
Using stereotypes to verify complex heap
structures in regional logic.

ETH Technical Report 651

Arsenii Rudich and Peter Müller

ETH Zurich, Switzerland

1 Introduction

Verification of complex heap structures is a challenging task. Typically, a descrip-
tion of heap structures requires intensive usage of transitive closure or similar
constructions, e.g. recursive functions or inductive definitions. Such construc-
tions are expressive enough to make writing of heap specifications fast and nat-
ural. On the other hand such specifications have several disadvantages:

– Because of their recursive nature it is hard to understand and modify them.
Typically it is much simpler to write such a specification then understand
what it actually means.

– Absence of a reusing mechanism for such specifications results in specifi-
cations duplications. For example, if part of a specified heap structure be-
haves like a tree or like a list, then such parts of specifications are typically
copy-pasted from already existing specifications. Such copy-pastes slow down
specifications writing and complicate their understanding.

– Direct using of transitive closure on real heap fields exposes implementation
details. We would like have a way of specifying of heap structures which
provides information hiding and avoids unnecessary restrictions on real heap
structures.

– And finally, an ATP (automatic theorem prover) cannot adequately handle
such constructs. Usually it is possible to describe such constructs, but their
applications fairly often results in infinite looping.

To deal with these problems and limitations we introduce notion of stereotype.
A stereotype describes an aspect of a heap structure from perspective of an object
that participates in it. In contrast to an abstract class stereotype talks not only
about an object or some specific set of objects, but about the whole heap. That
is why it can be used locally to specify global properties. Such as stereotype is a
purely abstract mechanism it can be easily reused by different heap structures.
For the same reason stereotypes can be used as part of classes specifications to
facilitate information hiding.

The remaining of the technical report is organized as follow: Section 2 ex-
plains notion of stereotype; in Section 3 we motivate necessity and define no-
tion of stereotype operation; Section 4 describes which properties guaranties



stereotypes system invariant and which prove obligations have to be checked to
guarantee soundness of the stereotype system invariant; Section 5 explains how
relation between stereotypes and a real heap established using so called ”glue”
invariants; Section 6 describes how generalization of invariants can be used to
build a verification technique on top of stereotypes.

2 Stereotype

From static (syntactical) perspective we define a stereotype as a ghost record
equipped with stereotype invariants. By ghost we mean that all fields of a stereo-
type are used only for specifications purposes. Stereotype fields can have only
primitive types, or special types ref and Reg which corresponds to an object
reference and set of references. We assume that each stereotype has a special
field El of type Reg. Stereotype invariants are formulas that universally quanti-
fied over reference type and additionally to standard operations can read values
of stereotypes feeds.

The dynamical behavior of a stereotype is characterized by two notions:
stereotypes slice and stereotype instance. Stereotype slice is extension of the heap
by adding to each object stereotype’s fields in such a way that their values satisfy
stereotype’s invariants. By adding special invariants that describes semantic of
El it can be guarantee that stereotype fields from the slice form set of disjoint
heap structures. Each of these structures we call stereotype instance. Because of
disjointness property a stereotype instance can be identified by a participating
object. Each object participates at exactly one stereotype instance from each
stereotype slice. To summarize all above we can say that a stereotype slice is a
set of disjoint stereotype instances. In general there can be several stereotypes
slices for the same stereotype. Both number of stereotype slices and number of
stereotype instances are unbounded.

Stereotype slice’s definition raises a question why do we consider set of dis-
joint stereotype instances but not a single stereotype instance. Motivation for
such a choice is that it is typical for data structure operations to merge and
split data structures. For example: if an edge removed from a linked list then
the list is split on two disjoint lists. If a reference from end of one list to begin
of another list is added than two lists are merged in one. Our conclusion is that
it is typical for data structures operations deal not with one data structure but
with set of disjoint data structures. Someone can argue that another way to deal
with such situation is to consider each stereotype instance separately. Disadvan-
tage of such an approach is that in such a case we potentially need to deal with
an unbounded set of data structures, which can be a problem for an ATP. For
example, if we have list of size n and we want to sort it with merge sort then
we get an unbounded number of lists during the algorithm execution. To avoid
such a complication we treat all this lists together as one stereotype slice.

To enforce disjointness property we add the following invariants to stereotype
invariants:

– ∀o, o′ : o′ ∈ o.El⇒ o′.El = o.El

2



Tree{
uniq root : ref ;
parent : ref ;
Chi ldren , Ancestors , Descendants : Reg ;

i n v a r i a n t s ∀o, o′ :
root 6= null
o = root ⇔ o.parent = null
root ∈ o.Ancestors
o.El = root.Descendants ∪ {root}
o′ ∈ o.Children ⇔ o′.parent = o
o 6= o′ ⇒ o.Children#o′.Children
o /∈ o.Descendants
o /∈ o.Ancestors
o.Children ⊆ o.Descendants
o′ ∈ o.Descendants ⇒ o.Children#o′.Descendants
o′ ∈ o.Descendants ⇒ o ∈ o′.Ancestors
o′ /∈ o.Descendants ⇒ o′.Ancestors#o.Descendants ∪ {o}
o′ ∈ o.Descendants ⇒ o′.Ancestors \ o.Descendants = o.Ancestors ∪ {o}
o′ ∈ o.Descendants ⇒ o′.Descendants ⊆ o.Descendants
(o 6= o′ ∧ o′ /∈ o.Descendants ∧ o /∈ o′.Descendants) ⇒

⇒ o′.Descendants#o.Descendants
o′ ∈ o.Ancestors ⇒ o′.Ancestors ⊆ o.Ancestors
o.parent = null ⇒ o.Ancestors = ∅
o.parent 6= null ⇒ o.Ancestors = o.parent.Ancestors ∪ {o.parent}

}

Fig. 1. Tree stereotype

– ∀o, o′ : o′ /∈ o.El⇒ o′.El#o.El
– For each stereotype field f of type ref ∀o : o.f ∈ o.El
– For each stereotype field f of type Reg ∀o : o.f ⊆ o.El

Here we denote field reading as o.f , set disjointness as #, and quantification
over non-null references as ∀o :.

