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Abstract
Proving the correctness of programs by rigorously applying formal methods such as
deductive verification has attracted substantial interest in the last two decades, from
both the scientific community and industry. This has led to numerous important
theoretical results and successful practical applications, benefiting greatly from two
parallel developments: (1) the introduction and exploration of permission logics such
as separation logic, which are particularly suitable for modularly reasoning about
concurrent, heap-manipulating programs, and (2) the emergence of a de-facto standard
architecture for reusable verification infrastructures, which significantly reduces the ef-
fort involved with developing automated verification tools. The existence of automated
verification tools is a prerequisite for scaling verification to the size and complex-
ity of real-world software, but it also makes verification more easily accessible and
applicable in general: as a result, researchers are provided with valuable feedback,
enabling them to identify remaining challenges. Existing verification infrastructures,
however, are not well-suited for permission-based verification, which impedes the
further development of the field. In particular, central aspects such as program heaps
and permissions must be encoded, which substantially complicates the development
of efficient and precise verification tools.

This thesis aims to remedy the situation by developing a verification infrastructure
that facilitates the development of automated, permission-based verification tools for
race-free, concurrent and heap-manipulating programs. To achieve this goal, wemake
the following three contributions: first, we designViper, a novel intermediate verification
language, carefully balanced to be sufficiently expressive to enable the encoding of
different programming languages, program properties and specification languages,
while also facilitating the development of efficient and precise verification tools.
Second, we develop Silicon, an automated, symbolic-execution-based verifier for the
Viper language that exhibits stable and good performance, and is more complete
than comparable verifiers. Third, we extend Viper and Silicon with support for two
challenging features of permission logics — iterated separating conjunctions and
magic wands — that have shown to be useful in by-hand proofs of various properties,
but for which no existing verifier provides comparably direct and automated support.

The Viper verification infrastructure, which includes the Viper language and the auto-
mated verifier Silicon, already had an impact on the field of automated, permission-
based verification: it is actively being used at three different universities for building
several verification tools, it won an award at a verification competition and it was
used for teaching at a summer school.
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Zusammenfassung
In zahlreichen universitären und industriellen Forschungsprojektenwurde in den letz-
ten zwei Jahrzehnten die Möglichkeit untersucht, die Fehlerfreiheit von Programmen
mittels formaler Methoden mathematisch präzise zu beweisen. Diese Anstrengungen
führten zu einer Vielzahl bedeutsamer Ergebnisse, sowohl auf der theoretischen als
auch auf der praktischen Seite; Erfolge, die durch zwei parallel stattfindende Entwick-
lungen ermöglicht wurden: (1) die Einführung und intensive Weiterentwicklung von
Separation Logic und anderen Permission-Logiken, die sich als besonders hilfreiches
Instrument zur modularen Verifikation von nebenläufigen, heap-manipulierenden
Programmen erwiesen, sowie (2) das Herauskristallisieren einer De-facto-Standard-
architektur für wiederverwendbare bzw. vielseitig einsetzbare Verifikationsinfrastruk-
turen, welche den mit der Entwicklung von automatisierten Verifikationswerkzeugen
verbundenen Aufwand erheblich reduzieren. Erst solche automatisierten Verifier er-
möglichen die Verifikation von grossen, in der Praxis genutzten Softwaresystemen:
ohne Automatisierung liessen sich die zur Programmverifikation eingesetzten Tech-
niken nicht mit vertretbarem Aufwand auf die Komplexität dieser Systeme skalieren.
Die Anwendbarkeit ihrer Techniken auf zahlreiche unterschiedliche Systeme ermög-
licht es zudem Forschern, wertvolle Rückmeldungen von Anwendern zu erhalten, die
dabei helfen können, noch offene Probleme zu identifizieren. Existierende Verifikati-
onsinfrastrukturen sind jedoch nur unzureichend dazu geeignet als Grundlagen für
die Entwicklung von permission-basierten Verifiern verwendet zu werden: zentrale
Aspekte der Programmverifikation wie Heaps und Permissions können nicht direkt
repräsentiert werden und müssen daher kodiert werden, was die Entwicklung von
effizienten und präzisen Verifikationswerkzeugen substanziell erschwert.

Das Ziel dieser Arbeit ist es daher eine Infrastruktur bereitzustellen, die die Entwick-
lung von automatisierten und permission-basierten Werkzeugen für die Verifikati-
on von nebenläufigen, interferenzfreien und heap-manipulierenden Programmen
massgeblich vereinfacht. Den Kern dieser Arbeit bilden die folgenden drei Beiträge:
(1) der Entwurf von Viper, einer neuartigen Zwischensprache, die als Grundlage für
die Entwicklung von effizienten und präzisen Verifiern dient und die ausdrucks-
stark genug ist, um als Zwischensprache für unterschiedliche Programmiersprachen,
Spezifikationssprachen und Programmeigenschaften genutzt zu werden; (2) die Ent-
wicklung von Silicon, eines automatisierten, auf Symbolic Execution basierenden
Verifiers für Viper, der vollständiger als vergleichbare Verifier ist und trotzdem gute
und stabile Laufzeitleistung erbringt; (3) die Erweiterung von Viper und Silicon um
die Unterstützung für zwei anspruchsvolle, permission-logische Junktoren — die
iterierte trennende Konjunktion sowie die trennende Implikation — die sich in ma-
nuell geführten Beweisen als äusserst nützlich erwiesen haben, aber bisher nicht von
automatisierten Verifiern unterstützt wurden.

Die im Rahmen dieser Arbeit entwickelte Verifikationsinfrastruktur Viper, welche die
Viper-Zwischensprache sowie den automatisierten Verifier Silicon beinhaltet, wird
bereits an drei Universitäten zur Entwicklung von Verifikationswerkzeugen genutzt,
sie gewann einen Preis während eines Verifikationswettbewerbs und sie wurde in
der Lehre an einer Sommerakademie eingesetzt.
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Chapter 1

Introduction

Software is everywhere: on thumbnail-sized embedded devices and on phones, it
controls networks, household appliances, cars and planes, it transforms the way we
communicate and suggests what we should read, watch and buy. Unfortunately,
faulty software is ubiquitous as well, incurring financial losses but also causing loss
of life: in 1992, 28 soldiers died as a consequence of a software bug in the Patriot
missile system [131], and in 2002, the now-famous NIST report estimated that faulty
software may cost up to $59.5 billion per year [128]; more recent examples include
Nissan recalling over 900,000 cars due to a bug in the airbag control software [129], the
TimSort bug [51] which affected the standard libraries of Java, Python and Android,
and a spate of bugs such as Heartbleed, Shellshock and Stagefright that were widely
reported on by the media and even had their own logos. Lots of effort has been
invested into improving the quality of software, for example, by developing standard
models formanaging the software development process, by systematically integrating
automated testing into the development process, and by applying formal methods
that ensure the absence of certain errors through rigorous mathematical proofs.

Program verification, one such formal method with a research history of now over
50 years, is being increasingly applied in industry, for example, to prove the safety
of third-party device drivers [4, 77], to verify the security, safety and liveness of
apps in distributed systems [55, 56], and to detect bugs in Android and iOS apps
[34]. Different program verification techniques exist, with different strengths and
weaknesses, but of all these, deductive verification is arguably the most versatile (in
particular with respect to tool support): it enables rich specifications and modular
reasoning, it is suitable for automation, and it is applicable to sequential and concurrent,
heap-manipulating programs.

Deductive program verification can guarantee a large variety of safety properties:
the absence of common errors such as null-pointer dereferences and out-of-bounds
array accesses; the absence of concurrency errors such as memory race conditions
and synchronisation deadlocks; framing properties such as that a sorting algorithm
modifies the input array, but not the elements in the array; and functional properties
such as that the sorting algorithm actually sorts its input. Additionally, deductive
program verification can also prove certain liveness properties which can be reduced
to safety properties (through suitable annotations), such as termination and finite
blocking. We use the term full-functional verification, encompassing all previously
listed properties and potentially others, to emphasise the diversity of the properties
deductive program verification is suitable for.

In addition to enabling the verification of such a variety of properties, deductive
verification also enables modular reasoning, such that, for example, each method or
thread can be verified in isolation. Modularity is essential for scaling full-functional
verification to the size and complexity of real-world software, but also for verifying
properties of libraries, and in general of modules potentially used in arbitrary contexts.
Moreover, modularity can avoid the need for reverifying a module’s clients if the
implementation of the module changes, which is crucial for reducing the verification
effort as software evolves.
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Figure 1.1: The de-facto standard archi-
tecture for reusable verification infrastruc-
tures, as implemented by Boogie [6] and
Why3 [18]. The infrastructure comprises an
intermediate verification language, which
enables different front ends to encode their
verification problems, and back ends that
process the resulting programs, for example,
verifiers or static analysers. Back ends are
typically built on existing components such
as SMT solvers or abstract domain librar-
ies. Verification infrastructures significantly
reduce the complexity of developing new
front ends: a well-designed intermediate
verification language simplifies the encod-
ing task, and front ends benefit from im-

provements of the back ends.

For methods, modularity is typically achieved by providing specifications, such as
pre- and postconditions, that summarise the behaviour of a method in a way that
abstracts over the method’s implementation; for threads, modular reasoning is often
enabled by enforcing a protocol that restricts the concurrent behaviour.

In addition to modularity, applying full-functional verification to large, evolving
software systems also requires techniques for (partially) automating the proof steps in-
volved in verification. In the context of deductive verification, automation is commonly
understood as verifying a program, once it has been annotated with specifications
(such as pre-/postconditions), without any further manual intervention. Due to the
expressiveness of the supported specifications, such automated verifiers commonly
require additional assertions, which correspond to key steps in the (otherwise auto-
mated) proof, to guide the verification.

Reasoning modularly (and soundly) about sequential or concurrent programs with
shared mutable state, that is, a program heap, requires addressing the frame problem:
identifying the access set of an operation such as a method call, that is, the set of
memory locations that an operation potentially reads from or writes to. Solving the
frame problem is complicated by various challenges, including aliasing, concurrency,
and dynamic (de)allocation of memory and threads.

In the last two decades, the research community has proposed several solutions to
the frame problem: in ownership-based verification [93] and in dynamic frames [71],
framing is essentially realised by quantifying over access sets, whereas in separa-
tion logic [99, 108] and related permission logics, which are particularly suitable for
reasoning about concurrent programs, framing is realised by extending first-order
logic with specialised logical connectives (more details follow in Section 1.2). Sub-
sequent research and tooling efforts achieved significant progress towards scaling
full-functional verification to real-world programs. The availability of automated
verifiers has shown to be particularly important: not only, because it is essential for
verifying large programs, but also because it makes program verification more easily
accessible and applicable, which makes verification more appealing to practitioners
and students, and facilitates teaching. Increasing the user base of their work in turn
provides researchers with valuable feedback, which enables a better understanding
and comparison of the strengths and weaknesses of individual approaches, and of
the challenges that still need to be solved.

In parallel, a de-facto standard architecture for a reusable verification infrastructure
has emerged (Figure 1.1), which substantially simplifies the development of new
verifiers (and which has been influenced by analogous developments in the field of
programming language compilers): the three-tier infrastructure is centred around an
intermediate verification language into which (multiple) front ends can encode source
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programs along with their specifications, and for which (multiple) back ends exist,
for example, for verifying the resulting encoding by creating suitable verification
conditions, or for inferring missing specifications. Back ends are often themselves
built on existing components such as SMT solvers or abstract domain libraries.

Such a verification infrastructure reduces the effort involved with developing new
front ends because the abstraction gap between the source language and the language
used, for example, by an SMT solver is typically much larger than the gap between the
source language and the intermediate verification language, which enables front-end
developers to focus on the key ideas of the encoding. In addition, front-end developers
can benefit from improvements made to the lower levels of the infrastructure, such
as increased expressiveness of the intermediate verification language, improved
performance of the back ends, or newly added back ends.

Two widely used verification infrastructures are Boogie [6] and Why3 [18]; their
intermediate verification languages are a procedural, guarded-command-like lan-
guage, respectively, a dialect of ML, both with support for specifications expressed in
first-order logic. The intermediate verification languages do not have a built-in notion
of a program heap, and thus require front-end developers to choose (and implement)
a suitable encoding thereof; the loss of important structural information incurred by
a heap encoding typically complicates the implementation of efficient and precise
back ends such as verifiers and static analysers. Moreover, specifications that are not
expressed in first-order logic, such as permission-logic-based specifications, need to
be encoded as well, which aggravates the aforementioned problems. More details
are provided in Section 1.2.

1.1 Problem Statement

The field of automated program verification has benefited greatly from the existence
of verification infrastructures such as Boogie or Why3, but existing infrastructures are
not well-suited for permission-based verification, an approach to verification that has
shown to be particularly useful for reasoning about heap-manipulating concurrent
programs. Developing a new permission-based verifier thus remains unnecessarily
challenging and resource-consuming, which impedes experimenting with newly
developed permission-based program logics beyond the size of programs for which
by-hand proofs are tractable.

To overcome this situation, the goal of this thesis therefore is to develop a Boogie-
like verification infrastructure for automating the permission-based verification of race-free
concurrent programs that manipulate shared data. This goal can be divided down into two
sub-goals: designing a suitable intermediate verification language, and developing
an automated verifier for this language.

Language: A suitable intermediate verification language enables the development of
different front ends that encode different procedural and object-oriented languages
annotated with different (permission-based) specification styles, and of different,
efficient and precise back ends. Several requirements can be derived from this char-
acterisation:

• The level of abstraction provided by the intermediate verification language
should be carefully chosen: the language should be expressive enough to sup-
port the encoding of different programming languages, control-flow statements
and concurrency features, but it should preserve sufficient structural inform-
ation to facilitate the implementation of efficient automated verifiers, and to
make the encoding amenable to precise static analyses.

• The intermediate verification language should be expressive enough to support
different specification styles: it should support idioms commonly used in sep-
aration logic, such as abstract predicates [101] and fractional permissions [25],
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but also facilitate the combination of these idioms with idioms more commonly
used by other verification approaches, for example, quantifiers and abstraction
functions [60]; this will enable similar combinations in front ends. At the same
time, the supported specification features should not prevent the development
of efficient and precise back ends.

• The language should not restrict the kinds of (heap-implemented) data struc-
tures and (pure) mathematical structures that can be specified: it allows spe-
cifying arbitrary data structures, including recursively-defined data structures
such as lists and trees, but also less directed data structures such as graphs,
and random-access data structures such as arrays. Since properties of data
structures and operations thereon are commonly specified using mathematical
structures such as tuples, sets, sequences or maps, the intermediate verification
language should support the definition of such structures as well.

• Extending the set of heap-implemented and purely mathematical structures
that can be reasoned about should be directly possible on the level of the
intermediate verification language. That is, it should suffice to add appropriate
definitions (expressed in the intermediate verification language) to the input
program, without having to make additional changes on other levels of the
verification infrastructure, for example, to the back ends.

• In order to facilitate experimenting with potential encodings (rapid prototyp-
ing), but also for educational purposes and for participating in verification
competitions, the intermediate verification language should make it convenient
to manually encode examples. The language should therefore be designed with
the aim of keeping the annotation overhead (comparably) low.

Verifier: A suitable automated verifier requires only few guiding assertions, and offers
a predictable and good performance.

