants is prevented by stereotype
operations.

• Proof duplication:

As it has been mentioned above the reason for proof duplication is
specification duplication. Every ghost update duplication results in
the duplication of the proof of the preservation of the ghost field prop-
erties. In the presence of stereotypes all ghost updates are packed into
stereotype operations. For each of the operations preservation of the
stereotype invariants (which aggregate properties of ghost fields) the
proof is done only once when the operation is defined. In the operation
call the validity of the stereotype invariant is not proved but assumed.

• Readability of specifications:

1.4. STEREOTYPES 15

In the absence of stereotypes it is typical that class fields are mixed
with ghost fields, and source code is mixed with ghost updates. The
situation is even more problematic if a class participates in several
heap structures and we use different ghost fields to specify properties
of different heap structures. In such case it can be problematic to
identify which ghost fields or ghost updates correspond to which heap
structure. On the other hand, in the presence of stereotypes we can:

– distinguish between source code and ghost updates; ghost up-
dates are represented by stereotype operation calls while source
code is represented by direct field updates and method calls.

– distinguish between ghost updates which correspond to different
heap structures.

– use the same stereotype operations for both ghost updates and
the specification of methods and loop invariants.

Among other factors specification duplication can have a negative in-
fluence on readability of specifications. For example, assume that sev-
eral classes use ghost fields to specify the same behavior of sequence,
then a reader of the classes has to put significant efforts to understand
that all these specifications have the same meaning. On the other
hand, with the stereotype approach we can immediately see when sev-
eral classes participate in the same stereotype. There is a similar
situation with ghost updates. It can be a nontrivial task to recog-
nize that several independent groups of ghost updates have the same
meaning. On the other hand it becomes obvious when we use the same
stereotype operation for these updates.

Additionally, dealing with the above problems, stereotypes have the fol-
lowing attractive properties:

• The stereotypes based approach splits the specification process into
two independent stages. The first one is the development of stereo-
types. The second one is usage of stereotypes for the specification of
heap structures. We assume that most of the time developers work
on the second stage. We also assume that most of the stereotypes
can be provided as a standard library. Since the usage of the stereo-
types, in contrast to their development, does not require a deep logical
background we believe that in most cases stereotypes can be used by
developers who do not have a deep background in logic.

• Another advantage of the stereotype based approach is the possibility
to specify the switch of an object’s field from one heap structure to

16 CHAPTER 1. INTRODUCTION

another during a program execution. This mechanism significantly im-
proves reusability of stereotypes. In case we need several stereotypes
to describe different aspects of a data structure, which is quite com-
mon, we can reuse stereotypes with minimal additional efforts. Let
us consider the following situation: there is a class C with a reference
field f . Let us also assume that during the program execution an in-
stance o of class C participates either in a tree or in a cyclic list. Here
we have a situation when the same location o.f changes its role during
the program execution. Significant efforts have to be made to specify
this role change with just ghost fields and ghost updates. On the other
hand the description of the class field role change as a combination of
stereotypes is relatively straightforward.

The role change described above occurs in the implementation of the
priority inheritance protocol [132] (denoted as PIP). In Section 5.4

we consider how PIP can be specified with the help of Sequence and
Tree stereotypes. We use this specification to verify PIP in the ver-
ification language Boogie [75]. The verification is described in Sub-

section 5.5.2. According to our knowledge it is the first automatic
verification of PIP.

1.5 The project context

We developed the stereotype methodology during the MOBIUS EU project.
The project was dedicated to the Proof-Carrying Code (abbreviated as
PCC) [110]. PCC concepts can be applied only for a verified source or
byte code. Therefore a part of the project was dedicated to overcome some
of the limits of automatic software verification. In the context of this part
of the project we addressed two issues of automatic software verification:

1. verification of heap structures.

2. checking of the feasibility of pure-method specifications.

To address the first issue we proposed UTT; a combination of an
ownership-based type system and a data flow analysis. The result of our
research was presented at OOPSLA 2007 [104]. UTT and several of its
extensions dedicated to specification inference, error explanations, and run-
time checking were implemented during multiple student projects at ETH
Zurich [139, 128, 96, 115]. The soundness proof of UTT can be found in a
technical report [103].

Pure-methods provide a natural way to introduce a semantics of domain
specific functional symbols. Instead of introducing axioms, a specification
developer can provide a pre- and post- condition for a pure method and
then use it in other method specifications. Nevertheless, if the method spec-
ifications are infeasible then the method usage can compromise soundness

1.6. OUTLINE 17

of the verification process. To prevent this we develop a methodology for
checking the feasibility of pure methods. The results were presented at FM
2008 [124] and IJCAR 2008 [38]. The soundness proof of the methodology
can be found in a technical report [125].

It needs to be mentioned that both proposed techniques have some lim-
itations which prevent their usage in real life projects. UTT can be used
only to deal with heap structures which are tree shaped. Another limita-
tion of UTT worth mentioning is that it cannot be used for verification of
heap structures separation. The root of these limitations is the absence of
precise heap topology information. The feasibility validation methodology
which we proposed relies on the substantial usage of quantifier alternation
and inductive proofs to check recursive functions. On the other hand, as we
have already mentioned heap specifications widely use transitive closure or
recursive functions. Therefore the methodology cannot be directly applied
to check the feasibility of heap specifications.

The desire to overcome these limitations resulted in the development of
the stereotype methodology. In contrast to UTT, the stereotype methodol-
ogy can deal with arbitrary heap structures, not only trees, and can be used
to verify any kind of heap properties. As far as feasibility checking is con-
cerned it is directly built into the stereotype methodology and guaranteed
by construction.

1.6 Outline

The thesis is organized in the following way. In Chapter 2 we introduce
a motivating example, PIP. Then in Chapter 3 we provide the definition
of stereotype and basic stereotype operations. The provided definitions are
demonstrated on examples of Sequence and Tree stereotypes in Chap-

ter 4. In Chapter 5 we provide several examples of the stereotype based
verification including PIP. A methodology for constructing stereotype op-
erations is provided in Chapter 6. In Chapter 7 we discuss related work.
Chapter 8 concludes the thesis by summarizing the approach, sketching av-
enues for future development, and describing how various areas of software
verification, software engineering, and theorem proving could benefit from
the stereotype methodology. Appendix A and Appendix B contain the
complete specification of Sequence and Tree universal transformations.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Motivating example: priority

inheritance protocol

In this chapter we consider the algorithm for a priority inheritance proto-
col [132] (we refer to it as PIP). PIP has a non trivial heap topology and
therefore we use it to evaluate the stereotype methodology. The complete
specification of PIP is provided in Section 5.4. Here we consider only how
an implementation of PIP works.

We choose PIP as a motivating example for the following reasons:

• PIP is widely applicable in the area of real-time operating systems.
In 1997, the Mars Pathfinder mission nearly failed because of an un-
detected priority inversion. Such a situation might have been avoided
had the designers of the rover used PIP in a proper way [73].

• During an execution of a PIP implementation a nonstandard heap
structure is created. This heap structure combines the behavior of
both cyclic lists and trees. It would be hard to describe the desired
structure as a combination of tree and cyclic list ADTs. On the other
hand it is relatively straightforward to describe it as a combination of
the corresponding stereotypes (see Chapter 5).

• An important part of the PIP behavior is implicit updates. Namely,
it is possible that an invariant of an object o can be broken by another
object o′ and there is no reference from the object o to the object o′. In
general there could be an unbounded number of objects like o′. This
pattern is a hard problem for software verification. In Chapter 5 we
demonstrate how we can use the stereotype approach to specify and
verify functional properties of PIP.

PIP works with two kind of entities: tasks and resources. A task corre-
sponds to a sequence of operations that are performed concurrently. Tasks

19

20 CHAPTER 2. MOTIVATING EXAMPLE: PRIORITY INHERITANCE PROTOCOL

use resources for their work. Before using a resource a task has to acquire
it. After using the resource the task has to release it. Between acquiring
and releasing the resource the task owns the resource, which means that the
task has an exclusive read/write control over the resource and can arbitrar-
ily change it. A task can own an unbounded number of resources, but each
resource is owned by at most one task (some resources are unowned). If a
task t tries to acquire a resource r owned by another task then task t waits
until the owner of r releases it. We say that the task t is blocked by the
resource r. A resource can block an unbounded number of task, but each
task is blocked by at most one resource (some tasks are unblocked). It is
possible that the blocked-by relation can form a cyclic dependence. Such a
situation is denoted as a deadlock. For example, let us consider the follow-
ing situation. A task t1 owns a resource r1 and a task t2 owns a resource
r2. If t2 requests r1 and t1 requests r2 then both t1 and t2 are deadlocked
(see Figure 2.1).

?>=<89:;t1

��

//___ ?>=<89:;r2

?>=<89:;r1 ?>=<89:;t2

OO

oo_ _ _

Figure 2.1: An example of a deadlock which can arise in a concurrent envi-
ronment. Here we denote tasks and resources as circles, owned-by relation
as solid arrows, and attempts to acquire resource as dashed arrows.

In real-time applications different tasks have different importance. Some
of them can be delayed for some time. On the other hand there are mission
critical tasks which have to be executed under strict time constraints. To
reflect this fact we associate each task with a priority. An expected behavior
is that a task with a higher priority is given execution time preferentially,
compared to a task with a low priority. On the other hand a high priority
task preempts a low priority task. Unfortunately, the need to share resources
between tasks can result in an unexpected behavior. For instance, a high
priority task tH is blocked by a resource r, and resource r is owned by a
low priority task tL. If a middle priority task tM is executed concurrently
with tH and tL (see Figure 2.2) then, since tM has a higher priority than
tL, tM preempts tL. If there was no tM, execution time preference would
be given to tL. In such a case tL would be completed as soon as possible,
and execution time preference would be given to tH. But since there is tM
and tH is waiting for tL, tM is implicitly preempts tH. At the end we have
a situation in which a task with a high priority is delayed for an unbounded
time by a task with a lower priority. Such a situation is called an unbounded
priority inversion. It can result in a time constraint violation for a mission
critical task, like it happened with the Mars Pathfinder during collecting of

21

a meteorological data on Mars [73].

?>=<89:;tL

?>=<89:;r

OO

GFED@ABCtM

?>=<89:;tH

OO

Figure 2.2: An example of an unbounded priority inversion which can arise
in a concurrent environment. Here we denote tasks and resources as circles,
and owned by and blocked-by relation as solid arrows.

One way to avoid the priority inversion is to use PIP. The main idea
behind PIP is to use dynamic priority adjustments. Now each task has two
priorities: a static and a dynamic one. Initially the static priority is equal
to the dynamic priority. Let us consider the situation when a task t acquires
a resource r owned by an unblocked task t′. To avoid a situation like we
have seen above we temporally increase the dynamic priority of the t′ to the
maximum of dynamic priorities of t and t′. Once t′ releases r, we recalculate
its dynamic priority as maximum of the static priority of t′ and dynamic
priorities of tasks blocked by t′. We can’t just drop back the priority of t′

to its original priority, since there could be another task t′′ which is also
blocked by t′ and has the same dynamic priority as t

Let us now consider the case when t′ is blocked. In such a case we have
to take care of tasks which are reachable by inversion of the blocked-by
relation. For instance let us consider the following situation, t′ is blocked by
t1, t1 is blocked by t2, . . ., tn−1 is blocked by tn. If t

′ acquires or releases a
resource it potentially can change its dynamic priority. Since t′ is blocked by
t1 change of the dynamic priority of t′ can affect the priority of t1. Change
of the priory t1 can affect the priority of t2, and so on until priority of the
tn is affected.

The main property which we expect to hold for the dynamic priority of
a task t is that the dynamic priority of the task t is equal to the maximum
of the static priority of the task t and dynamic priorities of task blocked by
the task t.

Let us now look in more detail into a possible Java implementation of
PIP (see Figure 2.3). To simplify the implementation we use the same
class PIPNode to represent both tasks and resources. The field blockedBy
is used to represent the blocked-by relation for tasks and the owned-by
relation for resources. We say that a node n is in the blocked-by relation
with a node n′ if and only if n.blockedBy = n′. The defaultPriority and
the currentPriority fields represent the static and the dynamic priorities

22 CHAPTER 2. MOTIVATING EXAMPLE: PRIORITY INHERITANCE PROTOCOL

of a node. The multiset priorities is an auxiliary field which we use to
facilitate priority updates. We say that the priorities field of a node n
is in a valid state if and only if priorities contains exactly the dynamic
priorities of all nodes blocked by n excluding zeros. It is easy to see that
if the priorities multiset is in a valid state then it can be used to compute
the dynamic priority of the node in the following way: currentPriority =
max(defaultPriority,max(priorities)).

The PIP’s functionality consists of one constructor and three methods,
one is an auxiliary and two are provided to clients.

The constructor creates a singleton PIP node. The only input parameter
of the constructor is priority. It is used to set both the current and the
default priority. Also the constructor sets blockedBy to null and priorities
to an empty multiset.

The auxiliary method is updatePriorities. It is used to restore priorities
and currentPriority to valid states. There are three possible ways in which
the priorities multiset of a node n can become invalid: resource blocking,
resource releasing, and change of the dynamic priority of a node blocked
by the node n. We can see that in each of these cases it is enough to add
not more than one number to and remove not more than one number from
priorities to restore validity of priorities. That is why updatePriorities
gets exactly two input parameters. The first one, from, represents the value
that has be removed from and the second one, to, represents the value that
has to be added to the prioritiesmultiset to restore its validity. It is possible
that from or to is equal to 0; in this case the corresponding parameter
doesn’t affect priorities. As soon as validity of priorities is restored we
use it to compute a new value of the dynamic priority. It is possible that a
receiver of the updatePriorities (let’s denote it as n) is blocked by another
node (let’s denote it as n′). If it is so then a change of the dynamic priority
of the n invalidates the priorities of the n′. That is why we conclude
the implementation of the updatePriorities with a recursive call with the
receiver n′. The only change which happens with the set of nodes blocked
by n′ is a change of the dynamic priority of n. The effect of this change
on the priorities multiset of n′ is equivalent to the addition of a node with
the dynamic priority equal to the new dynamic priority of n and removal a
node with the dynamic priority equal to the old dynamic priority of n. That
is why the first parameter of the updatePriorities call is the old dynamic
priority of n and the second one is the new dynamic priority of n.

Let us now consider how updatePriorities works on the example which
is presented on Figure 2.4. Here we depict nodes as rounded rectangles
and blocked-by relation as arrows. Inside a rectangle we can see the name
of the node to the left of the colon, and the dynamic priority to the right
of it. We mark with the double box the receiver of a currently executed
method. Let us consider what happens if we make the following method call
n3,2.updatePriorities(0, 4). On Figure 2.4(a) you can see the state before

23

class PIPNode{
PIPNode blockedBy ;
int defaultPriority ;
int currentPriority ;
Mult iSet 〈int〉 priorities ;

PIPNode(int p r i o r i t y){
blockedBy = null ;
defaultPriority = p r i o r i t y ;
currentPriority = p r i o r i t y ;
priorities = ∅ ;

}

void updatePriorities(from: int, to: int){
oldCurrentPriority int ;
oldCurrentPriority = currentPriority ;

i f (from > 0)
priorities = priorities\{from} ;

i f (to > 0)
priorities = priorities∪{to} ;

currentPriority = max(defaultPriority , max(priorities)) ;
i f (blockedBy 6= null && oldCurrentPriority 6= currentPriority)

blockedBy .updatePriorities
(o ldCur r entPr i o r i ty , currentPriority) ;

}

void release(n : PIPNode){
n . blockedBy = null ;

i f (n . currentPriority 6= 0)
updatePriorities(n . currentPriority , 0) ;

}

void acquire(n : PIPNode){
i f (n . blockedBy = null){

n . blockedBy = this ;
i f (n . currentPriority 6= 0)

updatePriorities (0 , n . currentPriority) ;
} else {

this . blockedBy = n ;
i f (currentPriority 6= 0)

n . updatePriorities (0 , this . currentPriority) ;
}

}

}

Figure 2.3: Implementation of the priority inheritance protocol.

24 CHAPTER 2. MOTIVATING EXAMPLE: PRIORITY INHERITANCE PROTOCOL

/. -,
() *+n1 : 3

/. -,
() *+n2 : 3

OO

/. -,
() *+n3,1 : 1

::ttttttttt
/. -,
() *+n3,2 : 3

OO

/. -,
() *+n3,3 : 2

ddJJJJJJJJJ

(a) Before execution of the updatePriorities
method on n3,2

/. -,
() *+n1 : 3

/. -,
() *+n2 : 3

OO

/. -,
() *+n3,1 : 1

::ttttttttt
/. -,() *+�� ���� ��n3,2 : 4

OO

/. -,
() *+n3,3 : 2

ddJJJJJJJJJ

(b) During execution of the updatePriori-
ties method on n3,2

/. -,
() *+n1 : 3

/. -,() *+�� ���� ��n2 : 4

OO

/. -,
() *+n3,1 : 1

99ttttttttt
/. -,
() *+n3,2 : 4

OO

/. -,
() *+n3,3 : 2

eeKKKKKKKKK

(c) During execution of the updatePriorities
method on n2

/. -,() *+�� ���� ��n1 : 4

/. -,
() *+n2 : 4

OO

/. -,
() *+n3,1 : 1

::ttttttttt
/. -,
() *+n3,2 : 4

OO

/. -,
() *+n3,3 : 2

ddJJJJJJJJJ

(d) During execution of the updatePriori-
ties method on n1

Figure 2.4: An example of updatePriorities method call. Here we depict
nodes as rounded rectangles and blocked-by relation as arrows. Inside of a
rectangle we can see the name of the node to the left of the colon, and the
dynamic priority to the right of the colon. We mark with the double box
the receiver of a currently executed method.

the method call. The first part of the method recalculates and sets the new
value of the dynamic priority of n3,2 (see Figure 2.4(b)). After this it makes
the recursive call to update the priority of n2 (see Figure 2.4(c)). After up-
dating its dynamic priority n2 propagates the call to n1 (see Figure 2.4(d)).
Since n1 is unblocked, the method’s execution terminates after updating the
value of the dynamic priority of n1.

The PIP implementation provides two methods to a client: release and
acquire. The method release is used when a node n is blocked by a node
n′ and we want to release the node n. To do it we set blockedBy field of
the n to null. As the result, if the dynamic priority of the n is not equal to
0 we invalidate the state of the priorities of n′. To restore validity of the
priorities of n′ we use updatePriorities. The only change which happens
with the set of nodes blocked by the node n′ is the removal of node n. That is
why the first parameter of the updatePriorities call is the dynamic priority
of the removed node n and the second one is 0 (we do not add any node).

The method acquire is used when a node n′ tries to block a node n.
Depending on whether a node n is blocked or not there are two possible

25

outcomes of the method. If the node n is not blocked then node n′ will
block it. Since the set of nodes blocked by the node n′ is changed we call
updatePriorities to restore validity of the priorities of n′. The only change
which happens with the set of nodes blocked by the node n′ is the addition
of the node n. That is why the first parameter of the updatePriorities call
is 0 (we do not remove any node) and the second one is the dynamic priority
of the added node n. Otherwise, if the node n is blocked then we perform a
dual action, namely n blocks n′. Since the set of nodes blocked by the node
n is changed we call updatePriorities to restore validity of the priorities of
the n. The only change which happens with the set of nodes blocked by the
node n is addition of the node n′. That is why the first parameter of the
updatePriorities call is 0 (we do not remove any node) and the second one
is the dynamic priority of the added node n′. In the last case it is possible
that n is transitively blocked by n′. If it is so then the acquire method’s
execution creates a deadlock.

/. -,
() *+n : 2

/. -,
() *+n1 : 1

;;wwwwwwwww
/. -,
() *+n2 : 2

OO

/. -,
() *+n3 : 3

(a) Before execution of the acquire
method, or after execution of the
release method

/. -,
() *+n : 3

/. -,
() *+n1 : 1

;;wwwwwwwww
/. -,
() *+n2 : 2

OO

/. -,
() *+n3 : 3

ccGGGGGGGGG

(b) After execution of the acquire
method, or before execution of the
release method

Figure 2.5: An example of release and acquire method calls on an acyclic
graph. Here we depict nodes as rounded rectangles and blocked-by relation
as arrows. Inside of a rectangle we can see the name of the node to the left
of the colon, and the dynamic priority to the right of it.

Let us now consider examples that illustrate how acquire and release
works. There are mainly two distinct cases which we should consider: a call
on an acyclic and on a cyclic graph.

On Figure 2.5 you can see an example of a call on an acyclic graph.
We call it acyclic because we do not create a loop by calling acquire. In
this example n acquires n3 by executing n.acquire(n3) (see Figure 2.5(a)).
There is the result of the execution of acquire on Figure 2.5(b). Since n
now owns n3 with the dynamic priority 3, it has to increase its own priority
to 3.

The same example can be used to demonstrate how release works. If
we execute n.release(n3) on the state pictured on Figure 2.5(b) we will get
the state pictured on Figure 2.5(a). Here we can see that after releasing of
n2 node n drops back it priority to 2. We should notice that such dropping
back of the priority is not always the case. If priority of n2 or n1 also was
3, n would keep it priority even after releasing n3.

26 CHAPTER 2. MOTIVATING EXAMPLE: PRIORITY INHERITANCE PROTOCOL

/. -,
() *+n3 : 3 ///. -,

() *+n4 : 4

/. -,
() *+n2 : 2

OO

/. -,
() *+n1 : 1oo

(a) Before execution of the
acquire method, or after execu-
tion of the release method

/. -,
() *+n3 : 4 ///. -,

() *+n4 : 4

��
/. -,
() *+n2 : 4

OO

/. -,
() *+n1 : 4oo

(b) After execution of the ac-
quire method, or before execu-
tion of the release method

Figure 2.6: An example of release and acquire method calls on a cyclic
graph. Here we depict nodes as rounded rectangles and blocked-by relation
as arrows. Inside of a rectangle we can see the name of the node to the left
of the colon, and the dynamic priority to the right of it.

On Figure 2.6 you can see an example of a call on a cyclic graph. We
call it cyclic because we do create a loop by calling acquire. In this example
n4 acquires n1 by executing n4.acquire(n1) (see Figure 2.6(a)). There is
the result of the execution of acquire on Figure 2.6(b). Since n1 is already
blocked-by another node, the execution of acquire results in blocking of n4
by n1. This blocking creates a cyclic dependence between nodes n1, . . . , n4.
After creating this loop, acquire calls updatePriorities which increases pri-
orities of all nodes participating in the list up to 4.

The same example can be used to demonstrate how release works. If we
execute n1.release(n4) on the state pictured on Figure 2.6(b) we will get the
state pictured on Figure 2.6(a). Here we can see that releasing of n4 brakes
the loop all nodes which participate in the loop drop back their priorities.

Up to now we ignored issues related with possible interference between
PIP methods during their parallel execution. Nevertheless, it is possible
that such an interference can result in a race condition. One possible way to
avoid such race conditions is to use a global lock. Any PIP method acquires
this lock before and releases it after the execution. We can easily see that
this modification of the PIP implementation behaves as if it was executed
in a sequential but not in a concurrent way. This observation justifies that
from here on we treat the PIP implementation as a sequential program.

Let us consider the properties of PIP which we want to verify. The main
property which we want to verify is that value of the field currentPriority
of all instances of class PIPNode are correct. The value of the field
currentPriority of a node n is correct if and only if currentPriority of n
is equal to the maximum of defaultPriority of n and of currentPriority
of nodes blocked by n.

To verify the above property we have to specify and verify PIP’s heap
topology. The heap topology of PIP is formed by the blockedBy field.
An example of a heap layout of PIP is provided in Figure 2.7. If there
are no deadlocks then the blockedBy forms a tree relation. By acquiring

27

Figure 2.7: The figure depicts a heap layout for the PIP example. PIP nodes
are denoted as black circles. Black arrows denote the blockedBy field.

and releasing nodes we add and remove sub-trees. On the other hand if a
node n attempts to acquire a node n′ which is already locked by one of n’s
descendants then the deadlock is created.

We provide the complete specification of PIP in Section 5.4. We de-
scribe verification of PIP in the verification language Boogie [75] in Sub-

section 5.5.2.

28 CHAPTER 2. MOTIVATING EXAMPLE: PRIORITY INHERITANCE PROTOCOL

Chapter 3

Stereotype-based verification

methodology

In this chapter we are going to describe our stereotype-based verification
methodology. The methodology introduces a significant number of notions.
Therefore on Figure 3.1 we show the UML diagram for stereotype-based
verification and object oriented programming related entities. This diagram
can be used as a road map for this section. In the diagram we use the follow-
ing notations: boxes depict entities; arrows depict relations between entities;
arrows with the black diamond arrowhead depict composition relations; ar-
rows with the white triangle arrowhead depict specialization relations.

The figure is split in two parts which are bordered by dashed rounded
rectangles. The upper rectangle borders entities related to object oriented
programming. The bottom rectangle borders entities related to stereotype-
based verification. The chapter is dedicated to the introduction and illus-
tration of these notions.

The chapter is organized in the following way. We begin with a motivat-
ing example in Section 3.1. Section 3.2 is dedicated to the description
of stereotypes. A stereotype consists of stereotype items, which are intro-
duced in Subsection 3.2.1, and stereotype invariants which are introduced
in Subsection 3.2.2. These notions are combined into stereotypes in Sub-

section 3.2.3. Subsection 3.2.1 also describes how an instantiation of a
stereotype can be constructed. We call this instantiation a stereotype slice.

Section 3.3 introduces stereotype operations which are used to update
values of stereotype slices. In Subsection 3.3.1 we introduce basic stereo-
types operations. Basic stereotype operations are the simplest stereotype
slice transformations which preserve the stereotype invariants. In Subsec-

tion 3.3.2 it is described how basic stereotype operations can be used to
construct more advanced operations.

Section 3.4 is dedicated to the description of how stereotype slices
and operations can be used to specify source code. In Subsection 3.4.1

29

30 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

we describe how stereotype slices can be declared in a program. Subsec-

tion 3.4.2 describes how stereotype operations can be used to specify up-
dates of stereotype slices. Subsection 3.4.3 introduces glue invariants.
Glue invariants bind together stereotype items and fields of the program
heap. In Subsection 3.4.4 we describe how stereotype operations can be
used to specify properties of class methods. We conclude by describing in
Subsection 3.4.5 how behavioral class invariants can be used on top of
heap topology properties.

Stereotype

Stereotype instanceStereotype slice

Stereotype item

Stereotype invariant

Static stereotype item

Class Object

Stereotype operation

Stereotype constructor

changes

an instance of

an instance of

participates in participates in

satisfy

describes properties

Method

specify

changes values of

Object Oriented Programming

Stereotype Based Verification

Elements

Stereotype instance identifier

Field

Glue invariant

depends on

depends on

Figure 3.1: UML diagram for stereotype related entities.

3.1 Motivating example

As we mentioned above one of the main motivations for using stereotypes is
the reusability of specifications and proofs. The intention of this section is
to demonstrate this aspect of stereotype usage. To achieve this we consider
three design patterns and outline a behavioral aspect which they share.

3.1. MOTIVATING EXAMPLE 31

In the next sections this common behavioral aspect is formalized as the
RelationInversion stereotype. Descriptions of these design patterns are
taken from [50]

The first design pattern which we consider is the observer pattern. The
observer pattern is used to define a one-to-many dependency between ob-
jects so that when one object changes its state, all its dependents are notified
and updated automatically. The key classes in this pattern are Subject and
Observer (see Figure 3.2). A subject may have any number of dependent
observers. An observer can attach to and detach from a subject using meth-
ods Attach(Observer) and Detach(Observer). All observers are notified
via method Update() whenever the subject undergoes a change in state. In
response, each observer will query the subject to synchronize its state with
the subject’s state.

Subject

 Attach(Observer)

 Detach(Observer)

Observer

 Update()

observes

Figure 3.2: Observer pattern. Here we use the standard UML notation.
We represent classes as rectangles. There is a class name at the top of
the box. Methods of the class are listed in the lower part of the box. We
depict semantic relations between classes as arrows. Each semantic relation
is labeled with a short description.

The second design pattern is the iterator pattern. The iterator provides
a way to access the elements of an aggregate object sequentially without
exposing its underling representation. An iterator object is responsible for
keeping track of the current element. It knows which elements have been
traversed already. A typical instantiation of the iterator pattern is the list
iterator (see Figure 3.3). Here ListIterator plays the role of an iterator
and List plays the role of an aggregate object.

List

 Count()

 Append(Element)

 Remove(Element)

ListIterator

 index

 First()

 Next()

 IsDone()

 CurrentItem()

iterates over

Figure 3.3: Iterator pattern.

The third design pattern is the mediator pattern. The motivation be-
hind this pattern is the following. Object-oriented design encourages the
distribution of behavior among objects. Such a distribution can result in
an object structure with many connections between objects; in the worst
case, every object ends up knowing about all other objects. It is hard to
understand and maintain such a program. Modification of a single class can

32 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

require to modify other related classes. We can avoid these problems by
encapsulating the communication between objects in a separate Mediator

object. The mediator serves as intermediary that keeps objects in the group
from referring to each other explicitly. We denote an object from the group
as Colleague. The colleagues only know the mediator, thereby reducing
the number of interconnections (see Figure 3.4).

Mediator

 Register(Colleague)

 NotifyColleagues(Message)

Colleague
communicates via

Figure 3.4: Mediator pattern.

Let us consider typical usages of these design patterns:

• Observer : One of the observers changes the state of the subject. In
response to this the subject notifies all other observers about the up-
date.

• Iterator : A list iterator modifies the list. Depending on the concrete
implementation some of iterators can be invalidated and cannot be
used anymore. For instance in the Java standard library a removal of
a list element via an iterator invalidates all other integrators.

• Mediator. A colleague can send a message via the mediator. The
mediator forwards the message to all subscribed colleagues.

The above examples can be described in an abstract uniform way. The
description is based on a unary function f which maps an object reference
to another object reference. f has the following meaning for the described
above design patterns:

• Observer : f maps an observer o to the subject f(o) which is observed
by o.

• Iterator : f maps an iterator o to the list f(o) which is iterated over o.

• Mediator : f maps a colleague o to the mediator f(o) via which o
communicates with other colleagues.

With the help of f the above examples can be described as the following
sequence of steps:

• an object o updates object f(o)

• f(o) updates all objects which belong to the set f−1(f(o))

3.2. STEREOTYPES 33

We can see that to specify the above examples f and f−1 have to be
specified. The specification of f and f−1 may be challenging for the following
reasons.

First of all the value of f and therefore f−1 are dynamic; they can change
during the program execution. Let us consider how it happens in each of
the design patterns

• Observer : Attachment of an observer o to a subject o′ leads to the
addition of 〈o, o′〉 to f . Detachment of an observer o from a subject o′

leads to the removal of 〈o, o′〉 from f .

• Iterator : Creation of an iterator o by a list o′ leads to the addition of
〈o, o′〉 to f .

• Mediator : Registration of a colleague o for communication via a me-
diator o′ leads to the addition of 〈o, o′〉 to f .

Therefore a proper specification of f has to include a specification of possible
updates of f .

Secondly, another circumstance which complicates the specification of f
and f−1 is a possible interaction between design patterns instances. The
following example demonstrates how this can happen. Let us assume that
there are two lists o′1 and o′2, and o

′
1 creates a new iterator o. The creation

of the iterator by the list o′1 should not affect another list o′2. Nevertheless,
since f is defined globally on all references in the heap we cannot take this
property for granted. Therefore we include disjointness between parts of f
which corresponds to different design pattern instances into the specification
of f .

We can see that the specification of f is reused by all of the above
design patterns. On the other hand, the specification of f requires sig-
nificant efforts. Therefore, instead of specifying f for each of the above
examples it can be specified once and used when needed. In the next sec-
tion we show how f can be specified as the RelationInversion stereo-
type. Then, in Section 3.3 we specify updates of f as RelationInversion
stereotype operations. To sum up, in Section 3.4 we demonstrate how
the RelationInversion stereotype can be used to specify the three design
patterns which we considered in this section.

3.2 Stereotypes

In this section we introduce stereotypes. A stereotype is an abstract de-
scription of a specification aspect. Function f from the previous section is
an example of such a description. We formalize f as RelationInversion

stereotype.

34 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

A stereotype definition consists of stereotype items and stereotype invari-
ants. Stereotype items represent the state of the specification aspect. For
instance, the stereotype items of the RelationInversion stereotype are a
representation of the function f . Stereotype invariants describe properties
of the captured specification aspect in terms of specification items. For in-
stance, the stereotype invariants of RelationInversion describe properties
of the function f .

In order to use a stereotype in source code specifications it has to be
instantiated. We call an instantiation of a stereotype stereotype instance.
For instance, in order to specify the three design patterns above we have to
introduce three stereotype instances of the stereotype RelationInversion.

A stereotype slice of a stereotype St consists of an instantiation of the
stereotype items and an instantiation of the stereotype invariants. An in-
stantiation of the stereotype items are ghost fields which are added to all
classes which are specified by the stereotype slice. A ghost field is a field
which is used for specifications only and can be removed during the program
compilation. An instantiation of stereotype invariants consists of two parts.
The first part is the same for all stereotypes. It describes a partition [20]
of the set of heap references. This partition is used to guarantee disjoint-
ness between various instances of a design pattern or a data structure which
is specified by the stereotype slice. We call each part of the partition a
stereotype instance. Later on we will provide an example which explains
the difference between a stereotype instance and a stereotype slice. The sec-
ond part of the instantiation of stereotype invariants is constructed from the
stereotype invariants by replacing stereotype items with the corresponding
ghost fields and by restriction range of quantification on values from the
same stereotype instance.

3.2.1 Stereotype items

Definition 1 (Stereotype item). A stereotype item is a pair of a stereotype
item name and a type.

In this thesis we use the following types for stereotype items:

• ref : reference type.

• Reg : set of references or region type.

• ref → ref: a function from a reference to a reference.

• ref → Reg: a function from a reference to a region.

• ref2 → ref: a function from a pair of references to a reference.

• ref2 → Reg: a function from a pair of references to a region.

3.2. STEREOTYPES 35

A value of a region type is a set. We use standard set operations and
predicates: ∪ union, ∩ intersection, S complement of a set S, = set equality,
set disjointness. For technical reasons we define a singleton set creation in
a slightly unusual way. If o is a reference and o is not equal to null then {o}
is a singleton set which contains o, otherwise {o} = ∅. This non standard
definition helps keeping specifications shorter. We denote the result of the
application of the function f to a value v as f [v]. We denote the image of a
set S under function f as f(S).

For example, the RelationInversion stereotype has the following two
items: sink of type ref and Source of type Reg. The names of stereotype
items of reference type begin with a small letter (e.g., sink) and names of
stereotype items of region type begin with a capital letter (e.g. Source).
Let us explain the meaning of these stereotype items for the design patterns
from the previous section.

• For an instance of the observer design pattern sink refers to the subject
and Source contains the set of observers.

• For an instance of the iterator design pattern sink refers to the list
and Source contains the set of iterators.

• For an instance of the mediator design pattern sink refers to the me-
diator and Source contains the set of colleagues.

As you can see we explained the meaning of stereotype items sink and
Source in terms of design pattern instances. The notion of a design pattern
or data structure instance is hardcoded into stereotypes. To formalize the
notion of a design pattern or data structure instance we implicitly add to
each stereotype a special stereotype item Elements of type Reg. For an in-
stance of a design pattern or data structure, instance Elements contains the
set of objects which participates in the instance. Later on we will show how
this property can be formalized as part of the stereotype system invariant.

Definition 2 (Stereotype item Elements). Elements is a stereotype item of
type Reg which is implicitly added to all stereotypes.

As we have mentioned above we would like to use the same stereotype
to specify various parts of a program. It is possible that the same part of
the code participates in different instances of a stereotype. For instance,
the same class can simultaneously play the role of a subject in the observer
design pattern and the role of a list in the iterator design pattern. To be
able to use the same stereotype twice in the same part of code we intro-
duce stereotype slices. A stereotype slice of type St is an instantiation of a
stereotype St.

Definition 3 (Stereotype slice). A stereotype slice of type St is a polymor-
phic partial map from a pair 〈o,StItem〉 into a value of type T , where o is

36 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

a reference and StItem is a stereotype item of type T of stereotype St. We
denote a stereotype slice as StSlice. We denote a value of a stereotype slice
StSlice on a pair 〈o,StItem〉 as o.StSlice.StItem. If it is clear from the con-
text which stereotype slice we imply in the expression o.StSlice.StItem then
the expression can be abbreviated as o.StItem.

You can notice that the above definition of stereotype slice is very sim-
ilar to the heap definition provided by some verification approaches (e.g.,
Spec# [7]). The reason for this is that an instantiation of a stereotype item
is a ghost field. Such a field is used for specification and verification but
dropped by a compiler and not visible during a program execution. An-
other way to formalize the instantiation of stereotype items is to add them
as ghost fields to the heap. For technical reasons we prefer to formalize a
stereotype slice as an entity separate from the heap. In this way it is simpler
to deal with multiple stereotype slices of the same stereotype and specify
properties of stereotype operations which we consider below.

Let us consider an example of a stereotype instance. Let us assume that
there are three lists o′1, o

′
2, and o

′
3 and five iterators o11, o

2
1, o

3
1, o

1
2, and o

2
2.

o11, o
2
1, and o

3
1 refer to o′1; o

1
2 and o22 refer to o′2. A stereotype slice of type

RelationInversion is described by the following table:

sink Source

o′1 o′1 {o11, o
2
1, o

3
1}

o11 o′1 {o11, o
2
1, o

3
1}

o21 o′1 {o11, o
2
1, o

3
1}

o31 o′1 {o11, o
2
1, o

3
1}

o′2 o′2 {o12, o
2
2}

o12 o′2 {o12, o
2
2}

o22 o′2 {o12, o
2
2}

o′3 o′3 ∅

In the above table a row corresponds to an object and a column corre-
sponds to a stereotype item. For instance, the second row represents the
values of the stereotype items of object o′1 and the second column represents
the values of the stereotype item sink for various objects. The intersection of
a row which corresponds to an object o and of a column which corresponds
to a stereotype item StItem is equal to o.StItem. For instance, sine there
is o′1 on intersection of the row o′1 and of the column sink we can conclude
that o′1.sink = o′1.

A visualization of the above stereotype slice is shown on Figure 3.5.
Black circles denote objects and arrows denote function f from the previous
section. Objects in the slice are split into disjoint groups. On Figure 3.5
objects which belong to the same group are bounded by a big circle. The
interior of the circle contains an object which corresponds to the stereotype

3.2. STEREOTYPES 37

item sink and a set of objects which corresponds to the Source. We call
this group of disjoint objects stereotype instance. The formal definition of
stereotype instance is provided in the next section.

sink

Source

Source

sink

Sourcesink

o’

1

2

3

o’

o’

1

2

3

o1

o1

o1

1

2
o2

o2

Figure 3.5: A visualization of a stereotype slice of type RelationInversion

We can see that there is a lot of redundancy in the above stereotype
slice. The same values of the stereotypes sink and Source are duplicated
by each member of a stereotype instance. First of all we would like to note
that this duplication does not occur in general. For most stereotype items
the values are different for different objects. For instance, in Chapter 4 we
consider a ”sequence” stereotype which can be used to specify a linked list.
The ”sequence” stereotype has a stereotype item which contains a reference
to the next element of the sequence. The value of this stereotype item differs
for each object.

Stereotype items and slices describe which ghost fields are needed to
specify the desired properties. Nevertheless, they do not describe these prop-
erties. For instance, we have mentioned above that the Elements stereotype
item captures elements of a stereotype instance but have not described this
property explicitly. To formalize and reuse properties of stereotype items we
introduce stereotype invariants which are considered in the next subsection.

38 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

3.2.2 Stereotype invariants

A stereotype invariant is a property of stereotype items. In our approach we
restrict ourself to universally quantified properties, because they are more
feasible for automatic verification with SMT theorem provers. A stereo-
type invariant is used to construct the stereotype system invariant. We call
it system invariant because later on we will prove that it holds at every
point of verified program. The stereotype system invariant consists of two
parts: one is common for all stereotypes and the other one is constructed
from the stereotype invariant. The common part guarantees disjointness
of stereotype instances. The rest of the subsection is organized as follows.
First we describe the common part of the system invariant, then provide a
definition of stereotype invariants and describe how they can be instantiated
to construct the stereotype system invariant.

To formalize the stereotype system invariant we have to introduce one
more notion: participation of an object in a stereotype slice. This notion
is based on the participation of a class in a stereotype slice which will be
introduced in Section 3.4. Each class C explicitly lists stereotype slices
StSlice1, . . . ,StSlicen which are used to specify properties of class C. We say
that class C participates in stereotype slices StSlice1, . . . ,StSlicen. We say
that an object o participates in a stereotype slice StSlice if and only if the
type of o is class C and C participates in StSlice. To formalize this aspect
of stereotype slices we introduce function Dom which for a given stereotype
slice provides a set of object references which participate in the stereotype
slice. A description of how Dom changes during program execution and the
relation between values of Dom and object types is provided in Section 3.3

and Section 3.4. For now, we just assume the existence of Dom and use
it in invariant definitions.

Definition 4 (Function Dom). Function Dom is a map from a stereo-
type slice to a set of references. We say that an object o participates in a
stereotype slice StSlice if and only if o ∈ Dom(StSlice).

We begin the description of the stereotype system invariant with the
specification of properties of the Elements stereotype item. Elements con-
tains exactly the objects of a stereotype instance.

Definition 5 (Elements system invariant). We say that the system invari-
ant of Elements holds for a stereotype slice StSlice (denoted by
SysInvEl[StSlice]) if:

• ∀o, o′ ∈ Dom(StSlice) : o′.StSlice.Elements = o.StSlice.Elements∨
o′.StSlice.Elements]o.StSlice.Elements.
This invariant guarantees consistency of the Elements stereotype
item’s values. Values of the Elements stereotype item are either equal
or disjoint, but never partially intersect.

3.2. STEREOTYPES 39

• ∀o ∈ Dom(StSlice) : o ∈ o.StSlice.Elements.
This invariant guarantees that an objet participates in its own stereo-
type instance.

The rest of invariants guarantees that a value of a stereotype item does
not go beyond the stereotype instance.

• For each stereotype item StItem of type Reg the following holds:
∀o ∈ Dom(StSlice) : o.StSlice.StItem ⊆ o.StSlice.Elements.

• For each stereotype item StItem of type ref the following holds:
∀o ∈ Dom(StSlice) : o.StSlice.StItem ∈ o.StSlice.Elements.

• For each stereotype item StItem of type ref → Reg the following holds:
∀o, o′ ∈ Dom(StSlice) :
o.StSlice.StItem[o′] ⊆ o.StSlice.Elements.

• For each stereotype item StItem of type ref2 → Reg the following holds:
∀o, o′, o′′ ∈ Dom(StSlice) :
o.StSlice.StItem[o′, o′′] ⊆ o.StSlice.Elements.

• For each stereotype item StItem of type ref → ref the following holds:
∀o, o′ ∈ Dom(StSlice) :
o.StSlice.StItem[o′] ∈ o.StSlice.Elements.

• For each stereotype item StItem of type ref2 → ref the following holds:
∀o, o′, o′′ ∈ Dom(StSlice) :
o.StSlice.StItem[o′, o′′] ∈ o.StSlice.Elements.

The first two invariants guarantee that values of Elements form a parti-
tion [20] of the set of objects which participate in the stereotype slice StSlice.
Namely, the values of Elements cover all objects which participates in the
stereotype slice StSlice and they are pairwise disjoint. We can reformulate
this property as the following one: each object participates in exactly one
stereotype instance.

It is typical that a block of the partition which is defined by values of
Elements corresponds to an instance of a design pattern or a data structure.
Therefore, we call such a block of the partition stereotype instance.

Definition 6 (Stereotype instance of a stereotype slice StSlice). We call
subset of Dom(StSlice) StInst stereotype instance if and only if ∀o ∈ StInst :
o.StSlice.Elements = StInst. We say that an object o participates in a stereo-
type instance StInst if and only if o ∈ StInst.

If SysInvEl[StSlice] holds then a stereotype slice is a disjoint union of
stereotype instances of StSlice. An update of a stereotype instance does not

40 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

affect other stereotype instances. In Chapter 3.3 we rely on this property
of stereotype slices when we describe stereotype operations.

Up to now we identify a stereotype instance StInst by the set of elements
which participates in StInst. Therefore in order to check equality or inequal-
ity of a pair of stereotype instances we have to check equality or inequality of
the corresponding sets. Since this operation is widely used in our approach
we would like to simplify it. To achieve it we introduce a unique identifer
for each stereotype instance: an expression of reference type which depends
on stereotype items and uniquely identifies a stereotype instance. We refer
to the instance identifer as instID. instID has to be provided by a user as
part of the stereotype declaration.

Definition 7 (instID). instID is a user provided expression which depends
on a free variable o and the values of stereotype items.

For instance, for the RelationInversion stereotype we define instID in
the following way: instID=if(o.sink= null) then o else o.sink. Here we
use the logical statement ”if” to formalize instID. The definition considers
two cases: either the sink of an instance in which object o participates is
equal to null. According to the user provided stereotype invariants which we
consider below, this is the case when the stereotype instance is a singleton
and contains only the object o. Therefore in this case we use o as instID.
In the second case o.sink is not null, and therefore SysInvEl implies that
o.sink has to be different for different instances.

We usually use instID to identify for a given object a stereotype in-
stance to which the object belongs. Therefore we introduce a special no-
tation to check this property. For an expression exp of a reference type
exp.StSlice.instID denotes the result of the substitution of exp for o in
the expression which defines instID for StSlice. The stereotype slice can be
omitted if it is clear from the context. In this case we write just exp.instID.
For instance, for a variable v of a reference type and a stereotype slice StSlice
of type RelationInversion we interpret v.StSlice.instID as if(v.sink=
null) then v else v.sink.

The following invariant formalizes the desired properties of instID.

Definition 8 (instID system invariant). We say that the system invariant
of instID holds for a stereotype slice StSlice (denoted by SysInvID[StSlice])
if:

• ∀o ∈ Dom(StSlice) : o.StSlice.instID ∈ o.StSlice.Elements
An instance ID is an element of the instance.

• ∀o, o′ ∈ Dom(StSlice) : o ∈ o′.StSlice.Elements ⇔
o.StSlice.instID = o′.StSlice.instID.
A pair of objects belongs to the same stereotype instance if and only if
their instIDs are equal.

3.2. STEREOTYPES 41

A proof obligation which checks the uniqueness property of instID has
to be verified for each stereotype. We formalize this proof obligation in the
next subsection.

By this we conclude the consideration of the common part of the stereo-
type system invariant and move on to the consideration of the stereotype
specific part of the stereotype system invariant.

Definition 9 (Stereotype invariant). A stereotype invariant of a stereotype
St is a user-provided formula which depends on stereotype items of stereotype
St. It is universally quantified over variables of reference types.

As we have mentioned above we would like to preserve the disjointness of
stereotype instances. In this way we can be sure that an update of a stereo-
type instance does not affect any other instance. To achieved disjointness
we need not only element disjointness but also to be sure that an update
of a stereotype instance does not violate an invariant of another instance.
Therefore we restrict each invariant to elements of a stereotype instance.
We achieve it in the following way. To each stereotype invariant we add a
quantifier over all stereotype instances and restrict the range of the remain-
ing universal quantifiers to elements of the stereotype instance. The above
definition is formalized as an instantiation of stereotype invariants below.
This simplifies the verification of stereotype properties significantly. Since
most of the time we are interested only in objects which share the same
instance of a design pattern or a data structure, even with this constraint
stereotype invariants are flexible enough.

Let us consider the stereotype invariants of RelationInversion. Please
note that the in the stereotype definitions the range of the quantification is
not specified. The range of the quantification is defined during the instan-
tiation of the stereotype invariants which we consider a bit later.

• ∀o : o.sink /∈ o.Source
The first invariant states that an object cannot depend on itself. For
instance, in the mediator design pattern an object cannot simultane-
ously play the role of the mediator and of a colleague in the same
instance of the design paten. This invariant also guarantees acyclicity
of the function f from the previous section.

• ∀o : o.sink = null⇒ o.Source = {o}
The second invariant guarantees the absence of redundant semantic re-
lations. Let us explain it on the following example. Let us assume that
there are two observers which are not attached to a specific subject.
There is no dependence between them, therefore the update of one of
them should not affect the other one. Therefore it makes sense to keep
them in disjoint stereotype instances. In this way the independence
between the observers will be guaranteed by the stereotype system in-
variant. Without the above invariant these two observers could belong

42 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

to the same stereotype instance. In that case the disjointness cannot
be verified so easily. Therefore the above invariant states that if an
object is not attached to a source it has to form a singleton stereotype
instance.

• ∀o : o.Elements = o.Source ∪ {o.sink}
The third invariant specifies which objects participate in a stereotype
instance. An object participates in an instance if and only if it is either
equal to sink or belongs to Source.

The last two invariants have a more technical nature. They state that
the values of Source and sink are equal for all objects from the same
stereotype instance. We need these two invariants to guarantee con-
sistency between copies of Source and sink that are stored in different
objects.

• ∀o, o′ : o′.Source = o.Source

• ∀o, o′ : o′.sink = o.sink

Now let us define the instantiation of stereotype invariants for a given
stereotype slice. We begin with the definition of a formula instantiation for
a given stereotype slice.

Definition 10 (Instantiation of a formula for a stereotype slice). For an
arbitrary formula ϕ which depends on stereotype items of a stereotype St
and for an arbitrary stereotype slice StSlice of type St we construct an in-
stantiation of ϕ for StSlice by replacing all instances of stereotype items
StItem of stereotype St by StSlice.StItem. We denote the resulting formula
by ϕ[StInst].

Using the instantiation of a formula for a stereotype slice we can define
the instantiation of stereotype invariants on a stereotype instance and slice.
For simplify, in the below definition we consider the instantiation of only one
invariant. The generalization in case of several invariants is straightforward
and therefore omitted.

Definition 11 (Stereotype instance invariant). We denote a stereotype in-
variant of a stereotype instance StInst of a stereotype slice StSlice of a stereo-
type St as InvSt[StSlice, El], where El is the set of elements of StInst. If
a stereotype invariant is ∀o1, . . . ,∀on : ϕ[StSlice] then InvSt[StSlice, El] =
∀o1 ∈ El, . . . ,∀on ∈ El : ϕ[StSlice].

The above definition defines the range of the quantifiers as the elements
of the stereotype instance for which the invariant is instantiated.

We call a stereotype instance with elements El consistent if
InvSt[StSlice, El] holds.

3.2. STEREOTYPES 43

Definition 12 (Stereotype slice invariant). We denote the stereotype in-
variant of a stereotype slice StSlice of a stereotype St as
InvSt[StSlice] = ∀ id ∈ Dom(StSlice) : InvSt[StSlice, id.Elements].

The above definition quantifies over all objects which participate in
the stereotype slice StSlice to access all stereotype instances of StSlice.
id.Elements contains objects which participate in the same stereotype in-
stance.

Let us consider an example of a stereotype instantiation. Let us assume
that StSlice is a stereotype slice of type RelationInversion. An instan-
tiation of the first stereotype invariant for a stereotype slice StSlice is the
following: ∀ id ∈ Dom(StSlice), o ∈ id.Elements : o.sink /∈ o.Source.

Now we combine all of the above invariants definitions to define the
stereotype system invariant. In Section 3.3 we prove that the stereotype
system invariant holds at every program point.

Definition 13 (Stereotype system invariant for a stereotype slice StSlice).
We say that the stereotype system invariant holds for a stereotype slice
StSlice if InvSt[StSlice], SysInvEl[StSlice], and SysInvID[StSlice] hold.
We denote the stereotype system invariant for a slice StSlice as
SysInv[StSlice].

We call a stereotype slice StSlice consistent if SysInv[StSlice] holds.
We have seen that quite often a stereotype item has the same value for

all objects participating in a stereotype instance. For instance, in
the RelationInversion stereotype both stereotype items have this prop-
erty. We call such stereotype items static and handle them in a special way.
By this we achieve more concise specifications.

Definition 14 (Static stereotype item). We call a stereotype item static if
its definition in the stereotype definition begins with the keyword static.

We capture properties of static stereotype items by the following invari-
ants.

Definition 15 (Implicit invariant for a static stereotype item). For each
static stereotype item StItem of stereotype St we add an implicit invariant
∀o, o′ : o′.StItem = o.StItem to the definition of the stereotype St.

Static stereotype items have one more advantage. Since the value of a
stereotype item is the same for all objects which participate in a stereotype
instance, we can omit the receiver when mentioning a static stereotype item
in a stereotype slice. In the instantiation of an invariant we use id from
Definition 12 as a receiver of the static stereotype item.

Let us demonstrate the benefits of static stereotype items on the example
of the RelationInversion stereotype. If we declare both Source and sink
as static we can drop the last two invariants since they are added implicitly
and simplify the remaining invariants in the following way:

44 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

• sink /∈ Source

• ∀o : sink = null ⇒ Source = {o}

• Elements = Source ∪ {sink}

To illustrate how the instantiation of an invariant which mentions a static
field looks like let as consider the updated version of the first invariant. The
instantiation of the updated version of the first stereotype invariant for a
stereotype slice StSlice is
∀ id ∈ Dom(StSlice) : sink /∈ Source.

3.2.3 Stereotypes

In this subsection we put the definitions from the above subsections together
and define stereotypes.

Definition 16 (Stereotype). A stereotype definition consists of:

• Stereotype header, which begins with the keyword Stereotype after
which a name of the defined stereotype follows.

• Stereotype item definition, which begins with the keyword items after
which a list of semicolon separated stereotype item definitions follows.

• Stereotype invariants definition, which begins with the keyword
invariants after which a list of stereotype invariants follows.

• Instance identifer definition, which begins with instID = after which
the definition of instID follows.

Let us consider an example of a stereotype definition. On Figure 3.6 we
present the definition of the RelationInversion stereotype. All parts of
the definition were already considered in the corresponding subsections.

As we have mentioned above for each stereotype we have to check that
the definition of instID is a unique stereotype instance identifier. To vali-
date this property the following proof obligation has to be verified for each
stereotype.

Definition 17 (Stereotype proof obligation). For each stereotype St the
following proof obligation has to be verified ∀ StSlice : SysInvEl[StSlice] ∧
InvSt[StSlice] ⇒ SysInvID[StSlice]. Here the range of the quantification is
stereotype slices of type St.

The above proof obligation checks that if the Elements invariant and
the stereotype invariants hold for a stereotype instance then for the same
stereotype instance the instID invariant holds.

3.3. STEREOTYPE OPERATIONS 45

Stereotype RelationInversion{
items

static Source: Reg ;
static sink : ref ;

invariants

sink /∈ Source
∀o : sink = null ⇒ Source = {o}
Elements = Source ∪ {sink}

instID = if(o.sink = null) then o else o.sink
}

Figure 3.6: The relation inversion stereotype.

3.3 Stereotype operations

In this section we consider stereotype operations. Stereotype operations
construction is one of the most challenging parts of our stereotype-based
approach. The complete description of stereotype construction methodol-
ogy includes a lot of technical details. Therefore we only provide an informal
description and examples of various stereotype operations here. The com-
plete definitions and proofs are provided in Chapter 6.

Stereotype operations describe reusable transformations of stereotype
slices. As we have mentioned above stereotypes facilitate reusability of spec-
ifications that describe a single program point. In a similar way stereotype
operations facilitate reusability of specifications which establish a relation
between different states.

Stereotype operations have two applications in our methodology. First
they are used to specify how stereotype slices change during the program
execution. To specify an update of a stereotype slice the user has to add a
call of a stereotype operation to the program. Another application of stereo-
type operations is the specification of class methods and loop invariants. We
consider both of these applications in Section 3.4.

We are interested not in arbitrary transformations but only in transfor-
mations which satisfy some properties. First of all we expect that stereotype
operations preserve the stereotype system invariant which is defined in the
previous section. Another property which we expect from stereotype op-
erations is consistency. The consistency property guarantees that calls to
stereotype operation never produce false assumptions. A violation of this
property can affect soundness of program verification. We formalize these
properties in Chapter 6.

We begin the construction of operations for a given stereotype with the
basic operations. Basic operations are used to specify the simplest transfor-
mations of stereotype slices. For them we explicitly check the preservation of

46 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

the stereotype system invariant and consistency. Since most stereotypes are
approximations of binary relations, the basic operations for these stereotypes
are addition and removal of the relation between two objects. For instance,
in this section we consider the basic operations for RelationInversion: ad-
dition and removal of a relation between a source and a sink. In Chapter 4

we specify basic operations for tree and sequence stereotypes. The basic
operations of the tree stereotype are the addition and the removal of a sub-
tree. The basic operations of the sequence stereotype are the concatenation
of two sequences and splitting a sequence.

We have a special kind of basic operation which is responsible for the ini-
tialization of stereotype items for freshly allocated objects. This operations
are called stereotype constructors. A stereotype constructor executed for
a stereotype slice StSlice adds an initialized object to Dom(StSlice) which
is defined in the previous section. In this section we describe two stereo-
type constructors for RelationInversion. One is used to initialize a source
and the other one is used to initialize a sink. Constructors of the tree and
sequence stereotypes create a singleton tree and sequence, respectively.

We consider the basic operations of RelationInversion in
Subsection 3.3.1.

Basic stereotype operations can be used to construct more complicated
stereotype operations. For this purposes we introduce a special language
for combining stereotype operations. We call the language specification
language of specifications or SLS. SLS is the language to specify stereotype
operations which are then used to specify the real source code. We briefly
describe SLS in Subsection 3.3.2. The complete definitions and proofs
are provided in Chapter 6.

Since a stereotype operation is a reusable transformation specification,
the more predefined operations are provided to a user the less work has to
be done by the user. Therefore it is strongly desirable to construct for a
stereotype a stereotype operation which can be used to define any other
transformation. We call such stereotype operations universal transforma-
tions. If a user-provided stereotype is equipped with a universal transfor-
mation then a stereotype user does not need to spend efforts on constructing
stereotype operations. Instead a universal transformation can be instanti-
ated to achieve a desired stereotype operation. Since the construction of the
stereotype operations is the most challenging part of the stereotype method-
ology, a predefined universal transformation for a stereotype simplifies the
usage of stereotypes significantly. We discuss universal transformations in
more details at the end of Chapter 6. We provide specifications of univer-
sal transformations for sequence and tree stereotypes in Appendix A and
Appendix B, respectively.

3.3. STEREOTYPE OPERATIONS 47

3.3.1 Basic stereotype operations

In this subsection we consider basic operations and constructors on the ex-
ample of RelationInversion. The basic stereotype operations of
RelationInversion are shown on Figure 3.7. addRelationInversion adds
a relation between a source an a sink, and removeRelationInversion re-
moves a relation between a source and a sink.

addRelationInversion〈RelationInversion〉(source : ref!, sink : ref!)
{
Pre-conditions:

sink.sink = sink ;
source.sink = null ;

Input instances:

inInst1 = source ;
inInst2 = sink ;

Output instances:

outInst = inInst1 ∪ inInst2 ;
Transformations:

〈source, sink, sink〉 ;
〈outInst,Source, sink.Source ∪ {source}〉 ;

}

removeRelationInversion〈RelationInversion〉(source : ref!)
{
Pre-conditions:

source.sink 6= null ;
source.sink 6= source ;

Input instances:

inInst = source ;
Output instances:

outInst1 = {source} ;
outInst2 = inInst \ {source} ;

Transformations:

〈source, sink,null〉 ;
〈source,Source, {source}〉 ;
〈outInst2,Source, source.Source \ {source}〉 ;

}

Figure 3.7: The addRelationInversion and removeRelationInversion

stereotype operations of the RelationInversion stereotype

Let us first consider addRelationInversion. The header of the opera-
tion begins with the name of the operation addRelationInversion. Then

48 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

the list of the affected stereotype slices follows. The operation affects one
stereotype slice of type RelationInversion. If an operation affects more
than one stereotype slice of the same type then the names of stereotype
slices have to be provided for each affected stereotype slice. Otherwise the
stereotype name is used as a name of the stereotype slice. For instance, we
use the name of stereotype RelationInversion to name the only stereotype
slice affected by addRelationInversion.

Most of the stereotype operations affect only one stereotype slice. Nev-
ertheless, in some cases an operation can use the values of the stereotype
items of one stereotype slice to update the value of another stereotype
slice. For instance, in Section 5.4 we introduce a stereotype operation
acquireBlocked. The operation plays a key role in the specification and
verification of the implementation of PIP which we discussed inChapter 2.
acquireBlocked uses information about a tree path which is provided by
a tree stereotype slice to create a stereotype instance which represents this
path in a sequence stereotype slice.

The header is completed by the list of input parameters.
addRelationInversion has two input parameters; source are sink are refer-
ences to a source and a sink of the added relation in the RelationInversion
stereotype slice.

Quite often stereotype operations have extra requirements for input pa-
rameters of reference an region types regarding the null reference. Quite
often it is expected that the value of an input parameter of reference type is
not null and the value of an input parameter of region type does not contain
null. These properties can be captured by corresponding pre-conditions. To
abbreviate the specification we introduce special notations which implicitly
add the corresponding pre-condition to the stereotype operation. For each
input parameter v whose type is defined as ref! we implicitly add to the op-
eration definition the pre-condition v 6= null and replace the type of v by ref.
In a similar way for each input parameter R whose type is defined as Reg!
we implicitly add to the operation definition the pre-condition null /∈ R and
replace the type of R by Reg. The notation is inspired by Spec# non-null
types [49]. Since the types of both source and sink are defined as ref! we
implicitly add to the addRelationInversion definition the pre-conditions
source 6= null and sink 6= null.

The body of the operation begins with the pre-conditions. A
pre-condition describes the state of the stereotype slice and input parameters
before the operation execution. The state of the stereotype slice is described
as properties of the values of stereotype items. For each stereotype operation
implicitly assumes the system invariants of all affected stereotype slices.

Let us recall that according to Definition 3 we denote the value of
stereotype sice StSlice on a pair 〈o,StItem〉 as o.StSlice.StItem. If the stereo-
type slice is clear from the context then we denote it as o.StItem.
addRelationInversion affects only one stereotype slice which has the same

3.3. STEREOTYPE OPERATIONS 49

name as its stereotype, RelationInversion. Since addRelationInversion
affects only one stereotype slice we can abbreviate a stereotype item access
v.RelationInversion.StItem as v.StItem.

The first pre-condition states that the input parameter sink plays the
role of the sink in the stereotype instance to which it belongs. The second
pre-condition specifies that source is not attached to a sink. This pre-
condition and the stereotype system invariant imply that the stereotype
instance in which source participates is a singleton stereotype item which
consists only of source.

The next part of the operation’s body is input instances. Here we specify
which instances can be affected by the operation. We use this information
to define the operation. The operation preserves the values of all stereotype
items which do not belong to the input instances. The input instances are
identified by their instance identifier. An instance identifier can be extracted
from each object which participates in the instance with the help of instID.

An input stereotype instance definition has the following syntax
InstanceName = instanceElement, where InstanceName is used in the
operation definition to identify the instance and instanceElement is an
object which participates in the instance. The instance identifier of the
instance InstanceName is instanceElement.instID. For instance,
addRelationInversion has two input instances inInst1 and inInst2 whose
instance identifers are source.instID and sink.instID, respectively.

In a stereotype operation definition we use an input instance name to
denote the set of objects which belongs to the stereotype instance. For
instance, in the definition of addRelationInversion we use inInst1 and
inInst2 to denote source.Elements and sink.Elements, respectively.

As we have mentioned above we use input instances to define a frame
of a stereotype operation. Since addRelationInversion has two input in-
stances its frame can be define as inInst1 ∪ inInst2, which is equivalent to
source.instID ∪ sink.instID. addRelationInversion does not affect val-
ues of stereotype items of objects which do not belong to inInst1∪ inInst2.

A stereotype operation execution can transfer an object from one stereo-
type instance to another. We describe such transformations of stereotype
instances in the ”Output instances:” section of a stereotype operation
definition. This part of the operation definition lists the output instances.

An output instance definition has the following syntax InstanceName =
Elements, where InstanceName is used in the operation definition to iden-
tify the instance and Elements is a set of objects which participate in the
output instance. For instance, addRelationInversion has one output in-
stance outInst which consists of the objects in inInst1 ∪ inInst2. In other
words addRelationInversion merges two input instances into one output
instance.

For each stereotype operation we check that the set of elements of the
input instances is equal to the set of objects in the output instances. The cor-

50 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

responding proof obligation is generated and checked for each stereotype op-
eration. For instance, for the stereotype operation addRelationInversion

we check the proof obligation outInst = inInst1 ∪ inInst2. The validity of
the proof obligation trivially follows from the definition of outInst.

The last part of the operation is Transformations:. It describes how the
operation execution changes the value of the stereotype items of the input
stereotype instances. The transformation is described as a semicolon sepa-
rated sequence of transformation rules. Each transformation rule is a triple
〈S,StItem, exp〉 where S is a set of objects, StItem is a stereotype item of
type T and exp is an expression of type T . The semantics of 〈S,StItem, exp〉
is defined in the following way ∀v ∈ S ⇒ StSlice′.v.StItem = exp, where
StSlice′ is the value of the stereotype slice after the operation execution. In
other words for all objects from S, the value of the stereotype item StItem
of the stereotype slice after the program execution is equal to exp. The
description of S and exp can depend on the value of the stereotype slice
before the operation execution. exp also can depend on the value of variable
v which is used for iteration over the objects in S. If the set of updated
objects is a singleton set S = {o} then we instead of 〈S,StItem, exp〉 write
〈o,StItem, exp〉.

In the definition addRelationInversion, the transformation consists of
two transformation rules. The first one is 〈source, sink, sink〉. This rule sets
the value of stereotype item sink of object source to the object referenced
by the input parameter sink. The second transformation rule
〈outInst,Source, sink.Source ∪ {source}〉 sets the values of stereotype item
Source of all objects from both input instances into sink.Source∪{source}.

If a value of a stereotype item of an object from an input instance is
not mentioned by the transformation rules of the stereotype operation then
the value is preserved by the stereotype operation. For instance, the trans-
formation rules of addRelationInversion say nothing about the values of
stereotype item sink of objects from inInst2. Therefore these values are
preserved by the operation.

Transformation rules in a definition of a stereotype operation are pos-
sibly inconsistent. For instance, if the dedition of a stereotype operation
includes transformation rules 〈S1,StItem, exp1〉 and 〈S2,StItem, exp2〉, and
there is an object o such that o ∈ S1 ∩ S2 and exp1 6= exp2 then the de-
scription of the stereotype slice after the operation execution is inconsis-
tent. One rule states that o.StSlice′.StInst = exp1 and another states that
o.StSlice′.StInst = exp2, where StSlice

′ is a value of stereotype slice after the
operation execution. To prevent such an inconsistency we check the proof
obligation S1]S2 for each pair of transformation rules 〈S1,StItem, exp1〉 and
〈S2,StItem, exp2〉 of each stereotype operation.

The basic operation has to preserve the stereotype system invariant.
Therefore, for each stereotype operation we check the proof obligation that
the output stereotype instance preserve the stereotype system invariant.

3.3. STEREOTYPE OPERATIONS 51

Since the values of elements which do not belong to the output instances
are not affected by the operation the above proof obligation is strong enough
to ensure preservation of the stereotype system invariant. For instance, for
the operation removeRelationInversion we check the proof obligations
InvRelationInversion [RelationInversion, outInst1] and
InvRelationInversion [RelationInversion, outInst2].

Source

sink

Source

sink
1

2

3

o’1

o1

o1

o1

1o2

(a) State of the stereotype slice StSlice before the stereotype operation execution.

Source

sink
1

2

3

o’1

o1

o1

o1

1o2

(b) State of the stereotype slice StSlice after the stereotype operation execution.

Figure 3.8: The figure depicts an execution of the operation
addRelationInversion〈StSlice〉(source, sink′) where variable source refers
in the object o12 and variable sink refers in object o′1.

52 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

Let us consider an example of an execution of the
addRelationInversion stereotype operation. The state of the stereotype
slice StSlice is shown on Figure 3.8(a). Variable source refers to the object o12
and variable sink refers to object o′1. The state of StSlice after the execution
of addRelationInversion〈StSlice〉(source, sink′) is shown on Figure 3.8(b).

The second stereotype operation which is defined in Figure 3.7 is
removeRelationInversion. removeRelationInversion is the inversion of
addRelationInversion. It takes one input stereotype instance and splits
it in two by moving an object from the source of the input instance into a
new singleton stereotype instance.

The only input parameter of the operation source is a reference to the
object which is moved by the operation in a disjoint stereotype instance.
The pre-condition of the operation checks that the stereotype instance to
which source belongs is not a singleton and source does not play the role
of the sink in the stereotype. The only stereotype instance which is affected
by an operation execution is inInst. The instance identifer of inInst is
source.instID. An operation execution splits inInst in two disjoint stereo-
type instances outInst1 and outInst2. outInst1 is a singleton stereotype in-
stance which contains source. All other objects of inInst belong to outInst2.
The first two transformation rules describe the values of sink and Source of
the only object which belongs to outInst1. The last transformation rule re-
moves source from the value of stereotype item Source of stereotype instance
outInst2.

Let us consider an example of an execution of the
removeRelationInversion stereotype operation. The state of the stereo-
type slice StSlice is shown on Figure 3.8(b). Variable source refers to the
object o12 and variable sink refers to object o′1. The state of StSlice after the
execution of removeRelationInversion〈StSlice〉(source, sink′) is shown on
Figure 3.8(a).

constructor createSource〈RelationInversion〉(source : ref)
{

〈source, sink,null〉 ;
〈source,Source, {source}〉 ;

}

constructor createSink〈RelationInversion〉(sink : ref)
{

〈sink, sink, sink〉 ;
〈sink,Source,∅〉 ;

}

Figure 3.9: Constructors of the RelationInversion stereotype.