To make stereotype description shorter we introduce type modifier uniq. If a
field f of a stereotype declared with type modifier uniq then we add the following
invariant to the stereotype invariants ∀o, o′ : o′ ∈ o.El⇒ o′.f = o.f . Since value
of such a field is the same for all object from the stereotype instance we omit
receiver for such fields in stereotype invariants.

As example of stereotype let consider Tree stereotype (Figure 1). Here root
is the root of the tree, parent is the parent of a tree element, Children inversion
of parent, and Descendants and Ancestors are transitive closures of Children
and parent respectively. root declared with uniqtype modifier such as it is the
same for all elements of a tree instances. We avoid explicit using of constructs
like transitive closure and operations on sets of sets in stereotype invariants,
such as this constructs can complicate work of ATP. As consequence we have

3



sound but not complete specifications in regional logic style. We assume that
from pragmatic perspective completeness is desirable but not necessary property.
It is good enough if stereotype invariants approximate properties of the data
structure. For example, provided axioms of Tree stereotype are strong enough to
describe topology of composite design pattern and priority inheritance protocol.

It can be easily seen that some of proposed invariants are redundant. Such
redundant invariants can be proven as lemmas. Unfortunately some of these
proofs require inductive reasoning, which is not feasible for an ATP. That is why
we add such redundant properties explicitly as redundant invariants.

Another important observation is that in contrast to regional logic we allow
using of recursive equations like o.Ancestors = o.parent.Ancestors∪{o.parent}.
Our experiments demonstrate that such constructions are feasible for an ATP.

To facilitate construction of more advanced stereotypes from simpler stereo-
types we introduce notion of stereotype aggregation. As part of a stereotype dec-
laration list of aggregated stereotypes can be mention. In such a case declared
stereotype inherits all fields and invariants of aggregated stereotypes. To clarify
terminology of inherited field they can be renamed in context of the declared
stereotype. What is more important is that several fields of aggregated stereo-
types can be merged into one during renaming. Trivial syntactical substitution
can be applied to inherited invariants to adjust them.

As example of aggregation application we consider construction of a bidi-
rectional list (Figure 2) from a unidirectional list (Figure 3). Unidirectional list
is defined in terms of next element next, transitive closure of the next element
Next∗, and last element of the list end. Bidirectional list aggregates two uni-
directional lists Backward and Forward. Renaming establishes relation between
fields of Backward and Forward and fields of bidirectional list. For example end
of Backward corresponds to begin of bidirectional list. Additional invariants ad-
just relations between fields from different aggregated stereotypes. For example,
o.next 6= null ⇒ o.next.prev = o establish relation between next of Forward
and Backward.

3 Stereotype operations

Up to now we considered stereotype slices like a static heap description. Such as
heap changes during program execution the same should happen with stereotype
slices. One possible way to do it is directly update stereotype fields of objects
participating in updated stereotype instance. It is typical that such an update
effects not only objects that directly participating in update, but many other
objects reachable by transitive closure. For example if we want make an object
o parent of an object o′ then additionally to modifying parent field of o′ we
need to update Ancestors fields of all descendants of o′ and Descendants field
of all ancestors of o. Furthermore to preserve the stereotype invariant before the
updated we need to check that o is not a descendant of o′ and o′ doesn’t have
another parent. As response to the shown complexity we introduce notion of
stereotype operation. Stereotype operations:

4



UniList{
uniq end : ref ;
next : ref ;
Next∗ : Reg ;

i n v a r i a n t s ∀o, o′ :
o = end ⇔ o.next = null
o.next = null ⇒ o.Next∗ = ∅
o.next 6= null ⇒ o.Next∗ = o.next.Next∗ ∪ {o.next}
o /∈ o.Next∗

o 6= end ⇒ end ∈ o.Next∗

o′ ∈ o.Next∗ ⇒ o′.Next∗ ⊆ o.Next∗

}

Fig. 2. Unidirectional list stereotype

– guaranty stereotype’s invariant preservation.
– specify operation’s preconditions.
– group together semantically related transformations of stereotype fields.

A stereotype operation can read/write only stereotype fields and execute only
other stereotype operations, but not methods of real classes. Such as stereotype
operations change only stereotype fields they acts as ghost operations. Addi-
tionally to input parameters stereotype operations provide information about
participating stereotype slices:

– Stereotype slices which the operation takes as input. We assume that they
existed before begin of the operation execution and they exist after the end
of the operation execution.

– Stereotypes slices that are added by the operation. They are disjoin from
input stereotype slices. They are created at the begin of the operation exe-
cution and they exist after the end of the operation execution.

– Stereotype slices that are removed by the operation. They are a subset of
the input stereotypes. It is assumed that they existed before begin of the
operation execution and it is removed at the end of the operation execution.

Each participating stereotype slice has a unique name. If only one stereotype slice
of a certain stereotype participates in the operation then name can be omitted.

As example of a stereotype operations let consider addition of a sub tree to
a tree (Figure 4). addSubTree take as input one Tree stereotype slice, the name
of the slice is omitted. Specification of the operation consists of precondition,
postcondion, frame, and operation’s body. Preconditions denoted by keyword
requires. Preconditions of addSubTree requires that tree is not a descendent of
subTree and subTree is the root. Preconditions are denoted by keyword ensures.
Preconditions of addSubTree describes transformation performed during opera-
tion execution. Keyword frame denote frame of the operation. Frame describes

5



List{
uniq begin , end : ref ;
prev , next : ref ;
Prev∗ , Next∗ : Reg ;

aggregate :
Backward , Forward : UniList

rename :
Forward . end → end
Forward . next → next
Forward .Next∗ → Next∗

Backward . end → begin
Backward . next → prev
Backward .Next∗ → Prev∗

i n v a r i a n t s ∀o, o′ :
El = o.Prev∗ ∪ {o} ∪ o.Next∗

o.Next∗#o.Prev∗

o.next 6= null ⇒ o.next.prev = o
o.prev 6= null ⇒ o.prev.next = o

}

Fig. 3. Bidirectional list stereotype

set of locations (pair of a reference value and field name) that are possible af-
fected during operation execution. We omit operations’ bodies such as they are
manly duplicate options’ postconditions.