• The verifier should allow users to understand automation limitations on the
level of the intermediate verification language, and not require detailed know-
ledge about the verifier’s implementation. This is particularly important for
user-provided annotations (other than specifications), which are commonly
required to instruct the verifier to perform a step that has not been automated,
such as unrolling a recursive definition or attempting an inductive proof. The
need for such annotations should be explainable on the level of the interme-
diate verification language and motivated by a conceptual problem; it should
not be the consequence of a particular detail of the verifier’s implementation.
This requirement is crucial for enabling the development of diverse front ends,
since it can otherwise be difficult to anticipate when additional annotations are
required.

• The verifier should enable an IDE-like experience: it should be sufficiently fast
such that users can continuously work on verifying programs (of reasonable
size), in particular since the verification is modular; and it should report verific-
ation failures (and related feedback) in a way that facilitates locating the source
of the failure.

• The performance should be predictable, regardless of whether the verification
succeeds or fails. Small modifications to the program under verification, in
particular modifications that do not semantically change the program, should
not significantly influence the performance. The performance should also not
significantly vary across different possible encodings.

• Analogous to the case of automation limitations, the verifier should allow
users to understand performance limitations on the level of the intermediate
verification language, and not require detailed knowledge about the verifier’s
implementation.
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Since verification infrastructures such as Boogie and Why3 are not well-suited for
permission-based verification, existing verifiers for permission logics have typically
been developed from the ground up, with reuse, if any, only at the lowest level (SMT
solvers). Such verifiers are not well-suited as the core of a verification infrastructure
for permission-based reasoning either: some are too limited in their expressiveness
to enable full-functional verification, but highly automated, whereas others are very
expressive, but limited in their degree of automation, which complicates the encoding
of verification approaches that aim at a higher degree of automation (in their front
ends). In addition, the specification languages supported by existing verifiers have
usually been developed for a specific programming language and with a certain style
of specifications in mind, which complicates their reuse in different contexts. More
details are provided in the next section.

1.2 State of the Art

This section gives an overview of the state of the art of modular, automated, full-
functional verification of heap-manipulating concurrent programs. The overview is
structured as follows: the existing verification infrastructures Boogie and Why3 are
described first, followed by an overview of individual verifiers that do not form such
an infrastructure. The latter overview is subdivided into framing approaches.

1.2.1 Infrastructures

The Boogie verification infrastructure [6] consists of the Boogie intermediate veri-
fication language and the Boogie verifier, which encodes a Boogie program as a
verification condition that is passed on to an SMT solver. The language is imperative,
and offers conditional and goto statements, local and global variables, loops and
procedures. In addition to specifications such as pre-/postconditions and loop in-
variants, the language provides assume and assert statements, which can be used
to encode the semantics and specifications of sequential and concurrent source pro-
grams. Termination checks (for loops and recursions) are not enforced, but can be
encoded. Assertions are expressed in a first-order logic, and mathematical structures
can be defined via uninterpreted functions and appropriate (quantified) axioms. Poly-
morphic maps are built into the language, and frequently used in encodings. Boogie
does not have a built-in notion of a program heap (and thus of permissions), and its
first-order-logic-based assertion language does not directly support specifications
based on permission logics. Encoding program heaps and permissions is possible
(as demonstrated by Chalice [84]), for example, via polymorphic maps, but tedious
and error-prone; the loss of structural information also hampers precise static ana-
lyses, such as abstract interpretation. We interpret the fact that only one (namely
Chalice) of the many tools encoding to Boogie is permission-logic-based as a direct
consequence of the challenges arising from having to encode such logics into an
intermediate verification language that does not have a built-in notation of a heap
and of permissions.

The Why3 verification infrastructure [18] consists of the WhyML intermediate verific-
ation language, from which verification conditions, expressed in the Why3 language,
are generated, which are then encoded to an SMT solver. The Why3 language is
essentially a first-order logic enriched with algebraic data types and pattern match-
ing. Why3’s standard library includes numerous theories (expressed in the Why3
language), including mathematical structures such as sequences, and concepts such
as orders; custom theories can be added as needed. The intermediate verification
languageWhyML is a sequential, first-order dialect of MLwith records and functions,
which also offers loops and exceptions. Similar to Boogie, Why3 supports assert and
assume statements that can be used to encode a range of source program semantics
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and specifications. Mutable references are possible, but a static alias control is im-
posed; in particular, recursive data types with mutable components are disallowed.
Encoding programs with unrestricted aliasing requires, as in the case of Boogie, an
encoding of the program heap, which entails aforementioned problems (and ana-
logous for permissions). To our knowledge, no permission-logic-based front end for
Why3 exists.

1.2.2 Individual Verifiers

Separation Logic

The key feature of specification languages based on separation logic [99] is the possibil-
ity of decomposing the (verification) heap into disjoint sub-heaps, which enables local
reasoning about heap-manipulating programs and yields an immediate solution to
the frame problem: if two operations work on disjoint sub-heaps, then the operations’
executions cannot interfere. In specifications, a points-to predicate o. f 7→ V expresses
that the specified operation may access location o. f (whose value is V), and combin-
ing points-to predicates with separating conjunctions, as in o1. f 7→ V1 ∗ o2. f 7→ V2,
expresses that a heap can be partitioned into two disjoint sub-heaps, and thus, that
o1 and o2 are not aliased. It is therefore save to assume that an operation that (only)
works on o1. f cannot affect o2. f .

A points-to predicate can intuitively be understood as denoting the exclusive access
permission to a heap location, and the separating conjunction can be understood as
adding up permissions. In this interpretation, the assertion o1. f 7→ V1 ∗ o2. f 7→ V2
intuitively implies non-aliasing of o1 and o2 because the assertion would otherwise
denote the exclusive access permission twice.

Various verifiers for specification languages based on separation logic exist. The
first verifier that was developed for separation logic is Smallfoot [11], a verifier for
programs written in a C-like imperative language. Smallfoot is based on a custom
entailment prover for separation logic, which is limited to reasoning about properties
of programs that manipulate linked lists and trees, whereas we aim at verifying
arbitrary data structures.

jStar [42], a verifier for Java programs, is also based on a custom entailment prover
for separation logic, which was subsequently released as coreStar [23]. coreStar can
be extended by custom proof rules — and in practice must be since hardly any proof
rules are predefined — which makes coreStar, and thus also jStar, very flexible. This
flexibility comes at a cost, however: users have to leave the level of the specification
language in order to provide additional proof rules, for example, in order to reason
about custom data structures, whereas we strive to develop an infrastructure that
is extensible on the level of the intermediate verification language. According to
the authors, “. . . at the moment, jStar might be too complex to use by programmers”
[42]. Moreover, the degree of flexibility that coreStar provides makes it unclear to
which extent the implementation can be optimised for performance. Later work by
Botinčan et al. [22] improved jStar by integrating an SMT solver into coreStar, but this
did not in general address the need for extending the underlying entailment prover.

VeriFast [67], a verifier for C and Java programs, achieves remarkable and predict-
able performance, but at the cost of automation: VeriFast commonly requires non-
negligible amounts of additional assertions to direct the verifier, which potentially
complicates the encoding of approaches that aim to increase the level of automation
—which is one of our goals — since it is in general difficult for front ends to anticipate
when additional assertions are required. VeriFast’s specification language offers
several advanced features such as higher-order predicates and functions, but it only
offers limited flexibility regarding specification styles, whereas we seek to enable
combinations of different such styles.
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The HIP/SLEEK system, based on work by Chin et al. [35], is a verifier (HIP) for
a C-like imperative language which uses a custom entailment prover (SLEEK) to
discharge proof obligations. The system supports custom predicates, provided that
exactly one reference parameter is traversed in the predicate’s definition; this conflicts
with our goal of supporting arbitrary data structures. Values can be specified via
(dis)equalities, Presburger arithmetic and bag constraints. The latter are handled by
an interactive theorem prover, whereas we aim at automated verification.

GRASShopper [103], a verifier for a C-like imperative language, supports a subset of
separation logic that ensures proof obligationswhich can be translated into a decidable
fragment of first-order logic, and can then be discharged by an SMT solver. This
approach allows highly-automated reasoning, but is currently limited to reasoning
about programs that manipulate list- and tree-like structures and does not support
arbitrary data structures, as is our goal.

Chu et al. [36] report on a specification languagewith explicit heaps: in every assertion,
the global program heap has to be explicitly decomposed into named sub-heaps that
can, but do not have to be, disjoint. Predicate definitions can be parameterised by
sub-heaps, which enables structure sharing across predicate instances. The report
mentions an (unreleased) implementation prototype for a sequential C-like language
without loops, but with recursive functions. However, the report does not give many
details; in particular, the expressiveness of the supported specification language is not
described and does not become apparent from the few given examples. An evaluation
of the prototype is also not available.

Implicit Dynamic Frames

Implicit dynamic frames [121] is a program logic closely related to separation logic
[102]: the logic provides accessibility predicates acc(x. f) to denote access permissions
to location x. f , and heap-dependent expressions such as x. f > 0 are used to con-
strain heap values; the corresponding separation logic assertion is x. f 7→ V ∧V >
0. Implicit dynamic frames also provides a separating conjunction: the assertion
acc(x. f) ∗ acc(y. f) requires x. f and y. f to denote two disjoint heap locations,
and thus forbids aliasing between x and y.

The first verifier that was developed for implicit dynamic frames is VeriCool [121], a
verifier for a Java-like language. The specification language supported by VeriCool
permits, among other things, arbitrary recursive predicates and heap-dependent
abstraction functions. In their presence, the verifier generates verification condi-
tions that are likely to cause unstable SMT solver performance (small changes to the
program or the specifications can significantly affect the performance), including
non-termination. In contrast, we strive for predictable and good performance. As
a consequence of the unstable behaviour of the verifier [118], an alternative back
end, based on symbolic execution instead of verification condition generation, was
developed, which was originally released under the name SpecCheck [119], but later
on integrated into VeriCool. The symbolic execution back end supports only a subset
of VeriCool’s specification language, however, which excludes specification features
such as fractional permissions and quantifiers, which are important for full-functional
verification and which we aim to support in order to allow a wide range of front ends.

Chalice [84], a verifier for a simple object-based language (without inheritance) with
fork-join concurrency and message-passing channels, encodes a given program and
its specifications into Boogie. The VerCors project [16] used Chalice as an intermediate
verification language in the context of their work on magic wands [17], but the result-
ing encoding, complicated by the fact that Chalice was not designed as an expressive
and flexible intermediate verification language, did not perform well. VerCors sub-
sequently migrated from Chalice to Viper [96], the intermediate verification language
presented in Chapter 2 of this thesis, which resulted in a significant performance
gain of up to 10x (according to personal communication with the authors); more



8 Chapter 1. Introduction

details are provided in Section 2.8. In recent work [2], VerCors was extended with
support for the specification and verification of GPGPU programs, which commonly
manipulate multi-dimensional arrays. It is unlikely that an encoding of their work
into Chalice would have been possible because Chalice — similar to most existing
verifiers for permission logics, but unlike Viper (see Section 4) — lacks adequate
support for specifying programs that manipulate random-access data structures;
support that we seek to provide.

Dynamic Frames

In dynamic frames [71], each operation specifies the set of heap locations it reads and
writes by means of a read, respectively, a write frame (or region), often represented (in
tools) as a set-typed specification variable. The variable’s value can change dynamic-
ally, which accounts for dynamic changes of data structures, for example, by adding
or removing objects, including the potential (de)allocation of the involved objects.

In contrast to separation logic, dynamic frames does not enforce separation; instead,
specifications need to explicitly constrain frames to be (and to remain) disjoint. This
approach makes dynamic frames well-suited for specifying examples which require
structure sharing, for example, lists with shared tails, and iterators. It is unclear,
however, how to extend the theory of dynamic frames to reasoning about concurrent
programs — which we aim to verify — exactly because frames are not necessarily
disjoint. Consequently, verifiers based on dynamic frames such as Dafny [82] and
KeY [1] support reasoning only about sequential programs. Another potential dis-
advantage of automated verifiers for dynamic frames is their strong dependency on
solvers for set constraints.

Region logic [5] is a variant of dynamic frames, and as such also limited to sequential
programs. In an experiment, several examples of programs with region-logic-based
specifications have been verified via a manual encoding into Boogie. In other work,
(semi)-decision procedures for fragments of region logic have been devised and
implemented as an extension of an SMT solver [110]. To the best of our knowledge,
however, no automated verifier based on region logic exists.

Jahob [137] is a verification system for sequential Java programs (whereas we aim
at verifying concurrent programs) annotated with specifications in higher-order
logic. As in dynamic frames, operations need to specify frames of locations they
read and write via specification variables. Jahob achieves integrated reasoning in
the spirit of Nelson-Oppen [97] by splitting the resulting verification conditions into
simpler sub-formulas that fall into specific logical fragments. Jahob then attempts to
prove each sub-formula by applying a number of specialised reasoning engines such
as individual decision procedures, SMT solvers, automated theorem provers, and
ultimately interactive theorem provers. The need for manual interaction constitutes
an automation limitation that we essay to overcome.

Ownership

In ownership-based verification [93], each object in the heap is notionally owned
by at most one other object, its owner; this restricts the object graph to a forest of
ownership trees. Each owner indirectly represents the set of objects it transitively
owns, and two such sets are guaranteed to be disjoint if their respective owners are
different, and if neither (transitively) owns the other. To enable reasoning about the
effects of operations (on the heap), each operation lists the objects it potentially reads,
respectively, writes; and to support information hiding (and to specify operations
that potentially affect a statically unbounded number of objects), each listed object
abstracts over all objects it transitively owns. Framing can now be achieved by proving
that operations affect disjoint sets of objects. Ownership can also be used to address
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other common verification tasks, for example, proving termination; a good overview
of the field of ownership-based verification is given in [40].

The main disadvantage of ownership-based verification is its restriction to hierarch-
ical data structures, which significantly complicates reasoning about non-hierarchical
structures such as doubly-linked or cyclic lists, arrays and graphs. Due to the lack of
a strict ownership hierarchy, such structures can only be represented as a “flat” set
of peers having the same owner, in which case ownership no longer provides (note-
worthy) support for framing. Another challenge for ownership-based verification is
ownership transfer, which arises, for example, when two linked lists are concaten-
ated, or when a list is split into sub-lists. Ownership transfer can be supported [85],
but imposes visibility restrictions on objects for which ownership transfer should
be allowed, which can, for example, complicate the verification of library code and
thus impedes modular verification. A third challenge for ownership systems are the
specification of partial data structures: for example, a tree that has a “hole” because
the corresponding sub-tree is currently owned by another object, but whose original
shape can be restored by “plugging” the missing part back in. To avoid the need
for expressing reachability, ownership systems typically do not provide a way of
denoting the set of all objects transitively owned by a given object, which complicates
the specification of aforementioned partial structures, where it would be necessary
to state that the node pointing into the “hole” is transitively owned by the root.

Existing ownership-based verification systems usually implement an object invariant
methodology that builds on top of ownership, and that uses the enforced hierarchical
object structure to determine the objects whose invariant is potentially broken by an
operation, respectively, when it is sound to assume an object’s invariant. A potential
advantage of using invariant methodologies for front-end specifications is that the
invariant protocols can be tailored towards specific classes of problems, which can
reduce the necessary specification overhead. A conceptual disadvantage of invariant
methodologies, however, is the strict enforcement of the respective invariant protocol,
which complicates the specification of programs that do not (always) adhere to the
protocol.