3.3. STEREOTYPE OPERATIONS 53

Let us know consider stereotype constructors. Stereotype constructors
are a special kind of basic operation which is responsible for the initialization
of the stereotype items of a freshly allocated object. A constructor always
takes exactly one non-null input parameter of a reference type and it par-
ticipates in exactly one stereotype slice. Since the only input parameter is
a reference to a freshly allocated object there is no need for pre-conditions.
We also assume that a constructor does not access the values of stereotype
items of a freshly allocated object. The only output stereotype instance of a
stereotype constructor is a singleton stereotype instance which contains the
freshly allocated object. Since input and output instances are predefined
for all constructors there are no input and output instances sections in a
stereotype constructor definition. A constructor definition consists only of a
transformation section which initializes the stereotype items of the singleton
output instance.

In Section 3.2.2 we introduced function Dom which yields the set of
object references which participate in a stereotype slice. An execution of a
stereotype constructor for stereotype slice StSlice and an object o adds o to
Dom(StSlice).

For each stereotype constructor we check the proof obligation that the
system invariant is established for the output singleton stereotype instance.
Since the values of elements which do not belong to the output instance
are not affected by the constructor this proof obligation is strong enough to
ensure preservation of the stereotype system invariant.

Source

sink

o

(a) A singleton stereotype instance after an
execution of createSource.

Source

sink
o

(b) A singleton stereotype instance after after
an execution of createSink.

Figure 3.10: The stereotype instances after an execution of the constructors
of the RelationInversion stereotype for a freshly allocated object o.

54 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

We define two constructors for RelationInversionon Figure 3.9. The
first one is createSource. It is used to use a freshly allocated object as a
source. The other one is createSink. It is used to use the object as a sink.
To satisfy the stereotype invariants, createSource sets the sink of the input
object to null and the source to the singleton set which contains the input
object. createSink does the opposite. It sets the sink to the input object
and source to the empty set.

The result of the execution of both stereotype constructors for a freshly
allocated object o is shown in Figure 3.10. On the figures we show only
stereotype instances in which o participates and ignore the other stereotype
instances.

Quite often the same expressions over stereotype items can be used sev-
eral times in a program specification. Since the expression size can be large
we use functions to avoid duplications of such expressions.

We provide an example of a function definition on Figure 3.11. The
function definition begins with the keyword function, followed by func-
tion type. The type of the function declared on Figure 3.11 is Bool. After
the function type follows the function name, isSingletonSource. Simi-
larly to the stereotype operation headers the function header is concluded
by a declaration of the affected stereotype slices and input parameters.
isSingletonSource affects a stereotype slice of type RelationInversion

and has one input parameter o of type ref.

After the function header follows the function body. A function body
is an expression of the function type. In case of the isSingletonSource

function the body is the expression o.sink = null of type Bool. The function
body must not be recursive. The only variables on which the function body
depends are input parameters.

The function isSingletonSource checks if the input parameter belongs
to a singleton stereotype slice and plays the role of the source. The function
relies on the stereotype system invariant which states that if the sink of the
stereotype is null then the source of the stereotype is a singleton set.

We treat functions as abbreviations. If an expression mentions a function
then we refine the expression by replacing the function by the function body
where input parameters are replaced by actual parameters. In this way
all function applications can be eliminated from the expression. Therefore
when we consider program verification we assume that there are no function
applications.

If a function type is boolean then we call the function predicate. For
instance, isSingletonSource is a predicate.

3.3.2 Specification language of specifications

In the previous subsection we considered basic stereotype operations. In this
section we consider how to construct more advanced operations from the

3.3. STEREOTYPE OPERATIONS 55

function Bool isSingletonSource〈RelationInversion〉(o : ref)
:= o.sink = null

Figure 3.11: A function which checks if a given object belongs to a singleton
relation inversion instance and play the role of the source.

basic operations. We call such operations composite stereotype operations.
We introduce several operation composers which for given basic or composite
operation produce a new composite operation. Here we briefly consider the
specification language of specifications (denoted as SLS) which is used to
construct composite operations.

A definition of a composite operation consists of a header and a body.
The header of a composite operation has the same structure as the header
of a basic operation. It defines input parameters, affected stereotype slices,
and the operation name. The body of a composite stereotype operation is
an SLS term which describes the transformation of the affected stereotype
slices.

The syntax of SLS is shown on Figure 3.12. SLS consists of the following
expressions: operation call, conditional statement, sequential composition,
parallel composition, and skip operation. Since we use them to compose a
more complicated stereotype operation from the simpler stereotype opera-
tions we also call them operation composers. The complete definition of the
operational semantics of SLS and other relevant definitions and proofs are
provided in Section 6.3.

t ::= op(exp1, . . . , expn)
| if (ϕ) t else t

| t; t

|
fInst

‖
i∈Ind

op(exp1[i], . . . , expn[i])

| skip

Figure 3.12: SLS syntax.

Below we provide an informal description of the operational semantics
of SLS. Since stereotype operations describe transformations of the stereo-
type slices they can be naturally described in operational terms. Therefore
the operational semantics of the most SLS expressions is similar to the op-
erational semantics of the corresponding expressions of an imperative pro-
gramming language. On the other hand in Section 3.4 we describe how
we use stereotype operations for real source code specifications. We cannot
directly use operational descriptions of stereotype operations in specifica-
tions. Therefore in Section 6.4 we describe how stereotype operations can

56 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

be translated into logical descriptions in the universally quantified fragment
of FOL.

A composite stereotype operation can include calls of both basic and
composite operations. An operation call is denoted as op(exp1, . . . , expn)
where op is the stereotype operation name and exp1, . . . , expn are the actual
parameters of the call. A basic operation call is a basic building block of the
composite operations. A composite operation can call another composite
operation. Recursive calls are treated in a special way. For each recursive
operation the user has to provide extra specifications which are similar to a
loop invariant and a measure which guarantees termination. In this subsec-
tion we do not consider recursive operations in detail. Several examples of
recursive operations can be found in Appendix A and Appendix B.

A conditional statement is denoted as if (ϕ) t else t where ϕ is a
condition. Sequential composition is denoted as t; t. The semantics of both
is standard. If the condition of a conditional statement holds then the first
term is executed, otherwise the second one. Quite often there is no need for
an ”else” statement therefore we abbreviate if (ϕ) t else skip as if (ϕ) t.
A sequential composition transforms an input slice into an output slice if and
only if there exists an intermediate stereotype slice such that the first term
transforms the input slice into the intermediate slice and the second term
transforms the intermediate slice into the output slice. The intermediate
stereotype slice may not exist because of the pre-conditions violation.

The next operation composer is parallel composition, which is denoted

as
fInst

‖
i∈Ind

op(exp1[i], . . . , expn[i]). Here op is the name of the stereotype oper-

ation whose calls are executed in parallel, exp1[i], . . . , expn[i] where i ∈ Ind
are the actual parameters of the parallel calls of the operation op. fInst
is an auxiliary parameter which is used to define the frame of the parallel
composition execution. We explain the usage of fInst in Section 6.3. The
main idea behind the parallel composition is that if there are several oper-
ation calls whose effects are disjoint then the order of their execution does
not matter and we can execute them simultaneously.

Since the order of the operation execution does not matter the semantics
of the parallel composition is equivalent to
op(exp1[i1], . . . , expn[i1]); . . . ,op(exp1[im], . . . , expn[im]) where
I = {i1, . . . , im}. In other words the parallel composition is equivalent to
the sequential composition of an unbounded number of operation calls.

The above interpretation of parallel composition is valid only under the
assumption that the effects of the operation calls are disjoint. Therefore
for each parallel composition we check the proof obligation that for each
disjoint i, j ∈ I op(exp1[i], . . . , expn[i]) and op(exp1[j], . . . , expn[j]) affect
disjoint stereotype instances.

The last operation is skip. It is an identical transformation of an input

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 57

slice. It is used when we want to specify that an operation does not change
a stereotype slice.

Let us consider an example of composite operations. On Figure 3.13
we define operation acquireBlocked. The operation transfers a source
to the stereotype slice in which newInstEl participates. If source is null

then the operation does nothing. Otherwise the basic stereotype operations
of RelationInversion are used to remove source from the old stereotype
instance and to add it to the new one. acquireBlocked is a partial op-
eration. For instance, it is undefined if newInstEl is null. The transfor-
mation provided in Section 6.4 can be used to compute the pre-condition
of acquireBlocked. The pre-condition defines on which values of input
variables and stereotype slices the operation acquireBlocked is defined.

acquireBlocked〈RelationInversion〉
(source : ref , newInstEl : ref)

{
if (source = null)
then skip

else {
removeRelationInversion(source) ;
addRelationInversion(source, newInstEl.sink) ;

}
}

Figure 3.13: acquireBlocked stereotype operation.

3.4 Usage of stereotypes for source code specifica-

tion

In this section we consider applications of stereotypes for the specification
of heap structures and semantic relations between objects.

As an underlying programming language we chose Java [55], but the
described methodology can be used for any other object oriented language
without pointer arithmetic.

We build our specification and verification methodology on the top of
a basic verification methodology. We assume that the basic verification
methodology provides facilities to specify pre-conditions, post-conditions,
method frames, assumptions, assertions, and loop invariants. We also as-
sume that the basic verification methodology provides a formal heap defini-
tion and other auxiliary definitions. An example of such a methodology is
provided by the Boogie [75] tool. Boogie is an intermediate verification
language based on the weakest pre-condition calculus [43]. Boogie is used

58 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

by many verification tools as an underling verification tool. We also used
Boogie for our experiments which are described in Section 5.5.

A heap can be formalized as a polymorphic map from a pair 〈o, f〉 to
a value of type T , where o is a reference and f is a field of type T . In
specifications we denote the value of a field f of an object o in heap h as
h[o.f]. If the heap is clear from the context then we omit the heap and write
just o.f . We call o.f a location. A heap can contain ghost fields. A ghost
field is used only for specification and can be dropped during compilation
of the source code. We define a ghost field by adding the keyword ghost to
its definition. A predicate isAllocated(h, o) checks if the reference o points
to an allocated object in heap h. For each heap h isAllocated(h,null) is
false. Function typeOf(h, o) returns the dynamic type of the object which
is pointed to by the reference o. For each heap h the value of typeOf(h, o)
is undefined if o points to a non-allocated object or equal to null.

Pre- and post- condition definitions have to be provided by a user. They
are located in the program source code between a method header and the
method body. A pre- and post- condition definition consists of the keywords
requires and ensures, respectively, and an FOL formula. A pre-condition
can depend on the values of heap locations before the method execution.
A post-condition can depend on the values of both heap locations before
and after the method execution. Function old is used to access a value of a
location on a heap before the method execution. For instance, an expression
o.f in a post-condition is a value of the field f of the object o after the
method execution; an expression old(o.f) in a post-condition is a value of
the field f of the object o before the method execution. For the method body
the semantics of pre- and post- conditions can be described in the following
way. A pre-condition is a property which can be assumed before the method
execution. A post-condition is a property which has to hold after the method
execution if before the method execution all pre-conditions of the method
hold. For the method call the semantics of pre- and post- conditions can
be described in the following way. A pre-condition is a property which has
to hold before the method execution. A post-condition is a property which
can be assumed after the method execution if before the method execution
all pre-conditions of the method hold.

A special kind of post-condition is the frame specification. The frame
specifies which heap locations can be affected by the method invocation.
The frame specifications are also located in the program source code between
the method header and the method body. A frame specification consists of
the frame keyword followed by a set of locations. A method execution can
change only locations which are mentioned in the frame. A set of locations is
a set of pairs of reference and class field name. We use the following notation
to describe a set of locations. o.f where o is a reference and f is a field name
denotes the singleton set {〈o, f〉}. R.f where R is a set of references and
f is a field name denotes the set {o|o ∈ R ∧ 〈o, f〉}. S1 ∪ S2 denotes the

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 59

union of sets S1 and S2. S × {f1, . . . , fn} where S is a set of locations and
f1, . . . , fn are fields denotes the following set of locations

⋃n
i=1 S.fi. By ∗

we denote the set of all fields of an object. For instance, o.∗ is the set of
locations {i ∈ [1..n]|〈o, fi〉} where the set of fields of object o is {f1, . . . , fn}.

An assumption is used to assume the validity of an FOL formula at a
program point. An assumption specification is the keyword assume followed
by an FOL formula ϕ. The validity of ϕ is assumed at the program point
and can be used to verify the validity of other specifications. For instance
we can specify pre-conditions with the help of assumptions. The validity of
a pre-condition can be assumed At the beginning of the method body.

An assertion is used to check the validity of an FOL formula at a program
point. An assertion specification is the keyword assert followed by an FOL

formula ϕ. The validity of ϕ is checked at the program point. We can specify
post-conditions with the help of assertions. The validity of a post-condition
has to be asserted at all exit points of the method.

A loop invariant is a property which has to hold before a loop iteration
and has to be preserved by the loop body. A user has to provide loop invari-
ants for each loop to enable the weakest pre-condition calculus [43] based
verification. A loop invariant is located in the program source code between
the loop header and the loop body. A loop invariant consists of the Loop

Invariant keyword followed by an FOL formula. A special kind of loop in-
variant is loop frames. A loop frame specification describes which locations
are possibly affected by the loop execution. If h is the heap before the loop
iteration, h′ is the heap after the execution of the loop, and the location
o.f does not belong to the loop frame then h[o, f] = h′[o, f]. A loop frame
is assumed before the loop body execution and has to hold after the loop
body execution. A loop frame specification is located in the program source
code between a loop header and the loop body. A loop frame specification
consists of the frame keyword followed by a set of locations.

A program annotated with the above specifications can be verified with
the help of the weakest pre-condition calculus [43] (denoted as WPC). For
a given annotated program WPC generates proof obligations. Proof obli-
gations are logical properties which hold if and only if the program satisfies
the user provided specification. An automatic theorem prover is used to
check the validity of proof obligations. For instance, Boogie uses Z3 [39] to
verify the generated proof obligations.

We define our stereotype-based technique as an extension of the basic
verification technique which is described above. With this intention we in-
troduce several specification primitives which use stereotype slices defined
in Section 3.2 to specify heap properties in a single program point and
stereotype operations defined in Section 3.2.3 to specify heap transfor-
mation between different program points. To illustrate the application of
the introduced verification concepts we consider the specification and veri-
fication of an implementation of the observer pattern with the help of the

60 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

RelationInversion stereotype.

createObserver〈RelationInversion, Sequence〉(o : ref)
{

createSource(o) ;
createSingletonSequence(o) ;

}

addSeqBegin〈Sequence〉(o : ref, o′ : ref)
{

if (o ’ 6= null) addSequenceRelation(o , o ’) ;
}

removeSeqElement〈Sequence〉(o : ref)
Local variables:

nextEl = old(o . next) ;
prevEl = old(o . prev) ;

{
if(nextEl 6= nu l l) then removeSequenceRelation(o) ;
if(prevEl 6= nu l l) then removeSequenceRelation(o . prev) ;
if(prevEl 6= nu l l ∧ prevEl 6= nu l l)

then addSequenceRelation(prevEl , nextEl) ;
}

function Reg seqElements〈Sequence〉(o : ref)
:= if(o = nu l l) then ∅ else o .Elements

function Reg reachable〈Sequence〉(o : ref)
:= if(o = nu l l) then ∅ else o . Next∗∪ {o}

Figure 3.14: Auxiliary stereotype operations and functions.

To specify the implementation of the design pattern we need one more
stereotype, Sequence. We use the Sequence stereotype to specify sequences
of objects, e.g., various linked lists or a path in a tree. We define the
stereotype Sequence in Section 4. Here we just list the stereotype items,
operations, and predicates which we need for the specification of the observer
design pattern implementation.

As any other stereotype Sequence has a stereotype item Elements which
contains the objects which participate in the same stereotype instance.
Stereotype items next and prev refer to the successor and the predeces-
sor of an element of the sequence. Next∗ of an object o contains the set of
the elements which are reachable via the transitive closure of next starting

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 61

from o. first is the first element of the sequence.
The stereotype constructor of Sequence is createSingletonSequence.

It creates a singleton sequence instance. The two basic stereotype opera-
tions of the Sequence stereotype are addSequenceRelation and
removeSequenceRelation. The first one merges two sequence stereotype
instances into one by establishing a next relation between the last ele-
ment of the first stereotype instance and the first element of the second
stereotype instance. removeSequenceRelation is the inverse operation of
addSequenceRelation. It splits a stereotype instance in two independent
stereotype instances by cutting the next relation between two consequent
elements of the stereotype instance.

The predicate isSingletonSequence checks if a stereotype instance is
a singleton sequence.

To abbreviate specifications we introduce several composite stereotype
operations and functions. Their definitions are provided in Figure 3.14.
createObserver combines the constructors of RelationInversion and
Sequence stereotypes. Below we use createObserver to specify the con-
structor of the observer.

We use the operation addSeqBegin to add an object to the beginning
of a sequence stereotype instance. The first input parameter represents the
added object and the second one the first element of the sequence to which
the object is attached. It is possible that the sequence is empty. In this
case the second parameter is null and the operation does not change the
stereotype slice. Otherwise the operation executes addSequenceRelation.
removeSeqElement removes an element from the sequence. The only input
parameter refers to the removed element. If the removed element is not
the last one in the sequence the operation removes the relation between the
removed element and the next one. In a similar way if the removed element is
not the first one in the sequence the operation removes the relation between
the removed element and the previous one. If the removed element is both
not the first one and not the last one the operation merges the remaining
sequence tails into a one sequence.

The function seqElements returns the elements of the stereotype in-
stance to which the input element belongs. If the input element is null then
the function returns the empty set. The function reachable returns the set
of elements which are reachable via the transitive and reflexive closure of
next starting from the input parameter o. If the input parameter is null
then the function returns the empty set.

Let us now consider the implementation of the observer pattern. The
implementation consists of classes Observer and Subject. At first we de-
scribe the implementation of Observer and Subject. The implementation
description refers to the figures which contain both the implementation and
the specification of the design pattern. Some of the specification primitives
which we use to specify the design patten are explained later.

62 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

enum ObserverState = {stDetached , stOnConstruction , stAttached}

class Observer participate 〈RelationInversion : ri, Sequence〉{
int value ;
Observer nextObs , prevObs ;
ghost ObserverState st ;

Glue Invariant st = stDetached ⇒isSingletonSequence(this) ;
Glue Invariant st = stDetached ⇒isSingletonSource(this) ;
Glue Invariant st 6= stDetached ⇒ nextObs = next ;
Glue Invariant st 6= stDetached ⇒ prevObs = prev ;

Observer ()
stereotype createObserver(this) ;
ensures st = stDetached ;
{

createObserver(this) ;
st = stDetached ;

}

void update (Subject sub)
requires sub 6= null ;
requires this . sink = sub ;
requires invAllAttached(sub) ;
ensures invObserver(this) ;
frame this . va lue ;
{

value = sub . va lue ;
}

}

Figure 3.15: Definition and specification of the class Observer.

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 63

void add (Observer o)
requires st = stDetached ;
requires o 6= null ⇒ o . st = stAttached ;
ensures st = stOnConstruction ;
frame this . nextObs ∪ o . prevObs ∪ this .st ;
stereotype addSeqBegin(this , o) ;
{

i f (o != null){
nextObs = o ;
o . prevObs = this ;
addSequenceRelation(this , o) ;

}
st = stOnConstruction ;

}

void remove ()
requires st = stOnConstruction ;
requires nextObs 6= null ⇒ nextObs . st = stAttached ;
requires prevObs 6= null ⇒ prevObs . st = stAttached ;
ensures st = stDetached ;
frame nextObs . prevObs ∪ prevObs . nextObs ∪ this . st ;
stereotype removeSeqElement(this) ;
{

i f (nextObs != null)
nextObs . prevObs = prevObs ;

i f (prevObs != null)
prevObs . nextObs = nextObs ;

removeSeqElement(this) ;
st = stDetached ;

}

Figure 3.16: Definition and specification of add and remove methods of the
class Observer.

64 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

enum SubjectState = {stHead , stNotHead}

class Subject participate 〈RelationInversion : ri〉{
int value ;
Observer head ;
ghost SubjectState st ;

Glue Invariant st = stHead∧ head 6= null⇒
head = head . first ;

Glue Invariant seqElements(head) ⊆ this .Source ;
Glue Invariant ∀ o ∈ this .Source \ seqElements(head) :

o.st 6= stAttached ;

Subject ()
ensures invSubject(this) ;
stereotype createSink(this) ;
{

createSink(this) ;
st = stHead ;

}

void update (int newValue)
requires invSubject(this) ;
ensures invSubject(this) ;
frame this .Source . va lue ∪ this . va lue ;
{

this . va lue = newValue ;
Observer i t = head ;
while (i t 6= null)
Loop Invariant invSubjectSt(this , reachable(i t)) ;
frame (this .Source\ reachable(i t)) . va lue ;
{

i t . update (newVal) ;
i t = i t . nextObs ;

}
}

}

Figure 3.17: Definition and specification of the class Subject.

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 65

void attach (Observer obse rve r)
requires obse rve r . st = stDetached ;
requires invSubject(this) ;
ensures invSubject(this) ;
frame obse rve r . nextObs ∪ head . prevObs ∪ obse rve r .st

∪ this . head ;
stereotype addRelationInversion(this , ob s e rve r) ;
stereotype addSeqBegin(this , o) ;
{

addRelationInversion(observer , this) ;
st = stNotHead ;
ob s e rve r . add (head) ;
head = obse rve r ;
st = stHead ;
ob s e rve r . st = stAttached ;
ob s e rve r . update (this) ;

}

void detach (Observer obse rve r)
requires invSubject(this) ;
ensures invSubject(this) ;
ensures obse rve r . st = stDetached ;
frame obse rve r . nextObs . prevObs ∪ this . head ∪ this . st

∪ obse rve r . prevObs . nextObs ;
stereotype removeSeqElement(ob s e rve r) ;
stereotype removeRelationInversion(ob s e rve r) ;
{

obse rve r . st = stOnConstruction ;
st = stNotHead ;
ob s e rve r . remove () ;
removeRelationInversion(ob s e rve r) ;
i f (head = obse rve r)

head = obse rve r . nextObs ;
st = stHead ;

}

Figure 3.18: Definition and specification of the methods attach and detach
of the class Subject.

66 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

The implementation of class Observer is shown on Figure 3.15 and
Figure 3.16. The class header also defines in which stereotype slices the
class Observer participates. We consider the participation of a class in a
stereotype slice in Subsection 3.4.1.

The field value contains a copy of the corresponding field of the Sub-

ject. The value of value is the data which has to be synchronized for the
subject and observers. Below we formalize the invariant which states that
the value of the fields value has to be the same for the subject and all
attached observers.

Fields nextObs and prevObs are used to organize observers in a doubly-
linked list. The list is used by the subject to track all observers which are
attached to the subject. When an observer is attached to the subject the
observer added to the list and removed when it is detached.

Ghost field st is a ghost field which is used to define the glue invariant.
The definition of the glue invariant follows immediately after the definition
of st. Glue invariants are used to bind together stereotype slices and the
program heap. We consider glue invariants and states in Subsection 3.4.3.
The value of the field st changes during the program execution. It can
be assigned like a normal object field. These updates are related to glue
invariants and we also consider them in Subsection 3.4.3.

The constructor of the Observer creates an observer which is not at-
tached to a subject. The body of the constructor contains only specification
primitives but no source code. The first line of the constructor contains a
call of the stereotype operation createObserver. We use stereotype opera-
tions in the source code to specify the update of values of stereotype items.
Since such updates do not affect values of non-ghost fields. We consider the
usage of stereotype operations for ghost updates in Subsection 3.4.2.

Another stereotype construct which is used in the constructor of Ob-

server is a stereotype method specification. This specification begins with
the keyword stereotype. It uses stereotype operations to specify the
method behavior. We consider stereotype method specifications in Subsec-

tion 3.4.4.
The method update is executed by the subject to which the observer

is attached. The method notifies the observer regarding an update of the
subject. In response to the notification, the method synchronizes the value
of the field value with the value of the subject. The method add adds this
to the linked list whose first element is the input parameter o. If o is null
then the operation does nothing. The method remove removes this from
the linked list to which this currently belongs.

The implementation of class Subject is shown on Figure 3.17 and Fig-
ure 3.18. The field value contains the data which has to be synchronized
between the subject and observers. The field head contains a reference to
the list of observers which are attached to the subject. If there are no ob-
servers attached to the subject then head is null. The last field st is a ghost

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 67

field which is used as glue state.
The constructor creates a subject to which no observers attached. The

body of the constructor contains only specification primitives but not real
source code.

The method update updates the value of value and notifies all attached
observers. At first the method sets the new value of the field value. Then
the method notifies all the attached observers. To notify all the attached
observers the method declares a local variable it of type Observer and sets
it to the head of the list of attached observers. Then the loop iterates over
all attached observers and calls update. The loop terminates when it is equal
to null.

The method attach attaches the observer referred to by the input pa-
rameter. First the method calls add of the observer to add the attached
observer to the list of attached observers. Since the new head of the list is
observer the method sets the field head to observer. At the end the method
calls update of the connected observer.

The method detach is an inversion of the method attach. It detaches
the observer referred to by the input parameter observer from the subject.
First the method calls remove of observer to remove the attached observer
from the list of the attached observers. If observer is equal to head then
the execution of observer.remove() changes the first element of the list of
the attached observers. In this case the method sets the field head to ob-
server.nextObs.

Bool invObserver(o: Observer)
invObserver(o) ⇔ o.value = o.sink.value

Bool invSubjectSt(s: Subject, R: Reg)
invSubjectSt(s,R) ⇔ ∀o ∈ s.Source \R : invObserver(o)

Bool invAllAttached(s: Subject)
invAllAttached(s) ⇔ ∀o ∈ s.Source : o.st = stAttached

Bool invSubject(s: Subject)
invSubject(s) ⇔ invSubjectSt(s,∅)∧invAllAttached(s)∧s.st = stHead

Figure 3.19: Behavioral invariants of Subject and Observer classes

Let us now consider the properties of the observer design pattern imple-
mentation which we would like to verify. As we have mentioned above we
would like to verify that the value of of the field value has to be the same for
a subject and all observers which are attached to the subject. We formalize
this property using predicates whose definitions are shown in Figure 3.19.
invObserver(o) holds if and only if the value of the field value of o is equal to

68 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

the value of the subject to which o is attached. In other words the observer
o is synchronized with its subject. invSubjectSt(s,R) holds if and only if
all observers which are attached to the subject s and do not belong to the set
R are synchronized with the subject. The predicate invAllAttached has a
technical nature and we consider it later. invSubject summarizes the above
properties. Among others it contains invSubjectSt(s,∅) which states that
all observers which are attached to the subject s are synchronized with the
subject. We call the above properties behavioral invariants.

Essentially we would like to guarantee preservation of the behavioral
invariants for all instances of the design pattern. For instance, if there are
three instances of the observer pattern and one of them attaches an observer
we would like to be sure that the behavioral invariant is preserved for all
three instances. Verification of the behavioral invariant preservation relies
on topological properties, e.g., observers form an acyclic doubly-linked lists,
the field head of an observer contains the head of a list, different subjects
refer to different lists. We consider the specification and verification of
behavioral invariants in Section 3.4.5.

The rest of the section is organized as follows.

In Subsection 3.4.1 we describe participation of a class in stereotype
slices. In Subsection 3.4.2 we describe how stereotype operations can
be used to specify ghost updates of stereotype items. Subsection 3.4.3

describes how stereotype slices and program heap can be bound together
with the help of glue invariants. Subsection 3.4.4 describes how stereo-
type operations can be used to specify class methods and loop invariants.
This section is concluded by Subsection 3.4.5 which specifies how on top
of topological heap properties behavioral invariants can be specified and
verified.

3.4.1 Participation of a class in a stereotype slice

We use the notation Cl participate 〈St1 : StName1, . . . ,Stn : StNamen〉
to specify that a class Cl participates in stereotype slices
StName1, . . . ,StNamen of types St1, . . . ,Stn. It is possible that several
classes participate in the same stereotype slice. Such shared stereotype
slices identify a semantic relation between objects. For instance, Subject
and Observer share the same stereotype instance RelationInversion : ri
(see Figure 3.15 and Figure 3.17). Therefore from the information which
is provided by class headers (both of them use the same stereotype name
ri) we can conclude that there is a semantic relation between Subject and
Observer which is described by the stereotype RelationInversion. In
this way we can explicitly specify that there is a semantic relation between
different classes and specify the nature of this relation.

Quite often a class does not share a stereotype slice of type St with
other classes and the class participates in only one stereotype slice of type

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 69

St. In this case we allow one to omit the stereotype slice name. We call this
stereotype slice unnamed. For instance class Observer (see Figure 3.15)
participates in an unnamed stereotype slice of type Sequence. This slice
is used to organize objects of type Observer into doubly-linked lists. The
objects of other types do not participate in this slice. For each unnamed
stereotype slice of type St which participates in class Cl we implicitly add
the name Cl :: St. Since Cl participates in the only one unnamed stereotype
slice of type St the generated name is unique. By doing so we reduce all
unnamed stereotype slices to named stereotype slices.

A class can participate in several stereotype slices of the same type. For
instance, in Section 5.1 we provide a specification of an implementation
of a list with iterator. The class List (see Figure 5.1) participates in two
stereotype slices of type RelationInversion. One is used to specify the
semantic relation between the list and its iterator, another one is used to
specify the ownership-like relation between the list and the list nodes.

We introduce predicate partIn(Cl,StName) which holds if and only if
the class Cl participates in the stereotype slice StName. For a given program
the predicate can be constructed from the class headers.

From the class header we can extract information about which stereotype
slices have to be declared for a given program. A stereotype slice St : StName
of type St has to be declared for a given program if and only if the program
contains at least one class Cl such that partIn(Cl,StName) holds. We
assume that all classes which participate in a stereotype slice declare it
with the same type St. The validity of the last property can be checked by
examination of class headers.

The values of stereotype items are used in the program specification. If
exp is an expression of type Cl, StName is a stereotype slice of type St,
and StItem is an item of the stereotype St then we denote access to the
StItem of the stereotype slice StName of the object which is referred by the
expression exp as exp.StName.StItem. If there is only one stereotype slice
of type St such that St has stereotype item StItem then the stereotype slice
can be omitted form the access expression and the access expression can be
described as exp.StItem. For instance, since class Subject participates in
only one stereotype slice of type RelationInversion which name is ri we
can abbreviate s.ri.Source as s.Source where s is a variable of type Subject.

Recall that according to Definition 4 an object o participates in a
stereotype slice StName if and only if o ∈ Dom(StSlice). On the other hand
in this section we have defined participation of a class Cl in a stereotype slice
StSlice. The consistency between participation of an object o of type Cl in a
stereotype slice StName and participation of class Cl in the stereotype slice
StName is formalized by the following definition.

Definition 18 (System invariant about the participation in a stereotype
slice.). We say that the system invariant about the participation in a stereo-

70 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

type slice holds for a stereotype slice StName and a heap h (denoted by
SysInvPart[StName,h]) if
∀o : o ∈ Dom(StName) ⇔
isAllocated(h, o) ∧ partIn(typeOf(h, o),StName)
An object o participates in a stereotype slice StName if and only if o is
allocated and the class of o participates in the stereotype slice StName.

In the next subsection we prove that for each stereotype slice the above
invariant holds in each program point.

3.4.2 Ghost updates

In this subsection we consider how stereotype operations can be used to
specify ghost updates of stereotype items during the program execution.
In Section 6.4 we provide a transformation of stereotype operations to a
pair of pre- and post- conditions. In this section we rely on this transfor-
mation and treat a stereotype operation as a pair of pre and post condi-
tions. In Section 6.4 it is also proven that for each affected stereotype
slice StName each stereotype operation preserves the stereotype system in-
variant SysInv[StSlice]. We use the above property to prove that for each
stereotype slice the stereotype system invariant holds at each program point.

Each stereotype operation header contains a list of input parameters
and a list of affected stereotype slices. Both the input parameters and the
affected slices have to be instantiated when the stereotype operation is exe-
cuted in the source code. For instance, the header of the stereotype operation
addRelationInversion is
addRelationInversion〈RelationInversion〉(source : ref, sink : ref).
Therefore the values of the input parameters source and sink and the value
of the affected unnamed stereotype slice of type RelationInversion have
to be instantiated. A valid call of RelationInversion from source code
could look like addRelationInversion〈ri〉(v, u) where v and u are vari-
ables of a reference type and ri is a name of a stereotype slice of type
RelationInversion which is defined in the verified program. For each
call we check that the provided stereotype slices have proper types. We
also check that if an operation call affects to stereotype slices StName1 and
StName2 of the same type then StName1 6= StName2. Since there is no
aliasing between stereotype slices the last check is sufficient to guarantee
that the operation call does not affect the same stereotype slice twice.

In most cases a method calls stereotype operations to update a stereotype
slice in which the enclosing class participates. Therefore if a stereotype op-
eration affects the stereotype slice StName of type St and the enclosing class
participates in only one stereotype slice of type St then the nameStName
can be omitted from the op call. For instance, method attach of class Sub-
ject (see Figure 3.18) makes the following stereotype operation call

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 71

addRelationInversion(observer, this). Since addRelationInversion af-
fects a stereotype slice of type RelationInversion and class Subject par-
ticipates in only one stereotype slice of type RelationInversion ri,
addRelationInversion(observer, this) is an abbreviation for
addRelationInversion〈ri〉(observer, this).

In Section 6.4 we will describe the procedure which transform a given
stereotype operation into a pair of pre- and post- conditions. We use these
pre- and post- conditions to define the semantics of a stereotype operation
call from the source code.

Definition 19 (Semantics of a stereotype operation call). If

• the header of a stereotype operation op is
〈St1 : StNameop1 , . . . ,Stn : StNameopn 〉op(v1 : T1, . . . , vm : Tm)

• the pre-condition of op is the FOL formula pre which depends on

– formal parameters v1, . . . , vm

– the states of the affected stereotype slices StNameop1 , . . . ,
StNameopn before the operation execution

• the post-condition of the op is the FOL formula postop which depends
on

– formal parameters v1, . . . , vm

– the states of the affected stereotype slices StNameop1 , . . . ,
StNameopn before the operation execution

– the states of the affected stereotype slices StName′op1 , . . . ,
StName′opn after the operation execution

then the semantics of the operation call
〈StName1, . . . ,StNamen〉op(exp1, . . . , expm) where

• StName1, . . . ,StNamen are the stereotype slices affected by the opera-
tion call

• exp1, . . . , expm are the actual parameters of the operation call

can be defined as:

1. To each stereotype slice StNamei we assigned a new value denoted as
StName′i where i ∈ [1..n].

2. Before the operation execution the assertion assert pre′op is checked,
where pre′op is constructed from preop by replacing all occurrences of
vi by expi and StNameopj by StNamej where i ∈ [1..m] and j ∈ [1..n].

72 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

3. After the operation execution the assumption assume post′op is as-
sumed, where post′op is constructed from postop by replacing all oc-

currences of vi by expi, StNameopj by StNamej , and StName′opj by
StName′j where i ∈ [1..m] and j ∈ [1..n].

As an example of the stereotype operation call let us consider the call
addRelationInversion(observer, this) form the method attach of class
Subject (see Figure 3.18). As we have mentioned above
addRelationInversion(observer, this) is an abbreviation of
addRelationInversion〈ri〉(observer, this). The operation execution is
equivalent to:

• Assignment to the stereotype slice ri of a new value which is denoted
as ri′

• Assertion of the operation pre-conditions

– this.ri.sink = this generated from the first operation
pre-condition.

– observer.ri.sink = null generated from the second operation pre-
condition

– observer.ri.instID 6= this.ri.instID checks that input instances
are disjoint

• Assumption of the post condition:

– observer.ri′.sink = this generated from the first transformation
rule.

– ∀o : o 6= observer ⇒ o.ri′.sink = o.ri.sink the frame property
generated from the first transformation rule.

– ∀o : o ∈ observer.ri.Elements ∪ this.ri.Elements ⇒
o.ri′.Source = this.ri.Source ∪ {observer} generated from the
second transformation rule.

– ∀o : o /∈ observer.ri.Elements ∪ this.ri.Elements ⇒
o.ri′.Source = o.ri.Source the frame property generated from the
second transformation rule.

If the post-condition is inconsistent then the soundness of the verification
can be violated. For instance, if a post-condition of a stereotype operation
is false and op is called from the body of a method m then the method
m would be verified for any post-condition including post-condition false.
Therefore in Section 6.4 we also prove for each stereotype operation that
if the operation pre-condition holds then the operation post-condition is
feasible. In this way we guarantee that a stereotype operation execution
does not violate soundless of the method verification.

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 73

Stereotype constructors play a special role and therefore their execution
differs from the execution of normal stereotype operations. Below we define
the syntactic constraints imposed on the verified program. One of the con-
straint states that the stereotype constructors can be executed only in the
beginning of the class constructors. A stereotype constructor is executed
immediately after a new object allocation but before the execution of the
constructor of the object. In other words all stereotype constructors calls
are completed before the class constructor execution.

In case of the inheritance, all stereotype constructors are executed before
the the execution of the base constructor. As an example let us consider
the following situation: a class A participates in a stereotype slice StNameA
and a subclass B of the class A participates in a stereotype slice StNameB.
The constructor of the class A executes a stereotype constructor opA and
the the constructor of class B executes a stereotype constructor opB. If a
new object of type A is allocated then:

• the stereotype constructor opA is executed

• the constructor of class A is executed

If a new object of type B is allocated then:

• the stereotype constructor opA is executed

• the stereotype constructor opB is executed

• the constructor of class A is executed

• the constructor of class B is executed

Thus we can be sure that the stereotype system invariant is enforced
for a fresh allocated object before the beginning of the class constructor
execution.

In Section 6.4 we will proven that for each affected stereotype slice
StName each stereotype operation preserves the stereotype system invariant
SysInv[StSlice]. We are using this property of stereotype operations to
guarantee that for each stereotype slice which is declared by the program
the stereotype system invariant holds at every program point. On the other
hand a direct update of a stereotype slice can violate the stereotype system
invariant. Therefore we forbid direct updates of stereotype items.

To guarantee that the stereotype system invariant holds at every program
point we have not only to preserve the invariant but also establish it for
freshly allocated objects. As we have mentioned in Subsection 3.3.1 we
use stereotype constructors to establish the stereotype system invariant for
the freshly allocated objects. Therefore we require that the body of each
constructor of a class Cl begins with the stereotype constructors for each
stereotype slice in which class Cl participates. In this way we also can

74 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

guarantee the preservation of SysInvPart[StName, h] which we introduced
in Subsection 3.4.1.

Let us combine the syntactic constraints which we impose on a verified
program.

Definition 20 (Syntactic constraints imposed on verified programs).

• Direct updates of stereotype items are forbidden. Values of stereotype
items are updated only by stereotype operations.

• The body of each constructor of a class Cl which participates in stereo-
type slices StName1, . . . ,StNamen of types St1, . . . ,Stn has to begin
with op1(this), . . . ,opn(this) where op1, . . . ,opn are constructors of
stereotypes St1, . . . ,Stn.

• A stereotype constructor can be executed only at the beginning of a
class constructor.

The above constraints can be verified by a simple syntactic procedure.
Therefore we assume that the above constraints hold for all verified pro-
grams.

To prove the preservation of the stereotype system invariant we need
a proper description of the initial program state. We describe the initial
program state in the following definition:

Definition 21 (Initial program state). In the initial program state the fol-
lowing holds:

• ∀o : ¬isAllocated(h, o) where h is the initial program heap. That is,
at the beginning of the program execution there are no allocated objects.

• For each stereotype slice StSlice defined by the program at the beginning
of the program execution the following holds: Dom(StName) = ∅.
That is, at the beginning of the program execution no object participates
in any of the program-defined stereotype slices.

Let us now prove theorem about the preservation of the stereotype sys-
tem invariant.

Theorem 1 (Preservation of the stereotype system invariant). At each pro-
gram point of the program which satisfies the syntactic constraints from Def-

inition 20 for each stereotype slice which is declared by the program holds
SysInv[StName] ∧ SysInvPart[StName,h] where h is the program heap at
the current program point.

Proof. The proof is done by induction over the program execution.
Induction base. According to Definition 21 at the beginning of the

program execution none of the objects is allocated and none of the objects

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 75

participates in any of stereotype slice. Therefore for any program-defined
stereotype slice SysInvPart[StName, h] trivially holds where h is the pro-
gram heap at the beginning of the program execution.

According to Definition 21 at the beginning of the program execution
Dom(StName) = ∅ holds for any program-defined stereotype slice StName.
Since all the properties SysInv[StName] include universal quantification
over Dom(StName), SysInv[StName] trivially holds.

Induction step. Let us first prove the preservation of
SysInvPart[StName, h]. According to Definition 18

SysInvPart[StName, h] holds if and only if ∀o : o ∈ Dom(StName) ⇔
isAllocated(h, o)∧partIn(typeOf(h, o),StName). partIn does not depend
on the program state. Therefore the validity of SysInvPart can be affected
only by modification of Dom, isAllocated, and typeOf. Dom is modified
only by stereotype constructor and isAllocated and typeOf are modified
only by an object allocation. According to the syntactic constraints from
Definition 20 an allocation of a new object o of type Cl is always coupled
together with the execution of the stereotype constructor op(o) for each
stereotype slice StName in which class Cl participates. We denote the state
of the heap and the sate of the stereotype slice before the object allocation
and the stereotype constructor execution as h and StName, respectively. We
denote the state of the heap and the sate of the stereotype slice after the ob-
ject allocation and the stereotype constructor execution as h′ and StName′,
respectively. The effects of the allocation of object o and the execution
of stereotype constructor op which are relevant to SysInvPart[StName, h]
are:

• ∀o′ : o′ 6= o⇒ (isAllocated(h, o′) ⇔ isAllocated(h′, o′)),
isAllocated(h, o) is false, and isAllocated(h′, o) is true. These re-
lations are established by the allocation of object o.

• ∀o′ : o′ 6= o⇒ (typeOf(h, o′) = typeOf(h′, o′)),
typeOf(h, o) is undefined, and typeOf(h′, o) = Cl . These relations are
established by the allocation of object o.

• Dom(StName′) = Dom(StName) ∪ {o}. This relation is established
by the execution of stereotype constructor op.

• for each class Cl partIn(Cl,StInst′) = partIn(Cl,StInst).

Let us now prove that SysInvPart[StName, h] implies
SysInvPart[StName′, h′]. For each object o′

o′ ∈ Dom(StName′) ⇔ o′ ∈ Dom(StName) ∪ {o} ⇔
(o′ 6= o ∧ isAllocated(h, o′) ∧ partIn(typeOf(h, o′),StName)) ∨ o′ = o ⇔
(o′ 6= o ∧ isAllocated(h′, o′) ∧ partIn(typeOf(h′, o′),StName′))∨
(o′ = o ∧ isAllocated(h′, o′) ∧ partIn(typeOf(h′, o′),StName′)) ⇔
isAllocated(h′, o′) ∧ partIn(typeOf(h′, o′),StName′).

76 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

If we combine the above then we get ∀o′ ∈ Dom(StName′) ⇔
isAllocated(h′, o′) ∧ partIn(typeOf(h′, o′),StName′) which implies
SysInvPart[StName′, h′].

Let us now prove the preservation of SysInv[StName]. According to
the syntactic constraints from Definition 20 the values of stereotype items
are updated only by stereotype operations. On the other hand in Sec-

tion 6.4 in Theorem 30 it is proven that for each affected stereotype
slice StName each stereotype operation preserves the stereotype system in-
variant SysInv[StSlice]. Therefore we can conclude that SysInv[StSlice] is
preserved by the program execution.

Let us now consider how stereotype operations are used to specify the
implementation of the observer design pattern which is considered above.

On Figure 3.15 we can see the definitions of the constructor and update
method of the class Subject. The constructor uses stereotype construc-
tors createSource and createSingletonSequence to initiate the stereo-
type items of the stereotype slice ri of type RelationInversion and of the
unnamed stereotype slice of type Sequence. Both constructors are packed
into one stereotype operation createObserver. createSource creates a
singleton stereotype instance in ri where a freshly allocated object plays the
role of a source. createSingletonSequence creates a singleton sequence
stereotype instance which is used to specify that the freshly allocated object
forms a singleton linked list. The update method does not use any stereotype
operation calls because it does not change the heap topology.

On Figure 3.16 we can see the definitions of the methods add and re-
move of class Observer. The method add uses addSequenceRelation to
preserve the consistency between the doubly-linked list formed by the ob-
servers and the stereotype slice which is used to specify properties of this
list. An execution of addSequenceRelation updates the Sequence stereo-
type slice in a way that it reflects the addition of the new element to the
beginning of the doubly-linked list. In the similar way method remove uses
removeSeqElement to reflect in the stereotype slice Sequence the removal of
an element from the doubly-linked list. The execution of removeSeqElement
moves this into a separate stereotype instance. Please note that even though
removeSeqElement moves this into the separate stereotype instance, fields
nextObs and prevObs of this still refer to the list elements to which this

used to belong before the operation execution. We discuss in more detail the
relation between the heap fields and stereotype items in Subsection 3.4.3.

On Figure 3.17 we can see the definitions of the constructor and method
update of the class Observer. The constructor uses stereotype construc-
tor createSink to initiate the serotype items of the stereotype slice ri.
createSink creates a singleton stereotype instance in ri where a freshly al-
located object plays the role of a sink. The update method does not use any
stereotype operation calls because it does not change the heap topology.

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 77

On Figure 3.18 we can see the definitions of the methods attach and de-
tach of the class Subject. The method attach uses addRelationInversion
to reflect the attachment of the observer observer to the subject. In a sim-
ilar way the method detach uses removeRelationInversion to reflect the
detachment of the observer observer from the subject.

You can see that stereotype operation calls are strongly related with field
updates. Therefore most of the stereotype operation calls can be inferred
from the field updates. In this thesis we describe only the most essential
machinery used in stereotype-based verification and do not consider speci-
fication inference. Nevertheless we believe that the inference of stereotype
operation calls is an interesting direction for the future work.

3.4.3 Glue invariants

Up to now we have considered stereotype specifications independently from
the program heap, without connection between the items of a stereotype
slice and the program heap fields. To couple together the stereotype items
and the heap fields we introduce glue invariants. A glue invariant is a
universally quantified FOL formula which depends on the variable this and
can mention stereotype items of any stereotype slice and fields of any class.

Glue invariants have standard visible state semantics [102]: we assert
that all glue invariants hold for all objects at the end of a method body
and before a method call; we assume the invariant holds at the beginning
of a method body and after a method call. Constructors are treated in
a special way. At the beginning of a constructor we assume that all glue
invariants hold for all objects excluding the freshly allocated one. In [102]
it is proven that the above assumptions are valid. The proof is done by
induction over the program execution. We also add the glue invariants of
all objects to all loop invariants. We choose the visible state semantics to
avoid specification overhead. Otherwise we would have to specify explicitly
where we can assume a glue invariant and where we have to assert it.

Nevertheless there are several typical situations when the visible state
semantics is not flexible enough. The first typical situation is when a heap
structure is rebuilt. For instance if a forward link of a double linked list
is updated but the respective backward link still has an old value and we
would like to make a method call between these two updates. Another
typical situation which displays a flexibility problem is a topology change.
For instance in the PIP Subsection 5.4 example we will see that a node
can dynamically switch from the participation in a tree to the participation
in a cyclic list.

To address these flexibility issues we introduce glue invariant states. A
glue invariant state is a ghost field of an enumeration type whose elements
correspond to different topological states of a class instance. For instance,
in the list example we could have a glue invariant state with two states.

78 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

When an object is in the first glue invariant state a backward link is broken.
When an object is in the second glue invariant state both the forward and
the backward links are consistent with the respective sequence stereotype
slice. In the PIP Subsection 5.4 example we also have two states: one
corresponds to the situation when a node participates in a tree, and the
other one when a node participates in a cyclic list. We use a glue invariant
and stereotype items to establish relations between glue invariant states of
different objects.

Here we intentionally do not put any restrictions on the classes and
stereotype slices which a glue invariant can mention. By this we try to avoid
introducing of extra machinery and keep our approach relatively simple.

Let us now consider how the glue invariants and glue states are used to
specify the implementation of the observer design pattern.

On Figure 3.15 we can see the definition of the Observer glue states
and glue invariants. The glue state of Observer is represented by the field
st of type ObserverState. The values of type ObserverState represent
possible topological states of the observer:

• stDetached - the observer is detached from a subject.

• stAttached - the observer is attached to a subject.

• stOnConstruction - the observer in an intermediate state between at-
tached and detached.

The Observer has four glue invariants. The first two glue invariants
state that if an observer is in the state stDetached then the observer forms
a singleton stereotype instance in both the Sequence and the ri stereotype
slice. The last two glue invariants state that if the observer is in the state
stOnConstruction or stAttached then fields nextObs and prevObs are equal
to the respective stereotype items of the Sequence stereotype slice. Since
stereotype items next and prev form an acyclic sequence the same properties
are inherited by nextObs and prevObs. In this way we can be sure that
nextObs and prevObs form a doubly-linked list.

At the beginning of the constructor of Observer the validity of the
invariant is assumed for all the objects excluding this. The constructor sets
the glue state of the freshly allocated object to stDetached. At the end of
the constructor the validity of all glue invariants is checked for all of the
allocated objects. The glue invariants of all allocated objects excluding this

are preserved. Since the state of this is stDetached we have to prove that this
forms the singleton instances in the Sequence and the ri stereotype slice.
This immediately follows from the post-condition of the call of stereotype
operation createObserver. The post-condition of the constructor states
that the state of the freshly allocated object is stDetached.

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 79

The method updated does not change the heap topology and therefore
does not need to change the glue state. Due to the same reason the verifi-
cation of the glue invariant is trivial.

On Figure 3.16 we can see the definitions of the methods add and re-
move of the class Observer. The pre- and post- conditions of the method
add state that the method execution changes the glue state of this from
stDetached to stOnConstruction. The actual change of the state happens at
the end of the method body. The pre-condition also requires the glue state
of the input parameter o to be stAttached. We need this pre-condition since
the method can affect the glue state of o. Since we change the state of the
object this from stDetached to stOnConstruction we have to verify that at the
end of the method body the last two glue invariants hold. These invariants
state that the doubly linked list formed by the observers is consistent with
the Sequence stereotype slice. The invariant validity is guaranteed by con-
sistent usage of heap field updates and stereotype operation calls. We also
have to prove that the glue state of o is preserved by the method execution.
It is also achieved by a consistent usage of heap field updates and stereotype
operation calls.

In a similar way the pre- and post- conditions of the method remove
state that the method execution changes the glue state of this from
stOnConstruction to stDetached. The actual change of the state happens at the
end of the method body. The pre-condition also requires the glue state of
this.nextObs and this.prevObs to be stAttached. We need this pre-condition
since the method can affect the glue states of these objects. Since we change
the state of the object this from stOnConstruction to stDetached we have to
verify that at the end of the method body the first two glue invariants hold.
These invariants state that this forms singleton instances in the Sequence

and the ri stereotype slice. This immediately follows from the post-condition
of the call of stereotype operation removeSeqElement. We also have to prove
that the glue states of this.nextObs and this.prevObs are preserved by the
method execution.

On Figure 3.17 we can see the definition of the Subject glue states and
glue invariants. The glue state of Subject is represented by the field st

of type SubjectState. The values of the type SubjectState represent
possible topological states of the subject:

• stHead - field head points to the head of the list of observers attached
to the subject.

• stNotHead - field head points to some other object.

The Subject has three glue invariants. The first glue invariant states
that if the subject glue state is stHead then the field head points to the head
of the list of observers attached to the subject. The last two glue invariants
establish the relation between this.ri.Source and head.Sequence.Elements.

80 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

this.ri.Source contains the set of observers which are attached to the sub-
ject. head.Sequence.Elements contains the set of observers which partic-
ipate in the doubly-linked list to which head belongs. If an instance of
the design pattern is not under construction then this.ri.Source has to be
equal to head.Sequence.Elements. Nevertheless during the design pattern
update it is possible that head.Sequence.Elements is already updated while
this.ri.Source is not yet updated. In this case an observer can be attached
to a doubly-linked list but not to the instance of the RelationInversion

stereotype slice ri, where the subject participates. The glue state of these
observers have to be stOnConstruction. The last two glue invariants state
that this.ri.Source and head.Sequence.Elements contain the same elements
excluding those whose glue state is stOnConstruction. If the head is null then
the value of head.ri.Elements is undefined. Therefore in the glue invari-
ants we use seqElements(head) instead of head.ri.Elements. seqElements

is defined on Figure 3.14 and returns the empty set if head=null.
The constructor of Subject sets the glue state of the freshly allocated

object to stHead. The validity of the glue invariant at the post state follows
from the fact that the default value of head is null and that according to
the post-condition of createSink this.ri.Source is equal to the empty set.

The method updated does not change the heap topology and therefore
does not need to change the glue state. Due to the same reason verification
of the glue invariant is trivial.

On Figure 3.18 we can see the definitions of the methods attach and
detach of the class Subject. The method attach adds observer to the list
of observers which are attached to the subject by calling of the method add
of observer. The method execution violates the first glue invariant which
states that head points to the head of the list of observers attached to the
subject. Therefore before the method call of add we change the glue state of
the subject to stNotHead. The glue state of the subject is restored to stHead

after the value of head is set to observer which is the new head of the list
of observers.

The method attach also requires the state of the object observer to be
stDetached. Execution of the method add changes the state of the object
observer from stDetached to stOnConstruction. At the end of the method we
change the state of the object observer from stOnConstruction to stAttached.

The method detach removes observer from the list of observers which are
attached to the subject by calling of the method remove of observer. The
method execution can violate the first glue invariant which states that head
points to the head of the list of observers attached to the subject. Therefore
before the method call of remove we change the glue state of the subject
to stNotHead. The glue state of the subject is restored to stHead after the
value of head is set to the new head of the list of observers.

The method detach also ensures that after the method execution the
state of the object observer is stDetached. According to the behavioral in-

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 81

variant invSubject which we consider in Subsection 3.4.5 the state of
observer before the method execution is stAttached. At the beginning of
the method we change the state of the object observer from stAttached to
stOnConstruction. Execution of the method remove changes the state of the
object observer from stOnConstruction to stDetached.

3.4.4 Stereotype operations for source code specification

In Subsection 3.4.3 we have described how stereotypes can be used to
specify ghost updates of stereotype items. If a method contains such a
stereotype operation call then the precise specification of the method has
to specify how the execution of the stereotype operation changes the values
of the stereotype items. The same is true for loops. If a loop body calls a
stereotype operation then the effect of the operation has to be specified in
the loop invariant. As we have seen in Subsection 3.4.3 a specification
of a stereotype call can have a significant size. Therefore in this subsec-
tion we describe how stereotype operation calls can be used in the method
specifications and the loop invariants.

Let us now consider method stereotype specifications. A method stereo-
type specification is located in the program source code between the method
header and the method body. A stereotype method specification consists
of the keywords stereotype followed by a stereotype operation call. The
stereotype operation call can depend on the specified method input pa-
rameters and describes how the method execution changes the values of
the stereotype items. Most of the methods affect the states of only a few
stereotype slices and preserve the values of the stereotype items of all other
stereotype slices. Therefore if a stereotype slice StName is not mentioned in
the method stereotype specifications we add stereotype 〈StName〉skip()
to the method specifications.

We define the semantics of a method stereotype specification by reducing
it to method pre- and post- conditions. In Definition 19 we have described
how for a given stereotype operation call of a stereotype operation op to con-
struct the pre-condition pre′op and the post-condition post′op which specify
the operation call. We use pre′op and post′op to define the semantics of the
stereotype specification.

Definition 22 (Semantics of the method stereotype specification). The
method specification stereotype〈StName1, . . . ,StNamen〉
op(exp1, . . . , expm) is equivalent to the pair of method specifications
requires pre′op and ensures post′op where the construction of pre′op and
post′op is defined in Definition 19. Here StName1, . . . ,StNamen refer to
the states of stereotype slices before the method execution and
StName′1, . . . ,StName′n refer to the states of stereotype slices after the
method execution.

82 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

In the similar way we use stereotype operation calls to specify loop in-
variants. A stereotype loop specification consists of the keyword
stereotype followed by a stereotype operation call. The stereotype oper-
ation call can depend on the method input parameters and local variables.
The stereotype operation call describes how all executions of the loop body
which were executed before the current iteration have changed the values of
stereotype items.

Definition 23 (Semantics of stereotype loop specification). A stereotype
loop specification stereotype〈StName1, . . . ,StNamen〉op(exp1, . . . , expm)
is equivalent to the loop invariant specification Loop Invariant post′op
where the construction of post′op is defined in Definition 19. Here
StName1, . . . ,StNamen refer to the states of stereotype slices before the whole
loop execution and StName′1, . . . ,StName′n refer to the states of stereotype
slices before the current iteration of the loop.

Let us now consider method specifications of the implementation of the
observer design pattern.

On Figure 3.15 we can see the definition of the constructor and the
method update of the class Observer. The constructor specification du-
plicates the call of the stereotype constructor createObserver. The body
of the method update does not contain a call of a stereotype operation and
therefore we do not need stereotype method specifications to specify it. The
first two pre-conditions check that the input parameter sub is the subject
to which the method receiver is attached. The next two specifications are
related to behavioral invariants which we describe later.

On Figure 3.16 we can see the definitions of the methods add and remove
of the class Observer. The body of the method add contains a call of the
stereotype operation addRelationInversion. The operation is executed if
the input parameter o is not equal to null. This behavior is equivalent to
an addSeqBegin stereotype operation call. Therefore the only stereotype
specification of the method add contains a call of addSeqBegin.

Method remove contains the only stereotype operation call which is du-
plicated in the method specification.

On Figure 3.17 we can see the definition of the constructor and updated
method of the class Subject. Similarly to the class Subject the constructor
specification duplicates the only stereotype operation which is executed by
the constructor body. Method updated does not contain a call of a stereotype
operation and therefore we do not need stereotype method specifications.

On Figure 3.18 we can see the definitions of the methods attach and
detach of the class Subject. The specification of methods attach consists of
two stereotype calls. One is the duplication of the addRelationInversion
call which is executed in the method body. Another one is the call of
addSeqBegin which is executed by the method add which is called from the
attach method body. In a similar way the specification of the method detach

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 83

consists of the call of the stereotype operation removeRelationInversion

which is executed from the method body and from the call of the operation
removeSeqElement which is executed by the method remove which is called
from the body of the method detach.

We can see that most of the method stereotype specifications are a du-
plication of the stereotype operations calls from the bodies of the speci-
fied methods or of the operations which are called from methods which are
called from the specified method. For non-recursive methods the stereotype
method specifications can be inferred from the method bodies. As we have
mentioned above, in this thesis we describe only the most essential machinery
used in the stereotype-based verification and do not consider specification
inference. Nevertheless we believe that the inference of stereotype method
specifications for non-recursive methods is an interesting direction for the
future work.

The stereotype method specifications of recursive methods have to spec-
ify the accumulated effect of the execution of an unbounded number of calls
of the recursive methods. Inference of such specifications is similar to the
inference of loop invariants and can hardly be done in the general case. In
Section 5 we consider specifications of several examples of methods which
do heap updates in a recursive way.

3.4.5 Behavioral invariants

In the previous subsections we have described how stereotypes and glue
invariants can be used to specify the heap topology of the verified program.
In this section we consider how to specify the behavioral invariants.

Behavioral invariants use stereotype items and glue invariant states to
establish the relations between the values of the fields of non-reference types.
To keep our approach simple we do not introduce any particular method-
ology for the behavioral invariants. Instead we would like to introduce a
predicate for each behavioral invariant and explicitly specify in pre-/post-
conditions for which objects this predicate holds. On top of this frame-
work any particular behavioral invariants methodology can be built. This
methodology can use topological information provided by the stereotypes
and the glue invariants and extra constraints to guarantee behavioral in-
variants preservation in a more systematic way and with less specification
overhead. Here we do not consider any particular invariants methodologies.
By this we try to avoid the introduction of extra machinery and keep our
approach relatively simple.

An invariant can be formalized as a predicate Inv with a single input
parameter of a reference type. The value of the predicate depends on the
value of the input parameter and current state of the program heap. The
invariant holds for an object o if and only if Inv(o) holds. On the other
hand if the invariant does not hold for the object o then we know nothing

84 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

about it. It could be a problem in case we break an invariant in a method m
and we are going to restore it later on in some other method m′. In this case
we have to duplicate the parts of the invariant specification in specifications
of all methods which are called between the execution of m and m′. This
results in two problems: first of all we have a huge specification overhead,
second of all we expose the invariant details to a method client and break
information hiding. We address these problems by adding extra parameters
to the invariant predicate. These extra parameters specify in an abstract
way how the state of the object differs from one in which the invariant holds.
In other words the extra parameter contains the information about the way
in which the object state has to be changed in order to restore the invariant.
We call this extra parameters behaviorial invariant states. This extension
prevents the exposure of the invariant detail and the duplication of invariants
specifications. Instead of breaking the invariant, the method specifies how
it changes the behaviorial invariant states of the affected objects. Later on
the information about the current behaviorial invariant state of an object
can be used to restore its invariant.

Let us now consider the behavioral specifications of the implementation
of the observer design pattern. Behavioral invariants of the implementation
are provided in Figure 3.19.

invObserver is a behavioral invariant of the observer. invObserver(o)
holds if and only if the value of the field value of o is equal to the value of
the subject to which o is attached.

invSubjectSt is a behavioral invariant of the subject.
invSubjectSt(s,R) holds if and only if all the observers which are attached
to the subject s and do not belong to the set R are synchronized with the
subject. Here the value of the set R is the behavioral state of the subject.
Set R describes which observer has to be updated in order to restore the
invariant of the subject.

invSubject is another behavioral invariant of the subject.
invAllAttached(s) holds if and only if the glue states of all the observers
which are attached to s are stAttached.

invSubject is the behavioral invariant of the subject which combines
all of the above. invSubject(s) holds if and only if invAllAttached(s),
the behavioral state of the subject is ∅, and the glue state of the subject is
stHead.

Let us now consider how the implementation of the observer design pat-
tern uses the behavioral invariants.

The constructor and the method update of the class Observer is pro-
vided on Figure 3.15. After the constructor execution the observer is not
attached to a subject. Until the observer is not attached to a subject the
value of the field value can be arbitrary. Therefore the constructor’s speci-
fication does not mention any behavioral invariants.

The pre-condition of the method update requires validity of the

3.4. USAGE OF STEREOTYPES FOR SOURCE CODE SPECIFICATION 85

invAllAttached invariant for the subject to which the method receiver is
attached. The method post-condition guarantees that the method execution
restores invObserver invariant of the method receiver. The constructor’s
specification does not mention any behavioral invariants.

Method update guarantees the preservation of the invSubject invariant.
The assignment of a new value to the field value breaks the invariants of all
attached observers. The loop restores the broken invariants. The specifica-
tion of the loop invariants relies on the subject behaviorial invariant states.
Invariants of all the attached observers are broken before the loop execu-
tion. Therefore the subject behavioral invariant state is equal to the set of
the attached observers. Each loop iteration restores the invariant of one of
the observers. The observer whose invariant is restored is removed from the
subject invariant state. After the last iteration execution the subject invari-
ant state is equal to the empty set. This implies that invSubject invariant
is restored.

Methods add and remove of the class Observer are provided on Fig-
ure 3.16. Both of them preserve the invSubject invariant of the method
receiver.

As we have mentioned above we would like to guarantee the preservation
of the behavioral invariants for all instances of the design pattern. This is
achieved via a precise frame properties specification. The frame properties
guarantee that locations which are mentioned in the behavioral invariants of
other instances of the design pattern are not affected by the methods of the
verified implementation. This precise specification of the method frames is
enabled by the usage of stereotype slices in class specifications and by the
validity of the stereotype system invariants and the glue invariant in the
methods’ post states.

3.4.6 Summary

In this section we shortly summarize the stereotype-based verification ap-
proach which is introduced above.

A user begins verification from the definition of the stereotype slices
which are used to specify the program. A stereotype slice is defined by
mentioning it in the class header. If a class mentions the stereotype slice
then we say that the class participates in the stereotype slice. It is possible
that several classes participate in the same stereotype slice. In this case the
stereotype slice identifies the semantic relation between class instances.

To bind the items of stereotype slices and heap fields the user has to
introduce a glue invariant. Glue invariants have a visible state semantics.
Its validity can be assumed at the beginning of the method body and after
each method call. It has to be verified at the end of the method body and
before each method call. The verification of the glue invariant validity is
done by means of the WPC.

86 CHAPTER 3. STEREOTYPE-BASED VERIFICATION METHODOLOGY

Then the methods of the verified classes have to be annotated with ghost
updates. Ghost updates describe how the values of the items of a stereotype
slice change during the program execution. We use stereotype operation
calls to specify the ghost updates. The post-condition of each stereotype
operation call can be assumed, but the pre-condition has to be verified. The
verification of stereotype operation call pre-conditions is done by means of
the WPC. According to Theorem 1 we can also assume the validity of the
stereotype system invariants of all the stereotype slices at the each program
point.

Then the user has to provide method stereotype specifications. These
specifications describe the accumulated effect on stereotype slices. They are
described by means of stereotype operation calls. Each stereotype call is
reduced to the usual method pre- and post- conditions which mentions the
stereotype items. These pre- and post- conditions are verified with the rest
of the method pre- and post- conditions by means of the WPC

The outcome of the above verification steps is the heap topology verifica-
tion. At the top of the heap topology we specify the behavioral invariants.
We specify the behavioral invariant as usual predicates which depend on
the object for which the invariant is specified and the current state of the
program heap. Later on we use the usual methods pre- and post- conditions
to specify when and which behavioral invariants can be assumed, and when
they have to be verified. Preservation of behavioral invariants of other de-
sign patterns and data structures is guaranteed by a precise specification of
the frame properties.

Chapter 4

Stereotype examples

In the previous section we introduced the notion of stereotype and demon-
strated its applications on the example of the RelationInversion stereo-
type. In this section we introduce more advanced stereotypes; Sequence and
Tree. These stereotypes have a wide application in software specification
and verification. Later on (see Chapter 5) we will demonstrate how these
stereotypes can be used to verify the composite design pattern, list with
iterator, and PIP.

4.1 Sequence

We begin the development of a stereotype from the identification of values
of interest. For each of them we introduce a stereotype item. In the case
of Sequence we are interested in the previous and the next value for each
element of the sequence. To capture these notions we introduce the prev and
next stereotype items of type ref. Also, for each sequence we are interested
in the first and the last element of the sequence. Since their values are the
same for all elements of a sequence we model them as static stereotype
items first and last. On Figure 4.1 a stereotype instance of Sequence

is depicted. The figure presents a view from the perspective of the object
surrounded by the solid rectangle. Doted rounded rectangles depict values
of stereotype items for this object.

On Figure 4.2 we present the definition of the Sequence stereotype. We
express that first and last are not null by defining their types as ref!. We
use the next stereotype item as a basis for the formalization of the semantics
of the other stereotype items. The first invariant defines the semantics of
the prev stereotype item. We define prev as the inversion of next. The
second invariant defines the semantics of the first stereotype item. The
first element of the sequence is the only one which doesn’t have a predecessor.
Since first is defined as non-null we know that the first element exists.
The third invariant defines the semantics of last in a similar way. The

87

88 CHAPTER 4. STEREOTYPE EXAMPLES

first last

prev next

.

Elements

Figure 4.1: A stereotype slice of type Sequence. Here we denote objects as
black circles. Dotted rounded rectangles depict values of stereotype items
of the object which is surrounded by the solid rounded rectangle.

Stereotype Sequence{
items

static first, last: ref! ;
next, prev: ref ;

invariants

(1) ∀o, o′ : o.prev = o′ ⇔ o′.next = o
(2) ∀o : o = first ⇔ o.prev = null

(3) ∀o : o = last ⇔ o.next = null

instID= first

}

Figure 4.2: Sequence stereotype.

last element of the sequence is the only one which doesn’t have a successor.
Since last is defined as non-null we know that the last element exists. The
last part of the stereotype is the definition of the instance ID. Here we use
the first element of a sequence as the instance ID. Each sequence instance
has a first element, and first elements of different stereotype instances differ.

first last

prev next

.

Elements

Figure 4.3: An example of an undesirable stereotype slice of type Sequence.
Here an arrow between two objects denotes that they are in the ”next”
relation.

4.1. SEQUENCE 89

first last

prev next

.

ElementsPrev * Next *

Figure 4.4: A stereotype slice of type Sequence.

Stereotype Sequence{
items

static first, last: ref! ;
next, prev: ref ;
Next∗, Prev∗: Reg ;

invariants

// De f i n i t i o n s o f semant ics o f s t e r e o typ e items
(1) ∀o, o′ : o.prev = o′ ⇔ o′.next = o
(2) ∀o : o = first ⇔ o.prev = null

(3) ∀o : o = last ⇔ o.next = null

(4) last.Next∗ = ∅

(5) ∀o : o 6= last ⇒ o.Next∗ = o.next.Next∗ ∪ {o.next}
(6) first.Prev∗ = ∅

(7) ∀o : o 6= first ⇒ o.Prev∗ = o.prev.Prev∗ ∪ {o.prev}
(8) ∀o : Elements = o.Prev∗ ∪ {o} ∪ o.Next∗

//Redundant i n va r i an t s
(9) ∀o : o.Prev∗]o.Next∗

(10) ∀o : o /∈ o.Next∗

(11) ∀o : o /∈ o.Prev∗

(12) ∀o : o 6= last ⇒ last ∈ o.Next∗

(13) ∀o : o 6= first ⇒ first ∈ o.Prev∗

(14) ∀o, o′ : o′ ∈ o.Next∗ ⇒ o′.Next∗ ⊆ o.Next∗

(15) ∀o, o′ : o′ ∈ o.Prev∗ ⇒ o′.Prev∗ ⊆ o.Prev∗

instID= first

}

Figure 4.5: An updated version of the Sequence stereotype.