Additionally to stereotype operations we use side affect free functions. Mainly
it is non recursive logical functions that are used to abbreviate typical expres-
sions.

A typical example of such a function it is a singleton stereotype function. It
describes values of fields for a singleton instance of a given stereotype. Figure 5
describes tree singleton function for a Tree stereotype. We assume that developer
of a stereotype also describes singleton predicate. Because of the special meaning
of the singleton predicate, the developer should prove that if it is valid for an
object then stereotype’s invariants of the corresponding stereotype invariants
also valid for the object.

Another example of stereotype functions demonstrates how we can extract
information useful for cyclic list from our general List stereotype. From infor-
mational perspective List stereotype has all necessary information to describe
topology of cyclic list, but notions next element and previous elements requires
some refinement. Figure 6 presents stereotype functions which refines this no-
tions. This example demonstrates that if we assume bounded number of cycles

6



addSubTree〈Tree〉( t r e e : r e f , subTree : r e f )

r e qu i r e s tree 6= null ;
r e q u i r e s subTree 6= null ;
r e q u i r e s tree 6= subTree ;
r e q u i r e s tree /∈ subTree.Descendants ;
r e q u i r e s subTree = subTree.root ;

ensure s subTree.parent = tree ;
ensure s ∀o : o ∈ old(tree.El) ∪ old(subTree.El) ⇒

⇒ o.El = old(tree.El) ∪ old(subTree.El) ;
ensure s ∀o : o ∈ old(subTree.El) ⇒ o.root = tree.root ;
ensure s tree.Children = old(tree.Children) ∪ {subTree} ;
ensure s ∀o : o ∈ tree.Ancestors ∪ {tree} ⇒ o.Descendants = ;

= old(o.Descendants) ∪ old(subTree.Descendants) ∪ {subTree} ;
ensure s ∀o : o ∈ subTree.Descendants ∪ {subTree} ⇒ o.Ancestors = ;

= old(o.Ancestors) ∪ old(tree.Ancestors) ∪ {tree} ;

frame {〈subTree, parent〉}
∪{〈tree, Children〉}
∪(old(tree.El) ∪ old(subTree.El)× {El})
∪(old(subTree.El)× {root})
∪(tree.Ancestors ∪ {tree} × {Descendants})
∪(subTree.Descendants ∪ {subTree} × {Ancestors})

{
. . .

}

Fig. 4. addSubTree stereotype operation

we always can treat stereotype instances as acyclic structures and use special
stereotype functions to receive specific for cyclic structures information.

Construction of stereotype operations requires significant efforts. One pos-
sible way to deal with this complexity it is to identify basic operations and
construct more complex operations as composition of basic operations. Under
an assumption about acyclicity of stereotype instances role of such operations
can play addition and remove of an edge. We denote them as addEdge(o, o′, St)
and removeEdge(o, o′, St), where o and o′ are references, and St is a stereotype
instance. We assume that developer of a stereotype always provides addEdge
and removeEdge operations. addSubTree is an example of addEdge operation
for Tree stereotype.

Such as this operations are associative, commutative, and idempotent we
can generalize them up to addition remove of set of edges. We denote them as
addSetEdge(E, St) and removeSetEdge(E, St), where o and o′ are references,
and St is a stereotype instance. Unfortunately using these operations in general

7



boolean i sS i ng l e t onTre e ( t r e e : r e f )

isSingletonTree(tree) = (tree.El = ∅ ∧ tree.root = tree ∧ tree.parent = null
∧tree.Ancestors = ∅ ∧ tree.Descendants = ∅ ∧ tree.Children = ∅)

Fig. 5. IsSingletonTree stereotype function

ref cyc leNext ( o : r e f )
cycleNext(o) = i f (o = o.end) then o.begin e l s e o.next ;

ref cyc lePrev ( o : r e f )
cyclePrev(o) = i f (o = o.begin) then o.end e l s e o.prev ;

Fig. 6. Refinement of notions next and previous for cyclic list

case requires dialing with families of sets which can be a problem for an ATP.
But if set of ages have special form (for example, set of edges reachable by a
transitive closure from one objet to another) then additional specifications can
be provided to make these operations feasible for an ATP.

As example of construction of a more complex operation we consider stereo-
type operation addSubTreeLoop (Figure 7). It generalizes operation addSubTreeLoop
on case when a tree is possibly a descendant of a subTree. The operation take
as input two stereotype slices, a Tree and a List. Precondition guarantees that
tree and each of its ancestors form a singleton instance of the List stereotype.
In the case that tree is not a descendant of subTree, addSubTree is called. In
other case all edges transitively reachable from tree to subTree (denoted as set
E) are removed from the Tree slice and added to the List slice. The List slice
are used to represent newly formed cycle in topology.

4 Stereotypes’ system invariant

In the previous section we introduced the notion of stereotype operation. Ex-
ecution of a stereotype operation can violate a stereotype invariant of some
stereotype slice. To clarify question when and which stereotype invariants holds
we describe stereotypes’ system invariant. At the end of the section we sketch
the soundness proof for system invariant. Soundness proof states that if source
code satisfies certain syntactical restrictions and certain prove obligations hold
then stereotypes’ system invariant also holds.

But before we precede with the discussion of stereotypes’ system invariant we
need to establish a relation between stereotypes and classes. Similar to stereotype
operations classes also can participate in stereotype slices. C part {St1, . . . , Stn}
denotes that class C participates in stereotype slices of stereotypes St1, . . . , Stn,
which means that all methods of the class C take as input these stereotype
slices. Methods can declare added and removed slices. Removed slices have to

8



addSubTreeLoop〈Tree, List〉( t r e e : r e f , subTree : r e f )

r e qu i r e s tree 6= null ;
r e q u i r e s subTree 6= null ;
r e q u i r e s tree 6= subTree ;
r e q u i r e s subTree = subTree.root ;
r e q u i r e s ∀o : o ∈ tree.Ancestors ∪ {tree} ⇒ isSingletonList(o) ;

{
var E : Reg× Reg ;

i f (tree /∈ subTree.Descendants)
then addSubTree(tree, subTree)
e l s e {

E := {〈o, o.next〉|o ∈ tree.Ancestors} \ {subTree} ;
addSetEdge(E, List) ;
removeSetEdge(E, Tree) ;

}}

Fig. 7. addSubTreeLoop stereotype operation

be disjoint from class’s slices. If a class or a method declaration refers to several
stereotype slices of the same stereotype then, similarly to stereotype operations,
unique names are used to distinguish them. If there is an ambiguity at a method-
/operation call which stereotype slices of calling method/operation correspond
to stereotype slices of called method/operation correspond then it has to speci-
fied explicitly. For example, if there are two slices of list stereotype and we want
to add an edge to one of them we have to specify which one we want to modify.