The first verifier that implemented ownership-based verification is Spec# [7, 85], which
was designed for reasoning about sequential C# programs that modify hierarchical
data structures; in follow-up work, SpecLeuven [66] extended Spec# to support
synchronised concurrency. VCC [38] and AutoProof [104] subsequently improved
over Spec# in terms of expressiveness, but specialised in orthogonal directions: VCC
was designed for reasoning about low-level C code with fine-grained concurrency
such as lock-free data structures built on top of primitive atomic operations, whereas
AutoProof focuses on considerate inter-object collaboration [127], for example, as
used in the composite design pattern, where other objects’ invariants can be broken
temporarily if the objects are notified appropriately.

Other Approaches

Matching logic [111, 113] is a logic for reasoning about program configurations by
specifying structural patterns that are matched against configurations. The logic is
parametric with respect to a programming language and its operational semantics,
in particular, with a model for program configurations. By choosing an appropriate
configurationmodel, one can, for example, obtain an instance of matching logic which
corresponds to separation logic. Pairs of patterns express reachability rules, which are
used to specify reachability between configurations matching the involved patterns,
which in turn allows the encoding of Hoare-style pre-/postconditions and invariants.

MatchC [125], a verifier for a subset of C, is based onmatching logic and implemented
on top of a rewrite system for the operational semantics and their symbolic execution,
and another rewrite system for entailment checking that can also query an SMT solver.
MatchC can reason about sequential programs that manipulate linked lists, trees and
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graphs, but support for these data structures, as well as for mathematical structures
such as sequences, is built into the underlying rewriting systems, and reasoning about
additional structures requires adding rules to the rewriting systems. In contrast, we
aim to develop a verification infrastructure that is extensible on the level of the
intermediate verification language. To the best of our knowledge, MatchC does
not support concurrent programs, and it is unclear if a verification approach based
on operational semantics can be extended to reason about important properties of
concurrent programs such as deadlock freedom, which is one of our goals. Fractional
permissions, an important feature of permission logics which enables shared read
access, are also not supported by MatchC.

Numerous automated tools for reasoning about heap-manipulating programs are
based on static analyses [124, 115, 46, 13, 32, 34, 69]: the degree of automation that
such tools achieve is in general very high, but none can modularly reason about
the kind of complex properties that are necessary for full-functional verification of
heap-manipulating concurrent programs.

Finally, various automated verifiers for reasoning about functional programs exist
[73, 135, 123, 15], but they deliberately exclude heap-manipulating programs.

1.3 Contributions

The main contribution of this thesis to the field of modular, automated and full-
functional verification of heap manipulating concurrent programs is the introduction
of Viper [96], the first verification infrastructure tailored to permission-based reas-
oning. The thesis spans the core of the infrastructure: an expressive intermediate
verification language that facilitates the encoding of different programming languages
and specification styles, and a verifier for the intermediate verification language that
exhibits predictable and good performance. Specifically, the thesis makes the follow-
ing four contributions:

1. Viper: An intermediate verification language for permission-based reasoning

The Viper language, described in Chapter 2, is an expressive intermediate verification
language in the spirit of the Boogie language [6], specifically designed with the
goal of facilitating the development of new front ends that use permission-based
specifications to reason about race-free concurrent programs. To achieve this goal,
Viper offers (1) a unique combination of features that have been proven useful in
existing verification approaches and tools, (2) support for advanced permission-logic-
features that have been successfully used in by-hand proofs, but that so far were not
supported by automated verifiers; and (3) several novel verification constructs that
further increase the expressiveness of the language.

The language offers a level of abstraction that is expressive enough to encode and
specify a wide range of programming language features, in particular, concurrency
synchronisation features, but that preserves sufficient structural and control flow
information to permit efficient and precise back ends, and to be well-suited for manu-
ally encoding examples. The language is based on implicit dynamic frames [121] and
integrates typical permission logic features, such as arbitrary recursive predicates,
with specification features more commonly used in other verification approaches,
for example, quantifiers and heap-dependent abstraction functions. Mathematical
structures that are often used in specifications (sets, sequences and multisets) are
natively supported, additional structures can be defined via uninterpreted functions
and appropriate axioms. Viper’s permission model is rich enough to express clas-
sical fractional permissions [25], but also approaches that are based on constraining
symbolic read permissions [58, 28].
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In addition to features of permission logics commonly supported in automated verific-
ation (such as predicates and fractional permissions), theViper language also provides
direct support for general iterated separating conjunctions and magic wands (described
below), which enables the encoding of different (permission-based) specification
styles.

Viper also offers several novel language features that facilitate the development of
front ends: aforementioned rich permission model; permission-aware analogues of
assume/assert statements, which enable the encoding of various sequential and con-
current programming features, and a generalisation of old expressions for encoding
two-state invariants (particularly useful for specifying concurrency synchronisation);
and a generalisation of asymmetric specifications such as free pre- or postconditions,
which facilitates the integration of properties obtained by additional meta-reasoning,
for example, soundness proofs, into the encoding.

2. Silicon: Symbolic execution for Viper

The Silicon verifier, described in Chapter 3, is a symbolic execution engine for Viper
programs. Symbolic execution is the predominant implementation technique for
permission logic verifiers, and Silicon extends work by Berdine et al. [11] (Smallfoot),
respectively, Smans et al. [119] (VeriCool) on symbolically executing programs with
permission-based specifications.

Silicon includes contributions that arise from the need of having to support Viper’s
rich set of features, which includes, for the first time (in a symbolic execution engine),
the handling of quantifiers over heap-dependent expressions, sound support for per-
mission introspection features, and a novel technique for handling heap-dependent
abstraction functions that enables important completeness improvements (with re-
spect to VeriCool).

Another contribution of the work on Silicon is a novel classification of aliasing-related
incompletenesses commonly exhibited by automated verifiers based on Smallfoot-
style symbolic execution, and a technique for systematically reducing the number of
situations in which such incompletenesses can arise, without noticeably degrading
performance.

Silicon generally exhibits good performance, which is stable across (small) modifica-
tions of the input, and independent of the verification result (success or failure).

3. The first symbolic execution technique for iterated separating conjunctions

Recursive predicates are an adequate means of specifying statically-unbounded data
structures that can be traversed in only one direction, such as singly-linked lists
and trees, but they substantially complicate the specification of data structures that
admit different access patterns, for example, doubly-linked lists, graphs and arrays.
Various by-hand proofs involving such structures therefore used iterated separating
conjunctions [108] instead of recursive predicates to specify the properties of interest.

This thesis presents (in Chapter 4) the first symbolic execution technique for general
iterated separating conjunctions, which includes: an innovative representation of
iterated separating conjunctions during the symbolic execution, an approach to
framing expressions that depend on unbounded sets of heap locations as denoted by
iterated separating conjunctions, and an implementation of the technique in Silicon
that achieves good performance.

Iterated separating conjunctions are integrated with other important features of the
Viper language, such as abstraction functions, predicates and permission introspec-
tion. This integration, and in general, support for iterated separating conjunctions
in an intermediate verification infrastructure, enables new front ends that combine
specification features in ways beyond the current state of the art.
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4. The first automated support for magic wands

The fourth contribution of this thesis, described in Chapter 5, is the first automated
support for magic wands [64], a feature of permission logics that expresses properties
about hypothetical (future) developments of the program state. Magic wands have
been used in various by-hand proofs, for example, to specify partial versions of data
structures during ongoing traversals, to enforce their orderly modification, and to
reason about synchronisation barriers.

The technical contributions that enable the first automated support for magic wands
include: a novel representation of magic wands during the symbolic execution;
algorithms that automate the tedious choice of a wand’s footprint, which significantly
reduces the user’s annotation overhead; a language design that provides concise user
annotations suitable for using magic wands (reasoning about which is undecidable
without user guidance), and a set of heuristics that aim to infer these annotations;
and an implementation of the technique in Silicon that achieves good performance.

Magic wands are integrated with all other important features of the Viper language,
including iterated separating conjunctions. The possibility of practical tool support,
enabled by this thesis, facilitates the development of new front ends, and enables the
exploration of further applications of magic wands.
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Chapter 2

The Viper Language

The vision behind the Viper verification infrastructure [96] is to establish a verifica-
tion infrastructure similar to the successful Boogie infrastructure [6], but tailored to
permission-based reasoning about race-free concurrent programs. Achieving this
goal requires an intermediate verification language that, as discussed in Section 1.1, is
flexible and expressive enough such that different programming languages and their
features, as well as different (permission-based) specification styles, can be automat-
ically encoded. In addition, the intermediate verification language should make it
convenient to manually encode examples, which is useful for experimenting with
potential encodings (rapid-prototyping), for educational purposes and for participat-
ing in verification competitions. In order to facilitate the integration of verification
and static analyses, the intermediate verification language should also be suitable for
common static analysis techniques such as abstract interpretation.

Figure 2.1 gives an overview of the Viper verification infrastructure. The top layer
shows front ends that encode different programming and specification languages
into the Viper intermediate verification language: a Chalice front end that encodes a
substantial subset of the Chalice language [75]; a Python front end that is part of the
SCION project [8] for developing a secure, next-generation internet architecture; and
a Java and an OpenCL front end that are part of the VerCors project [16], developed at
the University of Twente. Viper includes two automated verifiers (middle layer), one
is implemented as a symbolic execution engine, the other one generates verification
conditions via Boogie. Both verifiers ultimately use the Z3 SMT solver [92] to discharge
proof obligations. The verifiers expect fully-specified programs annotated with, for
example, pre- and postconditions, and loop invariants. While we expect that the
majority of these specifications are generated by front ends, we also believe that it
is possible to infer certain specifications, in particular permission-related ones. To
this end, Viper includes an inference engine that can already infer basic, permission-
related specifications. Inferring stronger properties is work in progress, with the
ultimate goal ofmutually integrating verification and inference, for example, to enable
the inference to learn from a failed verification attempt.

Chapter Overview

The work described in this chapter has in parts been published at VMCAI 2016, in
the paper Viper: A Verification Infrastructure for Permission-Based Reasoning by Müller,
Schwerhoff and Summers [96].

The chapter is structured as follows: Section 2.1 provides an overview of the Viper
language and briefly introduces its language features. Afterwards, Section 2.2 mo-
tivates and illustrates permission-based reasoning, introduces a running example
that is further developed in subsequent chapters, and demonstrates how a potential
front end could encode high-level verification problems into Viper. Section 2.3 then
demonstrates Viper features that enable reasoning about unbounded heap structures:
recursive predicates, magic wands and quantified permissions (iterated separating
conjunctions). The section focuses on the permission-related specifications, whereas
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Figure 2.1: The Viper verification infrastructure: front ends (top layer) encode verifica-
tion problems into the Viper intermediate verification language, the result of which can
be verified using each of the two available automated verifiers (one based on symbolic
execution, one on verification condition generation); both verifiers build upon existing
reasoning engines (bottom layer). The infrastructure includes a basic specification infer-
rence, based on the abstract interpretation of Viper programs. The Viper intermediate
verification language and the symbolic-execution-based verifier (Silicon, introduced in

Chapter 3) constitute the applied results of this thesis.

Section 2.4 focuses on functional properties. Section 2.5 demonstrates Viper’s support
for axiomatising custom first-order theories, and Section 2.6 subsequently discusses
intricacies of automatically reasoning about theories with quantifiers. Section 2.7
presents further details on Viper’s permission model, before the chapter concludes
with an empirical evaluation of Viper as an intermediate verification language and
with a discussion of related work in Section 2.8, respectively, Section 2.9.

This chapter introduces the Viper language and demonstrates its suitability as an
intermediate verification language. The formal treatment of Viper is postponed until
Chapter 3, which presents symbolic execution rules for Viper (that can be under-
stood as an implementation of a strongest postcondition calculus) and discusses
well-formedness conditions (with the exception of self-framingness, discussed in Sec-
tion 2.2.1, an important property of specifications based on implicit dynamic frames
[121]).

2.1 An Overview of the Viper Language

The Viper language, whose grammar is shown in Figure 2.2, is an expressive interme-
diate verification language whose design has been influenced by a variety of existing
languages, most notably, by Boogie [6], Chalice [84] and Dafny [82]. The language is
imperative and has a built-in notion of a program heap and of permissions to memory
locations, and front ends therefore do not need to encode these key concepts. This
substantially simplifies the development of front ends that use permission-based spe-
cifications, and facilitates the development of efficient and precise back ends. Viper’s
assertion language is based on implicit dynamic frames [121], and thus provides
accessibility predicates of the shape acc(e1. f, e2), denoting e2 (fractional) permis-
sions to the memory location identified by e1. f ; more details about Viper’s heap and
permission model follow.
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program ::= decl
decl ::= fielddecl | preddecl | funcdecl | methdecl | domdecl
fielddecl ::= field f: T
preddecl ::= predicate pred(x: T) {a}
funcdecl ::= function func(x: T): T

requires a
ensures e

{e}
methdecl ::= method meth(x: T) returns (y: T)

requires a
ensures a

{stmt}
stmt ::= var x: T | x := e | x := new( f) | x := meth(e) |

x. f := e | stmt; stmt | label lb | goto lb |
inhale a | exhale a | assert a |
fold acc(pred(e), e) | unfold acc(pred(e), e) |
if (e) {stmt} else {stmt} |
while (e) invariant a {stmt} |
constraining (x) {stmt} |
package a --* g | apply a --* a

a ::= e | acc(e. f, e) | acc(pred(e), e) | a && a |
e ? a : a | [a, a] | a --* a |
forall x: T :: e ==> acc(e. f, e) |
forall x: T :: e ==> acc(pred(e), e)

e ::= op(e) | e. f | func(e) | e ? e : e | old[lb](e) |
unfolding acc(pred(e), e) in e |
perm(e. f) | perm(pred(e)) |
forall x: T :: {e} e |
exists x: T :: {e} e |
forperm[ f] x: T :: e

g ::= a | folding acc(pred(e), e) in g |
unfolding acc(pred(e), e) in g |
packaging a --* g in g | applying a --* a in g

domdecl ::= domain dom[T] {
dfndecl
daxdecl

}
dfndecl ::= function func(x: T): T
daxdecl ::= axiom ax {e}

Figure 2.2: The Viper intermediate verification language. Overlining denotes repetition.
Metavariable f ranges over fields, T over types, x, y over variables, pred over predicates,
func over functions, meth over methods, lb over labels, dom over domains, and ax over
axiom names. Types T are either the built-in types Int, Bool, Ref, Perm, Set[T′],
Seq[T′] and Multiset[T′], or dom[T′], the type induced by the corresponding do-
main declaration. All top-level declarations (fields, predicates, abstraction functions,
methods and domains) are global, as are domain functions and axioms (albeit nes-
ted inside domain definitions). The bodies of predicates, functions and methods are
optional. op(e) denotes any heap-independent function of arbitrary arity, including
literals: (dis)equality; arithmetic, relational and boolean functions; set, sequence and

multiset functions; and domain functions.