This stereotype definition captures the main values of interest and some
of their properties. Nevertheless, it has significant disadvantages. First of
all it is not precise enough. It means that there are stereotype slices which
do not fit our intuition about sequences but satisfy the invariants of the

90 CHAPTER 4. STEREOTYPE EXAMPLES

Sequence stereotype. An example of such a stereotype slice is presented on
Figure 4.3. There we use an arrow between two objects to denote that they
are in the ”next” relation. We can see that there are three cyclic structures
at the bottom of the figure (hexagon, square, and triangle) which obviously
contradict the idea of the sequence. On the other hand, it can be easily
checked that this stereotype slice satisfies the invariants of the Sequence

stereotype.
Another problem is that the proposed stereotype definition is not ex-

pressive enough. For instance, let us assume we have a loop which traverses
a list and applies some transformations to the list elements. To express
the loop invariant we need to specify sets of objects reachable by transitive
closure of prev and next.

One way to address these issues is to use transitive closure. Since tran-
sitive closure is not feasible for automatic verification, we choose another
approach. We introduce two additional stereotype items; Next∗ and Prev∗.
We use them to capture sets of objects reachable by transitive closure of
next and prev, respectively. We call them right and left sequence tails.
On Figure 4.4 a stereotype instance of the improved Sequence stereotype is
depicted. We use these additional stereotype items to introduce additional
stereotype invariants. The additional invariants provide a more precise se-
quence description. In addition Next∗ and Prev∗ can be used in specifica-
tions (e.g. loop invariants).

On Figure 4.5 we present an updated version of the Sequence stereo-
type. There are two kinds of stereotype invariants. Invariants (1) to (8)
are definitions of the semantics of the stereotype items. Invariants (9) to
(15) are redundant invariants which can be proven as corollaries of invari-
ants (1) to (8). Nevertheless, most of these proofs require induction and
therefore can be problematic for automatic verification. On the other hand
proving that these invariants are preserved by the stereotype operations can
be performed automatically. In such a way we avoid unnecessary interactive
theorem proving.

Let us first consider the invariants which define the semantics of the
stereotype items. The fist three stereotype invariants are the same as in the
initial version of the stereotype. Invariants (4) and (5) define the semantics
of the right tail. The right tail of the last element is empty set. The right
tail any other element is the union of the next element and the tail of the
next element. Invariants (6) and (7) define the semantics of the left tail
in a similar way. Invariant (8) defines the semantics of the Elements of a
sequence. The elements of a sequence is the union of the current element
and the left and right tails. Altogether invariants (1) to (8) precisely define
the semantics of sequences. A stereotype instance of Sequence satisfies
invariants (1) to (8) if and only if the instance is a sequence.

Let us now consider invariants (9) to (15). As we mentioned above
they are redundant and can be proven as corollaries of invariants (1) to (8).

4.1. SEQUENCE 91

addSequenceRelation〈Sequence〉(o : ref!, o′ : ref!)
{
Pre-conditions:

o.instID 6= o′.instID ;
Input instances:

inInst1 = o ;
inInst2 = o′ ;

Output instances:

outInst = inInst1 ∪ inInst2 ;
Transformations:

〈o.last, next, o′.first〉 ;
〈o′.first, prev, o.last〉 ;
〈outInst, first, o.first〉 ;
〈outInst, last, o′.last〉 ;
〈inInst1, Next

∗,v.Next∗ ∪ inInst2〉 ;
〈inInst2, Prev

∗,v.Prev∗ ∪ inInst1〉 ;
}

removeSequenceRelation〈Sequence〉(o : ref!)
{
Local variables:

o′ = o.next ;
Pre-conditions:

o 6= olast ;
Input instances:

inInst = o ;
Output instances:

outInst1 = inInst \ o.Next∗ ;
outInst2 = o.Next∗ ;

Transformations:

〈o, next,null〉 ;
〈o′, prev,null〉 ;
〈outInst1, last, o〉 ;
〈outInst2, first, o

′〉 ;
〈outInst1, Next

∗,v.Next∗ \ outInst2〉 ;
〈outInst2, Prev

∗,v.Prev∗ \ outInst1〉 ;
}

Figure 4.6: addSequenceRelation and removeSequenceRelation stereo-
type operations.

We introduce them to avoid inductive proofs. Invariants (9) - (11) state
acyclicity of the sequence. Invariant (9) guarantees disjointness of the left

92 CHAPTER 4. STEREOTYPE EXAMPLES

constructor createSingletonSequence〈Sequence〉(o : ref!)
{

〈o, first, o〉 ;
〈o, last, o〉 ;
〈o, next,null〉 ;
〈o, Next∗,∅〉 ;
〈o, prev,null〉 ;
〈o, Prev∗,∅〉 ;

}

Figure 4.7: Constructor of Sequence stereotype.

function Bool isSingletonSequence〈Sequence〉(o : ref!)
:= o.Elements = {o}

Figure 4.8: A predicate which checks that a given sequence instance is a
singleton.

and the right tail. Here we denote disjointness of sets A and B as A]B.
Invariants (10) and (11) guarantee that an element does not belong to its
right or left tail. Invariant (12) states that the last element belongs to right
tails of all elements excluding the last element. This invariant guarantees
that if we traverse a sequence via the next stereotype item we will eventually
reach the last element. Invariant (13) guarantees the analogous property for
the left tail and the first element. Invariant (14) states that the right tail of
an object o is a superset of the right tail of each object o′ in the right tail
of o. This property is extremely useful for verification of loop invariants.
Invariant (15) guarantees the same property for the left tail.

Now, we have a precise enough description of Sequence and we can in-
troduce stereotype operations. We begin with the stereotype constructors.
Since there is only one role which an element of a sequence can play, we
need only one stereotype constructor. Namely, one which creates a single-
ton sequence. The definition of createSingletonSequence is presented on
Figure 4.7. As you can see it has one input parameter. It is a reference
to a freshly allocated object which participates in a stereotype slice of type
Sequence. The constructor states that both tails of the sequence are empty,
there are no previous and next elements, and the initialized object plays
both roles of the first and of the last element of the sequence. An execution
of the constructor results in the creation of the singleton sequence which
consists of the object referred to by the input parameter. As for any other
stereotype operation it can be proven that the constructor preserves the
stereotype invariants which we introduced above.

4.1. SEQUENCE 93

Since we have to deal with singleton sequence instances quite often we
introduce a special predicate isSingletonSequence to characterize them.
We define isSingletonSequence on Figure 4.8 as Boolean function.
isSingletonSequence states that a sequence instance is a singleton if and
only if its Elements is a singleton set. The rest of a singleton sequence
properties (e.g. both tails are empty) can be inferred from this definition
and the stereotype invariants.

first last

prev next

.

ElementsPrev * Next * first last

prev next

.

ElementsPrev * Next *

o o’

(a) State of the stereotype slice before the statement addSequenceRelation(o, o′).

first

prev next

.

ElementsPrev *
Next* last

.

o o’

(b) State of the stereotype slice from the perspective of o after the statement
addSequenceRelation(o, o′).

first

.

last

prev next

.

ElementsPrev * Next *

o o’

(c) State of the stereotype slice from the perspective of o′ after the statement
addSequenceRelation(o, o′).

Figure 4.9: The figure depicts an execution of the statement
addSequenceRelation(o, o′).

As soon as stereotype instances are created we need operations to trans-
form them. On Figure 4.6 you can see two such stereotype operations. The
first one is addSequenceRelation. It merges two sequence stereotype in-
stances into one by establishing the next relation between the last element of
the first stereotype instance and the first element of the second stereotype in-
stance. The second stereotype operation is removeSequenceRelation. It is
the inverse operation to addSequenceRelation. removeSequenceRelation
splits a stereotype instance in two independent stereotype instances by cut-
ting the next relation between two consecutive elements of the stereotype
instance. Let us consider in more details how these operations work.

94 CHAPTER 4. STEREOTYPE EXAMPLES

first lastprev next

.

ElementsPrev * Next *

o o’

(a) State of the stereotype slice before the
statement execution.

first last

prev

. . .

ElementsPrev * last

next

. . .

Elements Next *first

o o’

(b) State of the stereotype slice after the statement
execution.

Figure 4.10: The figure depicts an execution of the statement
removeSequenceRelation(o).

As you can see on Figure 4.6 addSequenceRelation takes two input
parameters of reference types. We use these references to characterize
the stereotype instances which participate in the operation; inInst1 and
inInst2. The pre-condition guarantees that these stereotype instances are
different. You can see the initial state of the stereotype slice on Figure 4.9(a).
The operation merges the two input stereotype instances into one stereotype
instance outInst. The transformation section begins by establishing the re-
lation between the last element of the first sequence and the first element
of the second sequence. The first two lines of the transformations section
establish next and prev relations between these elements. The next two
lines define that the first element of the output instance is the first element
of the first input instance and, in a symmetric way, the last element of the
output instance is the last element of the second input instance. And finally,
the last two lines define the values of the left and right tails of the output
instance. In the fifth line we add the elements of the second input instance
to the right tails of the elements of the first input instance. In a symmet-
ric way in the last line we add the elements of the first input instance to
the left tails of the elements of the second input instance. You can see the
state of the stereotype slice after the operation from the perspective of o on
Figure 4.9(b), and from the perspective of o′ on Figure 4.9(c).

As we mentioned before removeSequenceRelation is the inverse opera-
tion to addSequenceRelation. It takes one input parameter of the reference
type. We use this reference to characterize the stereotype instance which
participates in the operation and to identify the removed relation. You can

4.1. SEQUENCE 95

see the initial state of the stereotype slice Figure 4.10(a). The source of
the removed relation is o. We introduce a new local variable o′ to refer to
the sink of the removed relation. The pre-condition of the operation states
that the input parameter is not the last element of the input instance. In
the output instances section we define two output instances. The second
one contains the right tail of o. The first one contains the rest of the ele-
ments of the input instance. The transformation section is the inverse to
the transformation section of addSequenceRelation operation. It removes
next and prev relations between o and o′, and updates the other stereotype
items correspondingly. You can see the state of the stereotype slice after the
operation execution on Figure 4.10(b).

function ref cyclicNext〈Sequence〉(o : ref!) :=
i f (o = o.last) then o.first e l s e o.next

function ref cyclicPrev〈Sequence〉(o : ref!) :=
i f (o = o.first) then o.last e l s e o.prev

Figure 4.11: Next and previous elements of a cyclic list.

We use the Sequence stereotype to specify and verify various data struc-
tures and design patterns in Chapter 5. To facilitate usage of the stereo-
type to specify a specific structure we introduce additional functions. For
instance, we can use the Sequence stereotype to specify a cyclic list. To do
that we introduce two additional functions: cyclicNext and cyclicPrev.
We present their definitions on Figure 4.11. A next element in a cyclic list
is equal to the next element of the sequence if the current element is not
the last in the sequence, otherwise it is equal to the first element of the
sequence. We define cyclicPrev in a similar way. By adding these two
simple functions we enable the application of the Sequence stereotype to
verify yet another type of heap structure.

As mentioned in Section 3.3 it is strongly desirable to construct for
a stereotype a universal transformation; a stereotype operation which can
be used to define an arbitrary transformation. In Appendix A we use
addSequenceRelation and removeSequenceRelation to construct the
most general operation for sequences transformation. Here we briefly de-
scribe how it is done.

The construction of universal transformations is discussed in Subsec-

tion 6.5. The main conclusion of the subsection is that for some stereotypes
the construction of a universal transformation can be reduced to the con-
struction of two operations. One should merge a set of stereotype instances
in to a single stereotype instance. The second one is the inversion of the first
one. It has to split a stereotype instance into a set of stereotype instances.
Sequence is one of the stereotypes for which the above reduction can be

96 CHAPTER 4. STEREOTYPE EXAMPLES

used.

. . . .

Figure 4.12: The figure depicts the state of the slice after an execution of the
addSetSequenceRelation operation. Here we denote sequence instances as
solid bold lines. Black circles depict the first and the last elements of a
sequence instance. Dotted directed lines denote freshly added relations.

The only way to merge two sequence instances is to add a relation be-
tween the last element of the first one and the fist element of the second
one. Because of this the only way how we can merge a set of sequences
instances into a single sequence instance is the following one. First we chose
an order in which we are going to merge the sequence instances and then
according to the order we add relations between the last and the first ele-
ments of the sequences. The merging of a set of sequence instances is shown
on Figure 4.12. We call the stereotype operation which merges a set of
sequence instances addSetSequenceRelation. The signature of the opera-
tion is shown on Figure 4.13. The complete definition of the operation is
provided in Appendix A.1.

The input parameters of the operation are the following:

• Ib is the instance identifier of the first sequence.

• Ie is the instance identifier of the last sequence.

• Inst is a set of instances identifiers of merged sequences.

• nextInst is an order over sequence instances. It maps a sequence
identifier to a sequence identifier of the next sequence according to the
order in which they are merged.

• ElUnion is a redundant argument which maps an instance identifier
o to the union of all elements of all sequence instance which are suc-

addSetSequenceRelation〈Sequence〉(Ib : ref!, Ie : ref!, Inst : Reg!,
nextInst : ref → ref, ElUnion : ref → TReg)

removeSetSequenceRelation〈Sequence〉
(Ib : ref!, Ie : ref!, Inst : Reg!, nextInst : ref → ref)

Figure 4.13: Signatures of addSetSequenceRelation and
removeSetSequenceRelation stereotype operations.

4.1. SEQUENCE 97

reverseSequence〈Sequence〉(l : ref!)
Local variables:

Ib = old(l.first) ;
Ie = old(l.last) ;
Inst = old(l.Elements) ;
∀o : nextInst[o] = old(o.next) ;
∀o : nextInstRev[o] = old(o.prev) ;
∀o : ElUnion[o] = old(o.Prev∗ ∪ {o}) ;

{
removeSetSequenceRelation

(l.first, l.last, l.Elements \ {last}, nextInst) ;
addSetSequenceRelation(Ib, Ie, Inst, nextInstRev,ElUnion) ;

}

Figure 4.14: reverseSequence stereotype operation.

ceeded or equal to o according to the order nextInst . The parameter
is redundant in a sense that it can be constructed from other param-
eters, but we require it to avoid usage of a transitive closure and to
facilitate the proof.

Let us now consider the inversion of addSetSequenceRelation;
removeSetSequenceRelation operation. It splits a single input sequence
instance on a set of sequence instances. The signature of the operation is
shown on Figure 4.13. The complete definition of the operation is provided
in Appendix A.2.

The input parameters of the operation are the following:

• Inst is a set of cut-points. It contains the initial points of next rela-
tions which are removed by the operation execution.

• nextInst is a redundant parameter which for each cut-point provides
the next cut-point according to the order which is induced by the next
stereotype item. In other words, for each o from Inst\{Ie} nextInst[o]
is reachable from o by next and there is no other element from Inst
between them.

• Ib and Ie are the first and the last cut-points according to the order
provided by nextInst.

Let us now consider an application of the sequence universal transfor-
mation. On Figure 4.14 we specify sequence reversal. The transformation
consists of two calls. The first one splits the input sequence into a set of
singleton sequences. The second one merges the singleton sequences in the
reversed order. The local variable nextInst contains the value of the input

98 CHAPTER 4. STEREOTYPE EXAMPLES

parameter nextInst of the operation removeSetSequenceRelation. We use
the values of the stereotype item next to specify the value of nextInst. The
local variable ElUnion contains the value of the input parameter ElUnion
of the operation removeSetSequenceRelation. We use the values of the
stereotype item Prev∗ to specify the value of nextInst.

4.2 Tree

On Figure 4.15 we present the definition of the Tree stereotype. Similarly to
the Sequence stereotype we begin the development of the Tree stereotype
by identifying values of interest:

• The main value of the interest for the Tree stereotype is the parent of
a node. We formalize it as stereotype item parent of type ref. Using
the parent relation we can define all other values of interest.

• The root of a tree can be defined as a node of the tree which doesn’t
have a parent. We denote the root of a tree as a stereotype item root.
Since any tree has a single root we declare it as a static stereotype
item of type ref.

• The inversion of the parent relation produces the children of a node.
We denote them by the stereotype item Child. Since a node can have
an unbounded number of children the type of Child is Reg.

• The nodes of a tree reachable via the transitive closure of the parent
relation are called ancestors. We denote them by the stereotype item
Anc of type Reg.

• The nodes of a tree reachable via the transitive closure of the children
are relation called descendants. We denote them by the stereotype
item Desc of type Reg.

• To facilitate the verification of stereotype invariants we introduce the
stereotype item fDesc of type ref → ref. The semantics of fDesc can
be described by the following property: for each p and l such that l
is a descendant but not a child of p, the value of p.fDesc[l] is both a
child of p and an ancestor of l. We can think about p.fDesc[l] as an
intermediate node between p and l. Later on we demonstrate how to
use fDesc for the verification of stereotype invariants.

On Figure 4.16 a stereotype instance of Tree is depicted. Here we use
the same notations that we used in the previous subsection.

Let us first consider the invariants which define the semantics of the
stereotype items. Invariant (1) defines the semantics of the root. The root
of a tree is a node of the tree which doesn’t have a parent. Invariant (2)

4.2. TREE 99

Stereotype Tree{
items

static root: ref! ;
parent: ref ;
Child, Anc, Desc: Reg ;
fDesc: Reg→ Reg ;

invariants

// De f i n i t i o n s o f the semant ics o f s t e r e o typ e items
(1) ∀o : o = root ⇔ o.parent = null

(2) ∀o, o′ : o′ ∈ o.Child ⇔ o′.parent = o
(3) root.Anc = ∅

(4) ∀o : o 6= root ⇒ o.Anc = o.parent.Anc ∪ {o.parent}
(5) ∀o, o′ : o′ ∈ o.Desc ⇔ o ∈ o′.Anc
(6) ∀o : o.Elements = root.Desc ∪ {root}

//Tree i n va r i an t
(7) ∀o, o′ : (o 6= o′ ∧ o′ /∈ o.Desc ∧ o /∈ o′.Desc) ⇒ o′.Desc]o.Desc

//Redundant i n va r i an t s
(8) ∀o : o 6= root ⇒ root ∈ o.Anc
(9) ∀o, o′ : o 6= o′ ⇒ o.Child]o′.Child
(10) ∀o : o.Child ⊆ o.Desc
(11) ∀o : o /∈ o.Desc
(12) ∀o : o /∈ o.Anc
(13) ∀o, o′ : o′ ∈ o.Desc ⇒ o.Child]o′.Desc
(14) ∀o, o′ : o′ /∈ o.Desc ⇒ o′.Anc]o.Desc ∪ {o}
(15) ∀o, o′ : o′ ∈ o.Desc ⇒ o′.Anc \ o.Desc = o.Anc ∪ {o}
(16) ∀o, o′ : o′ ∈ o.Desc ⇒ o′.Desc ⊆ o.Desc
(17) ∀o, o′ : o′ ∈ o.Anc ⇒ o′.Anc ⊆ o.Anc

// De f i n i t i o n o f the semant ics o f the au x i l i a r y
// s t e r eo typ e item

(18) ∀o : o.Desc \ o.Child =
o.fDesc
⋃

c∈o.Child
c.Desc

instID= root

}

Figure 4.15: Tree stereotype.

defines the semantics of the children. An element of a tree o′ is a child of

100 CHAPTER 4. STEREOTYPE EXAMPLES

. . . .

.

... ...

...

...

Elements Desc Child

parent

Anc

root

. .

Figure 4.16: A stereotype slice of type the Tree.

constructor createSingletonTree〈Tree〉(o : ref!)
{

〈o, root, o〉 ;
〈o, parent,null〉 ;
〈o, Child,∅〉 ;
〈o, Anc,∅〉 ;
〈o, Desc,∅〉 ;

}

Figure 4.17: Constructor of Tree stereotype.

another element o of the tree if and only if o is the parent of o′. Invariants (3)
and (4) define the semantics of ancestors. Ancestors of root is the empty set.
Ancestors of a non-root element is the union of the parent and the ancestors
of the parent. Invariant (5) defines the semantics of the descendants. An
element of a tree o′ is a descendant of another element o of the tree if and
only if o is an ancestor of o′. Invariant (6) defines the semantics of Elements
of a tree. The elements of a tree is the union of the root element and the
descendants of the root element.

Altogether invariants (1) to (6) precisely define the semantics of a DAG
(directed acyclic graph). There is a structure which satisfies invariants (1)
to (6) but which is not a tree. To filter out such properties we add invariant
(7). The invariant guarantees disjointness of descendants of two different
elements of a tree if neither of these two elements is a descendant of the
other. Invariants (1) to (7) precisely define the semantics of trees.

Let us know consider invariants (8) to (17). They are redundant and can
be proven as corollaries of invariants (1) - (7). Invariant (8) states that the

4.2. TREE 101

addTreeRelation〈Tree〉(o : ref!, o′ : ref!)
{
Pre-conditions:

o.instID 6= o′.instID ;
Input instances:

inInst1 = o ;
inInst2 = o′ ;

Output instances:

outInst = inInst1 ∪ inInst2 ;
Transformations:

〈o′.root, parent, o〉 ;
〈o, Child, o.Child ∪ {o′}〉 ;
〈outInst, root, o.root〉 ;
〈o.Anc ∪ {o}, Desc,v.Desc ∪ inInst2〉 ;
〈inInst2, Anc,v.Anc ∪ o.Anc ∪ {o}〉 ;
〈o.Anc× inInst2, fDesc, o.fDesc[v’]〉 ;
〈o× inInst2, fDesc, o

′〉 ;
}

removeTreeRelation〈Tree〉(o : ref!)
{
Local variables:

o′ = o.parent ;
Pre-conditions:

o 6= o.root ;
Input instances:

inInst = o ;
Output instances:

outInst1 = inInst \ (o.Desc ∪ {o}) ;
outInst2 = o.Desc ∪ {o} ;

Transformations:

〈o, parent,null〉 ;
〈o′, Child, o′.Child \ {o}〉 ;
〈outInst2, root, o〉 ;
〈o.Anc, Desc,v.Desc \ outInst2〉 ;
〈outInst2, Anc,v.Anc \ o.Anc〉 ;

}

Figure 4.18: The addTreeRelation and removeTreeRelation stereotype
operations.

root belongs to the ancestors of all elements excluding the root. This invari-
ant guarantees that if we traverse a tree via parent we will eventually reach

102 CHAPTER 4. STEREOTYPE EXAMPLES

. . .

......

.... ...

...

Elements Desc Child

parent

Anc

root

. . .

.

........

........

...............

ElementsDescChild

parent

Anc

root

...

....

o

o’

Figure 4.19: The figure depicts the state of the stereotype slice before exe-
cution of the statement addTreeRelation(o, o′).

the root. Invariant (9) states that children of disjoint elements are disjoint.
Invariant (10) states that children of an element are also descendants of this
element. Invariants (11) and(12) state that an element is disjoint from its
ancestors and descendants. Invariant (13) guarantees that descendants of
a descendant of an element are disjoint from children of the same element.
Invariant (14) states that if an element o′ is not a descendant of an element
o then the ancestors of o′ and the union of o and descendants of o are dis-
joint. From the special case of this invariant when o = o′ we conclude that
ancestors and descendants of an element are disjoint. Invariant (15) states
that for each descendant o′ of an element o, the ancestors of o′ consist of
three disjoint parts: ancestors of o, o, and some subset of descendants of o.
Invariant (16) states that the descendants of a descendant of an element are
also descendants of the element. In other words it states transitivity of the
descendants relation. This property is extremely useful for the verification
of loop invariants. Invariant (17) states the same property about ancestors.

Invariant (18) states that the difference between descendants and chil-
dren of a node is equal to the union of the descendants of the node’s children.
This property is crucial for the specification of recursive updates of a tree.
On the other hand the specification of a union of a set of sets requires usage
of a quantifier alternation. One possible way to avoid a quantifier alterna-
tion is to provide explicit values for the existential quantifier. These values

4.2. TREE 103

. . .

......

.... ...

...

Elements Desc Child

parent

Anc

root

. . .

.

........

........

...............

...

....

o

o’

Figure 4.20: The figure depicts the state of the stereotype slice after execu-
tion of the statement addTreeRelation(o, o′) from the perspective of o.

. . .

......

.... ...

...

root

...

o

. . .

.

........

........

...............

ElementsDescChild

parent

Anc

....
o’

Figure 4.21: The figure depicts the state of the stereotype slice after the
execution of the statement addTreeRelation(o, o′) from perspective of o′.

104 CHAPTER 4. STEREOTYPE EXAMPLES

. . . .

.

... ...

...

...

Elements Desc Child

parent

Anc

root

. .

... ...
o

o’

(a) State of the stereotype slice before the
statement execution.

. . . .

. . . .

... ...

...

...

...

... ...

............

Elements

Desc Child

parent

Anc

root

. .

... ...

o

o’

.

. . . .

Elements

Desc

Child

(b) State of the stereotype slice after the statement execu-
tion.

Figure 4.22: The figure depicts the execution of the statement
removeTreeRelation(o).

play the role of the hint for the theorem prover. In the invariant (18) we use
superscript fDesc to identify that we are using fDesc as a hint for a theorem
prover to prove the equality. We consider auxiliary proofs and details of the
verification of hint functions in Chapter 6.

4.2. TREE 105

The last part of the stereotype definition is instance ID. Here we use the
root of a tree as the instance ID. Each tree instance has a root and the roots
of different stereotype instances are different.

Now, that we have the definition of Tree we can introduce stereotype
operations. We begin with stereotype constructors. Since there is only
one role which an element of a tree can play, we need only one stereotype
constructor. Namely, one which creates a singleton tree. The definition of
createSingletonTree is presented on Figure 4.17. It has one input param-
eter. It is a reference to a freshly allocated object which participates in a
stereotype slice of type Tree. The constructor states that the element is
the root, the element doesn’t have a parent, and children, ancestors and de-
scendants are empty. An execution of the constructor results in the creation
of the singleton tree which consists of the object referred to by the input
parameter. As for any other stereotype operation it can be proven that the
constructor preserves the stereotype invariants which we introduced above.

function Bool isSingletonTree〈Tree〉(o : ref!) := o.Elements = {o}

Figure 4.23: A predicate which checks that a given tree instance is a single-
ton.

Since we have to deal with singleton sequence instances quite often we
introduce a special predicate isSingletonTree to characterize them. We
define isSingletonTree on Figure 4.23 as Boolean function.
isSingletonTree states that a tree instance is a singleton if and only if its
elements is a singleton set.

As soon as stereotype instances are created we need operations to trans-
form them. On Figure 4.18 you can see two such stereotype operations.
The first one is addTreeRelation. It merges two tree stereotype instances
into one by establishing a parent relation between an element of the first
stereotype instance and the root element of the second stereotype instance.
The second stereotype operation is removeTreeRelation. It is the inverse
operation to addTreeRelation. removeTreeRelation splits a stereotype
instance in two independent stereotype instances by cutting a parent re-
lation between two elements of the stereotype instance. Let us consider in
more details how these operations work.

As you can see on Figure 4.18 addTreeRelation takes two input parame-
ters of the reference type. We use these references to characterize the stereo-
type instances which participate in the operation; inInst1 and inInst2. The
pre-condition guarantees that these stereotype instances are different. You
can see the initial state of the stereotype slice on Figure 4.19. The operation
merges two input stereotype instances into one stereotype instance outInst.
The transformation section begins by establishing the relation between the
root element of the second tree and the first input parameter. The first two

106 CHAPTER 4. STEREOTYPE EXAMPLES

lines of the transformations section establish the parent and Child rela-
tions between these elements. The next line defines that the root element
of the output instance is the root element of the first input instance. The
next two lines defines values of the descendants and ancestors of the output
instance. In the fourth line we add the elements of the second input instance
to the descendants of the elements which are either o or ancestors of o. In a
symmetric way in the fifth line we add o and ancestors of o to the ancestors
of the elements of the second input instance.

The last two lines describe how fDesc changes. Since fDesc is a function
but not a single value, we use the following syntax to describe its updates;
〈S1 × S2, fit, val〉. Here fit is the name of a stereotype item of a functional
type, S1 is a set of objects whose values of fit is modified, S2 is a set of
parameters of function fit for which the value of the function is changed,
and val is an expression which denotes the new value of the function. val
can depend on an old value of the function. To express such kinds of trans-
formations we assume that S1, S2, and val use the predefined variables v

and v’ to refer to an object and input parameter for which value of v.fit[v’]
is changed.

Let us now consider the sixth and the seventh line of addTreeRelation’s
transformation section in more details. Since o and its ancestors have got
new descendants their values of fDesc have to be extended to cover these
new descendants. We can see that all paths from an element of the second
input instance to an ancestor of o goes via o. The sixth line exploits this
observation and states that for an ancestor of o the value of fDesc[v’] is equal
to value of fDesc[v’] of o. We can see that all paths from an element of the
second input instance to o goes via o′. On other hand o′ is a child of o. The
seventh line exploits these observations and states that the value of fDesc[v’]
of o is equal to o′.

You can see the state of the stereotype slice after the operation execution
from the perspective of o on Figure 4.20, and from the perspective of o′ on
Figure 4.21.

As we mentioned before removeTreeRelation is the inverse operation to
addTreeRelation. It takes one input parameter of the reference type. We
use this reference to characterize the stereotype instance which participates
in the operation and to identify the removed relation. You can see the
initial state of the stereotype slice on Figure 4.22(a). The source of the
removed relation is o. We introduce a new local variable o′ to refer to the
sink of the removed relation. The pre-condition of the operation states
that the input parameter is not the root element of the input instance. In
the output instances section we define two output instances. The second
one contains o and the descendants of o. The first one contains the rest
of the elements of the input instance. The transformation section is the
inverse of the transformation section of the addTreeRelation operation.
It removes the parent and Child relations between o and o′, and updates

4.2. TREE 107

addSetTreeRelation1〈Tree〉(l : ref!, P : Reg!)

removeSetTreeRelation1〈Tree〉(P : Reg!)

addSetTreeRelation2〈Tree〉
(r0 : ref!, R : Reg!, P : Reg!, r2P : ref → TReg, p2r : ref → ref,
r2R : ref → Reg, c2r : ref → ref)

removeSetTreeRelation2〈Tree〉(r0 : ref!, R : Reg!, P : Reg!,
r2R : ref → Reg, c2r : ref → ref, fPEL : ref → ref)

addSetTreeRelation3〈Tree〉(r0 : ref → ref!, RAll : Reg!, P : ref → Reg!,
r2P : ref → TReg, p2r : ref → ref, r2R : ref → Reg, c2r : ref → ref,

T : Reg!, t0 : ref, tD : ref → Reg!, ftD : ref2 → ref)

removeSetTreeRelation3〈Tree〉(p0 : ref!, p2r0 : ref → ref, R : Reg!,

P : Reg!, r2R : ref → Reg, c2r : ref → ref, fPEL : ref2 → ref,
p2P : ref → Reg!)

Figure 4.24: Signatures of stereotype operations from which the universal
tree transformation is constructed.

other stereotype items correspondingly.

The only stereotype item whose value remains unchanged is fDesc. The
reason for this is that we only remove descendants of all participating ob-
jects. Before the operation execution fDesc is properly defined on inInst×
inInst, here the first set represents a receiver and the second a function
parameter. After the operation execution we care only about values of the
function on outInst1×outInst1 and on outInst2×outInst2. Correctness of
the function on these sets is preserved by the operation. On the other hand
we do not care about correctness of the function on outInst1×outInst2 and
on outInst2 × outInst1. These two observations explain why we can leave
the value of fDesc unchanged.

You can see the the stereotype slice after the operation execution on
Figure 4.22(b).

Let us now consider the construction of the universal transformation
for the tree stereotype. The construction is quite complex; therefore here
we provide only a brief description. The complete definition is provided in
Appendix B.

The universal transformation of a tree consists of three levels. A level
consists of two operations: one for the addition and one for the removal of
relations. These operations are dual, one is an inversion of the other. On
each level we use operations from previous levels. For each operation we

108 CHAPTER 4. STEREOTYPE EXAMPLES

. . .

Figure 4.25: The figure depicts the state of the stereotype slice after an
execution of the addSetTreeRelation1 operation. Here we denote trees as
triangles. Dotted directed lines denote freshly added relations. The black
circle depicts an element of the tree to which we add new relations.

provide a detailed description by considering each element of the operation.
For each level we also provide a figure which visualizes the result of an
execution of an addition operation. We do not provide an analogous figure
for removal operation. Since additional and removal operations are dual a
figure for one of the operations also can be used as an explanation for the
other operation.

The first level is defined in Appendix B.1. It consists of
addSetTreeRelation1 which is defined in Appendix B.1.1

and removeSetTreeRelation1 which is defined in Appendix B.1.2.
addSetTreeRelation1 is the extension of addTreeRelation to the case

when we add an unbounded number of sub-trees to an element of a tree.
The operation is defined on Figure B.1. The result of the addTreeRelation
execution is shown on Figure 4.25. removeTreeRelation is dual to
addSetTreeRelation1. It removes a set of sub-trees which have the same
parent. We can think about the operation as a generalization of
removeTreeRelation.

Input parameters of addTreeRelation are:

• l: an element of the tree to which sub-tress are added.

• P : set of instances identifiers of added sub-trees.

The Input parameter of removeTreeRelation is

• P : set of roots of removed sub-trees.

The second level is defined in Appendix B.2. It consists of
addSetTreeRelation2 which is defined in Appendix B.2.1 and
removeSetTreeRelation2 which is defined in Appendix B.2.2.

4.2. TREE 109

.

Figure 4.26: The figure depicts the state of the stereotype slice after an
execution of the addSetTreeRelation2 operation. Here we denote trees
as triangles. Dotted directed lines denote freshly added relations. Black
circles depict elements of the auxiliary tree relation. Solid lines between
black circles denote an auxiliary tree relation.

addSetTreeRelation2 is an extension of addSetTreeRelation1 to the
case
when we add sub-trees to an unbounded number of elements of a tree. A
result of the operation execution is depicted on Figure 4.26. To make the
operation feasible we require a specification developer to provide an auxiliary
tree relation. There are two kinds of elements of the auxiliary tree relation.
The first one is elements of the tree to which sub-trees are added. The second
one is join points of the auxiliary tree relation. o is a join point of of the
auxiliary tree relation if and only if there are elements of the auxiliary tree
relation o1 and o2 such that o1 and o2 are descendants of o, o1 and o2 belong
to different sub-trees of o, and there are no other elements of the auxiliary
tree relation between o and o1, and between o and o2. On Figure 4.26 we
denote elements of the auxiliary tree relation as black circles. Solid lines
between black circles denote the auxiliary tree relation.

Input parameters of addSetTreeRelation2 are:

• r0: is the root of the auxiliary tree relation.

• R: contains elements of the auxiliary tree relation excluding r0.

• P : a set of instances identifiers of added sub-trees.

• r2P : a map from an elements of the auxiliary tree relation to a set of
instances identifiers of added sub-trees to the element.

• p2r: an inversion of r2P .

• r2R: a map from an elements of the auxiliary tree relation to a set of
its children in the auxiliary tree relation.

• c2r: an inversion of r.fDesc for each r from R0. We use it as a witness
function to define an auxiliary map r2C.

110 CHAPTER 4. STEREOTYPE EXAMPLES

removeSetTreeRelation2 is dual to addSetTreeRelation2. It removes
a set of sub-trees which possibly have different parents. The only limitation
is that we cannot remove a sub-tree from another removed sub-tree. We can
think about the operation as a generalization of
removeSetTreeRelation1.

Most of the input parameters of removeSetTreeRelation2 have the
same meaning as for
addSetTreeRelation2. The only extra parameter is fPEL. fPEL for each
element of a removed sub-tree returns the root of the sub-tree. We use fPEL

as a witness function to compute the union of elements of removed sub-trees.
Another difference is that P are elements of the same input tree instance.
r2P and p2r are not among input parameters because information about
them can be extracted from the Child and parent relations.

The third level is defined in Appendix B.3. It consists of
addSetTreeRelation3 which is defined in Appendix B.3.1 and
removeSetTreeRelation3 which is defined in Appendix B.3.2.

addSetTreeRelation3 generalizes addSetTreeRelation2 to the addi-
tion of an arbitrary set of relations which merge input trees into one output
tree. As auxiliary input information the operation requires a description of
a tree-of-trees relations. Elements of the relation are merged trees. Two
trees are in the relation if and only if one of them is added as a sub-tree to
the other one. On Figure 4.27 we depict a result of the operation applica-
tion in the case when the height of the tree-of-trees is two. The triangles of
the different sizes denote trees from the different levels of the tree-of-trees
relation. The biggest triangle denotes the root of the tree-of-trees relation.
Trees from the second level of the tree-of-trees relation, which are denoted by
the triangles of the medium size, are added as sub-trees to various elements
of the root of the tree-of-trees relation. The smallest triangles denote trees
which belong to the third level of the tree-of-trees relation. Additionally
to the tree-of-trees relation a client has to specify auxiliary tree relations
for each tree. Similarly to the addSetTreeRelation2 we denote nodes of
auxiliaries tree relations as black circles and relations as solid lines.

Input parameters of addSetTreeRelation3 are

• r0: a map form a tree identifier to the root of the auxiliary tree relation
of the tree.

• RAll: contains elements of the auxiliary tree relations of all trees.

• P : a map form a tree identifier to set of trees added to the tree. From
the other perspective the relation map an element of the tree-of-trees
relation into its child in the relation.

• r2P , p2r, r2R, and c2r : have the same meaning as in
addSetTreeRelation2 operation.

4.2. TREE 111

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

Figure 4.27: The figure de-
picts state of the stereotype
slice after an execution of the
addSetTreeRelation3 operation.
Here we denote trees as triangles.
Dotted directed lines denote
freshly added relations. Black
circles depict elements of the tree
to which we add new relations.
Solid lines between black circles
denote auxiliary tree relation.

112 CHAPTER 4. STEREOTYPE EXAMPLES

• T : set of instances identifiers of tress which participate in the operation
execution.

• t0: the root of the tree-of-trees relation.

• tD: a map of an element of the tree-of-trees relation into its descendant
in the relation.

• ftD: is an analog of fDesc for the tree-of-trees relation. For each pair
〈t, t′〉 of elements of the tree-of-trees relation, where t′ is a descendant
but not a child of t in the tree-of-trees relation, ftD[t, t

′] returns an
element t′′ of the relation such that t′′ is a child of t and an ancestor of
t′ in the relation. We use ftD as a witness function in some definitions.

removeSetTreeRelation3 is dual to
addSetTreeRelation3. It removes an arbitrary set of relations. We can
think about the operation as a generalization of
removeSetTreeRelation2. Similarly to addSetTreeRelation3 a
client of the operation has to define the tree-of-trees relation and for each
removed sub-tree an auxiliary tree relation.

Input parameters of removeSetTreeRelation3 are

• p0: the root of the tree-of-trees relation.

• p2r0: a map form the root of an output tree to the root of the auxiliary
tree relation of the output tree.

• R: contains elements of the auxiliary tree relations of all removed
trees.

• P : a set of roots of output trees.

• r2R, c2r: have the same meaning as in removeSetTreeRelation2

operation.

• fPEL: for each root of an output tree fPEL[p, .] returns fPEL for
corresponding tree.

• p2P : a map form a root of an output tree to a set of roots of trees
removed from the tree. From the other perspective the map is a child
of relation induced by the tree-of-trees relation.

As an example of the tree universal transformation let us consider a re-
moval of a path from a tree. The operation looks artificial; nevertheless
it is crucial for PIP and union-find set data structure. We consider these
examples in the next section. The operation is defined on Figure 4.29. The
state of the stereotype slice before the operation execution is depicted on
Figure 4.28(a). The only input parameter t of removePathTree is the initial

4.2. TREE 113

p
0

t

.

..

(a) State of the stereotype slice before the
operation execution.

p
0

t

. . .

(b) State of the stereotype slice after the operation execution.

Figure 4.28: The figure depicts an execution of the operation
removePathTree. Here we denote trees and sub-trees as triangles. Dot-
ted lines denote the removed path.

element of the removed path. The path goes from t to the root of the tree.
The operation execution results in the splitting of the input tree into a set of
the trees where each output tree corresponds to an element of the path. The
state of the stereotype slice after the operation execution is depicted on Fig-
ure 4.28(b). The operation is specialization of removeSetTreeRelation3.
The input parameters of
removeSetTreeRelation3 defined in the following way:

• p0: the root of the tree-of-trees relation is the root of the input tree.

114 CHAPTER 4. STEREOTYPE EXAMPLES

removePathTree〈Tree〉(t : ref!)
Local variables:

p0 = t.instID ;
∀p : p2r0[p] = p ;
R = t.Anc ;
P = t.Anc ∪ {p} ;
∀r : r2R[r] = ∅ ;
∀c : c2r[c] = null ;
∀p, p′ : fPEL[p][p

′] = p.fDesc[p
′] ;

∀p : p2P [p] = p.Child ∩ t.Anc ;
{

removeSetTreeRelation3(p0, p2r0, R, P, r2P, c2r, fPEL, p2P) ;
}

Figure 4.29: removePathTree stereotype operation.

• p2r0: for each output tree the root of the auxiliary tree relation is
equal to the root of the output trees.

• R: a set of element of all auxiliary tree relations are equal to elements
of the removed path excluding the first element of the path.

• P : elements of the tree-of-trees is equal to elements of the removed
path.

• r2R: for each output tree there is only one element in the auxiliary
tree relation of the output tree; the root of the relation. Therefore,
the set of children is empty for each element of each auxiliary tree
relations.

• c2r: since set of children is empty for each element of each auxiliary
tree relation, c2r is never used, which implies that the value of c2r
does not matter. We define it as equal to null for all input values, but
could provide any other definition.

• fPEL: since for each element of the tree-of-trees relation the parent of
the element in the relation is also the parent of the element in the tree
fPEL is equal to fDesc.

• p2P : we define the set of children of an element of the tree-of-trees as
a child of the element which belongs to the removed path.

Chapter 5

Examples of

stereotype-based verification

In this chapter we consider several examples of stereotype-based verification:

• In Section 5.1 we provide the specification of a doubly-linked list
with the iterator.

• In Section 5.2 we provide the specification of the composite design
pattern.

• In Section 5.3 we provide the specification of the data structure
disjoint-set forests [33].

• In Section 5.4 we provide the specification of the priority inheritance
protocol which we have introduced in Chapter 2.

We conclude the chapter by considering how stereotype-based verification
can be implemented in Boogie. In Subsection 5.5 we provide the de-
scription of the verification of several examples which are specified using
stereotypes.

5.1 List

The first example which we consider is a list with iterator. The example
combines a well known data-structure, the singly-liked list [33], and the
iterator design pattern [50]. The following classes participate in the example:

• ListNode is a class whose instances are the elements of the list.

• List is the wrapper class of the list. It encapsulates the list nodes
from the other objects and provides an external interface to the list
operations.

115

116 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

class List participate 〈RelationInversion : NodesSlice,
RelationInversion : IteratorsSlice〉{

ListNode f i r s tE l emen t ;

List ()
stereotype createSink〈NodesSlice〉(this) ;
stereotype createSink〈IteratorsSlice〉(this) ;
frame ∅ ;
{

createSink〈NodesSlice〉(this) ;
createSink〈IteratorsSlice〉(this) ;
f i r s tE l emen t = null ;

}

Iterator g e t I t e r a t o r ()
frame ∅ ;
stereotype addFreshSourceIR〈IteratorsSlice〉

(result , getSink(currentElement)) ;
{

return new Iterator(f i r s tE l emen t) ;
}

}

class ListNode participate 〈Sequence, RelationInversion : NodesSlice〉
{

int va lue ;
ListNode next ;

}

class Iterator participate 〈RelationInversion : IteratorsSlice〉{
ListNode currentElement ;

Iterator(ListNode currentElement)
stereotype addFreshSourceIR(this , getSink(currentElement)) ;
frame ∅ ;
{

addFreshSourceIR(this , getSink(currentElement)) ;
this . currentElement = currentElement ;

}

void i n s e r tA f t e r (ListNode node)
requires currentElement 6=null ;
requires node 6=null ;
requires node . sink = null ;
requires node .next = null ;
stereotype insertAfterSeq(this , node) ;
stereotype addRelationInversion〈NodesSlice〉(node , this . sink) ;
frame node . next , currentElement . next ;
{

node . next = currentElement . next ;
currentElement . next = node ;
insertAfterSeq(this , node) ;
addRelationInversion(node , this . sink) ;

}
}

Figure 5.1: Source code of a list with iterator.

5.1. LIST 117

• Iterator is a wrapper class of a reference to an element of the list. It
also provides some element-related list update operations.

To describe semantical and topological relations between the instances
of the participating classes we use the following stereotype slices:

• Sequence is an unnamed stereotype slice which is used to describe the
topology of the list nodes. We do not give it a name because it is used
only by the instances of the class ListNode.

• NodesSlice is a stereotype slice of the type RelationInversion
which establishes the ownership relation between a list and its nodes.
We use NodesSlice to specify that each node element is owned by
not more than one list.

• IteratorsSlice is a stereotype slice of the type RelationInversion

which establishes a relation between a list and iterators which refer to
a list node owned by the list.

A heap and the stereotype slices for the list with an iterator is depicted
in Figure 5.2. List nodes belong to an instance of a sequence stereotype slice.
An instance of NodesSlice contains both list nodes and the list which owns
the nodes. The list field firstElement refers to the first list node owned
by the list. On the other hand an instance of IteratorsSlice contains the
list and all iterators which refer to the list nodes owned by the list. A
field currentElement of an iterator contains the element of the list which
is referred to by the iterator.

To establish the connections between various stereotype items and a real
heap we use the following glue invariants:

• ∀ l : List, it : Iterator :: it.currentElement 6= null ⇒
(it ∈ l.IteratorsSlice.Source ⇔ (l.firstElement 6= null∧
it.currentElement ∈ l.firstElement.Sequence.Elements)
The first glue invariant establishes the connection between the list and
the iterators. If it.currentElement 6= null then the iterator is bound
to the list by IteratorsSlice if and only if currentElement of the
iterator refers to the list node owned by the list. Since the iterator can
not be used to update the list node when it.currentElement = null,
we do not care about the relation between the list and the iterator in
this case. The invariant implies that the list can be affected only by
the iterators which are tracked by the IteratorsSlice stereotype slice.

• ∀ n : ListNode :: n.NodesSlice.sink 6= null ⇒
n.Sequence.Elements ⊆ n.NodesSlice.sink.NodesSlice.Source
The second glue invariant establishes an ownership relation between
the list and the list nodes. If a node is owned by the list then the

118 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

List

. . .

. . .
firstElement

currentElement currentElement

Sequence

Iterator 1 Iterator m

ListNode 1 ListNode n

NodesSlice

IteratorsSlice

Figure 5.2: The figure depicts the heap and the stereotype slices for the
list with the iterator example. Class instances are denoted by rectangles
with class names inside the rectangles. The heap references are denoted
by arrows. Each arrow is labeled by the corresponding field name. Dotted
rounded rectangles enclose elements of the stereotype instances. At the left
bottom corner of each dotted rounded rectangle is the name of the stereotype
slice to which the stereotype instance belongs.

same is true for all other nodes from the same sequence stereotype
instance. The invariant is equivalent to the following one: all nodes
from the same sequence stereotype instance have the same list owner.
The invariant implies that list nodes which are owned by different lists
are disjoint.

• ∀ n : ListNode :: n.next = n.Sequence.next
The third glue invariant establishes the relation between ListNode

fields and the sequence stereotype. Essentially it states that the next
field of ListNode is always equal to the stereotype item next of the
Sequence stereotype. The invariant implies that the list nodes form a
linked list in the heap.

Before we move to the list and the iterator specification let us consider
auxiliary stereotype operations which we use in the specifications. We define
the following auxiliary operations in Figure 5.3:

• addFreshSourceIR updates a RelationInversion stereotype slice.
First it creates a fresh singleton stereotype slice for o′ and then if

5.1. LIST 119

addFreshSourceIR〈RelationInversion〉(o : ref, o′ : ref)
{

createSource(o ’) ;
if(o 6= null) then addRelationInversion(o ’ , o) ;

}

insertAfterSeq〈Sequence〉(o : ref, o′ : ref)
Local variables:

nextEl = old(o . next) ;
{

if(nextEl 6= nu l l) then removeSequenceRelation(o) ;
addSequenceRelation(o , o ’) ;
if(nextEl 6= nu l l)
then addSequenceRelation(o ’ , nextEl) ;

}

getSink: ref→ ref
getSink(o) = if(o 6= null) then o . sink else null ;

Figure 5.3: Auxiliary stereotype operations and functions which are used to
specify the list with the iterator.

o is not null establishes the relation between o′ and o. After the op-
eration execution if o is not null then o′ is a source and o is a sink of
the same stereotype instance, otherwise o′ is an element of a singleton
stereotype instance.

• insertAfterSeq inserts o′ immediately after o in the sequence stereo-
type. The operation checks whether o is the right tail of the stereotype
instance in which it participates, which is the case when nextEl =
null. In this case we use addSequenceRelation to add the relation
between o and o′. Otherwise we split a sequence in which o partici-
pates in two sub-sequences. The first sequence contains all elements
from the beginning of the initial sequence until o, and the seconde one
contains all elements from nextEl until the end of the initial sequence.
After the sequence split we add the relation between o and o′. Then we
add a relation between the end of the sequence which contains o′ and
nextEl. The operation does not require o′ to be a singleton sequence.
If o′ belongs to a non-singleton sequence then the whole sequence is
inserted between o and o.next.

• getSink is an auxiliary function which returns a sink of the input
object if the object is not null and returns null otherwise.

120 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

Now we can look at the source code and specifications of the list with
iterator which are presented in Figure 5.1.

The header of the class List declares that the class participates in the
NodesSlice and IteratorsSlice stereotype slices. The class has a field
firstElement which refers to the first list node.

The class constructor sets firstElement to null and calls stereotype
constructors to initiate stereotype items of NodesSlice and IteratorsSlice.
After the constructor execution the sources of both NodesSlice and Iter-

atorsSlice are empty, which means that the list does not own any list
nodes and there is no list iterator which refers to the list nodes. The same
stereotype constructors are used in the constructor specification. Since the
constructor affects only the fields of the freshly allocated object, the frame
is empty.

The getIterator method creates an iterator which refers to the first
list node. In the method specification we use addFreshSourceIR to spec-
ify the method behavior. The specification duplicates the corresponding
specification of the iterator constructor.

The ListNode class participates in the unnamed Sequence stereotype
and in NodesSlice. The class contains two fields: next refers to the next
list node, and value contains an integer value of the list node. The class
does not have any methods or constructors.

Class Iterator participates in the IteratorsSlice stereotype slice. The
only field of the class currentElement contains a list node which is referred
to by the iterator.

The constructor sets the value of currentElement and calls the
addFreshSourceIR stereotype operation to register the freshly allocated it-
erator in IteratorsSlice. It is possible that currentElement is null. In this
case getSink returns null and the iterator is not bound to any list.

The insertAftermethod inserts an input node into the list immediately
after the list node which is referred to by the iterator. The method pre-
condition guarantees that the input parameter node belongs to a singleton
sequence instance which is not owned by a specific list. The pre-conditions
guarantee as well that the iterator refers to a list node. The first two lines
of the method body change the heap in such a way that node is inserted in
the list. Then the insertAfterSeq call updates the Sequence stereotype
in a consistent way. And finally addRelationInversion is used to set the
owner of node to the list. insertAfterSeq and addRelationInversion are
duplicated in the method specification.

5.2 Composite

In this sub-section we consider the composite design pattern [50]. The pat-
tern is used to represent a modeled entity as a composition of sub-entities.

5.2. COMPOSITE 121

class Container{
Elements : Reg ;

Container()
ensures Elements = ∅ ;
frame ∅ ;

void addEl(o: Composite)
ensures Elements = old(Elements) ∪ {o} ;
frame this.Elements ;

void removeEl(o: Composite)
ensures Elements = old(Elements) \ {o} ;
frame this.Elements ;

}

Figure 5.4: Specification of the Container class.

Bool invCompositeUnpacked(o: Composite, delta: Z)
invCompositeUnpacked(o, delta) ⇔ o.numberOfDescendants =

(
∑

o′∈o.Child o
′.numberOfDescendants) + |o.Child|+ delta

Bool invComposite(o: Composite)
invComposite(o) ⇔ invCompositeUnpacked(o, 0)

Figure 5.5: Composite behavioral invariant and invariant state.

Each of the sub-entities is also composed from entities. The entity compo-
sition forms a tree relation. An entity can contain aggregated information
about its descendants, e.g., the number of descendants. From a behavioral
perspective the most interesting aspect is the update of this aggregated in-
formation. Such an update can have a global effect: for instance when we
add a new child to a component we have to update the number of descen-
dants for all ancestors of the component.

The implementation of the composite pattern has to track the set of
children of a composite. In order to do this we need a container which con-
tains a set of objects. We provide a possible interface for a container in
Figure 5.4. The interface of the container contains the ghost field Elements

of the region type. The field contains all elements of the container. The
constructor creates an empty container. The method addEl adds an ele-
ment to the container. The method removeEl removes an element from the

122 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

class Composite participate 〈Tree〉{
owner : Composite ;
Children : Container ;
numberOfDescendants : int ;

Composite()
ensures invComposite(this) ;
stereotype createSingletonTree(this) ;
frame ∅ ;
{

createSingletonTree(this) ;
owner = null ;
Children = new Container () ;
numberOfDescendants = 0 ;

}

void addComponent(child : Composite)
requires ch i l d 6=null ;
requires this /∈ ch i l d .Elements ;
requires ch i l d . root = ch i l d ;
requires ∀ o ∈ this . Anc ∪ {this} : invComposite(o) ;
ensures ∀ o ∈ this . Anc ∪ {this} : invComposite(o) ;
frame (this.Anc ∪ {this}×numberOfDescendants)∪{Children , ch i l d . owner} ;
stereotype addTreeRelation(ch i l d , this) ;
{

ch i l d . owner = this ;
Children . addEl(ch i l d) ;
addTreeRelation(ch i l d , this) ;
compositeUpdate(− ch i l d . numberOfDescendants − 1) ;

}

void removeComponent(child : Composite)
requires ch i l d∈this . Child ;
requires ∀ o ∈ this . Anc ∪ {this} : invComposite(o) ;
ensures ∀ o ∈ this . Anc ∪ {this} : invComposite(o) ;
frame (this.Anc ∪ {this}×numberOfDescendants)∪{Children , ch i l d . owner} ;
stereotype removeTreeRelation(ch i l d) ;
{

ch i l d . owner = null ;
Children . removeEl(ch i l d) ;
removeTreeRelation(ch i l d , this) ;
compositeUpdate(ch i l d . numberOfDescendants + 1) ;

}

void compositeUpdate(delta : int)
requires invCompositeUnpacked(this , d e l t a) ;
requires ∀ o ∈ this . Anc : invComposite(o) ;
ensures ∀ o ∈ this . Anc ∪ {this} : invComposite(o) ;
frame Anc ∪ {this}×numberOfDescendants ;
{

numberOfDescendants −= de l t a ;
i f (owner 6= null)

owner . compositeUpdate(de l t a) ;
}

}

Figure 5.6: Specification of the Composite class.

5.2. COMPOSITE 123

container. Both of them update the Elements field in the obvious way. The
container can be implemented in various ways, for instance, as a linked list
or a dynamic array. Since it is not relevant to the composite pattern we
leave it unspecified.

The composite pattern is implemented as Composite class (see Fig-
ure 5.6). The class participates in the unnamed tree stereotype slice. The
slice is used to formalize the component containment relation as a tree. The
class has the following fields:

• owner refers to the parent of the object in the composite tree.

• Children contains the set of children of the object in the composite
tree.

• numberOfDescendants contains the total number of descendants of
the object in the composite tree. An object is a descendant of another
object in the composite tree if and only if the second object is reachable
from the first object via the transitive closure of owner.

Since the entire topology is described by only one stereotype, the glue
invariant is quite simple:

• ∀ o : Composite :: o.owner = o.parent. Field owner is always equal
to parent of the tree stereotype slice.

• ∀ o : Composite :: o.Children.Elements = o.Child. The content of
field Children is always equal to Child of the tree stereotype slice.

Essentially the glue invariants state that the composite tree is the same as
the tree defined by the corresponding stereotype instance.

The last thing which we need to specify is the behavioral invariants and
the invariant states of the composite design pattern. The behavioral invari-
ants specify the properties of the fields of non-reference types. For the com-
posite pattern these are the properties of the field numberOfDescendants.
The behavioral invariants are straightforward (see Figure 5.5):

• the behaviorial state of the object o is delta ∈ Z if and only if the
value of numberOfDescendants differs from the actual number of de-
scendants in exactly delta.

• the behaviorial invariant holds for a composite o (denoted as
invComposite(o)) if and only if the behaviorial state of the object o
is 0 (denoted as invCompositeUnpacked(o, 0))

We use the invariant state to simplify the usage of the class specification.
Instead of the the exposing internal representation (numberOfDescendants
field) and duplicating parts of the invariant specifications we use invariant
states.

124 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

Now we can look at the source code and the specifications of the com-
posite which are presented in Figure 5.6.

The header of the class Composite declares that the class participates
in the unnamed Tree stereotype slice. As we have mentioned above the class
has the following fields: owner, Children, and numberOfDescendants.

The class constructor sets owner to null, allocates a new empty con-
tainer referred to by Children, and sets numberOfDescendants into 0. The
stereotype constructor is used to update the values of the stereotype items.
The constructor execution results in a singleton composite allocation. The
constructors specification uses the stereotype constructor. Since the values
of the class fields can be inferred from the stereotype item values and from
the invariants, the constructors specification does not mention them.

The addComponent method adds a sub-component to a composite. The
only input parameter child refers to the added sub-component. The pre-
condition guarantees that child is the root of a tree instance which is dis-
joint from the tree to which the method receiver belongs. The method also
requires and preserves the behavioral invariant for the method’s receiver
and its ancestors. The first line of the method body updates the heap, the
second one updates the set of children, and the third one updates the stereo-
type slice. These updates keep the heap and the stereotype slice consistent.
The last line calls the auxiliary method compositeUpdate which updates the
values of numberOfDescendants for the method’s receiver and its ancestors.
The update restores the behavioral invariants of the method’s receiver and
its ancestors which were broken by the addition of the sub-component. The
only parameter of the compositeUpdate method call is the number of de-
scendants which were removed from the method’s receiver. The method
specification uses the stereotype operation addTreeRelation to specify the
method effects.

The method removeComponent is symmetric to the method addCompo-
nent. Instead of adding the sub-component it removes it. The pre-condition
checks that the input parameter child is a child of the method’s receiver.
The rest of the method is similar to addComponent; that is why we omit its
description.

The last method is compositeUpdate which restores the behavioral in-
variants which were broken by addComponent or by removeComponent.
It takes a single input parameter delta and assumes that the behavioral
invariant state of the method’s receiver and its ancestors are delta. The
post-condition of the method states that the behavioral invariants of the
method’s receiver and its ancestors were restored. The first line of the
method body restores the behavioral invariant of the method’s receiver. If
the method’s receiver is not the root of the tree then the recursive call of the
method compositeUpdate restores the behavioral invariants of the receiver’s
ancestors.

5.3. DISJOINT-SET FORESTS 125

compressTreePath〈Tree〉(o : ref)
Local variables:

l = old(o . root) ;
P = old(o . Anc ∪ {o}) \ { l } ;

{
if (o.root 6=o)
then {

removePathTree(o) ;
addSetTreeRelation1(l , P) ;

}
}

Figure 5.7: compressTreePath stereotype operation.

unionTree〈Tree〉(o : ref, o′ : ref)
{

compressTreePath(o) ;
compressTreePath(o′) ;
if (o /∈ o′.Elements) then addTreeRelation(o.root, o′.root) ;

}

Figure 5.8: unionTree stereotype operation.

5.3 Disjoint-set forests

In this section we consider the disjoint-set forests [33] data structure, DSF

in short. This data structure is used as an efficient representation of a
set of disjoint sets. DSF provides two operations: the union of two sets
and finding to which set a provided element belongs. Both operations have
amortized logarithmic complexity. This efficiency is achieved by using lazy
computations.

Let us consider how the DSF is organized. Each set is represented by
a disjoint tree. The tree structure is implemented by a backward reference
from a child to a parent. For implementation purposes the root of the tree
points to itself. The root of a tree is used as a set identifier. To extract the
identifier of a set to which a specific element belongs it is enough to traverse
the tree from the element to the root. A union of two disjoint sets is done
in a lazy way: a backward reference is added from the set identifier of to
the set identifier of another one. In this way the two trees which represent
the sets are merged into one. To achieve the desired amortized complexity a
tree path compression is done during the extraction of the set identifier. By
tree path compression we mean that all elements of a tree path are removed

126 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

class SetElement participate 〈Tree〉{
owner : SetElement ;

SetElement ()
stereotype createSingletonTree(this) ;
frame ∅ ;
{

createSingletonTree(this) ;
owner = this ;

}

SetElement f i nd ()
stereotype compressTreePath(this) ;
frame this . Anc ∪ {this}×owner ;
{

i f (owner = this) {
return this ;

} else {
SetElement r = owner . f i n d () ;
owner = r ;
removeTreeRelation(this) ;
addTreeRelation(this , r) ;
return r ;

}
}

union (s : SetElement)
stereotype unionTree(this , s) ;
frame (this . Anc∪s .Anc ∪ {this ,s}×owner)∪{owner} ;
{

SetElement tr , s r ;
t r = f i nd () ;
s r = s . f i n d () ;

i f (t r != s r) {
owner = s ;
addTreeRelation(this , s) ;

}
}

}

Figure 5.9: An implementation and specification of disjoint-set forests.

5.3. DISJOINT-SET FORESTS 127

from the tree and added as children to the root.
To implement DSF we use class SetElement which represents an element

of a disjoint set. The only field of the class, owner, points to the parent of
the element in the tree. To specify the tree relation we use the unnamed
tree stereotype slice.

The glue invariant establishes the relation between the tree formed by
the owner field and the tree stereotype slice.

• ∀ el : SetElement :: o 6= o.root ⇒ o.owner = o.parent. For each set
element excluding the root, owner refers to the parent of the element.

• ∀ el : SetElement :: o = o.root ⇒ o.owner = o. For the root owner is
a self reference.

To specify DSF we introduce two auxiliary tree stereotype operations.
The first one is compressTreePath. It is defined in Figure 5.7. The opera-
tion specifies how a tree stereotype changes after a path compression. The
only input parameter refers to the beginning of the compressed path. If the
input parameter is the root of a tree then nothing has to be done. Other-
wise at first we remove the path from the tree using the stereotype opera-
tion removeTreeRelation and then we use addSetTreeRelation1 stereo-
type operation to add all removed elements to children of the root. Both
removeTreeRelation and addSetTreeRelation1 are defined and discussed
in details in Appendix B.

The second auxiliary operation is unionTree. It is defined in Figure 5.8.
It describes the aggregated update of the tree slice by the union of sets to
which the input parameters o and o′ belong. At first the operation calls
compressTreePath to compress the tree paths which start at o and o′ re-
spectively. If o and o′ belong to different sets then the sets are merged by
adding a relation between the roots of the trees which they represent.

The implementation of the DSF is provided in Figure 5.9. The con-
structor creates a singleton set. The freshly allocated object is the only
element of the set and the root of the representation tree. The tree stereo-
type constructor is used for both stereotype items initialization and method
specification.

The find operation returns the set identifier of the set to which the
method receiver belongs. If the receiver is the root of the tree then it is
also the set identifier. In this case the method returns the receiver and
terminates. Otherwise the recursive call is done. To obtain the set identifier
and compress the tree path starting from the parent of the method receiver.
The next operation performs the path compression for the method receiver.
Essentially it moves the receiver to the children of the root. The next two
stereotype operations update the tree stereotype slice to make it consistent
with the updated heap and restore the glue invariant. The last statement
returns the set identifier.

128 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

union merges the set to which the method receiver belongs with the
set to which the input parameter belongs. The fist two statements get the
identifiers of the merged sets. If the sets are disjoint, which is checked by
comparison of their identifiers, then the sets are merged. To merge the sets
it is enough to set the parent of the receiver to the set identifier of the
input parameter. addTreeRelation is used to restore the glue invariant.
Otherwise if the receiver and the input parameters belong to the same set,
nothing has to be done.

5.4 PIP

The last example which we consider is the priority inheritance protocol which
we introduced in Chapter 2.

Let us begin with the PIP topology. The heap topology of PIP is
formed by the blockedBy field. To specify it we use the unnamed tree and
the unnamed sequence stereotypes. An example of a heap and stereotypes
slice layout of PIP is provided in Figure 5.10. If there are no deadlocks
then blockedBy forms a tree relation. By acquiring and releasing nodes we
add and remove sub-trees. We specify this aspect of the PIP with the help
of the unnamed tree stereotype. From the tree slice perspective PIP nodes
form a forest. On the other hand if a node o attempts to acquire a node o′

which is already locked by one of o’s descendants then a deadlock is created.
To specify this behavior we remove the path between o and o′ from the tree
instance and add it to a cyclic list. To specify this cyclic list we use the
sequence stereotype slice. From the sequence preceptive if nodes form a
deadlock then they belong to the same non-singleton sequence instance. A
node which does not participate in a deadlock forms a singleton sequence.

To distinguish these two possible states we introduce the PIP glue in-
variant state st. st is an enumeration type whose values are stL and stD.
A PIP node is in a deadlock if and only if its glue invariant state is equal
to stD. Otherwise its glue invariant state is equal to stL. We define the
semantics of stL and stD by means of glue invariants below.

To specify PIP we need the transitive closure and the inversion of the
blockedBy field. Since we would like to avoid the explicit transitive closure
usage we use stereotype items to define the functions which simulate this
construct. The definitions are provide in Figure 5.11.

• blockedBy−1 is the inversion of the blockedBy field. If a node is not
in a deadlock state then blockedBy−1 is equal to the node’s children
in the three stereotype. Otherwise we add the previous element of the
node in the sequence stereotype to the result.

• blockedBy∗ is the transitive and reflexive closure of the blockedBy
field. If a node is not in a deadlock state then blockedBy∗ is equal to

5.4. PIP 129

Figure 5.10: The figure depicts a heap and stereotype slices layout for the
PIP example. PIP nodes are denoted as black circles. Black arrows denote
the blockedBy field. Dotted triangles enclose elements of the tree stereo-
type instances. Dotted circles enclose elements of the sequence stereotype
instances.

the ancestors of the node in the tree stereotype plus the node itself. If
a node is in a deadlock state then we add to the result all nodes which
participate in the deadlock. The set of nodes which participate in the
deadlock is accessible via elements of the sequence stereotype instance
of the root of the tree instance to which the node belongs. If there
is no deadlock the root of the tree forms a singleton sequence whose
elements contain only the root. Therefore we do not need to explicitly
consider two cases and always can add the elements of the sequence
stereotype instance of the root to the result.

• blockedBy+ is the transitive and irreflexive closure of the blockedBy
field. We construct it from the reflexive transitive closure by removing
the node itself from the result.

Let us define the PIP invariants:

130 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

Reg blockedBy−1 (o : PIPNode)
blockedBy−1(o) = if(o.st = stL) then o.Tree.Child
else o.Tree.Child ∪ {cyclicPrev(o)}

Reg blockedBy∗ (o : PIPNode)
blockedBy∗(o) = o.Tree.Anc ∪ o.Tree.root.Sequence.Elements ∪ {o}

Reg blockedBy+ (o : PIPNode)
blockedBy+(o) = blockedBy∗(o) \ {o}

Figure 5.11: blockedBy predicates.

• ∀ o : PIPNode :: o.st = stL ⇔ o.blockedBy = o.Tree.parent. This
invariant defines the meaning of the locked state. An object is in the
locked state if and only if its field blockedBy plays the role of the
parent in the tree stereotype slice.

• ∀ o : PIPNode :: o.st = stD ⇔ o.blockedBy = cyclicNext(o). This
invariant defines the meaning of the deadlocked state. An object is in
the deadlocked state if and only if its field blockedBy plays the role of
the next element in the tree stereotype slice.

• ∀ o : PIPNode :: o.st = stL ⇒ isSingletonSequence(o). If an
object’s state is locked then the instance of the sequence in which it
participates is a singleton.

• ∀ o, o′ : PIPNode :: o′ ∈ o.Tree.Desc ⇒ o′.st = stL. If an object is a
descendant of some other object in a tree stereotype then the object
does not participate in a deadlock.

• ∀ o, o′ : PIPNode :: o.st = stD ∧ o′ ∈ o.Sequence.Elements ⇒ o′.st =
stD. If two objects participate in the same sequence instance and one
of them participates in a deadlock then the other one also participates
in a deadlock.

On top of the topology invariants we can define the behavioral invariant.
The definitions are provided in Figure 5.12:

• invPriorities defines the semantics of the priorities fields. If
the PIP node invariant holds then priorities is a multiset which
contains the current priorities of all PIP nodes which are blocked by
this one. Nevertheless it is possible that during the change of the PIP

topology the value of priorities is different form the intended one.
Input parameters from and to specify this difference. invPriorities
guarantees the following:

5.4. PIP 131

Bool invPriorities(o: PIPNode, from: N, to: N)
invPriorities(o, from, to) ⇔

(∀i ∈ N
+ \ {from, to} : priorities[i] =

|{o′ ∈ blockedBy−1(o) : o.currentPriority = i}|)∧
(from 6= 0 ⇒ priorities[from] =

|{o′ ∈ blockedBy−1(o) : o.currentPriority = from}|+ 1)∧
(to 6= 0 ⇒ priorities[to] =

|{o′ ∈ blockedBy−1(o) : o.currentPriority = to}| − 1)

Bool invCurrentPriority(o: PIPNode)
invCurrentPriority(o) ⇔

o.currentPriority = max(o.priorities ∪ {o.defaultPriority})

Bool invDefaultPriority(o: PIPNode)
invCurrentPriority(o) ⇔ defaultPriority > 0

Bool invPIPunpacked(o: PIPNode, from: N, to: N)
invPIPunpacked(o, from, to) ⇔

invPriorities(o, from, to) ∧ invDefaultPriority(o)

Bool invPIP(o: : PIPNode)
invPIP(o) ⇔ invPIPunpacked(o, 0, 0) ∧ invCurrentPriority(o)

Figure 5.12: PIPNode invariants

– For all priorities i which are distinct from from and to
priorities[i] is equal to the number of nodes whose are blocked
by this one and which current priority is equal to i.