Now we can formulate stereotypes’ system invariant. Stereotypes’ system
invariant states that if stereotype operations treated as atomic actions then
stereotype invariants hold for all stereotype instances of all stereotype slides at
each program point.

To guarantee soundness of the stereotypes’ system invariant we put the fol-
lowing syntactical constraint on methods. A method can call stereotype opera-
tions and can read stereotype fields (for specifications purposes only), but can’t
directly write them. Mainly the constraint requires that all updates of stereotype
fields from methods are done only via stereotype operations but not explicitly
throw fields update.

The proof obligations for stereotype’s system invariant are the following:

– It can be assumed that stereotype invariant for stereotypes mentioned in the
verified stereotype operations’ specification holds for all stereotype instances
to which belong operation’s input parameters after any stereotype operation
call within the verified stereotype operation and at the begin of the operation.

– It has to be proven that stereotype invariant for stereotypes mentioned in
the verified stereotype operations’ specification holds for all stereotype in-

9



stances to which belong operation’s input parameters before any stereotype
operation call within the verified stereotype operation and at the end of the
operation.

– It has to be proven that the verified stereotype operation eventually termi-
nates.

Under the assumption that the syntactical constraints are satisfied and proof
obligations hold, we can prove stereotype’s system invariant. The proof is done
by the induction on the number of calls. Sketch of the soundness proof:

– A method preserves stereotype invariants because it can’t directly update
stereotype fields and called stereotype operations preserve stereotype invari-
ant because of induction hypothesis.

– In the stereotype operations we need take care only of stereotypes that are
mentioned in the operation specifications and only of stereotype instances to
which belong operation’s input parameters. These invariants holds because
of the prove obligations. Invariants of other stereotype slices can’t be violated
such as their field can’t be read for syntactical rezones. Stereotype instances
elements of which not include some of operation’s input parameters can’t be
reached by the operation’s expressions and as result can’t be violated.

– If a called stereotype operation participates in some other stereotype (one
which created temporally for some intermediate computations) then the
called operation preserves the invariants because of induction hypnotize.

5 Glue invariant

Up to now we treated stereotype slices as purely abstract concept without any
relation to real heap. To establish bridge between stereotypes and real heap we
introduce the second layer of invariants, so called ”glue” invariant. It relies on
stereotype invariants and describes heap topology of specified data structures in
terms of stereotype fields. The glue level consists of object states, local object
states’ invariants, and global object states’ invariants. They have the following
semantic:

– Object states describe different roles which an object can play in the data
structure topology. They are similar to roles from role analysis.

– Local objects states’ invariants describe relation between the object fields
and stereotype fields for a single object. Usually such relations have the
form of a condition if the object is in specific state then a field of the object
equal to a stereotype field or belong to region which described by a region
expression which possibly depends on stereotype fields.

– Global object states’ invariants describe relation between states of different
objects that participate in the data structure. Global object states’ invariants
are described in terms of object states and stereotype fields, but not in terms
of class fields. These invariants are universally quantified over heap objects
and are used to describe global properties of the data structure.

10



During execution of methods of objects which are involved in a heap struc-
ture the glue invariant can be temporally violated. For example, we can’t avoid
temporal violation of the glue invariant during addition of an element to a double
linked list. On other hand, because of the flexibility provided by object states,
without loss of flexibility we can require that the glue invariant holds in all visible
program state (before a method call and at the end of a method). In situations
when one method breaks a ”glue” invariant and calls on other one to restore
it, we can add one more state which describes how the topology before second
method call differs from other states. After this the first method doesn’t break
the ”glue” invariant but changes objet’s state. Standard approach to verification
of invariants with visible state semantic can be used to verify ”glue” invariants.

Nevertheless, we introduce expose construct that explicitly indicates in which
program points state invariants of which objets can be violated. Such additional
information makes verification of glue invariants feasible for an ATP. Alterna-
tively an ATP can infer this information, but usually it requires programmer
to prove interactively a part of the prove obligations. Additional advantage of
the expose construct is that heap topology modifications become explicit. It
significantly increases readability of the code.

As parameter expose construct takes sets of objects that are being exposed.
Sets of exposed objects can be guarded by conditions, in such a case the set is
exposed if and only if the condition holds. If objects change state after execution
of the expose block then a new state is provided after a colon. To express
semantics of the expose construct we introduce additional implicit object state
stBroken. If an object state is stBroken then it is excluded from the system glue
invariant. This property is expressed via the following instrumentation of a glue
invariant: ∀o1, . . . , on : φ is replaced by ∀o1, . . . , on : (

∧n
i=1 oi.st 6= stBroken) ⇒

φ. The semantics of the expose statements can be expressed via if statements
and assignments as shown in Figure 8.We assume that all state changes are done
explicitly within an expose block.

The glue system invariant states that at any program point outside of an
outermost expose block all allocated objects are not broken and glue invariants
hold for all objects. To guarantee soundness of our approach we put syntactical
and semantic restrictions on a program. There are two syntactical restrictions.
Such as state of a freshly allocated object is stBroken we require that any con-
structor starts from expose(this) block. Such as inside of an expose block some
objects can be in a broken state we forbid method calls inside of an expose
block.

