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Zusammenfassung

Automatische Methoden zur Programmverifikation versuchen wäh-
rend der Übersetzung eines Programms zu beweisen, dass dieses auch
korrekt ist. Ein Programm wird dabei als korrekt betrachtet, wenn die
Ausführung dessen zu keinem Fehler führt, was wiederum der Fall ist,
wenn die Spezifikation zu jedem Zeitpunkt während der Ausführung hält.
Für den Fall dass die verwendete Verifikationsmethode nicht in der Lage
ist die Korrektheit des Programms zu zeigen, wird der Programmierer von
einem möglichen Fehler im Programm in Kenntnis gesetzt. Es liegt damit
in der Verantwortung des Programmierers den tatsächlichen Grund für
das Fehlschlagen der Verifikation zu bestimmen, wobei drei Typen von
Ursachen unterschieden werden: (a) Ein fehlerhaftes Programm, also ein
Programm welches tatsächlich einen Programmierfehler enthält, (b) eine
fehlerhafte Spezifikation, wobei das Programm sich nach der Intention des
Programmierers verhält, oder (c) die Verifikationsmethode war nicht in
der Lage die Korrektheit des Programms zu beweisen – ein häufig auftre-
tender Fall bei der Verwendung automatischer Verifikationsmethoden. In
allen drei Fällen ist der Stand der Technik limitiert auf manuelle Inspek-
tion durch den Programmierer oder systematisches Ausprobieren, wenn
eine deduktive Verifikationsmethode verwendet wird. In dieser Disserta-
tion wird der Stand der Technik verbessert indem neue Methoden zur Lo-
kalisierung sowie zum Verständnis von Verifikationsfehlern vorgeschlagen
werden. Um dem Programmierer dabei zu helfen einen Verifikationsfeh-
ler zu lokalisieren, wird Program Slicing verwendet. Dabei handelt es sich
um eine effiziente Methode zum Entfernen von Programmteilen welche
für das Fehlschlagen der Verifikation keine Rolle spielen. Existierende
Methoden die auf Program Slicing basieren unterstützen partielle An-
weisungen nicht oder inkorrekt. In dieser Dissertation wird deshalb eine
neue Methode, welche diese Anweisungen korrekt behandelt, präsentiert.
Für den Fall dass Progam Slicing nicht in der Lage ist dem Program-
mierer dabei zu helfen einen Verifikationsfehler zu verstehen, wir einen
neue Methode vorgeschlagen, welche nicht nur mit dem Debugger (dem
de-facto Werkzeug des Programmverständnisses) arbeitet, sondern den
Verifikationsfehler auch validiert. Dies wird erreicht indem ein ausführ-
bares Programm generiert wird, welches die Verifikationssemantik auf den
Zuständen in einem Gegenbeispiel zur Korrektheit simuliert. Durch die
Kombination dieser beiden Ansätze wird es möglich dem Programmie-



rer dabei zu helfen Verifikationsfehler effizient zu lokalisieren, sowie die
Ursache dessen besser zu verstehen.







Abstract

Automatic program verification attempts to prove the correctness of
a program at compile time. A program is considered correct if the ex-
ecution of the program does not lead to a program failure. A program
fails if a specification does not evaluate to true during the execution of
the program. If the program verifier is unable to ascertain the correct-
ness of the program, the programmer will be notified of a possible failure.
It now becomes the responsibility of the programmer do determine the
cause of this verification error. This error may result from (a) incorrect
program, that is, the error is in the program and not the specification, (b)
incorrect specifications, that is, the program does what the programmer
intended and it is the specification that is incorrect, or (c) the verifier
was simply too weak and was not able to verify the correctness of the
program; a common case in the context of automatic program verifica-
tion. For each of these cases, the state of the art is limited to trial and
error and manual inspection when using a program verifier based on de-
ductive reasoning. In this thesis we extend the state of the art to provide
better tools to help the programmer localize and understand the cause
of verification failures. To help the programmer locate the cause of the
verification failure we apply the technique of program slicing. Program
slicing is an efficient approach to removing those parts of the program
that do not play a role in the behavior of the verification failure. However,
applying this approach in the context of automatic program verification
in the presence of partial commands has an omission with consequences
both in theory and practice, which we aim to rectify in this thesis. If
program slicing is unable to help the programmer understand the veri-
fication error, we present a new approach that will not only work with
the de-facto tool for understanding programs, the program debugger, but
will also validate the verification error. We achieve this by constructing
an executable program that simulates the verification semantics of the
program with the states given by the counterexample. By combining our
two approaches we provide an invaluable aid to the programmer that will
help them efficiently and systematically locate and understand the cause
of verification errors.
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Chapter 1

Introduction

Automatic program verification takes a program and a specification and
attempts to verify that the program satisfies the specification. This pro-
cess is usually transparent to the programmer and is done during the
compilation phase of a program. When the verification succeeds the pro-
grammer is given a guarantee that their program will never fail. However,
when verification fails, the programmer is left with the responsibility to
understand why the program has failed. A verification attempt fails for
one of the following reasons:

1. The program is incorrect, that is, the program does not satisfy its
specification, and the specification expresses what the programmer
intended. A typical example is a runtime error such as division by
zero.

2. The specification is incorrect or incomplete, that is, the program
does not satisfy its specification, and the program expresses what
the programmer intended. A typical example is a loop invariant
that is too weak.

3. The prover was too weak to validate the condition, that is, the
verification error is a false positive, called a spurious error.

All three causes occur frequently in program verification; in particu-
lar, incorrect and incomplete specifications are as common as errors in



2 CHAPTER 1. INTRODUCTION

programs. Spurious errors are less common, but are more difficult to
understand as they usually happen when the program or specification
is too complex for the program verifier thus misleading the programmer
into locating the cause of an error for a valid program.

A common approach to automatic program verification is to compute
verification conditions, logical formulas whose validity entails the correct-
ness of the program. The verification conditions are then passed to an
automatic theorem prover, typically an SMT solver such as ‘ [22] or Z3
[20]. If the prover can establish the validity of the verification condition,
then verification succeeds (case 1). Otherwise, verification fails and the
programmer is notified of this failure along with an indication as to the
specification the solver was unable to verify (cases 2 and 3).

Besides the location of the failing specification, the main support that
verifiers based on SMT solvers provide for understanding a verification
error is a counterexample that illustrates why the verification condition is
not valid. A counterexample essentially contains a value for each variable
in each execution state, and therefore characterizes an execution of the
program being verified. This information is essential for understanding
a verification error. However, for programs with non-trivial states, for
instance heap data structures of modern programming languages, coun-
terexamples can be many times the size of the program being verified,
and thus not comprehensible by a programmer. Moreover, if a verifi-
cation condition is beyond the capabilities of the SMT solver, then the
counterexample may be invalid and not representative of a valid program
execution, thus misleading the programmer.

In this thesis, we present two approaches to help programmers local-
ize and understand failed verification attempts. If the programmer has
determined that the failing specification reported by the program verifier
is what they intended, then the cause of the verification failure must be
located in the program. Experienced programmers who understand the
behavior of a subset of the variables in a program do not inspect all the
commands of the program, only those who contribute to the states of
those variables. That is, they slice away the commands of a program
that are irrelevant to the variables in the criterion. We use this concept
of program slicing to help programmers localize the verification error by
removing those commands and specifications from the program that do
not contribute to the failing specification. As the program slice is smaller
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than the original program, it is therefore easier for a programmer to locate
the cause of the program error.

However, for programs that work on heap like data structures, pro-
gram slicing is very challenging and may not always localize the cause
of the failure. The second approach that we present in this thesis is a
technique that enables programmers to use standard debuggers to inspect
program verification and counterexamples just as they use debuggers to
inspect program executions and execution states. Our technique enables
programmers to step through the verification of a method, check the va-
lidity of assertions, and observe the evolution of the state described by
the counterexample. It detects verification failures caused by all three
reasons mentioned in the introduction and notifies the programmer of
spurious errors and invalid counterexamples. This tool support allows
programmers to understand, locate, and fix verification errors more eas-
ily. We believe that applying a familiar tool for this task is crucial for
making program verification more efficient and for increasing acceptance
among practitioners. Our approach is implemented within the Spec#
programming system.

1.1 Overview of the Thesis
In this thesis we present our approach to localize and understand errors
in failed verification attempts. The first part of this thesis will focus
on localizing the possible cause of the verification failure. Our approach
is based on the idea of program slicing except that we will extend the
approach to handle assume commands, which are used to represent a
larger set of commands that are called partial commands. The second
part of this thesis will focus on understanding the cause of the error in
a verification failure. Programmers use debuggers to understand why
programs fail and we extend this idea to using program debuggers to
help the programmer understand verification failures.

First we will present preliminaries that are required to understand
both parts of this thesis. We will present the language used and the se-
mantic characterization of this language using the predicate transformers
wp and wlp. To ensure that these predicate transformers make sense we
will present the classical healthiness rules [24] and give some indication
to the correctness of these transformers when applied to the rules. With
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the healthiness rules, we will present partial commands and understand
the impact these commands have in a programming language and how
they are used in the context of verification. We present our model of a
sound program verifier and how it is related to the predicate transformer
wp. To complete this chapter we will show how our basic language can
be used as an intermediate language to encode the semantics of more
sophisticated languages such as Spec#.

With the preliminaries finished we will present our approach to pro-
gram slicing for total commands. The current literature contains many
approaches and correctness results of varying degrees of confidence, but
none has captured what we feel it means to directly slice a program and
prove that this program is indeed a correct program slice. We will present
a data dependency function that will give us a set of relevant variables
for a program and we will use this data dependency function in our pre-
sentation of our program slicing function. Our program slicing function
is a program transformer, thus it is a direct way of representing what a
program slicer should achieve when inspecting programs. We will con-
clude the chapter with a discussion on the correctness of program slicing
and a direct proof of this correctness using the predicate transformers.
We believe that this is the first direct proof of the correctness of program
slicing. This chapter will also introduce some basic concepts that will be
used in the next chapter on how we slice partial commands.

After we present our approach to slicing programs for total commands
we will turn our focus to the slicing of partial commands. To preserve
the correctness of slicing for total commands we are forced to keep all
partial commands in the program. However, by not removing those com-
mands that do not play a role in the understanding of a verification failure
appears to go against the spirit of program slicing. To slice partial com-
mands, we weaken the definition of program slicing and we proceed to
construct a program slicer for partial commands. As these commands
commute freely over sequential composition, we are required to extend
our data dependency function to also include anti-dependencies in the
program. As a dependency can occur at various places in a program,
we extend our dependency function to iterate through the program until
a fixpoint is reached. With this fixpoint we use our program slicer to
remove those assumptions from the program that are irrelevant to the
failed verification attempt. We formalize the correctness of the weakened
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notion of program slicing and prove that our program slicer produces
semantically correct program slices. We conclude the chapter with a pre-
sentation on how we can utilize the program slicer to remove assumptions
on the background theory used in program verification.

After we understand how we can slice partial commands we will
present how the partial command program slicer can be used to help the
programmer locate the cause of the verification failure. As our program
slicer is not complete, a negative response may not indicate necessarily
an invalid program and we have to take this into account when we give
guarantees to the programmer of what they can expect from the program
slice. As modern program verifiers give a counterexample in the form of
a program trace, we discuss how this can be used to drive a dynamic
program slicer to produce even finer program slices. We discuss some is-
sues when slicing the intermediate form of a more sophisticated language
and finally conclude with some insights into our implementation for our
constructed program slice in the Boogie verification environment. This
concludes the first part of the thesis.

In the second part of the thesis we turn our focus to understanding
verification failures. As programmers use program debuggers to under-
stand program failures, we extend this to also enabling the programmer
to understand verification failures with the same familiar program de-
bugger. To validate the error and the states of the counterexample, we
construct an executable program that will simulate the verification se-
mantics of the program with the states given by the counterexample.
This constructed program can then be attached to a program debugger
which will allow the programmer to observe the failure and the sequence
of states that lead to the failure. By using a program debugger it is un-
derstood that our approach will offer a level of usability that will enable
the programmer to efficiently understand failed verification attempts.

We will finally conclude this thesis with a short summary and some
indication as to the next steps that can be taken with the results of this
thesis.





Chapter 2

Preliminaries

A standard approach to program verification is to transform a given pro-
gram and specifications into a set of verification conditions. These condi-
tions are logical formulas whose validity implies that the program satisfies
its specifications. The verification conditions are usually validated with
the help of an automatic theorem prover, typically a satisfiable modulo
theories (SMT) solver. Similar in the approach used by modern com-
pilers, the complex task of generating verification conditions for modern
programming languages is better performed by transforming the program
into an intermediate form [6, 44]. This intermediate form is closer to the
logical formulas used by the verification condition generator but still pre-
serves some structure of programs, thus allowing for more precise analysis
and programmer understanding.

Consider the Spec# program in Figure 2.1. This program declares a
type Node and a method Add that represents the addition of a node to a
link-list. The method takes a node n and either assigns the field next to
point to the node n, or it passes the node n to the next node if it is not
null. The method contains a postcondition Contains that will ensure
that when the method terminates the node n is in the list. Encoding the
Spec# program into an intermediate language will give us the program
in Figure 2.2. In this intermediate language we can see that everything
about our introductory example has been made explicit. Namely, the
reading and writing to the heap locations of this.next has been made
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explicit through the use of the array H. We have removed aliasing from
the program by using an array to model aliasing, thus simplifying the
handling of the program by a program verifier.

1 class Node {
2 Node next;
3 public void Add (Node n)
4 ensures Contains (n);
5 {
6 if (this.next != null)
7 next.Add (n);
8 else
9 next = n;

10 }
11 }

Figure 2.1: A typical Spec# pro-
gram that takes a node n and
adds it to the end of the list.
This program contains a post-
condition that asserts that the
list contains n when the method
finishes execution.

1 type Node;
2 var H:[ref,name] ref;
3 var Node.next : name;
4

5 proc List.Add (this:ref, n:ref)
6 ensures Contains (this,n);
7 assume H[this,Node.next] != null;
8 call List.Add(this,n)
9 ||

10 assume H[this,Node.next] == null;
11 H[this,List.next] := n

Figure 2.2: An intermediate
form of our Spec# program. The
run-time heap is made explicit
with the variable H and the
method call to Add is now a call
to the procedure Add. With ev-
erything made explicit this lan-
guage is considerably easier to
generate verification conditions
for the theorem prover.

In this chapter we present the language and semantics of a basic inter-
mediate language that is designed to accommodate the encoding of ver-
ification conditions for imperative, object-oriented programs. We give a
semantic characterization of this language using the predicate transform-
ers wp and wlp. We state some healthiness properties of our predicate
transformers and give some reasoning why we can ignore the classical
property of strictness when we verify programs. We construct a generic
model program verifier and define what we can expect from a sound
verifier. As this is a basic intermediate language, we give some source
language commands (if,while,call) and show how their meanings can
be encoded in our intermediate language.
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2.1 Language

We use an intermediate language based on the Boogie language [44, 6].
The language consists of two parts, the mathematical part and the im-
perative part. The mathematical part consists of declarations of types,
constants, first-order functions, and axioms. This part is commonly re-
ferred to as the background part. The imperative part of our language
contains declarations of global mutable variables and procedures whose
bodies are allowed to update and check properties on these variables.

2.1.1 Background Theory

Our language represents an intermediate language that can be used for
the verification and analysis of more complicated source languages such
as C#. To encode the semantics of these source languages, we allow the
programmer to describe certain properties of the language that are as-
sumed to hold when the program executes. These properties correspond
to static type information of the source language or more sophisticated
concepts such as abstract data types. We call this part of a program
declaration the background theory of the program. It is used to define
the signature for the declarative part. A background theory consists of
the following declarations

type T | const C : T | func F (T) returns (T′) | axiom E

Types In addition to the builtin types int and bool, our language
allows for programmer defined type declarations. A programmer can
declare a new type constructor by declaring a new identifier with the
keyword type. If the programmer wishes to declare a new type T, they
can use the declaration

type T

This declaration defines a new type constructor named T. To be valid
the name T must be unique. Every type represents a nonempty set of
elements that belong to this type. For example, the type declaration

type Fruit
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declares a new type constructor that represents all possible fruits. Along
with these programmer declared types, programmers can also make use
of the primitive types int and bool and array types. The primitive
type int denotes the mathematical integers and bool denotes the set of
Boolean values. The array type represents heterogeneous arrays. The
domain of the array type is listed within square brackets followed by a
range type. For example, [int]Fruit declares an array type that has int
as its domain and Fruit as its range. We can declare multiple domains
for an array by simply delimiting each type by a comma. The set of all
types in a program is contained in the set T .

Constants and Functions A constant is a type of variable that does
not vary in its value. A programmer can declare a constant C with the
const keyword. Along with a declaration of the constant the programmer
must provide a valid type for the constant. For example, the declaration

const C : T

declares a constant C with type T . To be valid the name of C must be
unique and T must either be a user defined type or one of the builtin
types {int,bool}. For example, a declaration of the form

const banana : Fruit

declares a constant banana of type Fruit. The Boogie language al-
lows the programmer to decorate the declaration with a unique keyword.
Adding this keyword to our banana declaration ensures that no other con-
stants of type Fruit can be equal to banana. We will use C to represent
the set of constants in a program.

Along with constants, a programmer can also declare functions. These
functions represent mathematical functions. A declaration of the form

func F (T) returns (T′)

declares a function named F that takes as input an element of type T and
returns an element of type T′. A programmer can declare more than one
input and output by separating each type by a comma. The name of the
function must be unique. The function declaration

func isRipe (Fruit) returns (bool)
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declares a function called isRipe that takes some parameter of type
Fruit and returns a bool type. The encoding of this function into its
mathematical counterpart is

isRipe : Fruit→ bool

where → has the usual function denotation in mathematics. We assume
that all functions are total. We use the set F as the set of all functions
in a program.

Axioms Declaring a constant or a function is not very useful unless
it is possible to postulate some properties on the constant or function.
Axioms are used to declare properties on constants and functions. An
axiom declaration has the form

axiom E

where E is a first-order expression of type Boolean. It is used to express
properties about the program’s constants and functions. For example,
the axiom declaration

axiom forall f : Fruit :: age(f) <= 20 ==> isRipe(f)

states that every fruit with an age less than or equal to 20 must be ripe.
This axiom is assumed to hold in all states as constants and functions are
not mutable. As with axioms of logic, it is possible to write inconsistent
axioms that are equivalent to false. We will use A to represent the set of
axioms for a program P.

2.1.2 Imperative Programming

The background part of our programming language allows the program-
mer to express assumptions on the environment of the program and con-
struct new theories that can be used to model programming concepts.
Our language also allows the programmer to write an imperative part
that allows the programmer to declare global variables and instruct the
verifier to either modify these variables or state assertions on them.
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Mutable State

The imperative part of our programming language operates on a state
space Σ. The program state space is the Cartesian product of all variables
in the program. A state σ ∈ Σ is an assignment of a value to each variable.
For example,

{x 7→ 7, y 7→ 3}

represents a state where x maps to the value 7 and y maps to the value
3. Programmers can extend the state of the program by declaring a new
variable x of type T using the declaration

var x : T

which declares a variable x of type T. This declaration essentially extends
the state of the program point-wise to include the variable x. The name of
the variable must be unique in the program. For example, the declaration

var apple : Fruit

declares a modifiable variable apple with the type of Fruit. The value
of apple is some arbitrary value of Fruit. We will use the set Vars to
represent the set of sets of variables in a program. That is, Vars is equal
to the powerset of variables in the program.

Expressions

Expressions in our language include constants, functions, variables, equal-
ity and arithmetic relations, Boolean connectives, simple arithmetic op-
erators, and an ordering operator used for typing. In our language, this
is essentially first-order logic with an extension for arithmetic. Valid ex-
pressions must be typed correctly. Equality between two expressions E

and F is expressed as
E == F

where an expression is either a Boolean expression, an arithmetic expres-
sion, or simply a variable name. A Boolean expression can contain the
basic connectives and, or,=> and the quantifiers exists and forall.
An arithmetic expression is built from the usual connectives <,>,<=,
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and >=. An expression can introduce quantification over a type.news
For example,

exists f : Fruit . f != banana

states there exists an element of type Fruit that is not a banana. Ex-
pressions may include array types. The expression m[j] access the value
of array m at the index j. An expression is valid for a state σ ∈ Σ if
the evaluation of the expression point-wise for each variable is valid. For
example, given a state σ the expression

x < y

is only valid if x.σ is strictly less then y.σ where v.σ is the value of v in
σ. Given a state σ we can evaluate the value of a variable v in σ by using
the dot notation v.σ which will give us the value of v in σ. For example,

y.{x 7→ 7, y 7→ 3}

will give us the value 3 as this is the value mapped to by y. If we apply a
state σ′ to another state σ, we treat this as an overriding of the variables
contained in σ. For example,

{x 7→ 7, y 7→ 3}.{x 7→ 0}

is equivalent to
{x 7→ 0, y 7→ 3}

where the value of x has been overridden to now have the value 0 and
the value of y has been unchanged.

Procedures

Procedures are reusable units that a programmer can use in their pro-
grams. A programmer can declare the signature of a procedure P by
declaring the input variables and types, output variables and types, and
specifications on the global variables, input parameters, and output pa-
rameters. A declaration of the form

proc P (ins : T) returns (outs : T)

requires E

modifies m

ensures E
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defines a procedure P with ins of type T as input parameters and outs

of type T as output parameters. To avoid any ambiguity, we assume
that input and output variable names are disjoint from any constants
or global variable names. The programmer can specify a precondition
of the method with the requires declaration and an expression E. The
variables mentioned by E must only contain constants, global variables,
and input parameters.

To specify which global variables may be modified by a procedure, a
programmer can also specify the frame of the procedure with a modifies
declaration. A global variable not mentioned in the specification may not
be modified by the procedure. The ensures declaration represents a con-
dition on the post-state of the procedure. The expression of the ensures
declaration is allowed to mention all global variables, input variables, and
output variables. It is also allowed to mention the pre-state of all global
variables with the use of the old keyword. We assume that any reference
to the pre-state of a global variable already has been de-sugared into a
temporary variable, thus freeing us from having to explicitly deal with
old variables.

The procedure declaration

proc Eat (f : Fruit) returns (b : bool)

requires isRipe(f)

modifies isFull

ensures b == true ==> isFull == true

declares a procedure Eat that has one input parameter f of type Fruit

and one output parameter b of type bool. The procedure declares that
f must be ripe when the procedure is called. The declaration also states
that it may modify the global variable isFull. Finally, this declaration
ensures that upon exiting the procedure if the value of b is true, then the
value of isFull will be true.

Optionally, a programmer can declare a body within the procedure.
This body consists of local variable declarations and an imperative pro-
gram. This imperative program consists of a combination of commands
that read and write to state.
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Commands

The imperative part of our language tests and mutates program states.
We mutate and test program states through the use of commands. With
commands we can update a variable, state an assertion or assumption
on the current state, or construct a larger set of commands using either
sequential composition or non-deterministic choice. The commands that
we will use in our language are primitive, but still sophisticated enough
to capture almost any source language semantics. The basic commands
are the following

skip | x := E | havoc x | assert E | assume E | S0;S1 | S0||S1

We will us the set Prgs to represent the set of commands.

No-Op The command skip behaves as a no-op. It does nothing. Exe-
cuted in a state σ will produce the exact same state.

Assignment The basic assignment command evaluates the expression
on the right hand side when executed and assigns the values to the identi-
fiers on the left hand side of the assignment. We assume a single identifier
on the left side of the assignment, but generalizations can be made. The
type of the right hand side must conform to the type on the left hand
side. The assignment

x := E

assigns to x the value of the expression E. For example, if we assign to x

the value of y ∗ z, we first look up the values of y and z, multiply them
together and then replace the current value of x with this new value.

An assignment command of the form m[i] := E first evaluates the ex-
pression on the right hand side and then assigns the values into the index
i of the array m. This has the effect of not only changing the value of
the indexed location but also changing the state of the array such that
all other indexes are preserved. We assume that an index i will always
be within the domain of the array.

Havoc The havoc command is used to define an unknown value. That
is, the command assigns an arbitrary value to the referenced variable.



16 CHAPTER 2. PRELIMINARIES

For example, the command
havoc x

arbitrarily chooses an element from the type of x and assigns it to x.

Assertions The assert command expresses a desired condition that
should hold upon execution of the command. If the condition does hold
for the state currently executing, the assert command behaves like a no-
op and execution continues without any modification to the state. If the
condition does not hold, then the command aborts the program. For
example, the assertion

assert x < y

asserts that the value of x is strictly less than the value of y. If we execute
this command in a state where the value of x is indeed strictly less than
y, then the command is equivalent to skip. The expression given by an
assert command must be of type Boolean and can refer to any constant,
function, or other variable.

Assumptions The assume command expresses an assumption made by
a programmer upon the state of the program. If the condition does hold
in the current state, then the assume command behaves like a no-op. If
the condition does not hold, then the command produces a miracle and
the program is said to trivially satisfy any state the programmer wishes
to achieve. That is, when an assumption does not hold, it is said that a
miracle occurs. The assumption

assume x < y

assumes that the value of x is strictly less than the value of y. If we
execute this program in a state where the value of x is indeed strictly
less than y, then the program is equivalent to skip. However, if x is
not strictly less than y then the program gets into an impossible state
and a miracle is said to have occurred. Once a miracle has occurred
every postcondition is valid, even the impossible condition false. The
expression given by an assume command must be of type Boolean and
can refer to any constant, function, or other variable.
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Sequential Composition Basic commands are not very interesting
until you can compose them together. Sequential composition does ex-
actly this. Given a command S0 and a command S1, sequential compo-
sition first executes S0 and if S0 terminates then S1 will execute with
the resulting state from executing S0. For example, the program

x := y ∗ z; assert 0 <= x

assigns x the value of y times z and then checks that the state of x is
greater than or equal to 0. As assignment always terminates, the next
command will always be executed. However, assertions may not always
terminate and our assertion will not terminate if x is not greater than or
equal to 0. As sequential composition is a command, we can construct
arbitrarily but finite sequences of commands.

Non-deterministic Choice Given a command S0 and a command S1,
the non-deterministic choice operator chooses which command it should
execute non-deterministically. This choice is completely arbitrary. For
example, the execution of

x := y ∗ z || assert 0 <= x

will either choose to execute the assignment of x to the value of y times
z or it will choose to assert that the value of x is greater than 0. It will
only choose one branch, it will not execute both.

2.1.3 Program Labels
To be able to inspect a program and differentiate between equal com-
mands that occur in different positions in the program we make use of
program labels. Program labels are unique declarations given to every
basic command in the program. To represent a program label we will
use the set of natural numbers. The program labels can either be given
by the programmer or automatically given by a compiler. For example,
given a command S and a program label `, we decorate the command as

` : S

which states that command S is located at program label `. When nec-
essary, we will make the labels in a program explicit by prepending each
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command or background declaration with a label. For example, if a
program contains the command x := y + z it will be decorated with a
program location, say 3, that gives us an indication of the location in the
program. For example,

3 : x := y + z

tells us that the command x := y + z has the program label 3. We assume
a function LAB that given a program will give us the set of program labels
in that program. We assume a set of labels L for every given program P
such that LAB(P) is equal to L. A program label ` is valid if and only
if ` ∈ L. Program labels are only an auxiliary decoration for a command
and play no role in the semantics of a program.

Given a valid program label ` in a program P, the command located
at program location ` can be given by the function call to P[`]. Letting
P be our previous example, the query P[3] will give us the command
x := y + z.

As with natural numbers, we assume that program labels are well-
ordered under ≤. If a label ` is less than another program label `′,
then the execution of the command P[`] will always happen before the
execution of the command P[`′].

2.1.4 Free Variables
A useful function for this thesis will be a function FV that will tell us what
variables a program either updates or reads from. The set of variables
that a command updates or reads from is called the free variables of the
command. We compute the set of free variables FV as follows

Definition 1 (FV : Prgs→ Vars).

FV(skip) = ∅
FV(x := E) = {x} ∪ FV(E)

FV(havoc x) = ∅
FV(assert E) = FV(E)

FV(assume E) = FV(E)

FV(S0;S1) = FV(S0) ∪ FV(S1)

FV(S0||S1) = FV(S0) ∪ FV(S1)
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where FV(E) follows the usual free-variable analysis of first-order
expressions. A program P must have the property that

FV(P) ⊆ dom(Σ)

where Σ is the possible states of the program mapping variables to values
and dom returns the domain of the function Σ. It is also customary to
separate the variables read by a program and the variables modified by a
program. The function def(P) returns all variables that are updated by
a program P.

2.2 Predicate Transformers
In this thesis we will use the wp and wlp predicate transformers [23, 24]
to give a semantic meaning to the imperative part of our program. Given
program P and a postcondition R, the weakest precondition transformer
(wp) characterizes those initial states for which every execution of the
program will terminate in a state satisfying the postcondition R. The
weakest liberal precondition transformer (wlp) characterizes those initial
states that will either not lead to termination or if it does terminate then
it will satisfy the postcondition R.

The program in Figure 2.3 assigns the value of y to the variable total,
asserts if the state of sum is equal to 0 and then assigns x the value of
total. If the value of sum is not equal to 0, then the program will abort
and not terminate.

1 total := y;
2 assert sum == 0;
3 x := total;

Figure 2.3: A program that will
abort if sum is not equal to 0 or ter-
minate normally otherwise.