– if from is not equal to 0 then the value of priorities[from] is
smaller by one than it is supposed to be.

– if to is not equal to 0 then the value of priorities[to] is greater
by one than it it is supposed to be.

• invCurrentPriority states that the value of the current priority is
equal to the maximum of priorities which belong to priorities and
the default priority of the node.

• invDefaultPriority states that the default priority of a PIP node
is strictly positive.

• invPIPunpacked is a composition of invPriorities and
invCurrentPriority. We use it to define the behavioral state of the
PIP node. We say that the behavioral state of a node o is 〈from, to〉
if and only if invPIPunpacked(o, from, to) holds.

132 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

• invPIP is the desired PIP node invariant. A PIP node invariant holds
if and only the behavioral state of the node is 〈0, 0〉 and its default
priority invariant holds.

constructor createSingletonPIPNode〈Tree, Sequence, st〉 (n : ref)
{

createSingletonTree(n) ;
createSingletonSequence(n) ;

}

Figure 5.13: createSingletonPIPNode stereotype operation.

acquireBlocked〈Tree, Sequence, st〉 (t r e e : ref , subTree : ref)
Local variables:

Inst = tree ∪ tree.Anc ;
∀o : nextInst[o] = o.parent ;
∀o : ElUnion[o] = o.Anc ∪ {o} ;

{
if (tree /∈ subTree.Desc)
then addTreeRelation(tree, SubTree)
else {

addSetSequenceRelation(tree, subTree, Inst, nextInst,ElUnion) ;
removePathTree(tree) ;

}
}

Figure 5.14: acquireBlocked stereotype operation.

acquireStereotype〈Tree, Sequence, st〉 (t r e e : ref , subTree : ref)
{

if(subTree . blockedBy = null)
then addTreeRelation(subTree , t r e e)
else acquireBlocked(t r ee , subTree) ;

}

Figure 5.15: acquireStereotype stereotype operation.

To specify PIP we introduce two axillary stereotype operations and one
constructor:

• In Figure 5.13 we define the stereotype constructor

5.4. PIP 133

c l a s s PIPNode〈Tree, Sequence〉{
PIPNode blockedBy ;
i n t defaultPriority ;
i n t currentPriority ;
Mult iSet 〈int〉 priorities ;
st {stL, stD} ;

PIPNode(i n t p r i o r i t y)
requires p r i o r i t y > 0 ;
ensures invPIP(t h i s) ;
stereotype createSingletonPIPNode(t h i s) ;
{

createSingletonPIPNode(t h i s) ;
t h i s . st = stL ;
blockedBy = nu l l ;
defaultPriority = p r i o r i t y ;
currentPriority = p r i o r i t y ;
priorities = ∅ ;

}
}

Figure 5.16: Specification of the class PIPNode and its constructor.

createSingletonPIPNode. The constructor calls the tree and the
sequence constructors to create singleton tree and sequence instances.

• In Figure 5.14 we define the stereotype operation acquireBlocked.
It is used to specify the stereotype updates when a blocked node
subTree is acquired. There are two possibilities: either the acquired
node subTree is blocked by a descendant of the current node tree or
not. In the first case we merge all nodes which belong to a tree path
between tree and subTree into a single sequence instance. Then we
remove the path between tree and subTree from the tree instance.
And at the end we change the behavioral states of all affected PIP

nodes to deadlocked. In the other case if the acquired node subTree is
blocked by a node which is not s descendant of the current node tree
we add a tree relation between them.

• In Figure 5.15 we define the stereotype operation acquireStereotype.
It is used to specify the accumulated behavior of the acquire oper-
ation. First of all the operation checks whether the acquired node
is blocked or not. In the first case the behavior is specified by the
acquireBlocked operation. In the other case a tree relation is added
between subTree and tree.

134 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

void updatePriorities(from: int, to: int)
requires ∀o ∈ blockedBy+ (this) : invPIP(o) ;
requires invPIPunpacked(this , from , to) ;
ensures ∀o ∈ blockedBy∗ (this) : invPIP(o) ;
frame blockedBy∗ (this)×{ cu r r en tP r i o r i t y , p r i o r i t i e s } ;
{

oldCurrentPriority int ;
oldCurrentPriority = currentPriority ;

i f (from > 0)
priorities = priorities\{from} ;

i f (to > 0)
priorities = priorities∪{to} ;

currentPriority = max(defaultPriority , max(priorities)) ;
i f (blockedBy 6= null && oldCurrentPriority 6= currentPriority)

blockedBy . updatePriorities
(o ldCur r en tPr io r i ty , currentPriority) ;

}

Figure 5.17: Specification of the method updatePriorities of the class PIPN-
ode.

Let us now specify PIP. In Figure 5.16 the PIP class and constructor
definitions are provided. The class definition declares that the class partic-
ipates in two unnamed stereotype slices: the tree and the sequence slices.
The class definition contains the PIP glue invariant state st. The con-
structor uses the createSingletonPIPNode constructor for both method
specifications and ghost updates. The only non-topological specification of
the constructor is the pre-condition which checks that the priority of the
input parameter is strictly positive and the post-condition which guarantees
that the PIP invariant holds for the freshly allocated object.

The specification of updatePriorities is provided in Figure 5.17. The
method pre-condition checks that the PIP invariant holds for all nodes
which are reachable from the current one via blockedBy+. The pre-condition
also checks that the behavioral state of the current node is
〈from, to〉. The post-condition states that the PIP invariant is restored
for the current node and preserved for all nodes which are reachable via
blockedBy+. The frame property states that only currentPriority and
priorities fields of the nodes which are reachable via blockedBy∗ are af-
fected by the operation. Since the operation does not change stereotype
items there is no need for stereotype operations for both method specifica-
tions and ghost updates.

5.4. PIP 135

void release(n : PIPNode)
requires this . root = this ;
requires n ∈ this .Child ;
requires ∀o ∈ blockedBy∗ (n) : invPIP(o) ;
ensures ∀o ∈ blockedBy∗ (n) : invPIP(o) ;
stereotype removeTreeRelation(n) ;
{

n . blockedBy = null ;
i f (n . currentPriority 6= 0)
{

removeTreeRelation(n) ;
updatePriorities(n . currentPriority , 0) ;

}
}

void acquire(n : PIPNode)
requires this .root = this ;
requires n 6= null ;
requires ∀o ∈ blockedBy∗ (n)∪blockedBy∗ (this) : invPIP(o) ;
ensures ∀o ∈ blockedBy∗ (n)∪blockedBy∗ (this) : invPIP(o) ;
stereotype acquireStereotype(this , n) ;
{

i f (n . blockedBy = null){
addTreeRelation(n , this) ;
n . blockedBy = this ;
i f (n . currentPriority 6= 0)

updatePriorities (0 , n . currentPriority) ;
} else {

acquireBlocked(this , n) ;
if (tree ∈ subTree.Desc) 〈Inst, st, stD〉 ;
this . blockedBy = n ;
i f (currentPriority 6= 0)

n . updatePriorities (0 , this . currentPriority) ;
}

}

Figure 5.18: Specification of the methods release and acquire of the class
PIPNode.

The specifications for both release and acquire are provided in Fig-
ure 5.18. The pre-condition of release checks that this refers to a tree root
in a tree stereotype slice and that the input parameter is a child of this in
the tree stereotype slice. In other words this is not blocked and the input

136 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

parameter refers to a PIP node which is owned by this. The method also re-
quires and guarantees preservation of the PIP invariant for all nodes which
are reachable via blockedBy∗. The method uses removeTreeRelation for
both method specification and ghost updates.

The pre-condition of acquire checks that this refers to a tree root in a
tree stereotype slice and that the input parameter is not null. The method
also requires and guarantees preservation of the PIP invariant for all nodes
which are reachable from this and the input parameter via blockedBy∗.
acquireStereotype is used to specify the method effect on stereotype items.
acquireBlocked and addTreeRelation are used for ghost updates. We can
see that the method stereotype specifications duplicate the method ghost
updates.

5.5 Boogie experiments

To validate our approach we directly encoded into Boogie [75] some of the
stereotypes and examples which we have mentioned above. In our exper-
iments we used the Boogie build from 2010.07.20. Boogie generates the
proof obligations which are verified by the Z3 theorem prover. In our ex-
periments we used version 2.10 of Z3 [39]. We discuss Boogie and Z3 in
more details in Chapter 7. In this section we discuss the results of these
experiments. The Boogie specification of the discussed examples can be
downloaded from:
http://people.inf.ethz.ch/rudicha/Stereotypes Boogie Examples.zip.

Before we move on to the examples let us mention some technical prob-
lems which we have come across.

The first technical problem is related to the SLS-to-SSOR transforma-
tion which is defined in Section 6.4. The transformation can be easily done
by an automatic tool. On the other hand, since the transformation involves
an enormous amount of case splits, it is not really feasible for a manual
encoding. In our experiments we have used a manual encoding into Boogie

which prevented us from using the SLS-to-SSOR transformation. Instead
we had to use the usual weakest pre-condition calculus (WPC) provided by
Boogie. This replacement had several consequences:

• Since WPC has to deal with non-determinism and is not targeted
to dealing with SLS, we believe that it is much less efficient than
the SLS-to-SSOR transformation. By less efficient we mean that the
produced prove obligations are harder to prove. Nevertheless since we
were able to verify the examples using a less efficient technique they
also have to be verifiable by the SLS-to-SSOR transformation.

• The SLS-to-SSOR transformation is used to generate a pair of pre-
and post-conditions which are used in the method specifications. On

5.5. BOOGIE EXPERIMENTS 137

the other hand WPC just checks the consistency between an SLS

term and the SSOR but does not produce an SSOR from an SLS

term. To deal with this we had to explicitly provide pre- and post-
conditions for some stereotype operations. These manually provided
specifications can possibly differ from automatically generated once.
It is possible that a human specification writer could perform some
optimizations which are not feasible for an automatic theorem prover.
We assume that this effect comes up only in complicated examples.
In our case study the most complicated stereotype operations are in-
ductive operations. For all these operations a specification writer has
to explicitly provide an SSOR for the operation. In other words, the
described effect comes up only in simple non-recursive operations and
therefore should not affect the results of the case study significantly.

Another technical problem is related to limitations of the underlying
automatic theorem prover. Even though our approach does not require
inductive proofs and quantifier alternation, not all proof obligations can be
verified automatically. To deal with it we use a standardBoogie approach to
this problem: an intermediate assertion. This intermediate assertion is used
by a theorem prover as a hint and facilitates verification of the required proof
obligations. In our experiments we group intermediate assertions relevant to
a specific subgoal and use a consistent notation to identify them. We mark
the beginning and the end of the intermediate assertion as //begin :: proof
and //end :: proof , respectively. Most of the subgoals are used to prove
rather simple properties. Nevertheless the subgoal descriptions are quite
awkward and verbose. We believe that there are several reasons for this:

• The first one is that we use WPC but not the SLS-to-SSOR trans-
formation. As we mentioned above this results in less efficient proof
obligations. The intermediate subgoals make these proof obligations
feasible for automatic verification.

• Another reason is the absence of a build in mechanism for handling user
provided hints for splitting of subgoals in Boogie and the underlying
automatic theorem prover. In the current approach the intermediate
assertion is incorporated by WPC in the resulting proof obligation as
a usual programm specification. We believe that they can be treated
more efficiently. For instance, to prove that A ⇒ B with the subgoal
C it is enough to prove that A ⇒ C and C ⇒ B. In this way we use
C to prove that B holds and then immediately throw it away. By this
we avoid polluting the rest of the proof obligations by C and make
verification of B more directed.

One more technical problem which we have met was related to reusabil-
ity. Since we use a direct Boogie encoding we cannot use specification

138 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

operation calls in the methods specifications. Instead we have to explicitly
duplicate stereotype operation specifications in the method specifications.
As a result most method specifications are huge and look ugly. Nevertheless
it is only a problem of the manual encoding. If we use use a specialized tool
instead of the manual encoding then the method specifications would look
exactly as we have specified them in this chapter.

The absence of a tool complicates the verification of the examples sig-
nificantly. It requires many duplications of specifications, and the gener-
ated proof obligations are harder to verify. Due to this reason we postpone
some of the universal transformation verifications until the tool is devel-
oped. Specifically we omit the verification of the universal transformation
of the tree. Instead we have specified and verified only the inductive tree
operations which are used in examples. Since we introduced fDesc only to
deal with the universal transformation of the tree, we omit fDesc from the
Boogie specification of the tree stereotype. We omit the specification of
the instance identifiers, too.

The rest of the section is dedicated to the Boogie verification of specific
examples. For each example we provide the verification time. The verifica-
tion is done on a computer with i5 2.40GHz CPU and 4 GB of memory.

5.5.1 Composite design pattern

In this subsection we consider verification of the composite pattern which
we have considered in the Subsection 5.2. The Boogie specification of
the example consists of the following files:

• ”Heap.bpl”: contains definitions of the program heap, heap reference,
and heap field. The heap is defined as a polymorphic map from a pair
(reference, field) to the value of the field type. The file also contains
the definition of the function IsNotAllocated which checks whether a
reference points to an object which is not allocated.

• ”Region.bpl”: contains the definition of regions and region operations.
A region is a set of references. In Boogie we define regions as maps
from references to boolean values. The file also contains several proce-
dures which are used to specify the update of the fields of all objects
which belong to a given region. We use these procedures to specify
stereotype operations.

• ”Auxiliary.bpl”: contains specifications of auxiliary functions, e.g.,
maximum of two numbers, and of a set of numbers.

• The definition of the tree stereotype is provided in the following files:

– ”TreeStereotype.bpl”: defines tree stereotype items. Here we de-
fine stereotype items as heap fields. In this way we simplify speci-

5.5. BOOGIE EXPERIMENTS 139

Name of the verified Verification time Description
Boogie procedure in seconds of the procedure

removeSubTree 3.67 stereotype operation
removeSequenceRelation

addSubTree 2.64 stereotype operation
addSequenceRelation

creatEmptyTree 0.16 stereotype constructor

composite..ctor 0.13 Composite constructor

composite..update 0.71 Composite method
update

composite..add 0.34 Composite method
add child

composite..remove 0.39 Composite method
remove child

main 0.52 client code

create main 1.06 client code
objects allocation

Figure 5.19: The results of the composite design pattern verification.

fications. We consider a more advanced specification of stereotype
items in Boogie in Subsection 5.5.4.

– ”TreeOperations.bpl”: contains basic tree operations, a construc-
tor, and the predicate which checks that a given predicate forms
a singleton tree stereotype instance.

– ”TreeInvariant.bpl”: contains the definition of the tree stereotype
invariants. The file contains both definition of SysInvEl and
SysInv for the tree stereotype. As we have mentioned above
we do not formalize stereotype instances and therefore omit the
specification of SysInvID.

• ”CompositeType.bpl”: contains the definitions of the fields of the class
Composite which are provided in Figure 5.6.

• ”CompositeInvariant.bpl”: contains the definition of behavioral and
glue invariants of the class Composite. Here we do not check that a
glue invariant has visible state semantics. Instead we have added the
glue invariant to the behavioral invariant. We explicitly state when
the combined invariant can be assumed and when its validity has to
be verified.

• ”InvCompositeAx.bpl”: to facilitate the verification of the behavioral

140 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

Name of the verified verification time
Boogie procedure in seconds

ProveInvCompositeFrame 0.88

ProveInvCompositeStFrame 0.02

ProveInvCompositeRemoveChild 0.06

ProveInvCompositeAddChild 0.01

ProveInvCompositeUpdateChild 0.02

ProveInvCompositeSt2Composite 0.02

Figure 5.20: The results of the composite design pattern.

invariants we add several lemmas which describe properties of the be-
havioral invariants and the behavioral invariant states. The proofs of
all lemmas do not require induction. Most of the proofs do not require
any hints from the user. The proofs are provided in ”InvCompos-
iteProofs.bpl”.

• ”CompositeOperations.bpl”: provides definitions and specifications of
the methods of the class Composite.

• ”client.bpl”: contains client code which uses the Composite class. The
client code allocates several objects of class Composite. Then the client
code executes methods add and remove to establish relations between
objects. It is verified that the resulting data structure preserves the
behavioral and topological invariants. It is also verified that the field
childrenNumber of objects of types Composite contains the correct
number of descendants.

Together with the Boogie specification files we deliver two script files
which can be used to start the verification process:

• ”run.bat” starts the verification of the composite design patterns. The
verification also covers stereotype operations and client code.

• ”runInvComp.bat” verifies lemmas which describe properties of the
behavioral invariants and behavioral invariant states.

The results of the verification are provided in the following xml files:

• ”result.xml” contains the results of the verification. We present the
result of the verification on Figure 5.19.

• ”resultInvComp.xml” contains the results of verifying the lemmas. We
present result on Figure 5.20.

5.5. BOOGIE EXPERIMENTS 141

5.5.2 PIP

In this subsection we consider the verification of the implementation of PIP

which we have considered in Subsection 5.4. The Boogie specification of
the example consists of the following files.

• ”Heap.bpl”, ”Region.bpl”, ”Auxiliary.bpl”, ”TreeStereotype.bpl”,
”TreeOperations.bpl”, and ”TreeInvariant.bpl”: are the same as in
Subsection 5.5.1.

• ”MSet.bpl”: contains the definition of multisets and of relevant oper-
ations.

• ”ListStereotype.bpl”, ”ListOperations.bpl”, and ”ListInvariant.bpl”:
contain definitions of the sequence stereotype and sequence stereotype
operations. Here we use the simplified version of the sequence stereo-
type which is defined in Figure 4.2. The version is precise enough
to verify the correctness of the PIP implementation. ”ListOpera-
tions.bpl” contains the stereotype constructor CreatEmptyList and the
stereotype operation AddToEnd. AddToEnd is a simplified version of
addTreeRelation which assumes that the second merged stereotype
instance is a singleton.

• ”TreeToList.bpl”: contains the definition of the stereotype operation
TreeToList. The operation is used to verify method acquire of the
PIP node. TreeToList is defined as the sequential composition of
operations TreeToListGetList and TreeToListRemTree which are also
defined in ”TreeToList.bpl”. TreeToListGetList uses a tree path to
construct a sequence which contains objects which belongs to the path.
The operation definition uses AddToEnd. TreeToListRemTree is an
implementation of the operation removePathTree which is defined in
Figure 4.29.

• ”NodeType.bpl”: the class contains the definition of the fields of the
class Node. The class represents a PIP node which is defined in Fig-
ure 5.16. The file contains the following fields definitions:

– blockedBy is defined as Nbb.

– defaultPriority is defined as Ndpr.

– currentPriority is defined as Ncpr.

– priorities is defined as Npr.

– st is defined as NSt. The type of NSt is the enumeration which
consists of the following three values StF, StL, StD. StD corre-
sponds to stD. stL is represented by two states StF and StL.
StL corresponds to stL when Nbb of the object is not null. StF
corresponds to stL when Nbb of the object is null.

142 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

Name of the verified Verification time Description
Boogie procedure in seconds of the procedure

MSet.increment 0.98 addition of an element
to a multiset

MSet.decrement 0.01 removal of an element
from a multiset

CreatEmptyList 0.15 createSingletonSequence

stereotype constructor

AddToEnd 6.29 a simplified version of
addSequenceRelation

stereotype operation

TreeToList 0.13 moving of a tree path
to a sequence

stereotype operation

TreeToListGetList 5.05 sequence construction
from a tree path

stereotype operation

TreeToListRemTree 5.01 removePathTree

stereotype operation

Node..ctor 5.16 constructor of the
PIP node

Node..updatePriorities 71.52 method updatePriorities
of the PIP node

Node..release 7.23 method release
of the PIP node

Node..acquire 77.71 method acquire
of the PIP node

main 39.08 client code

main create 6.09 client code
objects allocation

Figure 5.21: The results of PIP verification.

5.5. BOOGIE EXPERIMENTS 143

Name of the verified verification time
Boogie procedure in seconds

ProveInvPrFrame1 1.09

ProveInvPrFrame2 0.03

ProveInvPrInvPrSt 0.15

ProveInvPrRemoveChild 0.07

ProveInvPrAddChild 0.06

ProveInvPrStFrame 0.03

ProveInvPrStFromUpdate 0.05

ProveInvPrStToUpdate 0.05

ProveInvPrStInvPr 0.05

Figure 5.22: The results of verifying the PIP lemmas.

• ”NodeInvariant.bpl”: Contains the definition of the behavioral and the
glue invariant of the class Node.

• ”InvPrAxioms.bpl”: to facilitate verification of the behavioral invari-
ants we add several lemmas which describe properties of the behav-
ioral invariants and the behavioral invariant states. The proofs of all
lemmas do not require induction. Most of the proofs do not require
any hints from the user. The proofs of the lemmas are provided in
”InvPrProofs.bpl”.

• ”Node.bpl”: provides definitions and specifications of the methods of
the class PIP Node.

• ”client.bpl”: contains client code which uses the PIP Node class. The
client code allocates several objects of class PIP Node. Then the
client code executes methods acquire and release to establish relations
between the objects. It is verified that the resulting data structure
preserves the behavioral and topological invariants. We also verify the
precise heap topology of the resulting data structure.

Together with the Boogie specification files we deliver two script files
which can be used to start the verification process:

• ”run.bat” starts verification of the PIP implementation. The verifi-
cation also covers stereotype operations and client code.

• ”runInvPr.bat” verifies the lemmas which describe properties of the
behavioral invariants and the behavioral invariant states.

The results of the verification are provided in the following xml files:

144 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

• ”result.xml” contains the results of the verification. We present the
result of the verification in Figure 5.21. We omit the results of the tree
stereotype operations verification. We have already considered them
in Subsection 5.5.2.

• ”resultInvPr.xml” contains the results of verifying the lemmas. We
present the results in Figure 5.22.

5.5.3 List with iterator

In this subsection we consider the verification of a simple list with iterator.
The example is a simplified version of the list with iterator which is provided
in Section 5.1. The version which we consider in this section is simplified
in the following way:

• It uses only Sequence stereotype to specify that the list nodes form an
acyclic list. Properties which are related to the RelationInversion

stereotype are ignored.

• The list is singly-linked, not a doubly-linked.

• We drop the value field of the list node.

In this example we use the full version of the Sequence stereotype which
is defined in Figure 4.5. We also use non standard basic operations. Instead
of addSequenceRelation and removeSequenceRelation we use as basic
operations addition of an element to a sequence and removal of an element
from a sequence.

The Boogie specification of the example consists of the following files:

• ”Heap.bpl” and ”Region.bpl”: are the same as in Subsection 5.5.1.

• ”ListStereotype.bpl”, ”ListOperations.bpl”, and ”ListInvariant.bpl”:
contain the definitions of the sequence stereotype and sequence stereo-
type operations. ”ListOperations.bpl” contains the following stereo-
type operations and constructor:

– CreatEmptyList - sequence stereotype constructor.

– AddToEnd - adds an element to the end of a sequence.

– InsertAtTheMiddleAfter - adds an element into the middle of a
sequence after the given element.

– InsertAfter - adds an element into a sequence after the given
element.

– RemoveToEnd - removes the last element of a sequence.

– RemoveBegin - removes the last element of a sequence.

5.5. BOOGIE EXPERIMENTS 145

Name of the verified Verification time Description
Boogie procedure in seconds of the procedure

CreatEmptyList 0.98 stereotype constructor

AddToEnd 3.18 stereotype operation
add elment to the end

InsertAtTheMiddleAfter 17.77 stereotype operation
add elemnt to the middle

InsertAfter 0.08 stereotype operation
add elemnet

RemoveEnd 4.45 stereotype operation
remove the lsat element

RemoveBegin 4.37 stereotype operation
remove the first element

RemoveFromTheMiddle 9.47 stereotype operation
remove a middle element

RemoveEl 0.12 stereotype operation
remove element

GetItBegin 0.09 method of the list
get iterator

ItRemoveNext 1.20 method of iterator
remove elment

ItInsertAfter 0.76 method of iterator
add elment

main 0.28 client code

Figure 5.23: The results of verifying the list with iterator.

146 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

– RemoveFromTheMiddle - removes an element from the middle of
a sequence.

– RemoveEl - removes an element from a sequence.

• ”ListImplementation.bpl”: contains the implementation of the list
with iterator. The implementation consists of three classes, list node,
list, and list iterator. The only field of the list node is Node next which
points to the next list node. The only field of the list is List head which
points to the list head. List iterator has two fields, It el which refers to
the list node and It List which refers to the list to which It el belongs.
The file also specifies list and iterator invariants. The list invariant
guarantees that list nodes form an acyclic singly-linked list. The list
iterator invariant guarantees that if It el is not null then the list node
which is pointed to by It el belongs to It List.

The file also contains client code which uses the list and the iterator.
The client code uses iterators to transfer a list node from one list to
another.

Together with the Boogie specification files we deliver the script files
which can be used to start the verification process. ”run.bat” starts verifi-
cation of the list with the iterator. The verification also covers stereotype
operations and client code.

The the results of the verification are provided in the file ”result.xml”.
We present the results of the verification on Figure 5.23.

5.5.4 Universal transformation of the sequence stereotype

In this subsection we consider the verification of the universal transforma-
tions of the sequence stereotype. We discussed the transformation at the end
of Section 4.1. The complete definition of the sequence universal trans-
formations is provided in Appendix A. In this example we use the full
version of the Sequence stereotype which is defined in Figure 4.5.

The Boogie specification of the universal transformations consists of the
following files:

• ”Heap.bpl” is the same as in Subsection 5.5.1.

• ”Set.bpl”: contains the definition of the type set and the set manipu-
lating operations.

• ”Region.bpl”: contains the definition of the region type and region
manipulating operations. We define the region type as a set of loca-
tions. The file also contains the definitions of maps from a reference
to a reference and from a reference to a region.

5.5. BOOGIE EXPERIMENTS 147

Name of the verified Verification Description
Boogie procedure time in of the procedure

seconds

CreatSingletonSeq 0.94 stereotype constructor

AddSequenceRelation 30.89 stereotype operation
addSequenceRelation

RemSequenceRelation 6.29 stereotype operation
removeSequenceRelation

AddSetSequenceRelation 31.64 stereotype operation
addSetSequenceRelation

RemSetSequenceRelation 52.00 stereotype operation
removeSetSequenceRelation

SplitSeqOnSingletons 17.14 stereotype operation
split a sequence

MergeSeqOfSingletons 3.15 stereotype operation
merge a sequence

reverse 44.97 stereotype operation
reverseSequence

Figure 5.24: The results of verifying the sequence universal transformations.

148 CHAPTER 5. EXAMPLES OF STEREOTYPE-BASED VERIFICATION

• ”Stereotype.bpl”: contains the definition of the stereotype item and
stereotype slice. A stereotype slice is defined as a map from the stereo-
type item name to the value of the stereotype item type. The types of
stereotype items are either maps from a reference to a region or maps
from a reference to a region. The file also contains the definition of
the Elements stereotype items and the predefined stereotype system
invariant SysInvEl.

• ”sequenceSt.bpl”: contains the definition of the stereotype items and
invariants of the Sequence stereotype.

• ”sequenceBasicOp.bpl”: contains definitions of the stereotype con-
structor and basic stereotype operations.

• ”sequenceIndOp.bpl”: contains definitions of inductive stereotype op-
erations.

• ”reverse.bpl”: contains definitions of the following stereotype opera-
tions:

– SplitSeqOnSingletons is the stereotype operation which splits a
sequence into singleton sequences.

– MergeSeqOfSingletons is the stereotype operation which merges
a sequence of singleton sequences into a sequence.

– reverse uses two of the above operations to define the reversal of
a sequence.

Together with the Boogie specification files we deliver the script files
which can be used to start the verification process. ”run.bat” starts verifi-
cation of the universal transformations of the sequence stereotype.

The results of the verification are provided in the file ”result.xml”. We
present the results on Figure 5.23.

Chapter 6

Stereotype operations

In this chapter we consider stereotype operations in detail. As we have seen
in previous sections we use stereotype operations to change the values of
stereotype items in a consistent way. We are presenting a methodology for
the construction of stereotype operations which achieves the following goals:

• Expressivity: Our ultimate goal is to be able to express an arbi-
trary computable transformation. We achieve this by constructing a
so-called universal transformation for a given stereotype. A universal
transformation uses hints from a developer to compose basic stereo-
type operations so that they express a desired operation. We provide
a language dedicated to the construction of stereotype operations, the
specification language of specifications (abbreviated as SLS) in Sec-

tion 6.3. The language has an operational nature and provides a nat-
ural way to construct stereotype operations. Applications of SLS are
demonstrated in Appendix A and Appendix B where we construct
universal transformations for the Sequence and Tree stereotypes re-
spectively.

• Provability: The above goal can be easily achieved by using quanti-
fier alternation and transitive closure. Nevertheless there is not much
use for such specifications. The problem is that such specifications
can be hardly verified automatically. Quite often the validity proof
of the specification requires inductive reasoning and witness guessing.
Both of them are problematic for automatic theorem provers. This is
why we limit our approach to the verification of specifications which
are universally quantified and do not contain transitive closures. The
proof obligations which we generate to verify the specifications’ valid-
ity have the form ϕ⇒ φ where both ϕ and φ are universally quantified
and do not contain transitive closures. As a result our proof obliga-
tions are feasible for automatic verification. The price which we pay
for it is a high complexity of the definition of universal transforma-

149

150 CHAPTER 6. STEREOTYPE OPERATIONS

tion. Luckily we have to provide this complicated specification only
once per stereotype. As soon as we have a universal transformation we
can express any other stereotype operation almost without additional
effort.

• Consistency validation and preservation of the stereotype in-

variant: All constructed stereotype operations have to be consistent
and preserve certain invariants which we describe below. We directly
prove consistency and invariant preservation for basic operations. As
we mentioned above all stereotype operations are constructed from
basic operations. Using this observation we lift invariant preservation
and consistency validation from basic operations to all other stereo-
type operations.

• Expressivity vs. provability mismatch: To overcome the mis-
match we provide a translation from an arbitrary SLS term into a
pair of pre/post conditions in the universally quantified fragment of
FOL. We perform this translation in two steps. In the first step we
transform an operation into a so-called standard stereotype operation
representation (abbreviated as SSOR). This representation consists
of a pre-condition, translation rules, frame rules, and a list of affected
stereotype instances. The SSOR is defined in Section 6.2. The
translation from an arbitrary SLS term to a corresponding SSOR is
defined in Section 6.4. In the second step, which is rather trivial,
we transform an SSOR into a pair of universally quantified pre/-
post conditions, which establish a logical connection between states
of the affected stereotype slice before and after an execution of the
stereotype operation. We provide a soundness theorem for the SLS-
to-SSOR translation. The soundness theorem guarantees that if the
corresponding proof obligations hold then the SLS-to-SSOR transla-
tion preserves the operational semantics.

The rest of the chapter is organized in the following way.
In Section 6.1 we provide a methodology for set description. The main

goal of this methodology is to characterize sets with the help of characteristic
formulas. For each set we have two characteristic formulas; the positive and
the negative characteristic formulas. The positive characteristic formula
can be used to check that a given element belongs to the set. The negative
characteristic formula can be used to check that a given element does not
belong to the set. Both the positive and the negative characteristic formulas
have to be universally quantified and do not contain transitive closures. We
also show how to reduce verification of some properties of validation of
universally quantified formulas. The above constraints enable automatic

6.1. METHODOLOGY FOR SET DESCRIPTION 151

verification by SMT theorem provers of set properties described in our
methodology.

In Section 6.2 we introduce the standard stereotype operation represen-
tation (denoted as SSOR). The SSOR of a stereotype operation describes
the set of locations which are affected by the operation execution and the
set of locations which are preserved by the operation execution. The SSOR

also describes the new values which are assigned to the affected locations.
We use the set methodology introduced in Section 6.1 to describe SSORs.
Therefore SSORs also can be handled by SMT theorem provers.

In Section 6.2 we also describe the properties which we expect from
SSORs. For instance, we expect that SSORs preserve the stereotype invari-
ants and are consistent. We call the SSORs for which the above property
holds proper.

In Section 6.3 we introduce the specification language of specifications
(denote as SLS). We already considered SLS in Subsection 3.3.2. SLS is
the language which is used to describe stereotype operations. In Section 6.3

we define both the syntax and the semantics of SLS.

In Section 6.4 we define the translation from an arbitrary SLS term
to an SSOR. We also define the correspondence between SLS terms and
SSORs. An SSOR corresponds to an SLS term if and only if they update
the affected stereotype slices in the same way. In Section 6.4 we prove a
soundness theorem. The soundness theorem guarantees that the translation
of an arbitrary SLS to SSOR corresponds to the SLS term and is proper.

We conclude the chapter by Section 6.5. In Section 6.5 we describe
how SLS can be used to define the universal transformation for a practically
important class of stereotypes. The universal transformation of a stereotype
St is the most general stereotype operation for St. It can be used to define
any other stereotype operation for St. In Appendix A and Appendix B

we use the approach described in Section 6.5 to define the universal trans-
formations for the Sequence and Tree stereotypes.

6.1 Methodology for set description

Our experiments with SMT provers demonstrate that quite often they can-
not handle existential quantification and quantifier alternation. Therefore
our goal is to reduce stereotype specifications from FOL to the universally
quantified fragment of FOL. In this section we consider how the specific
set operations can be described in the universally quantified fragment of
FOL. In the next section we use these set operations to specify stereotype
operations.

We have a complete set description if for any given object we can prove
whether the object belongs to the set or not. Usually if we can check the
property o ∈ S then we can express the property o /∈ S as ¬(o ∈ S), and vice

152 CHAPTER 6. STEREOTYPE OPERATIONS

versa. Unfortunately it does not work if we limit ourselves to universally
quantified formulas only. If the validity of o ∈ S can be checked by a
universally quantified formula ϕ then the validity of o /∈ S can be checked
by ¬ϕ. However, ¬ϕ is existentially quantified and therefore we cannot use
it. Therefore we have to consider three different classes of sets represented
by universally quantified formulas: sets for which we can check that an
element belongs to the set, sets for which we can check that an element does
not belong to a set, and sets for which we can check both.

By ϕ[v] we denote that the formula ϕ which among others depends on
the variable v. By ϕ[v := e] we denote the result of substituting of all
occurrences of v by e.

Definition 24 (Positive set). A set S is positive if and only if there ex-
ists a universally quantified formula ϕ+

S [v] such that for each quantifier-free
expression e the following property holds: e ∈ S ⇔ ϕ+

S [v := e].

There is an alternative way to describe positive sets using existential
quantifiers.

Lemma 2 (An alternative definition of positive set). A set S is positive if
and only if there exists an existentially quantified formula ψ+

S [v] such that
for each quantifier-free expression e the following property holds: e /∈ S ⇔
ψ+
S [v := e].

Proof. We can define ψ+
S as ¬ϕ+

S . Since ϕ+
S is universally quantified if and

only if S is positive and ψ+
S is existentially quantified if and only if ϕ+

S

is universally quantified we conclude that ψ+
S is existentially quantified if

and only if S is positive. On the other hand e ∈ S ⇔ ϕ+
S [v := e] implies

e /∈ S ⇔ ¬ϕ+
S [v := e] ⇔ ψ+

S [v := e].

Definition 25 (Negative set). A set S is negative if and only if there ex-
ists a universally quantified formula ϕ−

S [v] such that for each quantifier-free
expression e the following holds: e /∈ S ⇔ ϕ−

S [v := e].

There is an alternative way to describe negative sets using existential
quantifiers.

Lemma 3 (An alternative definition of negative set). A set S is negative if
and only if there exists an existentially quantified formula ψ−

S [v] such that
for each quantifier-free expression e the following holds: e ∈ S ⇔ ψ−

S [v := e].

Proof. We can define ψ−
S as ¬ϕ−

S . Since ϕ−
S is universally quantified if and

only if S is negative and ψ−
S is existentially quantified if and only if ϕ−

S

is universally quantified we conclude that ψ−
S is existentially quantified if

and only if S is negative. On the other hand e /∈ S ⇔ ϕ−
S [v := e] implies

e ∈ S ⇔ ¬ϕ−
S [v := e] ⇔ ψ−

S [v := e].

6.1. METHODOLOGY FOR SET DESCRIPTION 153

For a set S we denote the universally quantified formulas which check
membership and absence of membership of an element in the set as ϕ+

S [v]
and as ϕ−

S [v], respectively. We call them positive and negative characteristic
formulas of the set S. For a set S we denote the existentially quantified
formulas which check membership and absence of membership of an element
in the the set as ϕ−

S [v] and ϕ
+
S [v], respectively. We call them negative and

positive alternative characteristic formulas of the set S.

Definition 26 (Complete set). A set S is complete if and only if it is both
positive and negative.

Definition 27 (Complement of a set). We denote the complement of a set

S as S. We define it as S
def
= {o|o /∈ S}.

Definition 28 (Image of a set). The image of a subset S ⊆ X under a

function f : X → Y is the subset f(S) ⊆ Y defined by f(S)
def
= {o|∃o′ ∈ S :

f [o′] = o}. Here we denote by f [o′] the image of the element o′ under the
function f . We treat in a special way functions from a set into a power set.

If f : X → P(Y) then f(S) ⊆ Y is defined by f(S)
def
= {o|∃o′ ∈ S : o ∈ f [o′]}.

Definition 29 (Universe). We denote the universal set as U. Since all
objects belong to the universe we can define its characteristic formulas as:
ϕ+
U

= T and ϕ−
U

= F. Therefore we can conclude that the universe is a
complete set.

Let us consider several examples which illustrate the above definitions.
If f is a unary function then:

• ∀x : f [x] 6= v is the positive characteristic formula of the set f(U).
In other words ϕ+

f(U)
= (∀x : f [x] 6= v). v ∈ f(U) if and only if

∀x : f [x] 6= v holds. v /∈ f(U) if and only if ∃x : f [x] = v holds. Since
the last formula is existentially quantified we conclude that f(U) is
not a negative and therefore not a complete set.

• ∀x : f [x] 6= v is the negative characteristic formula of the set f(U).
In other words ϕ−

f(U) = (∀x : f [x] 6= v). v /∈ f(U) if and only if

∀x : f [x] 6= v holds. v ∈ f(U) if and only if ∃x : f [x] = v holds. Since
the last formula is existentially quantified we conclude that f(U) is
not a positive and therefore not a complete set.

• If S is the set of fix-points of f then ϕ+
S = (f [v] = v) and ϕ−

S =
(f [v] 6= v). Since we can construct both the positive and the negative
characteristic formulas we conclude that S is a complete set.

To simplify dealing with characteristic formulas we assume that they
all use the same variable v to represent an element for which we check

154 CHAPTER 6. STEREOTYPE OPERATIONS

set membership. Below we deal not only with sets but also with cartesian
products of sets. When we deal with a set S1 × S2 we use v to refer to an
element of the first set and v’ to refer to an element of the second set.

Let us now consider basic properties of positive, negative, and complete
sets.

Lemma 4 (Basic properties of positive sets). The class of positive sets is
closed under union, intersection, and intersection of an unbound number of
sets.

Proof. To prove that a set is positive or negative it is enough to construct
a corresponding characteristic formula.

• For any positive sets S1 and S2 an element described by an expression e
belongs to S1∪S2 if and only if (ϕ+

S1
∨ϕ+

S2
)[v := e]. Since this formula is

universally quantified we can use it to define the characteristic function
of S1 ∪ S2: ϕ

+
S1∪S2

= ϕ+
S1

∨ ϕ+
S2

• in a similar way we can conclude that ϕ+
S1∩S2

= ϕ+
S1

∧ ϕ+
S2

• and that ϕ+
⋂

i∈I

Si
= ∀i ∈ I : ϕ+

Si
, where I is a set of indexes.

Lemma 5 (Basic properties of negative sets). The class of negative sets is
closed under union, intersection, union of an unbounded number of sets, and
image of a set. For image of a set S under function f : X → P(Y) from a
set into a power set we have the following extra requirement: for each o ∈ X,
f [o] is a negative set

Proof. The proof is similar to Lemma 4.

• ϕ−
S1∪S2

= ϕ−
S1

∧ ϕ−
S2

• ϕ−
S1∩S2

= ϕ−
S1

∨ ϕ−
S2

• ϕ−
⋃

i∈I

Si
= ∀i ∈ I : ϕ−

Si
, where I is a set of indexes.

• An element v doesn’t belong to an image of a set S ⊆ X under a
function f : X → Y if and only if ∀o ∈ X : o ∈ S ⇒ f [o] 6= v. From
this we infer that the characteristic formula of an image of a set can
be defined as ϕ−

f(S) = ∀o ∈ X : ϕ−
S [v := o] ∨ f [o] 6= v. This formula is

universally quantified.

6.1. METHODOLOGY FOR SET DESCRIPTION 155

• An element v doesn’t belong to an image of a set S ⊆ X under a
function f : X → P(Y) if and only if ∀o ∈ X : o ∈ S ⇒ v /∈ f [o].
From this we infer that the characteristic formula of an image of a set
can be defined as ϕ−

f(S) = ∀o ∈ X : ϕ−
S [v := o] ∨ v /∈ f [o]. Since for

each o ∈ X, f [o] is a negative set we conclude that ϕ−
f(S) is universally

quantified.

Later on we will see that the image of a negative set is crucial for the
specification of heap updates. Essentially it is because we use the image of a
set to construct the set of objects reachable via a field or a transitive closure
of a field starting from an initial set of objects. Since this construction is so
widely used we introduce an alternative, more convenient notation for it.

Definition 30 (Notations for the image of a negative set). We use the
following abbreviations for the image of a negative set:

• By S.f we denote f(S), where S : Reg and f : ref → ref or f : ref →
Reg.

• By S.it we denote f(S), where S : Reg, ”it” is a stereotype item of a
reference or a region type, and f is defined as ∀o : f [o] = o.it.

• By S.g[exp] we denote f(S), where S : Reg, g is a function or a
stereotype item from ref2 into ref or Reg, and ∀o : f [o] = g[o, exp].

• From Lemma 5 we can see that to construct the characteristic formula
of S.f for a negative set we have to introduce a new quantified variable.
In some cases we need to know the name of this variable to refer to it
from other expressions. We use the notation S〈o〉.f to specify that the
name of the newly introduced quantified variable is o.

Lemma 6 (Relation between positive and negative sets). The complement
of a positive set is a negative set, and vice versa.

Proof.

• ∀o : o ∈ S ⇔ o /∈ S implies ϕ+
S
= ϕ−

S

• ∀o : o /∈ S ⇔ o ∈ S implies ϕ−
S
= ϕ+

S

Lemma 7 (Basic properties of complete sets). The class of complete sets
is closed under union, intersection, negation, and complement.

156 CHAPTER 6. STEREOTYPE OPERATIONS

Proof. Since we define complete sets as the intersection of the classes of pos-
itive and negative sets, we immediately get the desired properties of union
and intersection from Lemma 4 and Lemma 5.

Since a complete set S is both positive and negative, we get from
Lemma 6 that S also is both positive and negative, which implies that S
is complete.

Lemma 8 (Sets equality). For a set A and a set B, if ϕ+
B is a positive

characteristic function of A (1) then A = B.

Proof. ∀o : o ∈ A
(1)
⇔ ϕ+

B [v := o] ⇔ o ∈ B which implies A = B .

Unfortunately complete sets lack some properties which we need for our
methodology. For instance, checks of membership in a union of an un-
bounded number of sets or in an image of a set require usage of an existen-
tial quantifier. We address these problems by requiring witness functions for
such problematic operations. Essentially witness functions explicitly provide
values for existentially quantified variables, which can be used to construct
these operations.

Definition 31 (Union of an unbounded number of sets with a witness func-
tion). For a complete set S, complete sets Si ⊆ S, where i ∈ I, and a
function f : Ind → S, where Ind is a universe of indexes, we denote the

union of Si with a witness function f as
f
⋃

i∈I
Si. We characterize

f
⋃

i∈I
Si by the

following formulas: ϕ+
f
⋃

i∈I

Si

= ϕ+
S ∧ f [v] ∈ I and ϕ−

f
⋃

i∈I

Si

= ϕ−
S ∨ f [v] /∈ I.

Lemma 9 (Semantics of a union of an unbound number of sets with a
witness function). For a complete set S, complete sets Si ⊆ S, where i ∈ I,
and a witness function f : Ind→ S if

• ∀o ∈ S : f [o] ∈ I ⇒ o ∈ Sf [o] (1) and

• ∀o ∈ S, i ∈ I : o ∈ Si ⇒ f [o] ∈ I (2)

then
f
⋃

i∈I
Si =

⋃

i∈I
Si.

Proof. According to Lemma 8 to prove
f
⋃

i∈I
Si =

⋃

i∈I
Si it is enough to prove

that ϕ+
f
⋃

i∈I

Si

is a positive characteristic function of
⋃

i∈I
Si.

6.1. METHODOLOGY FOR SET DESCRIPTION 157

We can easily see that (2) implies ∀o ∈ S : (∃i ∈ I : o ∈ Si) ⇒ f [o] ∈ I(3).

∀o ∈ S : o ∈
⋃

i∈I
Si ⇒ ∃i ∈ I : o ∈ Si

(3)
⇒ f [o] ∈ I ⇒

ϕ+

f
⋃

i∈I

Si

[v := o] (4)

∀o ∈ S :

ϕ+

f
⋃

i∈I

Si

[v := o] ⇒ f [o] ∈ I

(1)
⇒ o ∈ Sf [o] ∧ f [o] ∈ I ⇒

∃i ∈ I : o ∈ Si ⇒ o ∈
⋃

i∈I

Si (5)

From (4) ∧ (5) we can conclude that ∀o ∈ S : o ∈
⋃

i∈I
Si ⇔

ϕ+

f
⋃

i∈I

Si

[v := o] (6).

On the other hand ∀o : o /∈ S ⇒ (∀i ∈ I : o /∈ Si) ⇒
⋃

i∈I

Si (7) and

∀o : o /∈ S ⇒ ¬ϕ+
S [v := o] ⇒ ¬

(

ϕ+
⋃

i∈I

Si

)

[v := o] (8). (7) ∧ (8) implies

∀o /∈ S : o ∈
⋃

i∈I
Si ⇔

ϕ+

f
⋃

i∈I

Si

[v := o] (9).

(6) ∧ (9) implies ∀o : o ∈
⋃

i∈I
Si ⇔

ϕ+

f
⋃

i∈I

Si

[v := o] (10), which proves

that ϕ+
f
⋃

i∈I

Si

is a positive characteristic formula of
⋃

i∈I

Si.

Since both assumptions (1) and (2) from Lemma 9 are universally quan-
tified we can now prove properties of a union of an unbound number of sets
using only universal quantifiers.

Every time we use a union of an unbounded number of sets with a
witness function in a specification we expect that the assumptions (1) and
(2) of the witness function hold. To avoid an unnecessary redundancy in
specifications every time we use a union of an unbound number of sets with
a witness function in the stereotype operation pre-condition we implicitly
add assumptions (1) and (2) to the pre-condition of the operation. In similar
way if a stereotype invariant mentions a union of an unbounded number of
sets with a witness function we implicitly add assumptions (1) and (2) to
the stereotype invariant.

We use Lemma 9 to reason about the union of an unbound number
of sets of references which participate in a stereotype slice StName. To use

158 CHAPTER 6. STEREOTYPE OPERATIONS

Lemma 9 we have to define the set S for the stereotype slice StName. We
define S as Dom(StName) (see Definition 4). Lemma 9 requires the
set S to be complete. We prove the completeness of Dom(StName) in the
following lemma.

Lemma 10 (Dom(StName) is a complete set). At each program point of
the program which satisfies the syntactic constraints from Definition 20 for
each stereotype slice StSlice which is declared by the program, Dom(StName)
is a complete set.

Proof. To prove the completeness ofDom(StName) it is enough to construct
the positive and negative characteristic functions of Dom(StName) at an
arbitrary program point. Let us denote the heap at the program point
by h. According to Theorem 1, SysInvPart[StName, h] has to hold at
every program point. According to Definition 18, SysInvPart[StName, h]
implies ∀o : o ∈ Dom(StName) ⇔ isAllocated(h, o)∧
partIn(typeOf(h, o),StName). Therefore we can define ϕ+

Dom(StName) as

isAllocated(h,v) ∧ partIn(typeOf(h, o),StName) and
ϕ−
Dom(StName) as ¬isAllocated(h,v)∨¬partIn(typeOf(h, o),StName).

One very important application of Lemma 9 is reasoning about the
union of elements of a set of stereotype instances.

Definition 32 (Union of elements of a set of stereotype instances). InstEl :
Reg → Reg is the function which maps a set of stereotype instances to
the set of elements of these instances. We define InstEl in the following

way. For a set of objects Inst, InstEl(Inst) =
finstID
⋃

i∈Inst
i.Elements, where

∀o : finstID[o] = i.instID.

Lemma 11 (Semantics of union of elements of a set of stereotype instances).
For each stereotype slice StSlice and set Inst if Inst ⊆ Dom(StName),
∀i ∈ Inst : i = i.instID, and SysInv[StName] then the assumptions (1)
and (2) from Lemma 9 hold for the function finstID and therefore
InstEl(Inst) =

⋃

i∈Inst
i.Elements

Proof. We would like to prove:

• ∀o ∈ S : f [o] ∈ I ⇒ o ∈ Sf [o] (1) and

• ∀o ∈ S, i ∈ I : o ∈ Si ⇒ f [o] ∈ I (2)

where:

• I = Inst

• Si = i.Elements

6.1. METHODOLOGY FOR SET DESCRIPTION 159

• ∀o ∈ S : f [o] = o.instID

• S = Dom(StName)

Let us prove (1). (1) is equivalent to ∀o ∈ Dom(StName) : o.instID ∈
Inst ⇒ o ∈ o.instID.Elements). We will prove the stronger property ∀o ∈
Dom(StName) : o ∈ o.instID.Elements) which implies validity of (1). Let
us prove that for each o ∈ Dom(StName), o ∈ o.instID.Elements) (3) holds.

SysInv[StName] implies o.instID ∈ o.Elements and
o.instID ∈ o.instID.Elements. Therefore we can conclude
¬(o.Elements]o.instID.Elements) (4).

On the other hand SysInv[StName] implies
(o.Elements]o.instID.Elements) ∨ o.Elements = o.instID.Elements. To-
gether with (4) it implies o.Elements = o.instID.Elements (5).

SysInv[StName] implies o ∈ o.Elements. In combination with (5) it
implies (3).

Let us prove (2). (2) is equivalent to the following statement. For each
o ∈ Dom(StName) and i ∈ Inst o ∈ i.Elements implies o.instID ∈ Inst.
According to SysInv[StName], o ∈ i.Elements implies o.instID = i.instID.
Since i ∈ Instwe can conclude that i.instID = i and therefore o.instID = i.
Since i ∈ Inst and o.instID = i, we have o.instID ∈ Inst.

Let us now consider an image of a set with a witness function.

Definition 33 (Image of a set with a witness function). For complete sets
A and S, and a function f : A → S we denote the image of the set A

under the function f with a witness function f−1 : S → A as
f−1

f(A). We

characterize
f−1

f(A) by the following formulas: ϕ+
f−1

f(A)

= ϕ+
S ∧ ϕ+

A[v := f−1[v]]

and ϕ−
f−1

f(A)

= ϕ−
S ∨ ϕ−

A[v := f−1[v]]

Lemma 12 (Semantics of an image of a set with a witness function). For
complete sets A and S, and a function f : A → S, and witness function
f−1 : S → A if

• ∀x ∈ A : f−1[f [x]] = x (1) and

• ∀x, y ∈ S : f−1[a] = f−1[b] ⇒ a = b (2)

then
f−1

f(S)= f(S).

Proof. According to Lemma 8 to prove that
f−1

f(A)= f(A) it is enough to
prove that ϕ+

f−1

f(A)

is a positive characteristic function of f(A).

160 CHAPTER 6. STEREOTYPE OPERATIONS

For each x ∈ S, x ∈ f(A) ⇔ ∃y : y ∈ A ∧ x = f [y]
(2)
⇔ ∃y : y ∈

A ∧ f−1[x] = f−1[f [y]]
(1)
⇔ ∃y : y ∈ A ∧ f−1[x] = y ⇔ f−1[x] ∈ A. On

the other hand if x /∈ S then, since the function f maps to the set S,
x /∈ f(A). Therefore, for each x, x ∈ f(A) ⇔ x ∈ S∧f−1[x] ∈ A⇔ ϕ+

S [v :=
x]∧ϕ+

A[v := f−1[x]] ⇔ ϕ+
f−1

f(A)

[v := x], which proves that ϕ+
f−1

f(A)

is the positive

characteristic formula of f(A).

Similarly to the union of an unbounded number of sets with a witness
function every time when we use an image of a set with a witness func-
tion in the stereotype operation pre-condition we implicitly add assumptions
(1) and (2) to the pre-condition of the operation. In the similar way if a
stereotype invariant mentions the image of a set with a witness function we
implicitly add assumptions (1) and (2) to the stereotype invariant.

We use Lemma 12 to reason about the images of sets of references
which participate in a stereotype slice StName. To use Lemma 12 we have
to define the set S for the stereotype slice StName. Similarly to the union
of an unbounded number of sets with a witness function we define S as
Dom(StName) (see Definition 4).

By this we conclude the construction of set descriptions in our method-
ology. It is obvious that we need not only set descriptions, but also a way
to check their properties. Like in the rest of our methodology we would like
to check these properties using only universally quantified formulas. Let us
prove several lemmas which we use to achieve this goal.

Lemma 13 (Check of subset relation). For a positive set S+ and a negative
set S− we can check S− ⊆ S+ using universally quantified formulas only.

Proof. S− ⊆ S+ holds if and only if ∀o : o ∈ S− ⇒ o ∈ S+. Which is
equivalent to ∀o : o /∈ S− ∨ o ∈ S+. By using characteristic formulas we
can reformulate this statement as ∀o : ϕ−

S− [v := o] ∨ ϕ+
S+ [v := o], which is

universally quantified and checks the desired property.

Lemma 14 (Check of set disjointness). For a pair of negative sets S1 and
S2 we can check S1]S2 using universally quantified formulas only.

Proof. S1]S2 ⇔ ∀o : o /∈ S1 ∨ o /∈ S2 ⇔ ∀o : ϕ−
S1
[v := o] ∨ ϕ−

S2
[v := o]

The last statement is universally quantified and checks the desired property.

Unfortunately not all the properties can be expressed so easily. Some of
them require existential quantifiers. One such property is the check of strict
set inclusion. To check that we have to verify the existence of an element that

6.2. STANDARD STEREOTYPE OPERATION REPRESENTATION 161

belongs to one set but not to the other. To avoid the undesired existential
quantification we use a witness element.

Definition 34 (Check of strict subset inclusion with a witness element). For

a positive set S+, a negative set S−, and an element a we define S−
a
⊂S+ as

(∀o : ϕ−
S− [v := o] ∨ ϕ+

S+ [v := o]) ∧ ϕ−
S− [v := a] ∧ ϕ+

S+ [v := a].

Lemma 15 (Semantics of check of strict subset inclusion with a witness
element). For a positive set S+ and a negative set S− S− ⊂ S+ holds if and

only if there exists an element a such that S−
a
⊂S+ holds.

Proof. Let us assume that S−
a
⊂S+ holds. (∀o : ϕ−

S− [v := o] ∨ ϕ+
S+ [v := o])

implies S− ⊆ S+. On the other hand ϕ−
S− [v := a] ∧ ϕ+

S+ [v := a], which
is equivalent to a /∈ S− ∧ a ∈ S+, implies S− 6= S+. If we put these two
properties together we get the desired property S− ⊆ S+ ∧ S− 6= S+ ⇒
S− ⊂ S+.

Let us now prove the desired property in the other direction. Let us
assume that S− ⊂ S+. It implies (∀o : ϕ−

S− [v := o]∨ϕ+
S+ [v := o]). On other

hand S− ⊂ S+ implies S+ \ S− 6= ∅. Let us take as a an arbitrary element
from S+ \ S−. It is obvious that for a we have ϕ−

S− [v := a] ∧ ϕ+
S+ [v := a],

which concludes the proof.

The class of complete sets is a subset of both the class of positive and the
class of negative sets. This implies that if a property holds for a positive or a
negative set then the same property holds for a complete set.This observation
extends the application of lemmas about positive an negative sets to the class
of complete sets.

6.2 Standard stereotype operation representation

Now we can use our methodology of set description to describe transforma-
tion and frame rules. Later on we use these rules as building blocks of a
standard stereotype operation representation.

Standard stereotype operation representations describe a relation be-
tween a new and an old stereotype slice. We call the variables which cor-
respond to an old and a new slice sOld and sNew, respectively. We have
already used the variable sOld to denote a stereotype slice in set expressions.

To simplify dealing with expressions we assume that they all use the same
variable sOld to represent a stereotype slice whose properties are described
by the expression.

Definition 35 (Transformation rule). A transformation rule is a triple
〈ψ−

S , it, val〉. Where:

• ”it” is a stereotype item whose values are changed by the rule

162 CHAPTER 6. STEREOTYPE OPERATIONS

• ψ−
S is an existential description of a negative set of objects whose values

of the stereotype item ”it” are affected by the transformation rule. The
only free variables of ψ−

S are v and the stereotype operation’s input
parameters.

• val is an expression which computes new values for stereotype item
”it” of an object v. The only free variables of val are v, the stereo-
type operation’s input parameters, and existentially quantified variables
introduced by ψ−

S .

Definition 36 (Logical characterization of a transformation rule). A logical
characterization of a transformation rule 〈ψ−

S , it, val〉, denoted as
[[〈ψ−

S , it, val〉]], establishes a relation between values of the stereotype item
”it” of objects from set S in an old stereotype slice sOld and in a new
stereotype slice sNew. We define it formally as
[[〈ψ−

S , it, val〉]] =
(

∀v : (¬ψ−
S) ∨ sNew.v.it = val

)

.

Definition 37 (Frame rule). A frame rule is a pair 〈ψ−
S , it〉, where:

• ”it” is a stereotype item whose values are preserved by the rule.

• ψ−
S is an existential description of a negative set of objects whose val-

ues of the stereotype item ”it” are preserved by the frame rule. The
only free variables of ψ−

S are v and the stereotype operation’s input
parameters.

Definition 38 (Logical characterization of a frame rule). A logical charac-
terization of a frame rule 〈ψ−

S , it〉, denoted as [[〈ψ−
S , it〉]], states that values

of the stereotype item ”it” of objects from set S in an old stereotype slice
sOld and in a new stereotype slice sNew are equal. We define it formally
as [[〈ψ−

S , it〉]] =
(

∀v : (¬ψ−
S) ∨ sNew.v.it = sOld.v.it

)

.

We introduce a special notation for frame rules which states that values
of all stereotype items are preserved for certain objects. We denote such
frame rules as 〈ψ−

S , ∗〉.
[[〈ψ−

S , ∗〉]] =
(

∀v, it : (¬ψ−
S) ∨ sNew.v.it = val

)

.
If we deal with a stereotype item of a functional type then the first

parameter of a transformation or a frame rule describes a set of pairs of
affected objects and input parameters of the stereotype item, not just a set
of objects. By this we achieve better granularity of the transformation and
the frame rules. To highlight this granularity we denote a characteristic
formula ψ−

S of a set of pairs S as ψ−
S1

× ψ−
S2
, where S = S1 × S2. Using

this notation we refine the logical characterization of a transformation and
a frame rule for stereotype items of a functional type:

• [[〈ψ−
S1

× ψ−
S2
, it, val〉]] =

(

∀v,v’ : (¬ψ−
S1
) ∨ (¬ψ−

S2
) ∨ sNew.v.it[v’] = val

)

.

6.2. STANDARD STEREOTYPE OPERATION REPRESENTATION 163

• [[〈〈ψ−
S1

× ψ−
S2
, it〉]] =

(

∀v,v’ : (¬ψ−
S1
) ∨ (¬ψ−

S2
) ∨ sNew.v.it[v’] = sOld.v.it[v’]

)

.

Quite often we use set expressions to represent the first parameter of
a transformation or a frame rule. By this we mean that a rule affects all
values which belong to the set which is mentioned as the first parameter of
the rule. In other words:

• 〈S, it, val〉 is an abbreviation for 〈v ∈ S, it, val〉.

• 〈S, it〉 is an abbreviation for 〈v ∈ S, it〉.

• 〈S1 × S2, it, val〉 is an abbreviation for 〈(v ∈ S1)× (v’ ∈ S2), it, val〉.

• 〈S1 × S2, it〉 is an abbreviation for 〈(v ∈ S1)× (v’ ∈ S2), it〉.

Now we can use transformation and frame rules to introduce a standard
stereotype operation representation. The representation is used to define a
logical specification of stereotype operations.

Definition 39 (Standard stereotype operation representation). A standard
stereotype operation representation (abbreviated as SSOR) of a stereotype
operation op(v1 : T1, . . . , vn : Tn), where v1, . . . , vn are input parameters and
T1, . . . , Tn are their types, is a triple of:

• a universally quantified pre-condition preop

• a list of transformation rules 〈ψ−
St
1
, itt1, val1〉, . . . , 〈ψ

−
St
n
, ittn, valn〉

• a list of frame rules 〈ψ−

Sf
1

, itf 〉, . . . , 〈ψ−

Sf
m

, itfm〉

Definition 40 (Logical characterization of an SSOR). An SSOR

of op(v1 : T1, . . . , vn : Tn) can be logically characterized by a pair of pre and
post conditions [[SSORop]] = 〈preop,postop〉. Here preop can be immedi-
ately extracted from the SSOR and

postop =
(

∧n
i=1[[〈ψ

−
St
i

, itti, val
t
i〉]]
)

∧

(

∧m
i=1[[〈ψ

−

Sf
i

, itfi 〉]]

)

. We can see that

both preop and postop are universally quantified. preop may depend on free
variables v1, . . . , vn and sOld. postop may depend on the same free variables
plus sNew.

Let us consider an example of a transformation rule. In Section 4.1 on
Figure 4.6 we defined the operation addSequenceRelation〈Sequence〉(o :
ref!, o′ : ref!). The SSOR of the stereotype operation
addSequenceRelation is:

164 CHAPTER 6. STEREOTYPE OPERATIONS

• the operation precondition preaddSequenceRelation is
sOld.o.instID 6= sOld.o′.instID.

• the list of transformation rules of addSequenceRelation is

– 〈v = sOld.o.last, next, sOld.o′.first〉

– 〈v = sOld.o′.first, prev, := sOld.o.last〉

– 〈v ∈ sOld.o.Elements ∪ sOld.o′.Elements, first, sOld.o.first〉

– 〈v ∈ sOld.o.Elements ∪ sOld.o′.Elements, last, sOld.o′.last〉

– 〈v ∈ sOld.o.Elements, Next∗, sOld.v.Next∗ ∪ sOld.o′.Elements〉

– 〈v ∈ sOld.o′.Elements, Prev∗, sOld.v.Prev∗ ∪ sOld.o.Elements〉

– 〈v ∈ sOld.o.Elements ∪ sOld.o′.Elements,Elements,
sOld.o.Elements ∪ sOld.o′.Elements〉

• the list of frame rules of addSequenceRelation is

– 〈v 6= sOld.o.last, next〉

– 〈v 6= sOld.o′.first, prev〉

– 〈v /∈ sOld.o.Elements ∪ sOld.o′.Elements, first〉

– 〈v /∈ sOld.o.Elements ∪ sOld.o′.Elements, last〉

– 〈v /∈ sOld.o.Elements, Next∗〉

– 〈v /∈ sOld.o′.Elements, Prev∗〉

– 〈v /∈ sOld.o.Elements ∪ sOld.o′.Elements, ∗〉

We provide the formal definition of the SSOR for the basic operations
in Definition 50.

Let us now consider an example of the logical characterization of the
SSOR of a basic operation. The logical characterization of
addSequenceRelation is [[SSORaddSequenceRelation]] =
〈preaddSequenceRelation ,postaddSequenceRelation〉, where preaddSequenceRelation
is equal to sOld.o.instID 6= sOld.o′.instID and postaddSequenceRelation is

6.2. STANDARD STEREOTYPE OPERATION REPRESENTATION 165

equal to:

(∀v : v 6= sOld.o.last ∨ sNew.v.next = sOld.o′.first)∧
(∀v : v 6= sOld.o′.first ∨ sNew.v.prev = sOld.o.last)∧
(∀v : v /∈ sOld.o.Elements ∪ sOld.o′.Elements ∨ sNew.v.first =
sOld.o.first)∧
(∀v : v /∈ sOld.o.Elements ∪ sOld.o′.Elements ∨ sNew.v.last =
sOld.o′.last)∧
(∀v : v /∈ sOld.o.Elements ∨ sNew.v.Next∗ =
sOld.v.Next∗ ∪ sOld.o′.Elements)∧
(∀v : v /∈ sOld.o′.Elements ∨ sNew.v.Prev∗ =
sOld.v.Prev∗ ∪ sOld.o.Elements)∧
(∀v : v /∈ sOld.o.Elements ∪ sOld.o′.Elements ∨ sNew.v.Elements =
sOld.o.Elements ∪ sOld.o′.Elements)∧
(∀v : v = sOld.o.last ∨ sNew.v.next = sOld.v.next)∧
(∀v : v = sOld.o′.first ∨ sNew.v.prev = sOld.v.prev)∧
(∀v : v ∈ sOld.o.Elements ∪ sOld.o′.Elements ∨ sNew.v.first =
sOld.v.first)∧
(∀v : v ∈ sOld.o.Elements ∪ sOld.o′.Elements ∨ sNew.v.last =
sOld.v.last)∧
(∀v : v ∈ sOld.o.Elements ∨ sNew.v.Next∗ = sOld.v.Next∗)∧
(∀v : v ∈ sOld.o′.Elements ∨ sNew.v.Prev∗ = sOld.v.Prev∗)∧
(∀v, it : it /∈ Items ∨ v ∈ sOld.o.Elements ∪ sOld.o′.Elements∨
sNew.v.it = sOld.v.it)

In the above example Items denotes the set of all stereotype items.
We use pre and post conditions of an operation to construct an axiom

which describes its properties. We call this axiom the characteristic axiom
of an SSOR.

Definition 41 (Characteristic axiom of an SSOR). We construct a char-
acteristic axiom of a stereotype operation op(v1 : T1, . . . , vn : Tn) in the fol-
lowing way: ∀v1, . . . , vn, sOld : ∃sNew : SysInv[sOld] ∧ preop ⇒ postop.
We denote this axiom as Axop.

As soon as we get the characteristic axiom from an SSOR we can use
it as a specification. Nevertheless we would like to guarantee some extra
properties of a generated specification, notably: consistency, preservation of
the system invariant, and determinism.

• We call an SSOR consistent if its characteristic axiom is consistent.
Usage of an inconsistent axiom during program verification can lead
to unsoundness of the verification.

• During a verification process we would like to rely on the system in-
variant. That is why we require its preservation by any stereotype
operation.

166 CHAPTER 6. STEREOTYPE OPERATIONS

• There are the following obvious questions about determinism:

– What does it mean?

– Why do we need it?

Let us address these questions one by one.

– By determinism we mean that for any fixed values of input param-
eters and sOld there is not more than one value of sNew which
satisfies the characteristic axiom. In other words a deterministic
operation has to precisely describe the result of the operation ex-
ecution: which stereotype items are changed and in which way.
If the operation doesn’t satisfy this property then there is an in-
put such that the execution of the operation can result in one of
several outcomes in a nondeterministic way. Another name for
this property is absence of underspecification, but since we don’t
really have an implementation which could be underspecified we
prefer the former name.

– Dealing with deterministic operations is much simpler than with
non-deterministic. More specifically we can generate an SSOR

for a deterministic operation without existential quantifiers. In
such a way we can restrict the language of SSOR to the uni-
versally quantified fragment of FOL. This language restriction
is crucial for achieving provability of the generated specifications
by SMT theorem provers.

Another significant advantage of deterministic operations is that
we can generate an SSOR for them without using intermediate
stereotype slices. The idea behind it is the following one. If there
is a sequential composition of two deterministic operations then
we can precisely compute the intermediate slice and eliminate it.
We discuss this in more detail in Section 6.4.5. The absence of
intermediate stereotype slices makes the generated SSOR much
simpler and therefore facilitates their automatic verification sig-
nificantly.

Let us formalize the properties of an SSOR mentioned above.

Definition 42 (Consistency of an SSOR). We call an SSORop consistent
if and only if:

• for each disjoint i and j from [1..n] if itti = ittj then
∀v1, . . . , vn, sOld, sNew : SysInv[sOld] ∧ preop ⇒ St

i]S
t
j holds.

• for each i from [1..n] and j from [1..m]

∀v1, . . . , vn, sOld, sNew : SysInv[sOld] ∧ preop ⇒ St
i]S

f
j holds

6.2. STANDARD STEREOTYPE OPERATION REPRESENTATION 167

Lemma 16. If an SSORop is consistent then |= Axop.

Proof. We prove the desired property by explicit model construction. We
construct sNew which satisfies the post-condition in three steps:

• For each object o and stereotype item ”it” such that there exists a
transformation rule 〈ψ−

S , it, val〉 such that o ∈ S we set sNew.o.it
equal to val. Here we assume that val is constructed from total func-
tions and always produces a value. The consistency of the SSOR

implies the absence of interference with the other transformation and
frame rules. Therefore we can be sure that no inconsistency is intro-
duced by this assignment.

• For each object o and stereotype item ”it” such that there exists a
frame rule 〈ψ−

S , it〉 such that o ∈ S we set sNew.o.it equal to sOld.o.it.
The consistency of the SSOR implies the absence of interference be-
tween transformation and frame rules. Therefore we can be sure that
there are no inconsistencies between them. On the other hand it is
possible that there is another frame rule 〈ψ−

S′ , it〉 such that o ∈ S′.
But since both of the frame rules state that sNew.o.it is equal to
sOld.o.it there is no contradiction between them either.