Assertions in Viper are either spatial or pure: a spatial assertion [99, 108] describes
the shape of the heap, whereas a pure assertion constrains values. Note that pure
assertions may be heap-dependent; this distinguishes implicit dynamic frames from
separation logic [99, 108]. In Viper, accessibility predicates (to locations e. f or predic-
ate instances pred(e)), magic wands (a --* a) and quantified permission assertions
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(forall x : T :: e ==> acc(. . .)) are spatial assertions, and compound assertions
(for example, conjunctions or conditionals) that nest a spatial assertion are themselves
spatial. All other assertions are pure, and Viper does not differentiate between pure
assertions and expressions (shortly discussed in more detail): all expressions (syn-
tactic category e in Figure 2.2) can be used in assertions and in code (for example, on
the right of an assignment or as the condition of an if statement).

To achieve modular verification, Viper provides the declaration of methods and (heap-
dependent) functions with pre- and postconditions; each method and function is
verified in isolation (with respect to its specification). In addition tomethods and func-
tions, the language supports the unrestricted declaration of (recursive) predicates for
specifying heap-implemented data structures, and of custom first-order theories via
domains. The latter enable front ends to provide their own mathematical vocabulary,
for example, to encode algebraic data types, or to preserve type system information.
Viper does not have a notion of classes: methods, functions and predicates do not
take implicit receiver arguments — these have to be declared explicitly (as in for
example, Python) —which makes the language suitable for encoding procedural and
object-oriented languages.

Viper differentiates between an instance, respectively, application of a (recursive)
predicate, respectively, function, and the corresponding body: that is, it implements
an iso-recursive semantics [126]. This avoids non-terminating SMT solver queries
(unlike VeriCool [121]), but requires additional annotations that direct the verifier
accordingly: unfold and fold statements exchange a predicate instance for its body,
and vice versa; unfolding expressions perform a temporary unfold within in the
scope of the nested expression. Other verifiers, for example, VeriFast [67], require
similar annotations. To avoid the need for similar annotations for (un)rolling function
definitions, Viper’s verifiers implement a technique by Heule et al. [59] that links the
(un)rolling of functions to the (un)folding of predicates.

A similar problem arises in the context of universal quantifiers (which Viper supports),
an important and concise means of expressing an unbounded number of constraints,
which is often necessary for achieving full-functional verification. To prevent infinite
instantiation chains (known asmatching loops), SMT solvers typically support syntactic
matching triggers [39] to control possible instantiations. Viper therefore provides
syntax that allows users to specify such triggers (as does, for example, Boogie), but it
also attempts to infer suitable triggers (more details about triggers are provided in
Section 2.6; a comparison with VeriFast, which takes a different approach, is provided
in Section 3.7.3).

Viper, being an intermediate verification language, does not necessarily have to be ex-
ecutable, and thus does not distinguish between real code and ghost code (for example,
methods that encode lemmas, or conditionals that depend on permission values).
Enforcing a strict separation of real and ghost code can potentially complicate encod-
ings (see also [47]), for example, because data types or code needs to be duplicated (to
exist as a real and as a ghost version). In contrast, verification systems for programs
that are intended to be executed typically enforce such a separation, so that ghost
code can be erased during compilation without affecting the operational semantics.
The erased program — but not the ghost code — can then be regularly tested and
debugged. Examples of such systems are VeriFast, which reasons about C and Java
programs, and Dafny, whose programs can be compiled to C# code.

To enable the encoding of a wide range of imperative source languages with different
type systems and potentially different notions of objects and classes, the Viper lan-
guage supports object references, and globally declared fields that can be accessed
from each object, but no notion of classes, inheritance or sub-typing; these concepts
need to be encoded (for example, via custom domains), if necessary. In such an
encoding, it is the responsibility of the front end that generates a Viper program to
ensure that fields are only accessed from appropriate receiver objects.
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In addition to reference types (Ref), Viper supports booleans (Bool), mathematical
integers (Int, corresponding to Z) and polymorphic sets, sequences and multisets
(Set[T], Seq[T], Multiset[T]). Permission amounts (Perm, corresponding to R≥0)
are another built-in type, which allow the use of classical fractional permissions [25],
but also enable the encoding of approaches that constrain abstract read permissions
[58, 28] (in combination with constraining blocks; more details are provided in
Section 2.7). Moreover, each domain declaration induces a corresponding type, which
can be used in all places where built-in types can be used.

For each built-in type, Viper’s expression language includes the operations one
would commonly expect for that type, including: arithmetic, relational and boolean
operators, set contains and cardinality, sequence lookup and concatenation, and
multiset cardinality. The built-in collection types sets, sequences and multisets (and
the corresponding operations) could equally well be defined via Viper’s domains
(which are expressive enough), but including them in the language’s core enables
specialised treatment in back ends (such as static analyses).

As (sequential) control flow statements, the Viper language supports conditional
statements, loops (with explicitly provided invariants) and method calls (which are
reasoned about in terms of the callee’s specifications). goto statements are supported
as well, and can be used to encode other control flow operations such as exiting
loops early and raising exceptions. Viper only allows goto statements that yield
reducible control flow graphs, and each loop in such a graph must be specified
by an invariant. The support of structured control flow statements (in addition to
goto statements) facilitates the development of efficient and precise back ends, and
makes the language well-suited for manually encoding examples (as does the built-in
support for often-used specification means such as sets and sequences).

Encoding a program (and its specifications) into a permission-based verification
language commonly requires indicating points in the program at which permissions
are (conceptually) transferred between units of the modular verification: typically, one
unit gives up the permissionswhich another unit gains. In order to encode permission
transfers, Viper provides inhale and exhale statements that are permission-aware
analogues of assume and assert, respectively, statements (as, for example, provided
by Boogie): inhaling an assertion can be understood as gaining all permissions
included in the assertion, and assuming all pure sub-assertions; exhaling is the
corresponding dual operation, and entails giving away permissions and checking
pure assertions.

These two powerful statements enable, for example, the encoding of a variety of
concurrency features (for race-free concurrency) which can be understood in terms
of transferring permissions, such as fork-join parallelism and locks. For example,
forking a thread can be modelled by exhaling permissions (to locations potentially
modified by the new thread), and joining a thread by inhaling. Similarly, acquiring a
lock (specified by a lock invariant) that protects a resource, for example, a memory
location or a file handle, can bemodelled by inhaling permissions to that resource, and
releasing the lock by exhaling. Examples of such encodings are shown in Section 2.2.3.

The semantics of the Viper language do in general not ensure soundness, and users
can make arbitrary assumptions, including unsound ones such as inhaling too many
permissions. This is a deliberate choice, made to enable encodings whose soundness
depends on external arguments that are not part of the encoding itself, or that are
otherwise regarded as out-of-scope (for example, invoking system functions or other
native code). This freedom is essential for facilitating the development of different
front ends, and commonly used in verification; systems such as Boogie, VeriFast and
Dafny [82] include similar, potentially unsound, features. Other Viper features that
increase the language’s expressiveness, but are potentially unsound, are inhale-exhale
assertions and abstract methods and functions (which have no bodies, but may have
unchecked postconditions). For example, inhale-exhale assertions, written [a1, a2],
are a generalisation of Boogie’s free pre- and postconditions: property a1 is inhaled
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1 struct cell {
2 int val;
3 };
4

5 void inc(struct cell* c) {
6 c->val = c->val + 1;
7 };
8

9 void client() {
10 struct cell* c1 = malloc (sizeof(struct cell));
11 struct cell* c2 = malloc (sizeof(struct cell));
12

13 c1->val = 0;
14 c2->val = 1;
15

16 inc(c1);
17

18 assert(c1->val == c2->val);
19 };

Listing 2.1: A first example illustrating modular verification: statically proving the
client’s assertion requires reasoning about the effects of the invocation of inc on c1

and c2, which in general could be aliased.

(for example, at the beginning of a method body), but a2 is exhaled (for example, at
method call-site).

2.2 Permission-Based Reasoning in Viper

Consider the simple C program shown in Listing 2.1, which we will use to motivate
the concepts of permissions and permission transfers, which are crucial for achieving
modular verification. The program declares a record (a struct) cellwith a single int-
typed field val, alongside a method (a function, in C vocabulary) inc that increments
the value of a given cell by one. The program also includes a client that instantiates
two cells, initialises their values to 0 and 1, respectively, invokes inc to increment the
first cell’s value, and finally asserts (with a runtime check) that the two cells hold the
same value.

In order to statically reason about the example in a modular way, the client needs to
conclude that the invocation of inc(c1) does indeed increase c1.val by 1, and in
addition, that the invocation does not modify c2.val. The latter is known as framing:
the client must be able to frame the knowledge that c2.val has the value 1 across the
invocation of inc(c1). This entails reasoning about aliasing between c1 and c2 (and
in general, everything reachable from them). In the given program, c1 and c2 cannot
be aliases because they each point to a distinct, newly allocated object.

Permissions are a well-established technique for enabling framing: accessing a heap
location, that is, reading from or writing to it, requires the corresponding permission.
Per location, the permission to access it is exclusive (unique) and a method that
needs to access a location needs to obtain the required permission, for example, from
its caller. Methods can require permissions via appropriate assertions included in
their preconditions, which in turn enables callers to deduce which heap locations a
method call may affect. Upon method invocation, the caller (conceptually) transfers
all necessary permissions to the callee, and upon termination, the callee transfers
permissions back to the caller (via its postcondition). At first, we do not distinguish
between reading from and writing to a location: in both cases, the same exclusive
permission is required. However, we will soon (in Section 2.2.2) introduce fractional
permissions [25] that enable differentiating between read and write permissions.



2.2. Permission-Based Reasoning in Viper 19

1 field val: Int
2

3 method inc(c: Ref)
4 requires acc(c.val)
5 ensures acc(c.val)
6 ensures c.val == old(c.val) + 1
7 {
8 c.val := c.val + 1
9 }

Listing 2.2: A Viper encoding of method inc from Listing 2.1 that demonstrates spe-
cifications with permissions and functional properties.

1 method client() {
2 var c1: Ref
3 var c2: Ref
4

5 c1 := new(val)
6 c2 := new(val)
7

8 c1.val := 0
9 c2.val := 1
10

11 inc(c1)
12

13 assert c1.val == c2.val
14 }

Listing 2.3: A Viper encoding of the client method from Listing 2.1. Due to the
specifications of inc shown in Listing 2.2, the final assertion succeeds.

Method inc from Listing 2.1 can be encoded in Viper as shown in Listing 2.2: the
globally declared field val of type Int corresponds to the single field of the cell
record, and method inc corresponds to the C method of the same name. inc takes a
single Ref-typed argument which points to the cell object whose value is to be incre-
mented. The precondition of method inc states that the method requires permission
to write to location c.val, which is denoted by the accessibility predicate acc(c.val).
The first postcondition states that the permission will be transferred back to the
caller, allowing it to read the location’s new value. The second postcondition (all
postcondition clauses are conjuncted, and likewise for preconditions) states that inc
indeed increments the value of c.val by one: an old expression old(e) denotes the
value of e in the prestate, that is, in the state in which the method was invoked. An
old expression only affects heap dereferences (such as c.val), but not local variables
(such as c itself).

Listing 2.3 shows an encoding of the client from Listing 2.1 in Viper. The first two lines
declare new local variables c1 and c2 of reference type, and the next two lines encode
the allocation of the two cell records. The statement c1 := new(val) assigns a
fresh reference to c1, which is assumed to be different from each already existing
reference, and it adds permission to access c1.val to the current method context.
Note that new is a statement and not an expression, because it is not referentially
transparent. The general form of the statement is x := new( f0, . . . , fn−1), which
adds permission to access each field fi of the (potentially empty) list of fields.

After assigning to the newly allocated heap locations c1.val and c2.val—which is
possible because the required permissions have been obtained from the preceding
new statements — inc(c1) is invoked. From a verification perspective, the invocation
proceeds by exhaling inc’s precondition followed by inhaling the postcondition. Exhal-
ing and inhaling can be understood as the permission-aware analogues of asserting
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1 method copyAndInc(c1: Ref, c2: Ref)
2 requires acc(c1.val) && acc(c2.val)
3 ensures acc(c1.val) && acc(c2.val)
4 ensures c1.val == old(c1.val)
5 ensures c2.val == old(c1.val) + 1

Listing 2.4: The specifications of a method that sets c2.val to c1.val + 1; the com-
bination of permissions and the separating conjunction && prevents aliasing between

c1 and c2 (fractional permissions are introduced later on).

and assuming assertions. Exhaling an assertion consists of removing all permissions
that (conceptually) need to be transferred to the callee (in this case, acc(c1.val)),
and of checking that all pure assertions hold. Accordingly, inhaling an assertion
consists of adding permissions (here, to acc(c1.val)) and assumptions (here, that
c1.val == 1) to the verification state. Losing permission to a location means that
assumptions about the location’s value can no longer be framed, that is, safely be re-
tained. The location’s value is therefore havoced by setting it to an arbitrary (unknown)
value.

Holding on to the permission to c2.valwhen invoking inc(c1) enables the client
to frame the assumption that c2.val == 1 across the call. As a result, the final
assertion succeeds: combining the assumption obtained from inc’s postcondition
(about c1.val) with the assumption framed across the call (about c2.val) enables
concluding that c1.val == c2.val.

As mentioned earlier, framing is in general complicated by the possibility of aliasing,
as illustrated in Listing 2.4. Method copyAndInc, whose straight-forward imple-
mentation has been omitted, is intended to set c2.val to c1.val + 1, while leaving
c1.val unchanged. The postcondition can only be satisfied if c1 and c2 are not
aliased, which is guaranteed by the precondition: Viper’s conjunction && denotes
the separating conjunction from separation logic, the precondition therefore states
that the method requires the exclusive permission to acc(c1.val) in addition to the
exclusive permission to acc(c2.val). This implies that c1 and c2 cannot be aliased
because an exclusive permission cannot be held twice (which is equivalent to false).

The C program shown in Listing 2.1 allocated new memory via malloc, which was
encoded in Listing 2.3 via Viper’s new statement. C requires manual memory man-
agement — memory should be freed (deallocated), not leaked as done by the simple
client shown in Listing 2.1 — but Viper does not provide a dedicated statement that
corresponds to C’s free operation. Memory that has been freed should no longer
be accessed, which can be prevented in a permission-based verification by exhal-
ing (discarding) the corresponding permissions, an operation that is supported by
Viper via a dedicated statement that is presented in Section 2.2.3. When verifying
programs that manually manage their memory, it is not only important to prove that
freed memory is not accessed, but also that memory is actually freed, not leaked.
In a permission-based encoding, the latter can be achieved by proving the absence
of permission leaks. Viper does not prevent permissions from being leaked — a
method may terminate without returning all held permissions to its caller — but its
specification language is rich enough to encode such leak checks, as demonstrated in
Section 2.2.3.