The weakest precondition for this program with the postcondition
0 ≤ x will characterize those initial states where the value of y must be
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greater than 0 and the value of sum must be equal to 0. If the value of y
is not greater than 0, then the program may terminate in a state where
x is not greater than 0 as the value of x is defined by the value of y. If
the value of sum is not equal to 0, then the assertion that sum == 0 will
abort and will not satisfy the semantics of the weakest precondition.

However, if the programmer is not interested in termination they may
apply the weakest liberal precondition transformer to the program. For
the given postcondition 0 ≤ x, the weakest liberal precondition will char-
acterize those states where y must be greater than 0 or the value of
sum must not be equal to 0. That is, if we execute the program in a
state where the value of y is greater than 0 or if we execute it in a state
where sum != 0, the program will either terminate in a state satisfying
the postcondition or the program will abort.

The predicate transformers wp and wlp are defined over the com-
mands in our language. There is very little difference between the two
except when it comes to commands that may not terminate. The set
Preds is the set of all predicates. We defying wp as

Definition 2 (wp : Prgs×Preds→ Preds).

wp(skip, R) = R

wp(x := E, R) = R[x := E]

wp(havoc x, R) = ∀x ·R
wp(assert Q, R) = Q ∧R
wp(assume Q, R) = Q⇒R

wp(S0; S1, R) = wp(S0,wp(S1, R))

wp(S0||S1, R) = wp(S0, R) ∧ wp(S1, R)

where R[x := E] denotes the simultaneous capture-avoiding substi-
tution of the expression E for the the variable x in R. We define wlp
similarly as wp.

Definition 3 (wlp : Prgs×Preds→ Preds).

wlp(skip, R) = R

wlp(x := E, R) = R[x := E]
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wlp(havoc x, R) = ∀x ·R
wlp(assert Q, R) = ¬Q ∨R
wlp(assume Q, R) = Q⇒R

wlp(S0; S1, R) = wlp(S0,wlp(S1, R))

wlp(S0||S1, R) = wlp(S0, R) ∧ wlp(S1, R)

where R[x := E] denotes the simultaneous capture-avoiding substitu-
tion of the expression E for the the variable x in R. The only difference
between the two predicate transformers is how the expression of an asser-
tion is handled. In the wp the expression is conjoined with the postcon-
dition thus strengthening the condition given to the programmer. In the
wlp the expression is assumed to hold, thus weakening the precondition
given to the programmer. Both transformers work backwards through a
program.

The relationship between the weakest precondition transformer and
the weakest liberal transformer is called the pairing condition. This con-
dition states

wp(P, R) ≡ wlp(P, R) ∧ wp(P,>)

must hold for all states. This condition makes explicit that the wp com-
putes the necessary preconditions to ensure termination and that the
wlp computes the necessary preconditions to satisfy the postcondition.
When we use > as the postcondition of the wp, we are given the weakest
precondition to ensure termination of the program.

2.2.1 Healthiness Properties
Any function that takes a predicate and returns a predicate is defined as a
predict transformer. However, the predicate returned must make sense in
the context of program semantics. To ensure that a predicate transformer
does make sense for program semantics, some healthiness properties [24]
have been defined that wp and wlp must satisfy.

The first and most important healthiness property is monotonicity.
The idea is that if we know that every state in Q is also in R, then
for an arbitrary program P, every initial state that satisfies the precon-
dition wp(P, Q) should also satisfy the weakest precondition wp(P, R).
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That is, wp (and wlp) should both be monotonic in its second argument.
This property allows the programmer to reason about the composition of
programs.

Proposition 1 (Monotonicity). For any program P and post-conditions
Q and R such that

Q⇒R for all states

then we also have

wp(P, Q)⇒ wp(P, R) for all states

The second healthiness property ensures that wp is conjunctive. If a
program executed in a state that satisfies wp(P, Q∧R), then we know that
P will terminate in a state satisfyingQ∧R. A transformer is conjunctive if
the initial state for wp(P, Q∧R) also satisfies the preconditions wp(P, Q)
and wp(P, R). That is, reasoning about a program that satisfies the
postcondition Q ∧ R is the same as reasoning about a program that
satisfies the postcondition Q and the postcondition R. It should also be
that if we reason about the postcondition Q and R, then we should also
be able to reason about Q ∧R.

Proposition 2 (Conjunctivity). For any program P and postcondition
Q and R, we have

wp(P, Q) ∧ wp(P, R) ≡ wp(P, Q ∧R)

for all states.

The third healthiness property is about disjunctive predicate trans-
formers. This property ensures that if we are in a state where the ex-
ecution of P will satisfy Q or the execution of P will satisfy R, then
from the same state we should be able execute the program to satisfy the
postcondition Q ∨ R. Unlike conjunctivity, this property does not hold
in the other direction in the presences of non-determinism. We will refer
to this as weak disjunctivity.

Proposition 3 (Weak Disjunctivity). For any program P and postcon-
dition Q and R, we have

wp(P, Q) ∨ wp(P, R)⇒ wp(P, Q ∨R)

for all states.
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A program is deterministic if the final state of a program will always
be the same for a given initial state. If a program is deterministic then
we can strengthening the disjunctivity of wp to also include the other
direction of the implication. That is, if we know that if a program ter-
minates in a state that satisfies the postcondition Q ∨ R, then we know
that the program will either terminate in a state that satisfies Q, or it
will terminate in a state satisfying R. We will refer to this as strong
disjunctivity.

Proposition 4 (Strong Disjunctivity). For any deterministic program
P and postcondition Q and R, we have

wp(P, Q) ∨ wp(P, R) ≡ wp(P, Q ∨R)

for all states.

The proof of these properties on wp (and wlp) is straightforward and
left out as they can be found in the literature [24]. By the pairing condi-
tion, every property on the wp also holds for the wlp. A reader familiar
with the classical healthiness properties of the predicate transformers
would have noticed by now that we have left out the property of strict-
ness.

2.2.2 Strictness and Feasibility
Our language allows for the use of partial commands. Partial commands
[56, 53, 4] are commands that do not satisfy the Law of Excluded Miracle
[23]. This law states that every command in the programming language
must be total. That is, the semantic function describing the command
must be total for all states. If it is not total, then the semantic function
describing the command may not be valid for some states in the program.
Our programming language admits such partial commands through the
assume command.

Partial commands can generally not be realized by a computing ma-
chine and are justifiably left out of computer languages [23]. However,
partial commands are used extensively in the modeling and verification
of programs [47] as they allow the verification environment to abstract
away from implementation details. The assume command represents the
simplest of the partial commands. The command simply checks the state
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for the given condition and does nothing if the condition is satisfied in
the state. If the condition is not satisfied, a miracle is said to occur.
Once a miracle has occurred, anything is possible and any postcondition
is satisfiable. As such, this command has no direct counterpart in exist-
ing programming languages as it is not implementable. For example, the
program

assume x == 0

is not strict as there is a state, any value of x not equal to 0, that will
produce the impossible postcondition ⊥. We define strictness using the
wp transformer.

Definition 4 (Strict). For any program P, if the program satisfies the
condition

wp(P,⊥).σ ≡ ⊥
for all states σ, then the program is called strict or total.

If a program is not strict, then we say it is partial. Every command
except for assumptions are total in our language. Partial programs admit
another category of programs depending if the program is only occasion-
ally partial or if it is everywhere partial. If the program admits at least
one initial state that does not produce a miracle, then the program is
said to be feasible. If the program contains no initial states that will not
lead to a miracle, then the program is infeasible.

Definition 5 (Feasible). For any program P, if there exists a state σ
such that

wp(P,⊥).σ ≡ ⊥
then P is said to be feasible. If there does not exist such a state, the
program is said to be infeasible.

For example, the program

assume x == x + 1

is infeasible as there does not exist a value for x such that x be equal to
itself plus one. However, the program

assume x == 0

is feasible as there does exist a state for x that does not produce a miracle,
namely 0. A total program is feasible for all initial states.
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2.2.3 Everywhere Operator

In this thesis we will make use of the "everywhere" operator [25]. This
operator saves us from the notational overhead of having to make explicit
the states of the program. Given a condition E, the everywhere operator
takes E and determines if E holds for all possible states. We use the
notation [E] to mean that E holds everywhere. This is the same as ∀σ ∈
Σ · E where FV(E) ⊆ dom(Σ). When using the predicate transformers we
will make explicit the variables used in the state. For example, [x = y] will
be equivalent to writing ∀x, y · (x = y). We can also qualify this operator
as v : [E] to mean that the expression E holds for all states contained in
v. For example, {x} : [x = y] is the same as ∀x · (x = y). The everywhere
operator enjoys all the same properties as universal quantification.

2.3 Automatic Program Verification

Given the background theory and procedure declarations of a program,
an automatic program verifier will attempt to verify the body of every
procedure by checking that for every execution of the procedure body no
specifications will fail. Most verifiers will attempt this by assuming the
procedure’s preconditions and asserting that this condition implies the
weakest precondition of the procedure’s body. An automatic program
verifier will attempt to do this without any input from the program-
mer. If the verifier is unable to ascertain the validity of the program, a
sound program verifier will notify the programmer of the possibly failing
specification. Along with this notification, modern program verifiers are
also able to provide the programmer location of the failure and a trace
through the procedure that contains the failure [45].

We use Ξ to model a generic automatic program verifier. Given a
procedure body P our model verifier will return a positive response > if
it is able to ensure that for all executions of P no specifications will fail.
If the verifier is unable to ensure the validity of the program program,
then the verifier will respond with a negative response ⊥ along with a
tuple containing the location of the failure and a counterexample trace
that represents a witness to the failure. For this thesis we will treat assert
commands as failing specifications, an extension to other commands is
trivial. We model an automatic verifier as a function from simple pro-
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grams to positive results or negative results with counterexample traces.

Definition 6 (Automatic Program Verifier). An automatic program ver-
ifier Ξ takes a global declaration and a procedure body P as input and
attempts to verify that every execution of the body will never fail. If it is
able to ascertain this, Ξ will return a positive result > meaning success.
If the verifier is unable to ascertain the validity of the procedure body it
will return a negative result ⊥ with the program location of the failure
and a program trace leading up to the failure. We model Ξ as

Ξ ∈ Prgs→ {>} ∪ ({⊥} × (L× (N→ (L× Σ))))

where Prgs is a procedure body, Σ is a state in the procedure, L is the
set of program labels and N is the natural numbers

A program verifier is considered sound if it will never report > for a
procedure body that may possibly fail. If the verifier is unable to show
the validity of a procedure body, for example, due to the limitations of au-
tomatic analysis, it must be conservative and return a negative response.
We allow the program verifier the flexibility to use any approach it sees
fit to verify a program, however it must only return a positive response
> if the procedure body will never fail.

Definition 7 (Sound Verifier). A program verifier is considered sound if
and only if for every procedure p in the program

Ξ(T , C,F ,A ` assume Pre(p); body(p); assert Post(p)) = >
⇒
T , C,F ,A ` [Pre(p)⇒ wp(body(p),Post(p)]

where T is the declared types, C are the constants, F are the functions,
and A are the axioms of B.

It is important to note that the other direction does not have to
necessarily hold. This property is called completeness and is generally
not necessary as the analysis required to verify interesting programs is
beyond the limitations of known computational measures [30]. This has
the consequences that semantically correct programs in the wp may not
be verifiable by Ξ. From this point forward when we make use of Prgs
we will be referring to only the imperative part of a program.
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2.4 Target Languages

The imperative part of our programming language is rather primitive.
It does not contain the usual programming language commands such as
conditional choice, looping, aliasing, or procedure calls. However, the
language that we have presented is sufficiently complex to capture the
semantic meaning of these more complicated commands. In this section
we introduce a function Tr[] that given a program in a source language
will produce a program in our intermediate language that preserves the
meaning of the source program.

2.4.1 Conditional command

The conditional command allows us to make a choice between which
program segments should be executed based on a test of the current state.
Given a command of the form if E then S0 else S1 fi the command
will execute S0 if the evaluation of E in the current state evaluates to true.
If it does not evaluate to true, then the command S1 will be executed.
For example, in the conditional

if x < 0 then x := x+ 1 else x := x− 1 fi

the assignment to x with the value of x + 1 will be executed if the initial
value of x is strictly less than 0. If the value of x is not strictly less than
0, then the conditional command will execute the assignment to x with
the value of x− 1. We refer to the expression x < 0 as the guard of the
command.

Translating this into our intermediate language is straightforward.
We model the branches with a non-deterministic choice operator and we
model the guards by assuming that either it holds, executing the first
branch, or that the guard does not hold, executing the last branch.

Tr[if (E) S0 else S1 fi] =̂

assume E; Tr[S0] || assume !E; Tr[S1]

where !E is the negation of the expression E and the translation preserves
the labels from the original program.
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2.4.2 Repetition Command

In addition to languages with a conditional command, most modern pro-
gramming languages offer a while command which allows the program
to iterate the body of the command a number of times until the guard of
the loop no longer holds. An example of such a command as it is found
in modern programming languages is

while x < 0 {x <= 0} do x := x+ 1 od

where the condition x < 0 is the guard of the loop, the condition x <= 0

is the loop invariant and the assignment x := x + 1 is the body of the
loop. The program first checks that the loop invariant x <= 0 holds. If
this check does not abort, the guard x < 0 of the loop is evaluated. If the
guard does not hold, the command terminates. If the guard does hold,
then the body x := x + 1 of the command is executed. When the body of
the loop terminates, the invariant is then checked again. If the invariant
holds, we then again check the guard. If the guard is false, the command
terminates. If the guard holds, we continue with the loop execution.

Checking that the command terminates requires a variant function
that describes a property that becomes smaller with each execution of
the loop. However, these variant functions are extremely hard to write
and verify. Instead, we only are interested to know that if the loop
terminates, then it satisfies the postcondition of the program. To encode
this into our intermediate language, we employ the encoding of [8]. This
encoding ensures that we verify both the correctness of the body of the
loop and the loop invariant. Given a repetition command we translate it
as follows

Tr[while E {I} do S od] =̂

assert I; havoc def(S); assume I;

(assume E; Tr[S]; assert I; assume false || assume !E)

where def(S) is the variables that are defined by the body of the
repetition. This translation checks that the loop invariant holds and then
it havocs the variables in the body of the loop. This arbitrary assignment
to these variables simulates an arbitrary execution. The invariant is then
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assumed to hold before we either do one execution of the body of the
loop, then checking the invariant or we simply assume that we are finished
with the end of the loop and we exit. As with the other translations, we
assume that all labels are preserved in the translation. This encoding
may surprise the reader at first, but upon inspection the reader will find
that this encoding does do the trick for the verification of loop invariants
and correctness of the body of the looping command.

2.4.3 Aliasing

Our intermediate language does not contain any aliasing of variables.
That is, when we update a variable, we know that the value of every
other variable has not changed. This property of variable coincidence is
what makes our language well suited for program verification. However,
with the use of array types we can simulate the aliasing of variables
commonly found in target languages such as Spec#.

When we see an assignment of the form x = o.f in an object-oriented
language, we know that this command updates the object pointed to by
x to now contain the evaluation of the field f of the object pointed to by
o. If we see an assignment of the form o.f = x then we know that this
updates the reference of the field f of the object pointed to by o to the
object referenced to by x. For example, the assignment of this.next = n

assigns to the field next of this, as declared by the static type of this,
the reference pointed to by node. In a C like language, this is changing
the object being pointed to by this.next to the address of this. We
can encode this aliasing by making explicit the properties of the run-
time heap. We do this by declaring an array H that goes from object
locations and field names to object locations or primitive values. We then
use this array to read and write to any variables or expressions that use
an aliased variable. For our example, we would look up the instance of
this with the field name next and then assign to it the instance of of
node. That is,

H[this, Node.next] := node

where Node is the declared type for this. A similar translation is per-
formed when we also read from an aliased variable. We will distinguish
between the reading and the writing for our translation function. That
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is when we read from an aliased variable we translate this as

Tr[x = o.f] =̂

x := H[o, typeOf(o).f]

where typeOf is a function that given a reference will return the type
that declares the reference. When we write to a reference, we translate
it as

Tr[o.f = x] =̂

H[o, typeOf(o).f] := x

The encoding for a full blown language such as Spec# is more compli-
cated than what we have presented here [9, 7]. However, our encoding is
sufficient to capture the main ideas and problems when tackling aliasing
in target programming languages.

2.4.4 Procedure Calls
A programmer can call a procedure to modify any global state and can
then save the results from the procedure. A programmer calls a procedure
P with the command

call x := P(E)

where E is some expression and x is the result of the procedure P. A
modular verification of a procedure does not actually call the procedure,
but instead reasons about the procedure using its specifications. That is,
the meaning of a procedure call for verification is to use the specifications
of the procedure, and not the body of the procedure. For example, if we
consider our example declaration of the procedure Eat

proc Eat (f : Fruit) returns (b : bool)

requires isRipe(f)

modifies isFull

ensures b == true ==> isFull == true

and we have a call to the procedure Eat, we do not actually call this
procedure. Instead we verify that the precondition holds, then we havoc
the state of all the variables in the modifies clause and then we assume
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the postcondition of the procedure. For example, calling our procedure
Eat with the input Banana and storing the return value into the variable
x will be translated into

assert isRipe(Banana);

havoc IsFull;

assume x == true ==> IsFull == true

The translation for procedure calls is

Tr[call x := P(E)] =̂

assert Pre(P); havoc Mod(P); assume Post(P))

where Pre(P ) is the precondition of procedure P with the formal pa-
rameters replaced by the expression E, Mod(P ) is the set of all global
variables modified by P, and Post(P ) is the postcondition of P with all
occurrences of result replaced by x. All program labels are preserved in
the translation.

2.5 Summary
We have presented a basic language that can be used to encode the seman-
tics of more complicated languages such as Spec#. We have presented the
semantics of our language using the predicate transformers wp and wlp.
For the predicate transformers we have shown the healthiness properties
that both transformers enjoy. We have shown how our language violates
the property on strictness of programs and have shown why this is okay
for the context of program verification. We have defined an automatic
program verifier and what we can expect from it. Finally, we have given
some example source language commands and have shown how they can
be encoded in our programming language.

Our language and semantics are based on the Boogie programming
language [21, 6]. The Boogie language offers the programmer more so-
phisticated commands (call forall,where); however these commands
can be translated into our intermediate language. Our model program
verifier Ξ is based on the Boogie program verifier; however, our model
is applicable to all automatic program verifiers that are able to produce
counterexamples for failed verification conditions.
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Localizing Program Errors





Chapter 3

Slicing Total Commands

A large and complicated program is more easily understood when broken
into smaller pieces. A programmer interested in the behavior of only a
few variables of the program does not always need to inspect the entire
program as only some parts of the program affect the behavior of those
few variables. Experienced programmers do this automatically when un-
derstanding program behavior as they ignore those commands that do
not affect the variables. Program slicing [68, 69, 65] automates this ap-
proach by systematically removing those commands from the program
that have no effect on the variables the programmer is interested in. It is
understood that by presenting the programmer with a simpler program,
the programmer will be able to understand and debug the programmer
more efficiently.

The program in Figure 3.1 assigns an arbitrary value to y using a
havoc command and then assigns value 0 to total and the value 0 to
sum. The program asserts that the state of x is equal to z and then
non-deterministically chooses to assign the value of y to sum or to assign
an arbitrary value to z and the value of x ∗ y to total. A programmer
trying to understand the behavior of total upon the exit of the program
will search for those commands that updated the value of total. The
programmer will first inspect if either of the branches are relevant to the
value of total. Inspecting the bottom branch containing the assignment
to total the programmer will observe that the value of total depends



36 CHAPTER 3. SLICING TOTAL COMMANDS

on the values x and y and will now search for any modification to the
values of x or y. As the havoc to z does not modify the value of x or y
the programmer can safely ignore the havoc. With this branch finished
the programmer can now inspect the top branch that updates the value
of sum to y for any modifications to total. As the assignment to sum has
no effect on on total the command can be ignored by the programmer.

With both branches inspected the programmer may continue inspect-
ing the program for any more updates to either the variables x and y or
the variable total. The assertion on x can be ignored as assertions do
not modify the value of any variables. The assignment to sum can also
be safely ignored by the programmer as it does not affect x,y, or total.
However, the assignment to total the value of y cannot be ignored as
the programmer is interested in the value of total. As this is the last
command to be inspected, the programmer has now produced a slice of
the program and will no longer see the program in Figure 3.1 but the
program in Figure 3.2.

Program slicing automates this removal of commands by analyzing
the program backwards and removing those commands that do not affect
the values of the variables the programmer is interested in. Similar to
the approach taken by a programmer, program slicing will proceed by
inspecting both branches of our introductory program (Figure 3.1). In
the bottom branch the program slicer will first inspect the assignment to
total and as it is interested in the behavior of total the slicer will keep
the command and remove total from the list of variables whose state it
is interested in. The slicer will then take interest in the values of x and
y and continue inspecting the program. The havoc on z has no effect on
the value of x or y and will be removed by the program slicer.

The program slicer will also inspect the next branch for any updates to
total. As the only command is an update to sum the program slicer will
remove the command and finish inspecting this branch. As there are no
commands in the top branch that update the value of total, the program
slicer will remove this branch from the program. Now finished with the
branches, the program slicer will continue inspecting the program for
any updates to x, y, or total. The slicer will remove the assertion on
x as assertions do not modify the value of any variables but keep the
assignment to total and the havoc on y as it is interested in both of
these variables.
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1 havoc y;
2 total := 0;
3 sum := 0;
4 assert x == z;
5 sum := y
6 ||
7 havoc z;
8 total := x * y

Figure 3.1: A program that non-
deterministically assigns total

either the value 0 or the value of
x times y.

1 havoc y;
2 total := 0;
3 skip
4 skip
5 skip
6 ||
7 skip
8 total := x * y

Figure 3.2: A program slice
that preserves only the values
of the variable total when ex-
ecuted. Commands that are
removed from the program are
modeled as being replaced with
the identity command skip.

In this chapter we present our version of a program slicer. Our version
of a program slicer differs from the existing program slicers in that our
slicer works directly on the commands of the program and not on an
intermediate representation. Once we have presented our program slicer
we will formalize what it means to be a correct program slice and then
use this definition to prove that our program slicer will always produce
correct program slices. We will conclude with a discussion on related
work and why we believe that we have the first direct proof of program
slicing.

3.1 Program Slices

In this section we present our working definition of a program slice. A
program slice is a syntactically correct subset of a program that preserves
the behavior of the original program for a limited set of program variables
[68]. This set of program variables is called the slicing criterion. Typi-
cally a slicing criterion consists of a program label and a set of variables.
However, for brevity, we drop the program label from the criterion and
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refer only to the set of variables as the slicing criterion.

Definition 8 (Slicing Criterion). A slicing criterion C of a program P
is a set of variables v where v is a subset of variables in P whose final
values the programmer is interested in.

In this thesis we will use classical backwards program slicing [68, 65].
This type of slicing is a static analysis that works backwards through the
program removing those commands that do not play a role in the behavior
of the slicing criterion. A static backwards program slice must preserve
two properties of the original program: firstly, the program slice must
be obtainable from the original program by only removing commands.
Secondly, the program slice must preserve the behavior of the original
program for the slicing criterion if the original program terminates. The
first property is a syntactic property and simply states that the program
slice must be a subset of the original program. In this thesis we will
model the removal of commands from the original program by replacing
them with the no-op command skip.

The second property is a semantic property and will be formalized
later in this thesis. For now it suffices to know that the second property
states that for whatever input state that the original program is executed
in, the program slice and the original program must have the same final
value for each variable in the criterion. In our introductory program
(Figure 3.1) the final value of total after assignment it to the value 0

will always have the value 0 in the program slice regardless of the input
states of the program.

The semantic property of program slicing specifies that the original
program and the program slice must both terminate and have the same
final value for each of the variables in the criterion for the same input
values. However, a program containing non-determinism cannot ever
fulfill this semantic property as we can never know what value is assigned
by a havoc or what branch is taken by the program. The final value of
total in our introductory program (Figure 3.1) may have any allowable
value of natural numbers as the havoc to y replaces the initial value of
y with an arbitrary value. As we cannot know from the initial values
what the final value of total may be we cannot enforce the classical
semantic property of program slicing. We redefine this classical property
of program slicing to take into account the non-determinism of programs
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by requiring that a program slice must preserve all possible final values
for each variable in the criterion.

Definition 9 (Program Slice). A program P ′ is called a program slice
of another possibly non-deterministic total program P for a criterion C if
and only if

1. P ′ is a valid program in Prgs and P ′ can be obtained from P by
only replacing the commands in P with skip, and

2. whenever P terminates for some input I, then P ′ must also ter-
minate for the input I and both programs must have the same
possible values for each variable in C.

There is more than one slice for a given criterion. There always exists
at least one slice of a program, the program itself.

3.2 Data Dependency
Before we can present our program slicer, we must first define an auxiliary
function γ that given a program P and a set of variables C will return
the set of variables whose values define the variables in C. If a command
defines the value of a variable in the criterion C then the variables that
the command uses must be included in set of variables that is returned
from the function. For every variable v in the set of variables returned by
the function there exists a variable in the criterion that is data dependent
on v. We call this function γ and define it as a function from commands
and sets of variables to sets of variables.

Definition 10 (γ : Prgs×Vars→ Vars).

γ(skip, v) = v

γ(havoc x, v) =

{
v \ {x} if x ∈ v
v otherwise

γ(x := E, v) =

{
FV(E) ∪ (v \ {x}) if x ∈ v
v otherwise

γ(assert Q, v) = v
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γ(S0;S1, v) = γ(S0, γ(S1, v))

γ(S0||S1, v) = γ(S0, v) ∪ γ(S1, v)

Program labels do not affect the function and are left out for brevity.
The command skip does not define any variables. The command havoc x

defines the variable x by assigning an arbitrary value to it. If x is in the
criterion, we remove it as we are no longer interested in the assignments to
x. If x is not in the criterion, we treat it as skip and return the criterion
untouched. The assignment command x := E assigns the value of the
expression E to x. If x is in the criterion we remove it and add the free
variables of E to the criterion as these variables are used to define the value
of x. Otherwise, we treat it as skip and return the criterion. Assertion
commands do not modify any state and are treated the same as skip.
Sequential composition of the form S0;S1 works by first analyzing S1 for
any dependencies and then uses these newly computed dependencies for
the criterion for analyzing S0. This backwards analysis ensures that we
get all transitive dependencies of variables that may have an affect on the
slicing criterion. As we cannot know which branch of a non-deterministic
choice is taken, γ will analyze both branches of a non-deterministic choice
and merge the results together, thus ensuring that we know all possible
dependencies that my be introduced by either branch.

Applying γ

To understand how γ works we will compute the data dependencies for
our introductory program (Figure 3.1) for the initial criterion {total}
manually. To manage the complexity of the computation we will analyze
the individual blocks – sequential units of commands – of the program
separately. We will refer to the first block as the header of the program
and we will call it P0. For brevity, we leave out the program labels as
they have no effect on the results. We define P0 as

P0 =̂ havoc y; total := 0; sum := 0; assert x == z

We will refer to the bottom branch of the program as P1. We define P1
as

P1 =̂ havoc z; total := x ∗ y
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and we will refer to the top branch of the program as P2.

P2 =̂ sum := y

Using our abbreviations P0, P1, and P2 we can present how the anal-
ysis works for the entire program P0; (P1||P2). Given the criterion
{total}, the analysis γ(P0; (P1||P2), {total}) first works by analyz-
ing P1 and P2 and then joining the results. Applying the definition of γ
for non-deterministic choice we are given the step in the analysis where
γ(P0, γ(P1, {total})∪ γ(P2, {total})). The following steps are used to
compute γ(P1, {total}):

γ(havoc z; total := x ∗ y, {total})
= {definition of γ for assignment, total ∈ {total}}
γ(havoc z, {x, y})

= {definition of γ for havoc, z /∈ {x, y}}
{x, y}

which gives us the new criterion {x, y}. Computing γ(P2, {total}) gives
us the steps

γ(sum := y, {total})
= {definition of γ for assignment, sum /∈ {total}}
{total}

which will give us the new criterion {total} as the assignment to sum

does not affect the value of total. With the results of analyzing P1 and
P2 for the criterion {total} we are now in the state of the analysis where
γ(P1, {x, y} ∪ {total}) which is equal to γ(P1, {x, y, total}). By ana-
lyzing the non-deterministic choice with γ and the criterion {total} gives
us the new criterion {x, y, total}. Using this new criterion to analyze
P0 will give us the following steps.

γ(havoc y; total := 0; sum := 0; assert x == z, {x, y, total})
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= {definition of γ for assertions}
γ(havoc y; total := 0; sum := 0, {x, y, total})

= {definition of γ for assignment, sum /∈ {x, y, total}}
γ(havoc y; total := 0, {x, y, total})

= {definition of γ for assignment, total ∈ {x, y, total}}
γ(havoc y, {x, y})

= {definition of γ for havoc, y ∈ {x, y}}
{x}

where {x} is the only variable whose initial state will have an influence
on the variables of the original criterion {total}. This is because total
has been assigned the constant 0 and the value of y was assigned by the
havoc, thus removing them from the criterion. Given the analysis of our
program γ(P0; (P1||P2), {total}) we have the final criterion {x}.

3.3 A Total Command Slicer

With a working definition of a program slice and our auxiliary function
γ, we can construct our version of a program slicer. A program slicer
works by inspecting each command of the program and determining if
the command could possibly define a variable in the slicing criterion. If
the slicer is able to determine that the command does not have an effect
on any variable in the criterion it will remove the command from the
program. We call our version of a program slicer ∆. We model ∆ as a
program transformer. To simplify the presentation we model the removal
of basic commands by replacing the command with the command skip.
We define the slicer for every command in Prgs.