We need to check two kinds of proof obligations to guarantee soundness of
the system glue invariant. To generate proof obligations we need the footprint
of glue invariants and the set of currently exposed objects. The first one can be
automatically extracted from glue invariants (because of their special structure).
The second one can be computed from parameters of expose constructions. Then
the first kind of proof obligations which has to be checked is that if field f of
object o is written then for all objects o′, such that 〈o, f〉 belongs to frame of glue
invariant of o′, o′ belongs to the set of exposed objects. The second proof obli-

11



expose(
i f (cond1 ) then Set1 : st1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
e l s e i f (condn−1 ) then Setn−1 : stn−1

e l s e Setn : stn

){
Statement

}
⇓

var b1, . . . , bn−1 : boolean ;
var r1, . . . , rn : r eg i on ;
b1 := cond1 ;
. . . . . . . . . . . . . . . . . . . . . . . . . . .
bn−1 := condn−1 ;
r1 := Set1 ;
. . . . . . . . . . . . . . . . . . . . . . . . . . .
rn := Setn ;
i f (b1 ) then fo r each (o ∈ r1 , o.st := stBroken ) ;
. . . . . . . . . . . . . . . . . . . . . . . . . . .
e l s e i f (bn−1 ) then fo r each (o ∈ rn−1 , o.st := stBroken ) ;
e l s e f o r each (o ∈ rn , o.st := stBroken ) ;
Statement ;
i f (b1 ) then fo r each (o ∈ r1 , o.st := st1 ) ;
. . . . . . . . . . . . . . . . . . . . . . . . . . .
e l s e i f (bn−1 ) then fo r each (o ∈ rn−1 , o.st := stn−1 ) ;
e l s e f o r each (o ∈ rn , o.st := stn ) ;
}

Fig. 8. Semantics of the expose construct.

12



gations is that at the end of the expose statement, glue invariants of all exposed
objects have to hold. It can be proven by the induction on the method calls and
size of the methods that stated proof obligations and syntactical restrictions are
sufficient enough to guarantee glue system invariant.

Universal quantification over all allocated objects results in necessity to check
global property. It violates modularity of the approach. Any program statement
can potentially violate any ”glue” invariant. But such as we know topology of the
data structure we can solve this problem by adding a syntactical constraint that
only objet of predefined classes (classes that participate in the data structure)
can modify fields that participate in the data structure through direct field
updates. It gives a natural way to define a notion of data structure (or topology
of design pattern) and describe its boundaries in a modular way (a module defines
a set of classes which form a data structure). If the data structure consists only of
instances of one class it is enough to declare fields that forms the data structure
as private.

As example of ”glue” invariant construction let’s consider the description of
the topology of the process inheritance protocol (PIP) see Figure 9. The topology
of PIP consist of instances of class Node that have a field blockedBy. If the field
blockedBy of a node o is equal to null then we call node o free. The protocol
supports two operations, release and acquire. If a free node o blocked node o′

then release operation make node o′ free. If a free node o acquire a node o′ then
in case if o′ is free o block o′ in other case (when o′ is not free) o′ block o.

There are mainly two possibilities for shape of PIP topology. The fist one
is the deadlock-free case. In this case the topology of PIP is a tree formed by
blockedBy fields. Acquire and release correspond to addition and removal of a
subtree. But if a node acquires one of its descendants then a deadlock created.
In this case the topology of PIP forms a so called sun shape. A sun shape
consists of a set of trees. Roots of the trees forms a cycle of deadlocked nodes.
Such topology naturally suggests composition of two shapes Tree and List. We
can see that each node can play one of two roles in topology, namely either
it is in a deadlock or not. To formalize previous observation we introduce two
object states, deadlocked (denoted as stD) and locked (denoted as stL). Their
semantics are described by the following local object state invariants:

– ∀ o : o.st = stL ⇔ o.blockedBy = o.Tree.parent If an object is in the
locked state then its field blockedBy plays the role of a parent in the tree
stereotype slice.

– ∀ o : o.st = stD ⇔ o.blockedBy = cycleNext(o) If an object is in the locked
state then its field blockedBy plays the role of a next element in the list
stereotype slice.

And finally to describe topology of PIP using introduced object states and
stereotype slices we use the following global object state invariants:

– ∀ o : o.st = stL ⇒ IsSingletonList(o) If an object’s state is locked then
the instance of the list in which it participates is a singleton list.

13



c l a s s Node〈Tree, List〉{
blockedBy : Node ;
st : {stL, stD} ;

void release(subTree: Node)
r e qu i r e s subTree 6= null ;
r e q u i r e s this.Tree.root = this ;
r e q u i r e s subTree ∈ this.Tree.Children ;

s t e r eo type : removeEdge(subTree, this, Tree) ;
{

expose(tree){
removeEdge(subTree, this, Tree) ;
subTree.blockedBy = null ;

}
}

void acquire(subTree: Node)
r e qu i r e s subTree 6= null ;
r e q u i r e s this.Tree.root = this ;

s t e r eo type : subTree.Tree.parent = null ⇒ addEdge(subTree, this, Tree) ;
s t e r eo type : subTree.Tree.parent 6= null ⇒ addSubTreeLoop(tree, subTree) ;

s t a t e : subTree.Tree.parent 6= null ∧ tree ∈ subTree.Tree.Descendants ⇒
⇒ ∀ o ∈ tree.Tree.Ancestors ∪ {tree} : o.st = stD ;

{
i f (subTree.blockedBy = null )
then{

expose(tree){
addEdge(subTree, this, Tree) ;
subTree.blockedBy = this ;

}
} e l s e {

expose(
i f (tree ∈ subTree.Tree.Descendants)
then tree.Tree.Ancestors ∪ {tree} : stD

e l s e subTree
){

addSubTreeLoop(tree, subTree) ;
tree.blockedBy = subTree ;

}
}
}

}

Fig. 9. Topological aspect of class Node of priority inheritance protocol.

14



– ∀ o, o′ : o′ ∈ o.Tree.Descendants ⇒ o′.st = stL If an objet is a descendant
of another object then it is in state locked.

– ∀ o, o′ : o.st = stD ∧ o′ ∈ o.List.El ⇒ o′.st = stD If an object o′ par-
ticipates in the same instance of the list with object o and the state of o is
deadlock then the state of o′ is also deadlock.