2.2.1 Self-Framing Assertions

Assertions that are used as specifications in order to achieve modular verification —
pre- and postconditions, and loop invariants, but also predicate bodies (Section 2.3.1)
and the specifications of heap-dependent functions (Section 2.4) — are typically
exhaled (checked) in a context that is different from the context(s) in which they are
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1 field data: Seq[Int]
2

3 define sorted(s)
4 forall i: Int, j: Int ::
5 0 <= i && i < j && j < |s|
6 ==> s[i] <= s[j]
7

8 method insert(this: Ref, elem: Int) returns (idx: Int)
9 requires acc(this.data) && sorted(this.data)
10 ensures acc(this.data) && sorted(this.data)
11 ensures 0 <= idx && idx <= old(|this.data|)
12 ensures this.data == old(this.data)[0..idx]
13 ++ Seq(elem)
14 ++ old(this.data)[idx..]
15 {
16 idx := 0
17

18 while(idx < |this.data| && this.data[idx] < elem)
19 invariant acc(this.data, 1/2)
20 invariant 0 <= idx && idx <= |this.data|
21 invariant forall i: Int ::
22 0 <= i && i < idx
23 ==> this.data[i] < elem
24 {
25 idx := idx + 1
26 }
27

28 this.data := this.data[0..idx]
29 ++ Seq(elem)
30 ++ this.data[idx..]
31 }

Listing 2.5: A sorted list of integers, implemented via immutable sequences. The
example will gradually be modified as we motivate and introduce additional Viper

features.

inhaled (assumed): a method postcondition, for example, is exhaled at the end of the
corresponding method, and inhaled at different call sites.

In order to (modularly) ensure that such assertions are always well-defined, in par-
ticular, that the context holds sufficient permission in order to evaluate all heap
dereferences, Viper requires such assertions to be self-framing [70, 102]. Intuitively,
an assertion is self-framing if it requires permissions to at least those locations that
it reads. For example, acc(x.f) && x.f == 0 is self-framing, as is acc(x.f), but
x.f == 0 is not. Note that separation logic assertions, in contrast to assertions using
implicit dynamic frames, are self-framing by construction since separation logic’s
points-to predicate couples dereferencing the heap with requiring the necessary
permissions.

Viper, similar to other automated verifiers based on permission logics, checks self-
framingness of an assertion from left to right, which simplifies the implementation but
restricts the order inwhich conjuncts can occur in assertions: acc(x.f) && x.f == 0
is accepted as self-framing, whereas x.f == 0 && acc(x.f) is rejected. This restric-
tion is not a problem in practice, however.

2.2.2 Running Example

Listing 2.5 shows the specification and implementation of a sorted list of integers.
The sorted list will serve as the running example for the rest of the chapter, and its
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implementation and specification will be modified gradually as new Viper features
are motivated and introduced.

In the initial version, the elements of a list are represented as a mathematical sequence
(a value type), which is stored in a list’s data field of type Seq[Int]. Method insert
inserts a new integer value (input parameter elem) into a list (input parameter this),
and returns the index at which the given element has been inserted (output parameter
idx).

Viper methods can have an arbitrary number of input and output parameters; the
returns keyword and the output parameter list can be omitted from the method
signature if the method does not return any results (corresponding to void in C or
Java). Input parameters are immutable (corresponding to final parameters in Java),
that is, they cannot be assigned to in themethod body. Output parameters are in scope
throughout the whole method body and can be assigned to an arbitrary number of
times (as illustrated by Listing 2.5). Viper does not have a dedicated return keyword.

The precondition of insert states that the method requires permission to this.data
and that the data has to be sorted, denoted by sorted(this.data), and the first
postcondition ensures that the permission is returned to the caller and that the data
remains sorted. sorted is a parametric macro and every occurrence of the macro
will be expanded to the macro’s definition from line 4: a pairwise comparison of all
elements in the sequence. The second postcondition ensures that the return value
idx is a valid index into the (old) sequence of elements, and the third postcondition
ensures that the inserted element has indeed been inserted at position idx (and that
the sequence of elements has not changed otherwise). The sequence expression
old(this.data)[0..idx] selects the subsequence from and including position 0 to
but excluding position idx, and similarly, old(this.data)[idx..], selects the sub-
sequence from position idx to the end of the sequence, that is, to |old(this.data)|.

The method implements the insert operation by iterating over the sequence of ele-
ments to determine the appropriate insert position, followed by constructing a new
sequence that corresponds to inserting the new element into the sequence of elements
at that position. The second and third loop invariant state the obvious functional
properties, but the first postcondition needs explaining: the accessibility predicate
acc(this.data, 1/2) uses fractional permissions [25] to express that the loop will
only read this.data. At the point where the loop is reached, the method execution
holds write permission to this.data, one half of which is (temporarily) lost when
the loop invariant is exhaled. Since the method execution holds on to the other
half, however, it can (modularly) conclude that the loop does not modify this.data,
which is crucial for establishing the method postcondition.

In Viper, a fractional permission to a heap location is a rational value from the closed
interval [0 . . . 1] ⊂ Q, where a value of 1 allows writing to the heap location, any value
0 < p < 1 allows reading from the location, and a value of 0 allows neither reading nor
writing, that is, it denotes the absence of permissions. The permission constant write
denotes write permissions (as do the literals 1/1, 2/2, etc.), the constant none denotes
no permissions (as do 0/1, 0/2, etc.). The previously used accessibility predicate
acc(this.data) is syntactic sugar for acc(this.data, write). Additional details
about Viper’s permission model are given in Section 2.7. In particular, about abstract
read permissions that avoid the need for choosing arbitrary concrete fractions such as
1/2 in cases where heap locations are only read.

In subsequent sections, wewill improve the encoding of the sorted list in the following
ways: (1) we will encode two more-realistic implementations, one based on linked-
list nodes, and one based on arrays; (2) we will introduce abstraction mechanisms
that enable the specifications to abstract over details of the implementation. Before
presenting these improvements, however, we will introduce a client of the sorted list
that illustrates how high-level programming concepts that are not directly supported
by Viper can be encoded.
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1 class client {
2 @GuardedBy(this) List list;
3

4 @MonitorInvariant(this,
5 forall int i, j ::
6 0 <= i && i < j && j < |list.data|
7 ==> list.data[i] <= list.data[j])
8

9 @MonitorInvariant(this,
10 old(|list.data|) <= |list.data|)
11

12 synchronized void client(int e1, int e2) {
13 list.insert(e1);
14 list.insert(e2);
15 assert(list.data[0] <= list.data[1]);
16 changed = true;
17 }
18 }

Listing 2.6: A Java client of the sorted list, including annotations that restrict modi-
fications of the list: threads may only access the list after acquiring the monitor cor-
responding to this, which may only be released if the list is sorted, and not shorter

compared to when the monitor was acquired.

2.2.3 Encoding High-Level Concepts

Listing 2.6 shows a client of the previously discussed list, implemented in a Java-
like language. The client stores a reference to the list in its list field. The client
is thread-safe and uses coarse-grained locking to protect its list instance: the Java
annotation @GuardedBy(this)1indicates that the guarded field list should only
be accessed after object this has been locked. Phrased in terms of permissions,
@GuardedBy(this) List list can intuitively be understood as obtaining permis-
sion to access the list from locking this.

The (hypothetical) annotation @MonitorInvariant(this, ...) expresses amonitor
invariant of this. The first occurrence is a one-state invariant stating that the list is
sorted. The second occurrence is a two-state invariant, stating that the list may not be
shorter by the time the guarding monitor is released. In the latter invariant, an old
expression is used to refer to the state in which the monitor was acquired.

Viper does not natively support the concept of locking or of monitor invariants. In
terms of verification, acquiring a monitor can be encoded by inhaling the monitor
invariant, and releasing amonitor can be encoded by exhaling it. In analogy to assume
and assert statements from guarded-command languages such as Boogie, Viper
therefore provides inhale and exhale statements that can be used to encode a wide
range of high-level concepts, including monitor invariants and fork-join concurrency.

Listing 2.7 shows an encoding of the Java client in Viper: the program reflects acquir-
ing and releasing the monitor, and the client’s modification of the list. The initial
encoding will later on be extended with a check that asserts deadlock-freedom, and a
leak check that ensures that the client releases the monitor before terminating.

The inhale statement at the beginning of the method (line 5) encodes acquiring the
monitor. The first line of the inhale encodes the @GuardedBy annotation: it adds
permissions for accessing the guarded field and the list content. The second line of
the inhale corresponds to the first monitor invariant; the second monitor invariant
has been omitted because it is a two-state invariant (since it is reflexive, it could be
inhaled as a stuttering invariant, as done by VCC [37]). The exhale statement at the

1The first two chapters of [45] provide a nice overview of potential semantics of the @GuardedBy
annotation.
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1 field list: Ref
2

3 method client(this: Ref, e1: Int, e2: Int) {
4 /* Acquire the monitor */
5 inhale acc(this.list) && acc(this.list.data)
6 && sorted(this.list.data)
7

8 label acq
9

10 var tmp: Int
11 tmp := insert(this.list, e1)
12 tmp := insert(this.list, e2)
13

14 assert this.list.data[0] <= this.list.data[1]
15

16 /* Release the monitor */
17 exhale acc(this.list) && acc(this.list.data)
18 && sorted(this.list.data)
19 && old[acq](|this.list.data|) <= |this.list.data|
20 }

Listing 2.7: A Viper encoding of the list client from Listing 2.6. Acquiring the monitor
is modelled via an inhale statement, releasing it via an exhale. Two-state properties

can be expressed via labelled old expressions.

end of the method (line 17) encodes releasing the monitor again. The third line of
the statement checks the two-state invariant, it uses a labelled old expression to refer
to the state right after acquiring the monitor. Labels are set by the label statement,
they also serve as goto targets. Labels and labelled old expressions are generally
useful to encode multi-state properties, for example, termination measures.

In addition to encoding high-level concepts, inhale and exhale statements could
also be used to encode features that are natively supported by Viper such as method
calls or loop invariants. Similarly, if statements could be replaced by combining
inhale and goto statements (which Viper supports, for example, to encode exception
handling). This would simplify the core language, but we believe that static analysers
will benefit greatly from the preservation of (some) structural information that was
present in the source program.

Encoding Leak Checks

We will now extend the encoding of the list client such that it asserts that the monitor
can only be released if it has previously been acquired, and that the monitor actually
has been released by the time the client terminates. The latter is an instance of a leak
check; a similar encoding can be used to check for memory leaks, for example, in the
context of the previously discussed C example from the beginning of Section 2.2.

Listing 2.8 shows the extended encoding. A new field, held (of arbitrary type since
the field’s value never matters), is introduced to model that a method execution has
acquired a monitor: holding permission to o.held corresponds to having acquired
the monitor of object o. Consequently, permission to this.held is inhaled at the
point where the monitor is acquired by the client, and the permission is exhaled
again when the monitor is released. If the client tried to release the monitor without
acquiring it first, the client would not have obtained permission to this.held, and
trying to exhale the latter would therefore fail.

The newly added postcondition of the client encodes the desired leak check: the pure
assertion forperm[held] r :: false corresponds to asserting that all references
r for which the current state holds non-zero permissions to r.held satisfy false.
The assertion rightfully passes because permission to this.held has been exhaled
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1 ...
2 field held: Int
3

4 method client(this: Ref, e1: Int, e2: Int)
5 ensures [true, forperm[held] r :: false]
6 {
7 /* Acquire the monitor */
8 inhale ...
9 && acc(this.held)
10

11 ... // method body
12

13 /* Release the monitor */
14 exhale ...
15 && acc(this.held)
16 }

Listing 2.8: An extension of the list client: permissions to the held field model the
ability to release a previously acquired monitor; whereas the postcondition models the

client’s obligation to release the monitor before terminating.

when the monitor has been released. The leak check would also pass if permission to
this.held were transferred to the client’s caller, which intuitively would make it an
obligation of the caller to release the monitor. Such a leak check demonstrates that it
is useful to assert or assume properties about the permissions currently held, without
adding or removing permission. To support this kind of permission introspection,
Viper provides the already used forperm expression, and the related perm expression,
where perm(o. f) denotes the permission amount currently held for location o. f .

Similar to forperm, perm expressions can be used to inspect the currently held permis-
sion amounts. Consider, for example, some kind of resource system where different
operations require and consume different resources. A given operation can be en-
abled by different resources, which in turn makes certain resources more valuable
than others because they enable more operations. If these resources are encoded as
permissions (similar to the use of held in Listing 2.8), perm can be used to ensure
that less valuable resources are used up to perform an operation that can be enabled
by different resources. Such an encoding has been used by Müller et al. [21, 89] to
modularly prove finite blocking for non-terminating programs.

Note that the fragment of our logic that is obtained by removing forperm and perm
is monotonic; using the latter features renders the logic non-monotonic, as discussed
in the next paragraph.

Monitor leak checks must be performed after any remaining monitors have been
transferred to the caller via the method’s postcondition (and similar for other leak
checks). The check can thus not be placed at the end of the method body, where it
would be performed before exhaling the postcondition; it is placed as (the last) method
postcondition instead. Inhaling the assertion at call-site would in general be unsound,
however: it would yield the (potentially incorrect) assumption that the caller holds
no monitors either. To prevent contradicting assumptions, the leak check is nested in
an inhale-exhale assertion: an assertion of the form [a1,a2] is interpreted as a1 when
the assertion is inhaled, and as a2 when the assertion is exhaled. In our example, a1
is true (and a2 is the leak check), which avoids the potential contradiction.

It is common for encodings of high-level verification techniques to contain asym-
metries between the properties that are assumed and those that are checked. The
monitor leak check is an example of a property that is checked, but not assumed. It is
also common to assume properties that are justified by a different (possibly weaker
or even vacuous) check together with an external argument provided by a type sys-
tem, soundness proof or other meta-reasoning. For example, the following assertion
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1 ...
2 field mu: Rational
3

4 method client(..., residue: Rational)
5 requires acc(this.mu, 1/2)
6 requires residue < this.mu
7 ensures acc(this.mu, 1/2)
8 ...
9 {

10 /* Acquire the monitor */
11 exhale forperm[held] r :: r.mu < this.mu
12 && residue < this.mu
13 inhale ...
14

15 ... // method body
16

17 /* Release the monitor */
18 ...
19 }

Listing 2.9: Another extension of the list client: deadlock-freedom is guaranteed by
enforcing a partial order according to which monitors can be acquired. Argument
residuemodels the “largest” lock held by the current thread (an alternative modelling

based on abstraction functions, see Section 2.4, is possible).

allows the verifier to use a quantified property in its direct form when assuming the
property, and to use the premises of the corresponding inductive argument when
proving the property:

[forall x: Int :: 0 <= x ==> P(x),
forall x: Int ::

(forall y: Int :: 0 <= y && y < x ==> P(y)) && 0 <= x
==> P(x)

]

Checking for Deadlock-Freedom

Acquiring monitors can result in a deadlock if one thread tries to acquire a monitor
that has already been acquired by a second thread, which in turns tries to acquire
a monitor that the first thread has already acquired. A well-known approach to
avoiding such cycles and to preventing deadlocks is to establish a strict partial order
between the monitors that need to be acquired, and to ensure that monitors can
only be acquired in increasing order. Our encoding of this approach follows the
encoding that Leino et al. used in the context of Chalice [84] to modularly verify the
absence of deadlocks (for improved information hiding, see recent work by Jacobs
et al. [65]). In this encoding, the position of each monitor object in the partial order
is called a waitlevel, which is recorded in a (for our purposes immutable) field mu of
rational type2, and acquiring a monitor is only possible if the monitor’s waitlevel is
strictly greater than the waitlevel of each monitor that the current thread has already
acquired.