Definition 11 (∆ : Prgs×Vars→ Prgs).

∆(skip, v) = skip

∆(havoc x, v) =

{
havoc x if x ∈ v
skip otherwise
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∆(x := E, v) =

{
x := E if x ∈ v
skip otherwise

∆(assert Q, v) = skip

∆(S0;S1, v) = ∆(S0, γ(S1, v));∆(S1, v)

∆(S0||S1, v) = ∆(S0, v)||∆(S1, v)

The command skip has no effect and is its own slice. The havoc
command assigns an arbitrary value to the variable that is being havoc-
ed. If the variable is in the criterion, the program slicer keeps the havoc.
If the variable is not in the criterion, then the program slicer replaces it by
skip. The assignment x := E updates the variable x with the evaluation of
E. If the variable x is in the criterion, then the slicer keeps the assignment.
If x is not in the criterion then the program slicer replaces the command
by skip as it has no effect on the variables in the criterion. The slicer
replaces all assertions from the program as they only use variables and do
not define them. For sequential composition S0;S1, the program slicer
works backwards through the program first slicing S1 and then slicing
S0 with the data dependencies computed by γ for the criterion in S1.
The non-deterministic choice operator is sliced by slicing each branch of
the choice and then merging the slices back using the choice operator.
The program slicer does not modify the labels of command and preserves
them when slicing.

For array updates and reads we treat an update or read in an index
in an array m as an update and read to the entire array m. This has the
consequence that if we are only interested in a value contained in the array
at an index E, we must keep all updates to the array even though these
updates may not affect the index E we are interested in. The problem is
that it generally is not possible to compute if two indexes are equivalent
or not, thus it generally is not possible to determine if an update to an
array at index E has an effect on the value of the index F into the array we
are interested in. This treatment of arrays is the approach taken in the
program slicing literature [68, 65, 50] and not a limitation of this thesis.
Applying a points-to [13] or similar static analysis will help produce finer
grained slices in the presence of arrays.
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3.3.1 Applying ∆

To understand how ∆ works we will slice our introductory example (Fig-
ure 3.1) with the criterion {total}. To manage the complexity of the
computation we will reuse the program blocks P0, P1, and P2 from
the working example of γ. The first step in the program slicing of
∆(P0; (P1||P2), {total}) is to slice the program P1 and the program
P2 with the criterion {total}. The steps to slice the program P1 for the
criterion {total} works as follows:

∆(havoc z; total := x ∗ y, {total})
= {definition of ∆ for composition}

∆(havoc z, γ(total := x ∗ y, {total})); ∆(total := x ∗ y, {total})
= {definition of ∆ for assignment, total ∈ {x, y, total}}

∆(havoc z, γ(total := x ∗ y, {total})); total := x ∗ y
= {definition of γ for assignment, total ∈ {total}}

∆(havoc z, {x, y}); total := x ∗ y
= {definition of ∆ for assignment, x /∈ {x, y}}
skip; total := x ∗ y

The slice of P1 keeps the assignment to total as it is in the criterion.
The steps to slice P2 for the criterion {total} is as follows.

∆(sum := 0, {total})
= {definition of ∆ for assignment}
skip

After we slice both P1 and P2 for the criterion {total} we can join
the two program slices using the non-deterministic choice operator and
then continue slicing the rest of the program. We are currently at the
step in the analysis where we have sliced both branches of the program
and need to compute the data dependency of the branches for {total}
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so that we can slice P0. From our example analysis for γ, we know
that the set of data dependent variables given by γ for both branches for
the criterion {total} is the new criterion {x, y, total}. With this new
criterion we slice P0 as follows.

∆(havoc y; total := 0; sum := 0, {x, y, total})
= {definition of ∆ for composition}
∆(havoc y; total := 0, γ(sum := 0, {x, y, total})); ∆(sum := 0, {x, y, total})
= {definition of ∆ for assignment, sum /∈ {x, y, total}}
∆(havoc y; total := 0, γ(sum := 0, {x, y, total})); skip
= {definition of γ for assignment, sum /∈ {x, y, total}}
∆(havoc y; total := 0, {x, y, total}); skip
= {definition of ∆ for composition}
∆(havoc y, γ(total := 0, {x, y, total})); ∆(total := 0, {x, y, total}); skip
= {definition of ∆ for assignment, total ∈ {x, y, total}}
∆(havoc y, γ(total := 0, {x, y, total})); total := 0; skip

= {definition of γ for assignment, total ∈ {x, y, total}}
∆(havoc y, {x, y})); total := 0; skip

= {definition of ∆ for assignment, y ∈ {x, y}}
havoc y; total := 0; skip

Once the program slicer has finished slicing the block P0 it will
take the results from slicing P1 and P2 and produce the program slice
∆(P0, {x, y, total); (∆(P1, {total})||∆(P2, {total})) for our introduc-
tory program. Observing our program slice for our introductory program
we can see that it satisfies both the syntactic and semantic properties
of program slicing. It is syntactically correct as all commands that have
been removed have been replaced by skip. And, it is semantically correct
as it preserves all possible values for total for any given value of x.
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3.4 Correctness of the Approach
In the previous section we constructed a program slicer ∆ and showed
how it is used to slice our introductory program. In this section we
will formalize our working definition of a program slice and then use the
formalization to prove that our program slicer ∆ only produces valid
program slices. We will first formalize the syntactic property of program
slicing and show that ∆ will always satisfy this property, regardless of
the input program or criterion. After this we will then formalize the
semantic property of program slicing and prove that ∆ will always return
semantically valid program slices for any program and criterion.

3.4.1 Syntactic Correctness
The first property of our working definition of program slicing is that the
program slice must be a program obtainable from the original program
by only replacing commands by skip. This property is a very simple
property and is very easy to formalize and prove. However, it is worth
the effort to do so as it gives us a way to talk about one program being
simpler than another program.

A program P ′ is considered to be simpler to understand than a pro-
gram P if both programs share the same set of labels and for every shared
program label the command at the program label in P ′ is the same as
the command at the program label in P or the command is just skip.
We will use the symbol ∝ to mean "is simpler than" and P ∝ P ′ to mean
that the program P ′ is simpler than the program P. We define ∝ here.

Definition 12 (∝: Prgs × Prgs → {>,⊥}). Suppose P ∈ Prgs, P ′ ∈
Prgs, and L ∈ L. Then,

P ∝ P ′ =̂ ∀` ∈ L · P[`] 6= P ′[`]⇒P ′[`] = skip

where P[`] returns the command located at program location ` in program
P.

The definition of ∝ is reflexive, transitive, and anti-symmetric; thus
making ∝ a partial ordering over the programs in Prgs. It is trivial to
see that the program slice for our introductory program trivially satisfies
this property as every command is either kept or replaced by skip in the
program slice. We can show this holds for all programs produced by ∆.
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Theorem 1. Suppose P ∈ Prgs, and v ∈ Vars. Then,

P ∝ ∆(P, v)

Proof. By induction on the structure of P. As ∆ either keeps the com-
mand or it replaces it by skip, the proof is trivial.

By producing only syntactically correct programs that are ordered
by ∝, our program slice preserves the first property of classical program
slicing; that program slices must be obtainable from the original program
by only replacing commands by skip. However, it does not offer any
indication as to the semantic correctness of a program slice as a slicer
that only preserves the ∝ ordering can produce programs with all basic
commands replaced by skip without any regard to the meaning of the
program.

3.4.2 Semantic Equivalence

The second property of our working definition of program slicing is that
when the original program terminates for some input, then the program
slice must also terminate and have the same possible final values as the
original program for the variables in the criterion. A program slicer that
produces only program slices that satisfy this property and the syntactic
property are said to be correct. To show that our program slicer is correct
we have to prove that it satisfies this semantic property. However, we have
to first define what this semantic property means for our programming
language and our semantics.

We believe the predicate transformer semantics are well suited for the
task of defining the semantic equivalence for program slicing. However,
it appears to be challenging to come up with the right equivalence using
the predicate transformer semantics [15, 14, 66]. To motivate why we
believe that our equivalence is the right equivalence we will proceed to
construct our semantic equivalence in three parts: what are the conditions
that ensure that a program slice will terminate when the original program
terminates, how do we project away unnecessary state from the predicate
transformer, and finally, how do we ensure that both programs agree on
all possible values of the variables in the criterion.
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Termination Conditions

The first part of our semantic property is that if the original program
P terminates, then the program slice P ′ must terminate. The predicate
transformer wp computes a precondition that characterizes the set of
input states that will lead to termination and satisfy some predicate R
given by the programmer. By using > as the predicate for R, we can
compute the necessary terminating conditions for the program using wp.
That is, wp(P,>) characterizes those states that always will lead to P
terminating. To enforce that the program slice terminates whenever the
original program terminates we use the refinement ordering ⇒.

[wp(P,>)⇒ wp(P ′,>)]

For our introductory program (Figure 3.1) computing wp for the pred-
icate > will give us the condition 0 ≤ x. If the initial state of x is equal
to sum, then the program is guaranteed to terminate as the assertion is
the only possibly non-terminating command. The program slice for our
introductory program (Figure 3.2) has > as the terminating condition.
That is, this program will always terminate as there are no possibly non-
terminating condition in the program, thus satisfying our termination
property.

Projected Predicates

When we slice a program we are interested in a subset of the program’s be-
havior. Specifically, we are only interested in the behavior of the variables
in the criterion. With the predicate transformers we express behavior of
a program using a postcondition R. By limiting the free variables of R
we can exhibit the projection of program state to only those states that
we are interested in.

Comparing a program and a program slice using the predicate trans-
formers requires that both programs can achieve the same postcondition
R. This postcondition R is an arbitrary predicate that specifies some
property on all of the possible states in the program. When we want to
compare a program and a program slice, we are interested in comparing
those states that are contained in the slicing criterion. We achieve this
in the predicate transformers by simply limiting the free variables of the
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postcondition to only contain those variables in the slicing criterion. By
limiting these variables we are projecting away state that we are no longer
interested in. A postcondition R that limits the free-variables is called a
projected predicate.

If we compute the weakest precondition for our introductory program
(Figure 3.1) for an arbitrary R, we will have an equation that contains all
the variables in the program as R may possibly contain those variables.

∀y·(x = z ∧ (R[sum := y] ∧ ∀z · (R[total := x ∗ y]))[sum := 0][total := 0])

However, if we limit the free variables of the predicate R to those
contained in the criterion {total} we get a very different precondition.
This precondition is free from any of the variables that total is not
dependent on, such as sum or z. Limiting the postcondition R such that
FV(R) ⊆ {total} for our introductory program we have the precondition

∀y · (x = sum ∧R[total := 0] ∧R[total := x ∗ y])

that only speaks about those variables that we are interested in. The
assignment to sum is not captured by R as sum is not a free variable of
R. The havoc on z is also not captured by R as ∀z · R is equal to R.
Whenever we make us of a projected predicate, we will make it explicit
with the qualifier FV(R) ⊆ C where C is some set of variables.

Egli-Milner Ordering

The semantic property of program slicing states that a program slice
should preserve the final terminating values of the variables in the slic-
ing criterion. In the program refinement calculus [4] a program P ′ is
said to preserve the partial behaviors of another program P whenever
[wlp(P, R)⇒wlp(P ′, R)] holds for an arbitrary predicate R. This tells us
that whenever the program P does not terminate or satisfies the predi-
cate R, then the program P ′ must not terminate or satisfy the predicate
R. If we pair this condition with our terminating condition we get the
equation

[wp(P, R)⇒ wp(P ′, R)]

In the refinement calculus this is called a total program refinement. This
implication works for proving that the program P ′ preserves at least the
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behaviors of the program P. However, it does not limit the behavior of
P ′ to only those behaviors of P. For example, if we remove a branch from
the program P and get the program P ′, this satisfies this relationship.
However, we do not want the program slice to have more behaviors than
the original program. We achieve this by limiting what P ′ can do by
simply reversing the implication

[wlp(P ′, R)⇒ wlp(P, R)]

where R is again some arbitrary predicate. Now, we do not want to
assume the termination of P ′ to help us prove the termination of P, so
this other direction is as strong as we want it to be. A program P and a
program slice P ′ are said to satisfy the Elgi-Milner ordering [56] if they
satisfy the two properties stated above. With a projected predicate R,
we have now formalized the semantic property of program slicing.

3.4.3 Semantic Correctness

A program P ′ is a valid program slice for a criterion C of a program P if
and only if it satisfies the Egli-Milner ordering for a projected predicate
R such that FV(R) ⊆ C. We call a program slicer correct if and only
if for every program slice P ′ it produces this program is a semantically
valid program slice of the original program. In this section we prove that
our program slicer ∆ produces only valid program slices when given an
arbitrary program P and criterion C, thus proving that our program slicer
∆ is correct.

Bounded Dependencies

If we slice a program P for the criterion C, the variables used by the re-
sulting program should be contained within the set of variables computed
by the data dependency function γ for the program P and criterion C.
If this property did not hold, when a program slice inspects a sequential
composition command, it may remove a command that updates the state
of a variable that is used to define a variable in the criterion later in the
program.

For example, if we applied our data dependency operator γ on the
havoc to variable y in our introductory program (Figure 3.2) and it did



3.4. CORRECTNESS OF THE APPROACH 51

not contain y in the result, then the program slicer would remove the
havoc on y, although y is used in the program slice for assigning to
total. That is, we would have an incorrect program slice. The set of
variables used by a program to define the variables in C is equivalent
to the set of free variables of the precondition computed by wp for a
projected predicate R such that FV(R) ⊆ C and we will use the free
variables of the weakest precondition from now on.

To ensure that our γ function does not miss any variables that are
required by the slicer, we have to show for an arbitrary program P,
criterion v, and predicate R that the set of free variables of the resulting
precondition of the program slice is contained within the data dependency
analysis of the program. Again, we could have simply used the set of
variables used by the program in place of the weakest precondition. We
state this as a lemma and give its proof here.

Lemma 1. Suppose P ∈ Prgs, R ∈ Preds, v ∈ Vars. Then,

FV(R) ⊆ v⇒ FV(wgp(∆(P, v), R)) ⊆ γ(P, v)

for wgp = {wp,wlp}.

Proof. By structural induction on P.
Case (skip). Trivial.
Case (havoc x, x ∈ v). Assume FV(R) ⊆ v and x ∈ v. Suppose y ∈
FV(wgp(∆(havoc x, v), R)). Then y ∈ FV(∀x ·R) by definition of ∆ and
wgp. By the properties of FV, y ∈ FV(R) \ {x}. From FV(R) ⊆ v we
can conclude y ∈ (v \ {x}). By the definition of γ, we may also conclude
y ∈ γ(havoc x, v) when x ∈ v.
Case (havoc x, x /∈ v). Trivial.
Case (x := E, x ∈ v). Assume FV(R) ⊆ v and x ∈ v. Suppose y ∈
FV(wgp(∆(x := E, v), R)). Then y ∈ FV(R[x := E]) by definition of ∆
and wgp. By the properties of FV, y ∈ (FV(R) \ {x} ∪ FV(E)). From
FV(R) ⊆ v we can conclude y ∈ (v \ {x} ∪ FV(E)). By the definition
of γ, we may also conclude y ∈ γ(x := E, v). Since y was an arbitrary
element we can conclude FV(wgp(∆(x := E, v), R)) ⊆ γ(x := E, v) when
x ∈ v.
Case (x := E, x /∈ v). Trivial.
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Case (assert Q). Trivial.
Case (S0;S1). Assume FV(R) ⊆ v. Assume the induction hypothesis
on S0 and S1. Suppose y ∈ FV(wgp(∆(S0;S1, v), R)). By definition of
∆ and wgp we know y ∈ FV(wgp(∆(S0, γ(S1, v)),wgp(∆(S1, v), R))).
From the assumption FV(R) ⊆ v and the induction hypothesis on S1,
we can conclude FV(wgp(∆(S1, v), R)) ⊆ γ(S1, v). Instantiating the
induction hypothesis on S0 with FV(wgp(S1, R)) and γ(S1, v) we can
conclude FV(wgp(∆(S0, γ(S1, v)),wgp(∆(S1, v), R))) ⊆ γ(S0, γ(S1, v)).
Assuming y ∈ FV(wgp(∆(S0, γ(S1, v)),wgp(∆(S1, v), R))), we can as-
sume y ∈ γ(S0, γ(S1, v)). By definition of γ for sequential composition,
y ∈ γ(S0;S1, v). Since y was an arbitrary element, we can conclude
FV(wgp(∆(S0;S1, v), R)) ⊆ γ(S0;S1, v).
Case (S0||S1). Assume FV(R) ⊆ v. Assume the induction hypothe-
sis on S0 and S1. Suppose y ∈ FV(wgp(∆(S0||S1, v), R)). Either
y ∈ FV(wgp(∆(S0, v), R)) or y ∈ FV(wgp(∆(S1, v), R)). Let us sup-
pose y ∈ FV(wgp(∆(S0, v), R)). From FV(R) ⊆ v and the induction hy-
pothesis on S0 we can conclude FV(wgp(∆(S0, v), R) ⊆ γ(S0, v). From
this we can conclude y ∈ γ(S0, v). Suppose y ∈ FV(wgp(∆(S0, v), R).
From FV(R) ⊆ v and the induction hypothesis on S1 we can con-
clude FV(wgp(∆(S1, v), R) ⊆ γ(S1, v). From this we can conclude y ∈
γ(S1, v). As y is either in γ(S0, v) or γ(S1, v) we can conclude y ∈
γ(S0, v)∪γ(S1, v). By definition of non-deterministic choice this is equiv-
alent to y ∈ γ(S0||S1, v). Since y was an arbitrary element, we can con-
clude FV(wgp(∆(S0||S1, v), R)) ⊆ γ(S0||S1, v) holds for all elements.

Proof of Correctness

Given an arbitrary program P and an arbitrary criterion C, we want to
know that ∆ will always produce a program that satisfies the semantic
property of program slicing. We proceed to do this by assuming an ar-
bitrary program, criterion, and projected predicate for the criterion and
showing that the program produced by ∆ satisfies our Egli-Milner order-
ing. We will break this proof into two parts, the first part ⇒ comparing
the wp results of the program and its slice and the second part ⇐ which
states the correctness in terms of the wlp. The proof of both of them will
give the proof of our Egli-Milner ordering.
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Theorem 2. Suppose P ∈ Prgs, R ∈ Preds, and v ∈ Vars. Then,

FV(R) ⊆ v⇒ [wp(P, R)⇒ wp(∆(P, v), R)]

Proof. The proof proceeds by structural induction on the commands of
P.
Case (skip). Trivial.
Case (assert Q). Suppose wp(assert Q, R) holds in a state σ. Then by
definition of wp, we can assume (Q∧R).σ also hold. From (Q∧R).σ we
can conclude R.σ. By the definition of wp for skip and ∆ for assertions
we can conclude that wp(∆(assert Q, R)).σ holds. As σ was arbitrary,
wp(∆(assert Q, R)) holds for all states.
Case (havoc x, x ∈ v). Trivial.
Case (havoc x, x /∈ v). Assume FV(R) ⊆ v. Suppose wp(havoc x, R)
holds in some state σ. By definition of wp ∀x ·R.σ also holds. Since x /∈ v
and FV(R) ⊆ v it follows that x /∈ FV(R). As x is not free in R, we can
conclude R.σ also holds. By the definition of wp for skip and the defini-
tion for ∆ for havocs when x /∈ v we can conclude wp(∆(havoc x, v), R).σ
holds. As σ was arbitrary, wp(∆(havoc x, v), R) holds in all states.
Case (x := E, x ∈ v). Trivial.
Case (x := E, x /∈ v). Assume FV(R) ⊆ v. Suppose wp(x := E, R) holds
in some state σ. By definition of wp R[x := E].σ also holds. Since x /∈ v
and FV(R) ⊆ v it follows that x /∈ FV(R). As x is not free in R, we can
conclude R.σ holds. By the definition of wp for skip and the definition
for ∆ for updates when x /∈ v we can conclude wp(∆(x := E, v), R).σ
holds. As σ was arbitrary, wp(∆(x := E, v), R) holds in all states.
Case (S0;S1). Assume FV(R) ⊆ v. Assume the induction hypothesis for
S0 and for S1. Suppose wp(S0;S1, R) holds for some state σ. From the
definition of wp, we can conclude wp(S0,wp(S1, R)).σ also holds . From
the assumption FV(R) ⊆ v and the induction hypothesis on S1 we can
conclude wp(S1, R)⇒wp(∆(S1, v), R) holds for all states. By monotonic-
ity of wp , we can conclude wp(S0,wp(∆(S1, v), R)).σ from the condition
wp(S0,wp(S1, R)).σ. By Lemma 1 and our assumption FV(R) ⊆ v we
can conclude FV(wp(∆(S1, v), R)) ⊆ γ(S1, v). Instantiating the induc-
tion hypothesis on S0 with wp(∆(S1, v), R) and γ(S1, v) and we can
assume wp(S0,wp(∆(S1, v), R))⇒wp(∆(S0, γ(S1, v)),wp(∆(S1, v), R))
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holds for all states. Assuming wp(S0,wp(∆(S1, v), R)).σ holds, then
wp(∆(S0, γ(S1, v)),wp(∆(S1, v), R)).σ also holds. By definition of ∆
and wp we have that wp(∆(S0;S1, v), R).σ also holds. As σ was arbi-
trary, we can conclude wp(S0;S1, R)⇒wp(∆(S0;S1, v), R) holds for all
states.

Case (S0||S1). Assume FV(R) ⊆ v. Assume the induction hypothesis
for S0 and S1. Suppose wp(S0||S1, R) holds in some state σ. From the
definition of || for wp we can conclude wp(S0, R).σ ∧wp(S1, R).σ holds.
By the induction hypothesis on S0 and the assumption FV(R) ⊆ v we
can conclude wp(S0, R) ⇒ wp(∆(S0, v), R) holds for all states. As σ
satisfies wp(S0, R) we can conclude wp(∆(S0, v), R).σ also holds. By
the induction hypothesis on S1 and the assumption FV(R) ⊆ v we can
conclude wp(S1, R) ⇒ wp(∆(S1, v), R) holds for all states. As σ also
satisfies wp(S1, R) we can conclude wp(∆(S1, v), R).σ also holds. From
wp(∆(S0, v), R).σ and wp(∆(S0, v), R).σ and the definition of wp and ∆
we can conclude wp(∆(S0||S1, v), R).σ also holds. As σ was arbitrary we
can conclude wp(S0||S1, R)⇒ wp(∆(S0||S1, v), R) holds for all states.

Theorem 3. Suppose P ∈ Prgs, v ∈ Vars, and R ∈ Preds. Then,

FV(R) ⊆ v⇒ [wlp(∆(P, v), R)⇒ wlp(P, R)]

Proof. We proceed by induction on the structure of P.
Case (skip). Trivial.

Case (assert Q). Suppose wlp(∆(assert Q, v), R) holds in a state σ.
Then by definition of ∆ we conclude wlp(skip, R)σ also holds in the
same state. By definition of wlp, Rσ also holds. Since (R⇒¬Q ∨ R).σ
for any Q.σ, we conclude that (¬Q ∨ R).σ holds. By definition of wlp
for assertions we conclude wlp(assert Q, R).σ holds. As the state was
arbitrary, we can conclude wlp(∆(assert Q, v), R)⇒ wlp(assert Q, R)
holds for all states.

Case (havoc x, x ∈ v). Trivial.

Case (havoc x, x /∈ v). Assume FV(R) ⊆ v. Suppose the condition
wlp(∆(havoc x, v), R) holds in a state σ. By definition of ∆ and the
assumption that x is not contain in v we can conclude wlp(skip, R).σ also
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holds. By definition of wlp, R.σ also holds. Since x /∈ v and FV(R) ⊆ v
it follows that x /∈ FV(R). As x is not free in R, we can conclude ∀x ·
R.σ also holds. By definition of wlp, we can conclude wlp(havoc x, R).σ
holds. As σ was arbitrary, we can conclude wlp(∆(havoc x, v), R) ⇒
wlp(havoc x, R) holds for all states.

Case (x := E, x ∈ v). Trivial.

Case (x := E, x /∈ v). Assume FV(R) ⊆ v. Suppose wlp(∆(x := E, v), R)
holds in some state σ. By definition of ∆ for updates when x /∈ v we
can assume wlp(skip, R).σ also holds. By definition of wlp, R.σ holds.
Since x /∈ v and FV(R) ⊆ v it follows that x /∈ FV(R). As x is not
free in R, R[x := E].σ also holds. By definition of wlp for assignment,
we can conclude wlp(x := E, R).σ also holds. As σ was arbitrary, we can
conclude wlp(∆(x := E, v), R)⇒ wlp(x := E, R) holds for all states.

Case (S0;S1). Assume FV(R) ⊆ v. Assume the induction hypothe-
sis for S0 and for S1. Suppose wlp(∆(S0;S1, v), R) holds for some
state σ. By definition of ∆ and wlp we can make the assumption that
wlp(∆(S0, γ(S1, v)),wlp(∆(S1, v), R)).σ holds. Using the assumption
FV(R) ⊆ v and instantiating the Lemma 1 with S1 we can conclude
wlp(∆(S1, v), R) ⊆ γ(S1, v) holds. Instantiating the induction hypothe-
sis on S0 with wlp(∆(S1, v), R) and γ(S1, v) we can assume the hypothe-
sis wlp(∆(S0, γ(S1, v)),wlp(∆(S1, v), R)).σ⇒wlp(S0,wlp(∆(S1, v), R))
also holds for σ. As we assume wlp(∆(S0, γ(S1, v)),wlp(∆(S1, v), R)).σ
holds, we can conclude wlp(S0,wlp(∆(S1, v), R)).σ. From the induction
hypothesis on S1 we can conclude wlp(∆(S1, v), R).σ⇒wlp(S1, R) holds
for σ. From wlp(S0,wlp(∆(S1, v), R)).σ and monotonicity of wp we can
conclude wlp(S0,wlp(S1, R)).σ. By definition of ∆ and wlp we have that
wlp(∆(S0;S1, v), R).σ holds. As the current state was arbitrary, we can
conclude wlp(S0;S1, R)⇒ wlp(∆(S0;S1, v), R) holds for all states.

Case (S0||S1). Assume FV(R) ⊆ v. Assume the induction hypothe-
sis for S0 and S1. Suppose wlp(∆(S0||S1, v), R) holds in some state
σ. From the definition of wlp for choice and ∆ for choice we can assume
wlp(∆(S0, v), R)∧wlp(∆(S1, v), R).σ holds. By the induction hypothesis
on S0 and FV(R) ⊆ v we can conclude wlp(∆(S0, v), R)⇒wlp(S0, R).σ.
As wlp(∆(S0, v), R).σ holds we can conclude wlp(S0, R).σ also holds.
By the induction hypothesis on S1 and FV(R) ⊆ v we can conclude
wlp(∆(S1, v), R)⇒wlp(S1, R).σ holds. As we assume wlp(∆(S1, v), R).σ
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we can conclude wlp(S1, R).σ. From wlp(S0, R).σ and wlp(S1, R).σ
and the definition of wlp and ∆ we can conclude wlp(S0||S1, R)σ also
holds. As the σ was arbitrary we can conclude wlp(∆(S0||S1, v), R)⇒
wlp(S0||S1, R) holds for all states.

As we have shown that ∆ preserves both⇒ and⇐ of the Egli-Milner
ordering we know that ∆ will always produce programs that satisfy the
semantic property of program slicing for an arbitrary program and crite-
rion.

3.5 Summary and Related Work

In this chapter we have presented our version of program slicing. Our
program slicer ∆ works directly on the syntax of the commands in Prgs
and reflects the direct nature of the predicate transformers wp and wlp.
We have shown how the predicate transformers can be used to define
the semantic correctness of program slicing by limiting the variables of
the postcondition and using an Egli-Milner ordering. With our semantic
definition of program slicing we have proved that our program slicer ∆
produces only correct program slices. There have been various proofs in
the literature, however by making the analysis syntax directed and using
the predicate transformers wp and wlp we feel that we have presented the
first direct and convincing proof for the correctness of program slicing for
total commands.

The original definition of program slicing that was introduced by
Weiser [68] and later fixed by Leung and Reghbati [48] is based on an
iterative solution of dataflow equations that work on the control flow
graph of the program. A slicing criterion consists of a pair (n, V ) where
n is a node in the control flow graph of the program and V is the set of
variables. The iterative approach first computes the set of directly rele-
vant variables for each node by taking only the data dependencies into
account. From this set, a set of directly relevant commands is then de-
rived by inspecting the set of variables defined by a node i and checking
to see if it has an influence on a set of directly relevant variables of a
node dominated by i. The process then takes into account any control
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dependencies and then reiterates this process until a fixpoint is reached;
which exists.

A proof of correctness for such an approach is incredibly hard to show.
The general gist of how to show the correctness for such an approach is
to first show that the program slice control flow graph is a sub-graph of
the original program control flow graph and then to show that for every
node in the program slice that it is a bi-simulation of the corresponding
node in the original control flow graph [3, 67]. If two control graphs are
semantically equal, then we know that the programs they are representing
are also semantically equal; thus proving the correctness of the approach.
The complexity of this proof is in the choice of the analyses used to
compute the program slice. Verifying the correctness of analysis based on
data-flow equations is known to be hard [27] and alternative approaches
have been investigated [10] to aid in showing the correctness of such an
analysis. By defining our program slicer ∆ as a program transformer we
are able to remove most of this complexity and have what we believe to
be a simple and intuitive proof of the correctness of program slicing.