• For each object o and stereotype item ”it” such that there exists
no transformation rule 〈ψ−

S , it, val〉 or frame rule 〈ψ−
S , it〉 such that

o ∈ S we set sNew.o.it equal to an arbitrary value. Since the value
of sNew.o.it is underspecified by the stereotype operation we don’t
create an inconsistency by this assignment either.

Definition 43 (System invariant preservation by an SSOR). An SSORop

preserves the system invariant if and only if
∀v1, . . . , vn, sOld, sNew : SysInv[sOld]∧preop∧postop ⇒ SysInv[sNew].

Definition 44 (Determinism of an SSOR). We call an SSORop deter-
ministic if and only if under assumptions SysInv[sOld] and preop for each
stereotype item ”it”, the value of ”it” is either updated by the operation or
preserved. Let us define it in a more formal way. If the updates of stereotype
item ”it” are described by transformation rules 〈St

1, it, val1〉, . . . , 〈S
t
k, it, valk〉

and by a frame rule 〈Sf , it〉 then the operation is deterministic if and only
if for each ”it” the following holds

∀o, v1, . . . , vn, sOld, sNew : SysInv[sOld]∧preop ⇒
(

∨k
i=1 o ∈ St

i

)

∨ ∈ Sf .

In other words the values of the stereotype item in an updated stereotype slice
are always specified.

Definition 45 (Proper SSOR). We call an SSORop proper if and only if
it is consistent, deterministic, and preserves the system invariant.

168 CHAPTER 6. STEREOTYPE OPERATIONS

The last definition combines the main properties of an SSOR. Starting
from this point we are going to work with proper SSORs only.

Let us now consider several examples which illustrate how properness of
SSORs can be violated. Let us assume that operation op(o : ref) affects a
stereotype slice of stereotype St which contains a stereotype item ”it”.

• if the stereotype operation op contains both transformation rules 〈v =
o, it, val1〉 and 〈v = o, it, val2〉 and val1 6= val2 then the operation is
inconsistent and therefore op is not proper.

• if the stereotype operation op contains the transformation rules 〈v =
o, it, val1〉 and the frame rule 〈v = o, it〉 then the operation is incon-
sistent and therefore op is not proper.

• if the stereotype operation op contains the transformation rules 〈v =
o, it, val1〉 and does not contain a frame or a transformation rule which
defines updates of the stereotype item ”it” for other objects then the
operation is nondeterministic and therefore op is not proper.

In some cases we have to be sure that an SSOR affects only specific
stereotype instances. We formalize this property by the following definition.

Definition 46 (Stereotype instances affected by an SSOR). We say that
SSORop affects only stereotype instances from Instop, where Instop is a set
of stereotype instance IDs, if and only if:

• null /∈ Instop

• ∀i ∈ Instop : i = i.instID

• if the list of transformation rules of the operation is
〈ψ−

St
1
, itt1, val1〉, . . . , 〈ψ

−
St
n
, ittn, valn〉 then for each i from [1..n]

∀v1, . . . , vn, sOld, sNew : SysInv[sOld] ∧ preop
⇒ St

i ⊆ InstEl(Instop) holds.

Let us provide several auxiliary definitions and lemmas which character-
ize properties of SSOR.

Definition 47 (Substitution in an SSOR). For an SSOR which is defined
as:

• a universally quantified pre-condition pre

• a list of transformation rules 〈ψ−
St
1
, itt1, val1〉, . . . , 〈ψ

−
St
n
, ittn, valn〉

• a list of frame rules 〈ψ−

Sf
1

, itf 〉, . . . , 〈ψ−

Sf
m

, itfm〉

We define SSOR[v1 := exp1, . . . , vnsub
:= expnsub

] as

6.2. STANDARD STEREOTYPE OPERATION REPRESENTATION 169

• a universally quantified pre-condition pre′

• a list of transformation rules 〈ψ−
St
1
′ , itt1, val

′
1〉, . . . , 〈ψ

−
St
n
′ , ittn, val

′
n〉

• a list of frame rules 〈ψ−

Sf
1

′ , itf 〉, . . . , 〈ψ
−

Sf
m

′ , it
f
m〉

where

• pre′ = pre[v1 := exp1, . . . , vnsub
:= expnsub

]

• for each i from [1..n] ψ−
St
i
′ = ψ−

St
i

[v1 := exp1, . . . , vnsub
:= expnsub

]

• for each i from [1..n] val′i = vali[v1 := exp1, . . . , vnsub
:= expnsub

]

• for each i from [1..m] ψ−

Sf
i

′ = ψ−

Sf
i

[v1 := exp1, . . . , vnsub
:= expnsub

]

Lemma 17. If SSOR′ = SSOR[v1 = exp1, . . . , vn = expn] and
[[SSOR]] = 〈pre,post〉 then [[SSOR′]] = 〈pre′,post′〉,
where pre′ = pre[v1 = exp1, . . . , vn = expn] and
post′ = post[v1 = exp1, . . . , vn = expn].

Proof. The proof follows immediately from Definition 47 and Defini-

tion 40.

Lemma 18. If ∀v1, . . . , vn : ϕ holds, where ϕ is a quantifier-free for-
mula which does not contain variable v′1, . . . , v

′
n′ , then ∀v′1, . . . , v

′
n′ : ϕ[v1 :=

exp1, . . . , vn := expn] holds, where for each i from [1..n′] expi contains only
variables from v′1, . . . , v

′
n′ .

Proof.

∀v1, . . . , vn : ϕ ⇒
∀v′1, . . . , v

′
n′ : ∀v1, . . . , vn : ϕ ⇒

∀v′1, . . . , v
′
n′ : ∀v1, . . . , vn : (v1 = exp1 ∧ . . . ∧ vn = expn ⇒ ϕ) ⇒

∀v′1, . . . , v
′
n′ : ϕ[v1 := exp1, . . . , vn := expn]

Lemma 19. If an SSOR is proper and depends only on free variables
v1, . . . , vn, and exp1, . . . , expn contains only variables from v′1, . . . , v

′
n′ , where

v1, . . . , vn and v′1, . . . , v
′
n′ are pairwise disjoint, then

SSOR[v1 = exp1, . . . , vn = expn] is also proper.

Proof. According to Definition 45 an SSOR is proper if and only if it is
consistent, deterministic, and preserves system invariant. We can see that
all these properties are formulated as universally quantified formulas over
variables v1, . . . , vn. By applying Lemma 18 to these properties we get that
SSOR[v1 = exp1, . . . , vn = expn] is consistent, deterministic, and preserves

170 CHAPTER 6. STEREOTYPE OPERATIONS

the system invariant. This property implies that SSOR[v1 = exp1, . . . , vn =
expn] is proper.

In some cases we have to check that two SSORs specify the same be-
havior. Below we specify a syntactical procedure which we use to check this
property. Later on we prove that the proposed procedure is sufficient.

Definition 48 (SSOR equivalence). We call SSOR1 and SSOR2 equiva-
lent, denoted as SSOR1 � SSOR2, if and only if:

• They depend only on the same free variables v1, . . . , vn

• They are both consistent and deterministic.

• ∀v1, . . . , vn, sOld : (SysInv[sOld] ∧ pre1) ⇒ pre2

• ∀v1, . . . , vn, sOld : (SysInv[sOld] ∧ pre2) ⇒ pre1

• for each i1 ∈ [1..n1t] and i2 ∈ [1..n2t] if it
t
i1,1

= itti2,2 then

∀v1, . . . , vn, sOld, v : (SysInv[sOld] ∧ pre1 ∧ ϕ
−
St
i1,1

∧ ϕ−
St
i2,2

) ⇒

valti1,1 = valti2,2.

• for each i1 ∈ [1..n1t] and i2 ∈ [1..n2f] if it
t
i1,1

= itfi2,2 then

∀v1, . . . , vn, sOld : (SysInv[sOld] ∧ pre1) ⇒ St
i1,1
]Sf

i2,2
.

• for each i1 ∈ [1..n1f] and i2 ∈ [1..n2t] if it
f
i1,1

= itti2,2 then

∀v1, . . . , vn, sOld : (SysInv[sOld] ∧ pre1) ⇒ Sf
i1,1
]St

i2,2
.

where SSOR1 has the following form:

• pre-condition pre1.

• transformation rules are 〈ψ−
St
1,1
, itt1,1, val1,1〉, . . . , 〈ψ

−
St

n1
t ,1

, itn1
t ,1
, valn1

t ,1
〉.

• frame rules are 〈ψ−

Sf
1,1

, itf1,1〉, . . . , 〈ψ
−

Sf

n1
f
,1

, itn1
f ,1

〉.

and SSOR2 has the following form:

• pre-condition pre2.

• transformation rules are 〈ψ−
St
1,2
, itt1,2, val1,2〉, . . . , 〈ψ

−
St

n2
t
,2

, itn2
t ,2
, valn2

t ,2
〉.

• frame rules are 〈ψ−

Sf
1,2

, itf1,2〉, . . . , 〈ψ
−

Sf

n2
f
,2

, itn2
f
,2〉.

6.3. SPECIFICATION LANGUAGE OF SPECIFICATIONS 171

6.3 Specification language of specifications

Let us now consider the specification language of specifications (denoted as
SLS) which we use to specify stereotype operations. The basic building
blocks of SLS are basic operations. They represent primitive updates of
stereotype slices. We combine them using operation composers into com-
posite stereotype operations. There are two kinds of composite stereotype
operations: non-recursive and recursive. Non-recursive operations are es-
sentially specified by an SLS term. A specification of a recursive operation
contains also an inductive hypothesis and a measure. In SLS recursive op-
erations play the role of loops or inductive definitions. We consider them in
more details later.

We begin the description of SLS with basic operations. Below we pro-
vide a definition of a basic operation and a description of how to construct
an SSOR for it. We already know how to construct a pair of pre and post
conditions from an SSOR. We use the pre and post conditions of a basic
operation to define its operational semantic.

Definition 49 (Basic operation). The description of a basic operation con-
sists of the following parts:

• Header:

op(v1 : T1, . . . , vn : Tn) here op is the name of the basic operation,
v1, . . . , vn are the names of the input parameters, and T1, . . . , Tn are
the types of the input parameters.

• Pre-conditions:

A pre-condition is a universally quantified formula which depends on
the input parameters and the input stereotype slice only. We denote it
as preop.

• Local variables:

We use local variables to abbreviate the descriptions of stereotype op-
erations. There are local variables of two types: scalars and maps.

– A definition of a scalar variable has the form v = exp, where v
is a variable name and exp is an expression.

– A definition of a map variable has the form
∀o1, . . . , on : v[o1, . . . , on] = exp[o1, . . . , on], where v is a variable
name and exp is an expression.

It is assumed that there is no cyclic dependance between variable decla-
rations. The check of this property is straightforward. We can mention

172 CHAPTER 6. STEREOTYPE OPERATIONS

local variables at any part of the operation declaration.

• Input instances:

This part of the operation description lists all stereotype instances
which can be affected by an operation execution. We call such in-
stances participating. The description has the form
inInst1 = expin1 ; . . . ; inInstnin

= expinnin
. Here expini for i in [1..nin]

are expressions of type ref which contain IDs of the participating in-
stances. We denote {expin1 , . . . , exp

in
nin

} as Instop.

• Output instances:

In this section we describe how the shape of the participating instances
will change after the operation execution. The description has the
following form: outInst1 = expout1 ; . . . ; outInstnout = expoutnout

. Here
expouti for i in [1..nin] are expressions of type Reg which contain ele-
ments of the corresponding output instances.

• Transformations:

The last section describes how the operation transforms an input slice.
It contains a list of transformation rules 〈ψ−

St
1
, itt1, val1〉, . . . ,

〈ψ−
St
nt

, itnt , valnt〉. Here we assume that itti 6= Elements for all i in

[1..nt]. By this restriction we avoid possible conflicts with the specifi-
cations which we generate from input and output instances. Another
restriction is that for each i in [1..nt] we assume that ψ−

St
i

is quan-

tifier free. By this restriction we enable the automatic generation of
frame rules from the transformation rules. On the other hand, since
we use basic operations only to express the simplest primitive transfor-
mations of stereotype slices, the basic operations are expressive enough
even with this restriction. Both constraints can be checked in a simple
syntactic way.

We can eliminate any reference to a local variable in the following way:

• If a formula ϕ[v] depends on a local variable v = exp then it is equiv-
alent to ϕ[v := exp]

• If a formula ϕ[v[exp1, . . . , expn]] depends on a local variable
∀o1, . . . , on : v[o1, . . . , on] = exp[o1, . . . , on] then it is equivalent to
ϕ[v := exp[exp1, . . . , expn]]

Definition 50 (SSOR for a basic operation). We define an SSOR for a
basic operation op in the following way:

6.3. SPECIFICATION LANGUAGE OF SPECIFICATIONS 173

• pre-condition preop

• transformation rules are 〈ψ−
St
1
, itt1, val1〉, . . . , 〈ψ

−
St
nt

, itnt , valnt〉 and

〈expout1 ,Elements, expout1 〉, . . . , 〈expoutnout
,Elements, expoutnout

〉.

• frame rules are 〈¬ψ−
St
1
, itt1〉, . . . , 〈¬ψ

−
St
nt

, itnt〉 and

〈expout1 ∪ . . . ∪ expoutnout
, ∗〉.

If the definition of a stereotype operation does not contain a transfor-
mation rule which affects a stereotype item ”it” then we assume that the
values of the stereotype item are preserved and add the frame rule 〈U, it〉.

To initialize stereotype items of a freshly allocated object we use a special
kind of basic stereotype operations: stereotype constructors.

Definition 51 (Stereotype constructor). A stereotype constructor consists
of:

• Header:

constructor op(obj : ref!, v1 : T1, . . . , vn : Tn) here op is the name of
the constructor, obj, v1, . . . , vn are the names of the input parameters,
and ref!, T1, . . . , Tn are the types of input parameters. The first input
parameter obj has a special meaning. It is a reference to a freshly al-
located object.

• Body:

The body contains a list of transformation rules of the form
〈obj, it1, exp1〉, . . . , 〈obj, itn, expn〉. We assume that the transforma-
tion rules satisfy the following syntactical constraints:

1. For each stereotype item there is exactly only transformation rule.

2. Each transformation rule has the form 〈obj, itt, val〉.

3. For each transformation rule 〈obj, itt, val〉 where itt is a stereo-
type item of type Reg, val is {obj} or ∅.

4. For each transformation rule 〈obj, itt, val〉 where itt is a stereo-
type item of type ref, val is obj or null.

5. for each i in [1..n], vali does not depend on the old values of
stereotype items of obj.

Definition 52 (SSOR for a constructor). We define an SSOR for a con-
structor op as:

• pre-condition T

174 CHAPTER 6. STEREOTYPE OPERATIONS

• transformation rules are 〈obj, it1, exp1〉, . . . , 〈obj, itn, expn〉
and 〈obj,Elements, {obj}〉.

• frame rule is 〈{obj}, ∗〉.

t ::= SSOR

| op(exp1, . . . , expn)
| if (ϕ) t else t

| t; t

|
fInst

‖
i∈Ind

op(exp1[i], . . . , expn[i])

| skip

Figure 6.1: SLS syntax.

The syntax and the operational semantics of SLS are presented on Fig-
ure 6.1 and Figure 6.2, respectively. SLS consists of the following expres-
sions: SSOR execution, operation call, conditional statement, sequential
composition, parallel composition, and the skip operation. Since we use
them to compose a more complicated stereotype operation from the simpler
stereotype operations we also call them operation composers.

A transition in the operational semantics has the following form Σ |=

s
t
→ s′. The judgment states that under environment Σ term t transforms

an initial state s into a final state s′. Here an environment Σ defines values
of variables and has the following structure Σ = {v1 7→ val1, . . . , vn 7→ valn},
where vi is a variable name and vali is a variable value. The state is the
state of the stereotype slice affected by the operation execution.

We denote the interpretation of a variable v under environment Σ as
Σ[[v]], the interpretation of a formula ϕ under environment Σ as Σ |= ϕ,
and the interpretation of an expression exp under environment Σ as [[Σ]]exp.
Since all of them are standard we omit their definitions.

Formulas and expressions in SLS terms depend on a slice. To make our
reasoning simpler we assume that this slice is denoted as sOld.

A basic building block of SLS is an SSOR. We describe an operational
aspect of the behavior of an SSOR in a logical way. An execution of an
SSOR transforms an input stereotype slice into an output stereotype slice
if and only if the system invariant, pre-condition, and post-condition hold
for these slices.

The operational semantics of a basic and a composite operation call dif-
fer. A call of a basic operation is reduced to an execution of the SSOR that
corresponds to the body of the operation. On the other hand an execution
of a composite operation is equivalent to an execution of its body. There is
an extra check for a recursive call of a recursive operation. In this case we

6.3. SPECIFICATION LANGUAGE OF SPECIFICATIONS 175

OS-SSOR

Σ′ = Σ ∪ {sOld 7→ s, sNew 7→ s′}
[[SSOR]] = 〈pre,post〉

Σ′ |= SysInv[sOld] ∧ pre ∧ post

Σ |= s
SSOR
→ s′

OS-Call-Basic

op(v1 : T1, . . . , vn : Tn) is a basic stereotype operation
for each i from [1..n] expi is a well-formed expression of the type Ti

Σ′ = Σ ∪ {sOld 7→ s}
Σ′′ = {v1 7→ [[exp1]]Σ′ , . . . , vn 7→ [[expn]]Σ′}

Σ′′ |= s
SSORop

→ s′

Σ |= s
op(exp1,...,expn)

→ s′

OS-Call-Comp

op(v1 : T1, . . . , vn : Tn) is a composite stereotype operation
for each i from [1..n] expi is a well-formed expression of the type Ti

top is the body of op
Σ′ = Σ ∪ {sOld 7→ s}

Σ′′ = {v1 7→ [[exp1]]Σ′ , . . . , vn 7→ [[expn]]Σ′}
if the call is recursive and vmes is a measure variable

then Σ′′[[vmes]] < Σ[[vmes]]

Σ′′ |= s
top
→ s′

Σ |= s
op(exp1,...,expn)

→ s′

OS-if

Σ′ = Σ ∪ {sOld 7→ s}

(Σ′ |= ϕ) implies Σ |= s
t1→ s′

(Σ′ |= ¬ϕ) implies Σ |= s
t2→ s′

Σ |= s
if (ϕ) t1 else t2

→ s′
OS-seq

Σ |= s
t1→ s′′

Σ |= s′′
t2→ s′

Σ |= s
t1;t2→ s′

OS-par

for each i ∈ Ind op(exp1[i], . . . , expn[i]) effects only
stereotype instances from Instop[i]

Σ′ = Σ ∪ {sOld 7→ s}
Σ′′ = Σ ∪ {sOld 7→ s, sNew 7→ s′}

for each disjoint i, j ∈ Ind Σ′ |= Instop[i]]Instop[j]

Inst =
fInst
⋃

i∈Ind

Instop[i]

Σ′ |=
⋃

i∈Ind

Instop[i] = Inst

Σ′′ |= [[〈InstEl(Inst), ∗〉]]

for each i ∈ Ind Σ |= s
op(exp1[i],...,expn[i])JInstop[i]

→ s′

Σ |= s

fInst
‖

i∈Ind

op(exp1[i],...,expn[i])

→ s′

OS-rest

Σ |= s
t
→ s′′

Σ′ = Σ ∪ {sOld 7→ s′′, sNew 7→ s′}
Σ′ |= [[〈InstEl(Inst), ∗〉]]

Σ |= s
tJInst
→ s′

OS-skip
Σ |= s

skip
→ s

Figure 6.2: SLS operational semantics.

176 CHAPTER 6. STEREOTYPE OPERATIONS

require the value of the measure variable to decrease. By this we guarantee
termination of a recursive call and prevent unsoundness. A measure vari-
able is a part of the definition of a composite recursive operation which we
discuss later.

The semantics of both conditional statement and sequential composition
are standard. If the condition of a conditional statement holds, then the first
term is executed, otherwise the second. A sequential composition transforms
an input term into an output term if and only if there exists an intermediate
stereotype slice such that the first term transforms the input slice into the
intermediate slice and the second term transforms the intermediate slice into
the output slice.

The next operation composer is the parallel composition. The main idea
behind it is that if there are several operations whose effects are disjoint
then the order of their execution doesn’t matter and we can execute them
simultaneously. We guarantee disjointness of the operations’ effects by re-
quiring that each operation affects only stereotype instances from Instop[i]
and by requiring disjointness of Instop[i]. Since information about the af-
fected stereotype instances is unknown for an arbitrary stereotype operation
we allow parallel composition only for basic and recursive stereotype oper-
ations. For both of them, the affected stereotype instances are a part of
user-provided specifications.

To define the semantics of the parallel composition we introduce an aux-
iliary stereotype composer: the restriction of an operation to a set of stereo-
type instances. We denote it as t J Inst. For all objects which belong to
the stereotype instances from Inst, the restricted operation has the same
effect as the non-restricted operation. The values of all objects outside the
stereotype instances from Inst are unspecified. We achieve this behavioral
nondeterminism by using existential quantification over the stereotype slice.
s′′ is the output of the unrestricted operation. sNew equals s′′ for all objects
from stereotype instances from Inst and is not specified for the rest of the
objects.

Using operation restriction we can specify parallel composition in the fol-
lowing way. fInst is an auxiliary parameter of the parallel composition. We

use fInst as a witness function to define set Inst =
fInst
⋃

i∈Ind

Instop[i]. Inst is

the set of identifiers of stereotype instances which are affected by the parallel
composition. Values of all objects outside the instances from Inst are pre-
served. An updated value of an object from Instop[i] is equal to the parallel
execution of the restricted versions of the operations op(exp1[i], . . . , expn[i]).
We simulate parallel execution by using a universal quantifier. Since each
of the operations op(exp1[i], . . . , expn[i]) states that the values of all ob-
jects outside the stereotype instance Instop[i] are preserved, we use the re-
stricted version of operations to avoid inconsistency. The restricted versions

6.3. SPECIFICATION LANGUAGE OF SPECIFICATIONS 177

of the operations op(exp1[i], . . . , expn[i]) leave values of the objects outside
the stereotype instances Instop[i] unspecified and therefore inconsistency is
avoided.

The last operation is skip. It is an identical transformation of an input
slice. Mostly it is used when we want to specify that an operation doesn’t
change a stereotype slice.

Let us now consider composite stereotype operations. As we mentioned
above, there are two kinds of composite stereotype operations; non-recursive
and recursive. Let us begin with the first one.

Definition 53 (Non-recursive composite stereotype operation). A descrip-
tion of a non-recursive composite stereotype operation consists of the follow-
ing parts:

• Header:

op(v1 : T1, . . . , vn : Tn) here op is a name of an operation, v1, . . . , vn
are the names of the input parameters, and T1, . . . , Tn are the types of
the input parameters.

• Body:

is an SLS term t which possibly depends on the variables v1, . . . , vn
and does not contain recursive calls. We use a pair of curly brackets
to identify the beginning and the end of a body.

Definition 54 (Recursive composite stereotype operation). A description
of a recursive composite stereotype operation consists of the following parts:

• Header: The same as the corresponding part of the description of a
basic stereotype operation.

• Pre-conditions: The same as the corresponding part of the descrip-
tion of a basic stereotype operation.

• Local variables: The same as corresponding part of the description
of a basic stereotype operation.

• Input instances:

Similar to the corresponding part of the description of a basic stereo-
type operation but instead of a fixed number of input stereotype in-
stances we have a set of input instances. Because of this extension,
recursive operations are able to deal with an unbounded number of in-
put instances.

178 CHAPTER 6. STEREOTYPE OPERATIONS

• Transformations:

Similar to the corresponding part of a the description of a basic stereo-
type operation but with two differences. First we allow the ψ−

St of a
transformation rule 〈ψ−

St , it, val〉 to contain an arbitrary number of ex-
istential quantifiers. By this we extend the expressive power of recur-
sive operations. Second, we require an explicit description of updates
of the Elements stereotype item. We have to describe them explicitly
because we drop the ”output instances” section. We can drop it be-
cause we don’t need to check preservation of SysInvEl. Later on we
will prove that the way how we construct recursive operations guaran-
tees the preservation of SysInvEl.

• Frame:

Since we allow ψ−
St to contain an arbitrary number of existential quan-

tifiers, which means that ¬ψ−
St is potentially universally quantified, we

can’t infer frame properties anymore. Therefore we have to describe
them in the following explicit form 〈ψ−

Sf
1

, itf1 〉, . . . , 〈¬ψ
−

Sf
nf

, itnf
〉.

• Measure:

Here we provide the name of an input parameter which is used as a
measure and guarantees termination of recursive calls. We denote it
as vmes. We also denote an expression which represents an actual
value of vmes as expmes. The type of the variable has to be equipped
with a well-founded order. For example we use strictly less order for
positive numbers and strict inclusion order for sets.

• Body:

The body is similar to the corresponding part of the description of a
non-recursive composite stereotype operation. The only difference is
that t possibly contains recursive calls of the defining stereotype oper-
ation.

A definition of a recursive operation consists of two equivalent descrip-
tions: operational and logical. An operational description is represented
by the operation body which we use to define the operational semantics
of a recursive operation call. A logical description is represented by a pre-
condition, transformation rules, and frame rules. We use the logical descrip-
tion to construct an SSOR for the recursive operation. On the other hand
we use the operational description and measure to prove that the constructed
SSOR is proper.

If the type of the measure of a recursive operation is a set type, then in
order to check the preservation of the measure by a recursive call we have
to check a strict set inclusion. As we mentioned above to avoid existential

6.3. SPECIFICATION LANGUAGE OF SPECIFICATIONS 179

quantifiers in a property’s check we have to use strict subset inclusion with
a witness element. With this motivation in mind, we annotate this recursive
call with a hint which witness element to use. To do that we use the following

syntax op(. . . , exp, . . .) measure v
exp′

⊆ exp, where v is the measure variable of
the recursive operation op, exp of type Reg is an actual value of the measure
of the recursive call, and exp′ of type ref is a witness value which guarantees
that the measure decreases.

Before we move on to the consideration of the SLSto-SSOR translation
we have to introduce an equivalence relation induced by the operational
semantics on sets of SSORs and prove some of its properties.

Definition 55 (Equivalence relation on the SLS terms for a fixed Σ). Two
SLS terms t1 and t2 which depend on the same free variables v1, . . . , vn,
are equivalent for an environment Σ = {v1 7→ val1, . . . , vn 7→ valn} if and

only if for any stereotype slices s and s′ the following holds: Σ |= s
t1→ s′ if

and only if Σ |= s
t2→ s′. We denote equivalence of terms t1 and t2 for an

environment Σ as t1
Σ
= t2.

Lemma 20. For each fixed environment Σ
Σ
= is an equivalence relation.

Proof. • reflexivity: for each t, s, and s′, Σ |= s
t
→ s′ if and only if

Σ |= s
t
→ s′ which implies t

Σ
= t.

• symmetric: for each t and t′ if t
Σ
= t′ then for each s and s′ Σ |= s

t
→s′

if and only if Σ |= s
t′

→ s′. It implies Σ |= s
t′

→ s′ if and only if Σ

Σ |= s
t
→ s′ which is equivalent to t′

Σ
= t.

• transitivity: for each t, t′, and t′′ if t
Σ
= t′ and t′

Σ
= t′′ then for each s

and s′ Σ |= s
t
→ s′ if and only if Σ |= s

t′

→ s′ and Σ |= s
t′

→ s′ if and only

if Σ |= s
t′′

→ s′. It implies Σ |= s
t
→ s′ if and only if Σ |= s

t′′

→ s′ which is

equivalent to t
Σ
= t′′.

Lemma 21. For each t, t1, t2, and Σ, t1
Σ
= t2 (1) implies t[t1 := t2]

Σ
= t.

Proof. The desired property can be proven by structural induction on the
term t.

• Induction base:

– t is equal to t1 (2). (2) implies t[t1 := t2] = t1[t1 := t2] = t2 (3).

(1) ∧ (3) ⇒ t[t1 := t2]
Σ
= t1 = t.

180 CHAPTER 6. STEREOTYPE OPERATIONS

– t differs from t1 (4) and t is SSOR, op(exp1, . . . , expn), or skip

(5). (4) ∧ (5) ⇒ t[t1 := t2] = t
Σ
= t.

• Induction step: For each s and s′ we have to prove that Σ |= s
t[t1:=t2]

→

s′ holds if and only if Σ |= s
t
→ s′.

– t is equal to if (ϕ) t′ else t′′ and differs from t1. Let us first con-
sider the case when Σ′ |= ϕ holds (6), where Σ′ = Σ∪{sOld 7→ s}.

Σ |= s
t[t1:=t2]

→ s′ is equivalent to Σ |= s
if (ϕ) t′[t1:=t2] else t′′[t1:=t2]

→

s′. According to (6) it is equivalent to Σ |= s
t′[t1:=t2]

→ s′. Accord-

ing to the induction hypothesis it is equivalent to Σ |= s
t′

→ s′.

According to (6) it is equivalent to Σ |= s
t
→ s′. The proof for the

case Σ′ |= ¬ϕ can be constructed in a similar way.

– t is equal to t′; t′′ and differs from t1. Σ |= s
t[t1:=t2]

→ s′ is equivalent

to Σ |= s
t′[t1:=t2];t′′[t1:=t2]

→ s′. According to the operational seman-

tic it is equivalent to ∃ s′′ : Σ |= s
t′[t1:=t2]

→ s′′ ∧Σ |= s′′
t′′[t1:=t2]

→ s′.
According to the induction hypothesis it is equivalent to ∃ s′′ :

Σ |= s
t′

→ s′′∧Σ |= s′′
t′′

→ s′. According to the operational semantic

it is equivalent to Σ |= s
t′;t′′
→ s′. It is equivalent to Σ |= s

t
→ s′.

– t is equal to t′ J Inst and differs from t1. Σ |= s
t[t1:=t2]

→ s′

is equivalent to Σ |= s
t′[t1:=t2]JInst

→ s′. According to the opera-

tional semantic it is equivalent to ∃ s′′ : Σ |= s
t′[t1:=t2]

→ s′′ ∧ Σ′ |=
[[〈InstEl(Inst), ∗〉]], where Σ′ = Σ ∪ {sOld 7→ s′′, sNew 7→ s′}.
According to the induction hypothesis it is equivalent to ∃ s′′ :

Σ |= s
t′

→ s′′ ∧ Σ′ |= [[〈InstEl(Inst), ∗〉]]. According to the opera-

tional semantic it is equivalent to Σ |= s
t′JInst
→ s′. It is equivalent

to Σ |= s
t
→ s′.

– t is equal to
fInst

‖
i∈Ind

op(exp1[i], . . . , expn[i]) and differs from t1. Σ |=

s
t[t1:=t2]

→ s′ is equivalent to Σ |= s

fInst

‖
i∈Ind

(op(exp1[i],...,expn[i])[t1:=t2])

→ s′.
According to the operational semantic it is equivalent to (∀ i ∈

Ind : Σ |= s
op(exp1[i],...,expn[i])[t1:=t2]JInstop[i]

→ s′) ∧ ϕ, where
ϕ⇔ (∀i, j ∈ Ind : i 6= j ⇒ Σ′ |= Instop[i]]Instop[j])∧

(Inst =
fInst
⋃

i∈Ind

Instop[i]) ∧ (Σ′ |=
⋃

i∈Ind

Instop[i] = Inst)∧

(Σ′′ |= [[〈InstEl(Inst), ∗〉]]), Σ′ = Σ∪{sOld 7→ s}, and Σ′′ = Σ∪

6.3. SPECIFICATION LANGUAGE OF SPECIFICATIONS 181

{sOld 7→ s, sNew 7→ s′}. According to the induction hypothesis

it is equivalent to (∀ i ∈ Ind : Σ |= s
op(exp1[i],...,expn[i])JInstop[i]

→
s′) ∧ϕ. According to the operational semantic it is equivalent to

Σ |= s

fInst

‖
i∈Ind

(op(exp1[i],...,expn[i]))

→ s′. It is equivalent to Σ |= s
t
→ s′.

Definition 56 (Equivalence relation on SLS terms). We say that two SLS

terms t1 and t2, which depend on the same free variables v1, . . . , vn, are
equivalent if and only if for each environment Σ = {v1 7→ val1, . . . , vn 7→

valn} t1
Σ
= t2. We denote equivalence of terms t1 and t2 as t1 = t2.

Lemma 22. ”=” is an equivalence relation.

Proof. The proof follows immediately from Definition 56 and Lemma 20.

Lemma 23. For arbitrary sets A, B, A′, and B′ if

A] B (6.1)

A] B′ (6.2)

A ∪ B = U (6.3)

A′] B′ (6.4)

A′] B (6.5)

A′ ∪ B′ = U (6.6)

then A = A′ and B = B′.

Proof. Let us first proof that A = A′.

∀o : o ∈ A
(6.2)
⇒ o /∈ B′ (6.4),(6.6)⇒ o ∈ A′ which implies A ⊆ A′ (*).

∀o : o ∈ A′ (6.5)⇒ o /∈ B
(6.1),(6.3)

⇒ o ∈ A which implies A′ ⊆ A′′ (**).
(∗) ∧ (∗∗) ⇒ A = A′ (***).

Let us now proof that B = B′. (6.3) ∧ (6.6) ⇒ A ∪B = A′ ∪B′ (∗∗∗)⇒

(A ∪B) \ A = (A′ ∪B′) \A′ (6.1),(6.4)⇒ B = B′.

Lemma 24. If SSOR1 � SSOR2 then SSOR1 = SSOR2.

Proof. We have to prove that for any stereotype slices s and s′ and environ-
ment Σ, Σ′ |= SysInv[sOld] implies Σ′ |= pre1 ∧ post1 holds if and only if
Σ′ |= pre2 ∧ post2 holds, where Σ′ = Σ ∪ {sOld 7→ s, sOld 7→ s′}.

According to Definition 48, SSOR1 � SSOR2 and
Σ′ |= SysInv[sOld] implies Σ′ |= pre1 holds if and only if Σ′ |= pre2
holds. Therefore we can reduce the proof to the flowing statement Σ′ |=

182 CHAPTER 6. STEREOTYPE OPERATIONS

SysInv[sOld] ∧ pre1 implies Σ′ |= post1 holds if and only if Σ′ |= post2
holds.

We check the equivalence of the post conditions separately for each
stereotype item ”it”. Let us denote a set of objects whose values of ”it”
are updated by SSOR1 as A, and a set of objects whose values are pre-
served by SSOR1 as B. We denote the corresponding sets for SSOR2 as
A′ and B′. From the definition of � we know that SSOR1 and SSOR2 are
both consistent and deterministic which implies A]B, A ∪ B = U, A′]B′,
A′ ∪ B′ = U. On the other hand in the definition of � we explicitly check
that A]B′ and A′]B. By putting it all together and applying Lemma 23

we infer that A = A′ and B = B′. By this we conclude that SSOR1 and
SSOR2 update and preserve exactly the same sets of objects.

Nevertheless it is possible that updated objects get different values ac-
cording to SSOR1 and SSOR2. The corresponding part of � guarantees
that this does not happen. It checks that if a stereotype item of an object is
affected by both a transformation rule of SSOR1 and a transformation rule
of SSOR2 then the new values of the stereotype item are equal. By this we
guarantee consistency of transformation rules and conclude the proof.

Lemma 25. For each environment Σ if SSOR1
Σ
= SSOR2 (1) and SSOR1

preserves the system invariant for Σ (2) then SSOR2 also preserves the
system invariant for Σ.

Proof. For each s, s′, Σ:

Σ′ |= SysInv[sOld] ∧ preSSOR2
∧ postSSOR2

(1)
⇒

Σ′ |= SysInv[sOld] ∧ preSSOR1
∧ postSSOR1

(2)
⇒

Σ′ |= SysInv[sNew]

where Σ′ = {sOld 7→ s, sNew 7→ s′}.

Lemma 26. If SSOR1 = SSOR2 and SSOR1 preserves the system in-
variant then SSOR2 preserves the system invariant.

Proof. The desired property immediately follows from Lemma 25.

6.4 SLS-to-SSOR translation

The operational semantics gives a good intuition regarding the behavior of
an SLS term. However, due to its operational nature, we can’t directly use
it as a specification. We have to translate an SLS term into a pair of pre and
post conditions in first order logic. As we mentioned before we achieve this
goal by translating an SLS term into a corresponding SSOR. As soon as
we have an SSOR we can construct its logical characterization as described
in Definition 40.

6.4. SLS-TO-SSOR TRANSLATION 183

Since we would like the resulting logical characterization to be consistent
and preserve the system invariant, we construct a translation procedure in
such a way that it always produces a proper SSOR.

We define the translation of SLS terms into SSOR in an inductive
way. First we define how to construct a corresponding SSOR for a basic
stereotype operation call. This is the base of the induction. Then we show
how to construct a corresponding SSOR for each operation composer under
an assumption that we know how to do it for subterms. We conclude our
translation description by considering recursive operations. Here we use
a user-provided inductive hypothesis to generate a corresponding SSOR.
We use one more nested induction to prove correspondence between the
constructed SSOR and the recursive operation. By this we conclude the
inductive step of our translation.

The formal definition of a correspondence between an SLS term and an
SSOR is the following:

Definition 57 (Correspondence between an SLS term and an SSOR). We
say that an SSOR corresponds to an SLS term t if and only if they are equal
as SLS terms: SSOR = t.

Definition 58 (SLS-to-SSOR translation). We denote the result of the
SLS-to-SSOR translation of an SLS term t as SSORt. We define it by
structural induction over SLS terms in the following way:

• the induction base cases are:

– if an SLS term is equal to an SSOR then we do not need to
translate it.

– the translation of skip is denoted by SSORskip. It is defined in
Definition 72.

– the translation of a basic operation call op(exp1, . . . , expn) is de-
noted by SSORop(exp1,...,expn)

. It is defined in Definition 63.

– the translation of a composite recursive operation call
op(exp1, . . . , expn) is denoted by SSORop(exp1,...,expn)

. It is de-
fined in Definition 71. We treat a composite recursive operation
call as a base case rather then an inductive case for the following
reason. To define the translation we use only the transformation
and frame rules of the operation but not the body. The body is
used only to verify that the call has desired properties which we
consider below. Therefore we do not need the translation of the
operation body to translate the operation call.

• the induction step cases are:

184 CHAPTER 6. STEREOTYPE OPERATIONS

– the translation of a composite nonrecursive operation call
op(exp1, . . . , expn) is denoted by SSORop(exp1,...,expn)

. It is de-
fined in Definition 64. The translation is based on the transla-
tion of the operation body top.

– the translation of an if statement if (ϕ) t1 else t2 is denoted
by SSORif (ϕ) t1 else t2 . It is defined in Definition 73. The
translation is based on the translation of the SLS terms t1 and
t2.

– the translation of a sequential composition t1; t2 is denoted by
SSORt1;t2 . It is defined in Definition 81. The translation is
based on the translation of the SLS terms t1 and t2.

– the translation of a parallel composition
fInst
‖

i∈Ind

op(exp1[i], . . . , expn[i]) is denoted by

SSOR fInst

‖
i∈Ind

op(exp1[i],...,expn[i])

. It is defined in Definition 82. The

translation is based on the translation of the calls
op(exp1[i], . . . , expn[i]).

The translation described inDefinition 58 does not terminate if there is
an undesired cyclic dependency between the operations. Therefore below we
introduce syntactical constraints which guarantee termination of the SLS-
to-SSOR translation. To define this syntactical constraint we need the
following auxiliary definitions.

Definition 59 (Order on stereotype operations). We define an order > on
stereotype operations in the following way. For stereotype operations f and
g, f > g if and only if:

• f is a composite operation,

• the body of f contains a call of g, and

• if f is a composite recursive operation then f 6= g.

Definition 60. We denote the set of all SLS terms which depend on stereo-
type operations from the set F and do not contain SSOR sub-terms as
Trm(F).

The syntactical constraint which guarantees termination of the SLS-
to-SSOR translation is acyclicity of the order > on stereotype operations.
The relation > can be constructed by visiting the bodies of all stereotype
operations. And therefore its acyclicity can also be checked. Let us prove
that the constraint is sufficient to guarantee termination of the SLS-to-
SSOR translation.

6.4. SLS-TO-SSOR TRANSLATION 185

Lemma 27. If for any operation call of any operation which belongs to a
set of stereotype operations F the translation of the operation call terminates
then the translation of any SLS term from Trm(F) also terminates.

Proof. We prove the desired property by structural induction over SLS

terms in the following way:

• the induction base cases are:

– the translation of skip, basic operation calls, and recursive op-
eration calls are defined in Definition 72, Definition 63, and
Definition 71, respectively. The translation of each of them
does not depend on other terms and therefore terminates.

• the induction step cases are:

– the termination of the translation of a composite nonrecursive
operation call follows from the lemma assumption.

– the translation of the if statement, the sequential composition,
and the parallel composition are defined in Definition 73, Def-

inition 81, and Definition 82. The translation of each of them
terminates if the translation of its sub-terms terminates. Accord-
ing to the inductive hypothesis the translation of the sub-terms
terminates.

Theorem 28 (SLS-to-SSOR translation terminates). For any set of
stereotype operations F if the order > on stereotype operations is acyclic on
F then the for each SLS term from Trm(F), the SLS-to-SSOR translation
of the term terminates.

Proof. We prove the desired property by induction over the order > on
stereotype operations.

In the induction base we have to prove that the SLS-to-SSOR trans-
lation terminates on Trm(∅). There are no stereotype operations which
belong to ∅. Therefore according to Lemma 27 the translation terminates
on Trm(∅).

In the induction step we know that the translation terminates for
Trm(F ′), where F ′ ⊂ F . We have to prove that the translation terminates
for Trm(F ′ ∪ {f}), where f ∈ F \ F ′ and f ’s definition depends only on
operations from F ′.

If f is a basic or a composite recursive operation then according to Def-

inition 63 and Definition 71 the translation of any call of the operation f
terminates (1). Let us consider the case when f is a composite nonrecursive
operation. Since the definition f depends only on operation calls of opera-
tions from F ′ the body of f belongs to Trm(F ′). Therefore according to the

186 CHAPTER 6. STEREOTYPE OPERATIONS

induction hypothesis the translation of the body of f terminates. Therefore
according to Definition 71 the translation of any call of the operation f
terminates (2). From (1) and (2) we conclude that any call of the operation
f terminates. From the induction hypothesis we know that the translation
of any call of any operation from F ′ terminates. Therefore we can conclude
that the translation of any call of any operation from F ′ ∪ {f} terminates.
Therefore according to Definition 27 the translation of any SLS term from
Trm(F ′ ∪ {f}) terminates.

Now we can formulate the main property of the SLS-to-SSOR transla-
tion. The property which we want to prove is the following one. For each
t, SSORt corresponds to t (see Definition 57) and is proper (see Defini-

tion 45). This property holds only if for each stereotype operation certain
proof obligations hold. We will define the proof obligations in the following
definitions:

• for basic operations in Definition 61.

• for stereotype constructors in Definition 62.

• for composite nonrecursive operations there are no proof obligations.

• for composite recursive operations Definition 70.

Lemma 29. If for any operation call of any operation which belongs to
a set of stereotype operations F the translation of the call is proper and
corresponds to the operation call then the translation of any SLS term from
Trm(F) is proper and corresponds to the term.

Proof. We prove the desired property by structural induction over SLS

terms in the following way:

• the induction base cases are:

– according to Lemma 44 SSORskip is proper. According to
Lemma 45 SSORskip corresponds to skip.

– according to the lemma’s assumption the translation of a basic
operation call or a recursive operation call is proper and corre-
sponds to the basic operation call and recursive operation call,
respectively.

• the induction step cases are:

– according to the lemma’s assumption the translation of a nonre-
cursive operation call is proper and corresponds to the operation
call.

6.4. SLS-TO-SSOR TRANSLATION 187

– According to Lemma 46 the translation of an if statement is
proper and corresponds to the if statement if the translation of
the sub-terms are proper and correspond to the sub-terms. The
validity of the last statement follows from the induction hypoth-
esis.

– According to Lemma 56 and Lemma 57 the translation of a se-
quential composition is proper and corresponds to the sequential
composition if the translation of the sub-terms are proper and
correspond to the sub-terms. The validity of the last statement
follows from the induction hypothesis.

– According to Lemma 58 and Lemma 59 the translation of a
parallel composition is proper and corresponds to the parallel
composition if the translation of the sub-terms are proper and
correspond to the sub-terms. The validity of the last statement
follows from the induction hypothesis.

Theorem 30 (Properties of SLS-to-SSOR translation). For any set of
stereotype operations F if the order > on stereotype operations is acyclic
on F and the proof obligations hold for each operation from F then for each
SLS term from Trm(F) the SLS-to-SSOR translation of the term is proper
and corresponds to the term.

Proof. We prove the desired property by induction over the order > on
stereotype operations.

In the induction base we have to prove that the SLS-to-SSOR trans-
lation of any term from Trm(∅) is proper and corresponds to the term.
There are no stereotype operations which belong to ∅. Therefore accord-
ing to Lemma 29 the translation of any term from Trm(∅) is proper and
corresponds to the term.

In the induction step we know that the translation of any term from
Trm(F ′) is proper and correspond to the term, where F ′ ⊂ F . We have to
prove that the translation of any term from Trm(F ′ ∪ {f}) is proper and
corresponds to the term, where f ∈ F \ F ′ and f ’s definition depends only
on operations from F ′.

If f is a basic operation then according to Lemma 35 and Lemma 36

since the operation proof obligations hold the translation of any call of the
operation f is proper and corresponds to the operation call (1).

Let us consider the case when f is a recursive composite operation. The
definition f depends only on operation calls of operations from F ′ and on
f . Therefore the body of f where all recursive calls are replaced by SSOR

belongs to Trm(F ′). Therefore according to the induction hypothesis the
translation of the modified body of f is proper and corresponds to the body.

188 CHAPTER 6. STEREOTYPE OPERATIONS

Therefore according to Lemma 43 since the operation proof obligations
holds the translation of any call of the operation f is proper and corresponds
to the operation call (2).

Let us consider the case when f is a nonrecursive composite operation.
Since the definition f depends only on operation calls of operations from F ′

the body of f belongs to Trm(F ′). Therefore according to the induction
hypothesis the translation of the body of f is proper and corresponds to
the body. Therefore according to Lemma 37 and Lemma 38 since the
operation proof obligations hold the translation of any call of the operation
f is proper and corresponds to the operation call (3).

From (1), (2), and (3) we conclude that the translation of any call of
the operation f is proper and corresponds to the operation call. From
the induction hypothesis we know that the translation of any call of any
operation from F ′ is proper and corresponds to the operation call. Therefore
we can conclude that the translation of any call of any operation from F ′ ∪
{f} is proper and corresponds to the operation call. Therefore according to
Lemma 29 the translation of any SLS term from Trm(F ′ ∪{f}) is proper
and corresponds to the term.

The rest of the section is organized in the following way. In Subsec-

tion 6.4.1 we define the translation and prove the properties of the basic
operation calls. In Subsection 6.4.2 we define the translation and prove
the properties of both the recursive and the nonrecursive composite oper-
ation calls. In Subsection 6.4.3 we define the translation and prove the
properties of skip. In Subsection 6.4.4 we define the translation and prove
the properties of the conditional statement. In Subsection 6.4.5 we define
the translation and prove the properties of the sequential composition. In
Subsection 6.4.6 we define the translation and prove the properties of the
parallel composition.

6.4.1 Basic operation call

Let us now consider the proof obligations which guarantee that a basic
operation has the desired properties.

Definition 61 (Proof obligations for a basic operation). For a basic oper-
ation op(v1 : T1, . . . , vn : Tn) under assumption SysInv[sOld] ∧ preop we
check the following proof obligations:

1. for each i in [1..nin] expini 6= null and expini .instID = expini

2. for each disjoint i and j in [1..nin] expini 6= expinj

3. for each i in [1..nout] expouti 6= ∅

4. for each disjoint i and j in [1..nout] expouti]expoutj

6.4. SLS-TO-SSOR TRANSLATION 189

5. expin1 .Elements ∪ . . . ∪ expinnin
.Elements = expout1 ∪ . . . ∪ expoutnin

6. for each disjoint i and j in [1..nt] S
t
i]S

t
j

7. for each i in [1..nt] S
t
i ⊂ expin1 .Elements ∪ . . . ∪ expinnin

.Elements

8. For each transformation rule 〈ψ−
St , it

t, val〉 where itt is a stereotype
item of type Reg we check ∀v : ψ−

St ⇒ val ⊆ expin1 .Elements ∪ . . . ∪
expinnin

.Elements.

9. For each transformation rule 〈ψ−
St , it

t, val〉 where itt is a stereotype
item of type ref we check ∀v : ψ−

St ⇒ val ∈ expin1 .Elements ∪ . . . ∪
expinnin

.Elements.

10. under the additional assumption postop ∧SysInvEl[sNew] for each i
in [1..nout] we check InvSt[sNew, expouti]

where:

• expini for i from [1..nin] are expressions of type ref which contain iden-
tifiers of affected instances.

• expouti for i from [1..nin] are expressions of type Reg which contain the
elements of the output instances.

• 〈ψ−
St
1
, itt1, val1〉, . . . , 〈ψ

−
St
nt

, itnt , valnt〉 are the transformation rules of

the operation.

You can see that we completely ignore SysInvID[sNew] in our proof
obligations. It is because we check that it is implied by a stereotype invari-
ant and SysInvEl. Under this assumption it is enough to prove that the
stereotype invariant and SysInvEl are preserved by a stereotype operation
to prove the preservation of the system invariant.

Lemma 31 (Properties of an SSORop of a basic operation). If the proof
obligations from Definition 61 hold then SSORop of a basic stereotype
operation op(v1 : T1, . . . , vn : Tn) is proper (consistent, deterministic, and
preserves the system invariant) and affects only stereotype instances from
Instop.

Proof. Let us prove the desired properties one by one:

• Consistency: Let us first prove consistency between transformation
rules. There are two kinds of transformation rules: user provided
and generated. Since the generated transformation rule updates the
Elements stereotype item and the user provided transformation rule
doesn’t there is no inconsistency between them. The proof obliga-
tion (4) guarantees consistency of the user provided transformation

190 CHAPTER 6. STEREOTYPE OPERATIONS

rules. The proof obligation (6) guarantees consistency of the generated
transformation rules. Since frame rules are constructed as negations
of transformation rules there is no inconsistency between them either.

• Determinism: Outside of affected instances the operation preserves
all values in a deterministic way. Inside of the affected instances we
have the same two kinds of updates: user provided and generated.
The user provided specifications are deterministic because of the way
in which we constructed the frame rules. Each object belongs to a
set or to a set complement. The generated transformation rules are
deterministic because of the proof obligations (5) and (4). Each ob-
ject of the participating instances is affected by exactly one generated
transformation rule.

• Affected instances: The proof obligation (7) guarantees that user
provided transformation rules affect only stereotype instances from
Instop. The proof obligation (5) does the same for the generated
transformation rules. The proof obligations (1) and (2) guarantee
that Instop contains only instance IDs and doesn’t contain null.

• SysInvEl[sNew]: Since we know that the operation affects only in-
stances form Instop it is enough to check invariant preservation only
for these instances. The proof obligations (3) to (5) and the way how
we generate transformation rules guarantee preservation of the first
two properties of SysInvEl. The proof obligations (8) and (9) estab-
lish the third and forth property of SysInvEl, respectively.

• InvSt[sNew]: Similarly to the previous paragraph it is enough to check
that the stereotype invariant is preserved by instances from Instop.
The proof obligation (10) checks exactly this property.

• SysInv[sNew]: Since we already know that SysInvEl[sNew] and
InvSt[sNew] hold, we can infer from the stereotype proof obligation
that SysInvID[StSlice] also holds, which implies that SysInv[sNew]
holds.

Definition 62 (Proof obligations for a constructor). For a stereotype con-
structor constructor op(obj : ref!, v1 : T1, . . . , vn : Tn) we check the follow-
ing proof obligation:
SysInv[sOld] ∧ postop ∧ SysInvEl[sNew] ⇒ InvSt[sNew, {obj}].

6.4. SLS-TO-SSOR TRANSLATION 191

Lemma 32 (Properties of an SSORop of a constructor). If the proof obli-
gation from Definition 62 holds then the SSORop of a stereotype con-
structor constructor op(obj : ref!, v1 : T1, . . . , vn : Tn) is proper and effects
only stereotype instance {obj}.

Proof. Let us prove the desired properties one by one:

• Consistency: There are two kinds of transformation rules: user pro-
vided and generated. Since the generated transformation rule updates
the Elements stereotype item and the user provided transformation
rule doesn’t there is no inconsistency between them. The syntactical
constraint (1) from Definition 51 guarantees consistency of the user
provided transformation rules. Since there is only one generated rule it
is consistent. Since the only frame rule preserves only values of objects
which are not equal to obj it is consistent with the transformation rule.

• Determinism: Outside {obj} the constructor in a deterministic way
preserves all values. According to the syntactical constraint (1) from
Definition 51 there is exactly one transformation rule for each stereo-
type item. This transformation rule defines an update of stereotype
instance {obj} in a deterministic way.

• Affected instances: The shape of transformation rules guarantees
that they affect only obj.

• SysInvEl[sNew]: Since we know that the constructor affects only obj
it is enough to check invariant preservation only for the instance {obj}.
The way how we generate transformation rules guarantees preservation
of the first two properties of SysInvEl. The syntactical constraints
(2), (3), and (4) from Definition 51 establish the third and forth
property of SysInvEl, respectively.

• InvSt[sNew]: Similarly to the previous paragraph it is enough to check
that the stereotype instance {obj} satisfies the stereotype invariant.
The corresponding proof obligation checks exactly this property.

• SysInv[sNew]: Since we already know that SysInvEl[sNew] and
InvSt[sNew] hold we can infer from the stereotype proof obligation
that SysInvID[StSlice] also holds, which implies that SysInv[sNew]
holds.

192 CHAPTER 6. STEREOTYPE OPERATIONS

Here we assume that allocation of a new object obj happens at the
beginning of the constructor execution. Or, in other words, a stereotype slice
sNew contains object obj and a stereotype slice sOld doesn’t. Therefore
when we state that SysInv[sOld] holds we say nothing about the {obj}
stereotype instance. To prevent usage of values of stereotype items of the
object obj in a stereotype slice sOld, which are undefined, we introduced
the syntactical constraint (5) from Definition 51.

Before we define an SSOR for a basic operation call we have to prove
the following auxiliary lemmas.

Lemma 33. For each expression ϕ which depends only on variables
v1, . . . , vn, expressions exp1, . . . , expn which depend only on free variables
v′1, . . . , v

′
n′ , and an environment Σ = {v′1 7→ val1, . . . , v

′
n′ 7→ valn′} the fol-

lowing holds: [[exp]]Σ′ = [[exp′]]Σ, where Σ′ = {v1 7→ [[exp1]]Σ, . . . , vn 7→
[[expn]]Σ} and exp′ = exp[v1 := exp1, . . . , vn := expn].

Proof. We prove the lemma by structural induction over expressions. The
induction base consists of the following two cases:

• IB1: exp does not depend on variables.

• IB2 exp is equal to vi0 where i0 ∈ [1..n].

Let us prove IB1. In this case exp does not depend on variables (1). (1)

implies exp = exp′ (2). [[exp]]Σ′

(1)
= [[exp]]Σ

(2)
= [[exp′]]Σ.

Let us prove IB2. In this case exp = vi0 (3) where i0 ∈ [1..n]. exp′ =

exp[v1 := exp1, . . . , vn := expn]
(3)
= vi0 [v1 := exp1, . . . , vn := expn] =

expi0 (4). [[exp]]Σ′

(3)
= [[vi0]]Σ′ = [[expi0]]Σ

(4)
= [[exp′]]Σ.

Let us now prove the induction step. In this case
exp = f(expsub1 , . . . , expsubm) (5), where f is a function of the arity m and
expsub1 , . . . , expsubm are expressions. We denote expsubj [v1 := exp1, . . . , vn :=

expn] as exp′subj where j ∈ [1..n]. According to the induction hypothe-

sis the following holds. For each j ∈ [1..m] [[expsubj]]Σ′ = [[exp′subj]]Σ (6).
We denote interpretation of the function f as [[f]]. exp′ = exp[v1 :=

exp1, . . . , vn := expn]
(5)
= f(expsub1 , . . . , expsubm)[v1 := exp1, . . . , vn := expn] =

f(exp′sub1 , . . . , exp′subm) (7).

[[exp]]Σ′

(5)
= [[f(expsub1 , . . . , expsubm)]]Σ′ = [[f]]([[expsub1]]Σ′ , . . . , [[expsubm]]Σ′)

(6)
=

[[f]]([[exp′sub1]]Σ, . . . , [[exp
′sub
m]]Σ) = [[f(exp′sub1 , . . . , exp′subm)]]Σ

(7)
= [[exp′]]Σ

Lemma 34. For each formula ϕ, expressions exp1, . . . , expn, and an envi-
ronment Σ = {v′1 7→ val1, . . . , v

′
n′ 7→ valn′} if:

• ϕ depends only on free variables v1, . . . , vn

6.4. SLS-TO-SSOR TRANSLATION 193

• ϕ does not contain quantifiers which quantify over vi where i ∈ [1..n]

• expressions exp1, . . . , expn depends only on free variables v′1, . . . , v
′
n′

then the following holds:
Σ′ |= ϕ ⇔ Σ |= ϕ′, where Σ′ = {v1 7→ [[exp1]]Σ, . . . , vn 7→ [[expn]]Σ} and
exp′ = ϕ[v1 := exp1, . . . , vn := expn].

Proof. We prove the lemma by structural induction over formulas.
Let us prove the induction base. In this case ϕ = P (expsub1 , . . . , expsubm).

The proof is identical to the proof of the induction step of Definition 33.
Therefore we omit the proof.

Let us prove the induction step. In this case ϕ = ρ(ϕ1, . . . , ϕm) (1)
where ρ is a logical binder or a quantifier which depends on m sub-formulas.
We denote ϕj [v1 := exp1, . . . , vn := expn] as ϕ′

j where j ∈ [1..n]. Ac-
cording to the induction hypothesis the following holds. For each j ∈
[1..m] Σ′ |= ϕj ⇔ Σ |= ϕ′

j (2). We denote interpretation of ρ as [[ρ]].

ϕ′ = ϕ[v1 := exp1, . . . , vn := expn]
(1)
= ρ(ϕ1, . . . , ϕm)[v1 := exp1, . . . , vn :=

expn] = ρ(ϕ′
1, . . . , ϕ

′
m) (3).

[[ϕ]]Σ′

(1)
⇔ [[ρ(ϕ1, . . . , ϕm)]]Σ′ ⇔ [[ρ]](Σ′ |= ϕ1, . . . ,Σ

′ |= ϕm)
(2)
⇔

[[ρ]](Σ |= ϕ′
1, . . . ,Σ |= ϕ′

m) ⇔ [[ρ(ϕ′
1, . . . , ϕ

′
m)]]Σ

(3)
⇔ Σ |= ϕ′

Definition 63 (SSOR for a call of a basic operation). We define an SSOR

for a call op(exp1, . . . , expn) of a basic operation op as SSORop[v1 :=
exp1, . . . , vn := expn], where SSORop is an SSOR of a basic operation
op. We denote it as SSORop(exp1,...,expn)

.

Lemma 35. SSORop(exp1,...,expn)
corresponds to op(exp1, . . . , expn).

Proof. For each Σ according to OS-Call-Basic Σ |= s
op(exp1,...,expn)

→ s′ holds
if and only if Σ′′ |= SysInv[sOld]∧preop∧postop holds, where Σ′′ = {v1 7→
[[exp1]]Σ′ , . . . , vn 7→ [[expn]]Σ′ , sOld 7→ s, sNew 7→ s′} and Σ′ = Σ∪{sOld 7→
s}. According to Lemma 34 it is equivalent to Σ′′′ |= (SysInv[sOld] ∧
preop ∧ postop)[v1 := exp1, . . . , vn := expn], where Σ′′′ = Σ ∪ {sOld 7→
s, sNew 7→ s′}. Since the system invariant doesn’t depend on v1, . . . , vn
the last statement is equivalent to Σ′′′ |= SysInv[sOld] ∧ (preop[v1 :=
exp1, . . . , vn := expn]) ∧ (postop[v1 := exp1, . . . , vn := expn]). Accord-
ing to the Lemma 17 we get Σ′′′ |= SysInv[sOld] ∧ preop(exp1,...,expn)

∧
postop(exp1,...,expn)

which concludes the proof of the desired property.

Lemma 36. If op is a basic operation and the proof obligations from Def-

inition 61 hold or if op is a constructor and the proof obligations from
Definition 62 hold then SSORop(exp1,...,expn)

is proper.

Proof. Lemma 31 and Lemma 32 imply that SSORop is proper. By
applying Lemma 19 we can infer that SSORop(exp1,...,expn)

is also proper.

194 CHAPTER 6. STEREOTYPE OPERATIONS

6.4.2 Composite operation call

As we mentioned above there are two kinds of composite operations: recur-
sive and nonrecursive. Let us first consider calls of composite nonrecursive
operations.

Definition 64 (SSOR for a call of a composite nonrecursive operation). We
define an SSOR for a call op(exp1, . . . , expn) of a composite nonrecursive
operation op as SSORtop [v1 := exp1, . . . , vn := expn], where top is the body
of the composite operation op. We denote it as SSORop(exp1,...,expn)

.

Lemma 37. SSORop(exp1,...,expn)
corresponds to op(exp1, . . . , expn).

Proof. For each Σ according to OS-Call-Comp Σ |= s
op(exp1,...,expn)

→ s′ holds

if and only if Σ′′ |= s
top
→ s′ holds, where Σ′′ = {v1 7→ [[exp1]]Σ′ , . . . , vn 7→

[[expn]]Σ′}, Σ′ = Σ ∪ {sOld 7→ s}, and top is the body of op. Accord-
ing to the inductive hypothesis it is equivalent to Σ′′′ |= SysInv[sOld] ∧
pretop ∧ posttop , where Σ′′′ = Σ′′ ∪ {sOld 7→ s, sNew 7→ s′}. Accord-
ing to Lemma 34 it is equivalent to Σ′′′′ |= (SysInv[sOld] ∧ pretop ∧
posttop)[v1 := exp1, . . . , vn := expn], where Σ

′′′′ = Σ∪{sOld 7→ s, sNew 7→
s′}. Since the system invariant doesn’t depend on v1, . . . , vn the last state-
ment is equivalent to Σ′′′′ |= SysInv[sOld] ∧ (pretop [v1 := exp1, . . . , vn :=
expn])∧(posttop [v1 := exp1, . . . , vn := expn]). According to the Lemma 17

we get Σ′′′′ |= SysInv[sOld]∧ preop(exp1,...,expn) ∧ postop(exp1,...,expn) which
concludes the proof of the desired property.

Lemma 38. If the translation of the composite nonrecursive operation body
SSORtop is proper and corresponds to top then SSORop(exp1,...,expn)

is
proper.

Proof. According to Definition 64 SSORop(exp1,...,expn)
= SSORtop [v1 :=

exp1, . . . , vn := expn]. According to Lemma 19 if SSORtop is proper
then SSORtop [v1 := exp1, . . . , vn := expn]. Therefore we conclude that
SSORop(exp1,...,expn)

is also proper.

Let us now consider calls of composite recursive operations.

Definition 65 (SSOR for a composite recursive operation). We define an
SSORop for a composite recursive operation op in the following way:

• pre-condition preop.

• transformation rules are 〈ψ−
St
1
, itt1, val1〉, . . . , 〈ψ

−
St
nt

, itnt , valnt〉.

• frame rules are 〈ψ−

Sf
1

, itf1 〉, . . . , 〈ψ
−

Sf
nf

, itnf
〉.

6.4. SLS-TO-SSOR TRANSLATION 195

To define the proof obligations for a composite recursive operation we
need to introduce some auxiliary definitions and prove their properties.

Definition 66 (Properties of an SSOR on an environment Σ). We say
that an SSOR is consistent, deterministic, preserves the system invariant,
(or proper) on an environment Σ if and only if a corresponding property of
the SSOR holds under an assumption v1 = Σ[[v1]], . . . , vn = Σ[[vn]], where
v1, . . . , vn are variables on which the SSOR and the environment Σ depend.

Definition 67 (Order over environments). We define an order over envi-
ronments induced by an order over vmes in the following way Σ < Σ′ ⇔
Σ[[vmes]] < Σ′[[vmes]].

Definition 68 (SSOR for a recursive call). We define an SSOR for a
recursive call op(exp1, . . . , expn) of a composite recursive operation op as
SSORop[v1 := exp1, . . . , vn := expn] to whose pre-condition we add prop-
erty expmes < vmes, where vmes is the measure variable and expmes is an
expression which corresponds to the value of vmes in the call. We denote it
as SSORopnr(exp1,...,expn)

.

Lemma 39. For each Σ if ∀ Σ′ : Σ′ < Σ ⇒ top
Σ′

= SSORop then

op(exp1, . . . , expn)
Σ
= SSORopnr(exp1,...,expn)

.

Proof. For each s, s′, and Σ such that [[expmes]]Σ′ < Σ[[vmes]], where Σ′ =
Σ ∪ {sOld 7→ s}, the proof is the same as for a nonrecursive case, see
Lemma 37.

Let us consider the other case when [[expmes]]Σ′ < Σ[[vmes]] does not
hold. According to the operational semantic op(exp1, . . . , expn) rejects
any pair of states s and s′ (∗). On the other hand the pre-condition of
SSORopnr(exp1,...,expn)

does not hold for any state s (∗∗). (∗) and (∗∗) imply

that op(exp1, . . . , expn)
Σ
= SSORopnr(exp1,...,expn)

.

Lemma 40. For each Σ if for each Σ′ such that Σ′ < Σ, SSORop is proper
on Σ′ then SSORopnr(exp1,...,expn)

is proper on Σ.

Proof. For each s, s′, and Σ such that [[expmes]]Σ′ < Σ[[vmes]]
SSORopnr(exp1,...,expn)

is proper on Σ if and only if SSORop is proper on Σ′′,
where Σ′ = Σ∪ {sOld 7→ s} and Σ′′ = {v1 7→ [[exp1]]Σ′ , . . . , vn 7→ [[expn]]Σ′}.
It is enough to prove the later property. Since [[expmes]]Σ′ < Σ[[vmes]] implies
Σ′′ < Σ we can apply the lemma pre-condition and get SSORop is proper
on Σ′′. In other case the pre-condition of the SSORopnr(exp1,...,expn)

doesn’t
hold on Σ which implies that SSORopnr(exp1,...,expn)

is proper on Σ.

Definition 69 (Nonrecursive body of a recursive operation). We define
a nonrecursive body for a composite recursive operation op by replacing
in the body of the operation top all recursive calls op(exp1, . . . , expn) by
SSORopnr(exp1,...,expn)

. We denote it as tnrop.

196 CHAPTER 6. STEREOTYPE OPERATIONS

Lemma 41. For each Σ if ∀ Σ′ : Σ′ < Σ ⇒ top
Σ′

= SSORop and SSORop =

SSORtnrop then top
Σ
= SSORop.

Proof. Lemma 21 and Lemma 39 imply that by replacing a recursive call
op(exp1, . . . , expn) in top by SSORopnr(exp1,...,expn)

we get a Σ equivalent

term. By applying this substitution for each recursive call we get top
Σ
= tnrop.

By applying the transitivity property of
Σ
= to the last observation and the

equality SSORop = SSORtnrop
we get top

Σ
= SSORop.

Definition 70 (Proof obligations for a composite recursive operation). For
a composite recursive operation op(v1 : T1, . . . , vn : Tn) we check the proof
obligation SSORop � SSORtnrop .

To check SSORop � SSORtnrop
we have to check that SSORop and

SSORtnrop
are both sound and deterministic. It is enough to check only

that SSORop is sound and deterministic, which we check explicitly using
the corresponding definitions. We know that SSORtnrop

is also sound and
deterministic by construction. The rest of the properties of � we check
explicitly using their definitions.

Lemma 42. If

• the proof obligations from Definition 70 hold (1)

• for each Σ if for each exp1, . . . , expn SSORopnr(exp1,...,expn)
is proper

then SSORtnrop is also proper on Σ (2)

then SSORop corresponds to top and is proper.

Proof. Let us prove the desired property by induction over environment Σ.

We have to prove that for each Σ if ∀ Σ′ such that Σ′ < Σ, top
Σ′

= SSORop

and SSORop proper for Σ′ then top
Σ
= SSORop and SSORop proper for

Σ. Since the proof obligations hold (1) we can infer from Lemma 24 that

SSORop = SSORtnrop
. By applying Lemma 41 we get top

Σ
= SSORop.

Let us prove that top proper for Σ. By applying Lemma 40 and to
the induction hypothesis we get that for each Σ if for each exp1, . . . , expn
SSORopnr(exp1,...,expn)

is proper. Therefore from (2) we get that SSORtnrop

is proper on Σ. Since we already know that SSORop = SSORtnrop
we cam

conclude that SSORop is proper on Σ.

Definition 71 (SSOR for a call of a composite recursive operation). We
define an SSOR for a call op(exp1, . . . , expn) of a composite nonrecursive
operation op as SSORop[v1 := exp1, . . . , vn := expn]. We denote it as
SSORop(exp1,...,expn)

.

6.4. SLS-TO-SSOR TRANSLATION 197

Lemma 43. If

• the proof obligations from Definition 70 hold (1)

• for each Σ if for each exp1, . . . , expn SSORopnr(exp1,...,expn)
is proper

then SSORtnrop is also proper on Σ (2)

then SSORop(exp1,...,expn)
corresponds to op(exp1, . . . , expn) and proper.

Proof. From Lemma 42 we know that SSORop corresponds to top and
is proper. The rest of the proof is the same as for the basic operation (see
Lemma 35 and Lemma 36).

Definition 43 is used by Theorem 30. The property (2) from Defi-

nition 43 is inferred from the induction hypothesis of Theorem 30.