Listing 2.9 shows how to extend the previous encoding to ensure deadlock-freedom.
The first newly added precondition enables the client to read the monitor’s waitlevel,
and the forperm checks that the monitor’s waitlevel is greater than the waitlevel of
each monitor that has already been acquired— by the current method execution. The
latter is important: since the verification is modular, the forperm is not guaranteed
to range over all monitors that have been acquired by any method execution higher

2At the time of writing, Rational is just a type alias for Perm. For the discussed encoding, any type
admitting a dense partial order suffices.
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1 field data: Int
2 field next: Ref
3

4 predicate lseg(this: Ref, end: Ref) {
5 this != end ==>
6 acc(this.data) && acc(this.next)
7 && acc(lseg(this.next, end))
8 }
9

10 field head: Ref
11

12 predicate list(this: Ref) {
13 acc(this.head) && acc(lseg(this.head, null))
14 }

Listing 2.10: A list segment predicate lseg specifies the segment of a linked list starting
at this and ending at (but excluding) end. A full list then is a list segment ending at

null.

1 method concat(this: Ref, ptr: Ref, end: Ref)
2 requires acc(lseg(this, ptr)) && acc(lseg(ptr, end))
3 ensures acc(lseg(this, end))
4 {
5 if(this != ptr) {
6 unfold acc(lseg(this, ptr))
7 concat(this.next, ptr, end)
8 fold acc(lseg(this, end))
9 }

10 }

Listing 2.11: A method representing the lemma that a single list segment can be
obtained by concatenating two adjacent list segments.

up in the call stack, such as the client’s caller. To account for these statically unknown
monitors, the client has been extended by a residue argument thatmodels the highest
waitlevel of all monitors already held by the current thread (an alternative modelling
based on abstraction functions, see Section 2.4, is possible).

2.3 Unbounded Heap Structures

Viper supports several idioms for specifying and reasoning about unbounded heap
structures. There are no specific definitions built in; instead, Viper includes three
features which enable providing the relevant definitions as part of the input program:
(1) recursive predicates [101], which are the traditional means of specifying unboun-
ded heap structures in tools based on permission logics, (2) magic wands [117], which
are particularly useful for specifying data structures with “holes”, and (3) quantified
permissions [95], which enable pointwise rather than recursive specifications. Each
feature will be introduced by extending the sorted-list example from Listing 2.5. We
will focus on the specification of permissions first, and only afterwards reintroduce
the sortedness constraint.

2.3.1 Recursive Predicates

Recursive predicates [101] are the classical means in separation logic of specifying
inductive data structures such as lists and trees. Like permissions, predicates (or
rather, predicate instances) may be held by method executions and loop iterations,
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and may be transferred between them. Listing 2.10 shows two such predicates: the
lseg predicate, which provides permissions to a linked-list segment from node this
to (but excluding) node end, and the list predicate, which provides permissions to
an entire list starting at this.head (and ending with a null reference).

A predicate definition consists of a name, a list of formal parameters, and a body,
which contains the assertion defining the predicate. The body is optional; omitting
it results in an abstract predicate, which is useful to hide implementation details
from clients. Semantically, a predicate instance is equivalent to its (finite) expansion
(similar to the theory of equirecursive types). Automated tools, in contrast, commonly
treat a predicate instance as an abstract resource held in the current verification
state, which needs to be exchanged for its definition in order to reason about the
predicate’s semantics. Exchanging the instance for its body is known as unfolding
or unrolling, the inverse operation is called folding or rolling. Determining when to
perform an exchange is in general undecidable, which leaves tool implementers with
two general strategies: exchanging based on heuristics, and exchanging based on
user-provided annotations. The heuristics-based approach has been successfully
used in automated verifiers that carefully restrict their predicate definitions to a
decidable fragment, for example, Smallfoot [11] and GRASShopper [103]. To our
knowledge, the only automated verifier that used the heuristics-based approach in
combination with unrestricted predicate definitions was VeriCool [121]: predicates
were axiomatised in the underlying SMT solver, which used its regular heuristics for
quantifier instantiations to decide when to (un)fold a predicate’s definition. Without
additional restrictions, such an encoding can easily lead to non-termination of the
SMT solver due to infinite (un)folding: the axioms are causing a matching loop. We
believe that the choice of the heuristics-based strategy contributed to the performance
problems observed by the author (see [118], p. 75 and p. 116).

In Viper, it therefore is the user’s responsibility to decide when to (un)fold predicates:
the statement unfold acc(P(e)), where e is a sequence of argument expressions,
instructs the verifier to exchange predicate instance P(e) for its body, statement fold
achieves the opposite. Predicates can be combinedwith fractional permissions, which
makes it possible to hold a fraction of a predicate instance; consequently, it is also
possible to fractionally (un)fold predicate instances. Unfolding a predicate can be
understood as exhaling the instance and inhaling the definition, and analogous for
folding. In order to integrate predicates and heap-dependent expressions, Viper
also supports an unfolding expression: unfolding acc(P(e)) in e temporarily
unfolds instance P(e) for the duration of the evaluation of expression e. A corres-
ponding folding expression is currently not available, because it seems less useful
in practice, but it could certainly be supported.

List segment predicates can be used to specify iterative traversals of linked lists, as
shown in Listing 2.12. In the loop invariant in lines 31 – 33, the first instance of lseg
describes the list segment traversed so far, and the second instance describes the
remainder of the list that still needs to be traversed. The former explains the need for a
list segment predicate (compared to a proper list predicate): bookkeeping permissions
for the partial list already traversed is needed in order to finally reassemble the whole
list (line 55).

Manipulating recursive predicates can be tedious. While it is easy to prepend an ele-
ment to a data structure (by folding another instance of the predicate), extending a data
structure at the other end requires additional work to unfold the recursive instances
until the end and then refold them including the new element. In Listing 2.12, this op-
eration is performed by the concatmethod, which itself is shown in Listing 2.11. The
method plays the role of proving the lemma that from lseg(x, y) && lseg(y, z)
a concatenated lseg(x, z) can be obtained. concat is a specification-only method,
but Viper does not distinguish between regular and ghost code. In the next subsection,
we will explain an approach that reduces the overhead of writing and proving such
methods in many cases.
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1 method insert(this: Ref, elem: Int) returns (index: Int)
2 requires acc(list(this))
3 ensures acc(list(this))
4 {
5 var tmp: Ref
6 index := 0
7

8 unfold acc(list(this))
9 if(this.head != null) { unfold acc(lseg(this.head, null)) }
10

11 if(this.head == null || elem <= this.head.data) {
12 /* Create a new head node storing the inserted element */
13 tmp := new(*)
14 tmp.data := elem
15 tmp.next := this.head
16

17 fold acc(lseg(this.head, null))
18 fold acc(lseg(tmp, null))
19

20 this.head := tmp
21 } else {
22 var hd: Ref := this.head
23 var ptr: Ref := hd
24 fold acc(lseg(hd, ptr))
25 index := index + 1
26

27 /* Find the insert position */
28 while( ptr.next != null
29 && unfolding acc(lseg(ptr.next, null)) in
30 ptr.next.data < elem)
31 invariant acc(lseg(hd, ptr))
32 invariant acc(ptr.next) && acc(ptr.data)
33 invariant acc(lseg(ptr.next, null))
34 {
35 var ptrn: Ref := ptr.next
36

37 unfold acc(lseg(ptr.next, null))
38 fold acc(lseg(ptrn, ptrn))
39 fold acc(lseg(ptr, ptrn))
40

41 concat(hd, ptr, ptrn) /* Extend traversed list segment */
42

43 ptr := ptrn
44 index := index + 1
45 }
46

47 tmp := new(*)
48 tmp.data := elem
49 tmp.next := ptr.next
50 ptr.next := tmp
51

52 fold acc(lseg(ptr.next, null))
53 fold acc(lseg(ptr, null))
54

55 concat(hd, ptr, null) /* Concat remaining segments */
56 }
57

58 fold acc(list(this))
59 }

Listing 2.12: Inserting an element into a (potentially sorted) linked list; the loop traverses
the list and determines the appropriate insert position. Permissions to the list nodes
are specified using two list segment predicates: one from the list head to the current

position, and one from there to the end of the list.
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1 define A acc(lseg(ptr, null))
2 define B acc(lseg(hd, null))
3

4 /* Find the insert position */
5 while( ptr.next != null
6 && unfolding acc(lseg(ptr.next, null)) in
7 ptr.next.data < elem)
8 invariant acc(ptr.next) && acc(ptr.data)
9 invariant acc(lseg(ptr.next, null))

10 invariant A --* B
11 {
12 var prev: Ref := ptr
13

14 unfold acc(lseg(ptr.next, null))
15

16 ptr := ptr.next
17 index := index + 1
18 }

Listing 2.13: An alternative specification of the loop from method insert that uses a
magic wand to implicitly describe the already traversed list prefix. The lemma method

concat is no longer needed.

2.3.2 Magic Wands

The magic wand is a binary connective, written a1 –∗ a2, which can be understood as
the promise that, if the wand is combined with state satisfying the assertion a1, the
combination can be exchanged for the assertion a2 [99, 108]. Various works have
demonstrated the usefulness of magic wands, for example, for proving interesting
properties of partial data structures such as partially-traversed lists and trees [130,
87], for specifying protocols that ensure orderly modifications of data structures
[76, 52, 68], and for reasoning about synchronisation barriers [44]. The semantics of
magic wands involve a quantification over possible state extensions, which makes
it challenging to support this versatile connective in automated verifiers: to our
knowledge, only Viper and VerCors [17] support magic wands. In this subsection,
we will use the magic wand to give an alternative specification of the loop from
Listing 2.12. A detailed discussion of the magic wand and how it is supported in
Viper is given in Chapter 5.

Listing 2.13 shows an alternative specification of the loop (lines 28 – 45) of method
insert from Listing 2.12. In this alternative version, the loop invariant in line 10
implicitly achieves bookkeeping the permissions to the already traversed prefix of
the list: the magic wand acc(lseg(ptr, null)) --* acc(lseg(hd, null)) de-
scribes the promise that the still-to-be-traversed tail of the list (starting at ptr) in
combination with the wand itself can be exchanged for the full list (starting at hd).
The magic wand thus indirectly describes the already traversed list prefix: the per-
missions implicitly described by a magic wand instance are essentially the same as
those explicitly described by the acc(lseg(hd, ptr)) assertion in Listing 2.12. This
way, magic wands eliminate the need for predicates that describe partial versions of
data structures. In our case, the lseg predicate could be removed; indeed, all used
lseg instances end in null, and thus describe complete lists. We decided to keep
the lseg predicate, however, to simplify comparing the two alternatives, but we no
longer need the auxiliary concatmethod to manage lseg predicates.

Conceptually, the magic wand instance occurring in the invariant needs to be created
(established) before the loop, it needs to be extended after each iteration such that the
exchange promise includes the list node visited in the current iteration, and it needs
to be used after the loop to obtain the full list. In general, this requires user-provided
annotations which are similar to the fold and unfold statements for predicates.
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1 field val: Int // Value of an array slot
2 field elems: Array // See domain definition in Section 2.5.1
3 field size: Int // Number of array slots in use
4

5 // Permissions to slots [from..to) of array rcvr.elems
6 define elemsacc(from, to, rcvr, perms)
7 forall i: Int :: from <= i && i < to
8 ==> acc(loc(rcvr.elems, i).val, perms)
9

10 predicate AList(this: Ref) {
11 acc(this.elems) && acc(this.size)
12 && 0 <= this.size && this.size <= len(this.elems)
13 && 0 < len(this.elems)
14 && elemsacc(0, len(this.elems), this, write)
15 }

Listing 2.14: A Viper encoding of an array list. Arrays are modelled by a custom Array
type (shown in Section 2.5.1), loc(rcvr.elems, i).val denotes the i-th array slot,
and quantified permissions are used to specify permissions to all slots of the array.

Viper’s support for magic wands, however, uses heuristics that automate these steps
in many cases, including our list example. Further details are presented in Chapter 5.

2.3.3 Quantified Permissions

In addition to recursive predicates, Viper supports quantified permissions as a means of
specifying unbounded heap structures. Quantified permissions is Viper’s implement-
ation of separation logic’s iterated separating conjunction [108]: as such, it allows the
pointwise specification of permissions. The flat structure of a pointwise specification
is convenient for specifying data structures that are not limited to traversals in a
single, hierarchical fashion, such as cyclic data structures [14, 136], random access
data structures such as arrays [108], and general graphs [136]. Similar to magic wands,
iterated separating conjunctions have been used in various by-hand proofs; yet, no
existing program verifier supports general iterated separating conjunctions directly.
In this subsection, we will use quantified permissions to specify an array-backed
implementation of a list, a detailed discussion of quantified permissions and how it
is supported in Viper are given in Chapter 4.

Quantified permissions are denoted by a universal quantifier around the usual access-
ibility predicates. For example, forall x: Ref :: x in S ==> acc(x.f) denotes
permission to the f field of every reference in the set S. The quantified variable can
be of any type, and we permit arbitrary boolean expressions to constrain its range. In
the context of array specifications, for example, the quantified variable usually ranges
over integers that are valid indices into the array.

Arrays are not supported natively in Viper but can be encoded, as is shown in Sec-
tion 2.5.1. A new type Array is introduced, alongside two functions

loc(a: Array, i: Int): Ref
len(a: Array): Int

which model the i-th slot of an array a as the heap location loc(a, i).val (loc is
injective), respectively, the length of an array. Permission to the array slots can then
be denoted via quantified permissions ranging over the array indices.

In this subsection, we apply this approach to encode an array list. Listing 2.14
shows the necessary field declaration and the declaration of the predicate that spe-
cifies the array list. The field elems stores the array, while size counts the number
of array slots that are currently in use. Given our array encoding, accessing the
first slot of this.elems is denoted by loc(this.elems, 0).val (corresponding
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to this.elems[0] in Java). The quantifier in the body of macro elemsacc (line 6)
denotes permission to all slots of rcvr.elems in the right-open range [from..to).
Predicate AList specifies the array list, in particular, permissions to the relevant list
fields and to all array slots.

Listing 2.15 shows the insertmethod for the array list: it finds the appropriate insert
position (lines 8 – 16), resizes the array if all slots are in use (lines 18 – 31), shifts the
later elements to the right to free a slot for the element to insert (lines 36 – 43), and
finally assigns the element to the array (line 45).

The invariants of the two loops (starting at line 8 and line 36, respectively) are essen-
tially copies of the body of predicate AList (with additional constraints on the loop
variable), and we could use another macro to further reduce specification duplication.
As before, fractional permissions are used to specify that the loops do not modify
certain locations.

The inhales in lines 21 – 23 encode the instantiation of a new array that is twice
as large as the current array (new int[this.elems.length * 2] in Java). The in-
hale in line 26 simulates the effect of assigning the contents of the old array to the
newly instantiated one, which could also be encoded and specified. The annotation
{loc(a, i).val} specifies a syntactic trigger (or pattern) for the quantifier, which
restricts instantiations of the quantifier during proof search to situations which are
concerned with {loc(a, i).val} (for some concrete i). Carefully controlling quan-
tifier instantiations is important whenworking with SMT solvers [83, 91, 59]: enabling
too few instantiations may cause proofs to unexpectedly fail, while too many may
lead to unreliable performance or even non-termination of the solver. Viper (but
also SMT solvers themselves) can apply heuristics to infer triggers, but the heuristics
come without any guarantees. More details about quantifiers and triggers are given
in Section 2.6.