An alternative approach to dealing with this complexity has been to
use program dependency graphs [28] as the intermediate representation
for programs. Program dependency graphs extend control flow graphs to
include dataflow edges for each variable in the program. If there is a data
dependency in the program between two commands, then the program
dependency graph will have an edge for the data dependency between the
two nodes representing the two commands. Program slicing using pro-
gram dependency graphs essentially boils down to removing those nodes
that cannot be reached from either control flow or data flow edges from
the node specified by the criterion [40, 59]. As the semantics of program
dependency graphs are well understood [12], showing the correctness of
the program slice is to simply show that the program dependency graph
of the program slice is a subset of the original program dependency graph.
As with control flow graphs, if two program dependency graphs are se-
mantically equal for the slicing criterion; then the programs they repre-
sent are also semantically equal for the slicing criterion. This approach,
as with the control flow graph approach, is considered to be an indirect
approach as both the analysis and the proof are based on an intermediate
representation of the program and not on the actual program itself. Our
approach works on the program itself and reasons about the semantics of
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the program without an intermediate representation. Moreover, we show
that the program program slice is correct without having to go through
an indirect proof on on indirect representation.

Found late in the work on this thesis was the work on denotational
slicing [36]. Denotational slicing uses the denotational semantics of a
programming language to drive the construction of a functional slicer that
is similar to our program slicer ∆. By using the denotational semantics
to drive the construction of the program slicer the author argues that the
constructed slicer is correct, but does not prove it. The work on providing
a lazy semantics for program slicing [17] points this out but fails to show
the correctness of the approach according to their version of denotational
semantics. We feel that using the predicate transformers is a better fit
than the denotational semantics to show the correctness of a functional
slicer such as ∆.

Using predicate transformers to define the semantic property of pro-
gram slicing is not new. The work on p-slicing [15] defines a valid program
slice P ′ of a program P as satisfying the equivalence

wp(P, R) ≡ wp(P ′, R)

for a predicate R. However, constraining a program slicer to only pro-
duce valid slices using this equivalence will result in program slices that
are overly large. A program slicer attempting to remove a possibly non-
terminating command from the program will have to first verify that the
removal of the command will not have an impact on the terminating con-
dition of the program. For example, the assert command assert x = z in
our introductory program could not be removed from the program slice
without having to show that the postcondition R is stronger than the as-
sertion. That is, the program slicer would have to ensure that R⇒x = z
holds before it can safely remove the command. However, as this is an
unreasonable expectation for a program slicer to show such conditions; a
slicer has no choice but to keep all possibly non-terminating commands
in the program slice.

The work on specification slicing [14] weakens the equality of p-slicing
by only requiring one direction of the equivalence. Given a program P,
they define the equivalence for a valid program slice P ′ as

wp(P, R)⇒ wp(P ′, R)
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for a predicate R. However, this equivalence is too weak. A program
slicer that produces program slices for this equivalence has the freedom
to remove branches from the program that may have an effect on the
predicate R. Given our introductory program (Figure 3.1), a program
slicer that satisfies this equality would be allowed to remove the top
branch of the program. The (de-sugared) weakest precondition for our
introductory program is

R[total := 0] ∧ ∀y ·R[total := x ∗ y]

If we remove a branch from the program slice, say the branch that updates
the value of total with the value of x ∗ y, then we have the equation

R[total := 0]

which trivially satisfies this equality for program slicing. Allowing the
program slicer to remove branches from the program can only mislead the
programmer understanding the behavior of the variables in the criterion.

The work on program slicing as a program transformation [66] uses
contextual refinement1 to define the equivalence for a program slice.
Given a program P, a program slice P ′ must satisfy the equivalence

wp(P, R) ≡ wp(P,>) ∧ wp(P ′, R)

for a predicate R. This allows the program slicer to remove possibly non-
terminating commands from the program slice as the equivalence allows
the proof of ⇐ to assume the termination conditions of the original pro-
gram. It also ensures that the program slicer does not remove branches
that update any variables in the criterion. This equivalence is also known
as a Smyth powerdomain. The difference between the Egli-Milner order-
ing and a Smyth powerdomain is in the⇐ part of the equivalence. In the
Smyth powerdomain the proof of ⇐ is allowed to assume the termina-
tion of the program slice whereas in the Egli-Milner ordering we do not
assume termination of the program slice. Thus, the Egli-Milner ordering
is a stronger result than the Smyth powerdomain.

1The authors claim it is new concept called semi-refinement, although it has already
existed in many forms under the name contextual refinement.





Chapter 4

Slicing Partial Commands

Partial commands are used in the modeling and verification of programs.
These commands allow us to abstract away implementation details and
simplify the reasoning of programs. They are considered partial as the
semantic function that describes them is not total for all states of the
program [4, 56]. In the previous chapter we constructed a program slicer
∆ for the total commands in our programming language, defined the
semantic property of program slicing using the predicate transformers
and proved that ∆ only produces program slices that satisfy our semantic
property of program slicing. In this chapter we will turn our focus to the
slicing of partial commands.

Our introductory example for this chapter in Figure 4.1 is similar to
the introductory example of the previous chapter, except that instead of
assigning the value 0 to total and assigning the value 0 to sum, we assume
that the states of total and sum are both equal to 0. In the previous
chapter we removed the assignment to sum when we sliced the program
for the criterion {total} as the value of sum did not define total. If we
mimic this removal, we will have the potential program slice in Figure 4.2
where the assumption on sum as been removed from the program.

Removing the assumption on sum appears to be a reasonable as the
resulting program slice (Figure 4.2) for our introductory program keeps
the assignment to total and the assumption that total has the value
0. However, by removing the assumption on sum we are strengthening
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1 assume total == 0;
2 assume sum == 0;
3 sum := y
4 ||
5 havoc z;
6 total := x * y

Figure 4.1: Instead of assigning
the variables total and sum with
the value 0, we instead assume
their initial value to be 0.

1 assume total == 0;
2 skip
3 skip
4 ||
5 skip
6 total := x * y

Figure 4.2: A potential program
slice for our introductory exam-
ple. Removing the assumption
that sum has the value 0 seems
reasonable as sum is not in the
criterion {total}.

the weakest precondition of the program and invalidating the semantic
property of program slicing. Given the projected predicate R such that
FV(R) ⊆ {total}, the weakest precondition for our introductory pro-
gram is

total = 0 ∧ sum = 0⇒R ∧R[total := x ∗ y]

and the weakest precondition for our potential program slice is

total = 0⇒R ∧R[total := x ∗ y]

We can observe that the weakest precondition of the potential program
slice is stronger than the weakest precondition of the original program
which violates the semantic property that the weakest precondition of the
original program should be just a strong as the weakest precondition of
the program slice. If we execute the original program in a state where sum
has the value of something other than 0, then a miracle occurs and we
can satisfy any behavior of total. However, if we execute the program
slice in a state where sum has the value of something other than 0, no
miracle occurs as there is no assumption on sum and we can no longer
satisfy the behavior of total in the original program.

However, if we assume that sum will always have the value 0, then we
can paint a different picture of what it means to be a valid program slice.
If a program is feasible, we know that there exists an initial state for the
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program that will not produce a miracle. If we assume that we execute
the program in this initial state, then we know that sum will always have
the value 0 and the assume statement will behave exactly as skip. If
we weaken our semantic property of program slicing to only consider a
program slice valid if we only consider feasible states, then our potential
program slice becomes a valid program slice.

In this chapter we will redefine our semantic property of program
slicing to allow us the flexibility to remove some assumptions from the
program. With our new definition of program slicing we will construct
a new program slicer that we believe captures the programmer’s intu-
ition when understanding programs that include partial commands. We
will formalize our new definition of program slicing and prove that our
constructed slicer will only produce program slices that satisfy this new
definition. We will conclude with some discussion and related work.

4.1 Preserving Program Slicing

We have seen that removing an assumption from a program strengthens
the weakest precondition and invalidate the semantic property of program
slicing. In this section we will first investigate what it takes for a program
slicer to preserve the semantic property of program slicing in the presence
of partial commands.

When an assume command assume Q is executed in a state where
Q fails to hold, a miracle occurs and any behavior of any variable in
the program can be observed. That is, an assume command has the
potential to affect the behavior of all variables in the program, not just
those contained within the expression if the assumption. For example,
the command assume x == x + 1 states that the value of x is equal to
x + 1. Executing this command in any state will always produce a miracle
and allows the programmer to express conditions on any variables in the
program.

As we cannot know if an assumption will or will not produce a miracle,
we must include the variables of the expression used by the assumption
in the data dependency analysis. That is, the value of these variables
define, albeit indirectly, the values of the variables of the criterion. We
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extend our data dependency function γ to include this possibility.

γ(assume Q, v) = FV(Q) ∪ v

As the execution of the command, irrelevant of the variables contained
in the expression of the command, may produce a miracle, we must keep
all assumptions in the program. Although this command does not directly
define the variables in a criterion, even for those that it shares, it definitely
affects the behavior of the variables in the criterion. We extend our total
command slicer to keep all assumptions in the program.

∆(assume Q, v) = assume Q

Using ∆ to slice our introductory program (Figure 4.1) with the cri-
terion {total} will give us the program slice in Figure 4.3. This program
slicer removes the havoc on z and the assignment to sum and keeps the
assumption on sum, thus satisfying the semantic property of program
slicing.

1 assume total == 0;
2 assume sum == 0;
3 skip
4 ||
5 skip
6 total := x * y

Figure 4.3: Keeping all assumptions
in the program will preserve the se-
mantic property of program slicing.

Computing the weakest precondition for this program with the pro-
jected predicate R such that FV(R) ⊆ {total} gives us the weakest
precondition

total = 0 ∧ sum = 0⇒R ∧R[total := x ∗ y]

which trivially satisfies the semantic property of program slicing. By
treating all assumptions in the program as possible definitions for the
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variables in the criterion and keeping these assumptions in the program
slice we will always satisfy our semantic property of program slicing. The
proof is trivial and is of very little consideration here.

If the goal of program slicing in the presence of partial commands is
to preserve the semantic property of program slicing, then we are fin-
ished. There is nothing more we can do with assumptions when we need
to satisfy the semantic property of program slicing. However, if we are
willing to weaken the semantic property of program slicing, we can re-
move those assumptions from the program that we feel do not capture
the programmer’s intuition when understanding programs that contain
partial commands.

4.2 Redefining Program Slicing
Keeping all assumptions in the program slice preserves the semantic prop-
erty of program slicing. However, this goes against the spirit of program
slicing; that is, removing commands that an experienced programmer is
not interested in. As partial programs are only useful in the context
of program verification, a programmer understanding a program with
partial commands will attempt to verify that the program behaves as
they expected using an assertion. If the assertion is satisfied, then the
programmer has understood the program and has very little use for a
program slicer.

However, if the assertion fails to hold, it is the responsibility of the
programmer to understand why the program failed. When a programmer
inspects a program that has failed to be verified, they inspect the program
for assignments and assumptions on the variables of the failing assertion.
A programmer does not inspect the program for assumptions that do not
contribute directly to the state of the variables in the assertion as the
programmer works under the assumption that a miracle did not happen,
otherwise the program would not have failed verification.

For example, a programmer asserting that total has the value 0 upon
exiting of our introductory program (Figure 4.1) will have to inspect the
program as it is not the case that this assertion will always hold. A
programmer will keep the assignment to total the value of x ∗ y in their
mind and remove the havoc on z in the bottom branch and remove the
assignment to sum in the top branch. When the programmer inspects
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the assumption on sum, they will remove this as the value of sum does
not define the value of total. The experienced programmer will however
keep the assumption on total as this does define values of total.

Recall that a program is feasible if there exists at least one initial
state of the program that will not produce a miracle when executed. If
a programmer cannot prove an assertion R, then a programmer will not
be unable to prove the stronger condition ⊥. That is, a failed verification
attempt tells us that the program is feasible for some state. If we assume
that we are in this state when we compare a program with its program
slice, we can remove assumptions from the program as they behave like
skip. In our introductory example, if we assume that sum will always be
in the state 0, then the program slicer can safely remove the assumption
as 0 == 0 is always true and will not produce a miracle.

However, we have to be careful not to remove too many assumptions
from the program. If we assume that the program is executed in a feasible
state, then the program slicer would have the freedom to remove all
assumptions from the program, including those assumptions that define
the state for the variables in the criterion. If we assume a feasible state for
total then the program slicer has the freedom to remove the assumption
on total as it will not produce a miracle. However, we feel that this does
not capture the intuition of an experienced programmer who is trying to
understand why a program has failed verification.

We need a middle ground that allows us to remove the assumptions
on variables we are not interested in but keep the assumptions on the
variables that we are interested in. We do this by assuming a feasible
state for all those variables that the criterion does not have a dependency
on and ensuring that the semantic property enforces the program slicer
to preserve the values of all variables not shared by a dependency. A
dependency can be created by either an assignment, as in the previous
chapter, or by sharing an assumption with another variable, thus sharing
the same cone of influence. As total is not dependent on sum, we assume
a feasible state for sum and require that the program slice preserves all
possible values for total.

We redefine the definition of program slicing to take into account this
middle ground for the semantic property. We will call this new definition
of program slicing partial program slicing.
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Definition 13 (Partial Program Slice). A program P ′ is called a partial
program slice of another program P for a criterion C if and only if

1. P ′ is a valid program in Prgs and P ′ can be obtained from P by
only replacing commands in P with skip, and

2. if P is feasible and P terminates for some input I, then P ′ must
also terminate for the input I and both programs must have the
same possible final values for each variable in C

We will refer to the standard definition of program slicing as total
program slicing.

4.3 Partial Program Slicer

Weakening the semantic property of program slicing allows us to con-
struct a program slicer that has the freedom to remove those assump-
tions from the program that do not define feasible initial states for the
variables in the criterion. To differentiate this new slicer from the total
program slicer ∆ we will put a little hat on top of it and call it ∆̂. We
will do the same for the dependency function γ as this will also have to
change. For all commands except assume commands these functions will
behave identical to their total program counterparts.

If an assume command contains an expression which mentions one of
the variables in the criterion, we are interested in this assumption. If the
assumption contains variables that are not in the criterion, we are also
interested in the value of these variables as they are used to help define
the possible values for the variable in the criterion. For example, if our
introductory program instead assumed total == sum, then we know that
whatever value total has it is equal to sum. And, whatever value sum

has, the value of total will be equal to that value. There is a dependency
between the value of total and sum. We construct γ̂ to include all the
free variables of an assume command if and only if it shares at least one
variable with the criterion.

γ̂(assume Q, v) =

{
FV(Q) ∪ v if FV(Q) ∩ v 6= ∅
v otherwise
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An experienced programmer only is interested in assumptions that
state some property on the variables in the criterion. We construct the
program slicer ∆̂ to first check if the assume command shares any vari-
ables with the criterion. If the command does share some variables, then
the slicer keeps the command. If the assumption does not share any vari-
ables with the criterion, it is removed from the program slice. We define
∆̂ as

∆̂(assume Q, v) =

{
assume Q if FV(Q) ∩ v 6= ∅
skip otherwise

Applying ∆̂ to our introductory program (Figure 4.1) will produce
the introductory program slice (Figure 4.2). The slicer will remove the
assumption on sum as FV(sum == 0) does not share any variables with
the criterion {total, x, y} but will keep the assumption that total as
the value 0 as we are interested in the value of total.

The only noticeable difference between the analysis of a total com-
mand assigning the value 0 to total and the analysis of a partial com-
mand that assumes the value of total is equal to 0 is that the initial
state of total does not play a role in the final value of total when it is
assigned the value 0. When we assume that total has the value of 0, we
are still interested in the initial value of total as it has not been defined
to be 0, only assumed.

4.3.1 Missed Dependencies

Applying ∆̂ to our introductory program produces a correct partial pro-
gram slice. When inspecting the assumption on sum the slicer was able
to know that the assumption could be safely removed as there was not a
dependency between sum and total. However, this may not always be
the case and ∆̂ may remove assumptions that are needed to preserve the
semantic property of partial program slicing.

The program in Figure 4.4 assumes that the initial value of total
will have the same value as sum. It then assumes that the initial value
of sum is equal to 0. By transitivity, this assumption has in effect also
stated that the initial value of total must also be equal to 0. Slicing
this program with ∆̂ and the criterion {total} will give us the incorrect
program slice in Figure 4.5.
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1 assume total == sum;
2 assume sum == 0;
3 sum := y
4 ||
5 havoc z;
6 total := x * y

Figure 4.4: Assuming that the
value of total is equal to sum

and that the value of sum is equal
to 0 also assumes that the state
of total is equal to 0.

1 assume total == sum;
2 skip
3 skip
4 ||
5 skip
6 total := x * y

Figure 4.5: Removing the as-
sumption that the value of sum
is equal to 0 also removes the
assumption that total has the
value 0, invalidating the seman-
tic property of partial program
slicing.

The problem here is that ∆̂ did not know that there was a depen-
dency between sum and total when it inspected the second assumption
on sum on line 2. As it did not know of this dependency, it removed
the assumption and violated the semantic program of partial program
slicing as total is no longer assumed to have the value 0 in the program
slice. For ∆̂ to correctly handle this assumption, it needs to know of this
dependency before it inspects the program. That is, this dependency
cannot be known inline as the dependency between total and sum hap-
pens after the analysis of the assumption on sum. We must compute this
dependency offline before we begin slicing the program.

Using the data dependency function γ̂ to inspect the program with
the criterion {total} will give us the set of all variables that are used
to define the possible values of total in the program. Applying γ̂ to
our example program will give us the set {total, sum, x, y} where sum

is included in the criterion. If we use this new criterion as the criterion
for slicing the example program, ∆̂ will correctly keep the assumption on
sum as sum is in the criterion. First analyzing the set of dependencies in
the program before we slice will allow ∆̂ to correctly slice the program.

However, only applying γ̂ once to the program may not get all the
dependencies necessary for ∆̂ to correctly slice the program. This only
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computes the first step of the data dependencies for a given criterion.
If our example program contained an intermediate value z such that
either sum or total was dependent on z, applying γ̂ once would miss this
dependency as it would take another step to find this dependency. Using
the result of the first analysis of γ̂ to analyze the program again would
ensure that we pick up this intermediate dependency. The transitive
dependencies between variables form a dependency graph where each
iteration of γ̂ is one more level in the graph. We define a function γ̂n

that will compute the nthdependency of a program for a given criterion.

Definition 14 (γ̂n : Prgs×Vars→ Vars).

γ̂n(P, v) = γ̂(P, γ̂n−1(P, v))

γ̂0(P, v) = v

For our example program computing the n1 dependency worked as
the n1 dependency also included all the dependencies of the n0 analysis.
However, this is generally not the case as the nthdependency may not
be a super-set of the n− 1 dependency due to the killing of variables by
assignments. What we essentially want is the transitive closure of the
data dependencies of a program before we begin slicing. To do this we
define a function γ̂∞ that take the union of all nthdependencies of a set
of variables for a given program.

Definition 15 (γ̂∞ : Prgs×Vars→ Vars).

γ̂∞(P, v) =

∞⋃
n=0

γ̂n(P, v)

The function γ̂∞ forms an ascending chain over the variables of a
program and as such is guaranteed to terminate as the set of all variables
Vars of a program is finite. Given a program and an initial criterion,
this function will compute the set of all data dependencies in a program
for a given criterion.

For example, the program in Figure 4.6 assigns the value of sum to
total and then assumes that sum has the value z. The program then
assumes that z has the value 0, which gives us the assumption that sum
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has the value 0, which in turn gives us the assumption that total has
the value 0. Computing γ̂∞ for the criterion {total} will give us the set
{total, sum, z, x, y}. It does this by first computing γ̂1 for the criterion
{total} which will give us the set {sum, x, y}. It will then use this set
as the criterion for calling γ̂2, which will give us the set {sum, z, x, y}.
Joining the results of the initial criterion with the results of γ̂1 and γ̂2

will give us the set {total, sum, z, x, y}. Using this criterion to compute
the γ̂3 dependency and joining the results from γ̂2 will not change from
joining the results of γ̂2 and γ̂1, thus γ̂∞ has reached a fixpoint. Using
this fixpoint to slice the program will give us the correct program slice in
Figure 4.7.

1 total := sum;
2 assume sum == z;
3 assume z == 0;
4 sum := y
5 ||
6 havoc z;
7 total := x * y

Figure 4.6: An example program
that contains a two step depen-
dency between the variable z and
total.

1 total := sum;
2 assume sum == z;
3 assume z == 0;
4 sum := y
5 ||
6 havoc z;
7 total := x * y

Figure 4.7: Slicing the program
with the criterion computed by
γ̂∞ gives us a correct, albeit large
program slice.

Computing the transitive closure of the data dependencies between
variables and the criterion will ensure that we can give the program slicer
the knowledge it needs to correctly slice a program. However, as we can
see in the program slice in Figure 4.7 the program slicer has kept more
commands than it needed to ensure the correct behavior for total.

4.3.2 Dependency Context

When our analysis γ̂∞ adds a data dependency to the criterion it does
not preserve the context of the dependency. That is, it does not record
if the dependency is between the initial value of a variable, or the final
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value, or some intermediate value. As this information is not preserved,
a program slicer may produce a program slice that is either overly large
or does not preserve the final values of the variables in the criterion.

The program in Figure 4.8 is similar to the program in Figure 4.4
except that the havoc on z has been replaced by a havoc on sum at
program location 5. The data dependency analysis γ̂∞ for the criterion
{total} will give us the set {total, sum, x, y} for this program. Using
this set to slice the program will give us the incorrect program slice in
Figure 4.9 where the assumption on sum has been removed.

1 assume total == sum;
2 assume sum == 0;
3 sum := y
4 ||
5 havoc sum;
6 total := x * y

Figure 4.8: An example pro-
gram where sum is killed in both
branches of the program.

1 assume total == sum;
2 skip
3 sum := y
4 ||
5 havoc sum;
6 total := x * y

Figure 4.9: The value of total
is dependent on the initial value
of sum. However, the program
slicer has already removed sum

from the criterion as sum is de-
fined in both branches of the pro-
gram.

The problem here is that the program slicer did not know that the
dependency between total and sum was on the initial value of total and
sum and not the final value of total and sum. The program slicer kept
the assignment to sum in the top branch and the the havoc to sum in the
bottom branch. As sum was defined in both branches of the program,
the slicer removed sum from the criterion as the value of sum was no
longer needed. When it inspected the assumption on sum it was no longer
interested in the value of sum and removed the assumption, producing a
program slice that no longer defines total to have the value 0.

A program in static single assignment (SSA) form [61, 2] solves this
problem. The SSA form of a program makes explicit the definition con-
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text of variables by only assigning to a variable once. The SSA form
of a program can be constructed by iterating forward through the pro-
gram replacing every variable definition with a unique variable incarna-
tion and replacing every variable read with the current incarnation. To
propagate the current value of a variable incarnation in each branch,
the SSA form of a program will contain a special Φ operator. We treat
the Φ operator as a special non-deterministic assignment. For example,
total2 := Φ(total0, total1) is treated semantically as total2 := total0
|| total2 := total1.

The program in Figure 4.10 is the SSA form program for our example
program in Figure 4.8. The assumption on the initial value of total
and sum is now made explicit with the variables total0 and sum0. The
assumption on the initial state of sum is now between an assumption on
sum0 and 0. The assignment to sum in the top branch is to a different
variable sum1, representing a different state of sum than the initial state.
In the bottom branch of the program we havoc the value of sum2 and we
assign to the variable total1 which also represents current incarnation
for total, total0. The program concludes with the Φ operator.

1 assume total0 == sum0;
2 assume sum0 == 0;
3 sum1 := y1
4 ||
5 havoc sum2;
6 total1 := x0 ∗ y1
7 total2 := Φ(total0, total1);
8 sum3 := Φ(sum1, sum2)

Figure 4.10: A single static as-
signment form program of our
example program in Figure 4.8.
Each incarnation makes explicit
the context of the dependency.

1 assume total0 == sum0;
2 assume sum0 == 0;
3 skip
4 ||
5 skip
6 total1 := x0 ∗ y1
7 total2 := Φ(total0, total1);
8 skip

Figure 4.11: Slicing the SSA
form of the program with the
results of γ̂∞ for the criterion
{total2}. Translating back out
of SSA form gives us the program
slice that will preserve the final
values of total.

Applying γ̂∞ to the SSA form of the program with the variable incar-
nation for the criterion variable {total} will give us the set of variables
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{total2, total1, total0, sum0}. Using this as the criterion for slicing the
SSA form of the program will give us the correct program slice in Fig-
ure 4.11. The program slicer will no longer keep the definition of sum
in the branches as the data dependency between total and sum in the
original program is now a data dependency between total0 and sum0
and not sum1 nor sum2 in the SSA form of the program. We can take
the program slice out of SSA form by replacing all variable incarnations
with the original variables and removing all instances of the Φ operator.
By translating back out of SSA form we will have a semantically correct
program slice for our example program in Figure 4.8 for the criterion
{total}.

For the remainder of this thesis we will not make SSA form explicit
unless we need to. Now that we have added dependency context to our
data dependency analysis we are almost finished understanding how to
correctly slice programs with partial commands.

4.3.3 Anti-Dependencies

We have constructed a transitive data dependency function γ̂∞ that given
a program and a criterion computes the set of all data dependencies for
the given criterion in the program. For most programs this set contains
all the dependencies needed to correctly slice a program. However, there
is one dependency that this does not capture, the anti-dependencies. An
anti-dependency is created when a variable in an assumption is dependent
on the value of a variable in the criterion, giving an assumption on the
variable in the criterion.

The program in Figure 4.12 contains such an anti-dependency. The
program assigns to the variable sum the value of total0 and then either
assumes that the value of sum1 is equal to 0 or havocs the value of z1 and
then assigns total1 the value of x0 ∗ y0. The evaluation of the assumption
on sum1 in the top branch of the program is dependent on the value
of total0 as sum1 has been assigned the value of total0. Slicing this
program for the criterion {total2} will give us the incorrect program
slice in Figure 4.13.

The program slicer will remove the assumption on sum1 and the assign-
ment to sum1 as total2 does not have a dependency on sum1. However,
by removing the assumption and assignment to sum1 we are invalidating
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1 sum1 := total0;
2 assume sum1 == 0

3 ||
4 havoc z1;
5 total1 := x0 ∗ y0
6 total2 := Φ(total0, total1)
7 z2 := Φ(sum0, sum1)

Figure 4.12: A program that
contains an anti-dependency be-
tween total0 and sum1. The as-
sumption on the state of sum1 is
also an assumption on the state
of total0.

1 skip
2 skip
3 ||
4 skip
5 total1 := x0 ∗ y0
6 total2 := Φ(total0, total1)
7 skip

Figure 4.13: Slicing the program
for the criterion {total2}. Re-
moving the assumption and as-
signment to sum1 gives us an in-
correct program slice.

the semantic property of partial program slicing. This can be seen if we
compare the weakest preconditions of the program and the program slice.
The weakest precondition of the program for the projected predicate R
such that FV(R) ⊆ {total2} is the condition

total0 = 0⇒R ∧R[total1 := x0 ∗ y0]

whereas the weakest precondition for the program slice is the condition

R ∧R[total1 := x0 ∗ y0]

We can see from the weakest precondition of the program slice that we
have removed the assumption that total0 has the value 0. As we have
removed this assumption from the program slice, we have violated the
semantic property of partial program slicing.

When we inspect an assumption we need to know not only if there is a
data dependency between the variables in the criterion and the variables
in the assumption, but we also need to now if there is also an anti-
dependency between these variables. We extend our γ̂ function to include
an anti-dependency analysis. To differentiate it from γ̂ we will add a +
to the bottom right of the function. This new function γ̂+ will behave the
same as γ̂ for the data dependencies. When γ̂+ inspects an assignment
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it will add the target of the assignment to the set of anti-dependencies
if there is a shared variable between the expression of the right hand
side and the criterion. If an assumption shares a variable with an anti-
dependency, we add the free variables of the assumption to the set of
data dependencies. That is, we turn the anti-dependency into a data
dependency.

Definition 16 (γ̂+ : Prgs×Vars×Vars→ Vars×Vars).

γ̂+(x := E, v, v′) =

{
γ̂(x := E, v), v′ ∪ {x} if FV(E) ∩ v 6= ∅
γ̂(x := E, v), v′ otherwise

γ̂+(assert Q, v, v′) = v, v′

γ̂+(assume Q, v, v′) =

{
FV(Q) ∪ γ̂(assume Q, v), v′ if FV(Q) ∩ v′ 6= ∅
γ̂(assume Q, v), v′ otherwise

γ̂+(S0;S1, v, v′) = γ̂+(S0, γ̂+(S1, v, v′))

γ̂+(S0||S1, v, v′) = γ̂+(S0, v, v′) ∪ γ̂+(S1, v, v′))

We have a function γ̂n+ that computes the set of nthiteration data and
anti-dependencies of a program and a function γ̂∞+ that computes the
transitive closure of all data and anti-dependencies of a program. The
function γ̂∞+ forms a point-wise ascending chain and is guaranteed to ter-
minate. These functions do not differ very much from their counterparts
γ̂n and γ̂∞. Having the program in SSA form is just as crucial to γ̂∞+ as
it was for γ̂∞.