We need to prove that the ”glue” invariants are preserved by all class meth-
ods. Additionally to pre/post conditions we use stereotype specifications (de-
noted by keyword ”stereotype”) and state changes specifications (denoted by
keyword ”state”). Stereotype specifications have the form of a sequence of stereo-
type operations possibly guarded by a condition. Stereotype specifications use
stereotype operations to describe changes of stereotype fields and frame of these
changes. A weakest precondition calculus can be used to transform stereotype
specification to a normal logical formula (since postconditions of stereotype op-
erations have the form of equations, we mainly use substitution for this trans-
formation). Normal postconditions can refer to the stereotype fields but normal
frame can’t. State changes specifications describes new states of object which
states are changed during the operation execution. Normal postconditions can
refer to the object state but normal frame can’t.

As it was mentioned above, class Node has two methods release and acquire.
Method release use stereotype operation removeEdge to remove the edge from
Tree stereotype slice. Method release temporally exposes tree and preserves all
objects’ states. There are two main possibilities for behavior of method acquire.
If subTree is free (or what is the same subTree is a root of the tree instances)
then removeEdge used to add the edge to Tree stereotype slice. In this case
subTree is temporally exposed and all objects’ states are preserved. In the other
case, the operation addSubTreeLoop is used to rebuild Tree and List stereotype.
This reconstruction involves creation of a loop described by the list stereotype
in case if tree is descendant of subTree. In the last case states of tree and all ob-
jects reachable from tree to subTree by parent relation are temporally exposed
and changed to the deadlocked state.

You can see that methods specification ignore changes of a real heap struc-
ture. This underspecification guaranties information hiding. The client code
shouldn’t rely on the actual implementation. It should use only stereotype fields
and object states. Stereotype invariants and global object states’ invariants
(these invariants have to hold after each method execution) provide all nec-
essary information about their semantic. On the other hand, during verification
of class methods we can rely on local object states’ invariants. They provide
enough information to restore topology of real heap.

6 Invariant’s state

In this chapter we consider how to specify and verify object invariants. It is
typical that objet’s invariants depends of fields of several objects. It is possible
that these dependencies change dynamically and the number of objects on which

15



an invariant depends is unbounded. To deal with this complexity we build object
invariants on top of stereotypes and glue invariants. The last two describe the
topology of the heap structures of the verified classes.

We demonstrate our approach to object invariants verification using the PIP
example. We build PIP object invariants on top of topology properties which we
specified in the previous section. The goal of the PIP protocol is to guarantee
specific properties of nodes’ priorities. We will describe these properties later.
There are three additional fields in the Node class that are used to express priority
related properties, see Figure 10. currentPriority is the current priority of a
node. It can increase and decrease during program execution. The initial value of
currentPriority is equal to defaultPriority. defaultPriority is constant
for an object. priorities is a multiset that contains the current priorities of
the nodes blocked by this node.

c l a s s Node〈Tree, List〉{
blockedBy : Node ;
st : {stL, stD} ;
d e f a u l tP r i o r i t y : i n t ;
c u r r e n tP r i o r i t y : i n t ;
p r i o r i t i e s : Mult iSet〈int〉 ;

}

Fig. 10. Class Node of priority inheritance protocol.

To specify and verify invariants we need to explicitly specify the set of the
objects on which an invariant depends. We can specify these sets in terms of
stereotype elements and object states. For example, to specify the PIP example
we need the inversion and the transitive closure of blockedBy field see Figure
11. We denote as:

– blockedBy−1 inversion of blockedBy field.
– blockedBy∗ transitive and reflexive closure of blockedBy field.
– blockedBy+ transitive and irreflexive closure of blockedBy field.

We can prove characteristic properties of these predicates. For example, an
ATP can prove that ∀ o, o′ : o′.blocekdBy = o ⇔ o′ ∈ blockedBy−1(o). For the
transitive closure we can prove that ∀ o : blockedBy∗(o) ⊇ o.blockedBy∗ but
not the other way round because the last one statement can be expressed only
via existential quantification which is not feasible for an ATP. Nevertheless it is
not a problem since we can prove practically valuable properties of the predicate
blockedBy∗ using stereotype invariants.

As you can see all these predicate definitions have local nature. We don’t
need universal quantification to express them. Mainly it is because we implicitly
outsource these quantifiers to stereotype invariants. In such a way we can, as we
stated earlier, use stereotypes to express global properties in a local way.

16



Reg blockedBy−1 ( o : r e f )
blockedBy−1(o) = i f (o.st = stL ) then o.Tree.Children

e l s e o.Tree.Children ∪ {o.List.prev} ;

Reg blockedBy∗ ( o : r e f )
blockedBy∗(o) = o.Tree.Ancestors ∪ o.Tree.root.List.El ∪ {o} ;

Reg blockedBy+ ( o : r e f )
blockedBy+(o) = blockedBy∗(o) \ {o} ;

Fig. 11. blocedBy predicates

To facilitate stereotype-based verification, we generalized the notion of object
invariant to a notion of invariant state. In ownership-based verification, it is
assumed that an object invariant depends only on the part of the heap which
is owned (encapsulated) by the object. This guarantees that the invariant can
be broken only by the object. From the practical perspective this restriction is
too strong. It is typical that the invariants depend on heap locations that can
be changed by other objects. In this case, the invariant is broken and essential
information about the object state is lost. It is not clear which methods need to
be involved to restore the object invariant. One possible way to deal with this
problem and make objects suitable for such external heap changes is to introduce
invariant states. It is usually assumed that an invariant is either valid or invalid,
which can be treated like that the invariants state takes values from the Boolean
domain. Instead, we assume that the class developer provides a description of
the invariant states values domain. Together with the domain description, the
developer should provide and prove transitions rules. These rules describe how
the objects invariant state changes as a reaction to external heap changes. The
rules formalize the developers expectations about how the environment of the
object can be changed during the program execution. If the provided rules are
detailed enough, they can be used to restore the object invariant after external
changes.