6.4.3 skip operator

Definition 72 (SSOR for skip). We define an SSOR for skip as:

• the pre-condition is T.

• the list of transformation rules is empty.

• the only frame rule is 〈U, ∗〉.

We denote it as SSORskip.

Lemma 44. SSORskip is proper.

Proof. • Consistency: The consistency is obvious since there is only
one frame rule and no transformation rules.

• Determinism: The SSOR is deterministic since the frame rule covers
the whole universe.

• System invariant preservation: Since the post-condition states
that sOld = sNew there is only one value of sNew which satisfies the
post-condition, namely sOld. On the other hand, pre∧SysInv[sOld]
any sOld = sNew imply SysInv[sNew]. From this we can conclude
that the SSOR preserves the system invariant.

Lemma 45. SSORskip corresponds to skip.

Proof. For each s, s′, Σ Σ |= s
skip
→ s′ ⇔ Σ |= SysInvs ∧ s = s′ ⇔ Σ |=

SysInvs∧pre∧post ⇔ Σ |= s
SSORskip

→ s′ where [[SSORskip]] = 〈pre,post〉.

198 CHAPTER 6. STEREOTYPE OPERATIONS

6.4.4 Conditional statement

Definition 73 (SSOR for a conditional statement). We define an SSOR

for if (ϕ) t1 else t2 in the following way:

• the pre-condition is (ϕ ∧ pre1) ∨ (¬ϕ ∧ pre2).

• the list of transformation rules is
〈ϕ ∧ ψ−

St
1,1
, itt1,1, val1,1〉, . . . , 〈ϕ ∧ ψ−

St

n1
t ,1

, itt
n1
t ,1
, valn1

t ,1
〉,

〈¬ϕ ∧ ψ−
St
1,2
, itt1,2, val1,2〉, . . . , 〈¬ϕ ∧ ψ−

St

n2
t ,2

, itt
n2
t ,2
, valn2

t ,2
〉.

• the list of frame rules is
〈ϕ ∧ ψ−

Sf
1,1

, itf1,1〉, . . . , 〈ϕ ∧ ψ−

Sf

n1
f
,1

, itf
n1
f
,1
〉,

〈¬ϕ ∧ ψ−

Sf
1,2

, itf1,2〉, . . . , 〈¬ϕ ∧ ψ−

Sf

n2
f
,2

, itf
n2
f
,2
〉.

where SSORt1 has the following form:

• pre-condition pre1.

• transformation rules are 〈ψ−
St
1,1
, itt1,1, val1,1〉, . . . , 〈ψ

−
St

n1
t ,1

, itt
n1
t ,1
, valn1

t ,1
〉.

• frame rules are 〈ψ−

Sf
1,1

, itf1,1〉, . . . , 〈ψ
−

Sf

n1
f
,1

, itf
n1
f ,1

〉.

and SSORt1 has the following form:

• pre-condition pre2.

• transformation rules are 〈ψ−
St
1,2
, itt1,2, val1,2〉, . . . , 〈ψ

−
St

n2
t
,2

, itt
n2
t ,2
, valn2

t ,2
〉.

• frame rules are 〈ψ−

Sf
1,2

, itf1,2〉, . . . , 〈ψ
−

Sf

n2
f
,2

, itf
n2
f ,2

〉.

We denote it as SSORif (ϕ) t1 else t2 .

Lemma 46. if SSORt1 and SSORt2 are both proper and correspond to t1
and t2, respectively, then SSORif (ϕ) t1 else t2 is proper and corresponds
to if (ϕ) t1 else t2.

Proof. If Σ′ |= ϕ holds, where Σ′ = Σ ∪ {sOld 7→ s}, then both the term
and the SSOR are equivalent to t1. In the other case, when Σ′ |= ¬ϕ holds,
they both are equivalent to t2. Which implies that SSORif (ϕ) t1 else t2

corresponds to if (ϕ) t1 else t2. In a similar way we can prove that since
both t1 and t2 are proper then SSORif (ϕ) t1 else t2 is proper as well.

6.4. SLS-TO-SSOR TRANSLATION 199

6.4.5 Sequential composition

We can see that the operational semantics of sequential composition intro-
duces an intermediate existentially quantified stereotype slice. Sequential
composition is the only stereotype operation composer which has to deal
not with two but with three stereotype slices. We denote this intermediate
stereotype slice as sTemp.

In this subsection we consider sequential composition of SSOR1 and
SSOR2. SSOR1 establishes the relation between stereotype slices sOld and
sTemp. SSOR2 establishes the relation between stereotype slices sTemp

and sNew. To simplify work with sTemp we introduce a special notation
for the semantics of frame rules, transformation rules, and SSORs for the
first and the second parameters of sequential composition in the following
way.

Definition 74 (Notation for the semantics of parameters of sequential com-
position). We denote the semantics of all elements relevant to the first and
the second parameters of a sequential composition with subscripts 1 and 2,
respectively.

• [[〈ψ−
S , it, val〉]]1 =

(

∀v : (¬ψ−
S) ∨ sTemp.v.it = val

)

.

• [[〈ψ−
S , it〉]]1 =

(

∀v : (¬ψ−
S) ∨ sTemp.v.it = sOld.v.it

)

.

• [[〈ψ−
S , it, val〉]]2 =

(

∀v : (¬ψ−
S) ∨ sNew.v.it = val

)

.

• [[〈ψ−
S , it〉]]2 =

(

∀v : (¬ψ−
S) ∨ sNew.v.it = sTemp.v.it

)

.

• We construct [[SSOR]]1 and [[SSOR]]2 from [[SSOR]] by replacing all
occurrences of [[Q]] by [[Q]]1 and [[Q]]2 respectively, where Q is either a
frame or a transformation rule.

The main challenge of constructing an SSOR of a sequential composition
is the elimination of the intermediate stereotype slice sTemp. Below we
provide auxiliary lemmas which are used to eliminate the intermediate slice
from various parts of an SSOR.

Lemma 47 (Update of a formula by an SSOR). For each Σ, s, s′, s′′, and

a proper SSOR such that Σ |= s
SSOR
→ s′′ if all transformation and frame

rules of the SSOR which affect a stereotype item ”it” are 〈ψ−
St
1
, it, val1〉, . . . ,

〈ψ−
St
n
, it, valn〉 and 〈ψ−

Sf , it〉 then, under the assumption that

Σ′ |= SysInv[sOld]∧preSSOR holds, for each formula ∀x1, . . . , xm : ϕ which
depends on sTemp.exp.it the following holds:
Σ′ |= ∀x1, . . . , xm : ϕ is equivalent to Σ′ |= ∀x1, . . . , xm :
(
∧n

i=1(exp ∈ St
i ⇒ ϕ[sTemp.exp.it := vali])

)

∧ (exp ∈ Sf ⇒ ϕ)
where Σ′ = Σ ∪ {sOld 7→ s, sTemp 7→ s′′ sNew 7→ s′} and x1, . . . , xm is a
possibly empty list of variables.

200 CHAPTER 6. STEREOTYPE OPERATIONS

Proof. Since SSOR is proper it is also deterministic which implies that
Σ′ |=

(
∨n

i=1 exp ∈ St
i

)

∨ (exp ∈ Sf). There are two possibilities: either the
value of sTemp.exp.it is changed by a transformation rule or it is preserved
by the frame rule. The structure of the proof is the same for both cases.
Let us consider the first case. exp ∈ St

i0
, where i0 ∈ [1..n]. In this case

Σ′ |= ∀x1, . . . , xm :
(
∧n

i=1(exp ∈ St
i ⇒ ϕ[sTemp.exp.it := vali])

)

∧ (exp ∈
Sf ⇒ ϕ) is equivalent to Σ′ |= ∀x1, . . . , xm : ϕ[sTemp.exp.it := vali0].

From Σ |= s
SSOR
→ s′′ we can infer that the last statement is equivalent to

Σ′ |= ∀x1, . . . , xm : ϕ, which concludes the proof.

Definition 75 (Update of a pre-condition by an SSOR). We construct an
updated version of a pre-condition pre, which is a universally quantified for-
mula, by an SSOR in the following way. First, to avoid names clashes, we
replace all occurrences of sOld by sTemp. Then we eliminate all subterms
of the form sTemp.exp.it by applying the transformation from Lemma 47.
We denote the resulting pre-condition as
updatePre(SSOR,pre)

Lemma 48. For each SSOR and pre updatePre(SSOR,pre) always ter-
minates and the resulting pre-condition doesn’t depend on sTemp.

Proof. The initial pre-condition contains a finite number of occurrences of
terms like sTemp.exp.it. During each iteration of the procedure we elimi-
nate one of them. For this reason the procedure eventually terminates and
when this happens the resulting term doesn’t contain sTemp.

Lemma 49. For each pre, Σ, s, s′, s′′, and a proper SSOR such that

Σ |= s
SSOR
→ s′′, under the assumption that Σ′′ |= SysInv[sOld] ∧ preSSOR

holds, Σ′ |= pre holds if and only if Σ′′ |= updatePre(SSOR,pre), where
Σ′ = Σ ∪ {sOld 7→ s′′, sNew 7→ s′} and Σ′′ = Σ ∪ {sOld 7→ s, sTemp 7→
s′′ sNew 7→ s′}.

Proof. Σ′ |= pre holds if and only if Σ′′ |= pre[sOld := sTemp]. Then by
applying Lemma 47 for each subterm of the form sTemp.exp.it we get the
desired property.

Definition 76 (Elimination of a subterm sTemp.exp.it from a frame rule).
We assume that all transformation and frame rules of SSOR which affect a
stereotype item ”it” are 〈ψ−

St
1
, it, val1〉, . . . , 〈ψ

−
St
n
, it, valn〉 and 〈ψ−

Sf , it〉. An

updated by an SSOR, free from a subterm sTemp.exp.it, version of a frame
rule 〈ψ−

S , it
′〉 is 〈ψ−

S′ , it′〉 where:

ψ−
S′ =

(

n
∨

i=1

(exp ∈ St
i ∧ ψ

−
S [sTemp.exp.it := vali])

)

∨ (exp ∈ Sf ∧ ψ−
S)

We denote 〈ψ−
S′ , it′〉 as

eliminateFromFRule(sTemp.exp.it, 〈ψ−
S′ , it′〉,SSOR).

6.4. SLS-TO-SSOR TRANSLATION 201

Lemma 50. For each 〈ψ−
S , it

′〉 , Σ, s, s′, s′′, and a proper SSOR such that

Σ |= s
SSOR
→ s′′, under the assumption that Σ′ |= SysInv[sOld] ∧ preSSOR

holds, Σ′ |= [[〈ψ−
S , it

′〉]]2 holds if and only if
Σ′ |= [[eliminateFromFRule(sTemp.exp.it, 〈ψ−

S′ , it′〉,SSOR)]]2 holds,
where Σ′ = Σ ∪ {sOld 7→ s, sTemp 7→ s′′ sNew 7→ s′}.

Proof.

Σ′ |= [[〈ψ−
S , it

′〉]]2 ⇔
Σ′ |= ∀v : ψ−

S ⇒ sNew.v.it′ = sTemp.v.it′ ⇔

Σ′ ∪ {sTemp′ 7→ s′′} |= ∀v : ψ−
S ⇒ sNew.v.it′ = sTemp′.v.it′

Lemma 47
⇔

Σ′ ∪ {sTemp′ 7→ s′′} |= ∀v : (exp ∈ Sf ⇒ (ψ−
S ⇒ sNew.v.it′ = sTemp′.v.it′))∧

(
∧n

i=1(exp ∈ St
i ⇒ (ψ−

S ⇒ sNew.v.it′ = sTemp′.v.it′)[sTemp.exp.it := vali])
)

⇔
Σ′ ∪ {sTemp′ 7→ s′′} |= ∀v : ((exp ∈ Sf ∧ ψ−

S) ⇒ sNew.v.it′ = sTemp.v.it′)∧
(
∧n

i=1((exp ∈ St
i ∧ ψ

−
S [sTemp.exp.it := vali]) ⇒ sNew.v.it′ = sTemp′.v.it′)

)

⇔

Σ′ |= ∀v : ((exp ∈ Sf ∧ ψ−
S) ⇒ sNew.v.it′ = sTemp.v.it′)∧

(
∧n

i=1((exp ∈ St
i ∧ ψ

−
S [sTemp.exp.it := vali]) ⇒ sNew.v.it′ = sTemp.v.it′)

)

⇔
Σ′ |= ∀v :

(
∨n

i=1((exp ∈ St
i ∧ ψ

−
S [sTemp.exp.it := vali])

)

∨ ((exp ∈ Sf ∧ ψ−
S) ⇒

sNew.v.it′ = sTemp.v.it′ ⇔
Σ′ |= [[eliminateFromFRule(sTemp.exp.it, 〈ψ−

S′ , it
′〉,SSOR)]]2

Definition 77 (Update of a frame rule by an SSOR). We construct an
updated version of a frame rule 〈ψ−

S , it
′〉 by an SSOR in the following way.

First, to avoid name clashes, we replace all occurrences of sOld by sTemp.
Then we eliminate all subterms of the form sTemp.exp.it by applying the
eliminateFromTRule transformation. We denote the resulting frame rule
as updateFRule(SSOR, 〈ψ−

S , it
′〉)

Lemma 51. For each 〈ψ−
S , it

′〉, Σ, s, s′, s′′, and a proper SSOR such that

Σ |= s
SSOR
→ s′′ and Σ′′ |= SysInv[sOld] ∧ preSSOR hold, Σ′ |= [[〈ψ−

S , it
′〉]]

holds if and only if Σ′′ |= [[updateFRule(SSOR, 〈ψ−
S , it

′〉)]]2, where Σ′ =
Σ ∪ {sOld 7→ s′′, sNew 7→ s′} and Σ′′ = Σ ∪ {sOld 7→ s, sTemp 7→
s′′ sNew 7→ s′}.

Proof. Σ′ |= [[〈ψ−
S , it

′〉]] holds if and only if Σ′′ |= [[〈ψ−
S [sOld := sTemp], it′〉]]

holds. Then by applying Lemma 50 for each subterm of the form
sTemp.exp.it we get the desired property.

Lemma 52. For each SSOR and 〈ψ−
S , it

′〉 updateFRule(SSOR, 〈ψ−
S , it

′〉)
always terminates. The resulting frame rule doesn’t depend on sTemp.

Proof. The proof is the same as for Lemma 48.

Definition 78 (Elimination of a subterm sTemp.exp.it from a transforma-
tion rule). We assume that all transformation and frame rules of an SSOR

which affect a stereotype item ”it” are 〈ψ−
St
1
, it, val1〉, . . . , 〈ψ

−
St
n
, it, valn〉 and

〈ψ−
Sf , it〉. An updated by an SSOR, free from a subterm sTemp.exp.it,

202 CHAPTER 6. STEREOTYPE OPERATIONS

version of a transformation rule 〈ψ−
S , it

′, val〉 is the following list of trans-
formation rules 〈ψ−

S′
0
, it′, val0〉, . . . , 〈ψ

−
S′
n
, it′, valn〉 where:

• val0 = val

• ψ−
S′
0
= exp ∈ Sf ∧ ψ−

S

• vali = val[sTemp.exp.it := vali] where i ∈ [1..n]

• ψ−
S′
i
= exp ∈ St

i ∧ ψ
−
S [sTemp.exp.it := vali] where i ∈ [1..n]

We denote 〈ψ−
S′
0
, it′, val0〉, . . . , 〈ψ

−
S′
n
, it′, valn〉 as

eliminateFromTRule(sTemp.exp.it, 〈ψ−
S′ , it′, val〉,SSOR).

Lemma 53. For each 〈ψ−
S , it

′, val〉 , Σ, s, s′, s′′, and a proper SSOR such

that Σ |= s
SSOR
→ s′′ ,under the assumption that Σ′ |= SysInv[sOld]∧preSSOR

holds, Σ′ |= [[〈ψ−
S , it

′, val〉]]2 holds if and only if
Σ′ |=

∧n
i=0[[〈ψ

−
S′
i
, it′, vali〉]]2 holds, where 〈ψ−

S′
0
, it′, val0〉, . . . , 〈ψ

−
S′
n
, it′, valn〉

is equal to eliminateFromTRule(sTemp.exp.it, 〈ψ−
S′ , it′, val〉,SSOR) and

Σ′ = Σ ∪ {sOld 7→ s, sTemp 7→ s′′ sNew 7→ s′}.

Proof.

Σ′ |= [[〈ψ−
S , it

′, val〉]]2 ⇔

Σ′ |= ∀v : ψ−
S ⇒ sNew.v.it′ = val

Lemma 47
⇔

Σ′ |= ∀v : (exp ∈ Sf ⇒ (ψ−
S ⇒ sNew.v.it′ = val))∧

(
∧n

i=1(exp ∈ St
i ⇒ (ψ−

S ⇒ sNew.v.it′ = val)[sTemp.exp.it := vali])
)

⇔

Σ′ |= ∀v :
(

∧n
i=0(ψ

−
S′
i
⇒ sNew.v.it′ = vali)

)

⇔

Σ′ |=
∧n

i=0

(

∀v : (ψ−
S′
i
⇒ sNew.v.it′ = vali)

)

⇔

Σ′ |=
∧n

i=0[[〈ψ
−
S′
i
, it′, vali〉]]2

Definition 79 (Update of a list of transformation rules by an SSOR). We
construct an updated version of a list of transformation rules 〈ψ−

S1
, it1, val1〉,

. . . , 〈ψ−
Sn
, itn, valn〉 by an SSOR in the following way. First, to avoid name

clashes, we replace all occurrences of sOld by sTemp. Then we apply the
following iterative procedure. We choose a transformation rule which con-
tains the biggest number of subterms of form sTemp.exp.it. If there are
several such rules we choose any of them. Let us denote the index of the
chosen rule as i0. Then we choose any subterm of the rule i0 that has form
sTemp.exp.it. We remove the chosen rule from the list of the transforma-
tion rules and instead we add the list of rules
eliminateFromTRule(sTemp.exp.it, 〈ψ−

S′ , it′, val〉,SSOR). We denote
the resulting list of transformation rules as
updateTRule(SSOR, 〈ψ−

S1
, it1, val1〉, . . . , 〈ψ

−
Sn
, itn, valn〉).

6.4. SLS-TO-SSOR TRANSLATION 203

Lemma 54. For each SSOR and list of transformation rules
〈ψ−

S1
, it1, val1〉, . . . , 〈ψ

−
Sn
, itn, valn〉

updateTRule(SSOR, 〈ψ−
S1
, it1, val1〉, . . . , 〈ψ

−
Sn
, itn, valn〉) always

terminates and the resulting list of transformation rules doesn’t depend on
sTemp.

Proof. We use the lexicographic order on pairs of natural numbers as a
measure function to guarantee the termination of the procedure. The first
number is the maximum of number occurrences of subterm of the form
sTemp.exp.it over all transformation rules which participate in the itera-
tion. The second one is the number of transformation rules which has exactly
this number of such subterms. If the second number is greater then 1 then
we decrement it during the operation execution. Otherwise, if it is equal
to 1, then the iteration execution decrements the first number. In the later
case the value of the second number can increase, but it does not matter
because according to the definition of the lexicographic order the resulting
pair of numbers is strictly less then the initial one. The procedure termi-
nates when the first number is equal to 0, which implies that the output of
the procedure doesn’t depend on sTemp.

Lemma 55. For each 〈ψ−
S1
, it1, val1〉, . . . , 〈ψ

−
Sn
, itn, valn〉, Σ, s, s

′, s′′, and

a proper SSOR such that Σ |= s
SSOR
→ s′′, under the assumption that Σ′′ |=

SysInv[sOld]∧preSSOR holds, Σ′ |=
∧n

i=1[[〈ψ
−
Si
, iti, vali〉]] holds if and only

if Σ′ |=
∧n′

i=1[[〈ψ
−
S′
i
, it′i, val

′
i〉]]2, where 〈ψ−

S′
1
, it′1, val

′
1〉, . . . , 〈ψ

−
S′
n′
, it′n′ , val′n′〉

is equal to updateTRule(SSOR, 〈ψ−
S1
, it1, val1〉, . . . , 〈ψ

−
Sn
, itn, valn〉), Σ

′ =
Σ ∪ {sOld 7→ s′′, sNew 7→ s′}, and Σ′′ = Σ ∪ {sOld 7→ s, sTemp 7→
s′′ sNew 7→ s′}.

Proof. Σ′ |=
∧n

i=1[[〈ψ
−
Si
, iti, vali〉]] holds if and only if

Σ′ |=
∧n

i=1[[〈ψ
−
Si
, iti, vali〉[sOld := sTemp]]] holds. Then by applying

Lemma 53 for each subterm of the form sTemp.exp.it we get the desired
property.

Definition 80 (Update of an SSOR by another SSOR). We construct an
updated version of an SSOR2 by an SSOR1 in the following way:

• pre-condition:
updatePre(SSOR1,pre).

• transformation rules:
updateTRule(SSOR1, 〈ψ

−
St
1
, itt1, val1〉, . . . , 〈ψ

−
St
nt

, ittnt
, valnt〉).

• frame rules:
updateFRule(SSOR1, 〈ψ

−

Sf
1

, itf1 〉), . . . ,

updateFRule(SSOR2, 〈ψ
−

Sf
nf

, itfnf 〉).

204 CHAPTER 6. STEREOTYPE OPERATIONS

where SSOR2 is:

• pre-condition: pre.

• transformation rules: 〈ψ−
St
1
, itt1, val1〉, . . . , 〈ψ

−
St
nt

, itnt , val
t
nt
〉.

• frame rules: 〈ψ−

Sf
1

, itf1 〉, . . . , 〈ψ
−

Sf
nf

, itfnf
〉.

We denote the resulting SSOR as updateSSOR(SSOR1,SSOR2).

Definition 81 (SSOR for a sequential composition). We define the pre-
condition of SSORt1;t2 as pre1 ∧ updatePre(SSOR1,pre2), where pre1
and pre2 are pre-conditions of SSORt1 and SSORt2 , respectively. Let
us now define the transformation and frame rules of SSORt1;t2 for each
stereotype item ”it”. We assume that all transformation and frame rules
of SSORt1 , which affect the stereotype item ”it”, are 〈ψ−

St
1,1
, it, val1,1〉, . . . ,

〈ψ−
St
n1,1

, it, valn1,1〉 and 〈ψ−

Sf
1

, it〉. We also assume that all transformation and

frame rules of updateSSOR(SSORt1 ,SSORt2), which affect a stereotype
item ”it”, are 〈ψ−

St
1,2
, it, val1,2〉, . . . , 〈ψ

−
St
n2,2

, it, valn2,2〉 and 〈ψ−

Sf
2

, it〉. We de-

fine the transformation rules of the resulting SSOR as 〈ψ−

St
1,1∩S

f
2

, it, val1,1〉,

. . . , 〈ψ−

St
n1,1

∩Sf
2

, it, valn1,1〉, 〈ψ
−
St
1,2
, it, val1,2〉, . . . , 〈ψ

−
St
n2,2

, it, valn2,2〉. We de-

fine the frame rules of the resulting SSOR as 〈ψ−

Sf
1∩S

f
2

, it〉.

Lemma 56. If SSORt1 corresponds to t1 and SSORt2 corresponds to t2
then SSORt1;t2 corresponds to t1; t2.

Proof. To prove the correspondence it is enough to prove equivalence of
pre-conditions, transformation rules, and frame rules.

The equivalence of the pre-conditions follows immediately from the def-
initions of the operational semantics of the sequential composition, the def-
inition of SSORt1;t2 , and Lemma 49.

To prove the equivalence of the transformation rules it is enough to
consider two cases for each affected object: the object is affected by the
second term (and possibly by the first term also), the object is affected by the
first term only. In the first case we can infer from Lemma 55 that we can
directly use the transformation rules of updateSSOR(SSOR1,SSOR2),
which corresponds to the second part of the definition of transformation
rules of SSORt1;t2 . The second case applies when the value of ”it” of an
object is affected by t1 and preserved by t2. To formalize this transformation
it is enough to restrict a domain of transformation rules of t1 by objects
which belong to an updated frame rule of t2, which corresponds to the first
part of the definition of transformation rules of SSORt1;t2 . In this case we
can infer equivalence form Lemma 51.

6.4. SLS-TO-SSOR TRANSLATION 205

A value of ”it” of an object is preserved by SSORt1;t2 if and only if
it is preserved by both t1 and t2. That is why we construct the domain
of the frame rule of the resulting SSOR as intersection of the domains of
the corresponding frame rules of t1 and t1. The equivalence follows from
Lemma 51.

Lemma 57. If SSORt1 and SSORt2 are both proper then SSORt1;t2 is
also proper.

Proof. First of all let us prove that the resulting SSOR is sound and deter-
ministic. Let us consider updateSSOR(SSOR1,SSOR2). We construct
it from if SSORt2 by applying the transformation from Lemma 47 to pre-
conditions, transformation, and frame rules. Since SSORt1 is sound and
deterministic, the application of the transformation preserves soundness and
determinism. By this we can conclude that
updateSSOR(SSOR1,SSOR2) is also sound and deterministic. Let us
now consider the sequential composition of SSOR1 and
updateSSOR(SSOR1,SSOR2). We can see that we construct the re-
sulting SSOR by partitioning all objects in the following regions: objects
affected by t2 (and possibly by t1), objects affected by t1 only, and objects
preserved by both t1 and t2. Since both SSOR1 and
updateSSOR(SSOR1,SSOR2) are sound and deterministic and those
three regions cover all objects and disjoint the resulting, SSOR is also sound
and deterministic.

Let us now prove the system invariant preservation. Since t1 preserves
the system invariant we can infer that t1 transforms a stereotype slice which
preserves the system invariant into another slice which preserves the system
invariant. The same is true for t2. By combining these two observations we
get t1; t2 also preserves the system invariant. Since SSORt1;t2 corresponds
to t1; t2 it also preserves the system invariant.

By this we complete the description of the sequential composition. The
generation of an SSOR for a sequential composition is completely automatic
and doesn’t require any proof obligations.

6.4.6 Parallel composition

Definition 82 (SSOR for a parallel composition). We define an SSOR

for
fInst
‖

i∈Ind

op(exp1[i], . . . , expn[i]) in the following way:

• pre-condition (∀i ∈ Ind : pre[i]) ∧ (∀i ∈ Ind, j ∈ Ind \ {j} :

Instop[i]]Instop[j]) ∧
fInst
⋃

i∈Ind

Instop[i] = Inst,

where Inst =
fInst
⋃

i∈Ind

Instop[i].

206 CHAPTER 6. STEREOTYPE OPERATIONS

• transformation rules are 〈∃i ∈ Ind : ψ−
St
1[i]
, itt1, val1[i]〉, . . . , 〈∃i ∈ Ind :

ψ−
St
nt

[i], it
t
nt
, valnt [i]〉.

• frame rules are 〈∃i ∈ Ind : ψ−

Sf
1 [i]∩SInst[i]

, itf1 〉, . . . ,

〈∃i ∈ Ind : ψ−

Sf
nf

[i]∩SInst[i]
, itfnf

〉 and 〈InstEl(Inst), ∗〉.

where SSORop(exp1[i],...,expn[i]) has following form:

• pre-condition pre[i].

• transformation rules are 〈ψ−
St
1[i]
, itt1, val1[i]〉, . . . , 〈ψ

−
St
nt

[i], it
t
nt
, valnt [i]〉.

• frame rules are 〈ψ−

Sf
1 [i]
, itf1 〉, . . . , 〈ψ

−

Sf
nf

[i]
, itfnf 〉.

and for each i ∈ Ind SInst[i] = InstEl(Instop[i]).

We denote it as SSOR fInst
‖

i∈Ind

op(exp1[i],...,expn[i])

.

Lemma 58. If for each i from Ind SSORop(exp1[i],...,expn[i]) correspond to
op(exp1[i], . . . , expn[i]) then SSOR fInst

‖
i∈Ind

op(exp1[i],...,expn[i])

corresponds to

fInst
‖

i∈Ind

op(exp1[i], . . . , expn[i]).

Proof. Let us consider the different parts of SSOR and check that their
behavior corresponds to the operational semantics:

• Pre-condition: For each initial state which satisfies the system in-
variant, the operational semantics progresses if and only if the
pre-conditions of all operation calls are satisfied, Instop[i] are disjoint
for different i, and Inst is equal to the union of all Instop[i]. The
last two properties are explicitly represented by the pre-condition. We
quantify pre-conditions of different operation calls over elements of
Ind to represent the first property.

• Transformation rules: Since we know that the operations affect dis-
joint stereotype instances we can be sure that there is no interference
between different operation calls. That is why we construct the list
of transformation rules of the resulting SSOR by merging the lists of
transformations for all operation calls. We do it by adding an extra
quantifier to each transformation rule. From a logical perspective the
quantifier creates a copy of a transformation rule for each i from Ind.

6.4. SLS-TO-SSOR TRANSLATION 207

• Frame rules: There are two sources of frame rules in the operational
semantics: an explicit rule 〈InstEl(Inst), ∗〉, and frame rules of re-
stricted operation calls. The first one we explicitly add to the list of
frame rules of the resulting SSOR. The frame rules of restricted oper-
ation calls differ from the frame rules of non-restricted operations by
limiting them on InstEl(Instop[i]). We construct a list of frame rules
which corresponds to the restricted operations call by using quantifi-
cation over Ind , the same way as we did it for the transformation
rules, and by intersecting their domains with InstEl(Instop[i]).

Lemma 59. If for each i from Ind, the SSORop(exp1[i],...,expn[i]) are proper
then SSOR fInst

‖
i∈Ind

op(exp1[i],...,expn[i])

is also proper.

Proof. • Soundness: Since the SSORop(exp1[i],...,expn[i]) are proper,
there is no inconsistency between two elements of the same operation
call. On the other hand it is possible that two elements of differ-
ent calls are inconsistent, or an element of a call is inconsistent with
〈InstEl(Inst), ∗〉. We know that transformation rules which corre-
spond to SSORop(exp1[i],...,expn[i]) are limited by InstEl(Instop[i]). By
construction we know that frame rules which correspond to
SSORop(exp1[i],...,expn[i]) are also limited by InstEl(Instop[i]). By this
we can conclude that there is no inconsistency between elements of
different calls. On the other hand 〈InstEl(Inst), ∗〉 is disjoint from
InstEl(Instop[i]) for each i. By this we can conclude that there is

no inconsistency between 〈InstEl(Inst), ∗〉 and elements of different
calls.

• Determinism: Since we know that for each i from Ind
SSORop(exp1[i],...,expn[i]) is deterministic and the resulting SSOR be-
haves as SSORop(exp1[i],...,expn[i]), we can conclude that on
⋃

i∈Ind

InstEl(Instop[i]) the resulting SSOR is deterministic. This im-

plies that on InstEl(Inst) the resulting SSOR is deterministic. On
the other hand, the frame rule 〈InstEl(Inst), ∗〉 defines the resulting
SSOR in a deterministic way on on InstEl(Inst).

• Invariant preservation: For each i from Ind preservation of the
system invariant on all instances from Instop[i] follows from the sys-
tem invariant preservation by SSORop(exp1[i],...,expn[i]). This implies
the system invariant preservation by all instances from Inst. On the
other hand, all instances outside of Inst are obviously preserved by
the frame rule 〈InstEl(Inst), ∗〉.

208 CHAPTER 6. STEREOTYPE OPERATIONS

6.5 Universal transformation

Now we have enough machinery to construct universal transformations. A
universal transformation of a stereotype St should be expressive enough to
formalize any computable update of a stereotype slice of the stereotype St.
Here we assume that a stereotype characterizes some binary relation. This
binary relation represents a semantic relation or a heap reference between
objects. From this perspective a stereotype slice is a graph whose nodes
are allocated objects and edges are semantic relations or heap references.
Stereotype instances correspond to connected components of the graph.

Any update of a graph can be represented as a sequence of additions
and removals of edges. Because of commutativity of addition and removal
of edges we can rearrange them to have all removals of edges before the
additions. Then we can split all removals on groups in such a way that
each group affects exactly one stereotype instance from the initial stereo-
type slice and different groups affects different stereotype instances. Each
of the groups of removals splits an instance on several instances. We call a
stereotype operation which is equivalent to such a group of removals univer-
sal removal and denote it as removeSetStereotype. Then we perform a
similar reordering of additions. We can split all additions in groups in such
a way that each group merges several stereotype instances into one stereo-
type instance, and different groups merge different stereotype instances. We
call a stereotype operation which is equivalent to such a group of additions
universal addition and denote it as addSetStereotype.

By putting together all transformations above, we can see that an arbi-
trary stereotype transformation can be represented as:
(

fInst1

‖
i∈Ind1

removeSetStereotype(. . .)

)

;

(

fInst2

‖
i∈Ind2

addSetStereotype(. . .)

)

Here we omit the actual parameters of the operations because they can
vary from one stereotype to another. The above explicit description of the
universal transformation reduces the construction of the universal transfor-
mation for a stereotype to the construction of removeSetStereotype and
addSetStereotype for the same stereotype.

In Appendix A and Appendix B we construct removeSetStereo-

type and addSetStereotype for the Sequence and Tree stereotypes. As
stated above, by this we construct universal transformations for the
Sequence and Tree stereotypes. In the similar way the universal transfor-
mation can be constructed for DAGs, graphs, and planar graphs. These
stereotypes can be used to verify many of practical examples.

Unfortunately not for all stereotypes it is possible to construct stereo-
type operations removeSetStereotype and addSetStereotype in such a
way that they preserve the system invariant. For instance, it is impossible
to construct stereotype operations removeSetStereotype and addSet-

6.5. UNIVERSAL TRANSFORMATION 209

Stereotype for the cyclic list. Splitting a cyclic list into two involves two
additions and removals of edges. Nevertheless, we cannot consider them in
isolation. Each of the operations violates the system invariant, but applied
together they preserve it.

If we cannot construct removeSetStereotype and addSetStereotype

for a stereotype St we cannot construct the universal transformation for the
stereotypeSt either. This problem can be partially addressed in the follow-
ing way. We construct a stereotype St′ with a weaker stereotype invariant.
The invariant of St′ has to be simple enough to enable the construction of
removeSetStereotype, addSetStereotype, and the universal transfor-
mation for St′. St′ can be used instead of St in the source code specifications.
The omitted invariants of St can be specified as glue invariants. For instance
in Section 5.4 we use a sequence stereotype to describe a cyclic list.

210 CHAPTER 6. STEREOTYPE OPERATIONS

Chapter 7

Related work

In this chapter we establish connections between the stereotype-based ap-
proach and other approaches to the specification and verification of heap
structures and semantical relations. Below we propose a classification of ex-
isting approaches according to the methods which they use to verify logical
properties:

• Approaches based on decidable procedures. This group includes
all approaches which for any given verification problem eventually ter-
minate. The group consists of the following sub-groups:

– Type systems for alias control. Approaches from this sub-group
use types or type annotations to specify heap properties. Type
system rules check the validity of the provided annotations.

– Approaches based on decidable procedures for a logic theory. Ap-
proaches from this sub-group use the weakest pre-condition cal-
culus or a symbolic computation to reduce a given verification
problem to the validation of a formula from a decidable logic.

– Approaches based on abstract interpretation. Approaches from
this group use a finite approximation of the possibly infinite set
of the heap states. A fix-point computation is used to find an
approximation of the possible heap states at any point of a given
program. Later on these approximations are used to verify the
validity of the heap specifications of the program.

• Approaches based on an automatic theorem prover. Here we
include all the approaches which use SMT and tableaux based FOL

theorem provers. The main issue for the tools from this group is
how to verify the properties which use transitive closure and inductive
definitions in FOL. On one hand these properties are the only way to
specify most of the heap properties, on the other hand the verification
of such properties requires inductive proofs which cannot be expressed

211

212 CHAPTER 7. RELATED WORK

in FOL. We classify the approaches from this group according to the
way in which they address this issue:

– Approaches based on the approximation of induction in FOL.
These approaches choose a finite set of FOL formulas (whose
proofs require induction) and use them as axioms. The approx-
imation is sound but not complete. Any valid formula can be
verified if the chosen set is big enough, otherwise the valid for-
mula would be rejected.

– Approaches based on user-provided updates of a transitive clo-
sure. This sub-group extends the sub-group of approaches men-
tioned above in the following way. At a single program point
approaches from this sub-group use the approximation of induc-
tion in FOL to specify the properties of heap structures. On the
other hand the updates of the transitive closures are not inferred
by a theorem prover but explicitly provided by a user. In this
way a relation between the heap state before and after the state-
ment execution is always defined precisely, which is crucial for
the verification of a statement’s effects on the heap.

– Approaches based on user-provided inductive proofs. Approaches
from this group require a user to explicitly provide all necessary
inductive proofs and explicitly specify all program points where
these proofs are necessary. The validity of user-provided inductive
proofs is checked by a FOL theorem prover.

• Inductive theorem provers. In this group we consider tools which
was specifically designed to deal with inductive proofs.

• Approaches based on an interactive theorem prover. Ap-
proaches from this group use various higher order proof assistants.
The approaches work in the following way. A user provides the com-
plete proof, including inductive proofs, that a given program satisfies
the given specification, and the proof assistant checks the correctness
of the provided proof.

• Mixed approaches. Approaches from this group are based on a mix
of some of the above approaches.

7.1 Approaches based on decidable procedures

The main advantage of decidable procedures is termination. For any given
verification problem the procedure will eventually terminate. It is still pos-
sible that verification of some programs is not feasible because of a high
complexity of the decidable procedure. Nevertheless it is much better than
semidecidable procedures which do not guarantee termination at all.

7.1. APPROACHES BASED ON DECIDABLE PROCEDURES 213

Another advantage of decidable procedures is a low specification over-
head. Some of the approaches which we consider in this section can infer
most of the specifications including loop invariants and methods pre- and
post- conditions. The last property of the decidable procedures is extremely
valuable for a real life verification application.

The advantages of decidable procedures which are mentioned above come
at a price. The properties which can be verified by decidable procedures are
limited and do not cover the essential part of desired heap properties. To
be precise most of the existing decidable procedures are targeted towards
the verification of limited properties of various linked lists and trees. Most
of the tools are oriented on the verification of shape preservation properties
(e.g., the reversal of a list is a list) but cannot say much about how exactly
a heap changes (e.g., how the elements of the reversed list are related to the
original list).

There is strong evidence that it would be extremely hard or even im-
possible to overcome these limitations. In the next subsection we provide
references on publications which support this claim. On the other hand,
the stereotype based methodology is able to precisely describe the updates
of arbitrary complexity of any heap structure. This flexibility comes at the
cost of specification overhead. The user is responsible for providing this
extra specification.

7.1.1 Limits of decidable procedures

In this subsection we consider the limits of decidable procedures.

A natural representation of a heap is a finite graph where a node repre-
sents an allocated object and an edge corresponds to a field of a reference
type. Therefore a heap property can be represented as a set of finite graphs.
In [141] it is proven that the first order theory of the class of finite graphs
is undecidable. [35] extends the undecidability result to the class of finite
graphs of degree at most 3 and the class of finite planar graphs of degree at
most 3.

[119, 92] investigate decidability of may-alias and must-alias in languages
with loops and dynamic storage. It is proven that the may-alias relation
is not recursive (semidecidable), while the must-alias relation is not even
recursively enumerable (co-semidecidable).

Formulas of FOL can be classified by the number of variables used in
the formula. A fragment of FOL which allows only k variables is denoted
as FOk. FOL =

⋃∞
k=1 FO

k. [57] proves that FO2 is decidable but FO3

is not. To illustrate the expressive power of FO2 and FO3 let us consider
the following property. There is a path of length n between two given nodes
of a graph, where n is a constant. This property can be expressed for
arbitrary n in FO3 but not in FO2. What is even more interesting for us is
that according to [58] FO2 with transitive closure (denoted as FO2(TC)),

214 CHAPTER 7. RELATED WORK

and FO2 with deterministic transitive closure (denoted as FO2(DTC)) are
undecidable for both finite and infinite models. Deterministic transitive
closure is the restriction of transitive closure to paths that have no choices.
The determinization of the binary relation r(x, y) is defined as r(x, y)∨∀ z :
(r(x, z) ⇒ z = y). The deterministic transitive closure of the binary relation
r is the transitive closure of the determinization of r.

[67] investigates the boundary between the decidability and the unde-
cidability for transitive-closure logics. The paper introduces a rather weak
language called ∃∀(DTC+[E]) that goes beyond trees. It includes a version
of transitive closure, and is decidable. ∃∀(DTC+[E]) is defined as a subset
of FOL with deterministic transitive closure which satisfies the following
constraints:

• In prenex form of each formula all existential quantifiers have to pre-
cede all universal quantifiers.

• The language consists of constants, unary relation symbols, and only
one binary relation E.

• All applications of DTC are positive occurrence of the form DTC[E].

• Occurrence of TC[ϕ] is allowed only for quantifier-free ϕ and only in
negative positions.

In [67] is proven that ∃∀(DTC+[E]) is decidable for both finite and infinite
models. The authors of the paper show furthermore that essentially any
reasonable extension of ∃∀(DTC+[E]) is undecidable. Any of the following
changes causes undecidability of ∃∀(DTC+[E]): the use of TC; the presence
of more than one binary relation symbol; or a single positive use of DTC[σ],
where σ is quantifier-free.

[88] proves the undecidability of regular graph constraint entailment. A
regular graph constraint is a graph representing the heap summary; a heap
satisfies a constraint if and only if the heap can be homomorphically mapped
to the summary. Regular graph constraints form a very simple and natural
fragment of existential monadic second-order logic over graphs.

The central idea of the regular graph constraint is the representation
of an unbounded set of heap objects by a single graph node. In shape
analysis [127] such nodes are called summary nodes, in role analysis [87]
they are called off stage nodes, in separation logic abstract interpretation [56]
they are represented by inductive predicates.

The undecidability result implies that there is no complete algorithm
which does static checking of procedure pre-conditions and post-conditions,
simplify static analysis results, or check that given analysis results are cor-
rect.

[149] demonstrates how theorem provers can be used to improve the
precision of an abstract interpretation of the heap. The idea behind the

7.1. APPROACHES BASED ON DECIDABLE PROCEDURES 215

approach is the following: the states of the abstract interpretation represent
a set of finite graphs of an unbounded size. Transformations are described by
logical formulas. A theorem prover is used to find the most precise abstract
value which approximates a result of a transformation application for a given
abstract value. If the logic is decidable then the procedure guarantees the
best approximation, otherwise the calls to the theorem prover are terminated
after a timeout and the procedure returns a sound but not necessarily the
most precise result of the transformation.

The approach demonstrates the limits of the heap abstract interpre-
tation. The precision of a single step transformation of a heap abstract
interpretation cannot outdo the precision of decidable procedures. Since
decidable theories are mostly limited to various linked lists and trees, the
same is true for the precision of abstract interpretation.

7.1.2 Type systems for alias control

7.1.2.1 Ownership

To demonstrate the ideas behind type systems let us consider ownership
type systems [42, 4, 30]. The ownership discipline provides a way to struc-
ture the heap statically. The cornerstone of the ownership discipline is the
ownership relation. The ownership relation is a tree relation between ob-
jects. The relation is described either by means of type modifiers or by
means of annotations. In the first case the type system is used to guarantee
the preservation of the ownership relation. In case of annotations a theorem
prover is used to verify the same properties. There are several applications
of ownership for heap properties verification.

First of all the ownership discipline can be used to statically define the
effects of methods. For instance, it could be checked that a method modifies
only the objects which are transitively owned by an owner of the callee.
This property can be used to guarantee the preservation of class invariants
[77, 102]. Several verification tools were constructed on top of the ownership
methodology. For instance, Spec# [7] is a C# verification tool.

Another application of ownership is the verification of the tree shape
preservation by a data structure implementation.

The following extensions of ownership were proposed with the intention
to improve flexibility:

• combination of the ownership and generic types [117, 41].

• dynamic modification of the ownership hierarchy; ownership trans-
fer [29, 104].

• multiple owners of an object; multiple ownership [26].

216 CHAPTER 7. RELATED WORK

The main advantage of the ownership methodology is the simplicity of
both specification writing and automatic verification. On the other hand
there is significant amount of practical examples which do not fit the own-
ership methodology. There are several reason for this. First of all, not all
programs can be organized in to a tree structure. There are situations when
an ownership between the objects can be shared between several objects, or
there are even cyclic dependencies and modifications between independent
program components. The problem was partially addressed by multiple
ownership. Another limitation enforced by the ownership methodology is
that an object is modified only directly by its owner or by an object with
the same owner. The ownership prevents so-called ”deep updates”, when an
object modifies another object which it owns not directly but transitively.
This property is violated by some design patterns. For instance, the com-
posite design pattern which we have already discussed is problematic for the
ownership methodology.

In contrast to the ownership methodology stereotypes can be used to
deal with any kind of the heap topologies (including a cyclic one), and any
kind of the updates, for instance ”deep updates” and arbitrary topology
modification.

7.1.3 Decidable heap logics

7.1.3.1 Monadic second-order theory of two successors on the

model of finite binary sequences

[118] provides a decidable algorithm for the monadic second-order theory of
two successors on the model of finite binary sequences. The logic is denoted
as S2S. The decidability problem of S2S is reduced to the check that a
given tree automaton recognizes the empty set. The decidable procedure is
constructed for the following model:

• The domain of the model is the set of all finite binary words.

• The functions of the model are two successors. One of them adds 1
and another adds 0 to the end of the given sequence.

• The two predicates of the theory are the prefix and the lexicographical
orders.

The logic consists of the above predicates and functions, logical bindings,
and quantifications over elements and set of elements. It is also shown that
the result can be extended on n ≤ ω successors. The corresponding logic is
denoted as SnS. Another extension is quantification over finite sets. The
finiteness of the quantified variable is checked via checking the existence of
a minimal and a maximal elements of the set.

7.1. APPROACHES BASED ON DECIDABLE PROCEDURES 217

S2S is very important for software verification. All decidable procedures
which we consider in this subsection are less expressive then S2S but have
better complexity. The reasons why S2S is so important for software verifi-
cation is the following one. S2S can express and therefore check the validity
of the formulas from the following theories:

• Logic of indexes of a string. The logic consists of: quantification over
the indexes and the sets of indexes, order on indexes, sets inclusion.
SnS can be used to express the string logic with an alphabet of the size
n. When n = ω the size of the alphabet is unbounded but countable.

• Logic of trees. The logic consists of: quantification over three paths
and sets of three paths, path inclusion (prefix order), set inclusion.
SnS can be used to express the tree logic of n-branching trees. When
n = ω the branching is unbounded but countable.

[98] proved that the complexity of weak monadic second order logic is
not-elementary recursive. In other words, there is no k ∈ N such that the
complexity of the deciding procedure could be bounded by:

2
2.

..
2n

k

It is also proven that the complexities are not elementary for both the satis-
fiability and the finite-satisfiability, even when restricted to first-order quan-
tification.

[63] describes MONA; a tool for checking validity of monadic second-
order logic on string formulas. MONA is based on the translation into
finite automata, whose state spaces are represented by binary decision dia-
grams [1]. The logical models of the logic is finite strings. The language of
MONA consists of:

• position terms: the first index, the last index, a position variable,
constant increment and decrement.

• position set term: empty set, set of all indexes of the model string,
union, intersection, complement, add and remove a constant to all
elements of a set.

• formulas, equality and order on indexes, equality and set inclusion on
set of indexes, logic bindings, universal and existential quantifiers over
index and set of indexes variables.

7.1.3.2 Graph types

[83] introduces graph types. Graph types is an approach to shape invari-
ant specification. A shape invariant is described as a composition of the

218 CHAPTER 7. RELATED WORK

graph backbone (which is a canonical spanning tree) and extra edges. The
extra edges are specified by the language of regular ”routing expressions”.
A routing expression gives a relative address of the extra edge in the back-
bone. Both the backbone and the routing expressions of a data structure
are described by means of monadic second-order logic.

A program which uses graph types is allowed to modify only the back-
bone tree but not the extra edges. An update of a backbone edge can
violate a shape invariant. Code which rebuilds extra edges to restore the
shape invariant is generated from the shape invariant specifications for each
backbone edge update (edge addition and removal). Such an update can be
constructed automatically only if each routing expression always defines a
unique destination. A graph type is called well-formed if and only if each
of its routing expressions satisfies the above property. The well-formedness
of a graph type is checked statically by the decision procedure for monadic
second-order logic.

It is proven that for a well-formed graph type a dynamic update of extra
edges takes not more then linear time over the size of the data structure.
Specifications for the following data structures are provided: linked list,
cyclic-list, doubly-linked list, black and red tree. The following quote from
[83] highlights the limitations of graph types: ’Although much can be ex-
pressed in the monadic second-order logic on graph types, there are simple
operations that cannot. For example, one cannot represent the result of
replacing a subtree with another subtree (although certain properties of the
result may be expressible).’

[84] describes a shape verification approach based on graph types. A
shape invariant is a graph type. A set of finite graphs is described as a
monadic second-order logic formula. A transformation of a set of finite
graphs is described by so called transductions. A transduction is described
as a finite sequence of edge additions and removals. Transductions also have
pre-conditions which check that am operation can be executed on a given
set of graphs. For instance the following properties are checked: existence
of a removed edge, there are no two edges with the same label and source.
Transductions are used to define the predicate transformers. The predicate
transformers are used for backward propagation of formulas and can be used
to define the weakest pre-condition calculus.

In comparison with the stereotype based approach graph types have the
following limitations:

• The shape of a data structure is limited to one whose extra edges are
deterministic. For instance, general graph, DAG, and planar graph
cannot be specified as a graph type.

• Some practically important properties cannot be expressed in monadic
second-order logic. For instance we cannot precisely describe how the
shape of a tree will change after an edge removal or addition. As result

7.1. APPROACHES BASED ON DECIDABLE PROCEDURES 219

there is no way to provide the precise enough specification for the loop
invariants and the method specification. For instance, let us consider
a loop which performs a list reversal. We can specify and verify that
if the initial data structure is a list then the resulting data structure
is also a list and contains exactly the same elements as the initial data
structure. On the other hand we cannot specify and therefore verify
that the resulting list is the reverse of the initial one. The relation
between indexes of the elements in the initial and in the resulting list
remains unspecified.

[72] describes a verification technique for various linked lists which are
based on [84]. The specification language is monadic second-order logic.
The allowed structures are linked lists extended with extra edges, which
are specified by routing expressions. The approach uses the weakest pre-
condition calculus to reduce the problem to checking the proof obligations
in monadic second-order logic. Limitations of the technique are the same as
already mentioned for [84]. [99] extends [72] to all graph types.

7.1.3.3 Verification via structure simulation

[68] demonstrates an approach to encoding singly-linked lists, binary trees,
unbounded trees, and doubly-linked trees in monadic second-order logic.
The paper provides an example where a shape of an unbounded number of
nodes of a doubly-linked list is temporarily violated and later restored.

7.1.3.4 Logic of reachability expressions

[10] introduces the ”logic of reachability expressions”. It is a logic for de-
scribing linked data structures. Decidability is achieved by translation into
monadic second-order logic. Examples are a singly-linked list reversed and
deletion of an element from a list.

7.1.3.5 Logic of interpreted sets and bounded quantification

[90] presents the ”logic of interpreted sets and bounded quantification”. The
logic can be used to specify the properties of heap manipulating programs.
The logic consists of:

• unary uninterpreted functions

• boolean logical operations

• both existential and universal quantifiers but not quantifier alternation

• ternary predicates x
f
→ y

f
→ z ”reachable via intermediate value”. The

predicate specifies that x reaches y via transitive closure of the unary
function f and y reaches z via transitive closure f .

220 CHAPTER 7. RELATED WORK

• ternary functions Btwn(f, x, y) ”set of objects between x and y”. y

belongs to Btwn(f, x, z) if and only if x
f
→ y

f
→ z.

• a function inversion.

There are several syntactic limitations over formulas. For instance the same
functional symbol cannot be used in f−1(x) and in Btwn(f, x, z).

A decision procedure for the logic is provided. The inference rules of
the decision procedure are encoded in Boogie (which we describe below)
as axioms with triggers. An SMT theorem prover was used to verify the
generated proof obligations.

Properties of doubly-liked lists cannot be expressed in the logic due to
the syntactic limitations over formulas. Such properties were still encoded
and verified by Z3. In the general case termination is not guaranteed, but
in some cases extra triggers can guarantee termination.

Monadic second-order logic can express more complex shape properties
than what it is allowed by ”logic of interpreted sets and bounded quantifi-
cation”.

7.1.4 Abstract interpretation of heap

In this subsection we consider approaches to heap verification which are
based on abstract interpretation [36]. Abstract-interpretation represents
possibly infinite sets of program states with some finite abstract values. An
iterative computation is carried out to determine an appropriate abstract
value for each program point. The result of the computation is an abstract
value that summarizes the sets of the reachable concrete states at each
program point. Since we are interested in the verification of heap properties,
the abstract values of the above analysis represent possibly infinite sets of
heaps.

7.1.4.1 Shape analysis

[127, 126] introduce shape analysis, an abstract interpretation analysis of
heap properties. A single memory state is represented as a finite 2-value
logic structure, where elements of the structure represent the allocated ob-
jects and relations represent the references between the objects. Additional
predicates are used to represent the extra properties, e.g., readability from
other nodes, the number of input references is less or equal to one, and so on.
Finite 3-valued logical structures are used to represent a potentially infinite
set of memory structures. A special unary predicate is used to designate
nodes that may represent more than one individual from a given 2-valued
structure. Such nodes are called summary. The relation between 2-valued
and 3-valued structures is defined in the following way. A 3-value structure
S represents a 2-value structure S# if and only if:

7.1. APPROACHES BASED ON DECIDABLE PROCEDURES 221

• There is a surjective function f from elements of S# into elements of
S.

• For every predicate p and elements u1, . . . , un of S# either the interpre-
tation of p(f(u1), . . . , f(un)) on S is equal to 1/2 (unknown predicate
value) or it is equal to the interpretation of p(u1, . . . , un) of S

#.

Properties of structures are represented by formulas in first-order logic with
transitive closure and equality, but without functional symbols and con-
stants. The ”embellishing” theorem states that any formula that evaluates
to a definite value in a 3-valued structure evaluates to the same value in
all of the 2-valued structures embedded (represent by) into that structure.
Transformations are represented by formulas which relate the values of pred-
icates in the initial and transformed structures. A fix-point computation is
used to infer loop invariants and missing method specifications. To improve
the precision of the abstract interpretation the specification writer has to
introduce additional predicates which capture extra properties.

The approach is implemented in a tool called TVLA.
[95] describes the application of TVLA to the verification list proper-

ties. The tool is precise enough to verify that bubble-sort and insertion-sort
produce sorted lists. Also it was verified that element-insertion, element-
deletion, and merging of two sorted lists preserve the ”is-sorted” invariant.
The tool was also able to identify an error in the erroneous versions of the
bubble- and insertion-sort procedures.

[97] demonstrates how shape analysis can be enriched with ideas from
separation logic. The authors present a new abstraction based on decom-
posing graphs into sets of subgraphs. The new abstraction leads to a small
loss of precision, while yielding substantial improvements to efficiency.

[122] demonstrates how shape analysis can be enriched with ideas from
ownership. A program is split into modules. Shape analysis is used to verify
that references between modules form a tree.

7.1.4.2 Separation logic

[114] describes separation logic; an approach for heap specification. The
approach is based on the following two ideas:

• ”separating conjunction” P ∗ Q, which asserts that P and Q hold
for separate parts of a data structure. The conjunction provides a
way to compose assertions that refer to the different areas of memory,
while retaining disjointness information for each of the conjuncts. The
semantics of P ∗Q is defined via existential heap quantification in the
following way. h |= P ∗ Q if and only if ∃h0, h1 : h0#h1, h0 ∗ h1 =
h, s, h0 |= P ∧ h1 |= Q. Where:

– h |= ϕ means that an assertion ϕ holds on a heap h

222 CHAPTER 7. RELATED WORK

– h#h′ denotes that the domains of heaps h and h′ are disjoint.

– h ∗ h′ denotes the union of disjoint heaps.

• inductive definitions of predicates are used to define data structures.
Definitions for trees and the linked lists are provided.

An advantage of the approach is that a description in separation logic
provides a natural way for a heap decomposition. A disjunction can be used
to describe a heap from the different perspectives. In the stereotype based
approach this corresponds to a description of a heap state as a combination
of several stereotype slices.

[56] describes an interprocedural shape analysis based on separation
logic. The approach is implemented in the SUMMATE tool. The tool
implements a fixed-point computation over an abstract domain built from
assertions expressed in separation logic. The analysis represents sets of
heaps as a separation logic formula. The formula describes a heap as a dis-
joint union of linked lists of unknown size and single allocated locations. To
achieve termination of the fixed-point computation, the number of elements
in the disjoint union is limited. The approach is similar to shape analysis
but works on a more specific domain, and therefore has potential to achieve
better performance.

[14] introduces the tool SLAyer. The described approach extends [56]
by covering binary trees. [12] extends the approach to lists of lists. The
approach was used to verify the IEEE 1394 (firewire) Windows driver. [148]
proposes a more precise list approximation by distinguishing possibly empty
and non-empty lists. The paper also proposes a new join operation for the
separation domain which aggressively abstracts information for scalability
yet does not lead to false errors. The shape properties of Windows and
Linux device drivers (firewire, pci-driver, cdrom, md, etc.) were verified.

The following tools are based on abstract interpretation of separation
logic:

• [44] ”Space Invader” for C.

• [25] ”Infer” for C.

• [13] ”Smallfoot” for C.

• [14] ”SLAyer” for C.

• [45] ”jStar” for Java.

• [143] ”MultiStar” for Eiffel; based on ”jStar”.

As it explained in the Subsection 7.1.1 the precision of a single step
transformation of a heap abstract interpretation cannot outdo the preci-
sion of decidable procedures. Since decidable theories are mostly limited

7.2. APPROACHES BASED ON AUTOMATIC THEOREM

PROVING 223

to various linked lists and trees, the same is true for the precision of ab-
stract interpretation. On the other hand stereotypes can be used to verify
arbitrary properties of any heap structure.

7.1.4.3 Role analysis

[87] introduces another abstract interpretation approach to the verification
of heap properties, ”role analysis”. The central concept of the approach is
the role concept. Each object has a single role at any program point. A role
can change over time. Each role definition specifies the constraints that an
object must satisfy to play the role. Field constraints specify the role of the
objects to which the fields refer, while slot constraints identify the number
and the kind of aliases of an object. Procedures specify the initial and final
roles of their parameters. Each procedure also specifies its read and write
effects.

At every program point the set of all heap objects can be partitioned
into: onstage objects referenced by a local variable or parameter; offstage
unreferenced by a local or parameter. Onstage objects do not need to have
correct roles. Offstage objects must have correct roles assuming some role
assignment for onstage objects.

The analysis representation is a graph in which nodes represent the ob-
jects and edges represent the references between objects. There are two
kinds of nodes: onstage nodes representing one onstage object; and offstage
node, with each offstage node representing a set of objects that play that
role. The role consistency for a heap can be verified incrementally by ensur-
ing role consistency for every node when it goes offstage.

Glue invariant states in our methodology were inspired by roles.

The role analysis is an abstract interpretation and has the same limita-
tions as any other abstract interpretation. It is mostly limited to various
linked lists and trees (see Subsection 7.1.1). On the other hand stereo-
types can be used to verify arbitrary properties of any heap structure.

7.2 Approaches based on automatic theorem

proving

In this section we consider approaches based on automatic theorem provers.
As we have mentioned above the main problem which has to be addressed
by such approaches is the approximation of transitive closure and inductive
reasoning. These properties cannot be expressed in FOL. In general we
need second order logic (SOL) to express them. Nevertheless many of them
can be expressed in monadic second-order logic (MSOL). We can think
about MSOL either as about a subset of SOL where the second order
quantification is allowed only via unary relations, or as an extension of FOL

224 CHAPTER 7. RELATED WORK

with quantification over sets.
[34] investigates the expressivity of MSOL for the description of (pos-

sibly unbounded) sets of graphs and their transformations. For instance, it
was proven that the following properties of vertices x, y, sets of vertices X,
and an arbitrary directed graph G can be expressed in MSOL:

• x = y or there is a nonempty path from x to y.

• G is strongly connected.

• G is connected.

• x 6= y and there is a path from x to y, all vertices of which belong to
set X.

• X is a connected component of G

• G has no circuit

• G is a directed tree

• G has no circuit, x 6= y and X is the set of vertices of a path from x
to y

• G is planar.

Nevertheless there are some properties which cannot be expressed in
MSOL. For instance, the following properties can’t be expressed in MSOL

• two sets X and Y have equal cardinality

• a directed graph is Hamiltonian

• in a directed graph a set X of vertices is the set of vertices of a path
from x to y

• a graph has a nontrivial automorphism.

[34] also investigates which transformations of the sets of graphs can be
expressed as MSOL formulas. Such MSOL formulas define the values of
relations after the transformation in terms of relations before the transfor-
mation. It is shown that for each such transformation and formula β it is
possible to construct a formula β′ such that β holds after the transformation
if and only if β′ holds before the transformation. This observation can be
used to construct the weakest pre-condition calculus. Nevertheless there are
some transformations of graph sets which cannot be expressed in MSOL.
The following limitations of MSOL-definable transductions are proven:

• The image of an MSOL-definable class of structures under a definable
transformation is not MSOL-definable in general.

7.2. APPROACHES BASED ON AUTOMATIC THEOREM

PROVING 225

• The inverse of a definable transformation is a transformation that is
not definable in general.

• The intersection of two definable transformations is a transduction
that is not definable in general.

As we can see even MSOL cannot express all interesting heap proper-
ties. On the other hand most automatic theorem provers can deal only with
FOL which is even less expressive then MSOL. The last observation illus-
trates why dealing with heap specifications is challenging for state-of-the-art
automatic theorem provers.

Before we move to the consideration of approaches to heap verification
which are based on automatic theorem provers let us briefly consider the
current state of art of automatic theorem proving.

7.2.1 Automatic theorem provers for FOL

Currently there are two promising types of automatic FOL theorem provers.

The first one is tableaux [37] or resolution based [27] first order logic
(FOL) theorem provers. For instance the following theorem provers use
this approach: Vampire [121], LEO-II [11] (it covers even a subset of higher-
order logic) , iProver [85], Spass [144], and many others. The second type of
automatic theorem provers is satisfiability modulo-theories (SMT) theorem
provers, which are usually based on the Davis-Putnam-Logemann-Loveland
(DPLL) [112] algorithm or on the Nelson-Oppen method [140, 111]. For
instance the following theorem provers use this approach: Z3 [39], Sim-
plify [40], CVC3 [8], MathSAT [21], and many others.

Tableaux and resolution based theorem provers were initially designed
to cover the entire FOL. Most of these theorem provers guarantee complete-
ness; each sound FOL theorem will eventually be proved by the theorem
prover. For unsound theorems termination is not guaranteed. Completeness
is an extremely nice property from a theoretical perspective. Nevertheless
from a practical perspective performance is more important than complete-
ness. Therefore some tools sacrifice completeness in order to achieve better
performance on the practically valuable subset of FOL formulas.

SMT theorem provers were initially designed as a combination of several
decidable procedures with a SAT solver. A set of decidable procedures
usually includes: real and integer arithmetic, bit-vectors, arrays, records,
uninterpreted functions. The resulting procedure is decidable but it is only
able to deal with quantifier-free formulas. To overcome this limitation SMT

provers were extended with heuristics for quantifier handling [101, 51], which
in general do not guarantee completeness. Overall for a given formula with
quantifiers they try to identify a variable substitution such that the resulting
quantifier-free formula can be validated by the underling procedure.

226 CHAPTER 7. RELATED WORK

The ability to deal efficiently with the basic programming theories, which
we have mentioned above, is essential for software verification. Therefore
most of the approaches which we consider in this section use SMT theorem
provers.

7.2.1.1 Boogie

Some approaches which we consider in this section use automatic theorem
provers to verify proof obligations generated by the weakest pre-condition
calculus. Since the weakest pre-condition calculus is pretty standard it does
not make sense to re-implement it for any tool. Instead the intermediate
verification language Boogie [75] can be used. In this case heap verification
technique can be implemented as a translator of a given verification problem
into Boogie. Boogie uses the weakest pre-condition calculus to generate
proof obligations which are then verified by an automatic theorem prover.
In most cases Z3 [39] is used for this purpose.

Boogie describes a control flow graph by means of sequential compo-
sition, nondeterministic branching, and goto statements. Later on while
loops and if statements were added to the language. The main specification
primitives are ”assert” and ”assume” clauses. ”assert” clause checks that
a given formula holds at the current point of the control flow graph, while
”assume” clause adds a given formula to premisses. Boogie also provides
pre- and post- conditions which can be expressed by means of assume and
assert clauses, respectively. The types provided by Boogie include integer,
boolean, and map types. Boogie does not provide a native heap specifica-
tion, but a heap can be specified as a polymorphic map from a location to
a value.

7.2.2 Approximation of induction in FOL

7.2.2.1 Simulating reachability using first-order logic

[94] provides an approach to the approximation of the transitive closure
relation. The authors describe three induction schemes which capture the
properties of transitive closure of a given binary relation. Each scheme is
parameterized by one or two variables of the set type. The authors provide
a heuristic which for a given formula ϕ from FOL with transitive closure
instantiates the inductive schemes with FOL descriptions of set variables.
Let us denote the instantiation of inductive schemes as φ. φ is a sound
but not complete description of a transitive closure in FOL. In other words
φ is an approximation of a transitive closure in FOL. The soundness of
the approximation for any instantiation is guaranteed by the meta-proof.
A FOL theorem prover can be used to verify that φ ⇒ ϕ. The authors
used the approach to verify an implementation of the in-place reversal of a
singly-linked list in the SPASS theorem prover [144].

7.2. APPROACHES BASED ON AUTOMATIC THEOREM

PROVING 227

The main advantage of the approach is the expressivity and the absence
of specification overhead. The approach attempts to verify formulas from
FOL with transitive closure without any specification overhead. The main
disadvantage of the approach is low predictability. It is hard to predict
what properties can be verified by the approach. For instance, one of the
provided induction schemes is specifically targeted towards dealing with up-
dates of transitive closure but far from being complete. On the other hand,
the stereotypes based approach uses user-provided specifications to precisely
describe the transformation of transitive closures during a program execu-
tion.

7.2.3 User provided updates of a transitive closure

In this subsection we consider approaches to heap verification which are
based on user-provided specifications of updates of a transitive closure.
Stereotypes-based verification is one of these techniques.

The main idea behind these approaches is the following one. Let us
assume that a class of a verified program contains a field of reference type
f . Let us also assume that to specify the program we need the transitive
closure of f . To represent the transitive closure of f we introduce a ghost
field fTC of type set of references. The value of the ghost filed fTC of object
o has to contain the objects reachable via the transitive closure of f starting
from o. Since the transitive closure is not expressible in FOL, fTC cannot be
specified precisely. Therefore the values of fTC are approximated by FOL

formulas. This part of the approach is the same as the one which is described
in the previous subsection. What is done differently is the reevaluation of
fTC during the program execution.

Values of f change during the program execution. Therefore fTC has
to be updated accordingly. The old and the new values of fTC correspond
to the transitive closure of two distinct relations. Therefore an induction
has to be used to establish the relation between the old and the new values
of fTC . On the other hand induction is not a part of FOL and therefore
can hardly by handled by automatic theorem provers. Therefore instead of
inferring the relation between the old and the new values of fTC the user is
asked to provide it explicitly. For every update of a value of the field f the
user has to provide ghost updates of fTC of all affected objects.

Another question which arises is what kind of transformations and for
which heap structures can be specified this way in FOL. The question is
partially addressed by the following two papers [47, 46]. The papers address
the following problem. Suppose G is a graph and TCG is its transitive
closure. If G′ is a new graph obtained from G by inserting or deleting an
edge e, can the new transitive closure TCG′ be defined in first-order logic
using G, TCG and e? It is shown that the answer is positive for

1. acyclic graphs (DAGs),

228 CHAPTER 7. RELATED WORK

2. graphs where the vertices of the deleted edges are not in the same
strongly connected component,

3. graphs in which not more then one path between each pair of vertices
exists (0-1-path graphs).

It was also proven that for the insertion case question (transitive closure
definability in first-order logic) the answer is yes. It is left open whether the
new transitive closure is definable in first-order logic for all graphs which are
obtained by removing edges. It is also unclear up to which extent the pro-
vided result can be generalized in case of addition and removal of unbounded
sets of edges.

7.2.3.1 Dynamic frames

[80, 81] introduce the dynamic frame theory. A dynamic frame is a spec-
ification variable whose values are sets of references. The values of the
specification variable are defined by an expression that depends on a heap.
Dynamic frames can be used to define a frame rule for a given expression.
The frame rule states that if the values of locations which belong to a dy-
namic frame are preserved then the value of the framed expression is also
preserved. Dynamic frames and the frame rule are used to specify module
frames. The following approach for frame disjointness preservation is pre-
sented. If f and g are dynamic frames and g is self framed (g is a frame of
g) then any transformation which affects only values of locations from f and
adds to f only freshly allocated locations preserves disjointness of f and g.

To specify frame properties of dynamic heap structures dynamic frames
have to use transitive closure. Therefore the approach cannot be directly
used for automatic verification.

[76] describes Dafny; a verification language which is built on top of Boo-
gie [75] and uses dynamic frames for heap verification. Dafny is targeted
on the verification of object-oriented pointer manipulating programs. It na-
tively supports a heap, classes, and methods. Additionally to pre- and post-
conditions method specifications include modifies clauses, which specify the
set of locations which are possibly affected by the method execution. The
types are extended with sets, sequences, and algebraic types. For specifica-
tion purposes, ghost variables and functions are added. Ghost variables are
used in the verification of the program but not needed at the run time. Func-
tions are adjusted with measures which guarantee their termination. The
axioms which specify functions are generated from the functions bodies.