Computing γ̂∞+ for the criterion {total2} and the initial set of anti-
dependencies ∅ for our example program will work as follows: in the
first iteration of the program the analysis will add sum to the set of
anti-dependencies as total0 is contained in the set of dependencies and
is being assigned to sum. In the second iteration of the program the
analysis will inspect the assumption on sum and see that sum is an anti-
dependency. It will then add sum to the set of data dependencies of the
program. After the second iterating through the program the analysis
will reach a fixpoint and terminate giving us a new criterion containing
the variable sum.
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Slicing our program with the new criterion computed by γ̂∞+ will give
us a program slice that preserves the semantic program of partial program
slicing. Specifically, it will keep the assumption on and the assignment to
sum, thus preserving the behavior of total2. With γ̂∞+ we can compute
the set of all possible data dependencies that will allow the program slicer
∆̂ to correctly remove or keep partial commands in the program slice.

To summarize, we slice a program that contains partial commands as
follows: First, we transform the program P into SSA form and replace the
variables in the criterion C with the last incarnation of the variables used
in the SSA form of the program. We then compute the fixpoint of γ̂∞+
with the criterion C and the empty set. We take the resulting criterion
C′, ignoring the set of anti-dependencies and use this criterion to slice
the program with ∆̂. With the resulting program slice we transform the
program back out of SSA form and have our final program slice. In the
next section we will formalize the semantic property of partial program
slicing and show that this procedure produces only semantically correct
program slices for programs that contain partial commands.

4.4 Semantic Correctness
Relaxing the semantic property of program slicing allowed us the flexibil-
ity to construct a program slicer ∆ that removes some of the assumptions
from the program. To ensure that we do not remove any assumptions that
are needed to describe the behaviors of a criterion we have constructed
a data dependency analysis γ̂∞+ that will give us the set of data and
anti-dependent variables for the criterion in a program. In this section
we formalize the semantic property of partial program slicing and prove
that for any fixpoint of γ̂∞+ and any program P, ∆̂ only produces program
slices that satisfy the semantic property of partial program slicing.

4.4.1 Partial Egli-Milner Ordering
By removing an assumption from a program we are possibly strengthen-
ing the weakest precondition of the program slice; thus invalidating the
semantic property of total program slicing. To accommodate for this re-
moval we have redefined the semantic property of program slicing to only
consider a program slice to be valid if the original program is feasible.



78 CHAPTER 4. SLICING PARTIAL COMMANDS

If we assume that we execute the program in a feasible state, then we
can remove assumptions from the program as they will behave as skip
and will not have an effect on any variables, including those in the crite-
rion. However, we do not want to allow a program slicer the flexibility
to remove all assumptions from the program as we want to keep those
assumptions that define the states of the variables in the criterion. We
do this by requiring that the program and the program slice preserve all
states of the variables in the criterion, not just the feasible states that we
executes the program in.

The semantic property of total program slicing required that every
program slice must satisfy the Egli-Milner ordering. That is, given a
program P, the program slice P ′ must satisfy the condition

FV(R) ⊆ C ⇒ [wp(P, R)⇒ wp(P ′, R)]

and the condition

FV(R) ⊆ v⇒ [wlp(P ′, R)⇒ wlp(P, R)]

As we remove assumptions from the program slice, we are possibly
going to violate the first condition (⇒) and we need to redefine what this
condition means for the semantic property of partial program slicing.
The other condition (⇐) is trivially satisfied if we remove assumptions
from the program and does not need to be modified.

A program P is feasible when there exists a state where wp(P,⊥) does
not evaluate to true. If we assume that we execute the program in this
state we will have the flexibility to remove assumptions from the program
as a miracle will not happen. We achieve this by assuming that the
program P must be feasible before we compare the weakest precondition
of the program and the program slice. If the program we are slicing is
infeasible, then this condition will be trivially satisfied and the program
slicer will have the freedom to produce any program it desires. This has
the effect of freeing the program slicer from having to preserve program
slices for programs that are always infeasible, even if the variables that
always produce the miracle are the variables in the criterion. However,
this is not a practical issue because a program that is infeasible satisfies
every assertion and a programmer only needs to slice a program if their
assertion failed. As with total command slicing, we assume the initial
state to be also terminating.
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Assuming a feasible and terminating state allows us to weaken the
weakest precondition of the program and remove assumptions from the
program. However, we want to limit this to only those states that we
are not interested in, specifically all the variables that the criterion does
not share a transitive data dependency or anti-dependency with. We
can achieve this by assuming a feasible and terminating state and then
erasing the knowledge of this state for the dependent variables of the
criterion. This will limit the flexibility given to the program slicer and
require it to preserve all possible values of the variables in the criterion.
Let P be a program, P ′ a possible program slice, v the criterion and v′
the set of all data dependencies computed by γ̂+ for P with the criterion
v, we have the condition

(FV(R) ⊆ v)⇒ [¬wp(P,⊥) ∧ wp(P,>)⇒ v′ : [wp(P, R)⇒ wp(P ′, R)]]

where ¬wp(P,⊥) is the condition for a feasible state and wp(P,>) is the
weakest precondition for a terminating program, and v′ : [R] quantifies
only over the variables contained in v′. For example, {total} : R is
equivalent to the predicate ∀total ∈ typeof(total) · R where all other
variables are free in R. Along with the wlp condition, we call this a
partial Egli-Milner ordering and this is the semantic property of partial
program slicing.

4.4.2 Blind Alleys

A feasible state for a non-deterministic program that contains partial
commands does not preclude the absence of miracles. A feasible program
only ensures that there exists at least one initial state and one path in
the program that will not produce a miracle. A program can choose to
execute any choice of a non-deterministic operator without any consider-
ation for the initial state. If the program makes a choice that leads to a
miracle, although the initial state was feasible is called a blind alley [38].

The program in Figure 4.14 non-deterministically chooses to either
assume that sum has the value of z and then assign the value 0 to total

or it will choose to assign the value 7 to z and the value of x times y to
total. Computing the feasibility condition for this program tells us that
every state is a feasible state for the program. The program slice for the
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criterion {total} in Figure 4.15 is the program slice we want, however it
violates our semantic property of partial program slicing.

1 assume sum == z;
2 total := 0
3 ||
4 z := 7;
5 total := x * y

Figure 4.14: A program that is
feasible for all states. However,
executing this program in a state
where sum is not equal to z will
produce a miracle when the pro-
gram chooses to execute the as-
sumption command that sum is
equal to z.

1 skip
2 total := 0
3 ||
4 skip
5 total := x * y

Figure 4.15: The program slice
for the criterion {total}.

Every initial state for every variable is feasible for the program in
Figure 4.14. Activating the original program in a feasible state where
sum is not equal to the value of z will produce a miracle if the program
chooses the branch containing the assumption that sum must be equal to
z. Removing the assumption that sum is equal to z feels like the correct
program slice, but it does not preserve the final values of total. This can
be observed when we attempt to prove that the program slice satisfies the
wp part of the semantic property of partial program slicing. Computing
the wp for the program in Figure 4.14 and the projected predicate R such
that FV(R) ⊆ {total} will give us the weakest precondition

(sum = z⇒R[total := 0]) ∧R[total := x ∗ y][z := 7]

and computing wp for the program slice with the same predicate R will
give us the weakest precondition

R[total := 0] ∧R[total := x ∗ y]

To show that these conditions are equal we need to show

(sum = z⇒R[total := 0][z := 7])⇒R[total := 0]
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holds for all states. However, in order to show that this implication holds
we need to assume that the initial value of sum is equal to the initial value
of z. However, as this program is feasible for all initial states of sum and
z, we cannot use this knowledge to prove this implication. The program
slice does not satisfy preserve the final values of total. However, it is
the program slice that we want for this program and criterion {total}.
Mixing non-determinism and partial commands gives us program slices
that violate our semantic property, but achieves what we want from a
program slicer that handles partial commands. To fix this we need to
either remove the non-deterministic part or the partial command part of
slicing partial commands. We focus on removing the non-determinism by
limiting ourselves to only feasible program paths.

A program path is simply a program that does not contain any non-
deterministic choices. In our language a program path can only be con-
structed from assertions, assumptions, assignment, and sequential com-
position. A program P can contain many program paths. Our example
program Figure 4.14) contains exactly two paths, the path that executes
the bottom branch and the path that executes the top branch. We will
use the notation ρ ∈ P to say that a program ρ is a program path of
a program P. Program paths have the property that for every path ρ
in a program P the weakest precondition of P implies the weakest pre-
condition of ρ for a postcondition R and the conjunction of the weakest
preconditions of all the paths in a program imply the weakest precondi-
tion of the program for all post-conditions R.

Focusing only on the feasible program paths of a program allows us
to remove assumptions in the presence of non-determinism as we have
removed non-determinism from the semantic property of partial program
slicing. This weakens the semantic property, but it is necessary as it
will allow us to show that our example program is a valid program slice.
Letting ρ ∈ P mean a program path of P, our semantic property then
becomes

∀ρ ∈ P · FV(R) ⊆ v
⇒

[¬wp(ρ,⊥) ∧ wp(ρ,>)⇒ v′ : [wp(ρ,R)⇒ wp(ρ′, R)]]

where ρ′ is the program slice of ρ. Using this semantic property to show
that our program slice (Figure 4.15) will now succeed. For the path that
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contains the top branch of the program we will have the condition

sum = z

⇒
{total, x, y} : [(sum = z⇒R[total := 0][z := 7]⇒R[total := 0])]

which is now trivially satisfied as we can now assume that we execute
the program in a state where sum is equal to z. This also works for
the havoc command. If we treat the havoc command havoc x as a non-
deterministic choice between the assignment of all the possible values of
the variable being havoc-ed, such as ∀y ∈ typeOf(x) · || x := y, then we
can also reason about the various paths through a havoc. However, it is
of little value to worry about this and we will simply keep the command
around when we slice the paths of a program given by ||.

4.4.3 Non-Killing Dependency Analysis

The proof that our program slicer ∆̂ produces only correct program slices
for a given program and criterion contains many moving parts. To limit
these moving parts we redefine our primitive data dependency analysis
γ̂ for the assignment command. This will give us monotonicity over
sequential composition. When γ̂ inspects an assignment command it will
remove the target variable of the assignment from the criterion if the
criterion contains the variable as the analysis is no longer interested in
the variable. By removing the variable from the criterion, we are unable
to share a set of variables when we reason about sequential composition
in the proof.

A program in SSA form ensures that every variable incarnation is
assigned to only once. The analysis γ̂ removes the variable from the
criterion as it is no longer interested in the value of the variable. In SSA
form, every variable is assigned to only once, so there is no longer any
reason to remove the variable from the criterion. Keeping the variable we
are given the mathematical property that γ̂ is monotonic over sequential
composition. We redefine γ̂ such that it no longer removes the target of
the assignment from the criterion. We call this the non-killing definition
of γ̂.

γ̂(x := E, v) =

{
FV(E) ∪ v if x ∈ v
v otherwise
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This redefinition will also affect our data and anti-dependency function
γ̂+. Without removing any variables from the criterion we now have
monotonicity of γ over sequential composition.

Lemma 2. Suppose S0;S1 ∈ Prgs and v ∈ Vars. Then,

γ̂(S1, v) ⊆ γ̂(S0;S1, v)

Proof. Trivial.

This lemma also applies to γ̂+ as it uses γ̂ for the data dependency
analysis and the anti-dependency analysis is already monotonic over se-
quential composition. Computing the fixpoint of γ̂∞+ for a program in
SSA form with our redefined γ̂ analysis will give us a set of data depen-
dency variables such that we no longer need to compute the intermediate
variables of a sequential composition. We can simply remove γ̂+ from
the analysis when we reason about sequential composition. We rede-
fine ∆̂ for sequential composition as slicing S0 with the fixpoint of γ̂∞+
and composing the results with the program slice for S1 with the same
fixpoint.

Lemma 3. Suppose S0;S1 ∈ Prgs, v ∈ Vars, and v′ ∈ Vars. Then,

γ̂∞+ (S0;S1, v,∅) ⊆ v, v′

⇒

∆̂(S0;S1, v) = ∆̂(S0, v); ∆̂(S1, v)

Proof. Trivial.

Removing γ̂ from the definition of ∆̂ for sequential composition will
help us prove the correctness of our program slices. It is important to
note that using this non-killing version of γ̂ will not have an effect on
the size of the resulting program slice. As long as the program is in SSA
form, the use of the killing version of γ and the non-killing version will
result in the same program slices. From this point forward, we will only
make use of the non-killing definition of γ̂.

Understanding how γ̂ works is useful for understanding how it bounds
the variables of the predicate transformers. Similar to Lemma 1 for γ we
show an analogous result for γ̂.
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Lemma 4. Suppose P ∈ Prgs, R ∈ Preds, v ∈ Vars, and v′ ∈ Vars.
Then,

FV(R) ⊆ v ∧ γ̂∞+ (P, v, v′) ⊆ v, v′

⇒

FV(wp(∆̂(P, v))) ⊆ prj1(γ̂∞+ (P, v, v′))

Proof. Proof is analogous to Lemma 1 except for sequential composition.
Case (S0;S1). Assume FV(R) ⊆ v and assume γ̂∞+ (S0;S1, v, v′) ⊆ v, v.
Assume the property holds for S0 and S1. As γ̂∞+ is increasing we can
assume γ̂∞+ (S1, v, v′) ⊆ γ̂∞+ (S0;S1, v, v′). By transitivity of ⊆ we can as-
sume γ̂∞+ (S1, v, v′) ⊆ v, v′. From our induction hypothesis on S1 we can
conclude FV(wp(∆̂(S1, v), R)) ⊆ v. Instantiating our induction hypoth-
esis on S0 with wp(∆̂(S1, v), R) we can conclude FV(wp(∆̂(S1, v), R)) ⊆
v ∧ γ̂∞+ (S0, v, v′) ⊆ v, v′ implies FV(wp(∆̂(S0, v),wp(∆̂(S1, v), R))) ⊆ v.
It follows from our assumptions and that γ̂∞+ is a fixpoint we can conclude
FV(wp(∆̂(S0, v),wp(∆̂(S1, v), R))) ⊆ v. By definition of wp and ∆̂ we
can conclude FV(wp(∆̂(S0;S1, v), R)) ⊆ v holds.

4.4.4 Useful Properties of wp

There are a couple of useful properties of the wp that will help us prove
that our program slicer only produces semantically valid program slices.
The first useful property states that if we execute a deterministic program
S0;S1 in a feasible state, then either the program S0 will not terminate
or the state after executing S0 will be a feasible initial state for S1.

Lemma 5. Suppose S0;S1 ∈ Prgs and S0;S1 is deterministic. Then,

[¬wp(S0;S1,⊥)⇒¬wp(S0,>) ∨ wp(S0,¬wp(S1,⊥))]

Proof. Suppose ¬wp(S0;S1,⊥) holds in some state σ. By definition of
wp we can assume ¬wp(S0,wp(S1,⊥)).σ. Suppose wp(S0,>).σ holds.
Since wp is a function we can assume wp(S0,wp(S1,⊥)∨¬wp(S1,⊥)).σ
also holds. Since S0 is deterministic it is also universally disjunctive.
Since S0 is universally disjunctive we can assume wp(S0,wp(S1,⊥)).σ
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or wp(S0,¬wp(S1,⊥)).σ holds. From ¬wp(S0,wp(S1,⊥)).σ we can
conclude wp(S0,¬wp(S1,⊥)).σ. Since σ was arbitrary we can con-
clude ¬wp(S0;S1,⊥)⇒¬wp(S0,>)∨wp(S0,¬wp(S1,⊥)) holds for all
states.

The next property states that wp is sub-monotonic. That is, if we
know the postcondition P ⇒Q holds for all terminating states of a pro-
gram, then we know that for all initial states of the program that satisfy
the postcondition P , they must also satisfy the postcondition Q. In the
presence of partial commands we must also assume that the program
is both feasible and terminating. This property trivially holds for total
commands.

Lemma 6 (Sub-monotonicity of wp). Suppose P ∈ Prgs, R ∈ Preds,
and P ∈ Preds. Then,

[¬wp(P,⊥) ∧ wp(P,>) ∧ wp(P, [P ⇒R])⇒ [wp(P, P )⇒ wp(P, R)]]

Proof. By structural induction on P.
Case (x := E). Trivial.
Case (assert Q). Suppose wp(assert Q, [P⇒R]) holds in some state σ.
From the definition of wp for assertions we can assume Q.σ ∧ [P ⇒R].σ
holds. Suppose wp(assert Q, P ).σ.σ′ holds for some state σ′. From the
definition of wp for assertions we can concludeQ.σ.σ′∧P.σ.σ′ holds. From
[P ⇒ R].σ we can conclude P.σ.σ′ ⇒ R.σ.σ′ holds. From P.σ.σ′ we can
conclude R.σ.σ′. From Q.σ.σ′ we can conclude Q.σ.σ′∧R.σ.σ′. As σ′ was
arbitrary we can conclude [wp(assert Q, P )⇒ wp(assert Q, R)].σ. As
σ was arbitrary we can conclude that the condition wp(assert Q, [P ⇒
R])⇒ [wp(assert Q, P )⇒ wp(assert Q, R) holds for all states.
Case (assume Q). Suppose ¬wp(assume Q,⊥) holds in some state σ. By
definition of wp we can conclude Q.σ. Suppose wp(assume Q, [P ⇒R]).σ
holds. From the definition of wp we can conclude Q.σ⇒ [P⇒R].σ holds.
Suppose wp(assume Q, P ).σ.σ′ holds for some state σ.σ′. From the defi-
nition of wp we can assume Qσ.σ′⇒ Pσ.σ′ holds. Suppose Q.σ.σ′. We
can conclude P.σ.σ′ holds. From Q.σ we can conclude [P ⇒ R].σ. From
P.σ.σ′ we can conclude R.σ.σ′. Since σ′ was arbitrary we can conclude



86 CHAPTER 4. SLICING PARTIAL COMMANDS

[wp(assume Q, P )⇒wp(assume Q, R)]. Since σ was arbitrary we can con-
clude wp(assume Q, [P⇒R])⇒[wp(assume Q, P )⇒wp(assume Q, R) holds
for all states.
Case (S0;S1). Suppose ¬wp(S0;S1,⊥).σ holds and suppose the con-
dition wp(S0;S1,>).σ holds and suppose wp(S0;S1, [P ⇒ R]).σ holds.
By definition and monotonicity of wp we may conclude wp(S0,>).σ
also holds. From Lemma 6 and ¬wp(S0;S1,⊥).σ we may conclude
wp(S0,¬wp(S1,⊥)).σ holds. Instantiating our induction hypothesis on
S1 we may assume the condition ¬wp(S1,⊥)∧wp(S1,>)∧wp(S1, [P⇒
R]) ⇒ [wp(S1, P ) ⇒ wp(S1, R)] holds for σ. By monotonicity of wp
we may assume wp(S0,¬wp(S1,⊥) ∧ wp(S1,>) ∧ wp(S1, [P ⇒ R]))⇒
wp(S0, [wp(S1, P )⇒wp(S1, R)]) also holds for σ. By conjunctivity of wp
we can assume the condition wp(S0,¬wp(S1,⊥))∧wp(S0,wp(S1,>))∧
wp(S0,wp(S1, [P ⇒ R]))⇒ wp(S0, [wp(S1, P )⇒ wp(S1, R)]) holds for
σ. By our assumptions wp(S0,¬wp(S1,⊥)).σ, wp(S0,wp(S1,>)).σ,
and wp(S0,wp(S1, [P ⇒ R])).σ we can conclude from our implication
that wp(S0, [wp(S1, P )⇒ wp(S1, R)]).σ holds. Instantiating the induc-
tion hypothesis on S0 with wp(S1, P ) and wp(S1, R) we can assume
¬wp(S0,⊥).σ ∧ wp(S0,>).σ and wp(S0, [wp(S1, P )⇒ wp(S1, R)]).σ⇒
[wp(S0;S1, Q)⇒wp(S0;S1, R)].σ. From feasibility of S0;S1, monotonic-
ity of wp, and contraposition we can assume ¬wp(S0,⊥).σ. From this,
wp(S0,>).σ, and wp(S0, [wp(S1, P ) ⇒ wp(S1, R)]).σ we can conclude
[wp(S0;S1, P )⇒ wp(S0;S1, R)].σ.

This lemma also holds when we bound the quantifier to only those
variables that we are interested in.

Lemma 7 (Bounded sub-monotonicity of wp). Suppose P ∈ Prgs, R ∈
Preds, P ∈ Preds, v ∈ Vars, and v′ ∈ Vars. Then,

FV(R) ⊆ v ∧ γ̂∞+ (ρ, v, v′) ⊆ (v, v′)

⇒
[¬wp(P,⊥) ∧ wp(P,>) ∧ wp(P, v : [P ⇒R])⇒ v : [wp(P, P )⇒ wp(P, R)]]

Proof. Analogous to the proof in Lemma 6.
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We are now ready for the proof that given a valid program P and a
fixpoint from γ̂∞+ for the criterion v, ∆̂ only produces program slices that
satisfy the semantic property of partial program slicing.

4.4.5 Proof of Correctness

We are now ready to prove that for an arbitrary program P and an
arbitrary set of variables v such that γ̂∞+ (P, v,∅) ⊆ v, v′, ∆̂ will produce a
valid program slice for every path in P. The proof proceeds by structural
induction over the possible commands in P, however we will only treat
the partial command assume Q and sequential composition as these are
the only commands affected by the presence of partial commands. We
prove the two conditions of the semantic property separately.

Theorem 4. Suppose P ∈ Prgs, v ∈ Vars, v′ ∈ Vars, and R ∈ Preds.
Then, for every path ρ ∈ P,

FV(R) ⊆ v ∧ γ̂∞+ (ρ, v, v′) ⊆ (v, v′)

⇒

[¬wp(ρ,⊥) ∧ wp(ρ,>)⇒ v : [wp(ρ,R)⇒ wp(∆̂(ρ, v), R)]]

Proof. We proceed by structural induction on ρ. The only commands
that are not analogous to Theorem 3 are assume commands and sequen-
tial composition.

Case (assume Q,FV(Q) ∩ v = ∅). Suppose ¬wp(assume Q,⊥).σ holds.
By definition of wp we can assume Q.σ holds. Suppose the condition
wp(assume Q, R).σ.σ′ holds for some σ′ where dom(σ′) = v. By defini-
tion of wp and we can conclude Q.σ.σ′⇒ R.σ.σ′ holds. Since FV(Q) ∩
v = ∅ we can conclude Q.σ ⇒ R.σ.σ′. From Q.σ we can conclude
R.σ.σ′. From FV(Q) ∩ v = ∅ and definition of ∆̂ we can conclude
wp(∆̂(assume Q, v), R).σ.σ′. Since σ′ was arbitrary we can conclude v :

[wp(assume Q, R)⇒ wp(∆̂(assume Q, v), R)].σ. Since σ was arbitrary we
can conclude that the condition ¬wp(assume Q,⊥)∧¬wp(assume Q,⊥)⇒
v : [wp(assume Q, R)⇒ wp(∆̂(assume Q, v), R)] holds for all states.

Case (assume Q,FV(Q) ∩ v 6= ∅). Trivial.
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Case (S0;S1). Suppose FV(R) ⊆ v. Suppose γ̂+(S0;S1, v, v′) ⊆ v, v′.
Assume the induction hypothesis for S0 and S1. Suppose the condi-
tion ¬wp(S0;S1,⊥).σ and wp(S0;S1,>).σ hold for an arbitrary state σ.
We must show v : [wp(S0;S1, R)⇒ wp(∆̂(S0;S1, v), R)].σ holds. From
Lemma 2 and transitivity of ⊆ we can assume γ̂+(S1, v, v′) ⊆ v, v′. In-
stantiating the induction hypothesis on S1 we can conclude ¬wp(S1,⊥)∧
wp(S1,>)⇒v : [wp(S1, R)⇒wp(∆̂(S1, v), R)] holds for σ. By monotonic-
ity of wp we can also assume wp(S0,¬wp(S1,⊥)∧wp(S1,>))⇒wp(S0, v :

[wp(S1, R)⇒ wp(∆̂(S1, v), R)]) holds for σ. By conjunctivity of wp we
can assume wp(S0,¬wp(S1,⊥)).σ ∧ wp(S0,wp(S1,>)).σ ⇒ wp(S0, v :

[wp(S1, R)⇒wp(∆̂(S1, v), R)]).σ. From termination of S0;S1 and mono-
tonicity of wp we can assume wp(S0,>).σ. As our path is deterministic
we can apply Lemma 6 and assume ¬wp(S0;S1,⊥).σ ∧ wp(S0,>).σ⇒
wp(S0,¬wp(S1,⊥)).σ. By our assumption that S0;S1 is feasible and
S0 terminates we can conclude wp(S0,¬wp(S1,⊥)).σ. This and ter-
mination of S0;S1 allows us to conclude from wp(S0,¬wp(S1,⊥)).σ ∧
wp(S0,wp(S1,>)).σ⇒ wp(S0, v : [wp(S1, R)⇒ wp(∆̂(S1, v), R)]).σ the
condition wp(S0, v : [wp(S1, R) ⇒ wp(∆̂(S1, v), R)]).σ. Application of
Lemma 7 with S0, wp(S1, R), and wp(∆̂(S1, v), R) allows us to assume
¬wp(S0,⊥).σ ∧wp(S0,>).σ ∧wp(S0, v : [wp(S1, R)⇒wp(∆̂(S1, v), R)])
holds for σ. From this condition and our assumption we are able to con-
clude v : [wp(S0,wp(S1, R))⇒ wp(S0,wp(∆̂(S1, v), R))].σ. As we have
already assumed each antecedent we can assume v : [wp(S0,wp(S1, R))⇒
wp(S0,wp(∆̂(S1, v), R))].σ. Instantiating the induction hypothesis on
S0 with wp(∆̂(S1, v), R) we can assume FV(wp(∆̂(S1, v), R)) ⊆ v ∧
γ̂∞+ (S0, v, v′) ⊆ v, v′ ∧¬wp(S0,⊥).σ ∧wp(S0,>).σ implies that the con-
dition v : [wp(S0,wp(∆̂(S1, v), R))⇒wp(∆̂(S0, v),wp(∆̂(S1, v), R))] also
holds for σ. From Lemma 4 we can assume FV(wp(∆̂(S1, v), R)) ⊆ v
and from Lemma 2 with definition of γ̂∞+ we can assume γ̂∞+ (S0, v, v′) ⊆
v, v′. We know S0 is feasible and terminates, so we can assume v :
[wp(S0,wp(∆̂(S1, v), R))⇒wp(∆̂(S0, v),wp(∆̂(S1, v), R))].σ. From this
condition and transitivity of⇒ we can conclude v : [wp(S0,wp(S1, R))⇒
wp(∆̂(S0, v),wp(∆̂(S1, v), R))].σ . By definition of wp we can conclude
v : [wp(S0;S1, R)⇒ wp(∆̂(S0, v); ∆̂(S1, v), R)].σ. From Lemma 3 and
the fact that v is a fixpoint of γ̂∞+ we can conclude our intended goal
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v : [wp(S0;S1, R)⇒ wp(∆̂(S0;S1, v), R)].σ.

Now that we have shown that the program slicer ∆̂ only produces
programs that satisfy the ⇒ part of the semantic property, we can now
show that it also satisfies the ⇐ part of the semantic property.

Theorem 5. Suppose P ∈ Prgs, v ∈ Vars, v′ ∈ Vars, and R ∈ Preds.
Then, for every ρ ∈ P,

FV(R) ⊆ v ∧ γ̂+(ρ, v, v′) ⊆ (v, v′)

⇒

[wlp(∆̂(ρ, v), R)⇒ wlp(ρ,R)]

Proof. We proceed by structural induction on ρ. The only commands
that are not analogous to Theorem 3 are assume commands and sequen-
tial composition.
Case (assume Q, FV(Q) ∩ v = ∅). Suppose wlp(∆̂(assume Q, v), R).σ

holds. By definition of ∆̂ and wlp we can conclude R.σ holds. From
R.σ we can conclude Q.σ ⇒ R.σ. By definition of wlp we can assume
wlp(assume Q, R).σ. As σ was arbitrary we can conclude that the condi-
tion wlp(∆̂(assume Q, v), R)⇒ wlp(assume Q, R) holds for all states.
Case (assume Q,FV(Q) ∩ v 6= ∅). Trivial.
Case (S0;S1). Suppose FV(R) ⊆ v and γ̂+(S0;S1, v, v′) ⊆ (v, v′). As-
sume the induction hypothesis for S0 and S1. Suppose the condition
wlp(∆̂(S0;S1, v), R) holds for an arbitrary state σ. By definition of ∆̂

and wlp we can assume wlp(∆̂(S0, v),wlp(∆̂(S1, v), R)).σ. By Lemma 2
we know γ̂+(S1, v, v′) is a subset of γ̂+(S0;S1, v, v′). From the assump-
tion γ̂+(S0;S1, v, v′) ⊆ (v, v′) and transitivity of ⊆ we may assume
γ̂+(S1, v, v′) ⊆ (v, v′). Instantiating the induction hypothesis on S1 we
may assume wlp(∆̂(S1, v), R)⇒ wlp(S1, R) holds for σ. From Lemma 4
and our assumptions we may assume FV(wp(∆̂(S1, v), R)) ⊆ v. Instanti-
ating our induction hypothesis on S0 with wlp(∆̂(S1, v), R) allows us to
assume wlp(∆̂(S0, v),wlp(∆(S1, v), R)).σ⇒wlp(S0,wlp(∆̂(S1, v), R)).σ.
From this condition, monotonicity and definition of wlp we can con-
clude wlp(∆̂(S0;S1, v), R).σ ⇒ wlp(S0;S1, R).σ. As σ was arbitrary,
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wlp(∆̂(S0;S1, v), R)⇒wlp(S0;S1, R) holds for all states, which was our
intended goal.