To specify priority related behavior of PIP we introduce three object in-
variants in Figure 12. invDefaultPriority invariant specifies properties of the
default priority. This invariant is established when an object is created and holds
during the object’s lifetime. invPriorities invariant specifies the semantic of
the priorities multiset. Its state space is the set of pairs of natural numbers. Es-
sentially the invPriorities invariant describes how to construct the multiset of
priorities of nodes blocked by the this node. It states that to receive the desired
multiset it is enough to add to (if to 6= 0) to and remove from (if from 6= 0) from
priorities. The currentPriority invariant describes the relation between the
current priority of the object and the current priorities of objects blocked by the
object. currentPriority contains meaningful value only if the invariant state
of the invariant invPriorities is 〈0, 0〉.

17



i n va r i an t invPriorities

s t a t e space : N×N
〈from, to〉 ⇒

∀i ∈ N+ \ {from, to} : priorities[i] =
|{o ∈ blockedBy−1(this) : o.currentPriority = i}|

from 6= 0 ⇒ priorities[from] =
|{o ∈ blockedBy−1(this) : o.currentPriority = from}|+ 1

to 6= 0 ⇒ priorities[to] =
|{o ∈ blockedBy−1(this) : o.currentPriority = to}| − 1

i nva r i an t invCurrentPriority

s t a t e space : Boolean
true ⇒ currentPriority = max(priorities ∪ {defaultPriority})

i nva r i an t invDefaultPriority

s t a t e space : Boolean
true ⇒ defaultPriority > 0

Fig. 12. Node invariants

As we can see both invDefaultPriority and currentPriority invariants
are independent from fields of other objects. As a consequence these invariants
can be affected only via explicit writing to fields of the object. It makes the
tracking of invariants states fairly simple. A method can affect these invariants
of an object o only if the object o is explicitly mentioned in the write effect
closure of the method. On the other hand the invPriorities invariant depends
from values of fields of a possibly unbound number of objects. As a result, even
if an object o isn’t mentioned in a method’s write effect closure, an execution of
the method can affect the value of the state of the invPriorities invariant. To
facilitate verification of such invariants we expect the user to provide transition
rules that express how the object state evolves by modifications of fields of other
objects. The transition rules for invPriorities invariant are provided on Figure
13.

Essentially the transition rules describe a relation between the state of the
program invariant in initial and final program points. A transition rule descrip-
tion consists of the following components:

– Name - name of the rule. Used for references to the rule.
– Initial state - state of the invariant in the initial program point.
– Frame - which part of the heap should be preserved between initial and final

program points.
– Heap conditions - relation between heaps at initial and final program point.

Usually describe how the part of the heap that is relevant to the invariant
and doesn’t belong to the frame was changed.

– Final state - state of the invariant in the final program point.

There are three kinds of transition rules:

18



Name : Frame
I n i t i a l s t a t e : 〈from, to〉
Frame : {〈this, priorities〉, 〈this, blockedBy−1〉,

blockedBy−1(this)× {currentPriority}}
Heap cond i t i on s : true
Fina l s t a t e : 〈from, to〉

Name : Remove a ch i l d
I n i t i a l s t a t e : 〈0, 0〉
Frame : {〈this, priorities〉, (blockedBy−1(this) \ {child})× {currentPriority}}
Heap cond i t i on s :

child ∈ old(blockedBy−1(this))
blockedBy−1(this) = old(blockedBy−1(this)) \ {child}

Fina l s t a t e : 〈old(child.currentPriority), 0〉

Name : Add a ch i l d
I n i t i a l s t a t e : 〈0, 0〉
Frame : {〈this, priorities〉, (blockedBy−1(this) \ {child})× {currentPriority}}
Heap cond i t i on s :

child /∈ old(blockedBy−1(this))
blockedBy−1(this) = old(blockedBy−1(this)) ∪ {child}

Fina l s t a t e : 〈0, child.currentPriority〉

Name : Change cur rent p r i o r i t y o f a ch i l d
I n i t i a l s t a t e : 〈0, 0〉
Frame : {〈this, priorities〉, 〈this, blockedBy−1〉,

(blockedBy−1(this) \ {child})× {currentPriority}}
Heap cond i t i on s : child ∈ old(blockedBy−1(this))
F ina l s t a t e : 〈old(child.currentPriority), child.currentPriority〉

Name : Update from
I n i t i a l s t a t e : 〈from, to〉
Frame : {〈this, blockedBy−1〉, blockedBy−1(this)× {currentPriority}}
Heap cond i t i on s : priorities = old(priorities) \ {from}
Fina l s t a t e : 〈0, to〉

Name : Update to
I n i t i a l s t a t e : 〈from, to〉
Frame : {〈this, blockedBy−1〉, blockedBy−1(this)× {currentPriority}}
Heap cond i t i on s : priorities = old(priorities) ∪ {to}
Fina l s t a t e : 〈from, 0〉

Name : Normalize s t a t e
I n i t i a l s t a t e : 〈a, a〉
Frame : ∅
Heap cond i t i on s : $Heap = old($Heap)
F ina l s t a t e : 〈0, 0〉

Fig. 13. invPriorities transition rules

19



– Frame rules
– State update rules.
– Normalization rules.

Frame rules describe conditions under which the value of the invariant state
is preserved. Frame rules have the same value for initial and final states. Since
invariants definitions can include predicates there can be several frame rules.
But even if they are equivalent it still can be useful to have all of them. Such a
redundant information can make more proofs feasible for an ATP. In our case we
have only one frame rule, the first one. Also it is possible that there are different
frame rules for different states since they rely on different parts of the heap.

State update rules describe how modifications of locations that are relevant
to the invariant change the invariant’s state. In our case rules Remove a child
and Add a child describe the effect of the blockedBy−1(this) modification.
Change current priority of a child describes how a change of the current
priority of a node blocked by this affects the invariant state. The Update from
and the Update to describe which modifications of priorities multiset can
restore invariant state back to 〈0, 0〉.

It is possible that different invariant states are equivalent, namely they give
the same guaranty. For example invariant state 〈a, a〉 (a > 0) of the invPriorities
invariant states that we should add a and remove a from the multiset priorities
to receive a multiset of current priorities of objects blocked by the object. The
result of this operations is multiset priorities.We can see that 〈a, a〉 is equiv-
alent to 〈0, 0〉. To formalize such kind of equivalence we use normalization rules.
Normalization rules are applied to a single program point, as a consequence they
don’t need a frame property, and the heap property states that the old heap is
equal to the new one. The invPriorities invariant has one normalization rule,
the last one on Figure 13.