7.2.3.2 Region logic

[5] introduces region logic. A main specification primitive of region logic is
a region. A region is a ghost field of the type set of non-null references. The
regions specification language is a simple set theory which consists of:

7.2. APPROACHES BASED ON AUTOMATIC THEOREM

PROVING 229

• region inclusion

• region disjointness

• inclusion of a region image by another region

• disjointness of a region image and another region

• equality of a value of a region type to another region

• quantification over references and integers

• logical bindings

Regions can be used to express behavioral and topological specification.
One of the central applications is transitive closure approximation, e.g., a set
of objects reachable via a linked list. A specification provider is responsible
for instrumenting the source code with region updates. The main advan-
tage of the approach is that the desired specifications can be expressed in
FOL and verified by SMT theorem provers. The paper demonstrates the
region logic approach to specification and verification on the example of the
observer design pattern.

[3] describes how the region logic approach can be expressed in Boogie

and verified by Z3. A partial specification of list copy is provided. The
examples specify that the input list is disjoint from the output list. The
second provided example is the observer design pattern.

[123] describes verification of the composite pattern with region logic.
The paper also introduces the ”VERL” tool which is built on top of Boogie.

[109] describes an invariant verification methodology based on region
logic. All classes are split into disjoint modules. Invariants are associated
with a module but not with a class. Each module is adjusted with dynamic
boundaries. Dynamic boundaries are read effects which guarantee the mod-
ule invariant preservation. A client of a module is obliged to respect the
module’s dynamic boundaries. Therefore the client preserves invariants of
the module even without knowing them. Regions are used to specify a mod-
ule’s dynamic boundaries and invariants.

Our approach is inspired by region logic. Our approach extends region
logics in the following way:

• It enabling the reuse of specifications, ghost updates, and proofs.

• It provides a systematic approach to ghost updates and method spec-
ifications. A universal transformation for a given stereotype can be
used to express an arbitrary ghost update and method specification.

• It improves readability of ghost updates and specifications.

230 CHAPTER 7. RELATED WORK

7.2.3.3 Verifying properties of well-founded linked lists

[91] describes an approach to the specification of cyclic and acyclic linked
lists. The approach is very similar to our stereotype based verification. Sim-
ilarly to our approach the authors use ghost fields (regions) to approximate
the transitive closure and user provided ghost updates to describe how re-
gions evolve over time. In terms of stereotype based verification the provided
methodology covers the following parts of the sequence stereotype:

• stereotype items: right tail and head of the list.

• stereotype invariants: 5 properties; a subset of sequence stereotype
invariants.

• stereotype operations: only basic operations (addition and removal of a
single reference) are provided. The specification of loops and recursive
procedures which perform lists modifications require explicit updates
of stereotype items.

• glue invariant. A user has to explicitly specify which fields form lists
and which objects belong to the lists. Under this assumption ghost
updates of regions are inserted automatically.

An on-paper meta-proof guarantees that regions indeed approximate the
desired transitive closure.

In contrast to the proposed approach stereotypes can be used to verify
arbitrary property of any heap structure. We can think about stereotype as
an extension of the approach proposed in [91] to deal not only with linked
lists but with arbitrary heap structures as well.

7.2.4 User provided inductive proofs

In this section we consider tools which rely on user-provided inductive proofs
to verify heap properties with automatic theorem provers. The obvious
disadvantage of this approach is extra work which has to be done to perform
verification. Another limitation of the approach is that the user has to be
qualified enough to be able to produce the inductive proofs, and therefore
the tool cannot be used by an average software developer.

Stereotypes based methodology can be used to avoid inductive proofs.
It could be achieved in the following way. Instead of inductive definitions,
corresponding stereotypes have to be used to specify heap structures. The
user has to annotate the program with stereotype operations. The desired
properties of heap structures are inferred from stereotype invariants and
stereotype operation calls.

7.2. APPROACHES BASED ON AUTOMATIC THEOREM

PROVING 231

7.2.4.1 VeriFast

[70] describes VeriFast, a verification tool for C. The proposed methodology
is a combination of user-provided inductive proofs and separation logic. A
heap is represented in the separation logic style as a disjoint union of single
memory locations and inductively defined data types. To verify a program
the client has to explicitly prove the desired properties of the inductive
data structures. Quite often these proofs require induction. A user has
to explicitly annotate the source code with lemmas which have to be used
during the verification as well. For instance, to verify that a method ”add”
of a linked list preserves the list shape, a client has to provide an inductive
proof that an addition of the element preserves the list shape and then
annotate the source code of the method ”add” with the proved lemma. The
method is flexible but requires a lot of extra work. [71] describes verification
of the composite pattern which is represented as a binary tree with VeriFast.

In contrast to VeriFast stereotypes provide a systematic approach to a
specifications and proofs reuse. Most of the proofs have to be done during
the stereotype construction. Later on these proofs can be reused to verify
real heap structures.

7.2.4.2 Implicit dynamic frames

[138] proposes an approach to the verification of object-oriented programs.
According to the approach each method specification has to include a
method footprint. A method footprint is an upper bound of the memory
locations which are read or written by the corresponding method execu-
tion. Footprints are specified by means of pure methods that return sets of
memory locations. Such pure methods are called dynamic frames.

[133, 135] extend [138] by adding a footprint inference mechanism. The
footprint of a method is inferred from the method pre-condition. A callee
can only read or modify an existing location if the location is mentioned in
its pre-condition.

[134] describes the implementation of the implicit dynamic frames ap-
proach in the Java verification tool VeriCool.

[136, 137] propose a variant of [134] where a symbolic execution instead
of the weakest pre-condition calculus is used. The heap representation is
similar to the one used in [70].

Implicit dynamic frames is an extension of dynamic frames and has sim-
ilar limitations. They do not provide a systematic approach to the verifica-
tion of dynamic heap structures. The latest third version of the VeriVool
tool uses two approaches to address this issue:

• The approach of region logic, by introducing ghost fields of type set of
referencee and ghost updates.

232 CHAPTER 7. RELATED WORK

• The approach of VeriFast [70] via induction of inductive definitions
and user-provided inductive proofs.

[78] describes Chalice; another tool which is built on top of Boogie. The
tool is targeted on the verification of concurrent object-oriented programs.
Here we consider only the specification infrastructure provided by Chalice
for the specification of heap structures, and ignore the concurrency related
issues. The specification and verification of heap structures is inspired by
implicit dynamic frames. Data shapes are described by means of recursive
predicates and single location access. For instance, a list predicate can be
specified as access to the list head in conjunction with the list predicate
for the tail. To avoid the explicit usage of recursive predicate definitions a
client is provided with the statements fold and unfold. fold checks that
the predicate definition holds at the current program point, consumes the
permissions required by the definition, and produces the predicate. The
statement unfold consumes the predicate and returns its definition.

To prove properties of heap structures, intensive usage of fold and un-

fold is required. In some sense these extra annotations are similar to induc-
tive proofs. For instance, to add a node to the end of the list it is necessary
to unfold the list, add the new element, and fold it again.

7.3 Inductive theorem provers

According to Gödel’s first incompleteness theorem [53] for any formal theory
of arithmetic there will be formulas which are true but unprovable. The
results of Gödel introduce infinite branching points into the search space and
show that it is impossible to build a complete inductive theorem prover. The
main problem that automatic inductive provers have to address is infinite
branching.

The source of infinite branching is the identification of a well-founded
order which can be used by the inductive proof. For any non-trivial recursive
data type there will be an infinite variety of different well-founded orders.
No computer program can generate them all.

Another source of infinite branching is the cut elimination rule. It can
be formulated in the following way:

A, ? ` ∆, ? ` A

? ` ∆

A is called a cut formula. Since any formula can be used as a cut formula,
an application of the cut elimination rule results in infinite branching. The
proof of the cut elimination theorem can be found in [52]. The cut elimi-
nation theorem states that the cut rule is redundant for first order theories.
Unfortunately cut elimination does not hold for inductive theories (see [86]).
The cut rule cannot be eliminated and it is a source of infinite branching.

7.3. INDUCTIVE THEOREM PROVERS 233

There are two major approaches to the automation of inductive proofs:

• Explicit induction

• Proof by consistency

7.3.1 Explicit induction

Probably the most well known automatic explicit inductive theorem prover
is Nqthm [19]. It is also known as the Boyer/Moore theorem prover. It
is one of the first theorem provers which was designed to handle inductive
proofs automatically. Later on Nqthm was re-implemented as ACL2 [82].

It has been successfully applied to prove complicated mathematical the-
orems and hardware verification (e.g. verification of the kernel of the
AMD5K86 floating-point division algorithm [100]).

Both Nqthm and ACL2 use a simple, sub-first-order, type-less logic,
based on primitive recursive arithmetic adapted from numbers to lists. Vari-
ables are treated as implicitly universally quantified; therefore there is no
existential quantification.

Other theorem provers which use the explicit induction approach to
prove inductive theorems are INKA [66] and Oyster/CLAM [23].

Let us consider the explicit induction theorem proving approach on the
example of ACL2. The ACL2 approach to the automatization of induc-
tion proofs is based on the similarity of recursion and induction. The ACL
induction proof analysis consists of two steps:

1. Analyze each recursive function in isolation:

(a) Identifies the measure and the order according to which the re-
cursive function is well-defined (always terminates). ACL uses
lexicographic order over vectors of natural numbers as the well-
founded orders.

(b) Identify the inductions which the function suggests.

2. Combine the inductions suggested by the recursive functions men-
tioned in a formula which is proved by induction. The combined
induction has to be suitable to prove the whole formula by induction.

A recursive function in ACL can be represented as a set of recursive
calls guarded by conditional statements. In ACL definitions of recursive
functions in this form are called machines. The structure of a recursive
function is used to identify both the measure and the inductions suggested
by the function definition.

The measure identification relies on user-provided induction lemmas.
The general form of the induction lemma is the following
ϕ⇒ m(t1, . . . , tn) < m(t′1, . . . , t

′
n). Here m is a measure and ϕ is a guarded

234 CHAPTER 7. RELATED WORK

condition which guarantees the validity of the lemma. An example of an
induction lemma is x 6= 0 ⇒ x− 1 < x.

Identification of a measure of a recursive function is organized in the
following way. If

• f(x1, . . . , xm) is a recursive function,

• φ is a guard formula of a recursive call f(exp1, . . . , expm),

• ϕ⇒ m(t1, . . . , tn) < m(t′1, . . . , t
′
n) is an induction lemma,

• φ⇒ ϕ holds,

• i1, . . . , in ⊆ [1..n] is a set of variables which are used to guarantee
termination of the function,

• t1, . . . , tn, t
′
1, . . . , t

′
n matches as syntactical terms with exp1, . . . , expm,

x1, . . . , xm

then m is suggested as a measure for the recursive call. Lexicographical
order can be used to combine several measures into one. The measure for
the whole function is constructed by a combination of measures of recursive
calls.

A recursive function definition together with the measure suggest an
induction scheme. The case split of the induction is based on the machine
of the function (the function definition reduced to the special form). The
induction order is based on the function measure. If recursive functions
f1, . . . , fn are mentioned in a formula which we try to prove by induction
then the inductive scheme for the whole formula is constructed by applying
the following heuristics to the inductive schemes by f1, . . . , fn:

1. Subsumption of induction schemes. An induction scheme s1 is sub-
sumed by an induction scheme s2 if the cases of s1 are a subset of the
cases of s2.

2. Merging of induction schemes. When we merge s1 and s2 some of the
cases of s1 are subsumed by s2 and vice versa.

3. Flawed induction schemes. s1 is flawed if there is another scheme s2,
such that some variables of s2 are induction variables of s1. If any
scheme is unflawed, we throw all flawed schemes out. If all schemes
are flawed, we simply do not throw out any and proceed.

4. Tie breaking rules. Choose the most nested induction scheme. We
choose the scheme that is credited with the largest number of terms
that are not primitive-recursive. If we still have a choice we choose
arbitrarily.

7.3. INDUCTIVE THEOREM PROVERS 235

5. Superimposing the machine. Merge equivalent cases.

The result of the application of the generated induction scheme to the
formula has to be proven by a first order logic theorem prover.

Limitations of the explicit induction can be described by the following
quote from [22]. ”The difficulty of the search control problems that arise
in inductive theorem proving causes all current automatic provers to fail
on some apparently simple conjectures. Until the technology is significantly
improved it is, therefore, necessary to involve a human user in assisting with
proof search.” In other words there are still plenty of situations when the
user has to identify the induction scheme.

In comparison with the stereotype based approach we can say that the
explicit induction is more generic but less efficient. The explicit induction
can be used to prove induction hypothesis in any theories while the stereo-
types are specifically targeted to deal with heap structures. Nevertheless
due to this specialization, stereotypes can exploit knowledge about the do-
main (heap structures) and be more efficient. For instance, we distinguish
theorems which have to be proven to describe the heap at a single program
point and theorems which describe transitions between program points. For
the last type of theorems we introduce a special machinery: SLS and uni-
versal transformations. In this way we avoid user-provided inductive proofs
in regards to heap transformations.

Another clear advantage of stereotypes is reusability. As soon as we
have one or more stereotypes we can combine them to describe new heap
structures. We can use theorems which are proven about stereotypes (e.g.,
the stereotype invariant preservation by the stereotype universal transfor-
mation) to prove new theorems about new heap structures.

7.3.2 Proof by consistency

One of the best known automatic inductive theorem provers which uses
proof by consistency is RRL (Rewrite Rule Laboratory) [79]. RRL is an
automated reasoning program based on rewriting techniques. RRL includes
implementations of various rewriting-based approaches to proving first order
logic formulas and methods for proving first-order equational formulas by
induction.

Proof by consistency is also known as inductionless induction. The main
idea behind the approach (as it described at [32]) is the following.

Let us assume that we want to prove an inductive theorem T in a theory
E. The first limitation which is introduced by the approach is that it con-
siders not all but only Herbrand models of the theory E. A Herbrand model
of the theory E is a model whose domain is the Herbrand universe. The
Herbrand universe is the set of all ground terms, constructed from functional
symbols of the theory E. In other words each element of the Herbrand model

236 CHAPTER 7. RELATED WORK

of the theory E can be represented as a ground term. If we are interested in
inductive theorems of E which hold in non-Herbrand models then we cannot
use inductionless induction to prove them. Let us consider an example that
explains this constraint.

Let us consider the theory E which describes some of the properties of
natural numbers. The set of functional symbols of E is {0, s,+}. The axioms
of E are 0+x = x and s(x)+ y = s(x+ y). Let us now consider the formula
x+0 = x. x+0 = x is not an inductive theorem of E. Let us construct the
structure which is a model for E but not for x+ 0 = x. The domain of the
model is {0, a}. The interpretation of 0 is 0. The interpretation of s is the
identity (s(x) = x), and the interpretation of the addition can be described
in the following way a + b = b. Let us check that the described structure
is a model of E. The first axiom follows immediately from the definition
of the addition. The validity of the second axiom can be checked in the
following way s(x) + y = y = s(y) = s(x+ y). a+ 0 = 0 is not equal to a.
Therefore the structure is not a model for 0 + x = x. On the other hand if
we consider only Herbrand models (where each element can be represented
as sn(0)) then 0 + x = x is an inductive theorem of E.

The next requirement of the inductionless induction method is the ex-
istence of a first-order axiomatization A of the minimal Herbrand model of
the theory E. A modelM is smaller than a modelM ′ if for every formula ϕ,
M ′ |= ϕ impliesM |= ϕ. Let us denote the minimal model of the theory E as
ME . A recursive set A of first-order universal formulas is an axiomatization
of the minimal Herbrand model if and only if:

• ME |= A

• For every Herbrand model M of E, M |= A implies that M is equiva-
lent to ME .

In general the axiomatization A is incomplete. It captures only some but
not all properties of the model ME .

The final requirement of the approach is that both the theory E and the
theorem T which we want to prove in the theory E by induction have to be
purely universally quantified. Putting all the above together we can prove
the following theorem, laying in the core of the approach.

Theorem 60. If A is a first-order axiomatization of a purely universal
theory, T is a purely universal formula, and E ∧ T ∧A is consistent then T
is an inductive theorem of E.

What we want to prove is that for any Herbrand model M , M |= E
impliesM |= T . Since E∧T ∧A is consistent and purely universal according
to the Herbrand theorem [24] there is a Herbrand model M0 such that
M0 |= E, M0 |= T , and M0 |= A. According to the second part of the
definition of A, M0 is equivalent to ME . Since M0 |= T we conclude that

7.3. INDUCTIVE THEOREM PROVERS 237

ME |= T . According to the definition of ME for any Herbrand model M ,
M |= E implies M |= T . �

The above theorem reduces inductive theorem proving in a theory E
to consistency checking in first-order logic. For the given theory in order
to apply the approach we have to address two questions: how to find an
approximation A and how to check consistency of formulas.

The approach can use any first order logic theorem prover to prove con-
sistency. Since the inductionless induction originates from the rewriting
community, Knuth-Bendix completion is usually used as the underling the-
orem prover. First order logic theorem provers are semidecidable procedures
for inconsistency checking. In other words if the given formula is inconsis-
tent then the theorem prover will eventually prove it. If the given formula is
consistent then there are two possible outcomes, either the theorem prover
will prove it or it will not terminate. In the last case the question regard-
ing the formula consistency remains open. Since inductionless induction
requires consistency checks and relies on first order logic theorem provers it
is co-semidecidable. In other words, if a given formula is not an inductive
theorem of the theory E then it will be eventually proven. On the other
hand for some inductive theorems the approach will provide a proof while
for others it will not terminate.

Let us now consider various approaches to the construction of the first-
order axiomatization of the minimal Herbrand model.

If the theory E contains an equality predicate and is equivalent to a
finite convergent rewrite system (in other words decidable) then A can be
chosen as false 6= true. The details can be found in [105, 54].

If the theory E is equivalent to a finite convergent rewrite system and
C is a set of free constructors of the theory then A can be chosen as:

• f(x1, . . . , xn) = f(y1, . . . , yn) ⇒ x1 = y1 ∧ . . . ∧ yn where f ∈ C

• f(x1, . . . , xn) 6= g(y1, . . . , ym) where f, g ∈ C and f 6= g

The approximation A axiomatize properties of the free constructors. The
details can be found in [65].

Some other approaches to the approximation construction rely on ground
reducibility. A term is ground reducible if all its ground instances are re-
ducible. Such approaches neither assume any set of free constructors nor
any equality predicates. The details can be found in [74, 16].

The limitations of the inductionless induction can be described by the
following quotes from the paper ”History and Future of Implicit and Induc-
tionless Induction: Beware the Old Jade and the Zombie!” [147].

• ”Inductionless induction has shown to be practically useless, mainly
due to too many superfluous inferences, typically infinite runs, and too
restrictive admissibility conditions.

238 CHAPTER 7. RELATED WORK

• ”There was the general opinion that inductionless induction was dead.”

• ”Do not to fumble around with the zombie of inductionless induction!
The experts in implicit induction have spent a lot of time with it,
mostly to bury it.”

If the inductionless induction works for a given theory and a given the-
orem then we can prove the theorem without a user-provided induction
scheme. On the other hand if there is no proper approximation of the Her-
brand model or we just do not know it then the method cannot be used. If
we have a proper approximation for the theory we receive a co-semidecidable
procedure, which means that even if the given formula is a valid inductive
theorem the method can fail to prove it.

On the other hand the stereotype based approach requires more user
interaction but is more reliable. User interaction is mostly needed for the
construction of stereotypes and universal transformations. As soon as we
have stereotypes we reduce the verification problem to first order logic the-
orem proving and thus receive a semidecidable procedure.

7.4 Approaches based on interactive theorem

proving

The approaches considered in this section do not prove the correctness of
a program, but check the proofs provided by a user. Therefore these ap-
proaches can handle heap properties of arbitrary complexity.

The stereotype based verification is less expressive than the approaches
considered in this section, but proposes better proof automatization and can
be used by less qualified software developers.

Most of the interactive verification techniques use general purpose proof
assistants such as PVS [116], Isabelle [113], or Coq [15]. Each of the above
proof assistants provides a framework to deal with the verification of imper-
ative programs. [129] describes a framework built on top of Isabelle/HOL
for the verification of imperative programs. The framework includes a pro-
gramming logic model and Hoare logic rules for both partial and total cor-
rectness. Another example of such a framework is Ynot which is described
in [107, 108]. Ynot is an an extension of Coq to deal with separation logic.
[142] describes an extension of the HOL4 interactive theorem prover to deal
with separation logic.

Proof assistants were used to verify various complicated properties. For
instance, [17] presents a formal verification of a C compiler front-end in Coq.
Another example is the formalization and verification of the priority ceiling
protocol in PVS, which is described in [93]. The priority ceiling protocol
is a deadlock free extension of the priority inheritance protocol, which we
verified with stereotypes.

7.5. MIXED APPROACHES 239

Another approach to interactive verification is to develop a specialized
interactive theorem prover, targeted on software verification. An example of
this approach is the KeY tool which is described in [9]. KeY is an interactive
theorem prover based verification tool targeted on object-oriented programs.
The tools is based on dynamic logic [60]. The main difference between
dynamic logic and Hoare logic is that dynamic logic can use programs instead
of formulas to specify a program state. For instance, a while loop can be used
to specify that a data structure is acyclic. To deal with such specifications
the approach relies on user-provided inductive proofs. [130] demonstrates
how dynamic logic can be combined with dynamic frames. The extension
adds modifies clauses to the method specifications and describes a new logic
rule which uses them.

7.5 Mixed approaches

In this subsection we consider tools which mix several of above approaches.
The motivation for this a mix is to combine the expressivity of the interactive
proof assistants with the ability to work without the help of a user of the
less expressive tools. The simple problems can be verified by an automatic
tool, and more complicated problems can be still be verified by means of
user-provided proofs.

In spite of improved automatization there are still cases which require
user-provided proofs. Therefore the approach still has the disadvantages of
the pure interactive approaches.

[150] describes Jahob; a verification tool which combines the following
tools:

• Decidable theories:

– BAPA [89] a theorem prover for boolean algebra with Presburger
arithmetic to deal with set cardinalities.

– MONA [63] a theorem prover for monadic second-order logic of
strings.

• SMT theorem provers:

– CVC3 [8]

– Z3 [39]

• FOL theorem provers:

– SPASS [144]

– E [131]

• Interactive theorem provers:

240 CHAPTER 7. RELATED WORK

– Coq [15]

– Isabelle [113]

The main idea of the approach is to combine all of the above tools in a
sound but not complete way. The integration is based on the concept of
formula approximation, which maps an arbitrary formula into a semantically
stronger but simpler formula. The approximated formula can be split into
disjoint formulas each of which can be verified by one of the above tools.
Since the resulting formula is stronger, the approach is sound.

The tool was used to verify the following examples: hash table, binary
search tree, array list, priority queue, circular list, singly-linked list.

Another tool which uses a mixed approach is VCC [31]. The tool tar-
gets verification of concurrent C. VCC combines an ownership methodology
with interactive theorem proving. To handle user-provided proofs VCC uses
HOL-Boogie [18]. HOL-Boogie is an interactive proof-environment which
combines Boogie and Isabel. Among other things the environment can be
used to proof lemmas about data-types and memory management. An ap-
plication of VCC to Microsoft’s Hyper-V Hypervisor is described in [93].
The Hypervisor is a software which runs on a single multi-processor ma-
chine several virtual multi-processor machines. The size of the Hypervisor
is 100 KLOC of C and 5 KLOC of assembly, respectively.

Chapter 8

Conclusion

This chapter is organized as follows. First we summarize the stereotype
based verification methodology and discuss the contributions. Then we
briefly sketch avenues for future development and evaluation of the method-
ology. In the last section we discuss how various areas of software verifi-
cation, software engineering, and theorem proving could benefit from the
presented methodology.

8.1 Summary and contributions

Initially our ultimate goal was to develop a complete methodology which
enables the specification and semiautomatic verification of heap structures
and semantical relations in automatic theorem provers. Here we have to
clarify several things:

• by a complete methodology we mean that any heap structure, seman-
tical relation, and operation can be covered by the methodology. We
believe that this requirement is crucial for the following reason. Ver-
ification has a holistic nature. If a small part of a system cannot be
verified then the whole system cannot be verified. On the other hand,
if the verified system is big enough then eventually we will run into
all kinds of exotic properties and operations, which then prevents the
verification of the whole system.

• another requirement which we impose on the methodology is the pre-
cise description of the steps which have to be done in order to specify
and verify any given example. This property has to eliminate guessing
from the approach. At the very beginning of the specification/veri-
fication process clients have to know all decisions they have to make
and problems they have to address.

• our experience with automatic theorem provers suggests that addi-
tional hints are unavoidable. Nevertheless, it is possible to reduce

241

242 CHAPTER 8. CONCLUSION

significantly the complexity of these hints. We would like to keep
these hints as simple as possible. In the first place we would like to
avoid inductive proofs, quantifier alternations, and introducing extra
functional symbols. In our approach we reduce hints to annotations
with the universally quantified assertions. We call a verification pro-
cess which involves only such hints semiautomatic. It requires some
hints from a user, but these hints are quite straightforward and usually
can be provided easily.

We already have identified another crucial methodology requirement.
Because of the enormous specification complexity, we have to take care of
reusability. We believe that the specification complexity reflects limitations
of state-of-the-art automatic theorem provers. There is no evidence that
these limitations will be resolved in the foreseeable future. All of the above
suggests that dealing with enormous complexity is unavoidable, which means
that reusability is a must for a heap verification methodology.

The rest of the section is organized in the following way. We describe
various aspects and mechanisms of the stereotype methodology and bind
them with the methodology requirements which they address.

• Stereotype:

We began the development of our methodology from the identification
of entities which are essential for the specification and verification of
any heap structure or semantical relation. We try to keep them as
general as possible:

– Stereotype items are values of interest of the relation.

– Stereotype invariants are properties of stereotype items.

– Stereotype operations are updates of stereotype items which
preserve stereotype invariants.

Since these entities are inseparable, we couple them into one entity, a
stereotype. By this we achieve a high reusability. Once a stereotype
is developed it can be easily reused. By reusing a stereotype we reuse
values of interest, properties, operations, and approximations (e.g.,
how we approximate a transitive closure by a stereotype item). On
the other hand, using stereotypes we get a completeness. Any struc-
ture can be described precisely enough by introducing extra stereotype
items and extra invariants. Extra invariants free clients from the ne-
cessity to prove inductive properties. The price which we have to
pay for this completeness is extra complexity, for the development of
stereotype operations. They have to update all extra stereotype items
and preserve all extra stereotype invariants.

8.1. SUMMARY AND CONTRIBUTIONS 243

• Stereotype dynamic model:

When we deal with a heap data structure it is typical that we have to
deal not only with a single instance but with a set of instances. This
complicates both proof obligations which have to be verified by an
automatic theorem prover and specifications which have to be provided
by a client. To address this issue we introduce stereotype slices and
stereotype instances. A stereotype slice is an instance of a stereotype.
A stereotype slice adds stereotype items to the definitions of classes
which participate in the stereotype slice. While a stereotype slice
covers the whole heap, a stereotype instance corresponds to a single
data structure or a design pattern.

The distinction between stereotype slices and instances has several
advantages:

– The property which guarantees disjointness of stereotype
instances is reused together with a stereotype. Since the property
can be used to specify disjointness between different instances
of a data structure or a design patterns, its reusability reduces
specification overhead as well as facilitates automatic verification.

– A stereotype instance is a natural unit for the specification of
frames of stereotype operations. We use sets of stereotype items
to describe a cumulative effect of inductive composite stereotype
operations and of a parallel composition of stereotype operations.

– The distinction between stereotype slices and instances is used
in our methodology to guarantee the preservation of stereotype
invariants by stereotype operations.

Overall, a stereotype slice indicates a semantic relation between
classes, and a stereotype instance indicates a semantic relation between
instances of these classes.

• A language for the description stereotype operations:

The expressiveness of stereotype operations is crucial for the success-
ful application of the stereotype approach. Preferably we would like
to be able to specify any stereotype operation for any stereotype. We
address this issue by introducing the specification language of specifi-
cations (SLS). SLS provides a natural operational way for developing
stereotype operations. A developer of a specific stereotype can use
SLS to specify a stereotype universal transformation: a transforma-
tion which can be used to specify an arbitrary stereotype operation.
To demonstrate how this approach works we used SLS to specify uni-
versal transformations for Sequence and Tree stereotypes.

244 CHAPTER 8. CONCLUSION

SLS is well suited for human specification writers, but hardly usable
by an automatic theorem prover. SLS is both operational and recur-
sive, but the automatic theorem provers are targeted towards dealing
with functional and non-recursive specifications. We provide an auto-
matic translation from an SLS term to a standard stereotype opera-
tion representation (SSOR) to overcome this mismatch. Essentially
an SSOR is a pair of universally quantified pre- and post-conditions.
An SSOR is both functional and non-recursive. It is perfectly feasible
for an automatic theorem prover.

By using SLS together with the automatic translation into SSOR we
achieve the complete expressiveness of stereotype operations.

• Coupling between the stereotype slices and the heap:

As soon as the development of a stereotype has been completed it can
be used for source code specification and verification. For this we use
glue invariants and glue invariant states. A glue invariant state de-
scribes the role which an object plays in a topological structure or in a
semantics relation. A glue invariant is a universally quantified formula
which couples together stereotype items, heap fields, and glue invariant
states. By introducing glue invariants we accomplish complete inde-
pendence of stereotypes from the heap. Because of this independence
stereotypes are more reusable. We can use the same stereotype to
specify different data structures; e.g., we can use the sequence stereo-
type to verify a singly-linked list, a doubly-linked list, a cyclic list, a
path in a tree, etc. We achieve the flexibility by moving the part of
specifications which is specific to the verified program into the glue
invariant.

Another advantage of glue invariants is information hiding. The stereo-
type invariant states, together with the stereotype items, are expressive
enough to specify the source code without mentioning heap fields, ar-
rays, and containers which are used in the implementation. The client
can reason about a relation between an object which participates in a
data structure or design pattern and the rest of the objects in terms of
the stereotype items and the glue invariant state of the object. In this
way both precision and abstraction of specifications can be achieved.

Another aspect of the integration of stereotypes with the source code is
ghost updates and stereotype specifications. For both of them we use
the same stereotype operations. Since stereotype updates can be ex-
tremely verbose and complicated we prevent an extensive specification
duplication by the dual application of stereotype operations.

We proposed the first complete methodology for the specification and
verification of heap structures and semantic relations with automatic theo-
rem provers. We do not claim in any way that we closed the problem and

8.2. DIRECTIONS FOR FUTURE WORK 245

proposed a perfect solution. A significant number of technical and theo-
retical issues has to be resolved before the proposed technique can be used
to specify and verify full-scale real life industrial projects. We sketch these
issues in the next section. Even though the proposed methodology uses auto-
matic theorem provers it is far from being automatic. A significant amount
of work has to be done to verify a program, which results in both technical
and social complications. A development becomes much more expensive, re-
quires more time, more experience, and educated developers. Nevertheless,
we believe that additional work is unavoidable due to the state of the art of
automatic theorem proving. We also believe that after resolving this issue
it would be possible to apply the provided technique in industrial projects.

8.2 Directions for future work

As we have mentioned in the previous section quite a few issues have to be
resolved before we are able to apply the stereotype based methodology in
industrial projects. In this section we briefly describe those of them which
are observed even without a full-scale case study. It is possible that a case
study will identify even more theoretical and technical issues. For now let
us consider the known issues:

• Development of a standard stereotypes library: Since the
stereotype methodology makes a strong impact on reusability, it makes
sense to provide a standard library of stereotypes. The library has to
contain typical stereotypes equipped with universal transformations.
This library could provide a solid foundation for general purpose pro-
gram verification. Hopefully, the standard library could do the hardest
part of the job: to provide a precise enough approximation of the spec-
ified relation and operations for their update. The job of a library’s
client is to adjust them by means of glue invariants to specify the de-
sired source code properties. Another advantage of a standard library
is a specification standardization and improved readability.

For now the standard stereotype library consists of relation inversion,
sequence, and tree stereotypes. There are two obvious directions for
the standard library development.

– The first direction is the addition of new stereotypes to the li-
brary. For instance, it would be highly desirable to have DAG
and graph stereotypes in the library. Nevertheless, there are less
obvious candidates for inclusion in the standard library. For in-
stance, most of 3D CAD systems work with triangulated surfaces.
The data structure which represents a triangulated surface has
more specific properties than a general graph. This class of ex-

246 CHAPTER 8. CONCLUSION

amples motivates the addition of a planar graph stereotype to the
library.

The biggest challenge in the standard library development is the
development of universal transformations. Each stereotype has
its own distinguished properties which have to be appreciated
by the universal transformation. For instance, a DAG has data
sharing and a graph has loops of irregular structure. It is difficult
to estimate whether it will be easy or not to develop universal
transformations which appreciate these properties. The only way
to check this is to try to develop these universal transformations.

– Another direction for the standard library development is to im-
prove the precision of the stereotypes’ approximation. This can
be done by adding new stereotype items and invariants. For
instance, in the sequence and tree stereotypes we consciously ig-
nored all properties related to natural numbers; e.g., properties
of the size of a sequence, of indexed element access in a sequence,
of access of a tree element by a sequence of indexes, and so on.
These properties are redundant and can be constructed from cur-
rent stereotype items. Nevertheless, these definitions will be re-
cursive and their proof requires induction.

In order to improve the precision of the approximation of stereo-
types we have to add both stereotype items and stereotype in-
variants to the stereotype. For instance, to add the index of
an element to the sequence stereotype we have to add the index
stereotype items and several invariants: index of the next element
is greater by one, all elements in the right tail have greater value,
the index of the last element is equal to the size of the sequence,
and so on.

• Stereotype specification inference:

In the stereotype methodology a single heap update is duplicated in
several different ways:

– as a class fields update;

– as a glue invariant states update;

– as a stereotype items update;

– and as a method specification.

These duplications increase the overhead for a methodology user. The
negative impact of the duplications can be decreased by inference. For
now we can see the following opportunities for inference:

8.2. DIRECTIONS FOR FUTURE WORK 247

– Class fields and glue invariant state updates can be used to infer
stereotype ghost updates. For instance, if a glue invariant states
that a field is always equal to the next stereotype item and if
we assign a new value to the field then we can infer a pair of
stereotype operation calls. One of them removes the old rela-
tion and one adds the new relation. Another example is, if we
change a glue invariant state of an object from a state in which
it participates in a tree to a state in which it participates in a
sequence then we can infer a pair of stereotype operations call
one of which removes the tree relation and the other one adds
the sequence relation.

To make this inference feasible we have to syntactically distin-
guish glue invariants which establish the equality between a heap
field and a stereotype item for a given glue invariant state. Usu-
ally such invariants look like st = S ⇒ it = f , where st is a ghost
variable which represents the glue invariant state, S is a concrete
value of the glue invariant state, it is a stereotype item, and f is
a class field. To handle temporal invariant violations one would
infer ghost updates not for a separate field update but for the
whole code fragment which restores the glue invariant.

– Stereotype ghost updates can be used to infer stereotype method
specifications. Since both of them use SLS terms, one way to
infer stereotype method specifications is to collect all stereotype
method calls and replace normal method calls with their stereo-
type specifications. The resulting sliced method will consist only
of stereotype operations and can be used as the method specifi-
cation. This approach looks pretty straightforward, nevertheless
it has several essential drawbacks:

∗ The approach would not work for recursive methods. For re-
cursive methods, specifications play a role similar to the one
loop invariants play in a loop. A post-condition of a recur-
sive method has to aggregate updates which are done by all
nested calls. Inferring this specification requires automatic
contraction of an aggregated specification, which is hardly
feasible in the general case.

∗ A method specification can contain stereotype specifications
not in a form of a SLS expression, but in a form of explicit
logical expressions. Since explicit logical expressions are not
a part of SLS we cannot integrate them into the rest of the
inferred method specification. It is even possible that this
expression cannot be represented as an SLS term at all. At
the end we cannot infer stereotype method specification for
a method whose body contains a call of a method with a

248 CHAPTER 8. CONCLUSION

non-SLS stereotype specification.

∗ The input parameters of a stereotype operation which is
called from a method body are side effect free expressions. It
is possible that these expressions mention a heap value or a
local variable. The method body specification can mention
only heap states before and after the method execution and
local values before the method execution. We cannot express
the stereotype operation parameters in the method specifi-
cations if the stereotype oration is executed in the middle
of the method body. The parameters are reconstructed by
the weakest pre-condition calculus which introduces explicit
values to represent intermediate heaps. It is not acceptable
to introduce these variables in the method specifications.

Because of these drawbacks we cannot infer method stereotype
specifications in the general case, but only in simple cases. Nev-
ertheless, it still can be useful since it can relieve the client from
specifying many simple methods.

• Tool support:

For now the stereotype based verification is a theoretical technique. To
bring it to practice we have to provide a tool support. More specifically
we need an implementation of a simplistic stereotype based verification
language which supports the following features:

– A stereotype definition:

∗ stereotype items.

∗ stereotype invariants.

∗ SLS support for stereotype operations.

– Stereotype and source code integration facilities:

∗ stereotype slices and participation of classes in slices.

∗ glue invariant states.

∗ glue invariants.

∗ ghost stereotype updates via stereotype operations calls from
the source code.

– Behavioral specifications:

∗ method pre- and post-conditions.

∗ behavioral invariant states.

∗ behavioral invariants.

A natural way to implement this language is to define a translation
into Boogie. The thesis covers all aspects of this translation.

8.2. DIRECTIONS FOR FUTURE WORK 249

Another feature which is crucial for the successful application of the
approach is a more efficient usage of hints. As it has already been men-
tioned we had to add hints to enable verification of some programs and
universal transformations. Such hints are introduced as intermediate
assertions. For instance, if an SMT theorem prover cannot prove
{φ}S;Q{φ′} we could introduce this intermediate hypothesis ϕ such
that both {φ}S{ϕ} and {ϕ}Q{φ′} hold. The existence of ϕ in the
obvious way proves {φ}S;Q{φ′}. Another type of hint which we used
is a case split. If an SMT theorem prover cannot prove {φ}S{φ′} then
we introduce formulas ϕ1, . . . , ϕn such that

∨n
i=1 ϕi and {ϕi∧φ}S{φ

′}
for all i ∈ [1..n] hold. The existence of ϕ1, . . . , ϕn implies {φ}S{φ′}.
For now, we introduce these hints as ordinary Boogie assertions. In-
stead of this the weakest pre-condition calculus used by Boogie can
be modified to utilize the hints in a more efficient way. We believe
that due to the current state of SMT theorem provers these hints
are unavoidable and have to be adequately handled and utilized by
verification languages.

• Evaluation:

An important way to evaluate the approach presented in this thesis is
to make case studies. Since we did not have a prototype implemen-
tation we used a direct encoding into Boogie to perform a limited
evaluation. We can distinguish the following types of case studies
which can be performed to evaluate this approach further:

– Evaluation of the SLS-to-SSOR transformation. The
transformation is used for the verification of stereotype opera-
tions. A natural case study for the transformation is the verifi-
cation of universal stereotype transformations. As we have men-
tioned above we did not have a tool and used the weakest pre-
condition calculus provided by Boogie as a replacement. Even
without the SLS-to-SSOR transformation we were able to verify
the sequence universal transformation and some parts of the tree
universal transformation. These examples showed that universal
transformation verification can be quite challenging. We believe
that the SLS-to-SSOR transformation could improve the situa-
tion. The hypothesis can be practically evaluated only after the
prototype has been implemented.

– Verification of data structures and design patterns. Using
universal sequence transformation and partially implemented tree
universal transformation we were able to verify several data struc-
tures and design patterns. The provided experiments demon-
strate that the approach works for some challenging examples.
Nevertheless, they are obviously far from being complete. To

250 CHAPTER 8. CONCLUSION

achieve completeness we can use two sources of examples: a stan-
dard design patterns text books (e.g. [50]) and data structure li-
braries (e.g., the Java collections framework or C++ STL). Such
case studies would be a enabled by a prototype implementation.

– Evaluation of a full-scale industrial project. At the end
of the day the only way to evaluate a verification technique is a
real life industrial project. Nevertheless, it does not make a lot of
sense to approach such an ambitions project before the obvious
problems are addressed. That is why we believe that this case
study will be crucial, but should be done only after all the above
items have been be addressed.

8.3 Applications and consequences

In this section we briefly sketch the possible applications of the proposed
methodology. Since the problem of verifying heap topologies and semantical
relations has been researched for a long time, some of these applications
are well known. On the other hand, some applications are specific for the
proposed methodology. For a clear picture we would like to mention all of
them.

• Verification of multiple objects invariants. A multiple objects
invariant is a property relates multiple objects. The number of ob-
jects which participate in a multiple objects invariant is potentially
unbounded. On the other hand the same object can participate in an
unbounded number of invariants. For these reasons multiple objects
invariants is challenging. To enable verification of the invariants we
have to be able to specify and verify on which objects an invariant
depends and in which invariants an object participates. The heap
topology can be used to extract this information. We also need to be
able to specify which objects are potentially affected by a method call.
The stereotype based methodology can be used to address all these
needs. Stereotype items can be used to specify invariants and stereo-
type operations provide a natural way for the specification of methods
effects. In our experiments we used a simple visible state semantics for
invariants. The visible state semantics was chosen to avoid extra com-
plexity. On the other hand, the stereotype based methodology can be
used as a basis for any other invariant verification technique. In this
way an invariant verification technique can reuse heap specification
facilities provided by stereotypes and concentrate on the description
of which invariants can be assumed and asserted at which program
points.

• Verification of concurrent programs. The stereotype based

8.3. APPLICATIONS AND CONSEQUENCES 251

methodology can be used as a bases for the verification of the following
concurrent properties:

– Absence of race conditions. A race condition arises when two
or more threads in a concurrent way modify the same part of the
heap. One of the properties which have to be checked to prevent
race conditions is the disjointness of thread effects. Again stereo-
type items and operations can be used to specify which objects
could be affected by an execution of a thread in a given state.
The absence of race conditions can be verified by checking the
pairwise disjointness of the effects of the concurrently executed
threads. The effect of a thread is defined by the frame of the
thread body.

– Deadlock freedom. A deadlock arises when two or more
threads lock the same objects in a different order. To prevent
a deadlock it is enough to introduce a partial order on locked
objects, and check that each thread locks them according to this
order. Quite often such an order is retrieved from an acyclic data
structure, e.g., a list or a tree path. For instance, a linked list can
be modified in a deadlock-free way by an unbounded number of
threads if each of them locks and releases object according to the
order induced by the ”next element” relation of the list. On the
other hand, if a loop is created in the list then the relation induced
by the ”next element” is not an order any more (the antisymmetry
of the order is violated). In this case a deadlock can arise even if
elements are locked according to the order. A way to prevent this
is to verify that a cycle is never created in the list. Stereotypes
provide a natural way to specify such properties. For instance,
the sequence stereotype can be used to verify that this property
holds for a linked list. In a similar way other stereotypes can be
used to verify that a given part of a heap structure is acyclic and
as a result induces a partial order which can be used for deadlock
prevention.

• Software engineering applications. At the current state software
engineering is a quite fuzzy area of engineering. Therefore, the devel-
opment and maintenance of software systems is extremely challenging,
error prone, and hardly manageable. For now software engineering
is more an art than a science. We believe that in the long run the
stereotype based methodology could improve this situation. This as-
sumption is based on the following observations:

– A significant part of the complexity of software engineering comes
from dealing with semantical relations and heap topology.

252 CHAPTER 8. CONCLUSION

– The stereotype based methodology proposes a way to address
these issues.

Let us consider several possible applications of the stereotype method-
ology in the area of software engineering:

– Encapsulation and modular development. A strongly de-
sired property for a software engineering project is modularity.
It should be possible to split the whole project into independent
modules in such a way that all communication between modules is
going strictly via predefined module interfaces. The whole project
could be organized as a hierarchical composition of modules (a
module can contain other modules). This project organization
has the following advantages:

∗ Independent development. Each module can be developed
and tested in isolation from other modules. It enables parallel
and distributed development.

∗ Interchangeability. An implementation of a module can be
changed without affecting the rest of the project. The new
version of the module has to respect the interface but can
freely change the implementation.

∗ Manageability. When a module has been developed we need
to take into consideration only those modules which are di-
rectly accessible from the developed module and can ignore
the rest of the system.

Unfortunately it is imposable to achieve true modularity with
modern programming languages. The reason is aliasing. There
is no mechanism which prevents an undesired aliasing from one
module to the internals of another one. Typically it happens by
means of alias leaking (a method returns a reference to an internal
of the module) and capturing (a methods saves an input reference
into the module’s internals).

To prevent alias leaking from a module and alias capturing by
a module we have to be able to detect aliasing at compile time.
Stereotypes can be used to describe heap relations inside the mod-
ule. Later on this specification can be used to prevent undesired
aliasing and ensure encapsulation of the module’s internals.

– Design patterns. A Design pattern is a reusable solution of
a typical problem in software engineering. Since design patterns
provide various benefits they are widely used in everyday software
development. Despite the prevalence there is still no direct sup-
port for design patterns in modern programming languages. The
absence of direct support results in misuses of design patterns,

8.3. APPLICATIONS AND CONSEQUENCES 253

worse code readability, and code duplication. Defacto there is
even no generally accepted formal definition of design pattern.

We believe that the main reason for such a fuzzy state of design
patterns is the absence of a mechanism for the specification of se-
mantical relations in modern programming languages. A typical
design pattern includes a description of:

∗ roles of participating objects. (e.g. Observer, Iterator,
Adapter, and so on). These includes descriptions of methods
which have to be provided by an object which plays a given
role.

∗ semantic relations between participating objects (observer
observes a specific subject, iterator iterates over a specific
container, adapter owns a specific adoptee)

∗ description of an order and conditions under which methods
provided by participating objects can be executed.

The first item is usually provided by interfaces and abstract
classes. If a role has a partially predefined behavior which can
be reused then an abstract class can be used to represent the
role. Otherwise a role is represented by an interface. A good
example of role descriptions in modern programming languages
is the observer pattern implementation in the Java standard li-
brary. Since subject has a standard behavior it is represented by
an abstract class. On the other hand, observer is represented by
an interface because it does not have a standard behavior.

The other two items are not really provided by modern program-
ming languages. For instance, by looking at the signature of
Java’s ”Observable” we can assume that there is some relation
between it and the ”Observer” interface, but we have no idea
which kind of relation it is and how different observers and ob-
servables communicate with each other.

This gap can be covered by the stereotype based methodology.
Stereotypes can be used to describe semantic relations between
objects which play various roles. For instance, we used the re-
lation inversion stereotype to describe this semantic relation for
the observer, iterator, and mediator patterns. As soon as we
have a semantic relation between objects which participate in a
design pattern we can use them to specify pre-conditions, post-
conditions and invariants. These specifications precisely define
which methods can be executed, and in which order.

• Verification of security properties. The stereotype based method-
ology can be used to verify some security properties. One of these
properties is isolation. The isolation property guarantees that a given

254 CHAPTER 8. CONCLUSION

piece of the code would not affect the rest of the system. For instance,
an operating system enforces isolation between different processes. In
this way a corrupted process with low access rights cannot affect a
process with high access rights. Another example is process isolation
in web browsers. For instance, if we are browsing two web pages and
enter a credit card number in one of them we would like to be sure
that this information will be isolated from the other one. Isolation is
also strongly desirable for untrusted bytecode (typically downloaded
from internet).

In all of the above situations stereotypes can be used to guarantee
isolation. For brevity we refer to pieces of code whose isolation is
checked as process. The isolation can be verified in the following way:

– a topology of all processes for which isolation has to be checked
is described by means of the stereotype based methodology. If
for any process there is only an untrusted bytecode but no source
code then Proof-Carrying Code has to be used [110]

– As soon as the topology of a process is described we can use
stereotype items to specify effects of the process.

– The last thing which we have to do is to check pairwise disjoint-
ness of effects of participating processes.

The stereotype based methodology could be even more useful when
a limited interprocess communication between isolated process is pro-
vided. For instance, this communication is provided by most operating
systems. A transfer of a piece of memory from an isolated process pold
to another isolated process pnew is typically done by copying the piece
of memory. The memory copying guarantees process isolation, but
requires extra cpu time and memory. Another way to address this
issue is to prove at compile time that the transferred piece of memory
will not be accessed by the process pold. For instance, this approach
is used by Singularity OS [61]. Singularity OS exploits a type system
to guarantee the isolation property. The limitations of this approach
originate from the limitations of the exploited types system; the trans-
ferred pieces of memory can be aliased only in a very specific way. The
stereotype based methodology provides a way to overcome these lim-
itations. Stereotypes can be used to describe an arbitrary topology.
During a compilation the stereotype specifications can be used to ver-
ify that the transferred piece of memory will not be accessed by the
process pold.

• A foundation for specialized automatic theorem provers.

In general automatic theorem provers try to solve an undecidable prob-
lem. So it is not a surprise that their abilities are limited. Even a very

8.3. APPLICATIONS AND CONSEQUENCES 255

simple formula can have a huge proof. A good example is Fermat’s
last theorem. It is formulated in a single line, but its proof [145, 146]:

– took 358 years

– was done using very advanced mathematical concepts

– is more then two hundred pages long

On the other hand it was proven that the proof of Fermat’s last theo-
rem can be done in elementary arithmetic [2]. Elementary arithmetic
is a relatively simple theory which consists of increment, addition, mul-
tiplication, power, and the induction schema for bounded formulas.

The example demonstrates the delusive nature of mathematical logic.
A proof of a logical statement which looks very simple and provable in
a simple theory can be fantastically complicated. For this reason, we
cannot expect that automatic theorem provers will be able to prove
an arbitrary logical statement. For now, even people cannot do it.

From these arguments we can conclude that if we develop an automatic
theorem prover we have to target it towards a very specific set of
formulas. The set has to be both rich enough to express most of
the desired properties and simple enough to be feasible for automatic
verification. It is hard to identify a logical characterization of this set,
so even an extensive set of examples and cases studies can be of great
use.

We believe that the stereotype based methodology can be used to iden-
tify this set of formulas for a theory of heap structures and semantic
relations. Stereotype invariants identify typical properties which de-
scribe a state of a heap manipulating program. Stereotype operations
identify typical relations between two program states. User provided
assertions (hints) identify transactions between program states which
are especially hard for automatic verification.

256 CHAPTER 8. CONCLUSION

Appendix A

Universal transformations for

sequence stereotype

In this appendix we construct the universal transformations for the sequence
stereotype. As have we mentioned in Section 6.5 it is enough to construct
the universal set of relation addition and removal to get a universal trans-
formation.

A.1 Operation addSetSequenceRelation

The stereotype operation addSetSequenceRelation merges a set of se-
quence instances into a single instance. The operation definition is shown
in Figure A.1.

The input parameters of the operation are the following:

• Ib is the instance identifier of the first sequence.

• Ie is the instance identifier of the last sequence.

• Inst is the set of instance identifiers of the merged sequences.

• nextInst is an order over sequences. It maps a sequence identifier into
a sequence identifier of the next sequence according to the order in
which they are merged.

• ElUnion is a redundant argument which maps an instance identifier
o into a union of all elements of all sequences which are succeeded
or equal to o. The parameter is redundant in a sense that it can
be constructed from other parameters, but we require it to avoid the
usage of transitive closure and to facilitate the proof.

The operation has three local variables. nextInst∗ is the transitive clo-
sure of nextInst. We use the redundant parameter ElUnion to define it.

257

258 APPENDIX A. UNIVERSAL TRANSFORMATIONS FOR SEQUENCE STEREOTYPE

1 addSetSequenceRelation〈Sequence〉(Ib : ref !, Ie : ref !, Inst : Reg!,
2 nextInst : ref → ref, ElUnion : ref → TReg)
3 Local variables:

4 ∀o : nextInst∗[o] = ElUnion[o] ∩ Inst ;
5 Inst′ = Inst \ {Ib} ;
6 Ib′ = nextInst[Ib] ;
7 Pre-conditions:

8 ∀o ∈ Inst : o.instID = o ;
9 Ib ∈ Inst ;

10 Ie ∈ Inst ;
11 nextInst(Inst \ {Ie}) ⊆ Inst ;
12

13 ElUnion[Ie] = Ie.Elements ;
14 ∀o ∈ Inst \ {Ie} : ElUnion[o] = ElUnion[nextInst[o]] ∪ o.Elements ;
15 ∀o ∈ Inst \ {Ie} : o.Elements]ElUnion[nextInst[o]] ;
16 ∀o ∈ Inst, o′ ∈ Inst : o′ ∈ ElUnion[o] ⇒ ElUnion[o′] ⊆ ElUnion[o] ;
17

18 nextInst∗[Ie] = {Ie} ;
19 ∀o ∈ Inst \ {Ie} : nextInst∗[o] = {o} ∪ nextInst∗[nextInst[o]] ;
20

21 Inst ⊆ ElUnion[Ib] ;
22 ∀o, o′ ∈ Inst \ {Ie} :
23 o′ ∈ ElUnion[o] ⇒ nextInst[o′] ∈ ElUnion[nextInst[o]] ;
24

25 Transformations:

26 〈ElUnion[Ib],Elements, ElUnion[Ib]〉 ;
27 〈ElUnion[Ib], first, Ib.first〉 ;
28 〈ElUnion[Ib], last, Ie.last〉 ;
29 〈Inst \ {Ie})〈o′〉.last, next, nextInst[o′].first〉 ;
30 〈∃o, o′ : o ∈ Inst′ ∧ o′ ∈ Inst′ ∧ o = nextInst[o′]
31 ∧v = o.first, prev, o′.last〉 ;
32 〈(Inst \ {Ie})〈o′〉.Elements, Next∗,v.Next∗ ∪ ElUnion[nextInst[o′]]〉 ;
33 〈(Inst \ {Ib})〈o′〉.Elements, Prev∗,
34 v.Prev∗ ∪ ElUnion[Ib] \ ElUnion[o′]) ;
35 Input instances: Inst
36 Frame:

37 〈v 6= v.last ∨ v = Ie.last, next〉 ;
38 〈v 6= v.first ∨ v = Ib.first, prev〉 ;
39 〈Ie.Elements, Next∗〉 ;
40 〈Ib.Elements, Prev∗〉 ;
41 Measure: Inst
42 {
43 if (Ib 6= Ie) then {
44 addSetSequenceRelation(Ib′, Ie, Inst′, nextInst, ElUnion)

45 measure Inst′
Ib
⊂Inst ;

46 addSequenceRelation(Ib, Ib′) ;
47 }
48 }

Figure A.1: addSetSequenceRelation stereotype operation.

A.1. OPERATION ADDSETSEQUENCERELATION 259

Inst′ and Ib′ are corresponding parameters of the recursive call. We con-
struct Inst′ by dropping Ib from Inst. Ib′ is defined as the identifier of the
sequence which succeeds the first one.

The pre-condition section of addSetSequenceRelation consists of sev-
eral subsections. In the first one we define the properties of domains of the
input parameters. Inst contains only the instance identifiers, Ib and Ie are
the elements of Inst, and the image of all elements of Inst excluding Ie
under nextInst also belongs to Inst. The last property guarantees that
nextInst maps an instance identifier into another instance identifier.

The next subsection defines the properties of ElUnion. ElUnion of the
last sequence is equal to the elements of the last sequence. ElUnion of all
other sequences are equal to the elements of the sequence plus ElUnion of
the next sequence. The next property states the disjointness of the elements
of a sequence and ElUnion of the next sequence. This property guarantees
the acyclicity of the constructed sequence. The last property of this subsec-
tion states that ElUnion forms a sequence of the nested sets. If an element
of Inst belongs to ElUnion of another element of Inst then ElUnion of the
first element is a subset of ElUnion of the second element. This property
is redundant, nevertheless we include it as the explicit pre-condition since
its proof requires the use of induction. We can think of this property as the
inductive hypothesis.

The next subsection defines the semantics of nextInst∗. nextInst∗ of
the last sequence is the singleton set {Ie}. nextInst∗ of all other sequences
is equal to the elements plus nextInst∗ of the next sequence.

The last subsection contains two properties. The first one states that
Inst is a subset of ElUnion of the first sequence. We need this property
to verify the frame rules. The last pre-condition states that if an element
belongs to the ElUnion of another element then nextInst of the first ele-
ment belongs to the ElUnion of the nextInst of the second element. This
property is another example of the redundant inductive hypothesis.

Let us now look at the transformation section of
addSetSequenceRelation. Here we have one transformation per stereotype
item.

• Elements: We know that ElUnion(Ib) is equal to the union of all
elements of all sequences. We set Elements of all object from
ElUnion(Ib) to ElUnion(Ib).

• first: The first element of the resulting sequence is equal to the first
element of the first sequence.

• last: The last element of the resulting sequence is equal to the last
element of the last sequence.

• next: We change the value of next of the last elements of all se-
quences excluding the last one. o′ denotes the instance identifier of

260 APPENDIX A. UNIVERSAL TRANSFORMATIONS FOR SEQUENCE STEREOTYPE

the affected sequence. The new value of next is the first element of
the next sequence. By this transformation we establish a forward re-
lation between sequences.

• prev: We change the value of prev of the first elements of all sequences
excluding the first one. o denotes the instance identifier of the affected
sequence. The new value of prev is the last element of the previ-
ous sequence. Since we do not have an explicit relation inversion we
simulate it using the quantified variable o′. The transformation rule
is equivalent to 〈(Inst \ {Ib})〈o′〉.first, prev, nextInst−1[o′].last〉,
where nextInst−1 denotes the inversion of nextInst. By this trans-
formation we establish a backward relation between sequences.

• Next∗: We change the values of Next∗ for elements of all sequences
excluding the last one. o′ denotes the instance identifier of an affected
sequence. The value of Next∗ is increased by the addition of the union
of the elements of all sequences which succeed o′. This union is equal
to ElUnion of the next sequence.

• Prev∗: We change the values of Prev∗ for the elements of all sequences
excluding the first one. o′ denotes the instance identifier of an affected
sequence. The value of Prev∗ is increased by addition of the union of
the elements of all sequences which precede o′. This union is equal to
the difference between ElUnion of the first sequence and ElUnion of
o′.

The input instance section states that the instance identifiers of all af-
fected instances belong to Inst.

The structure of the frame section is similar to the transformation sec-
tion. We have a frame rule per stereotype item:

• next: The operation preserves the values of next for all objects which
are not a last element of a sequence and for the last element of the
last sequence.

• prev: The operation preserves the values of prev for all objects which
are not a first element of a sequence and for the first element of the
first sequence.

• Next∗: The values of Next∗ are preserved for all elements of the last
sequence.

• Prev∗: The values of Prev∗ are preserved for all elements of the first
sequence.

• Elements, first, and last: there are no frame rules for Elements,
first, and last since they are automatically inferred from the trans-
formation rules.

A.2. OPERATION REMOVESETSEQUENCERELATION 261

The measure section states that the input parameter Inst is used as a
measure variable, which means that for each recursive call the value of Inst
has to decrease.

The last section is the method body. If Inst is a singleton set, which is
the case if and only if Ib = Ie, then we already have a single sequence. In
the other case we perform a recursive call which merges all sequences but the
first one, and then call addSequenceRelation to merge the first sequence
with the result of the recursive call. In the measure section of the call we
explicitly state that Ib belongs to Inst but not to Inst′. We use it as a hint
to prove that Inst′ ⊂ Inst.

A.2 Operation removeSetSequenceRelation

Let us now consider the removeSetSequenceRelation operation. The op-
eration is an inversion of addSetSequenceRelation. It splits a single input
sequence instance into several sequence instances. Because of the similarity
between the two operations we consider removeSetSequenceRelation in
less detail than addSetSequenceRelation.

The operation is defined in Figure A.2. The input parameters of the
operation have the following meaning:

• Inst is a set of cut-points. It contains the initial points of relations
which are removed by the operation.

• nextInst is an order on Inst induced by the next relation of the
sequence. In other words, for each o from Inst \ {Ie}, nextInst[o]
is reachable from o by next and there is no other element from Inst
between them.

• Ib and Ie are the first and the last cut-points according to the order
provided by nextInst.

The operation has six local variables. nextInst∗, Inst′, and Ib′ have
the same meaning as the corresponding variables of addSequenceRelation.
The only difference here is that we use Next∗ instead of ElUnion to define
nextInst∗. ElFirst defines the elements of the first output sequence as all
elements from the beginning of the input sequence to the first cut-point.
MiddleEl defines the elements of the middle output sequences as the ele-
ments between two adjacent cut-points. ElFirst defines the elements of the
last output sequence as all elements from the last cut-point to the end of
the input sequence.

The pre-condition section of removeSetSequenceRelation consists of
several subsections. In the first one we define the properties of the domains
of the input parameters. Since Ie is the last cut-point there has to be a

262 APPENDIX A. UNIVERSAL TRANSFORMATIONS FOR SEQUENCE STEREOTYPE

1 removeSetSequenceRelation〈Sequence〉
2 (Ib : ref !, Ie : ref !, Inst : Reg!, nextInst : ref → ref)
3 Local variables:

4 ∀o : nextInst∗[o] = Next∗[o] ∩ Inst ;
5 Inst′ = Inst \ {Ib} ;
6 Ib′ = nextInst[Ib] ;
7 ElF irst = Ib.Elements \ Ib.Next∗ ;
8 ∀o :MiddleEl[o] = Next∗[o] \ Next∗[nextInst[o]] ;
9 ElLast = Ie.Next∗ ;

10 Pre-conditions:

11 Ie.next 6= null ;
12 Ib ∈ Inst ;
13 Ie ∈ Inst ;
14 null /∈ nextInst(Inst \ {Ie}) ;
15

16 Inst = nextInst∗[Ib] ∪ {Ib} ;
17 ∀o ∈ Inst \ {Ie} : nextInst∗[o] = nextInst∗[nextInst[o]] ∪ nextInst[o] ;
18 nextInst∗[Ie] = ∅ ;
19

20 Inst ⊆ Ib.Elements ;
21 ∀o ∈ Inst \ {Ie} : nextInst[o] ∈ o.Next∗ ;
22 Transformations:

23 〈ElF irst,Elements, ElF irst〉 ; 〈ElLast,Elements, ElLast〉 ;
24 〈(Inst \ {Ie})〈o′〉.MiddleEl,Elements,MiddleEl[o′]〉 ;
25 〈ElF irst, Next∗,v.Next∗ \ Ib.Next∗〉 ;
26 〈(Inst \ {Ie})〈o′〉.MiddleEl, Next∗,v.Next∗ \ nextInst[o′].Next∗〉 ;
27 〈ElLast, Prev∗,v.Prev∗ \ Ie.Prev∗ ∪ {Ie}〉 ;
28 〈(Inst \ {Ie})〈o′〉.MiddleEl, Prev∗,v.Prev∗ \ o′.Prev∗ ∪ {o′}〉 ;
29 〈ElF irst, last, Ib〉 ;
30 〈(Inst \ {Ie})〈o′〉.MiddleEl, last, nextInst[o′]〉 ;
31 〈ElLast, first, Ie.next〉 ;
32 〈(Inst \ {Ie})〈o′〉.MiddleEl, first, o′.next〉 ;
33 〈Inst, next,null〉
34 〈v 6= null ∧ v.prev ∈ Inst, prev,null〉
35 Input instances: {Ib.instID}
36 Frame:

37 〈ElLast, last〉 ;
38 〈ElF irst, first〉 ;
39 〈ElLast, Next∗〉 ;
40 〈ElF irst, Prev∗〉 ;
41 Measure: Inst
42 {
43 if(Ib 6= Ie) then
44 removeSetSequenceRelation(Ib′, Ie, Inst′, nextInst)

45 measure Inst′
Ib
⊂Inst ;

46 removeSequenceRelation(Ib) ;
47 }

Figure A.2: removeSetSequenceRelation stereotype operation.

A.2. OPERATION REMOVESETSEQUENCERELATION 263

next element after Ie. Ib and Ie are the elements of Inst. The image of all
elements of Inst excluding Ie under nextInst is not null.

The next subsection establishes the properties of nextInst∗. nextInst∗

of the first cut-point plus the first cut-point is equal to Inst . For each cut-
point but the last one, nextInst∗ of the cut-point is equal to the nextInst∗

of the next cut-point plus the next cut-point. nextInst∗ of the last cut-point
is the empty set.

The last subsection consists of two pre-conditions. The first one states
that all cut-points are also elements of the input sequence instance. The
next one states that for each o from Inst \ {Ie}, nextInst[o] is reachable
from o by next. This is part of the characteristic property of nextInst.

Let us now look at the transformation section of
removeSetSequenceRelation. We group the transformation rules by the
stereotype item which they update.

• Elements: There are three transformation rules which affect the values
of Elements. They state that: the elements of the first output sequence
are ElFirst, the elements of the middle output sequences are equal to
MiddelEl, and the elements of the last output sequence are ElLast.

• Next∗: For the elements of the first and the middle output sequences
we decrease Next∗ by removing all elements after the next cut-point.
For the first output sequence the next cut-point is Ib. For the middle
output sequences we use nextInst to identify the next cut-point.

• Prev∗: For elements of the last and the middle output sequences we
decrease Prev∗ by removing all elements before the cut-point and the
cut-point. For the last output sequence the cut-point is Ie. For the
middle output sequences the cut-point is o′.

• last: We set the last elements of the first and the middle output
sequences to the next cut points.

• first: We set the first elements of the last and the middle output
sequences to the successors of the cut-points.

• next: We set next of all cut-points to null.

• prev: We set prev of all successors of cut-points to null. Since the
value of v.prev is undefined if v = null, we explicitly add the con-
straint v 6= null to the transformation rule.

The input instance section states that there is only one affected sequence
whose id is extracted from Ib.

The frame rules section is pretty straightforward. Values first and
Next∗ are preserved for the first output sequence. Values last and Prev∗

264 APPENDIX A. UNIVERSAL TRANSFORMATIONS FOR SEQUENCE STEREOTYPE

are preserved for the last output sequence. Since the values of Elements
are updated for all relevant objects there is no frame rule for Elements.
The frame rules for next and prev are inferred from the corresponding
transformation rules.

The measure section states that the input parameter Inst is used as a
measure variable.

The last section is the method body. If Inst is not a singleton set, which
is the case if and only if Ib 6= Ie, then we make a recursive call which splits
the tail of the input sequence. The last statement of the body is a call of
removeSequenceRelation which separates the first output sequence from
the rest of the input sequence.

Appendix B

Universal transformations for

the tree stereotype

In this appendix we construct the universal transformations for the tree
stereotype. As we have mentioned in Section 6.5 it is enough to construct
the universal set of relation addition and removal to get a universal trans-
formation.

B.1 Level 1

B.1.1 Operation addSetTreeRelation1

• Operation description: The operation is the extension of
addTreeRelation in case we add an unbounded number of sub-trees
to an element of a tree. The operation is defined in Figure B.1. The
result of the operation is depictured in Figure 4.25.

• Input parameters:

– l: an element of the tree to which sub-tress are added.

– P : set of instance identifiers of added sub-trees.

• Local variables:

– p: an arbitrary element of P . If P is the empty set, the value of
p is undefined.

– P ′: the value of P for the recursive call.

– PEL: the union of the elements of added sub-tress.

– newEl: elements of the resulting tree. It is received by addition
of the elements of the added sub-trees to an old element of the
tree.

265

266 APPENDIX B. UNIVERSAL TRANSFORMATIONS FOR THE TREE STEREOTYPE

1 addSetTreeRelation1〈Tree〉(l : ref!, P : Reg!)
2 Local variables:

3 p ∈ P ;
4 P ′ = P \ {p} ;
5 PEL = InstEl(P) ;
6 newEl = l.Elements ∪ PEl
7 lA = {l} ∪ l.Anc
8 ∀o, o′ : f ′Desc[o, o

′] = if(o = l) then o′.root else o.fDesc[l] ;
9 Pre-conditions:

10 ∀p ∈ P : p.instID = p
11 l.instID /∈ P
12 Transformations:

13 〈l, Child, l.Child ∪ P 〉 ;
14 〈P, parent, l〉 ;
15 〈PEl, root, l.root〉 ;
16 〈newEl,Elements, newEl〉 ;
17 〈lA, Desc,v.Desc ∪ PEl〉 ;
18 〈PEl, Anc,v.Anc ∪ lA〉 ;
19 〈lA× PEL, fDesc, f

′
Desc[v, v

′]〉 ;
20 Input instances: P ∪ {l.instID} ;
21 Frame: ∅ ;
22 Measure: P
23 {
24 if(P 6= ∅) then{

25 if(P ′ 6= ∅) then addSetTreeRelation1(l, P ′) measure P ′
p
⊂P ;

26 addTreeRelation(p, l) ;
27 }
28 }

Figure B.1: addSetTreeRelation1 stereotype operation.

B.1. LEVEL 1 267

– lA: elements of the tree whose descendants are updated by the
operation execution.

– f ′Desc: an updated version of the fDesc function. We introduce the
function to merge two transformation rules into one. For each o
and o′ such that o′ is a descendent of o, f ′Desc[o, o

′] returns a child
of o through which o reaches o′. If the first parameter is l then
such an element is the root of a corresponding added sub-tree.
Since in all other cases the path from an element of the tree to
an element of an added sub-tree goes through l the result is equal
to o.fDesc[l]. The reasoning is pretty much the same as for the
addTreeRelation operation.

• Pre-conditions: We refer to a pre-condition by its line number in
the operation definition.

10. P contains only instances identifiers.

11. l is disjoint form trees from P .

• Transformations:

– Child: add P to the children of l.

– parent: set parents of roots of sub-trees from P to l. Here we
exploit the fact that the instance identifier of a tree is equal to
the root of the tree.

– root: set root of all elements of added sub-trees to l.

– Elements: set values of Elements of all elements of the resulting
tree into newEl.

– Desc: add the union of elements of all added sub-trees (PEL) to
Desc of l and its ancestors.

– Anc: add lA to Anc of all elements of the added sub-tress.

– fDesc: We have to update fDesc for a pair of objects 〈o, o′〉 if
and only if we add o′ to the descendants of o. If we look at
the transformation rule we can see that all such pairs of objects
belong to lA× PEL. We set a new value of fDesc into f ′Desc.

• Input instances: The input instances are P and the one which con-
tains l.