2.4 Functional Behaviour

The specifications shown in Section 2.3 focus on the management of permissions, but
do not constrain the values stored in data structures (for example, to require sortedness
of the list) or computed by operations (for example, to express the functional behaviour
of method insert). The early examples from Section 2.2 specify such properties, but
in a way which exposes implementation details. In this section, we explain several
ways of expressing functional behaviour in Viper while hiding implementation details
from clients.

In separation logic, the default way of specifying the values stored in data structures
is including additional constraints on the values in the body of a predicate, alongside
the permissions necessary to access these values. For example, we could extend the
body of the lseg predicate defined in Listing 2.10 by conjoining another assertion:

unfolding acc(lseg(this.next, end)) in
this.next != end ==> this.data <= this.next.data

This assertion specifies sortedness of the list pairwise by constraining adjacent list
nodes. Maintaining the augmented lseg predicate entails corresponding additions
to the loop invariant of the insert method and to the specification of the concat
method.

Constraining values via predicates allows one to encode representation invariants,
but is not well-suited to express client-visible invariants or the functional behaviour
of operations. To support such specifications, Viper supports heap-dependent functions
that may be used in program statements and assertions. Functions (as opposed to
methods) have expressions rather than statements as a body; a function’s precondition
must require sufficient permissions to evaluate the function’s body. Since functions
are side-effect free, the permissions need not actually be consumed when a function is
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1 method insert(this: Ref, elem: Int) returns (idx: Int)
2 requires acc(AList(this))
3 ensures acc(AList(this))
4 {
5 idx := 0
6 unfold acc(AList(this))
7

8 while ( idx < this.size
9 && loc(this.elems, idx).val < elem)
10 invariant acc(this.elems, 1/2) && acc(this.size, 1/2)
11 invariant this.size <= len(this.elems)
12 invariant elemsacc(0, len(this.elems), this, 1/2)
13 invariant 0 <= idx && idx <= this.size
14 {
15 idx := idx + 1
16 }
17

18 if(this.size == len(this.elems)) {
19 // Out of space - allocate double array size
20 var a: Array
21 inhale len(a) == len(this.elems) * 2
22 inhale forall i: Int :: 0 <= i && i < len(a)
23 ==> acc(loc(a, i).val)
24

25 // Simulate memcpy from the old to the new array
26 inhale forall i: Int :: {loc(a, i).val}
27 0 <= i && i < len(this.elems)
28 ==> loc(a, i).val == loc(this.elems, i).val
29

30 this.elems := a
31 }
32

33 var j: Int := this.size
34

35 // Shift the later elements to the right
36 while (j > idx)
37 invariant acc(this.elems, 1/2) && acc(this.size, 1/2)
38 invariant elemsacc(idx, this.size + 1, this, write)
39 invariant idx <= j && j <= this.size
40 {
41 loc(this.elems, j).val := loc(this.elems, j - 1).val
42 j := j - 1
43 }
44

45 loc(this.elems, idx).val := elem
46 this.size := this.size + 1
47

48 fold acc(AList(this))
49 }

Listing 2.15: Inserting an element into an array list: the first loop determines the
appropriate insert position, the next block doubles the size of the underlying array
if necessary, and the second loop shifts the elements so that the new element can be

inserted.
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invoked, and it is therefore not necessary to explicitly return them via the function’s
postcondition.

Functions are a flexible feature which can play several different roles in a Viper
program. The first major role is to encode side-effect free observer methods (pure
methods in JML [79] and Spec# [7]), which are a part of the interface of many data
structures. For example, list-style collections typically provide observer methods such
as length and itemAt to retrieve data. As an example, we extend our lseg-based
specification from Section 2.3.1 with the following function definition:

function lsegLength(this: Ref, end: Ref): Int
requires acc(lseg(this, end))

{
unfolding acc(lseg(this, end)) in
this == end ? 0 : 1 + lsegLength(this.next, end)

}

This definition enables us, whenever we hold an lseg predicate instance, to express
its length via an application of lsegLength. The Viper verifiers axiomatise a function
definition to the underlying SMT solver, in a way that carefully controls the unrolling
of recursive function definitions by essentially mimicking the traversal of the cor-
responding lseg data structure [59]: by default, the definition can be unrolled only
once; in addition, each (un)folding of an lseg predicate instance allows the solver to
perform a corresponding unrolling of the function definition.

A second major role of functions is to define abstraction functions [60], which serve
as abstractions of the underlying data representation, in order to express specifica-
tions without revealing implementation details. For example, the following function
abstracts the values of a list segment to a mathematical sequence (due to a technical
limitation, Silicon needs an additional postcondition to prove the quantifier; the full
code is shown in Listing A.1 in Appendix A):

function lsegContent(this: Ref, end: Ref): Seq[Int]
requires acc(lseg(this, end))
ensures forall i: Int, j: Int ::

0 <= i && i < j && j < |result|
==> result[i] <= result[j]

{
this == end
? Seq[Ref]()
: unfolding acc(lseg(this, end)) in

(Seq(this.data) ++ lsegContent(this.next, end))
}

Viper’s verifiers reason about a function application in terms of the function’s body.
Nevertheless, it is sometimes useful to provide a function postcondition. In the above
example, the postcondition expresses that the sequence of all values stored in the list
is sorted, which is implied by the pairwise sortedness we have added to the lseg
predicate. Note that the inductive argument required to justify this postcondition is
implicit in the checking of lsegContent’s recursive definition.

A similar content function for the overall data structure (described by the list
predicate) allows us to specify the functional behaviour of insert by adding another
postcondition clause to the method:

ensures content(this) == old(content(this))[0..index]
++ Seq(elem)
++ old(content(this))[index..]

Function bodies are optional in Viper, which allows hiding details when verifying
client code (similar to abstract predicates). Omitting the body is also useful for
axiomatising a function rather than defining it, in which case the existence of the
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function needs to be justified by additional meta-reasoning (similar to the case of
inhale-exhale assertions introduced in Section 2.2.3).

In the array-list example from Section 2.3.3, defining length and itemAt functions
is straightforward. However, an analogous content function would be awkward
to define recursively since our specifications for this random-access example avoid
recursive definitions. Instead, we can axiomatise the function, that is, specify its
meaning via a quantified postcondition:

function content(this: Ref): Seq[Int]
requires acc(AList(this))
ensures |result| == length(this)
ensures forall i: Int ::

0 <= i && i < length(this)
==> result[i] == itemAt(this, i)

The third major role of heap-dependent functions is to express refinements of existing
predicate definitions. For example, instead of expressing sortedness as part of a
predicate definition, we can write a boolean function sorted (shown next) that can
be used in combination with the unchanged AList predicate from Section 2.3.3: the
assertion AList(this) && sorted(this) then describes a sorted array list, while
AList(this) alone specifies an array list that may or may not be sorted. In this way,
functions can be used to augment data-structure instances with additional invariants,
without requiring many versions of a predicate definition or resorting to higher-order
logic.

function sorted(this: Ref): Bool
requires acc(AList(this))

{
unfolding acc(AList(this)) in
forall i: Int, j: Int ::

0 <= i && i < j && j < this.size
==> result[i] <= result[j]

}

In summary, the combination of predicates, functions, and quantifiers that Viper
supports provides the means for writing rich functional specifications in a variety of
styles, which is essential for a practical intermediate verification language.

2.5 First-Order Theories

Many specification and verification techniques provide their ownmathematical vocab-
ulary, for example, to encode algebraic data types. To support such techniques, Viper
supports the declaration of custom first-order theories via domains: each domain
introduces a (potentially polymorphic) type and may declare uninterpreted function
symbols and axioms. Ultimately, the collection types that are natively supported by
Viper (sets, sequences, and multisets) could be axiomatised as additional domains
instead (with regular function symbols replacing the built-in operators). Organising
mathematical theories into domains allows back ends to provide dedicated support
for certain theories. For example, while both Viper verifiers let the underlying SMT
solver reason about such custom theories, an abstract-interpretation-based inference
might provide specialised abstract domains for certain Viper domains.

2.5.1 Encoding Arrays

Listing 2.16 shows a domain that can be used to model arrays, which are not natively
supported in Viper. The domain, in particular, the induced Array type and the loc
function, has already been used in Section 2.3.3 in the encoding of the array list.
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1 domain Array {
2 function loc(a: Array, i: Int): Ref
3 function len(a: Array): Int
4

5 function loc_a(r: Ref): Array
6 function loc_i(r: Ref): Int
7

8 axiom loc_injective {
9 forall a: Array, i: Int :: {loc(a, i)}

10 0 <= i && i < len(a)
11 ==> loc_a(loc(a, i))) == a
12 && loc_i(loc(a, i))) == i
13 }
14

15 axiom length_nonneg {
16 forall a: Array :: 0 <= len(a)
17 }
18 }

Listing 2.16: A domain definition for arrays, as used in Section 2.3.3. The injective
function locmaps an array and an index to a reference; in combination with a field
(such as val in Listing 2.14), an array slot a[i] can be encoded as loc(a, i).val.

The domain enables the modelling of arrays as follows: the i-th slot of an array a is
denoted by loc(a,i).val, where val is a suitable field, that is, a field of type T if we
want to model an array of elements of type T. Since each array slot corresponds to a
dedicated memory location, locmust be injective; this property is expressed by the
axiom loc_injective, which axiomatises loc_a and loc_i as the inverse functions
of loc.

Axiomatising injectivity via inverse functions improves the performance of the SMT
solver3by reducing the number of potential instantiations of the axiom: the straight-
forward injectivity axiomwith two quantified variables could be instantiated for every
pair of arguments, whereas the provided inverse function axiom results in a linear
number of instantiations. The explicitly provided quantifier trigger {loc(a, i)}
ensures that the SMT solver can instantiate the axiom whenever it (potentially) needs
to learn injectivity of loc(a, i). A more detailed discussion of this choice of trigger
is given in Section 2.6.

2.5.2 Encoding Algebraic Data Types

Another use case for domains is the encoding of algebraic data types. Consider the
following Haskell declaration of a list of integers:

data List = Nil | Cons Int List

Such an algebraic data type can be modelled by one constructor function and n de-
constructor (or projection) functions per data type constructor (of arity n), and an
appropriate set of axioms that express relevant properties such as constructor injectiv-
ity.

Listing 2.17 shows a first set of functions and axioms of a List domain that is used to
model the algebraic list data-type. The type function and its three axioms express
that the two data-type constructors create different data types, and that each data type
element is either a Nil or a Cons. The unique keyword marks a constant (a nullary
function) as disjoint from all other unique constants (of the same type) in the current
program. The axioms’ quantifiers have not been annotated with triggers because

3The “injectivity via inverse functions” trick is described in the Z3 Guide at http://rise4fun.com/
z3/tutorialcontent/guide.

http://rise4fun.com/z3/tutorialcontent/guide
http://rise4fun.com/z3/tutorialcontent/guide
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1 /* Constructors */
2

3 function Nil(): List
4 function Cons(head: Int, tail: List): List
4

5 /* Constructor types */
6

7 function type(xs: List): Int
8 unique function type_Nil(): Int
9 unique function type_Cons(): Int
9

10 /* Type axioms */
11

12 axiom type_of_Nil {
13 type(Nil()) == type_Nil()
14 }
15

16 axiom type_of_Cons {
17 forall head: Int, tail: List ::
18 type(Cons(head, tail)) == type_Cons()
19 }
20

21 axiom type_exhaustiveness {
22 forall xs: List ::
23 type(xs) == type_Nil() || type(xs) == type_Cons()
24 }

Listing 2.17: Encoding an algebraic list data-type, part I/II: different constructors create
different types of values, and each list value is of one such type.

Viper infers the “obvious” choices: {type(Cons(head, tail)} for the axiom in
line 16, and {type(xs)} for the axiom in line 21 (Section 2.6 provides more details).
For convenience, we also introduce the following macros:

define is_Nil(xs) type(xs) == type_Nil()
define is_Cons(xs) type(xs) == type_Cons()

The deconstructors (for Cons, Nil takes no arguments) and their axioms are shown in
Listing 2.18. For these axioms, explicit triggers are required because Viper would infer
triggers that are too strict and prevent certain proofs from succeeding, as described in
Section 2.6. Note that the deconstructors for Cons are underspecified total functions,
that is, applying them to Nil does not automatically result in a verification failure,
it just provides no additional information. If a verification failure is desired, an
abstraction function (that is, not a domain function) with an appropriate precondition
can be used in addition to the shown domain function.

This encoding allows proving various properties of the list data-type, for example, the
three properties asserted in Listing 2.19. It also enables pattern match exhaustiveness
checks that are more precise than the checks that compilers for languages such as
Haskell or Scala typically perform. Consider the followingHaskell function definition:

sumup :: List -> Int
sumup Nil = 0
sumup (Cons x ys) = x + (sumup ys)

The function is defined for all inputs, that is, total, it will therefore never cause a
run-time exception that would be raised if the function were applied to an argument
that matched none of the function’s defining patterns. Ensuring totality of a function
requires checking that the set of defining patterns is exhaustive, which can be encoded
in Viper as follows (for an arbitrary xs):

assert is_Nil(xs) || is_Cons(xs)
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1 /* Deconstructors */
2

3 function head_Cons(xs: List): Int
4 function tail_Cons(xs: List): List
4

5 /* Deconstructor axioms */
6

7 axiom destruct_over_construct_Cons {
8 forall head: Int, tail: List :: {Cons(head, tail)}
9 head_Cons(Cons(head, tail)) == head

10 && tail_Cons(Cons(head, tail)) == tail
11 }
12

13 axiom construct_over_destruct_Cons {
14 forall xs: List :: {head_Cons(xs)} {tail_Cons(xs)}
15 is_Cons(xs)
16 ==> xs == Cons(head_Cons(xs), tail_Cons(xs))
17 }

Listing 2.18: Encoding an algebraic list data-type, part II/II: data-type constructors
and deconstructors are inverse functions.

1 // The elements of a deconstructed Cons are
2 // equivalent to the corresponding arguments of Cons
3 assert forall head: Int, tail: List, xs: List ::
4 is_Cons(xs) ==>
5 ( head == head_Cons(xs) && tail == tail_Cons(xs)
6 <==> Cons(head, tail) == xs)
7

8 // Two Cons are equal iff their constructors’
9 // arguments are equal

10 assert forall head1: Int, head2: Int,
11 tail1: List, tail2: List ::
12 Cons(head1, tail1) == Cons(head2, tail2)
13 <==> head1 == head2 && tail1 == tail2

Listing 2.19: Proving properties of the previously encoded algebraic list data-type.

Each disjunct of the assertion encodes one of the defining patterns of function sumup:
both patterns unconditionally match against the structure of the argument value,
which corresponds to a type test in our encoding of abstract data types. The assertion
holds, proving that the encoded sumup function is total. If the second defining pattern
is changed such that the function only sums positive list elements

sumup (Cons x ys) | 0 <= x = x + (sumup ys)

that is, if the function is deliberately made partial, then the corresponding Viper
assertion

assert is_Nil(xs)
|| (is_Cons(xs) && let x == (head_Cons(xs)) in 0 <= x)

fails (as expected), showing that sumup is indeed no longer a total function.