To facilitate tracking of an object invariant states we make all updates of
invariant states explicit. For this purposes we introduce the exposeInv construct.
In general exposeInv plays the same role for object invariants that expose plays
for glue invariants. The same approach that we use to verify glue invariants can
be used to verify object invariants. In contrast to glue invariant we don’t require
an object invariant always to be in a consistent state. As consequence we can
call methods from bodies of an exposeInv construct.

Let’s consider the specification of PIP. To increase readability we drop all
topology related specifications. Since glue invariants are independent from topol-
ogy invariants we can implement verification as two-pass procedure. First we
verify the topology and then assume topological properties during verification
of object invariants.

In addition to pure topological version of PIP we need one more method to
update the value of current priority of PIP nodes, see Figure 14. You can see
that we introduce one more specification construct invariants update. These
construct specify states of which invariants are changed during method execu-
tion. We need this information for purposes of modularity. These specifications
can be verified by checking invariants of which objects are mentioned as parame-

20



void updatePriorities(from: int, to: int)

r e qu i r e s ∀o ∈ blockedBy+(this) : o.invPriorities = 〈0, 0〉∧
o.invCurrentPriority ∧ o.invDefaultPriority ;

r e q u i r e s this.invPriorities = 〈from, to〉 ∧ this.invDefaultPriority
i n v a r i a n t s update : this.invPriorities : 〈0, 0〉
i n v a r i a n t s update : this.invCurrentPriority : True ;
frame : blockedBy∗(this)× {currentPriority, priorities}

{
var oldCurrentPriority i n t ;

oldCurrentPriority = currentPriority ;

exposeInv(this.invCurrentPriority : b → True){
i f (from > 0) then
exposeInv(this.invPriorities : 〈a, b〉 → 〈0, b〉){

priorities = priorities \ {from} ;
} ;

i f (to > 0) then
exposeInv(this.invPriorities : 〈0, b〉 → 〈0, 0〉){

priorities = priorities ∪ {to} ;
} ;

exposeInv(
i f (blockedBy 6= null ) then blockedBy.invPriorities :
〈0, 0〉 → 〈old(currentPriority), currentPriority〉

by ru l e 〈Change cur rent p r i o r i t y o f a ch i l d 〉 ;
){

currentPriority = max(defaultPriority, max(priorities)) ;
}

}

i f (blockedBy 6= null and oldCurrentPriority 6= CurrentPriority )
then blockedBy.updatePriorities(oldCurrentPriority, currentPriority) ;

}

exposeInv(
i f (blockedBy 6= null and oldCurrentPriority = CurrentPriority )

then blockedBy.invPriorities :
〈currentPriority, currentPriority〉 → 〈0, 0〉

by ru l e 〈Normalize s t a t e 〉 ;
) ;

}

Fig. 14. Update priorities method of class Node of priority inheritance protocol.

21



void release(subTree: Node)

r e qu i r e s ∀o ∈ blockedBy∗(subTree) : o.invPriorities = 〈0, 0〉∧
o.invCurrentPriority ∧ o.invDefaultPriority ;

{
exposeInv(

this.invPriorities : 〈0, 0〉 → 〈subTree.currentPriority, 0〉
by ru l e 〈Remove a ch i l d 〉 ;

){
subTree.blockedBy = null ;

}
i f (subTree.currentPriority 6= 0)

then updatePriorities( subTree . cu r r en tPr i o r i t y , 0 ) ;
}

void acquire(subTree: Node)

r e qu i r e s ∀o ∈ blockedBy∗(this) ∪ blockedBy∗(subTree) :
o.invPriorities = 〈0, 0〉 ∧ o.invCurrentPriority ∧ o.invDefaultPriority ;

{
i f (subTree.blockedBy = null )
then{
exposeInv(

this.invPriorities : 〈0, 0〉 → 〈0, subTree.currentPriority〉
by ru l e 〈Add a ch i l d 〉 ;

){
subTree.blockedBy = this ;
}

i f (subTree.currentPriority 6= 0)
then updatePriorities(0, subTree.currentPriority) ;

} e l s e {
exposeInv(
subTree.invPriorities : 〈0, 0〉 → 〈0, this.currentPriority〉

by ru l e 〈Add a ch i l d 〉 ;
){
this.blockedBy = subTree ;
}

i f (currentPriority 6= 0)
then subTree.updatePriorities(0, this.currentPriority) ;

}
}

Fig. 15. Release and acquire methods of class Node of priority inheritance protocol.

22



ters of an exposeInv construct. Method updatePriorities changes only states
of object invariants invPriorities of object this to 〈0, 0〉 and states of object
invariants invCurrentPriority of object this to True.

At the begin of the method we expose this.invCurrentPriority invariant.
New value of the invariant state is True. It is consistent with the invariants
update specifications. This exposure enables a change of current priority priorities
multiset inside of the nested exposeInv blocks. The first two expose blocks
change the state of invariant invPriorities from state 〈a, b〉 to state 〈0, b〉 and
then to state 〈0, 0〉. The third one describes how a change of the current priority
affects the value of the invPriorities invariant state of the parent object. At
the end of the method we can see an example of an application of a normaliza-
tion rule. In case if after all transformations the value of current priority of the
this object is preserved then the value of the invPriorities invariant state of
the parent object is 〈currentPriority, currentPriority〉, which is equivalent to
〈0, 0〉.

In method release subTree is removed from the set of nodes blocked by
this. It affects the invariant state of the this.invPriorities invariant. State
of the invariant is changed from 〈0, 0〉 to 〈subTree.currentPriority, 0〉 never-
theless it doesn’t mention in the invariants update specification. The reason
for this is that the execution of the method updatePriorities restores the
initial state of the invariant and its temporally changes doesn’t visitable out-
side of the method. Method acquire is similar to method release. If subTree
is free (doesn’t have a parent) then subTree is added to this children and
this.invPriorities is exposed. In other case this is added to subTree children
and subTree.invPriorities is exposed. Similarly to release method absence of
invariants update specifications express that values of object invariant states
are preserved.

23