• Frame: Since we do not use quantifiers in the transformation rules, all
frame rules are inferred.

• Measure: We use P as a measure.

268 APPENDIX B. UNIVERSAL TRANSFORMATIONS FOR THE TREE STEREOTYPE

• Body: If P is the empty set then nothing has to be done. Other-
wise, if P ′ is not the empty set we make a recursive call and use
addTreeRelation to add the 〈p, l〉 relation. Since P contains p and
P ′ does not, we know that the recursion terminates .

B.1.2 Operation removeSetTreeRelation1

• Operation description: The operation is dual to
saddSetTreeRelation1. It removes a set of sub-trees which have the
same parent. We also can think of the operation as the generalization
of removeTreeRelation. The operation is defined in Figure B.2.

• Input parameters:

– P : set of roots of removed sub-trees.

• Local variables:

– p: an arbitrary element of P . If P is the empty set, the value of
p is undefined.

– P ′: the value of P for the recursive call.

– l: an element of the tree from which the sub-trees are removed.
If P is the empty set, the value of l is undefined.

– ElSub: contains the elements of the subtrees.

– fPEl: is a witness function which is used to define the union of
the elements of the removed sub-trees.

– PEL: the union of the elements of the added sub-tress. Here we
use the witness function fPEl.

– newEl: the elements of the tree after removal of sub-trees.

– lA: the elements of the tree whose descendants are updated by
the operation execution.

• Pre-conditions:The pre-condition states that if P is a non empty set
then all elements of P are children of l. The pre-condition is equivalent
to the following: all elements of P have the same parent.

• Transformations:

– Child: remove P from the children of l.

– parent: Since the elements of P are parents of the deleted sub-
trees, we set their parents to null.

– root: For each o′ ∈ P , o′ is the new root of the corresponding
sub-tree. We set root for all ElSub[o′], which contains elements
of the corresponding sub-tree, to o′.

B.1. LEVEL 1 269

1 removeSetTreeRelation1〈Tree〉(P : Reg!)
2 Local variables:

3 p ∈ P ;
4 P ′ = P \ {p} ;
5 l = p.parent ;
6 ∀o : ElSub[o] = o.Desc ∪ {o} ;
7 ∀o : fPEl[o] = l.fDesc[o] ;

8 PEl =
fPEl
⋃

p∈P
ElSub[p] ;

9 newEl = l.Elements \ PEl ;
10 lA = {l} ∪ l.Anc ;
11 Pre-conditions:

12 P 6= ∅ ⇒ P ⊆ l.Child
13 Transformations:

14 〈l, Child, l.Child \ P 〉 ;
15 〈P, parent,null〉 ;
16 〈P 〈o′〉.ElSub, root, o′〉 ;
17 〈newEl,Elements, newEl〉 ;
18 〈P 〈o′〉.ElSub,Elements, ElSub[o′]〉 ;
19 〈lA, Desc,v.Desc \ PEl〉 ;
20 〈PEl, Anc,v.Anc \ lA〉 ;
21 Input instances: {l.instID} ;
22 Frame: ∅ ;
23 Measure: P
24 {
25 if(P 6= ∅) then{
26 if(P ′ 6= ∅) then removeSetTreeRelation1(l, P ′)

27 measure P ′
p
⊂P ;

28 removeTreeRelation(p) ;
29 }
30 }

Figure B.2: removeSetTreeRelation1 stereotype operation.

270 APPENDIX B. UNIVERSAL TRANSFORMATIONS FOR THE TREE STEREOTYPE

– Elements: sets values of Elements of all elements of the tree to
newEl. It also sets the values of Elements of the elements of the
sub-tree with the root o′ ∈ P to ElSub[o′].

– Desc: removes the union of the elements of all added sub-trees
(PEL) from Desc of l and its ancestors.

– Anc: removes lA from Anc of all elements of the added sub-tress.

• Input instances: One which contains l.

• Frame: The only stereotype item for which we use quantification in
the transformation rules is Elements. But since its values are updated
for all relevant elements we do not need a frame rule for it. For all
other stereotype items, the frame rules are inferred.

• Measure: We use P as a measure.

• Body: If P is the empty set then nothing has to be done. Other-
wise, if P ′ is not the empty set we make the recursive call and use
removeTreeRelation to remove the 〈p, l〉 relation. Since P contains
p and P ′ does not, we know that the recursion terminates.

B.2 Level 2

B.2.1 Operation addSetTreeRelation2

• Operation description: The operation is an extension of
addSetTreeRelation1 in case we add sub-trees to an unbounded num-
ber of elements of a tree. The operation is defined in Figure B.3. The
result of the operation execution is depicted in Figure 4.26. To make
the operation feasible we require a specification developer to provide
an auxiliary tree relation. There are two kinds of elements of the auxil-
iary tree relation. The first one is the elements of the tree to which the
sub-trees are added. The second one is the joint points of the auxiliary
tree relation. o is a joint point of the auxiliary tree relation if and only
if there are such elements of the auxiliary tree relation o1 and o2 that
o1 and o2 are descendants of o, o1 and o2 belongs to different sub-trees
of o, and there are no other elements of the auxiliary tree relation
between o and o1, and between o and o2. In Figure 4.26 we denote
the elements of the auxiliary tree relation with black circles. The solid
lines between the black circles denote the auxiliary tree relation.

• Input parameters:

– r0: is the root of the auxiliary tree relation.

– R: contains the elements of the the auxiliary tree relation exclud-
ing r0.

B.2. LEVEL 2 271

1 addSetTreeRelation2〈Tree〉
2 (r0 : ref!, R : Reg!, P : Reg!, r2P : ref → TReg, p2r : ref → ref,
3 r2R : ref → Reg, c2r : ref → ref)
4 Local variables:

5 R0 = R ∪ {r0} ;

6 R+
0 = R0 ∪ {null} ;

7 ∀r : r2R+[r] = if(r = null) then {r0} else r2R[r] ;
8 ∀r : rA0[r] = if(r = null) then ∅ else r.Anc ∪ {r} ;
9 ∀r, r′ : rA[r, r′] = rA0[r] \ rA0[r′] ;

10 ∀r : r2R∗[r] = R ∩ r.Desc ;
11 ∀r : r2R>[r] = r2R[r] ∩ r.Child ;
12 ∀r : r2R⊥[r] = r2R[r] \ r2R>[r] ;

13 ∀r : r2C[r] =
c2r

r.fDesc(r2R⊥[r]) ;
14 ∀r : r2CAll[r] = r2R>[r] ∪ r2C[r] ;
15 ∀r, r′ : fr2r∗ [r][r

′] = if(r′ ∈ r2R>[r]) then r′ else c2r[r.fDesc[r′]] ;
16 ∀p : fp2r [p] = fr2r∗ [r0][p2r[p]] ;
17 ∀r, p : p ∈ r2P ∗[r] ⇔ p ∈ P ∧ p2r[p] ∈ r2R∗[r] ;
18 ∀r : PEl[r] = InstEl(r2P ∗[r]) ;
19 newEl = r0.Elements ∪ PEL[r0] ;
20 ∀o : o2r[o] = p2r[o.instID] ;
21 ∀o, o′ : f ′

Desc[o, o
′] = if(o = o2r[o′]) then o′.root else o.fDesc[o2r[o′]] ;

22 Pre-conditions:

23 r0 /∈ R ;
24 R ⊆ r0.Desc ;
25 ∀r ∈ R0 : r2R[r] ⊆ r.Desc ;

26 ∀r ∈ R0 : r2r∗[r] = (
fr2r∗ [r]
⋃

r′∈r2R[r]

r2r∗[r′]) ∪ r2r[r] ;

27 ∀p ∈ P : p.instID = p ;
28 r0.instID /∈ P ;
29 ∀p ∈ P : p2r[p] ∈ R0 ;
30 ∀r ∈ R0 : r2P [r] ⊆ P ;
31 ∀p ∈ P : p ∈ r2P [p2r[p]] ;
32 ∀r ∈ R0, p ∈ r2P [r] : p2r[p] = r ;
33 Transformations:

34 〈R0, Child,v.Child ∪ r2P [v]〉 ;
35 〈P, parent, p2r[v]〉 ;
36 〈PEL[r0], root, r0.root〉 ;
37 〈newEl,Elements, newEl〉 ;

38 〈∃r, r′ : r′ ∈ R+
0 ∧ r ∈ r2R+[r′] ∧ v ∈ rA[r, r′], Desc,v.Desc ∪ PEL[r]〉 ;

39 〈P, Anc, rA0[p2r[v]]〉 ;
40 〈P 〈p〉.Desc, Anc,v.Anc ∪ rA0[p2r[p]]〉〉 ;

41 〈∃r, r′ : r′ ∈ R+
0 ∧ r ∈ r2R+[r′] ∧ v ∈ rA[r, r′] ∧ v’ ∈ PEL[r],

42 fDesc, f ′
Desc[v,v’]〉 ;

43 Input instances: {r0.instID} ∪ P
44 Frame:

45 〈v.Desc ∪ {v}]R0, Desc〉 ;
46 〈r0.Elements, Anc〉 ;
47 〈v.Desc ∪ {v}]R0, fDesc〉 ;

48 〈∃r, r′ : r′ ∈ R+
0 ∧ r ∈ r2R+[r′] ∧ v ∈ rA[r, r′] ∧ v’ /∈ PEL[r], fDesc〉 ;

49 Measure: R
50 {
51 if(R 6= ∅) then {
52 removeSetTreeRelation1(r2CAll[r0]) ;

53

fp2r

‖
r∈r2R[r0]

addSetTreeRelation2(r, r2R∗[r], r2P ∗[r],

54 r2P, p2r, r2R, c2r) measure r2R∗[r]
r0
⊂R ;

55 addSetTreeRelation1(r0, r2CAll[r0]) ;
56 }
57 addSetTreeRelation1(r0, r2P [r0]) ;
58 }

Figure B.3: addSetTreeRelation2 stereotype operation.

272 APPENDIX B. UNIVERSAL TRANSFORMATIONS FOR THE TREE STEREOTYPE

– P : the set of the instance identifiers of the added sub-trees.

– r2P : a map from an element of the auxiliary tree relation to a
set of instance identifiers of the added sub-trees to the element.

– p2r: an inversion of r2P .

– r2R: a map from an element of the auxiliary tree relation to the
set of its children in the auxiliary tree relation.

– c2r: an inversion of r.fDesc for each r from R0. We use it as a
witness function to define an auxiliary map r2C.

• Local variables:

– R0: all elements of the auxiliary tree relation including r0.

– R+
0 : R0 plus null. In some cases, which we explain below, we use

null as a special marker for a parent of r0 in the auxiliary tree
relation. It helps to keep the definitions brief.

– r2R+: an extension of r2R on null. We define r2R[null] as {r0}.
The only child of null in the auxiliary tree relation is r0.

– rA0[r]: for an element of R0 the map returns the set which con-
tains the element and its ancestors. For null it returns the empty
set.

– rA: contains all tree elements between two elements of the auxil-
iary tree relation. For r0 it returns all elements from r0 until the
root of the tree.

– r2R∗: the transitive closure of r2R

– r2R>: the children of an element of the auxiliary tree relation
which are also children of the element in the tree relation.

– r2R⊥: the children of an element of the auxiliary tree relation
which are not children of the element in the tree relation.

– r2C: for an element r of the auxiliary tree relation, r2C[r] con-
tains a subset of r.Child such that: for each c ∈ r2C[r] c.Desc
contains exactly one element of r2R⊥[r] and for each element of
r2R⊥[r] there is exactly one c ∈ r2C[r] such that c.Desc contains
the element. We define r2C[r] as an image of r2R⊥[r] under
r.fDesc. As we have mentioned above we use c2r as a witness
function to define r2C.

– r2CAll: a map from an element r of the auxiliary tree relation
into a sub-set of r.Child such each element of the subset either a
child or an ancestor of a child of r in the auxiliary tree relation.
We use r2CAll to split the tree in the sub-trees in a way that the
effects of the recursive calls in the body are disjoint and can be
executed in parallel.

B.2. LEVEL 2 273

– fr2r∗: is a witness function which we use to check that r2R∗ has
a proper tree structure.

– fp2r: is a witness function which is used by the parallel composi-
tion. It maps an instance identifier p of an added sub-tree to the
child r of r0 in the auxiliary tree relation which is the ancestor
of the r′ to which the sub-tree with identifer p is added.

– r2P ∗: maps an element of the auxiliary tree relations to the set
of instance identifiers of the sub-tress which are added to the
element.

– PEl: union of elements of sub-tress which are added to a specific
element of the auxiliary tree relation.

– newEl: elements of the resulting tree.

– o2r: a map from an element of a sub-tree to an element of the
tree to which it is added.

– f ′Desc[o, o
′]: an updated version of fDesc function. The definition

is similar to the corresponding definition from
addSetTreeRelation1.

• Pre-conditions:

23. r0 doesn’t belong to R.

24. each element of R is a descendant of r0.

25. for each element r of the auxiliary tree relation, the children of r
in the auxiliary tree relation are descendants of r in the tree.

26. for each element r of the auxiliary tree relation, the descendants
of r in the auxiliary tree relation are equal to the union of the
children of r in the auxiliary tree relation and the union of the
descendant of the children of r in the auxiliary tree relation. The
property is an inductive hypotheses. It could be inferred from
the other properties. Nevertheless, such an inference requires the
construction of fr2r∗ which could be problematic for an automatic
theorem prover. We use the property in the body of the operation
to facilitate verification of inductive calls.

27. P is a set of instance identifiers.

28. the instance identifier of r0 doesn’t belong to P .

29. the image of P under p2r is a subset of R0. The property checks
that p2r has a proper range.

30. the image of R0 under r2P is a subset of P . The property checks
that r2P has a proper range.

31. r2P is the inverse of p2r.

274 APPENDIX B. UNIVERSAL TRANSFORMATIONS FOR THE TREE STEREOTYPE

32. p2r is the inverse of r2P .

• Transformations:

– Child: to each element v of the auxiliary tree relation, add to
the children of v the roots of all added sub-trees, which are equal
to r2P [v].

– parent: set the parents of roots of the added sub-trees to the
elements of the tree to which they are added.

– root: set the root of all elements of all added sub-trees to the
root of r0.

– Elements: set Elements of the final tree to newEl

– Desc: for each element r′ of the auxiliary tree relation and each
child r of r′ in the auxiliary tree relation, we add to the de-
scendants of all elements between r and r′, which is equal to
rA[r, r′], the union of elements of all sub-trees added to r or its
descendants. A special case when r′ = null describes updates of
descendants of all elements from r0 to r0.root.

– Anc: for each added sub-tree with instance identifier p we add
rA0[p2r[p]] to Anc of all elements of the sub-tree. rA0[p2r[p]]
contains an element of the tree to which the p sub-tree is added
and all its ancestors. There are two transformation rules which
affect Anc: one updates the values of the roots of the sub-trees,
and the other one affects all other elements of the sub-trees.

– fDesc: fDesc is updated for all pairs 〈v,v’〉 where v’ is added to
the descendants of v. That is why the rule is very similar to the
one which updates the values of Desc. The only extra part of
the rule states that v’ ∈ PEL[r]. Here PEL[r] are the elements
which are added to v.Desc. The new value of fDesc is f ′Desc.

• Input instances: The input instances are P and the one which con-
tains r0.

• Frame:

– Desc: Desc of an object v is changed if and only if v belongs to
R0 or its ancestors. From this observation we infer the follow-
ing frame rule: Desc of v is preserved if and only if v and its
descendants are disjoint from R0.

– Anc: the value of Anc is preserved for all elements of the tree
which contains r0.

– fDesc: there are two frame rules for fDesc. There first one states
that if the value Desc of an object v is preserved then the value

B.2. LEVEL 2 275

of fDesc is also preserved for v. The second one states that if v is
located between the elements of the auxiliary tree relation r′ and
r but v’ does not belong to PEL[r] then the value of v.fDesc[v’]
is preserved.

– Elements, Child, parent, and root: there are no frame rules
for these elements since they are automatically inferred from the
transformation rules.

• Measure: as a measure we use input parameter R.

• Body: if R = ∅ then we skip the recursive part of the operation.
Otherwise we remove all relations which originate from r2CAll[r0] by
calling removeSetTreeRelation1. By this we split the tree in a set of
disjoint trees. Then we make a recursive call for each of the split trees.
Since the trees are disjoint we can execute all recursive calls in parallel.
Each tree in the parallel composition is identified by an r from r2R[r0].
The values of input parameters R and P in the recursive calls are equal
to r2R∗[r] and r2P ∗[r], respectively. Since the rest of the parameters
are maps and the recursive calls rely on their properties on smaller
domains we can reuse them without changes. After the recursive calls
we merge the split trees by calling addSetTreeRelation1. The last
statement of the body uses addSetTreeRelation1 to add sub-trees to
r0.

B.2.2 Operation removeSetTreeRelation2

• Operation description: The operation is dual to
addSetTreeRelation2. It removes a set of sub-trees which possibly
have different parents. The only limitation is that we can’t remove
a sub-tree from another removed sub-tree. We can also think about
the operation as a generalization of removeSetTreeRelation1. The
operation is defined on Figure B.4.

• Input parameters: Most of the input parameters have the same
meaning as for addSetTreeRelation2. The only extra parameter is
fPEL. fPEL for each element of a removed sub-tree returns the root
of the sub-tree. We use fPEL as a witness function to compute the
union of the elements of the removed sub-trees. Another difference is
that P are elements of the same input tree instance. r2P and p2r are
not among the input parameters because information about them can
be extracted from the Child and parent relations.

• Local variables:Most of the local variables have the same meaning
and definition as for addSetTreeRelation2. Let us consider those
which differ:

276 APPENDIX B. UNIVERSAL TRANSFORMATIONS FOR THE TREE STEREOTYPE

1 removeSetTreeRelation2〈Tree〉(r0 : ref !, R : Reg!, P : Reg!,
2 r2R : ref → Reg, c2r : ref → ref, fPEL : ref → ref)
3 Local variables:

4 R0 = R ∪ {r0} ;
5 ∀r : r2P [r] = P ∩ r.Child ;
6 R+

0 = R0 ∪ {null} ;
7 ∀r : r2R+[r] = if(r = null) then {r0} else r2R[r] ;
8 ∀r : rA0[r] = if(r = null) then ∅ else r.Anc ∪ {r} ;
9 ∀r, r′ : rA[r, r′] = rA0[r] \ rA0[r

′] ;
10 ∀r : r2R∗[r] = R ∩ r.Desc ;

11 ∀r : r2R>[r] = r2R[r] ∩ r.Child ;

12 ∀r : r2R⊥[r] = r2R[r] \ r2R>[r] ;

13 ∀r : r2C[r] =
c2r

r.fDesc(r2R
⊥[r]) ;

14 ∀r : r2CAll[r] = r2R>[r] ∪ r2C[r] ;

15 ∀r, r′ : fr2r∗ [r][r
′] = if(r′ ∈ r2R>[r]) then r′ else c2r[r.fDesc [r

′]] ;
16 ∀p : fp2r[p] = fr2r∗ [r0][p.parent] ;
17 ∀r : r2P ∗[r] = P ∩ r.Desc ;
18 ∀p : ElSub[p] = p.Desc ∪ {p} ;

19 ∀r : PEl[r] =
fPEL
⋃

p∈r2P∗[r]

ElSub[p] ;

20 newEl = r0.Elements \ PEL[r0] ;
21 Pre-conditions:

22 r0 /∈ R ;
23 R ⊆ r0.Desc ;
24 ∀r ∈ R0 : r2R[r] ⊆ r.Desc ;

25 ∀r ∈ R0 : r2r∗[r] =

(

fr2r∗ [r]
⋃

r′∈r2R[r]

r2r∗[r′]

)

∪ r2r[r] ;

26 ∀r ∈ R0 : P]r2CAll[r] ;
27 ∀p ∈ P : p.parent ∈ R0 ;
28 Transformations:

29 〈R0, Child,v.Child \ r2P [v]〉 ;
30 〈P, parent,null〉 ;
31 〈P 〈o′〉.ElSub, root, o′〉 ;
32 〈newEl,Elements, newEl〉 ;
33 〈P 〈o′〉.ElSub,Elements, ElSub[o′]〉 ;
34 〈∃r, r′ : r′ ∈ R+

0 ∧ r ∈ r2R+[r′] ∧ v ∈ rA[r, r′], Desc,v.Desc \ PEL[r]〉 ;
35 〈P, Anc,∅〉 ;
36 〈P 〈p〉.Desc, Anc,v.Anc \ p.Anc〉〉 ;
37 Input instances: {r0.instID}
38 Frame:

39 〈v.Desc ∪ {v}]R0, Desc〉 ;
40 〈newEl, Anc〉 ;
41 Measure: R
42 {
43 if(R 6= ∅) then {
44 removeSetTreeRelation1(r2CAll[r0]) ;

45

fp2r

‖
r∈r2R[r0]

removeSetTreeRelation2(r, r2R∗[r], r2P ∗[r],

46 r2P, r2R, c2r, fPEL) measure r2R
∗[r]

r0
⊂R ;

47 addSetTreeRelation1(r0, r2CAll[r0]) ;
48 }
49 removeSetTreeRelation1(r2P [r0]) ;
50 }

Figure B.4: removeSetTreeRelation2 stereotype operation.

B.2. LEVEL 2 277

– r2P : r2P [r] contains the children of r which also belong to P .

– r2P ∗: r2P ∗[r] contains the descendants of r which also belong to
P .

– fp2r: the definition of fp2r is similar to the corresponding defi-
nition from addSetTreeRelation2. The only difference is that
instead of p2r we use parent.

– ElSub: are elements of the corresponding sub-tree. We define
them as an origin of a removed relation and its descendants.

– PEL: is the union of all elements of removed sub-trees which are
reachable from r. r2P ∗[r] contains all roots of all removed sub-
tres reachable from r. Here we use fPEL as a witness function.

– newEl: elements of the resulting tree. We define it is the old
elements of the tree minus the elements of the removed sub-tress.

• Pre-conditions: The first four pre-conditions are the same as for
addSetTreeRelation2. Let us consider the pre-conditions which dif-
fer:

26. Since r2CAll[r] contains the elements through which the edges
of the auxiliary tree relation passes, P has to be disjoint from
r2CAll[r]

27. each element of P has to be a child of an element of R0. By this
we guarantee that we remove only sub-trees of R0.

• Transformations:

– Child: for each v from R0 remove r2P [v] from the children of v.

– parent: set the parents of the roots of the removed sub-trees to
null.

– root: for each o′ ∈ P , o′ is the new root of the corresponding
sub-tree. We set root for all ElSub[o′], which contains elements
of the corresponding sub-tree, to o′.

– Elements: set values of Elements of all elements of the tree to
newEl. Set values of Elements of the elements of a sub-tree with
the root o′ ∈ P to ElSub[o′].

– Desc: for each element r′ of the auxiliary tree relation and each
child r or r′ in the auxiliary tree relation we remove the union of
the elements of all sub-trees removed from r or its descendants
from descendants of all elements between r and r′, which is equal
to rA[r, r′].

– Anc: for each removed sub-tree with root p we remove p and its
ancestors from Anc of all elements of the sub-tree. There are two

278 APPENDIX B. UNIVERSAL TRANSFORMATIONS FOR THE TREE STEREOTYPE

transformation rules which affect Anc: one updates the values of
the roots of the sub-trees, and the other affects all other elements
of the sub-trees.

• Input instances: one which contains r0.

• Frame:

– Desc: similarly to addSetTreeRelation2, Desc of v is preserved
if and only if v and its descendants are disjoint from R0.

– Anc: the value of Anc is preserved for all elements of the output
tree which are equal to newEl.

– Elements: since the values of Elements are updated for all rele-
vant elements we don’t need a frame rule for it.

– Child, parent, fDesc, and root: there are no frame rules for these
elements since they are automatically inferred from the transfor-
mation rules.

• Measure: as a measure we use the input parameter R.

• Body: if R = ∅ then we skip the recursive part of the operation.
Otherwise we remove all relations which originate from r2CAll[r0] by
calling removeSetTreeRelation1. Then we make a recursive call for
each of the split trees. Since the trees are disjoint we can execute
all recursive calls in parallel. Each tree in the parallel composition is
identified by an r from r2R[r0]. The values of the input parameters R
and P in the recursive calls are equal to r2R∗[r] and r2P ∗[r], respec-
tively. Since the rest of the parameters are maps and the recursive
calls rely on their properties on smaller domains, we can reuse them
without changes. After the recursive calls we merge the split trees by
calling addSetTreeRelation1. The last statement of the body uses
removeSetTreeRelation1 to remove sub-trees from r0.

B.3 Level 3

B.3.1 Operation addSetTreeRelation3

• Operation description: addSetTreeRelation3 generalizes
addSetTreeRelation2 to the addition of an arbitrary set of relations
which merge the input trees into one output tree. As an auxiliary
input information the operation requires a description of a tree-of-
trees relation. The elements of the relation are the merged trees. Two
trees are in the relation if and only if one of them is added as a sub-tree
to the other one. In Figure 4.27 we depict the result of the operation
in case the height of the tree-of-trees is two. The triangles of the

B.3. LEVEL 3 279

1 addSetTreeRelation3〈Tree〉(r0 : ref → ref!, RAll : Reg!, P : ref → Reg!,
2 r2P : ref → TReg, p2r : ref → ref, r2R : ref → Reg, c2r : ref → ref,
3 T : Reg!, t0 : ref, tD : ref → Reg!, ftD : ref2 → ref)
4 Local variables:

5 ∀t : R0[t] = RAll ∩ t.Elements ;

6 R+
All = RAll ∪ {null} ;

7 ∀r : r2R+[r] = if(r = null) then {r0} else r2R[r] ;
8 ∀t : R[t] = R0[t] \ {r0[t]} ;
9 ∀r : rA0[r] = if(r = null) then ∅ else r.Anc ∪ {r} ;

10 ∀t, r : r2R∗[r] = R[r.instID] ∩ r.Desc ;
11 ∀r : r2R>[r] = r2R[r] ∩ r.Child ;
12 ∀r : r2R⊥[r] = r2R[r] \ r2R>[r] ;
13 ∀r : r2CAll[r] = r2R>[r] ∪ r2C[r] ;
14 ∀t, t′ : f ′

tD[t, t′] = if(t′ ∈ P [t]) then t′ else ftD[t, t′] ;
15 ∀p : fp2t[p] = f ′

tD[t, p2r[p].instID] ;
16 ∀r, p : p ∈ r2P ∗[r] ⇔ p ∈ T ∧ p2r[f ′

tD[r.instID, p]] ∈ r2R∗[r] ;
17 ∀r : PEl[r] = InstEl(r2P ∗[r]) ;
18 newEl = InstEl(T) ;
19 ∀t, t′ : t′ ∈ tA[t] ⇔ t ∈ tD[t′] ;
20 ∀o : finst[o] = o.instID ;

21 ∀t : tAU [t] =
finst
⋃

t′∈tA[t]

p2r[f ′
tD[t′, t]].Anc ;

22 ∀o, o′ : o2p[o, o′] = f ′
tD[o.instID, o′.instID] ;

23 ∀o, o′ : o2r[o, o′] = p2r[o2p[o, o′]] ;
24 ∀o, o′ : f ′

Desc[o, o
′] =

25 if(o = o2r[o, o′]) then o2p[o, o′] else o.fDesc[o2r[o, o′]] ;
26 Pre-conditions:

27 ∀t ∈ T : addSetTreeRelation2(r0[t], R[t], P [t], r2P, p2r, r2R, c2r) ;
28 ∀t ∈ T : r0[t] ∈ R0[t] ;
29 ∀t ∈ T : t.instID = t ;
30 T = {t0} ∪ tD[t0] ;
31 ∀t ∈ T : tD[t] ⊆ T ;
32 ∀t ∈ T, t′ ∈ P [t] : P [t]]tD[t′] ;
33 ∀t ∈ T, t1 ∈ P [t], t2 ∈ P [t] : tD[t1]]tD[t2] ;

34 ∀t ∈ T : tD[t] =

(

ftD [t,.]
⋃

t′∈P [t]

tD[t′]

)

∪ P [t] ;

35 Transformations:

36 〈RAll, Child,v.Child ∪ r2P [v]〉 ;
37 〈T \ { t0}, parent, p2r[v]〉 ;
38 〈PEL[r0[t0]], root, t0.root〉 ;
39 〈newEl,Elements, newEl〉 ;

40 〈∃r, r′ : r′ ∈ R+
All

∧ r ∈ r2R+[r′] ∧ v ∈ rA[r, r′], Desc,v.Desc ∪ PEL[r]〉 ;
41 〈T \ {t0}, Anc, tAU [t]〉 ;
42 〈(T \ {t0})〈t〉.Desc, Anc,v.Anc ∪ tAU [t]〉〉 ;

43 〈∃r, r′ : r′ ∈ R+
All

∧ r ∈ r2R+[r′] ∧ v ∈ rA[r, r′]∧
44 v’ ∈ PEL[r], fDesc, f ′

Desc[v,v’]〉 ;
45 Input instances: T
46 Frame:

47 〈v.Desc ∪ {v}]RAll, Desc〉 ;
48 〈t0.Elements, Anc〉 ;
49 〈v.Desc ∪ {v}]RAll, fDesc〉 ;

50 〈∃r, r′ : r′ ∈ R+
All

∧ r ∈ r2R+[r′] ∧ v ∈ rA[r, r′] ∧ v’ /∈ PEL[r], fDesc〉 ;
51

52 Measure: T
53 {
54 if(T \ {t0} 6= ∅) then {

55

fp2t

‖
t∈P [t0]

addSetTreeRelation3(r0, R[t], P, r2P, p2r, r2R, c2r,

56 tD[t] ∪ {t}, t, tD, ftD) measure tD[t0]
t0
⊂T ;

57 }
58 addSetTreeRelation2(r0[t0], R[t0], P [t0], r2P, p2r, r2R, c2r) ;
59 }

Figure B.5: addSetTreeRelation3 stereotype operation.

280 APPENDIX B. UNIVERSAL TRANSFORMATIONS FOR THE TREE STEREOTYPE

different sizes denote the trees from the different levels of the tree-of-
trees relation. The biggest triangle denotes the root of the tree-of-
trees relation. Trees from the second level of the tree-of-trees relation,
which are denoted by the triangles of the middle size, are added as
the sub-trees to the various elements of the root of the tree-of-trees
relation. The smallest triangles denote the trees which belong to the
third level of the tree-of-trees relation. Additionally to the tree-of-
trees relation a client has to specify the auxiliary tree relations for
each tree. Similarly to addSetTreeRelation2 we denote the nodes of
the auxiliary tree relations as black circles and the relations as solid
lines. addSetTreeRelation3 is defined in Figure B.5.

• Input parameters:

– r0: a map form a tree identifier to the root of the auxiliary tree
relation of the tree.

– RAll: contains elements of the auxiliary tree relations of all trees.

– P : a map form a tree identifier to the set of trees added to the
tree. From the other perspective the relation maps an element of
the tree-of-trees relation into its child in the relation.

– r2P , p2r, r2R, and c2r : have the same meaning as for the
addSetTreeRelation2 operation.

– T : the set of instance identifiers of tress which participate in the
operation.

– t0: the root of the tree-of-trees relation.

– tD: a map of an element of the tree-of-trees relation to its de-
scendant in the relation.

– ftD: is an analog of fDesc for the tree-of-trees relation. For each
pair 〈t, t′〉 of elements of the tree-of-trees relation, where t′ is
a descendant but not a child of t in the tree-of-trees relation,
ftD[t, t

′] returns an element t′′ of the relation such that t′′ is a
child of t and an ancestor of t′. We use ftD as a witness function
in some definitions.

• Local variables:

– R0: a map form a tree identifier to the elements of the auxiliary
tree relation of the tree.

– R+
All: R

+
All plus null. Similarly to addSetTreeRelation2 we use

null as a special marker for a parent of r0[t] in the auxiliary tree
relation of the tree with instance identifier t.

– r2R+: the definition is the same as for addSetTreeRelation2.

B.3. LEVEL 3 281

– R: for each tree identifier t, R[t] is the same as R0[t] but without
r0[t].

– rA0: the definition is the same as for addSetTreeRelation2.

– r2R∗: the transitive closure of r2R. We define it as the elements
of the auxiliary tree relation which are also descendants of r.

– r2R>, r2R⊥, and r2CAll: the definition is the same as for
addSetTreeRelation2.

– f ′tD: is an extension of ftD[t, t
′] to the case where t′ is a child

of t′ in the relation tree-of-trees. In this case the extended map
returns t′ because it is the only child of t on the path between t
and t′.

– fp2t: fp2t is an analog of fp2r from addSetTreeRelation2. fp2t
is a witness function which is used by the parallel composition.
It maps an instance identifier p of an added sub-tree to the child
t of t0 in the tree-of-trees relation which is an ancestor of the t′

to which the sub-tree with identifer p is added.

– r2P ∗: maps an element of the auxiliary tree relations to a set of
instance identifiers of sub-tress which are added to the element
and its descendants. The definition is similar to the correspond-
ing one in addSetTreeRelation2. The only difference is that to
identify a tree through which p is connected to p, f ′tD is used.

– PEl: the definition is the same as for addSetTreeRelation2.

– newEl: the definition is the same as for addSetTreeRelation2.

– tA: a map of an element of the tree-of-trees relation to its ances-
tors in the relation. tA is defined as the inverse of tD.

– finst: is an auxiliary function which returns the instance identifier
of the input parameter.

– tAU [t]: a map of an element of the tree-of-trees relation to the
ancestors of the root of the tree in the output tree. We use finst as
a witness function and composition of p2r and f ′tD to identify an
element of the auxiliary relation tree-of-trees with tree identifier
t′ which is also an ancestor of t.

– o2p: for each pair 〈o, o′〉, where o′.instID is a descendant of
o.instID in the tree-of-trees relation, o2p[o, o′] returns an ele-
ment t′′ of the relation such that t′′ is a child of o.instID and t′′

an ancestor of o′.instID or t′′ = o.instID.

– o2r: similar to o2p but instead of a tree instance identifier t′′ it
returns an element of the auxiliary tree relation to which the tree
with identifier t′′ is added.

282 APPENDIX B. UNIVERSAL TRANSFORMATIONS FOR THE TREE STEREOTYPE

– f ′Desc: an updated version of the fDesc function. The definition is
similar to the corresponding definition from
addSetTreeRelation2. The only difference is that we use o2p
and o2r to identify the corresponding elements of the tree-of-trees
and auxiliary tree relations.

• Pre-conditions:

27. for each tree which participates in the operation all pre-conditions
from addSetTreeRelation2 hold.

28. for all tree identifiers t, r0[t] is an element of R0[t].

29. T is a set of tree instances.

30. an element of the tree-of-trees relation is either the root of the
relation or a descendant of the root.

31. for each element of the tree-of-trees relation, the descendants of
the element are also elements of the tree-of-trees relation.

32. for each element of the tree-of-trees relation, the children of the
element are disjoint from the descendants of a child of the ele-
ment.

33. for each pair of siblings in the tree-of-trees relation their descen-
dant are disjoint.

34. for each element t of the tree-of-trees relation the descendants
of t are equal to the union of children of t and the union of the
descendant of the children of t. The property is an inductive
hypotheses. It could be inferred from the other properties. Nev-
ertheless, such an inference requires guessing that ftD[t, .] can be
used as a witness function which could be problematic for an au-
tomatic theorem prover. We use the property in the body of the
operation to facilitate the verification of inductive calls.

• Transformations: The transformation section is almost the same as
for addSetTreeRelation2.

• Input instances: The input instances are T .

• Frame: The frame section is almost the same as for
addSetTreeRelation2.

• Measure: as a measure we use input parameter T .

• Body: if T \{t0} = ∅ then we skip the recursive part of the operation.
Otherwise we execute all recursive calls in parallel. Each tree in the
parallel composition is identified by t from P [t0]. The values of the
input parameters RAll and T in the recursive calls are equal to R[t]

B.3. LEVEL 3 283

and tD[t] ∪ {t}, respectively. Since rest of the parameters are maps
and the recursive calls rely on their properties on smaller domains we
can reuse them without changes. The last statement of the body uses
addSetTreeRelation2 to add sub-trees to t0.

B.3.2 Operation removeSetTreeRelation3

• Operation description: The operation is dual to
addSetTreeRelation3. It removes an arbitrary set of relations. We
can also think of the operation as a generalization of
removeSetTreeRelation2. Similarly to addSetTreeRelation3 a
client of the operation has to define the tree-of-trees relation and for
each removed sub-tree an auxiliary tree relation. The operation is
defined in Figure B.6.

• Input parameters:

– p0: the root of the tree-of-trees relation.

– p2r0: a map form the root of an output tree to the root of the
auxiliary tree relation of the output tree.

– R: contains the elements of the auxiliary tree relations of all
removed trees.

– P : the set of roots of the output trees.

– r2R, c2r: have the same meaning as for
removeSetTreeRelation2.

– fPEL: for each root of an output tree, fPEL[p, .] returns fPEL for
corresponding tree.

– p2P : a map from the root of an output tree to the set of the roots
of the trees removed from the tree. From the other perspective,
p2P [p] is equal to the children of p in the tree-of-trees relation.

• Local variables:

– r2P ∗: a map from an element of the auxiliary tree relation of
an output tree with the root p to the descendants of p in the
tree-of-trees relation.

– p2P ∗: a map from an element of the tree-of-trees relation to its
descendants in the tree-of-trees relation.

– PEl: the union of all elements of the removed sub-trees which
are reachable from r. Here we use an additional parameter p. p
is the root of the output tree to which r belongs. We have to
use this extra parameter because we don’t have a map from an
element of an auxiliary tree relation to the root of the output tree
which contains it.

284 APPENDIX B. UNIVERSAL TRANSFORMATIONS FOR THE TREE STEREOTYPE

1 removeSetTreeRelation3〈Tree〉(p0 : ref !, p2r0 : ref → ref, R : Reg!,

2 P : Reg!, r2R : ref → Reg, c2r : ref → ref, fPEL : ref2 → ref,
3 p2P : ref → Reg!)
4 {
5 Local variables:

6 ∀p : r2P ∗[p] = P ∩ r.Desc ;
7 ∀p : p2P ∗[p] = P ∩ p.Desc ;

8 ∀p, r : PEl[p, r] =
fPEL[p,.]
⋃

p′∈r2P [r]

p′.Desc ∪ {p′}

9 ∀p : El[p] = (p.Desc∪ {p}) \ PEl[p, p2r0[p]]
10 ∀o : finst[o] = o.instID ;
11 ∀p : p2R0[p] = El[p] ∩R ;
12 ∀p : p2R+

0 [p] = (El[p] ∩R) ∪ {null} ;
13 ∀p : p2R[p] = p2R0[p] \ {p2r0[p]} ;
14 ∀p, r : rA0[p, r] = if(r = null) then p.Anc else r.Anc ∪ {r} ;
15 ∀p, r, r′ : rA[p, r, r′] = rA0[p, r] \ rA0[p, r

′] ;
16 Pre-conditions:

17 ∀p ∈ P : removeSetTreeRelation2
18 (p2r0[p], p2R[p], p2P [p], r2R, c2r, fPEL[p, .]) ;
19 p0.instID = p0 ;
20 P = {p0} ∪ p2P

∗[p0] ;
21 ∀p ∈ P : p2P [p] ⊆ p.Desc ;

22 ∀p ∈ P : p2P ∗[p] =

(

fPEL[p,.]
⋃

p′∈p2P [p]

p2P ∗[p′]

)

∪ p2P [r] ;

23 Transformations:

24 〈R, Child,v.Child \ r2P [v]〉 ;
25 〈P, parent,null〉 ;
26 〈P 〈p〉.El, root, p〉 ;
27 〈P 〈p〉.El,Elements, El[p]〉 ;
28 〈∃p, r, r′ : p ∈ P ∧ r′ ∈ p2R+

0 [p] ∧ r ∈ r2R[r′] ∧ v ∈ rA[p, r, r′],
29 Desc,v.Desc \ PEl[p, r]〉 ;
30 〈P 〈p〉.El, Anc,v.Anc \ p.Anc〉〉 ;
31 Input instances: {p0}
32 Frame:

33 〈v.Desc ∪ {v}]RAll, Desc〉 ;
34 〈El[p0], Anc〉 ;
35 Measure: P
36 {
37 removeSetTreeRelation2

38 (p2r0[p0], p2R[p0], p2P [p0], r2R, c2r, fPEL[p0, .]) ;
39 if(P \ {p0} 6= ∅) then {
40 {

41

finst

‖
p∈p2P [p0]

removeSetTreeRelation3(p, p2r0, p2R
∗[p], p2P ∗[p],

42 r2R, c2r, fPEL[p, .], p2P) measure p2P
∗[p0]

p0

⊂P ;
43 }
44 }

Figure B.6: removeSetTreeRelation3 stereotype operation.

B.3. LEVEL 3 285

– El: the elements of the corresponding output tree. We define
the elements of the output tree with the root p as the difference
between the union of p and its descendants and the elements of
the removed sub-trees.

– finst: is an auxiliary function which returns the instance identifier
of the input parameter. We use it as a witness function to define
the parallel composition.

– p2R0, p2R
+
0 , and p2R: defines R0, R

+
0 , and R for the output tree

with the root p.

– rA0 and rA: the definition is similar to the corresponding defi-
nitions of removeSetTreeRelation2. The only difference is that
we define rA0[p,null] as p.Anc. The idea behind this definition
is that p is possibly removed from another output tree. In such
a case the ancestors of p have to be removed from
rA[p,null, p2r0[p]].

• Pre-conditions:

17. for each output tree, all pre-conditions from
removeSetTreeRelation2 hold.

19. p0 is an instance of the input tree.

20. an element of the tree-of-trees relation is either the root of the
relation or a descendant of the root.

21. for each element p of the tree-of-trees relation, the children of p
are descendants of p in the tree.

22. for each element p of the tree-of-trees relation, the descendants
of p are equal to the union of the children of p and the union of
the descendant of the children of p.

• Transformations: The transformation section is almost the same as
for removeSetTreeRelation2. The only difference is that the rules
for Elements and Anc are merged into single rules.

• Input instances: the instance identifier of the only input instance
is p0

• Frame: The frame section is almost the same as for
removeSetTreeRelation2.

• Measure: as a measure we use the input parameter P .

• Body: The first statement of the body uses removeSetTreeRelation2
to remove sub-trees from p0. if P \ {p0} = ∅ then we skip the recur-
sive part of the operation. Otherwise we execute all recursive calls in

286 APPENDIX B. UNIVERSAL TRANSFORMATIONS FOR THE TREE STEREOTYPE

parallel. Each tree in the parallel composition is identified by p from
p2P [p0]. The values of the input parameters R and P in the recursive
calls are equal to p2R∗[p] and p2P ∗[p], respectively. Since the rest of
the parameters are maps and the recursive calls rely on their properties
on smaller domains we can reuse them without changes.

Bibliography

[1] S. B. Akers. Binary decision diagrams. IEEE Trans. Computers,
27(6):509–516, 1978.

[2] J. Avigad. Number theory and elementary arithmetic. Philosophia
Mathematica, 11(3):257–284, 2003.

[3] A. Banerjee, M. Barnett, and D. Naumann. Boogie meets regions: A
verification experience report. In Verified Software: Theories, Tools,
Experiments, volume 5295 of Lecture Notes in Computer Science,
pages 177–191. Springer Berlin / Heidelberg, 2008.

[4] A. Banerjee and D. A. Naumann. State based ownership, reentrance,
and encapsulation. In ECOOP, pages 387–411, 2005.

[5] A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for
local reasoning about global invariants. In Proceedings of the 22nd
European conference on Object-Oriented Programming, ECOOP ’08,
pages 387–411, Berlin, Heidelberg, 2008. Springer-Verlag.

[6] A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for
local reasoning about global invariants. In ECOOP ’08: Proceedings of
the 22nd European conference on Object-Oriented Programming, pages
387–411. Springer-Verlag, 2008.

[7] M. Barnett, M. Fähndrich, K. Rustan M. Leino, P. Müller, W. Schulte,
and H. Venter. Specification and verification: The Spec# experience.
Communications of the ACM, 54(6):81–91, June 2011.

[8] C. Barrett and C. Tinelli. CVC3. In Proceedings of the 19th Interna-
tional Conference on Computer Aided Verification (CAV ’07), volume
4590 of Lecture Notes in Computer Science, pages 298–302. Springer-
Verlag, 2007.

[9] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach. LNCS 4334. Springer-
Verlag, 2007.

287

288 BIBLIOGRAPHY

[10] M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for describ-
ing linked data structures. In Programming Languages and Systems,
volume 1576 of Lecture Notes in Computer Science, pages 641–641.
Springer Berlin / Heidelberg, 1999.

[11] C. Benzmüller, L. C. Paulson, F. Theiss, and A. Fietzke. Leo-ii - a
cooperative automatic theorem prover for classical higher-order logic
(system description). In Conference on Automated Deduction, pages
162–170, 2008.

[12] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. Ohearn, and
H. Yang. Shape analysis for composite data structures. In In CAV,
pages 178–192. Springer, 2007.

[13] J. Berdine, C. Calcagno, and P. W. Ohearn. Smallfoot: Modular
automatic assertion checking with separation logic. In In International
Symposium on Formal Methods for Components and Objects, pages
115–137. Springer, 2005.

[14] J. Berdine, C. Calcagno, P. W. O’Hearn, and P. W. Ohearn. Symbolic
execution with separation logic. In In APLAS, pages 52–68. Springer,
2005.

[15] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer Verlag, 2004.

[16] E. Bevers and J. Lewi. Proof by consistency in conditional equational
theories. In S. Kaplan and M. Okada, editors, Conditional and Typed
Rewriting Systems, volume 516 of Lecture Notes in Computer Science,
pages 194–205. Springer Berlin / Heidelberg, 1991.

[17] S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a c compiler
front-end. In 14th International Symposium on Formal Methods, pages
460–475, 2006.

[18] S. Böhme, K. Rustan M. Leino., and B. Wolff. HOL-Boogie an in-
teractive prover for the boogie program-verifier. In Theorem Proving
in Higher Order Logics, volume 5170 of Lecture Notes in Computer
Science, pages 150–166. Springer Berlin / Heidelberg, 2008.

[19] R. S. Boyer and J. S. Moore. A computational logic. ACM monograph
series. Academic Press, 1979.

[20] R. A. Brualdi. Introductory Combinatorics (4th Edition). Pearson
Prentice Hall, 2004.

BIBLIOGRAPHY 289

[21] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebas-
tiani. The MathSAT 4SMT Solver. In CAV, pages 299–303, 2008.

[22] A. Bundy. The automation of proof by mathematical induction. In
Handbook of Automated Reasoning, pages 845–911. 2001.

[23] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The oyster-
clam system. In Proceedings of the tenth international conference on
Automated deduction, CADE-10, pages 647–648, 1990.

[24] S. R. Buss. On herbrand’s theorem. In LCC, pages 195–209, 1994.

[25] C. Calcagno and D. Distefano. Infer: an automatic program verifier
for memory safety of C programs. In Proceedings of the Third interna-
tional conference on NASA Formal methods, NFM’11, pages 459–465,
Berlin, Heidelberg, 2011. Springer-Verlag.

[26] N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith. Mul-
tiple ownership. In Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems and applications,
OOPSLA ’07, pages 441–460, New York, NY, USA, 2007. ACM.

[27] C.-L. Chang and R. C.-T. Lee, editors. Symbolic Logic, and Theorem
Proving. Academic Press, New York, 1971.

[28] Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards. Model vari-
ables: cleanly supporting abstraction in design by contract: Research
articles. Softw. Pract. Exper., 35(6):583–599, 2005.

[29] D. Clarke and T. Wrigstad. External uniqueness is unique enough. In
L. Cardelli, editor, ECOOP 2003 Object-Oriented Programming, vol-
ume 2743 of Lecture Notes in Computer Science, pages 59–67. Springer
Berlin / Heidelberg, 2003.

[30] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible
alias protection. In Proceedings of the 13th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and appli-
cations, OOPSLA ’98, pages 48–64. ACM, 1998.

[31] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A Practical System for
Verifying Concurrent C. In Proceedings of the 22nd International Con-
ference on Theorem Proving in Higher Order Logics, TPHOLs ’09,
Berlin, Heidelberg, 2009. Springer-Verlag.

[32] H. Comon. Inductionless induction. In Handbook of Automated Rea-
soning, pages 913–962. 2001.

290 BIBLIOGRAPHY

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, third edition. The MIT Press, 2009.

[34] B. Courcelle. The expression of graph properties and graph transforma-
tions in monadic second-order logic, pages 313–400. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 1997.

[35] B. Courcelle. Graph structure and monadic second-order logic. Jan-
uary 2008.

[36] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, POPL ’79, pages 269–
282, New York, NY, USA, 1979. ACM.

[37] M. D’Agostino, D. M. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods. Springer, 1999.

[38] Á. Darvas, F. Mehta, and A. Rudich. Efficient well-definedness check-
ing. In A. Armando, P. Baumgartner, and G. Dowek, editors, Inter-
national Joint Conference on Automated Reasoning (IJCAR), volume
5195 of Lecture Notes in Computer Science, pages 100–115. Springer-
Verlag, 2008.

[39] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In In
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pages 337–340, 2008.

[40] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52:365–473, May 2005.

[41] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe Types. In
E. Ernst, editor, European Conference on Object-Oriented Program-
ming (ECOOP), volume 4609 of Lecture Notes in Computer Science,
pages 28–53. Springer-Verlag, 2007.

[42] W. Dietl and P. Müller. Universes: Lightweight ownership for JML.
Journal of Object Technology (JOT), 4(8):5–32, October 2005.

[43] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18:453–457, August 1975.

[44] D. Distefano, P. W. O’Hearn, P. W. Ohearn, and H. Yang. A local
shape analysis based on separation logic. In In TACAS, pages 287–302.
Springer, 2006.

[45] D. Distefano and M. Parkinson. jStar: towards practical verifica-
tion for java. In Proceedings of the 23rd ACM SIGPLAN conference

BIBLIOGRAPHY 291

on Object-oriented programming systems languages and applications,
OOPSLA ’08, pages 213–226, New York, NY, USA, 2008. ACM.

[46] G. Dong and R. Topor. Incremental evaluation of datalog queries. In
Database Theory ICDT ’92, volume 646 of Lecture Notes in Computer
Science, pages 282–296. Springer Berlin / Heidelberg, 1992.

[47] G. Z. Dong and J. W. Su. Incremental and decremental evaluation of
transitive closure by first-order queries. Information and Computation,
120(1):101 – 106, 1995.

[48] B. Dutertre. Formal analysis of the priority ceiling protocol. In Pro-
ceedings of the 21st IEEE conference on Real-time systems sympo-
sium, RTSS’10, pages 151–160, Washington, DC, USA, 2000. IEEE
Computer Society.

[49] M. Fähndrich and S. Xia. Establishing object invariants with delayed
types. In Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, volume 42, pages 337–350, New York, NY,
USA, 2007. ACM.

[50] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, Boston, MA, 1995.

[51] Y. Ge and L. Moura. Complete instantiation for quantified formulas in
satisfiabiliby modulo theories. In Proceedings of the 21st International
Conference on Computer Aided Verification, CAV ’09, pages 306–320.
Springer-Verlag, 2009.

[52] G. Gentzen. The collected papers of gerhard gentzen. North-Holland,
Amsterdam, 1969.

[53] K. Gödel. Über formal unentscheidbare sätze der principia mathemat-
ica und verwandter systeme i. Monatshefte für Mathematik, 38:173–
198, 1931.

[54] J. A. Goguen. How to prove algebraic inductive hypotheses without
induction. In Proceedings of the 5th Conference on Automated Deduc-
tion, pages 356–373. Springer-Verlag, 1980.

[55] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification, Third Edition. Addison-Wesley Longman, Amsterdam,
3 edition, 2005.

[56] A. Gotsman and J. Berdine. Interprocedural shape analysis with sep-
arated heap abstractions. In In SAS, pages 240–260. Springer, 2006.

292 BIBLIOGRAPHY

[57] E. Grädel, P. G. Kolaitis, and M. Y. Vardi. On the decision problem
for two-variable first-order logic. The Bulletin of Symbolic Logic, 3(1),
1997.

[58] E. Gradel, M. Otto, and E. Rosen. Undecidability results on two-
variable logics. In STACS 97, volume 1200 of Lecture Notes in Com-
puter Science, pages 249–260. Springer Berlin / Heidelberg, 1997.

[59] E. Grandjean. Complexity of the first-order theory of almost all finite
structures. Information and Control, 57(2-3):180 – 204, 1983.

[60] D. Harel, J. Tiuryn, and D. Kozen. Dynamic Logic. MIT Press,
Cambridge, MA, USA, 2000.

[61] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R.
Larus, and S. Levi. Language support for fast and reliable message-
based communication in Singularity OS. In In EuroSys, pages 177–190.
ACM Press, 2006.

[62] M. Hennessy. Semantics of programming languages - an elementary
introduction using structural operational semantics. Wiley, 1990.

[63] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige,
T. Rauhe, and A. Sandholm. Mona: Monadic second-order logic in
practice. In Proceedings of the First International Workshop on Tools
and Algorithms for Construction and Analysis of Systems, pages 89–
110. Springer-Verlag, 1995.

[64] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, 1969.

[65] G. Huet and J.-M. Hullot. Proofs by induction in equational the-
ories with constructors. Journal of Computer and System Sciences,
25(2):239 – 266, 1982.

[66] D. Hutter and C. Sengler. Inka: The next generation. pages 288–292.
Springer, 1996.

[67] N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh.
The boundary between decidability and undecidability for transitive-
closure logics. In In Computer Science Logic (CSL, pages 160–174,
2004.

[68] N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G. Yorsh.
Verification via structure simulation. In Computer Aided Verification,
pages 281–294, 2004.

BIBLIOGRAPHY 293

[69] F. Ivancic, S. Sankaranarayanan, and C. Wang. Foreword: Special
issue on numerical software verification. Formal Methods in System
Design, 35(3):227–228, 2009.

[70] B. Jacobs and F. Piessens. The VeriFast Program Verifier. Tech-
nical Report CW-520, Department of Computer Science, Katholieke
Universiteit Leuven, Belgium, 2008.

[71] B. Jacobs, J. Smans, and F. Piessens. Verifying the composite pattern
using separation logic. In Workshop on Specification and Verification
of Component-Based Systems, Challenge Problem Track, November
2008.

[72] J. L. Jensen, M. E. Jørgensen, M. I. Schwartzbach, and N. Klarlund.
Automatic verification of pointer programs using monadic second-
order logic. In Proceedings of the ACM SIGPLAN 1997 conference on
Programming language design and implementation, PLDI ’97, pages
226–234. ACM, 1997.

[73] M. B. Jones. What really happened on Mars?, 1997. Avail-
able at: http://research.microsoft.com/en-us/um/people/mbj/

Mars_Pathfinder/Mars_Pathfinder.html.

[74] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in
theories without constructors. Information and Computation, 82(1):1
– 33, 1989.

[75] K. Rustan M. Leino. This is Boogie 2. Technical report, Microsoft
Research, 2008.

[76] K. Rustan M. Leino. Dafny: an automatic program verifier for func-
tional correctness. In Proceedings of the 16th international confer-
ence on Logic for programming, artificial intelligence, and reasoning,
LPAR’10, pages 348–370, Berlin, Heidelberg, 2010. Springer-Verlag.

[77] K. Rustan M. Leino and P. Müller. Object invariants in dynamic
contexts. In European Conference on Object-Oriented Programming
(ECOOP), volume 3086 of Lecture Notes in Computer Science, pages
491–516. Springer-Verlag, 2004.

[78] K. Rustan M. Leino, P. Müller, and J. Smans. Verification of concur-
rent programs with Chalice. In A. Aldini, G. Barthe, and R. Gorrieri,
editors, Foundations of Security Analysis and Design V, volume 5705
of Lecture Notes in Computer Science, pages 195–222. Springer-Verlag,
2009.

[79] D. Kapur and H. Zhang. An overview of rewrite rule laboratory (rrl).
J. of Computer and Mathematics with Applications, 29:91–114, 1995.

294 BIBLIOGRAPHY

[80] I. T. Kassios. Dynamic frames: Support for framing, dependencies
and sharing without restrictions. In FM, pages 268–283, 2006.

[81] I. T. Kassios. The dynamic frames theory. Formal Asp. Comput.,
23(3):267–288, 2011.

[82] M. Kaufmann and J. S. Moore. An industrial strength theorem prover
for a logic based on common lisp. IEEE Transactions on Software
Engineering, 23:203–213, 1997.

[83] N. Klarlund and M. I. Schwartzbach. Graph types. In Proceedings of
the 20th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’93, pages 196–205. ACM, 1993.

[84] N. Klarlund and M. I. Schwartzbach. Graphs and decidable transduc-
tions based on edge constraints (extended abstract). In Proceedings of
the 19th International Colloquium on Trees in Algebra and Program-
ming, pages 187–201. Springer-Verlag, 1994.

[85] K. Korovin. iProver – an instantiation-based theorem prover for first-
order logic (system description). In A. Armando, P. Baumgartner, and
G. Dowek, editors, Proceedings of the 4th International Joint Confer-
ence on Automated Reasoning, (IJCAR 2008), volume 5195 of Lecture
Notes in Computer Science, pages 292–298. Springer, 2008.

[86] G. Kreisel. Mathematical Logic. In T. Saaty, editor, Lectures on
Modern Mathematics, volume 3, pages 95 – 195. New York, 1965.

[87] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In Proceedings of
the 29th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’02, pages 17–32, New York, NY, USA,
2002.

[88] V. Kuncak and M. Rinard. Existential heap abstraction entailment
is undecidable. In Proceedings of the 10th international conference
on Static analysis, SAS’03, pages 418–438, Berlin, Heidelberg, 2003.
Springer-Verlag.

[89] V. Kuncak and M. Rinard. Towards Efficient Satisfiability Check-
ing for Boolean Algebra with Presburger Arithmetic. In Automated
Deduction CADE-21, volume 4603 of Lecture Notes in Computer Sci-
ence, pages 215–230. Springer Berlin / Heidelberg, 2007.

[90] S. Lahiri and S. Qadeer. Back to the future: revisiting precise pro-
gram verification using smt solvers. In Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’08, pages 171–182, New York, NY, USA, 2008.

BIBLIOGRAPHY 295

[91] S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked
lists. In Conference record of the 33rd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’06, pages 115–
126, New York, NY, USA, 2006. ACM.

[92] W. Landi. Undecidability of static analysis. ACM Lett. Program.
Lang. Syst., 1:323–337, December 1992.

[93] D. Leinenbach and T. Santen. Verifying the Microsoft Hyper-V Hy-
pervisor with VCC. In Proceedings of the 2nd World Congress on
Formal Methods, volume 5850 of Lecture Notes in Computer Science,
pages 806–809, Berlin, Heidelberg, 2009. Springer-Verlag.

[94] T. Lev-ami, N. Immerman, T. W. Reps, S. Sagiv, S. Srivastava, and
G. Yorsh. Simulating reachability using first-order logic with appli-
cations to verification of linked data structures. In Conference on
Automated Deduction, pages 99–115, 2005.

[95] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static anal-
ysis to work for verification: A case study. In Proceedings of the
2000 ACM SIGSOFT international symposium on Software testing
and analysis, ISSTA ’00, pages 26–38, New York, NY, USA, 2000.
ACM.

[96] B. Lutz. Error reporting for universe types with transfer. Master’s
thesis, ETH Zurich, Switzerland, 2008.

[97] R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. Sagiv.
Shape analysis by graph decomposition. In Proceedings of the 13th
international conference on Tools and algorithms for the construction
and analysis of systems, TACAS’07, pages 3–18, Berlin, Heidelberg,
2007. Springer-Verlag.

[98] A. Meyer. Weak monadic second order theory of succesor is not
elementary-recursive. In R. Parikh, editor, Logic Colloquium, volume
453 of Lecture Notes in Mathematics, pages 132–154. Springer Berlin
/ Heidelberg, 1975.

[99] A. Møller and M. I. Schwartzbach. The pointer assertion logic engine.
In Proceedings of the ACM SIGPLAN 2001 conference on Program-
ming language design and implementation, PLDI ’01, pages 221–231.
ACM, 2001.

[100] J. S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked
proof of the correctness of the kernel of the amd5k86 floating-point
division algorithm. IEEE Transactions on Computers, 47, 1996.

296 BIBLIOGRAPHY

[101] L. Moura and N. Bjørner. Engineering dpll(t) + saturation. In Pro-
ceedings of the 4th international joint conference on Automated Rea-
soning, IJCAR ’08, pages 475–490. Springer-Verlag, 2008.

[102] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invari-
ants for layered object structures. Science of Computer Programming,
62:253–286, 2006.

[103] P. Müller and A. Rudich. Formalization of ownership transfer in uni-
verse types. Technical Report 556, ETH Zurich, 2007.

[104] P. Müller and A. Rudich. Ownership transfer in Universe Types. In
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 461–478. ACM, 2007.

[105] D. R. Musser. On proving inductive properties of abstract data
types. In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’80, pages 154–162.
ACM, 1980.

[106] A. Nanevski, A. Banerjee, and D. Garg. Verification of information
flow and access control policies with dependent types. In Proceedings
of the 2011 IEEE Symposium on Security and Privacy, pages 165–179,
Washington, DC, USA, 2011. IEEE Computer Society.

[107] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: dependent types for imperative programs. In 13th ACM SIG-
PLAN international conference on Functional programming, pages
229–240, 2008.

[108] A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the verification
of heap-manipulating programs. In 37th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 261–274,
2010.

[109] D. A. Naumann and A. Banerjee. Dynamic boundaries: Information
hiding by second order framing with first order assertions. In European
Symposium on Programming, pages 2–22, 2010.

[110] G. C. Necula. Proof-carrying code. In ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages (POPL), Paris,
France, pages 106–119, Jan. 1997.

[111] G. Nelson and D. C. Oppen. Simplification by cooperating decision
procedures. ACM Transactions on Programming Languages and Sys-
tems, 1:245–257, 1979.

BIBLIOGRAPHY 297

[112] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and
SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). J. ACM, 53:937–977, November
2006.

[113] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[114] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In Proceedings of the 15th Inter-
national Workshop on Computer Science Logic, CSL ’01, pages 1–19,
London, UK, 2001. Springer-Verlag.

[115] M. Ottiger. Runtime support for generics and transfer in universe
types. Master’s thesis, ETH Zurich, Switzerland, 2008.

[116] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype veri-
fication system. In D. Kapur, editor, 11th International Conference
on Automated Deduction (CADE), Lecture Notes in Artificial Intelli-
gence, pages 748–752. Springer-Verlag, jun 1992.

[117] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership
for generic java. In Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and
applications, OOPSLA ’06, pages 311–324. ACM, 2006.

[118] M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

[119] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program.
Lang. Syst., 16:1467–1471, September 1994.

[120] T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical
formulas for static analysis. ACM Trans. Program. Lang. Syst., 32:1–
55, August 2010.

[121] A. Riazanov and A. Voronkov. The design and implementation of
vampire. AI Commun., 15:91–110, August 2002.

[122] N. Rinetzky, A. Poetzsch-Heffter, G. Ramalingam, M. Sagiv, and
E. Yahav. Modular shape analysis for dynamically encapsulated pro-
grams. In R. De Nicola, editor, Programming Languages and Systems,
volume 4421 of Lecture Notes in Computer Science, pages 220–236.
Springer-Verlag, Berlin, Heidelberg, 2007.

298 BIBLIOGRAPHY

[123] S. Rosenberg, A. Banerjee, and D. A. Naumann. Local reasoning and
dynamic framing for the composite pattern and its clients. In Pro-
ceedings of the Third international conference on Verified software:
theories, tools, experiments, VSTTE’10, pages 183–198, Berlin, Hei-
delberg, 2010. Springer-Verlag.

[124] A. Rudich, Á. Darvas, and P. Müller. Checking well-formedness of
pure-method specifications. In J. Cuellar and T. Maibaum, editors,
Formal Methods (FM), volume 5014 of Lecture Notes in Computer
Science, pages 68–83. Springer-Verlag, 2008.

[125] A. Rudich, Á. Darvas, and P. Müller. Checking well-formedness of
pure-method specifications (full paper). Technical Report 588, ETH
Zurich, 2008.

[126] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems
in languages with destructive updating. ACM Trans. Program. Lang.
Syst., 20:1–50, January 1998.

[127] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. ACM Trans. Program. Lang. Syst., 24:217–298, May
2002.

[128] A. Schaad. Inferring universe annotations in the presence of ownership
transfer. Master’s thesis, ETH Zurich, Switzerland, 2007.

[129] N. Schirmer. A Verification Environment for Sequential Imperative
Programs in Isabelle/HOL. In Logic for Programming, Artificial Intel-
ligence, and Reasoning, 11th International Conference, Lecture Notes
in Computer Science, pages 398–414. Springer, 2004.

[130] P. Schmitt, M. Ulbrich, and B. Weiß. Dynamic Frames in Java Dy-
namic Logic. In B. Beckert and C. Marche, editors, Formal Verifi-
cation of Object-Oriented Software, volume 6528 of Lecture Notes in
Computer Science, pages 138–152. Springer Berlin / Heidelberg, 2011.

[131] S. Schulz. E - a brainiac theorem prover. AI Commun., 15:111–126,
August 2002.

[132] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization. IEEE Trans. Com-
put., 39(9):1175–1185, 1990.

[133] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. In
Proceedings of the 10th ECOOP Workshop on Formal Techniques for
Java-like Programs, pages 1–12, July 2008.

BIBLIOGRAPHY 299

[134] J. Smans, B. Jacobs, and F. Piessens. Vericool: An automatic ver-
ifier for a concurrent object-oriented language. In Lecture Notes in
Computer Science, volume 5051/2008, pages 220–239. Springer, June
2008.

[135] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Com-
bining dynamic frames and separation logic. In ECOOP 2009 - Object-
oriented Programming, 23rd European Conference, Genova, Italy, July
6-10, 2009, Proceedings, volume 5653, pages 148–172. Springer-Verlag,
July 2009.

[136] J. Smans, B. Jacobs, and F. Piessens. Symbolic execution for implicit
dynamic frames. Technical report, Department of Computer Science,
Katholieke Universiteit Leuven, Belgium, 2009.

[137] J. Smans, B. Jacobs, and F. Piessens. Heap-dependent expressions
in separation logic. In Formal Techniques for Distributed Systems,
volume 6117, pages 170–185. Springer-Verlag, June 2010.

[138] J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An automatic
verifier for Java-like programs based on dynamic frames. In Lecture
Notes in Computer Science, volume 4961, pages 261–275. Springer,
April 2008.

[139] Y. Takano. Implementing uniqueness and ownership transfer in the
universe type system. Master’s thesis, ETH Zurich, Switzerland, 2007.

[140] C. Tinelli and M. Harandi. A New Correctness Proof Of The Nelson-
Oppen Combination Procedure. In Frontiers of Combining Systems,
volume 3 of Applied Logic Series, pages 103–120. Kluwer Academic
Publishers, 1996.

[141] B. A. Trakhtenbrot. Impossibility of an algorithm for the decision
problem in finite classes. Doklady Akademii Nauk SSSR, 70:569–572,
1950.

[142] T. Tuerk. A separation logic framework for HOL. Technical Report
UCAM-CL-TR-799, University of Cambridge, Computer Laboratory,
June 2011.

[143] S. van Staden and C. Calcagno. Reasoning about multiple related
abstractions with multistar. In Proceedings of the ACM international
conference on Object oriented programming systems languages and ap-
plications, OOPSLA ’10, pages 504–519, New York, NY, USA, 2010.
ACM.

300 BIBLIOGRAPHY

[144] C. Weidenbach, D. Dimova, A. Fietzke, M. Suda, and P. Wischnewski.
Spass version 3.5. In R. A. Schmidt, editor, Automated Deduction -
CADE-22 : 22nd International Conference on Automated Deduction,
volume 5663 of Lecture Notes in Artificial Intelligence, pages 140–145,
Montreal, Canada, August 2009. Springer.

[145] A. Wiles. Modular elliptic curves and Fermat’s Last Theorem. Annals
of Mathematics, 141(3):443–551, 1995.

[146] A. Wiles. Ring-Theoretic Properties of Certain Hecke Algebras. An-
nals of Mathematics, 141(3):553–572, 1995.

[147] C.-P. Wirth. History and future of implicit and inductionless in-
duction: Beware the old jade and the zombie! In D. Hutter and
W. Stephan, editors, Mechanizing Mathematical Reasoning, volume
2605 of Lecture Notes in Computer Science, pages 192–203. Springer,
2005.

[148] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. O’Hearn. Scalable shape analysis for systems code. In Proceedings
of the 20th international conference on Computer Aided Verification,
CAV ’08, pages 385–398, Berlin, Heidelberg, 2008. Springer-Verlag.

[149] G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-
precise abstract operations for shape analysis. In In 10th TACAS,
pages 530–545, 2004.

[150] K. Zee, V. Kuncak, and M. Rinard. Full functional verification
of linked data structures. In Proceedings of the 2008 ACM SIG-
PLAN conference on Programming language design and implemen-
tation, PLDI ’08, pages 349–361, New York, NY, USA, 2008. ACM.

Curriculum Vitae

Personal Data
Name: Arsenii Rudich
Date of Birth: May 14, 1982
Nationality: Ukraine
E-mail: arsenii.rudich@gmail.com

Education
2005 - 2011 Doctoral studies

ETH Zurich
Chair of Programming Methodology
Supervision: Prof. Dr. Peter Müller

2003 - 2005 M.Sc. in computer science

National Taras Shevchenko University of Kyiv
Department of Cybernetics
Chair of Theoretical Cybernetics

1999 - 2003 B.Sc. in applied mathematics

National Taras Shevchenko University of Kyiv
Department of Cybernetics
Chair of Computational Mathematics

Employment
2005 - 2011 Research and Teaching Assistant

ETH Zurich

2003 - 2004 Researcher & Developer
Materialise Inc.

301