And this concludes the proof that ∆̂ only produces valid partial pro-
gram slices for feasible program paths.

4.5 Slicing Background Theory

We have constructed a program slicer ∆̂ for the imperative part of our
programming language and have proven that the slicer will produce only
semantically correct program slices. However, our programming language
contains more than this imperative part, it also contains a declarative
part where type declarations, constant and function declarations, and
axioms on these constants and functions are declared. A programmer
understanding the behavior of an imperative program may be interested
in understanding the background part that defines the background the-
ories of the imperative program. In this section we show how we can
safely remove type declarations, constant and function declarations, and
axioms that do not play a role in the behavior of the program slice in the
imperative part.

4.5.1 Global Variables and Types
Global variable declarations define the state space of the imperative pro-
gram. Every variable declaration must be a type that is defined by a
type declaration. Computing the fixpoint of γ̂∞+ for the imperative part
of a program gives us the set of all variables that play a role in the be-
havior of the criterion the programmer interested in. We can remove all
variable declarations that are not contained within this set as their state
has no effect on the sliced program. Moreover, we can remove all type
declarations that are not used by the global variables that are kept.

For example, the declarations in Figure 4.16 declares a type uint and
a type Fruit. It also declares the global variables total and sum of
type uint and the global variable banana of type Fruit. If we assume
that this is the declaration for some example program and we assume
computing γ̂∞+ for our example program gives us the set {total} we can
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remove the variables sum and banana as they are not contained within
the set {total}. However, we keep the variable declaration on total as
it is in the set. As we do not keep any variables of type Fruit, we can
also remove this declaration and give the programmer the background
part in Figure 4.17.

1 type uint
2 type Fruit
3

4 var total : uint
5 var sum : uint
6 var banana : Fruit

Figure 4.16: A background part
that declares two types uint and
Fruit. It also declares the global
variables total and sum of type
uint and banana of type Fruit.

1 type uint
2 type Fruit
3

4 var total : uint
5 var sum : uint
6 var banana : Fruit

Figure 4.17: Removing all vari-
ables that are not free in the pro-
gram slice and all type declara-
tions that are not used by the
global variable declarations.

The set of free variables of a program slice are contained within the
fixpoint of γ̂∞+ . Keeping all variable declarations for all the variables in
the fixpoint of γ̂∞+ ensures that we have a declaration for all the free
variables in the program slice. Removing all the variable declarations
that are not contained in the fixpoint of γ̂∞+ is safe to do as none of these
variables are used by the program slice. For our example we removed the
variable declaration on sum and banana as we know from the fixpoint of
γ̂∞+ that neither sum nor banana is used by the program slice.

Once we have removed all the global variables declarations that are
not needed by the program slice we can remove all the type declarations
that are not used by those global variable declarations. This is done by
simply iterating through the global variables that we keep in the back-
ground part and removing those type declarations that are not needed by
the variables. For our working example, we can safely remove the type
declaration of Fruit as we have no variable declarations that are of type
Fruit. By keeping all variables required by the program and keeping all
types required by the variables we keep all types that are used by the
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program for global variables.

4.5.2 Constants and Functions

We have an analysis γ̂∞+ that computes the set of all variable used in a
program slice and we use this set to remove any global variable declara-
tions that do not define a variable in this set. To know what constants and
functions we can remove from the background part, we iterate through
the program to compute the set of constants and functions used to define
the behavior of the criterion, similar to γ̂∞+ for variables. When we in-
spect an assignment we query the right hand side for any constants and
functions used and add them to our set of relevant constants or func-
tions. When we inspect an assumption or an assertion, we inspect the
expression for all constants and functions and add them to the relevant
set if the free variables of the expression are shared with the criterion.
We do this iteration through the entire program until we have found all
constants and functions that are relevant to the behavior of the criterion.

The program in Figure 4.18 declares the constants x and y of uint
and the constant f of type Fruit. It also declares the functions add

and sub, both of which take a uint and return a uint, and a function
isRipe that takes a Fruit element and returns a Boolean. The program
also contains an imperative part that first assumes that the value of the
variable sum is equal to the value of the constant y. The program then
assigns the value of sum to total and then assumes that the application
of the function add to x and to total are equal. This imperative part
does not use the constant f nor the functions sub and isRipe. We can
remove them from the background declarations to get the program in
Figure 4.19.

Computing the set of all constants and functions that are used in the
imperative program gives us the set {x, y, add}. The analysis proceeds by
inspecting the assumption on total and observing that the function add

and the constant x are used to define the values of total. It adds these
to the relevant constants and functions and proceeds. As the assignment
to total is given by the value of sum, which is assumed to have the
value of the constant y; the analysis also adds the constant y to the
relevant constants and functions. As it was the last command in the
imperative part, the analysis stops and gives us the set of constants {x, y}
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1 const x : uint
2 const y : uint
3 const f : Fruit
4

5 func add (uint) returns (uint)
6 func sub (uint) returns (uint)
7 func isRipe (Fruit) returns (bool)
8

9 assume sum == y;
10 total := sum;
11 assume add(x) == add(total)

Figure 4.18: A background part
declaration for the constants x,y,
and f and the functions sub,
add, and isRipe. The impera-
tive part makes use of the con-
stant y and x and the function
add, but not the constant f nor
the functions sub and isRipe.

1 const x : uint
2 const y : uint
3 const f : Fruit
4

5 func add (uint) returns (uint)
6 func sub (uint) returns (uint)
7 func isRipe (Fruit) returns (bool)
8

9 assume sum == y;
10 total := sum;
11 assume add(x) == add(total)

Figure 4.19: Removing the dec-
larations for the constant f and
the functions sub and isRipe.

and functions {add}.
Once we have computed the set of all relevant constants and func-

tions we can remove those declarations from the background theory that
declare a constant or function not contained in the relevant sets. As
with γ̂∞+ , the free constants and functions of a program slice is contained
within these relevant sets. Keeping all constants and functions in the
relevant sets will ensure that every constant and function used by the
program slice are declared. Removing the declarations on the constant
f and the functions sub and add from the background part gives us the
program in Figure 4.19.

Every constant and function is declared using a type. For all con-
stants and functions that are kept in the background theory, similar to
global variables, we must keep all type declarations that are used by those
constants and functions in the background theory. For our example, we
must keep the type declaration uint as the constants x and y are declared
as being of type uint. The function add also only uses uint as its input
and output types, so we must be sure to keep this declaration. However,
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we can remove type declaration Fruit as no constants are of type Fruit
and no functions use type Fruit as an input or an output type.

4.5.3 Axioms

Axioms declare properties on constants and functions in the background
part of the program. The imperative part can use these axioms when
reasoning about an expression that contains a constant or a function. To
preserve the behavior of the variables in the criterion, we must preserve
the behavior of the constants and functions that are relevant for the vari-
ables in the criterion. As with assumptions and variables, we first analyze
the axioms for any dependencies between the constants and functions be-
fore we can begin removing axioms from the background part to ensure
that we do not remove any behavior of a constant or a function from the
background.

In Figure 4.20 the axiom declarations state that every element of type
uint should have a value greater than or equal to the constant 0 and every
element of type Fruit should be ripe. The declarations also state that for
every element of uint the value of applying add to the value of applying
sub must be equal and that for every element of uint, the application
of mod must be greater than or equal to the element. Finally, there is a
declaration stating that the constant x is equal to the application of sub
to the constant y. If we assume that the imperative part of the program
only uses the constant x and the function add, we can remove the some
of the declarations and have only those declaration in Figure 4.21.

1 axiom forall i:uint :: 0 <= i
2 axiom forall f:Fruit :: isRipe(f)
3 axiom forall i:uint ::
4 sub(add(i)) == i
5 axiom forall i:uint :: i <= mod(i)
6 axiom x == sub(y)

Figure 4.20: A background dec-
laration stating axioms on the
constants, functions, and global
variables.

1 axiom forall i:uint :: 0 <= i
2 axiom forall f:Fruit :: isRipe(f)
3 axiom forall i:uint ::
4 sub(add(i)) == i
5 axiom forall i:uint :: i <= mod(i)
6 axiom x == sub(y)

Figure 4.21: Removing the ax-
ioms that do not contain any
constants or functions that the
imperative part requires.
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The analysis of axioms is similar to that for assumptions in that we
remove all axioms that do not share the same cone of influence with
the criterion. It works as follows: First we inspect the axioms for any
dependencies between the constants and functions that are used by the
imperative program and those that are expressed in the axioms. We add
these dependencies to the set of constants and functions and keep iter-
ating until we have reached a fixpoint. Once we have reached a fixpoint,
we remove the axioms that do not express a property on any of the con-
stants or functions contained in our set. For our example declarations
and imperative program we start with the set of constants and functions
{x, y, add}. Inspecting the axiom stating that the value of x is equal to
the value of the application of sub to the constant y, we add the constant
y and the function sub to our set as they help to define the state of x.

Continuing to iterate through the axioms we will reach a fixpoint with
the set of constants and functions {x, y, add, sub}. Using this set we can
now take a second pass through the axioms removing those that do not
contain any of the variables in the our set of constants and functions.
We remove the axiom stating that every element of type unit is less
than or equal to the value of the application of mod to the element as
the function mod is not in our set of constants and functions. Although
the axiom speaks about all the elements of uint, nothing it says about a
uint is important for the program slice as we have assumed that all global
variables and constants are feasible, so the axiom no longer contributes
to the values of the variables or criterion as we have already assumed that
they satisfy the axiom, so we can safely remove these axioms from the
background declarations. We also remove the axiom stating that every
uint is greater than or equal to 0 as the constant 0 is not in our set.
The axiom stating that every element of Fruit is removed as we isRipe
is also not in our set. The rest of the axioms are kept as the do contain
at least one constant or function in our set of relevant constants and
functions.

The correctness of this approach is similar to the correctness of using
γ̂ and ∆̂ for variables and assumptions. Once we have computed the set of
all relevant constants and functions for the axioms, we must also be sure
to keep all definitions for those constants and functions as we may have
picked up some new constants and functions from analyzing the axioms.
In the same vein as for global variables, we must also be sure to keep all
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type declarations that are used to declare those constants and functions.
As the proof follows the same vein of reasoning for assumptions we do
not present it here.

By removing all global variable, constant, function declarations, and
axioms from the background part that the imperative program does not
depend on will help the programmer understand the background theories
that contribute to the behaviors of the imperative program. We have
shown how to slice away each of these types of declarations and preserve
the semantic property of partial program slicing.

4.6 Summary and Related Work

In this chapter we have relaxed our working definition of program slicing
to allow the possibility of removing partial commands from programs.
We have constructed a program slicer ∆̂ that will remove those partial
commands that do not contribute to the behaviors of the variables in
the criterion. To ensure that ∆̂ does not accidentally remove any partial
commands, we have constructed a function γ̂∞+ that will iterate through
the program and compute the set of all dependent variables for a given
criterion. To ensure that we preserve the context of every data depen-
dency we require the program to be in SSA form before we perform this
analysis. We have formalized our relaxed semantic property of program
slicing and have proven that for every feasible program path in an ar-
bitrary program, the program slice will always produce programs that
satisfy this semantic property.

Existing work on program slicing has not addressed the issue of slicing
partial commands. The work on slicing as a program transformation [66]
includes assume commands in their background section, however they
fail to address them in their approach of program slicing. Path slicing
[41] includes assumptions in their language, but their treatment does not
include the possibility that the assumption may be partial. Their model
of assumptions is used to model the guards of alternative commands (if
then else) which are total. For our introductory example (Figure 4.1)
their analysis would remove the assumption stating that the initial value
of total is equal to 0, which will violate the semantic property of partial
program slicing.
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Our approach uses assume commands as an instance of the more
generic concept of partial commands. The generalized demonic update
command is a generic command that is sufficient to describe all partial
commands [4]. It is used in the theoretical refinement calculus to give a
normal form to programs that include partial commands. The command
has the given form [x := x′|b] where x′ is bound to b and has the semantic
meaning

wp([x := x′|b], R) = ∀x′ · (b⇒R[x := x′])

If we treat this command as an assignment to x, an assumption on the
free variables of b, and a havoc on the variable x′; we can construct a cor-
responding γ̂ that will treat the assumption on b as a normal assumption
and the assignment to x as an update. The corresponding ∆̂ would keep
the command if b mentioned any variables in the criterion or if the tar-
get of the assignment x was included in the criterion. As we can handle
this generic command, our approach is applicable to any language that
includes partial commands.





Chapter 5

Localizing Errors in Failed
Verification Attempts

Given a program P, an automatic program verifier will attempt to verify
that P will never fail. A program fails when an assertion in the program
can evaluate to false when executed from a valid initial state. A sound
program verifier such as Ξ must notify the programmer of a possible
failure when it is unable to verify the program. An assertion validated by
the verifier shows that the programmer has understood the program and
there is no reason for the programmer to inspect the program. However,
if an assertion is not validated by the program verifier, then it is up
to programmer to inspect the program to understand why the assertion
failed. A program slicer such as ∆̂ can help the programmer with this
inspection.

The program in Figure 5.1 assigns the value 0 to total, asserts that
sum has the value 0, either assumes sum to have the value of y or it assigns
an arbitrary value to sum and assigns total the value of z, then it checks
after both branches that total has a value greater than or equal to 0. As
the initial state of sum may not have the value of 0 or the initial state of z
may have a value that is not greater than or equal to 0, a sound program
verifier will notify the programmer of either of these failing assertions.

A programmer trying to understand a failing assertion will first in-
spect the assertion to check that the assertion expresses what they have
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1 total := 0;
2 assert sum == 0;
3 assume sum == y
4 ||
5 havoc sum;
6 total := z
7 assert 0 <= total

Figure 5.1: A sound program
verifier will report to the pro-
grammer either the assertion on
sum or the assertion on total

may possibly fail.

1 total := 0;
2 skip;
3 skip
4 ||
5 skip;
6 total := z
7 assert 0 <= total

Figure 5.2: Slicing the program
for the failing assertion on total.

intended. If the assertion is what the programmer has intended then it
is not the cause of the verification failure. The programmer will then in-
spect the program for the cause of the error by searching for commands
that either update a variable in the failing assertion or state a property
on the variables of the assertion. For our example, if the failing assertion
is the assertion on total then the programmer will inspect the program
for assignments or assumptions on total. An experienced programmer
will keep the assignment to total and remove the havoc to sum and the
assumption on sum as they do not affect the value of total. The asser-
tion will be removed as the programmer as assertions do not effect the
state of the program. The assignment of 0 to total will also be kept.
An experienced programmer will not inspect the entire program, they
will only inspect the program in Figure 5.2 for the cause of the failed
verification attempt and see immediately that it is the initial value of z
that causes the failed verification attempt.

A programmer understanding a failed verification attempt can auto-
mate this removal of commands by using a program slicer. Given the
set of free variables of the failing assertion as the initial criterion, a pro-
grammer can use ∆̂ to produce the program slice that an experienced
programmer would use when understanding failed verification attempts.
Given the failed verification attempt and the program, this can be entirely
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automated without any interaction from the programmer. The resulting
program slice exhibits the same behavior of the original program for the
failing assertion.

In this chapter, we show how ∆̂ can be used to help programmers
localize the cause of the error. We give some indication as to what prop-
erties a programmer can expect from this program slice and what they
can expect from modifying this program slice to satisfy the failing as-
sertion. A failed verification attempt from a verifier such as Ξ gives us
more than the location of the failing assertion, it also gives us a possible
program trace for the failed assertion. We show how this trace can be
used to give finer program slices. We have implemented our approach
and give some indication on the usefulness of program slicing in the wild.
We finally conclude with some discussion and related work.

5.1 Localizing Verification Errors
Programmers use assertions to understand programs. An assertion that
is not reported as failing by a sound program verifier suggests that the
programmer has understood the program and no longer needs to un-
derstand the behavior of the program. However, if the program verifier
notifies the programmer that an assertion may fail, it is the responsibil-
ity of the programmer to understand why the program has failed. Along
with the location of the failing command, our model program verifier Ξ
will give a trace leading to the failing command. From this and the pro-
gram location of the failing command we can automate the slicing of the
program and present to the programmer a smaller, simpler program.

Given our introductory program (Figure 5.1), the program verifier Ξ
will notify the programmer that the command at program location 7 may
fail with the possible program trace T , where T contains the program
locations 1, 2, 5, 6 and 7. Inspecting the program at the location 7 will
give us the assertion that total is greater than or equal to 0. Using
the trace given by the program verifier we can compute the path that the
program uses to reach the failing assertion. For our example program the
path for the failing assertion is the path that only takes the bottom branch
of the non-deterministic choice. Given the path and the free variables of
the failing assertion, our approach to helping locate the cause of the error
is to invoke the program slicer to remove those commands in the path that
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do not contribute to the behavior of the variables in the failing assertion
and present to the programmer the sliced program path.

Given a negative response 〈⊥, `, T 〉 by a program verifier such as Ξ
for a program P, we automate our approach to helping the program-
mer locate the verification error as follows: First, we compute a program
path from the given program trace T . In our language a program trace
is simply a program path, but for a language with looping or recursion
computing the path is done by determining which path through the pro-
gram the trace took. Once we have computed the program path ρ ∈ P,
we inspect the failing command at the program location ` given by the
program verifier. We take the free variables of the failing command ρ[`]
at program location ` and invoke γ̂∞+ (ρ,FV(ρ[`]),∅) with the program
path ρ. Once γ̂∞+ is done computing the set of data and anti-dependent
variables, we take only the data dependencies (viz. projection) and use
this as the set of criterion for calling ∆̂ on our program path ρ. Once ∆̂
has finished computing the program slice for ∆̂, we present this program
slice along with the assertion that failed.

In summary, given a failed verification attempt 〈⊥, `, T 〉 from Ξ for
a program P, we automate the entire approach and present to the pro-
grammer the program slice computed by

∆̂(ρ, prj1(γ̂∞+ (ρ,FV(ρ[`]),∅)))

where ρ is the program path computed from the trace given by Ξ and
prj1 returns the first projection of the tuple.

5.1.1 Validity of the Slice
A sound automatic program verifier ensures that if a positive response is
given to the programmer, then the weakest precondition of the program
is valid for all initial states of the program. A negative response from an
automatic program verifier, however does not give any conditions on the
program other than the fact that Ξ could not verify the program. That
is, the error may be spurious and not an indication that the program is
feasible. The semantic property of partial program slicing is guarded by
feasibility of the original program and the failing assertion is implied by
the projected postcondition of the program slice. As the failed verifica-
tion attempt does not ensure feasibility, we rethink what it means for
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equivalence between the program and its slice when applied to automatic
program verification.

The program in Figure 5.3 assigns the variable sum the value 1 and
then assumes that the value of sum is equal to 0. It then either assumes
that sum has the value of y or it havocs the value of sum and then assigns
the value of z to total. The program then checks that the value of
total is greater than or equal to 0. A sound program verifier such as
Ξ can notify the programmer that the assertion at program location 7

is possibly failing, even though a miracle always occurs as the program
assumes the value of sum to be both 1 and 0 at the same time.

1 sum := 1;
2 assume sum == 0;
3 assume sum == y
4 ||
5 havoc sum;
6 total := z
7 assert 0 <= total

Figure 5.3: A sound program
verifier can report to the pro-
grammer the assertion on total

may possibly fail, although the
program contains a miracle by
the assignment of 1 to sum and
assuming sum has the value 0.

1 skip;
2 skip;
3 skip
4 ||
5 skip;
6 total := z
7 assert 0 <= total

Figure 5.4: Removing the mira-
cle induced by assuming sum is
equal to both 1 and 0.

As there is always a miracle in the program, the program slicer is free
to remove or keep any commands that the slicer desires. Our seman-
tic property for partial program slicing states that either the program is
infeasible or not terminating or both programs must satisfy the same pro-
jected postcondition when they terminate. If the program is infeasible,
then we cannot be sure if the program slice preserves the same projected
predicates of the original program as all predicates are satisfied in the
original program and may not be satisfied in the program slice.

If we know that the program fails for the predicate transformer wp for
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some predicate R, then we know that the wp will also fail the impossible
state ⊥ by anti-monotonicity of wp and the program will have a feasible
state. However, a sound verifier only ensures that if it gives a positive
response, then wp will hold for the program. If a sound verifier gives
a negative response, then either the weakest precondition does or does
not hold. That is, we cannot be sure if the program is actually invalid
or if the program verifier was simply unable to verify that the program
was valid. Although an infeasible program trivially satisfies our semantic
property of program slicing, it does not seem right to give the programmer
a program that may not satisfy all projected predicates of the original
program. Generally, SMT solvers will pick up on this infeasibility and
will verify most programs that always contains miracles, however this is
not a hard rule and we cannot be ensured of this by the solver.

However, a programmer will generally not think of comparing the two
programs using the semantic property of program slicing, they will think
of comparing two programs against the verifier. If an assertion fails in
the original program, they expect the assertion to fail in the program
slice with the same results as the failure in the original program. If
the program verifier was unable to determine that the original program
contained a miracle and the miracle is taken out in the program slice,
then the program verifier knows no better and will be is unable to verify
the program slice. Assuming that our verifier Ξ is stable, we can ensure
that if the original program failed verification for the command located
at program location `, then the command located at location ` in the
program slice will also fail to verify.

Proposition 5. Suppose ρ ∈ P, v ∈ Vars, v = prj1(γ̂∞+ (ρ,FV(ρ[`]),∅)),
and ρ′ = ∆̂(ρ, v). Then,

Ξ(ρ) = 〈⊥, `,prjv(T )〉 ⇒ Ξ(ρ′) = 〈⊥, `, T 〉

where prjv(T ) is the projection of all the variables in v for the trace T .

The machinery require to show the correctness of such a proposition is
beyond the limits of this thesis, however the basic idea would be to show
that Ξ will always behave the same when the commands of the program
work on the same states and both lead to the same failing assertion. The
contra-positive of this property states that if Ξ returns a positive response
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for a program slice, then it will return a positive response for the original
program. This allows the programmer the possibility to fix the cause of
the verification failure in the program slice and know that this fix when
put back into the original program will lead to a successful verification.

We cannot in general provide semantically correct program slices that
are unverifiable by an incomplete program verifier. For example, if the
verifier were able to determine that the assumption on sum always pro-
duces a miracle, it would then verify our example program in Figure 5.3.
The program slice for the criterion {total} would remove the assump-
tion on sum, thus removing the miracle. By removing the miracle we are
producing a program slice where any assertion on total is may no longer
be verifiable as the miracle induced by the assumption on sum has been
removed.

5.2 Accidental Triggers
A sound program verifier can employ any trick it wants to help with the
verification of the program as long as a positive response ensures that
the weakest precondition of the program is satisfiable. A programmer
attempting to understand why an assertion succeeds can employ the use
of our program slicer to remove those commands that do not contribute
to the evaluation of the variables in the assertion. If the program is
infeasible for variables not contained in the data dependencies of the
criterion, we may give back to the programmer a program where the
assertion no longer is verifiable by the program verifier. However, if the
original program is known to be feasible, such as for programs containing
only total command, then slicing a verifiable program should produce a
verifiable program when sliced.

However, depending on the analysis used by a program verifier, this
may not necessarily hold. Automatic program verifiers make use of vari-
ous techniques to help the underlying SMT solver verify the correctness
of a program. One such technique is to encode the verification conditions
of the program so that their logical structure helps the prover verify
their correctness. Provers based on SMT solving [22, 20] make use of
this structure to help determine which triggers are needed to verifying
the correctness of these conditions. One such trick is to treat assertions
as both an assertion and an assumption. That is, given an assertion
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assert Q and a postcondition R, instead of proving Q ∧ R, a program
verifier like Ξ may encode the assertion as Q ∧ (Q⇒R) where the proof
of R may use the assumption on Q. This analysis is still sound as its
correctness implies Q ∧ R, but helps the solver find the right trigger to
prove the postcondition R.

The program in Figure 5.5 executes some commands and then asserts
that the value of s is equivalent to the sum of all values contained within
the array a. It then asserts that the value at position n in the array a

also contains the summation of all values in a up to the index of n. The
program then adds the nth value to s and increments n. The program
then asserts that s is now the sum of all indexes in the array up to the new
value of n, which is equivalent to the old value of n plus one. We assume
the first two assertions are provable and we assume that the program
verifier is able to prove the final assertion on s.

1 ...;
2 assert s ==
3 sum i:(0:n-1) :: a[i];
4 assert a[n] ==
5 sum i:(0:n-1) :: a[i];
6 s := s + a[n];
7 n := n + 1;
8 assert s ==
9 sum i:(0:n-1) :: a[i]

Figure 5.5: A program that
makes use of the builtin sum op-
erator. An expression of the form
sum i : (j : k) :: E behaves ex-
actly like summation in mathe-
matics. We assume the ... is a
program that is able to prove the
correctness of the first two asser-
tions.

1 ...;
2 skip;
3

4 skip;
5

6 s := s + a[n];
7 n := n + 1;
8 assert s ==
9 sum i:(0:n-1) :: a[i]

Figure 5.6: Removing the asser-
tions on s and a[n] prevents the
program verifier from using the
right triggers.
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If we assume that the original program (Figure 5.5) is feasible, we can
slice it and produce the program in Figure 5.6. This program preserves
our semantic property of partial program slicing, however if we attempt
to verify this program with a sound program verifier such as Ξ we will
find that the program will no longer verify. Removing the assertions on s

and a[n] has an impact on the verifier proving the assertion at the end of
the program as we have removed the structure of the formulas that are
used by the solver.

To ensure that a program slicer preserves the verifiability of a program
slice, it must keep all commands, including assertions, that mention any of
the variables in the criterion. By keeping all assertions we can guarantee
to the programmer that

Ξ(ρ) = >⇒ Ξ(ρ′) = >

will hold for a given feasible path ρ and slice ρ′.

5.3 Exploiting Counterexample Traces

Automatic program verifiers based on SMT solvers can return not only
the location of the failing command but also a program trace that rep-
resents an execution of the program that is a witness to the failing com-
mand. Static program slicing is generally unable to slice away updates to
complex data types such as arrays as the slicer is unable to determine if
an update to the array has an effect on the value of an array position in
the criterion. To this end, an update to an index into an array is treated
as an update to the entire array. This approach ensures that the program
slice is correct, but could potentially lead to overly large program slices
that may contain array updates and assumptions that are not relevant
to the slicing criterion.

Dynamic program slicing [1, 65] offers an approach to handle the
problem of program slicing in the presence of complex data types such
as arrays. Given an assignment of the form m[i] := E, the criterion {m[j]}
and a program trace T , dynamic program slicing will inspect the trace
T for the value of the index i and the index j at the position of the
assignment and compare the to values. If the two indexes are the same
then we know that the assignment to m[i] will have an effect on m[j] and
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we keep the assignment. However, if the trace states that i is not equal
to j, then dynamic program slicing will remove the assignment from the
program.

The program in Figure 5.7 havocs the array h at position y, assumes
that the position sum in h has the value 0, and then either updates h[sum]
with the value of y or it havocs the position at z and then assigns h[total]
the value of h[x] times h[y]. A program verifier will return a negative re-
sponse for the assertion on h[total]. Slicing this program for the criterion
{h[total]} will provide no benefit to the programmer as we cannot de-
termine statically if the value of total is different than z or sum, thus
keeping all updates or assumptions on the array h. However, given a
program trace we can determine if an update to index sum or z also is
an update or assumption on the index total, and if it is not a shared
update then we can remove the update as we know that the values are
not the same.

1 havoc h[y];
2 assume h[sum] == 0;
3 h[sum] := y
4 ||
5 havoc h[z];
6 h[total] := h[x] * h[y]
7 assert h[total] == 7;

Figure 5.7: Slicing this program
with a static slice will provide no
benefit to the programmer.

1 havoc h[y];
2 skip
3 skip
4 ||
5 skip
6 h[total] := h[x] * h[y]
7 assert h[total] == 7;

Figure 5.8: Dynamically slicing
the program with a counterex-
ample trace where total is not
equal to z nor sum, allowing the
slicer to remove the havoc on h[z]
and the assumption on h[sum].
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A dynamic program slicer will take the program in Figure 5.8, a trace
T , and the criterion {h[total]} and produce the program in Figure 5.8.
If the path given by the program verifier is the top branch in the program,
a dynamic program slicer will first inspect the assignment to h[total].
As h[total] is in the criterion this command is kept and h[x] and h[y]
are added to the criterion, while removing h[total]. When the dynamic
program slicer inspects the havoc to h[z], it will inspect the program
trace for all possible values of x, y, and z at program location 5 and
compare them. If the set of values of z are disjoint from x and y, then
the program slicer will remove the havoc on h[z] as this does not affect
the value of h[x] nor h[y]. If they are not disjoint, then the havoc must
be kept as it does have an effect on the value of h[x] or h[y] at some point
in the trace. For our example, let us assume that the values are disjoint
and the dynamic program slicer can remove the havoc to h[z]. The next
command, the assumption on h[sum] proceeds in the same way. If the
values of sum at program location 2 are disjoint from x and y we can
remove the assumption on h[sum] as it has no effect on the values of h[x]
and h[y]. Let us assume the variables are disjoint and the slicer removes
the assumption and gives us the program in Figure 5.8.

It would appear that using the trace given by the program verifier to
dynamically slice the program would be a good idea to help the program-
mer understand the failed verification attempt. And, if we could trust
that an error given by the program verifier was an actual error in the pro-
gram, this would be true. However, we are dealing with an incomplete
verifier Ξ and this verifier gives no guarantees to the validity of a failed
verification attempt. Static program slicing produces a program slice that
is valid for all possible traces in the program. Slicing the program with
the trace given by the program verifier may remove commands from the
program that are the cause of the verification failure, as the error given
by the verifier may be spurious and the trace represents a valid trace in
the program; thus misleading the programmer.

For example, in our introductory program (Figure 5.7) the trace given
to us by the program verifier allowed us to remove the assumption on
h[sum] as the values given by the trace for sum and x or y were disjoint.
However, if the value of x or y had the same values of sum, then the pro-
gram would definitely fail as h[total] will have the value 0 when assigned
the product of h[x] and h[y]. By not presenting this assumption to the
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programmer, we are doing one of two things: either we are presenting a
dynamic program slice for an actual program failure, such as when h[x]
has the value 0, or we are presenting a dynamic program slice for a pro-
gram trace that does not fail. Removing commands from the program
that contribute to the actual failure produces an unsound program slice
and will mislead the programmer.

Knowing that a program trace is an actual valid failing trace and
performing dynamic program slicing is a really good idea to help the
programmer localize the cause of the verification failure in languages that
include aliasing. However, this is only useful if the program verifier is
complete or if the counterexample has been validated posterior. A sound
verifier may produce a counterexample that is spurious and when used
by a dynamic program slicer may remove commands that are necessary
for understanding the failure.

5.4 Slicing Target Languages
Encoding the semantics of a programming language such as Spec# into a
program verifier is very complicated and prone to many errors. By using
an intermediate language, this encoding is simplified as the intermediate
language is closer to the source language while resembling the language
used by a program verifier. Performing an analysis in our intermediate
language should preserve the meaning of the analysis in the target lan-
guage. That is, an analysis should commute over the translation. Slicing
a program that has been translated from a target language may break
this commutativity.

The program in Figure 5.9 assigns the value of z to sum and then
checks if the value of sum is equal to 0. If sum is equal to 0, then the
program executes the then branch and assigns y to sum. If it is not equal
to 0 then the program executes the else branch of the program and assigns
the value of x times y to total and then terminates. Slicing this program
for conditional commands [68, 36] with the criterion {total} will give us
the program slice in Figure 5.10.

A program slicer will first inspect the branches of a conditional com-
mand. If any command within the body of a conditional command is
kept by the program slicer, then the guard of the command must also
kept as the guard controls which branches of the program are executed.
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1 sum := z;
2 if
3 sum == 0
4 then
5 sum := y
6 else
7 total := x * y

Figure 5.9: An example program
containing a conditional choice.

1 sum := z;
2 if
3 sum == 0
4 then
5 skip;
6 else
7 total := x * y

Figure 5.10: Program slice of
the conditional command for
{total}. The guard on sum is
kept as is the assignment.

By controlling which branch gets executed, the values of the variables in
the guard have an indirect effect on the values in the criterion. For our
example, the guard controls if the assignment to total happens. As the
variables in the guard indirectly play a role in the value of total, we
also add these variables to the criterion. The program slicer finishes the
program slice by keeping the assignment to sum as its value effects the
evaluation of the guard of the command and gives us the program slice
in Figure 5.10.

Translating this conditional command program into our intermediate
language gives us the program in Figure 5.11. The translated program
assigns the value of z to sum and then non-deterministically chooses to
either assume that the guard sum == 0 holds and assigns y to sum or
to assume that the guard does not hold and execute the assignment to
total the value of x times y. Slicing this program with the criterion
{total} will give us the program slice in Figure 5.12.

The weakest precondition of the conditional command [24] for the a
projected predicate R where FV(R) ⊆ {total} is

(z = 0⇒R) ∧ (z 6= 0⇒R[total := x ∗ y])

which is identical to the weakest precondition of the translation of the
conditional command into our intermediate language. That is, the mean-
ing of both of the programs are identical. The weakest precondition for
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1 sum := z;
2 assume sum == 0;
3 sum := y
4 ||
5 assume sum != 0;
6 total := x * y

Figure 5.11: The translation of
our example program into our in-
termediate language.

1 skip
2 skip
3 skip
4 ||
5 skip
6 total := x * y

Figure 5.12: Slicing the interme-
diate form of the program for the
criterion {total}. The assump-
tions on sum are removed.

the program slice of our conditional command does not differ and gives
us the exact same weakest precondition for the projected predicate R.
That is

(z = 0⇒R) ∧ (z 6= 0⇒R[total := x ∗ y])

however, the weakest precondition for our program slice of the interme-
diate program is

R[total := x ∗ y]

thus breaking any relationship between the program slice of the target
program and the program slice of our intermediate program.

The problem is that when ∆̂ inspects the assumption on sum it treats
it as a data abstraction on sum, not a control abstraction and removes
it from the program slice. The program slicer does not know that the
assumption is necessary to the execution of the program trace. To have
∆̂ correctly slice these control assumptions we need to tell the program
slicer whether an assumption is necessary or not for control flow of the
program. We do this by including extra information in the translation
that records whether an assumption models control flow or not. We ex-
tend the slicer ∆̂ to keep all assumptions that are marked as necessary
for the control flow of the program trace. We also include the body of the
guards when marking the assumption so that the program slicer can re-
move the assumption if no commands in the body are kept in the program
slice.
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The assumptions sum == 0 and sum != 0 in our example program will
both be marked as modeling control flow. Marking each assumption with
the program labels {3, 6} will tell the program slicer the assignments to
sum at label 3 or total at label 6 are both control dependent on these
assumptions. If the slicer keeps either of these assignments, then it also
must keep the assumptions. If our source language contains a repetition
command, we must also include additional information in the translated
program that will instruct the program slicer to iterate through the body
of the command until it reaches a fixpoint [68].

A similar problem occurs when a translation of a target program in-
troduces separate commands that operate on different states into the
intermediate program. Slicing the target program would keep the com-
mand that updates separate states as it is a single command that updates
on both the states, but slicing in the intermediate program may only keep
one update to part of the state as the other state may not be part of the
criterion, also breaking the commutativity of slicing for target programs.
The solution for this type of problem is to associate a set of program
labels with each command that states to the program verifier that any
inspection of the command should also include inspection of the other
commands whose labels are included in the set.

5.5 Implementation Details

We have presented our approach to the localizing of program failures in
our language using program slicing and what can be expected from our
approach in the context of automatic program verification. The Boogie
programming language [21] is a similar intermediate language that is used
in the modeling and verification of various source languages [9]. The
Boogie programming verifier [6] takes a Boogie program and transforms
it to verification conditions that are then passed over to the Z3 theorem
prover [20]. Our language is a subset of the Boogie language, but we have
extended it to the entire Boogie language. In this chapter we present
the implementation of our approach within the Boogie program verifier
and an approach to help deal with the complexity of slicing heap like
structures such as those given to us by the target language such as Spec#.
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Entry

total := 0 total := z assert sum == 0 assume sum == y havoc sum

assert 0 <= total

Figure 5.13: Program dependency graph for our introductory program.
The solid arrows represent data flow dependencies and the dashed arrows
represent control dependencies.

5.5.1 Program Dependency Graph
Applying our algorithms over and over again for the same program and
the same verification failure can be inefficient. Unless the program or
the variables in the specification have changed, we only apply our data
flow and control flow analyses only once and we construct a program
dependency graph. A program dependency graph (PDG) [28] represents
a program as a graph in which the nodes are commands or predicate
expressions and the edges represent either data dependencies or control
dependencies. Program slicing in a PDG boils down to removing those
commands that are not connected by either a control or a data flow edge
to the criterion we are slicing [39].

The example graph in Figure 5.13 represents the program dependency
graph for our introductory program in Figure 5.1. The bold-lined arrows
represent data dependency and the dashed arrows represent control de-
pendencies. The special node ENTRY represents the initial entry node for
the program. The graph makes explicit that there is no data dependency
between the assignment to total and the assertion on sum. It however
makes explicit that there is a data-dependency between the assertion on
total and the assignments to total in the bottom branch and the as-
signment to total in the header of the program, without any dependency
on the havoc to sum or the assumption on sum.

To slice the program for the failing assertion on sum we select the
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Entry

total := 0 total := z

assert 0 <= total

Figure 5.14: The program slice for the node containing the assertion on
total gives us the sub-graph containing only the data dependencies of
the node.

node for the criterion and remove all nodes that have no control or data
dependency from the node. As the assertion has no data dependencies,
the program dependence graph for the program slice of the assertion gives
us only the singleton node. Slicing the program graph for the assertion
on total will give us a more interesting graph. Inspecting the data
dependencies, we find that the command has a data dependency on the
assignment to total from the bottom branch of the program and a data
dependency on the assignment to total in the header of the program.
As there are no other control or data dependencies of the node, we are
done slicing the program and will have the program dependency graph
in Figure 5.14.

To handle the anti-dependencies introduced by partial commands, we
extend the program dependency graph with a special anti-dependency
edge that is used to include all nodes that define an anti-dependency
between variables and partial commands in the program. For translations
from a conditional command we include control edges that define a control
dependency between the command in one node and an expression in
the control node. For translations from a repetition command we also
include the special edges loop-carried and loop-independent so that we
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can correctly determine if a data dependency results from an iteration of
the loop or if the data dependency is independent from the loop.

5.5.2 Prover Assistance

Program slicing in the presences of complex data types, such as arrays,
possibly leads to overly-large program slices. When inspecting an ar-
ray update m[i] := E for the criterion {m[j]} forces the program slicer to
keep the assignment as it is unable to determine if the evaluation of i is
equal to the evaluation of j. As this is generally an unsolvable problem,
static program slicing over-approximates and keeps all assignments and
assumptions that either assign to or define the array m for any index. Us-
ing the counterexample given by a negative result of the program verifier
gives us an evaluation for every index and allows us to compare two in-
dexes and determine if the array assignment has an effect on the index we
are interested in. However, the trace may not be indicative of an actual
error, and may mislead the programmer into inspecting the correct part
of a program.

Program slicing suffers tremendously when dealing with programs
that make extensive use of structures such as arrays. Translating tar-
get languages like Spec# into our intermediate form requires the use of a
global array to model the heap of the program. As every step in a Spec#
program has the potential to modify this heap, slicing in the presences of
heap like structures offers very little benefit to programs such as Spec#.
Whenever we inspect an update to the heap, we have to treat this as an
update to every index in the heap.

One approach we have tried in our implementation was to make use
of the SMT solver to help the program slicer determine if an update to or
assumption on an array can be removed from the program slice. When
we inspect an update of the form m[i] := E with the criterion {m[j]} we
generate an assertion checking to see if the expression i is not equal to
the expression j. We then compute the weakest liberal precondition for
this assertion and query the prover for the validity of the assertion. If
prover is able to prove the condition, then we know that for all possible
traces i != j and we can safely remove the update from the program
slice. If the prover is unable to prove the condition, then either i == j

or the prover was simply unable to prove the condition i != j, we keep
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the assignment and continue slicing the program.
For some examples this approach did produce a finer program slice

with an acceptable performance. However, for interesting Spec# pro-
grams this approach provided very little benefit to the programmer. Ei-
ther the approach took too long, which was the case for heap intensive
programs or the approach provided very little benefit as the program
simply allowed for the possible sharing of the references. We found that
when a program updates two or more references of the same type, it was
usually not the case that the program assumed (viz. precondition or in-
variant) that the references did not point to the same location. Without
such an assumption, trying to prove that the indexes point to different
locations in the model array of the heap is futile.

More work needs to be done for program slicing in the presence of
complex data types such as heaps and arrays. The use of the prover
to help determine if two references share the same location appears to
be a good idea, but a more sophisticated analysis such as a points-to
analysis [62] may help to give better results. However, it appears that
our approach may already be on par with existing approaches [37] and
there is simply more work to be done in this field.

5.6 Summary and Related Work
In this chapter we have presented our approach to how we can use a
program slicer in the context of automatic verification to help the pro-
grammer locate the cause of the failed verification attempt. We have
shown how our approach can be automated from a negative response
from a sound program verifier. We have presented what the program-
mer can expect from the program slice in the context of sound program
verification and what they can do with this program slice. Given the
counterexample from the verifier we can use dynamic program slicing
to produce finer program slices, as long as the programmer is wiling to
accept an occasional invalid program slice. Translating from a target lan-
guage requires more information than a simple translation to correctly
slice these translated programs and we have presented the necessary in-
formation needed to ensure this. We have presented some insight into
our implementation into the Boogie program verifier and gave some indi-
cation to the usefulness of the approach when applied to understanding
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verification errors in Spec# like programs.
Localizing the cause of the verification failure using program slicing is

an efficient approach only if the cause of the error is in the program slice.
However, if the cause of the error is not located in the program slice,
say an omission or mistyping of an assignment or an assumption, then
program slicing may mislead the programmer by focusing their attention
away from the actual cause of the error. For example, the program in
Figure 5.15 fails to verify and the program verifier will tell us the assertion
on total will possibly fail. Presenting the programmer with the slice in
Figure 5.16 may mislead the programmer into believing that the cause
of the verification failure is located in this program, and not a mistyping
on the variable sum.

1 total := 0;
2 z := 0;
3 sum := y
4 ||
5 havoc z;
6 total := sum
7 assert 0 <= total

Figure 5.15: The assertion on
total fails verification as the
programmer mistyped sum for z.

1 total := 0;
2 skip;
3 skip
4 ||
5 skip;
6 total := sum
7 assert 0 <= total

Figure 5.16: The program slice
for the failing assertion. The as-
signment to z is left out of the
program slice and the program-
mer is mislead into believing that
it is the value of sum, not the
mistyping that has led to the fail-
ure.

Let us assume that the cause of this failed attempt is that the pro-
grammer mistyped the variable sum for the variable z when typing in the
assignment to total at program location 2 in the original program. As
this assignment to the variable z, of which total does not have a depen-
dency on, is left out of the program slice, the programmer may be led to
believe that the cause of the failure has to do with the value of sum and
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not the mistyping from z. However, we do not believe that this is a very
large issue in practice. Industrial verification of programs typically start
with an existing program and add specifications to the program, thus
checking if the specifications satisfy the program. That is, modern pro-
gram verification is an a posteriori approach when it comes to applying
specification driven development. As such, it is usually the specification
that is incorrect, not the program. So omissions and mistypings are rarely
a problem in these situations.

The idea of localizing the cause of the verification failure is not new.
By comparing successful traces with error traces, the work on localizing
errors in counterexample traces [5] is able to narrow down the cause of
the error to particular branches in the program. Given a successful trace
and a failing trace they compare the intersection looking for branches
that differ between the two traces. If a branch choice has lead to a
successful trace in one branch, but an error trace in the other branch;
then we know that the cause of the error has to be in this branch. This
approach works very well in programs that includes extensive control flow
graphs, such as devices drivers and for specifications that are known to
be correct. However, this approach does not work well for straight-line
programs as there are no branches to compare or when the error is in the
specification and not the program. Our approach is applicable to both
in-line programs and programs where the specification is the cause of the
failure, not the program.

The work by Groce [32, 31] generalizes this approach to help the pro-
grammer not only localize but also understand the failed verification at-
tempt. They do this by comparing all positive (successful) traces against
all negative (failing) traces and generalizing the result into either a pro-
gram invariant or a precondition for a failing method. Their approach is
based on bounded model checking, not on deductive verification such as
Ξ. Computing the set of all positive and negative traces is a side-effect of
model checking, so applying their approach is straightforward. However,
unlike model checking, applying their approach in a deductive verifica-
tion setting would not work well as computing the set of all positive and
negative traces would requires us to produce one verification condition for
every possible trace in the program and then invoke the theorem prover
to determine if this trace is positive or not.
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Debugging Program Errors





Chapter 6

Understanding the Cause
of Verification Failures

When a program fails verification it is the responsibility of the program-
mer to determine the cause of the verification failure. Applying a tech-
nique such as program slicing may help the programmer localize the cause
of the failure, but it may not help them understand why the program
failed verification. When a verification attempt fails, SMT solvers pro-
vide a counterexample that illustrates why the verification condition is
not valid. A counterexample essentially contains a sequence of program
labels and values for each variable in each execution state and character-
izes an execution of the program being verified. For programs with non-
trivial states, for instance heap data structures, counterexamples can be
magnitudes larger than the program being verified and not very helpful
for the programmer to understand the verification error. If the verifi-
cation error is spurious the counterexample might not even represent a
failing execution.

Consider the example Spec# [46, 9] program in Figure 6.1. The
method AddSorted of class SortedList adds the value parameter to
the list of integers and then sorts the list. The specification requires that
after the execution of AddSorted, the list be sorted (by an object invari-
ant) and that it contains value (by a postcondition). A modular veri-
fier such as Spec# verifies each method individually and reasons about
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method calls in terms of the callee’s specification, not its implementation.
The specification of Sort states only that the elements of the list will be
sorted, not that they will be preserved. Consequently, the verifier is un-
able to prove that value is still contained in list.Elements after the call
to list.Sort and, thus, that the postcondition of AddSorted holds.

1 class IntList {
2 int[] Elements;
3 int Count;
4

5 void Add (int value)
6 modifies Count;
7 modifies Elements;
8 modifies Elements[*];
9 ensures Contains

10 (Elements, value)
11 { ... }
12

13 void Sort ()
14 modifies Elements[*];
15 ensures Sorted (Elements);
16 { ... }
17 }

1 class SortedList {
2 IntList list;
3

4 // The list is sorted
5 invariant Sorted (list.Elements);
6

7 void AddSorted (int value)
8 ensures Contains
9 (list.Elements,value);

10 {
11 list.Add (value);
12 list.Sort ();
13 }
14 }
15

16

17

Figure 6.1: Spec# is unable to verify AddSorted. The notation Sorted(a)
abbreviates the condition that array a is sorted and Contains(a, v) ab-
breviates that v is contained in a. Both conditions can be expressed
in Spec# via quantification over the indexes of a. The modifies-clauses
specify frame properties by listing the locations a method is allowed to
modify. For brevity, we omit the method bodies in class IntList, access
modifiers, as well as Spec#’s ownership and non-null annotations.

A programmer who may not understand the cause of this failure can
query the program verifier for a counterexample. For our introductory
program, the counterexample for the failed verification attempt is over
1,200 lines of text. This counterexample represents the raw view of how
the underlying SMT solver, Z3 in this instance, sees the Spec# program
after it has been translated into our intermediate language. A program-
mer manually inspecting this counterexample will be at a loss as it is not
amenable to any kind of manual inspection. Moreover, the counterex-
ample may not even be representative of an actual error, thus possibly
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misleading the programmer into understanding something different then
an actual error in the program.

The literature contains several proposals for extracting useful infor-
mation from counterexamples, but these proposals are not sufficient in
the context of deductive program verification. In particular, they do not
support the programmer in detecting too weak specifications and spuri-
ous errors, which are common reasons for verification failures. Some ver-
ifiers apply heuristics to extract those parts of a counterexample that are
likely to be relevant for the verification error. However, it seems difficult
to tune these heuristics such that they provide all necessary information
without swamping the programmer with irrelevant details. For instance,
for method AddSorted, the Spec# verifier filters too aggressively and
provides only the following excerpt from the counterexample, which does
not help the programmer understand the cause of the error: (initial
value of: value) == 0.

Another approach is to construct a test case from a failed verification
attempt, using the initial state of the counterexample as test input [16,
11, 63]. This approach is helpful if the test leads to a runtime error or if
the violated specification can be found by a runtime assertion checker; in
both cases, the generated test case will fail and provide useful information
to the programmer. However, when static verification fails because of
weak specifications, or when the violated specification is not checked at
runtime, for instance when quantifying over all objects, or when the error
is spurious, the test case will complete successfully. In these very common
cases, the test does not help the programmer to determine the cause of the
verification error and might even mislead the programmer into believing
that the error is spurious. In our example, executing method AddSorted

as part of a test case will succeed because the body of Sort does preserve
the elements in the array, it is the weak specification that causes static
verification to fail. However, this is not revealed by the test and the
programmer is misled into believing this is a spurious error.

Finally, alternative forms of presenting the counterexample to the
programmer, such as those based on graph visualization [58, 71] are lim-
ited by the size of the state presented. It is unclear how to present large
counterexamples that contain heap like states. Moreover, this approach is
unable to check the validity of the error, thus misleading the programmer
into debugging a possibly spurious error.
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In this chapter we present a second approach to helping programmer
understand failed verification attempts. We do this by enabling pro-
grammers to use program debuggers to inspect program verification and
counterexamples just as they used debuggers to inspect program execu-
tions and execution states. We construct an executable program that
will enable the programmer to step through the verification of a method,
check the validity of failing assertions, and observe the evolution of the
state described by the counterexample. We will first present how our
approach can be used to understand the verification failure in our intro-
ductory example. We will then go into the details of our approach and
understand how we construct program stubs that reproduce the state
of the counterexample and simulate the verification semantics of Spec#.
We will see how we can extend the runtime checker to check for all fail-
ing specifications in Spec# and how we can use this to validate failed
verification attempts. We will briefly discuss our implementation before
we give a systematic debugging procedure that we have found to be ef-
fective in using our approach to understand failed verification attempts.
We will then conclude this chapter with a summary and some discussion
on related work.

6.1 Approach
Given a Spec# program and a counterexample produced by Z3, we con-
struct an executable .NET program that simulates the verification seman-
tics and reproduces states given by the counterexample. The constructed
program can be executed in the Visual Studio program debugger, allowing
the programmer to systematically and efficiently explore the counterex-
ample and observe the failure. By executing the constructed program, we
are able to detect spurious errors and validate failed verification attempts.
The three key features of our approach are as follows:

(1) The constructed program simulates the verification semantics of
the program as defined by the verifier rather than the concrete execution
semantics as defined by the .NET platform. The semantics used by a
program verifier is typically an abstraction of the execution semantics.
Loops are typically verified via loop invariants rather than by considering
the actual iterations, and modular verifiers reason about method calls in
terms of method specifications rather than the implementation of the
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called method. By simulating the verification semantics rather than the
execution semantics, we can detect verification errors caused by incorrect
or incomplete specifications.

(2) The constructed program reproduces the states given by the coun-
terexample. We execute the constructed program in the initial state de-
scribed by the counterexample. For each statement whose verification
semantics differs from the execution semantics, we reproduce the effect
of executing the statement by creating a program stub that alters the
state as described by the counterexample. This allows programmers to
use the debugger to explore and navigate through the counterexample.

(3) The constructed program contains runtime checks for specifica-
tions that are relevant for the verification error. For those specifications
that generally cannot be checked efficiently at runtime (for instance,
frame specifications, which universally quantify over all allocated ob-
jects), we use the counterexample to determine which objects are rel-
evant for the verification error and focus the runtime checks on those.
Moreover, checking the relevant specifications at runtime allows us to
determine whether or not a verification error is spurious. This is the
case if the constructed program terminates without a runtime error or
specification violation.

Our approach enables the programmer to understand the failed veri-
fication attempt in method AddSorted as follows: We extract the initial
state from the counterexample and construct a program driver that will
create a SortedList object that contains an IntList object (in field
list) with a list containing the elements, say, 0 and 1. We then rewrite
the body of AddSorted so that it simulates Spec#’s verification seman-
tics. That is, we replace the calls to Add and Sorted with program stubs
that change the program state to the state given by the counterexam-
ple. The stub for the call to Add changes list.Elements to contain the
elements [0, 1,−3]1. The stub for the call to Sort updates the state of
list.Elements to some sorted array, say [7, 7, 7]. We finish by construct-
ing a runtime check for the invariant of SortedList and the postcondition
(and modifies clause) of AddSorted. For each step in the construction, we
insert debugger directives that allow the programmer to control the exe-
cution of the original program, but observe the states of the constructed

1Given the weak specification of Add, the counterexample could provide any array
that contains the initial value of value, which we assume here to be −3.
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program.
A programmer using our approach is presented with the original im-

plementation of AddSorted highlighted by the program debugger. The
programmer can either use the debugger to inspect the initial (counterex-
ample) state or execute the method until either the runtime assertion
checker notifies them of a failing assertion or the method terminates, no-
tifying the programmer of a spurious error. In our example, the runtime
assertion checker will notify the programmer of the failing postcondition
AddSorted, thus confirming the verification failure. The programmer
can then inspect the post-state of the method and observe the value
[7, 7, 7] for list.Elements. However, the initial state contained the state
[0, 1] for list.Elements and −3 for value. The programmer can now
single-step through the body of AddSorted inspecting the (counterexam-
ple) state of each step. Stepping over the call to list.Add adds value to
list.Elements, as expected. Stepping over the call to list.Sort changes
list.Elements to [7, 7, 7]. This unexpected change points the program-
mer to the cause of the verification failure, the incomplete specification
of Sort. Note that it is the simulation of the verification semantics that
enables us to identify the incomplete specification as the cause of this
verification error. Using the execution semantics, for instance in a test
case, could exhibit only errors in the code.

6.2 State Construction
To simulate the verification semantics of the failing method we replace
each command whose verification semantics differs from the execution
semantics by a program stub that alters the state as prescribed by the
counterexample. In doing so we are essentially lifting the SMT coun-
terexample to the source level of the program. Both for this purpose and
to set up the initial state of the method execution, we extract information
from the counterexample and construct the corresponding state.

A counterexample contains values for all local variables in each exe-
cution state; we use those to extract the method arguments. Moreover,
it contains function interpretations, in particular, for the select and store
functions that are used to encode the heap; we use those to extract field
values. As the counterexample only contains primitive types or arrays,
the extraction is relatively simple and works for all counterexamples. For
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primitive variables the extraction is done by looking up the value of the
variable and for array variables we inspect the function interpretations of
the array and use their values to recursively extract the elements of the
array.

In this section we describe the construction of mock types that re-
place the original types in the program with versions that enable flexible
initialization, of program stubs that construct the state given by the coun-
terexample, and of the entry point to the failing method, the driver.

6.2.1 Partial Type Mocking

For variables of builtin types such as int, bool, and arrays, construct-
ing the state consists of straight forward assignments. For variables of
user-defined types such as classes and interfaces, the state construction
involves the creation of objects and the initialization of their fields accord-
ing to the state given in the counterexample.However, fully initializing
an object is not possible if we do not know the values of all the fields
of the object, due to visibility, or if the state construction makes use
of user-defined types based on interfaces or abstract classes that do not
provide a suitable constructor.

Mock objects [51, 29] are used to simulate the behavior of external
interfaces in a controlled way by extending an interface or class with a
new subtype that will simulate the behavior of the object being mocked.
Since not all types have default constructors, automatically constructing
a mock object requires inspecting all type constructors and determining
which constructor will initialize the mock object as closely as possible
to the state described by the counterexample [63, 64]. However, such a
“close enough” construction of objects cannot in general reproduce the
exact state described as we may not know how to construct such an ob-
ject. Our approach depends on being able to construct the exact state
of the counterexample, not a close approximation. We achieve this by
constructing a partial mock type where we do not require a fully con-
structed object, only an object whose fields are relevant to the failing
specification.

We replace each user-defined type in the program by a mock type—a
concrete class—that contains: (1) a parameterless constructor with an
empty body, which allows the program stubs to instantiate the class;
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(2) a declaration for each field that is accessible to the failing method
or that is mentioned in a specification. If the field is of a user-defined
type, we also construct a corresponding mock type and replace the field
with the newly constructed type. We declare all fields of mock types
public, which allows the program stubs to initialize them according to
the counterexample via field assignments. As we replace all method calls
with a program stub there is no more construction do be done on the
mock type. This type replacement is done on the .NET level and is
transparent to the programmer.

6.2.2 Program Stubs

We replace each statement s whose verification semantics differs from
the execution semantics by a program stub. This stub simulates the
verification semantics of s by constructing the state after the execution
of s as described by the counterexample. For this purpose, we extract
the state before and after the execution of s from the counterexample.
For each variable or field in which these two states differ, the program
stub contains an assignment that updates the variable to reflect the state
change.

When updating variables of reference types, we must preserve any
alias properties contained in the counterexample, that is, when two vari-
ables contain the same symbolic reference in the counterexample, they
must also contain the same reference in the constructed state. So when
we update a variable of a reference type, we first check if we have already
constructed an object for the symbolic reference in the counterexample.
If so, we assign a reference to that object. If not, we create and initialize
a new object, making use of type mocking.

6.2.3 Driver

To begin executing the failing method we have to generate a driver, which
constructs the initial state, attaches itself to the program debugger, and
then calls the failing method. The initial state consists of values for
the receiver, the method arguments, static global data, and all objects
reachable from any of these instances. This construction is a special case
of the state construction described in the previous subsection with the
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only difference being that the driver needs to construct the entire state
as there is no changes from a previous state. The programmer does not
see this constructed driver, they only see the initial states produced by
the driver with the program debugger attached to the failing method.

The driver for our example creates the initial state for the failing
method AddSorted, in particular, the receiver of type SortedList (Fig-
ure 6.2, left column). In order to initialize this object, it first constructs
and initializes an IntList object that will be assigned to the receiver’s
list field. For this purpose, we create an integer array of the length
given in the counterexample (2) and directly initialize its elements with
the values from the counterexample ([0, 1]). We use this array to initialize
the new IntList object. After the initialization of the IntList object,
the driver creates and initializes the receiver of the failing method.

1 // Construct the array for IntList.Elements
2 int[] Elements = new int[2];
3 Elements[0] = 0;
4 Elements[1] = 1;
5

6 // Construct an instance of IntList
7 IntList list = new IntList ();
8 list.Elements = Elements;
9 list.Count = 2;

10

11 // Construct receiver of failing method
12 SortedList rcvr = new SortedList ();
13 rcvr.list = list;
14

15 // Attach to the program debugger
16 Debugger.Launch ();
17

18 // Set the first step of the debugger
19 Debugger.Step ("rcvr.AddSorted (-3)");
20

21 // Call the failing method
22 rcvr.AddSorted (-3);

Figure 6.2: The driver for our example first constructs the initial state,
launches the debugger, and calls the failing method. The types IntList
and SortedList denote the mock types generated for the classes with the
same names, which declare parameterless constructors and public fields.
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After the initial state construction, the driver launches the debugger,
and then calls the failing method AddSorted on the constructed receiver
with the argument value from the counterexample, −3 (Figure 6.2, right
column).

6.3 Verification Semantics

Program verifiers such as Spec# reason about a program in terms of its
verification semantics, which differs slightly from the concrete execution
semantics. The two main differences are to reason about method calls
in terms of a method’s specification rather than its implementation (to
achieve modularity, to handle recursion, and to handle dynamic method
binding) and to reason about loops in terms of a loop invariant rather
than actual iterations (to avoid inefficient fix- point computations). To
detect common verification errors caused by incorrect or incomplete spec-
ifications, we model the verification semantics of the failing method. For
this purpose, we rewrite its body, in particular, calls and loops, as de-
scribed in this section.

Even though we rewrite the body of the failing method, we present the
original failing method to the programmer in the debugger; the rewriting
is completely transparent to the programmer. We achieve this effect
by injecting debugger directives, in the form of calls to Debugger.Step.
These directives highlight the code in the failing method body and allow
the programmer to control the execution of the stubs from the original
method body.

6.3.1 Method Calls

The verification semantics of a call to a method m is (1) to assert the pre-
condition of m, (2) to havoc all memory locations that may be changed
by m, according to its modifies clause, and then (3) to assume the post-
condition of m. To simulate the verification semantics, we replace each
call to a method m in the failing method, including recursive calls and
constructor calls, with a program stub that contains: (1) a runtime check
for the precondition of m (2) code that updates the state of the program
to reflect the state given by the counterexample, and (3) a runtime check
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for the postcondition of m; which will ensure that we present only valid
states to the programmer.

Method AddSorted contains calls to list.Add and list.Sort. For
each method call the counterexample contains a state describing the effect
of the call. We replace these method calls with the program stubs in
Figure 6.3. The program stub for the call to list.Add (left column)
creates a new Element array, assigns the elements 0,1, and−3 into the
array and then updates list.Count with the value 3. We constructed
a new Elements array as the symbolic reference in the counterexample
differed from the pre-state of the call in the counterexample. For the call
to list.Sort, we do not construct a new Elements array as the symbolic
reference between the post-state of the call to list.Add is the same as the
post-state of the call to list.Sort. However, the elements of the array
have changed and we update each of the elements with their new values
7,7, and 7. The program stub then checks the postcondition of list.Add;
which will be explained in more depth in Section 6.5.2.

Both program stubs contain a debugger directive to highlight the
method call in the original failing method.

6.3.2 Method Calls in Specifications

Spec# as well as other specification languages for object-oriented pro-
grams such as JML [43] and Eiffel [52] allow specifications to contain
calls to side-effect free methods. These pure methods are useful speci-
fication constructs that can be used to extend the axioms used by the
program verifier [18]. Modular verifiers reason about pure method calls
in terms of their specifications, not their implementation. For method
calls in specifications, this is achieved by encoding the pure method as a
mathematical function, whose meaning is derived from the specification
of the pure method [19]. The verification semantics of a pure method call
within a specification is then to apply the mathematical function.

For example, the postcondition of AddSorted in our introductory pro-
gram (Figure 6.1) declares that there must exist an index into the list of
elements that contains the value of value. If we assume that the class
of IntList contains the pure method Contains that checks if the value
is contained within the list and returns true if value is in the list of ele-
ments and false if not, we can instead have a postcondition of AddSorted
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1 // Step over the method list.Add
2 Debugger.Step (list.Add);
3

4 // Construct the post-state of list.Add
5 int[] Elements = new int[3];
6 Elements[0] = 0;
7 Elements[1] = 1;
8 Elements[2] = -3;
9 list.Elements = Elements;

10 list.Count = 3;
11

12 // Check postcondition of list.Add
13 assert list.Contains(value);
14

15 // Step over the method list.Sort
16 Debugger.Step (list.Sort);
17

18 // Construct the poststate of list.Sort
19 list.Elements[0] = 7;
20 list.Elements[1] = 7;
21 list.Elements[2] = 7;
22

23 // Check postcondition of list.Sort
24 assert list.Sorted (value);

Figure 6.3: The program stubs replacing the calls to list.Add and
list.Sort in the failing method AddSorted. The debugger directives in-
struct the program debugger to highlight the calls. The stubs construct
the post-states of the calls given by the counterexample.

that now mentions the pure method Contains instead.
As with normal method calls, calling a pure method in a runtime

assertion checker may not correctly simulate the verification semantics.
An actual call to the pure method would return the value computed
by its implementation, not the value given by the counterexample. To
ensure that we present the correct state to the programmer, we extract
the value of every pure method call from the counterexample and replace
the occurrence with its value. This replacement is relatively simple and
straightforward as there are no changes to the heap of the program.

The rewritten method body of AddSorted will end with a runtime
check for the postcondition of the method. Replacing the existential
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1 [Pure] bool Contains (int value)
2 ensures result ==
3 exists {int i in (0:Count);
4 Elements[i] == value};

Figure 6.4: The specification of IntList’s method Contains. The [Pure]
attribute expresses that the method is side-effect free and may be used
in specifications.

1 void AddSorted (int value)
2 modifies list.Count, list.Elements[*];
3 ensures list.Contains (value);
4 {
5 list.Add (value);
6 list.Sort ();
7 }

Figure 6.5: Replacing the exists expression with a pure method Contains.

postcondition with a pure method will require that we not only check that
the postcondition holds for the value given by the counterexample, but
we must also check that this value satisfies the specification of the pure
method, thus validating the states of the counterexample. The program
stub in Figure 6.6 is the replacement program for the postcondition of
AddSorted using the pure method Contains. We create a new temporary
value result for the value of the pure method call according to the
counterexample and then assert that this temporary value satisfies the
postcondition of Contains. We then replace the call to Contains with the
result given by the counterexample. For this example the result given by
the counterexample for the call to Contains has the boolean value false,
thus the generated assertion for the postcondition of AddSorted will fail
during executing, validating the verification failure.

If the pure method of Contains included a precondition, we would
also generate an assertion to check the precondition with the value of
value.
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1 // Step into the postcondition
2 Debugger.Step("ensures list.Contains(value)");
3

4 // Construct result of list.Contains (value)
5 bool result = false;
6

7 // Check postcondition of Contains
8 assert result ==>
9 exists {int i in (0:Count);

10 list.Elements[i] == value};
11

12 // Check the postcondition of AddSorted
13 assert result == true;

Figure 6.6: Using the pure method Contains for the postcondition of
AddSorted requires checking the validity of the value given by the coun-
terexample for the call to Contains.

6.3.3 Loops

The verification semantics of a loop is: (1) to assert the loop invariant
before the loop, (2) to simulate the state after an arbitrary number of
(possibly zero) loop iterations by assigning arbitrary values to all loca-
tions that may be modified by the loop and assuming that the resulting
state again satisfies the loop invariant. The verification semantics then
considers two possibilities to continue the execution: (3) an arbitrary exe-
cution of the loop body by assuming that the condition of the loop holds,
executing the loop body, and asserting that the loop invariant holds again
after the body, or (4) exiting the loop by assuming that the condition of
the loop does not hold and proceeding to the statement after the loop.
Checking an arbitrary iteration of the loop suffices to ensure that any
execution of the loop preserves the loop invariant.

To simulate the verification semantics for loops we replace each loop
in the program with a program stub that contains: (1) a runtime check
for the loop invariant, and (2) code that updates the state of the pro-
gram to reflect the state given by the counterexample and another run-
time check for the loop invariant, which we discuss the reason for in
Section 6.5. From the counterexample, we know whether the verifica-
tion error occurred on the path that contains the arbitrary loop iteration



6.4. EXTENDED RUNTIME CHECKING 137

(branch (3)) or the path that exits the loop (branch (4)). In case (3),
the stub contains a runtime check for the loop condition , the loop body
(replacing any method calls or inner loops), another runtime check for
the loop invariant, and then terminates the execution of the method. In
case (4), the stub just contains a runtime check for the negation of the
loop condition and then proceeds with the code following the loop.

As we mentioned above, a programmer using our approach will not
see the program stubs, but only the effect they have on the state of
the program. If the error is located in the loop body, the execution as
presented to the programmer enters the loop body; upon entry, the pro-
grammer will observe a sudden change of the state to the arbitrary state
prescribed by the counterexample, satisfying the loop invariant and the
loop condition. If the error is located after the loop, execution skips the
loop entirely, also with a sudden change of the state to an arbitrary state
that satisfies the loop invariant and the negation of the loop condition.

6.4 Extended Runtime Checking

We rely on the runtime assertion checker to reproduce failed verification
attempts. An execution of the rewritten failing method that does not lead
to an assertion violation indicates a spurious error. Most assertions in
Spec# programs are executable. In particular, quantifiers that range over
finite integer intervals, such as array indexes, are checked by iterating over
the range. However, the verification semantics of Spec# also makes use of
assertions that quantify over possibly unbounded sets, for instance, over
all allocated objects. This occurs in the assertions for modifies clauses and
object invariants of Spec#. Such assertions cannot be checked efficiently
at runtime. To be conclusive about the spuriosity of an error, we must
be able to check any failing assertion.

Our introductory program (Figure 6.1) contains an unbounded quan-
tifier in the verification semantics. The modifies clause specifies which
variables are allowed to be modified by a method body, and implicitly
specifies which variables are not allowed to be modified by a method. In
the verification semantics, this is encoded as an assertion over all possible
variables in the program by checking that their pre-state value is the same
as their post-state value. The modifies clause of Add in IntList specifies
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that the method body is allowed to modify the value of Count, the refer-
ence location of Elements, and the elements contained within the array
of Elements. The modifies clause of Sort specifies that it may modify
the elements of the array Elements, but it is not allowed to modify Count

nor the location of Elements. The modifies clause of AddSorted specifies
that the method is allowed to modify the value of list.Count and it is
allowed to modify the elements of list.Elements, but not the location
nor any other variable in the program. The Spec# program verifier will
notify the programmer that it is unable to verify the modifies clause of
AddSorted.

The problem is that method AddSorted does not satisfy its modi-
fies clause because the call to list.Add may modify list.Elements, but
this location is not specified by the modifies clause of AddSorted. The
counterexample for this error contains instantiations for the quantified
variables in the assertion for AddSorted’s modifies clause. Here, these
instantiations indicate that the Elements field of the object list is be-
ing modified without permission by the modifies clause. That is, we are
given the actual instantiation that has violated the universal quantifier
used to verify modifies clauses. Using this instantiation we can generate
a runtime check for this verification failure that is efficient and will ensure
that we can check if the error is spurious or not. We do this by generating
a local variable that stores the initial value of list.Elements upon entry
to AddSorted. At the end of the method we insert a runtime check, an
assertion, that will check if the pre-state of list.Elements has not been
modified. If the assertion fails, then we have validated the error from
the verifier. If the assertion does not fail, then we have found a spurious
error and we can notify the programmer. For our example, the program
stub for the method call to list.Add changes the value of list.Elements
by assigning a new array to the location. As the reference location is not
preserved by the method, the assertion will fail and the programmer will
be notified of the error.

A programmer debugging a modifies verification failure can localize
the error efficiently by attaching a data breakpoint to the variable in the
failing modifies clause and execute the program. If a statement modifies
the variable, the program debugger will stop execution and notify the
programmer of the modification. In our example, if we attach a data
breakpoint to list.Elements and execute the program, the program de-
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bugger will notify the programmer of a modification to list.Elements at
the call site to list.Add. The programmer is now aware of the location of
the verification failure and may now inspect the modifies specification of
list.Add and see that the call may modify the location of list.Elements.
With the knowledge the programmer can now fix the verification failure
by weakening the modifies clause of AddSorted to include for the modi-
fication to list.Elements.

This approach works for all unbounded universally quantified spec-
ifications; such as Spec#’s verification semantics for object invariants.
However, if the specification failure contains an unbounded existential
quantifier, no efficient runtime can exist as the negation of the exam-
ple would require us to check all instances of the unbounded quantifier.
Moreover, the counterexample for a failing unbounded existential quan-
tifier cannot contain any useful information about the failing assertion
as it too would have to contain a possibly unbounded domain of the
quantifier. However, this is generally not an issue as these unbounded
existential quantifiers pose a large problem for program verification and
do not exist in Spec# nor any other languages that target automatic
verification.

6.5 Error Validation
A sound program verifier such as Ξ will return a positive response only
if the program is verifiable by the wp predicate transformer. A sound
verifier will return a negative response if the program is not verifiable by
the wp predicate transformer or if the verifier was unable to ensure that
the program does satisfy the wp predicate transformer. If the verifier
returns a negative response for a verifiable program, then we say that
the verifier has returned a spurious error. Along with the knowledge
that the program may not satisfy the weakest precondition of wp, we are
also given a counterexample that should represent an execution of the
program that causes the program to fail. However, when we force the
SMT solver to give us a counterexample, we may sometimes end up with
program trace that is not contained in the set of possible traces for the
program.

In this section we present how we identify spurious errors and validate
the states of the counterexample.



140 CHAPTER 6. UNDERSTANDING VERIFICATION FAILURES

6.5.1 Spurious Errors

Since the validity of verification conditions is undecidable, SMT solvers
cannot always determine whether a verification condition is valid or not.
Whenever the SMT solver does not provide a conclusive result, a sound
verifier needs to be conservative and report a verification error. If the pro-
gram is valid, but not verifiable by the SMT solver we say that the error
is spurious. Spurious errors occur frequently in automatic program veri-
fication and are especially problematic as the harder the program or the
specification, the more the likelihood of an error being spurious. For ex-
ample, assertions that contain many quantifiers or non-linear arithmetic
increases the likelihood of a possible spurious error.

By extending the runtime assertion checker to handle all relevant fail-
ing assertions in Spec#, we are able to check and validate verification fail-
ures. If the execution of the rewritten failing method terminates without
a failed runtime assertion check for the failing specification, we can safely
conclude that the error is possibly spurious and notify the programmer.
As we only check for one execution trace of the program, we can only
notify the programmer that the error may be spurious as the error may
still be a valid error, the counterexample was just unable to validate the
error. However, it is generally the case that a valid error will have a coun-
terexample that represents the error and a spurious error will generally
have a counterexample that does not fail.

Knowing that an error is possibly spurious is an invaluable piece of
knowledge for a programmer understanding a failed verification attempt.
When a programmer is understanding a failed verification attempt they
inspect the program and specifications for the cause of the error, however
they do this with a grain of salt as they know that there is the possibility
that the program verifier was simply too weak to prove their program
correct. If they are unable to find the cause of the error, even possibly
missing the cause, they begin to check the limits of the verifier by deco-
rating the program with assertions. This can be a very time consuming
process. By executing the program and checking the failing specification
we are able to free the programmer from this time trap and get them
focused immediately on how to get the verifier to verify their program.
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6.5.2 Invalid Counterexamples

A counterexample is supposed to satisfy all assumptions that are being
made in the verification semantics of a program. For instance, the initial
state in a counterexample is supposed to satisfy the precondition of the
failing method. However, if the assumptions contain formulas that are
beyond the capabilities of the prover, the programmer may be presented
with an invalid counterexample that contradicts the assumptions in the
program. For example, if a program method contains a precondition that
uses non-linear arithmetic, say x/y > 0, most automatic provers will not
be able to handle the precondition and may produce a state −563 for x
and 4 for y; thus invalidating the assumption. Simulating the execution
described by an invalid counterexample and checking assertions in states
states extracted from an invalid counterexample is not helpful for the
programmer to understand verification errors and may only mislead them.

We extract states from the counterexample in three cases: (1) to set
up the initial state in the driver, (2) to reproduce the state changes made
by a method call, (3) and to reproduce the state changes made by a loop
iteration. For these cases, the verification semantics of Spec# makes the
following assumptions about the expected state: (1) the precondition of
the failing method, (2) the postcondition and modifies clause of a called
method, and (3) the loop invariant and the loop condition. To protect
against invalid counterexamples we introduce assertion check for each
of these assumptions. When one of assertions fail, it indicates that the
state of the counterexample does not satisfy the assumption and that the
counterexample is invalid.

The verification of our introductory method AddSorted assumes the
precondition of the method as well as the postconditions and modifies
clauses of the called methods Add and Sort. After we construct the
initial state in the driver stub we check the validity of the initial state by
asserting the precondition of AddSorted. For our example, AddSorted
has no precondition so this check is trivial. After the program stub for the
method call to Add we check the postcondition of Add by asserting that
there exists an index into the array of elements that contains value. After
we construct the program stub for the call to list.Sort we assert that the
list of elements are sorted. If any of these assertions fail, the programmer
will be notified of the invalid states given by the counterexample and that
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they should no longer trust the execution of the program.
Assumptions on the state may also come from the axioms that are

used by the program verifier to reason about the encoding of Spec# pro-
grams. These assumptions are encoded as background axioms for the
verifier and they specify the ranges of builtin types and the ownership
relationships between object instances. Checking the validity of builtin
types is done by first assigning the value to an object and then checking
if the typecast to the builtin type succeeds. If the typecast succeeds, the
value is valid for the type and we continue execution. If it does not suc-
ceed, the programmer is notified of the possibly invalid counterexample or
a possibly incorrect encoding of the Spec# program into the program ver-
ifier. To check the axioms we construct an assertion in the constructed
program for each axiom that we wish to be checked. However, these
checks usually are not practical as the verifier rarely is spurious under
the background axioms, which have been chosen carefully to be a correct
encoding of Spec# and generally do not confuse the SMT solver.

We are able to validate most assumptions in the verification semantics
during runtime, but not all of them. Assumptions that are not checked
during the execution are those assumptions that make use of unbounded
universal quantification, such as the modifies clause of a called method.
Our extended runtime check for failing assertions cannot be applied here
as the counterexample does not provided the instantiations for the quan-
tifier that are needed to check the assertion. However, we do not view
this as a large issue as we have not observed any invalid counterexamples
that where caused by the modifies clause specification in Spec# or any
other unbounded universal specifications that were assumed.

6.6 Experience

Using our implementation we have applied our approach to debug the
various verification failures found in examples from the Spec# tutorial
[46], the Spec# test suite (see http://specsharp.codeplex.com), and
our own test suite2. In this section, we outline a systematic procedure
that we have found to be effective for using our approach to locate the

2Also included in the download of our tool.
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cause of verification failures. We also summarize and evaluate our expe-
riences using this procedure.

The main observations of our experiments are: (1) Our approach is
helpful for understanding most of the verification failures in the examples.
In particular, we were able to effectively and efficiently detect bugs in
the implementation as well as incorrect or incomplete specifications. The
examples where our approach did not provide any benefit were fairly
obvious errors in small methods. For those verification failures, the error
message provided by Spec# was sufficient to localize and fix the error.
(2) Our set of examples contained very few spurious errors and invalid
counterexamples because we took them mostly from the Spec# tutorial
and test suite, both of which focus on examples that are handled well by
the verifier. Nevertheless, our runtime checks identified all of the spurious
errors and invalid counterexamples. (3) Most verification failures can be
debugged systematically with a simple procedure, which we outline below.

These initial results are very promising. However, our evaluation
may be biased in two ways. First, the examples were written for Spec#
demonstrations and might not be representative of real application code.
Second, the evaluation was performed by people who are familiar with
Spec#’s program verifier; it is possible that programmers might struggle
with issues that are obvious to us. Nevertheless, we are confident that
our positive experience will be confirmed by programmers working on
application code.

Debugging Procedure. We have found the following steps to be an
efficient way to localize and understand the cause of a verification failure.
If the verifier reports several errors for the same method, we debug them
in the order of their source location.

1. Use the error message to check the method for obvious errors. For
very simple programs and specifications our approach usually requires
more effort than simply inspecting the failing method. This is often the
case for programs that contain neither method calls nor loops, which re-
duces the likelihood that the verification failure is caused by an incorrect
or incomplete specification.

2. Run the rewritten program in the debugger and observe the failure.
Before attempting to localize the error, one should first confirm that the
verifier has found a valid error by running the rewritten program in the
debugger. This run will either result in an assertion violation (confirming
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the validity of the error), in a failed assumption check (indicating an
invalid counterexample), or in a message that suggests that the error
is spurious. In the latter two cases, the programmer needs to find an
alternative way of expressing the program or its specification and re-verify
the program. In the former case, the debugging procedure continues with
the next step.

3. Inspect the state in which the assertion failed. The runtime check
for an assertion fails either because the assertion is incorrect or because
the assertion was checked in a state the programmer did not expect. We
recommend to inspect the assertion and the state in which the runtime
check failed to determine which case applies. If the assertion is incorrect,
we can fix it and re-verify the method. If the state contains unexpected
values, we determine their origin in the next step.

4. Step through the rewritten program and observe changes to the rele-
vant variables. From step 3, we know which assertion fails. It is helpful to
track the values of the variables in this assertion to detect unexpected val-
ues, for instance, caused by a weak precondition or loop invariant. This
tracking is best performed by adding these variables to the variable watch
window of the debugger and then single-stepping through the rewritten
method. Unexpected initial values point us to a weak precondition; un-
expected modifications during a single step require further investigation,
described in step 5. Single-stepping through the method is likely also to
reveal errors in the code such as incorrect control flow or the absence of
a necessary assignment.

A variation of step 4 is more efficient when the failing assertion con-
tains only a small number of variables, such as the runtime check for a
modifies clause which focuses on only one heap location (see Section 6.4).
In this case, one can avoid the single-stepping and instead add data break-
points for the relevant variables. We can then run the rewritten method
in the debugger and get notified whenever a variable of interest gets up-
dated.

5. Analyze unexpected modifications. Step 4 determines where a vari-
able receives an unexpected value. If this happens during a method call
or in a loop, we have identified the method’s specification or the loop
invariant as the cause of the unexpected value and can amend them. If
the unexpected value comes from an assignment then we may also need
to track the variables in the right-hand side expression by adding them
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to the watch window and repeating from step 4.

6.7 Summary and Related Work
We have presented our approach to help programmers to understand
failed verification attempts. We generate an executable program that
reproduces the verification error by encoding the verification semantics
of the program and by using variable values from a counterexample. We
extend the runtime assertion checker to reproduce all relevant verifica-
tion errors, identify spurious errors, and detect invalid counterexamples.
Executing the generated program inside a debugger allows the program-
mer to systematically and efficiently explore the counterexample; which
is crucial for understanding, and fixing the verification failure. Our im-
plementation is entirely automatic and transparent to the programmer.

We have implemented our approach in Spec#, but it is applicable to
all program verifiers based on automatic provers that provide counterex-
amples. Our experience using our approach is very promising; we are
able to understand and fix verification errors effectively and efficiently.
We have also found that our approach is useful to debug the encoding of
Spec# in the program verifier. By checking the validity of the constructed
states we are able to ensure that the values of the variables conform to
the declared type in the encoding. We have indeed found an error in the
Spec# verifier; when inspecting a counterexample in our tool, we noticed
that a variable of type uint contained a negative value, which pointed
us to an omission in the encoding of Spec# programs.

In the previous chapter we discussed how we can use dynamic pro-
gram slicing to help the programmer localize the error, however as the
counterexample trace may be spurious or invalid; a dynamic program
slice may mislead the programmer by removing commands that are re-
quired for the failure. Executing our rewritten program and validating
the failure, step 2 of our debugging procedure, also validates the coun-
terexample trace given by the program verifier. Once we know that the
trace is indeed valid, then performing dynamic slicing on the program
with the validated trace will produce a valid program slice that will not
mislead the programmer. Extending our approach to include dynamic
slicing would help the programmer with step 4 of our debugging proce-
dure.
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As mentioned in the introduction, some verifiers such as Spec# ap-
ply heuristics to extract those parts of a counterexample that are likely
to be relevant for the verification error. However, it is difficult to tune
the heuristics such that they provide all necessary information without
swamping the programmer with irrelevant details. For instance, Spec#
filters too aggressively for the introductory method AddSorted and it
provides only the following excerpt from the counterexample: (initial
value of: value) == -3. It is unclear how useful this is to the pro-
grammer understanding the verification failure in our introductory ex-
ample.

Another approach is to construct a test case from a failed verifica-
tion attempt, using the initial state of the counterexample as test input
[16, 11, 63]. This approach is only helpful if the test leads to a runtime
error or if the violated specification can be found by a runtime asser-
tion checker. However, when static verification fails because of incom-
plete specifications, or when the violated specification is not checked at
runtime, for instance, when the specification contains unbounded quan-
tification over objects, or when the error is spurious, the test case will
succeed. A successful test for a verification failure will not help the pro-
grammer understand the cause of the verification error and might even
mislead the programmer into believing that the error does not exist [16].
Constructing a test case for our introductory program AddSorted with
the initial state from the counterexample will succeed as it is not the
implementation of list.Sort that causes the verification error, it is the
weak postcondition of list.Sort. Successful test cases are inconclusive
about the presence and cause of verification errors.

Verification techniques based on symbolic execution assist the pro-
grammer in understanding failed verification attempts by presenting the
programmer with the symbolic states used during the verification process
[33, 34]. Inspecting a symbolic state would be very helpful to a verification
expert who is familiar with the symbolic representation of the program,
however it is unclear how helpful it would be to a programmer as this
approach exposes the programmer to the particular encoding of the pro-
gram in the verifier. Our approach appears to be more appropriate for
programmer as we offer the programmer concrete states of the program
that they can inspect with the program debugger. Moreover, using the
symbolic states of the program will not help the programmer in detecting
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spurious errors as checking the validity of an assertion is ultimately left
up to the verifier.

Alternative techniques based on visualizing the counterexample, such
as those based on graph visualization [58, 71], are limited by the size
of the state presented and do not help the programmer to identify spu-
rious errors and invalid counterexamples, thus possibly misleading the
programmer.





Chapter 7

Conclusions

In this thesis we have presented our approaches to help the programmer
localize and understand the cause of verification failures. The first part of
the thesis presented our approach to helping the programmer localize the
cause of the error by removing those commands, partial or total, that do
not play a role in the behavior of the failing specification. By presenting
a smaller program to the programmer, it is generally understood that
the programmer will be able to locate and fix the cause of the error more
efficiently than with the larger, un-sliced program.

If the program slice is insufficient in helping the programmer under-
stand the cause of the verification failure, we take the counterexample
given by the program verifier and construct an executable program that
simulates the verification semantics of the program with the states given
by the counterexample. This constructed program attaches itself to a
program debugger and enables the programmer to control the execution
and observe the states of the counterexample. By extending the runtime
checker of the executable program, the programmer can validate failed
verification attempts by executing the failing specification. With the ex-
ecutable program, we have derived a debugging procedure we have found
to be useful in locating the cause of the failed verification attempt.

Program slicing in the presence of heap-like data structures suffers
greatly from the inability of analysis to determine if an assignment to an
aliased variable effects the value of any variables in the criterion. Using
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the counterexample given by the program verifier for a failed verification
attempt may produce a finer program slice, but may also remove the
command that is the cause of the verification failure as the error may
be spurious. Determining if the error is not spurious or not requires
us to construct a program that simulates the verification semantics and
reproduces the states of the counterexample and executing this program.
However, it is unclear how much of an issue this is in real practice. One
could envision setting up an experiment where we check various failing
programs, determine if the error is spurious or not, and compare the
dynamic program slices to determine how much of an issue this really is.

Another possibility to handle the overly large program slices would
be to investigate the interaction between a program slicer and the verifi-
cation methodology used to verify the program. For example, in Spec#
we have a ownership system that ensures a hierarchy of objects in the
system. If we know, for example, that the variables of the criterion are
not in the same ownership tree as the variable being assigned to by an
assignment, then we can safely remove this assignment as we know that
it will never share an alias with any of the variables in the criterion. It
would also be worth checking the interaction between an approach such
as dynamic frames [42] or separation logic [60] with program slicing. If
we know that the memory locations of the assignment are not in the same
frame or heaplet as the variables in the criterion, then we can remove the
assignment as we know it cannot have an effect on these variables.

In the second part of the thesis we have presented our approach to
understanding failed verification attempts. However, we have not made
any guarantees as to the correctness of the constructed program. That
is, we have not formalized that the constructed program correctly simu-
lates the verification semantics or that we have correctly constructed the
counterexample states, modulo the data abstractions, of the verification
semantics. Without such a formalization, we cannot ensure to the pro-
grammer that the resulting execution trace will validate the error or the
states of the counterexample. Such a formalization would be straightfor-
ward and should not require any deep insights to show the correctness of
the approach.

We have made the assumption that using the program debugger to un-
derstand the failed verification attempt is easier and more intuitive than
not using the program debugger for understanding verification failures.
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This assumption is based on the intuition we have about how program-
mers think. It would be very interesting to perform a study on actual
programmers to qualify this assumption. Such a study would have to
take two groups of programmers who know how to specify programs, not
necessarily verification experts, and have them perform a series of pro-
gramming and specification exercises. One group would use the Spec#
program verifier without any extra support while the other group would
have access to using our tool. The measurement we would be interested
in is the average time from the verification failure reported to the pro-
grammer to the time it takes for the programmer to locate and fix the
cause of the verification error.
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