2.6 Quantifiers and Triggers

The idea of guiding quantifier instantiation heuristics by syntactic matching triggers
originates from the Simplify theorem prover [39], and has since been adopted by
state-of-the-art SMT solvers such as Z3 [92] and CVC4 [10], and by the latest version
of the SMT-LIB standard (v2.5, under the term pattern) [9]. A single trigger (t1, . . . , tn)
is a sequence of terms ti (of the SMT-LIB language), suggesting to the solver to only
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instantiate the annotated quantifier with terms that are subterms of ground terms that
match all provided triggers. Adding terms to a trigger therefore in general reduces
the instantiation possibilities of a quantifier, potentially improving the solver’s per-
formance. Multiple triggers (t1,1, . . . , t1,n1), . . . , (tm,1, . . . , tm,nm) can be provided and
are interpreted as alternatives: if the solver matches one of the triggers, the quantifier
may be instantiated. Hence, adding triggers in general increases the instantiation
possibilities of a quantifier, potentially making the proof search more complete (but
less efficient).

Viper’s syntax for triggers has been borrowed from Boogie: triggers precede the
quantifier body, a single trigger is a comma-separated sequence of expressions inside
curly braces, andmultiple triggers are separated bywhitespace. Triggers have already
been used in previous sections, for example, in Listing 2.18, where the first axiom has
been annotated with the single trigger {Cons(head, tail)} and the second axiom
with the two (alternative) triggers {head_Cons(xs)} {tail_Cons(xs)}.

The SMT-LIB standard allows arbitrary binder-free terms in triggers, but SMT solv-
ers often impose additional restrictions on the shape of allowed terms. Common
restrictions are that triggers must be composed of uninterpreted function applications
applied to free or bound variables, that is, they may not contain boolean connect-
ives and arithmetic expressions. Furthermore, each trigger must cover (include) all
quantified variables. Viper ultimately enforces these restrictions as well: a trigger
is valid if it only contains heap-dependent functions, as well as custom and built-in
domain functions (that is, of sequences, sets and multisets). In addition, Viper allows
field dereferences in triggers, which is particularly useful for specifications that use
quantified permissions, as illustrated in Listing 2.15 Quantifiers denoting quantified
permissions do not need to (and cannot) be annotated with triggers, since they are
not regular (first-order) quantifiers that are ultimately handled by an SMT solver.

Triggers can be omitted, as was done in most of the previously discussed examples.
In this case, Viper does a best-effort attempt to infer valid triggers by inspecting the
quantifier body, but it cannot guarantee to find optimal triggers. Viper’s general
strategy is to pick as many (non-redundant) alternative triggers as possible, where
each individual trigger is as strict as possible. Note that Viper’s trigger inference is
still in an early development stage and likely to change in the future.

Consider, for example, the following quantifier, originating from Listing 2.17

forall head: Int, tail: List ::
type(Cons(head, tail)) == type_Cons()

for which Viper infers the trigger {type(Cons(head, tail))}. This is a valid trigger
(no disallowed subexpressions, all quantified variables covered), but it is stricter than
the possible alternative {Cons(head, tail)}. However, the stricter trigger still
allows to prove the desired properties shown in Listing 2.19. This is not the case if
the trigger for the following quantifier from Listing 2.18 is omitted:

forall head: Int, tail: List :: {Cons(head, tail)}
head_Cons(Cons(head, tail)) == head

&& tail_Cons(Cons(head, tail)) == tail

Viper will infer the two alternative triggers

{head_Cons(Cons(head, tail))}
{tail_Cons(Cons(head, tail))}

each of which is stricter than the manually provided one. These stricter triggers
prevent the secondproperty shown in Listing 2.19 frombeing proven because the body
of the quantifier only contains Cons, but no applications of head_Cons or tail_Cons
to Cons.
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Viper may also try to rewrite quantifiers internally to increase the chances of finding
valid triggers. The following quantifier, for example, where idx computes an index
into the sequence xs

forall i: Int ::
0 <= i && i < |xs| ==> xs[idx(i, j + 1)] > 0

does not contain any valid triggers: the only function application that covers the
quantified variable is idx(i, j + 1), but it also contains a forbidden arithmetic
expression. Viper rewrites the quantifier by abstracting over the forbidden arithmetic
expression with an additional quantified variable a1, which is then used in the trigger:

forall i, a1 :: {xs[idx(i, a1)]}
0 <= i && i < |xs| ==> xs[idx(i, j + 1)] > 0

A different rewrite strategy is necessary for the next quantifier, where abstracting
over the forbidden arithmetic expression i + j would not allow finding a valid
trigger because the resulting expression xs[a1] would no longer cover all quantified
variables:

forall i: Int ::
0 <= i && i < |xs| - j ==> xs[i + j] > 0

Viper therefore rewrites the quantifier by replacing the forbidden expression i + j
with a new variable i1 that will be quantified over in place of i, and by rewriting the
body accordingly:

forall i1 :: {xs[i1]}
0 <= i1 - j && i1 - j < |xs| - j ==> xs[i1] > 0

It is crucial to be aware of the impact that triggers can have on the performance of SMT
solver (see also [83, 91, 59]), andwe recommend to carefully consider potential triggers
when writing quantifiers. As a last, admonitory example, consider the following
quantifier, where pw[i] is a sequence of integers:

forall i: Int :: {pw[i]}
left <= i && i <= right

==> loc(a, i).val == old(loc(a, pw[i]).val)

If the explicit trigger were omitted, Viper would be free to pick {loc(a, i).val} as
a trigger, which has a high chance of causing non-terminating runs of the SMT solver
due to the following matching loop: every instantiation of the axiom — by match-
ing some ground expression loc(a, j0).val)— yields a new ground expression
loc(a, pw[j0]).val) that can in turn be used to instantiate the axiom again.

2.7 Permission Model

Several features of Viper’s rich permission model have already been shown: fractional
permissions, permission introspection via perm and forperm, magic wands and
quantified permissions. This subsection presents two additional features which
can be used to overcome modularity issues potentially arising from committing to
concrete fractions in situations where an arbitrary read permission would suffice.

In Section 2.2.2 and Section 2.2.3, we used a concrete fractional permission such as
1/2 in specifications to express that a method or a loop needs to read a heap location.
Committing to a specific value in cases were any fraction will suffice (in order to read
the location) does not only burden developerswith having tomake an arbitrary choice:
it will in general pose a modularity problem because it can result in specifications
that prevent one method that only reads a given heap location from calling another
read-only method because the former holds insufficient (read) permissions.
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1 interface Expr {
2 int eval(State s)
3 @Requires(acc(s.map), π)
4 @Ensures(acc(s.map), π)
5 }
6

7 class Add implements Expr {
8 Expr left;
9 Expr right;
10

11 int eval(State s)
12 @Requires(acc(s.map), π)
13 @Ensures(acc(s.map), π)
14 {
15 forkHandleLeft = fork left.eval(s);
16 forkHandleRight = fork right.eval(s);
17

18 return (join forkHandleLeft)
19 + (join forkHandleRight);
20 }
21 }

Listing 2.20: Simplified specifications for Add that focus on permissions to the shared
map; permissions to the left/right subtree have been omitted. The challenge is choosing

a permission value for π.

Heule et al. [58] suggest abstract read permissions to overcome this problem, a technique
that can be summarised as combining permission-parametric specifications with
an inference scheme that automatically instantiates the permission parameter. An
accessibility predicate of the shape acc(x. f, rd) is used to denote read permissions
to x. f ; on exhale, each occurrence of rd is automatically instantiatedwith a sufficiently
small permission value. The use of rd in permission expressions is subject to certain
syntactic restrictions which ensure by construction that such small-enough values
always exist. This allows the approach to simply constrain permission amounts
accordinglywithout having to prove (during the verification) that the set of constraints
is satisfiable.

The authors implemented their approach as an extension of the Chalice verification
language, but it is also possible to encode this expressive permission model in Viper.
Listing 2.21 shows a simplified version of the resulting encoding that focuses on
permissions to the shared state, which (for simplicity) is modelled as a single integer.
Method Add_eval encodes Add.eval: the additional permission-typed argument p
is used to parameterise Add_eval’s specification; its value must be non-none in order
to permit reading the shared state.

At the beginning of Add_eval’s body, a new permission-typed variable is declared
and constrained to permit read access. The constraining(q) block around the
exhales (which model the two forks) allows each exhale to constrain q such that
some permissions always remain with the calling method, which makes the assert
in line 16 succeed. In our example, the constraining block is equivalent to the
following code that makes the implicitly generated constraints explicit:

// first fork
inhale q < perm(state.map)
exhale acc(state.map, q)

// second fork
inhale q < perm(state.map)
exhale acc(state.map, q)

In general, however, such a desugaring would be significantly more involved due
to aliasing, and because the constraining block admits arbitrary statements in its
body, including inhales, assignments and loops.
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1 field map: Int
2

3 method Add_eval(this: Ref, state: Ref, p: Perm)
4 requires none < p
5 requires acc(state.map, p)
6 {
7 var q: Perm
8 inhale none < q
9

10 constraining(q) {
11 // forks
12 exhale acc(state.map, q)
13 exhale acc(state.map, q)
14 }
15

16 assert 2*q < p
17

18 // joins
19 inhale acc(state.map, q)
20 inhale acc(state.map, q)
21 }

Listing 2.21: AViper encoding of Listing 2.20, inwhich recursive calls are parameterised
with automatically constrained, sufficiently small abstract read permissions

Note that constraining blocks do not guarantee that the generated constraints are
always satisfiable, as illustrated by the next snippet:

inhale acc(state.map, p)

constraining(p) {
exhale acc(state.map, p) // assumes p < p

}

Recall (Section 2.1) that Viper does in general not guarantee the soundness of encod-
ings; an important property of an intermediate verification language that increases
the language’s expressiveness, and enables encodings whose soundness depends
on external arguments. Analogous to the use of inhale statements or inhale-exhale
assertions (Section 2.2.3), it is the front ends’s responsibility to ensure that the con-
straints arising from constraining blocks are satisfiable. To prove that a certain
encoding based on constraining blocks by-construction generates only satisfiable
constraints, the layered constraints approach presented by Boyland et al. [28] can be
used.

2.8 Evaluation

In order to assess Viper’s suitability as an intermediate verification language, we
draw on the VerCors tool for observations about the use of Viper as the back end of
a front-end verifier, in particular, which language features are used in practice. To
evaluate the performance of Viper, we compare the tool chain VerCors → Viper →
Boogie to VerCors → Chalice → Boogie, the tool chain previously used by VerCors.

Language Design

The most comprehensive front ends for Viper are the Java and OpenCL front ends
developed in the VerCors project [16], and our own Chalice/Viper front end. Various
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language features of Viper have proven essential for these different front ends. Ver-
Cors’ front end for verifying concurrent Java programs makes heavy use of custom
domains to axiomatise ADT-like data types, and of sequences, recursive functions
and predicates. For VerCors’ OpenCL front end, on the other hand, custom do-
mains similar to the array encoding shown in Section 2.5.1, along with quantified
permissions and pure quantifiers for specifying permission, respectively, functional
properties, have become an important feature combination. Lastly, Chalice/Viper
makes extensive use of inhale and exhale statements to encode high-level features,
similarly to the example presented in Section 2.2.3. In summary, nearly all of Viper’s
key language features have been heavily used in at least one existing front end.

There are Chalice front ends for both Boogie and Viper, which support very similar
(but not identical) versions of the Chalice language. For the Chalice programs from
the previous subsection, the Boogie files were between 3.3 and 32.1 times the size
of the corresponding Viper files, and on average 11.2 times larger. This significant
difference illustrates the higher level of abstraction provided by the Viper language,
compared with existing intermediate verification languages.

Performance

The VerCors project switched from using Chalice as an intermediate verification
language to Viper, partly motivated by the available language features; for example,
the VerCors OpenCL front end relies heavily on quantified permissions, which are
not available in Chalice. Another reason was the performance of the different tool
chains. In the following, we compare the performance of the two tool chains on inputs
generated by the VerCors tools.

Running tests through the entire alternative tool chains proved difficult due to legacy
syntactic and implementation differences; however, we identified 17 examples from
VerCors’ test suite which VerCors could encode in both Chalice and Viper. For each
of these examples, we generated two (essentially equivalent) Boogie programs, one
using the standard Chalice verifier, the other using Viper’s verification-condition-
generation-based verifier.

Average Mean Max.
size (LOC) time (s) time (s)

Boogie file via Chalice 945.0 0.83 3.22
Boogie file via Viper 631.1 0.53 0.73
Ratio 66.8% 64.3% 22.5%

Figure 2.3: Comparison of alternative back-end infrastructures for the VerCors tools.
Using Viper’s verification-condition-generation-based verifier significantly reduces the
size and verification time of the generated Boogie programs compared to the standard
Chalice infrastructure. Timings do not include JVM start-up time: a JVM has been
persisted across test runs using the Nailgun tool [88]. Boogie start-up times (via Mono)
are included, however. All timings were gathered on a Lenovo Thinkpad T450s running

Ubuntu 15.04 64 bit, with 12GB RAM.

Figure 2.3 shows the results of our performance comparison. In all cases, the Boogie
files generated via the Viper route were smaller and verified faster. The same example
was slowest via both routes, and more than four times faster in the Viper-generated
version. Although our sample size is small, the results suggest Viper enables a
more direct encoding and offers a more streamlined verification condition generator.
In practice, however, the VerCors team typically use Viper’s symbolic-execution-
based verifier (Silicon, presented in Chapter 3), which is substantially faster still (as
demonstrated in Section 3.7).
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2.9 Related Work

An overview of the related work has already been given in Section 1.2, with a par-
ticular focus on the requirements derived from the thesis’ goal of developing an
infrastructure for permission-based verification (Section 1.1). In this section, we dis-
cuss existing verification infrastructures under consideration of concrete features and
design choices presented in the previous sections, and the use of other verification
languages as intermediate verification languages. In addition, we briefly discuss
existing permission models and their implementations, and compare them with
Viper.

Existing Verification Infrastructures

Viper’s design has been strongly influenced by Boogie [6], which has been successfully
used as the backbone of many different front ends. Boogie and Viper are procedural
and do not have a built-in notion of classes; their declarations (methods, functions,
etc.) are global and do not take implicit receivers; they support similar sets of control
flow statements, including conditionals, method calls, loops and goto; and they do
not distinguish between real and ghost code. Both languages are sequential, and
concurrency features of source languages need to be modelled in encodings, for
example, via assume/assert in Boogie, respectively, inhale/exhale in Viper.

Both languages have built-in support for certain first-order theories — maps in the
case of Boogie; sets, sequences and multisets in the case of Viper — and support
the declaration of further first-order theories via uninterpreted types and functions,
and appropriate axioms. Boogie programs, like Viper programs, are not guaranteed
to be sound (which facilitates the development of front ends): arbitrary assump-
tions can be encoded via assume statements, aforementioned axioms, and via free
pre-/postconditions and invariants (of which Viper’s inhale-exhale assertions are a
generalisation).

The most important difference between Viper and Boogie is that the latter does not
have a built-in notion of a heap, and consequently, of permissions: both concepts
can be encoded, as demonstrated by Chalice [84] and Viper’s own Boogie-backed
verifier (Figure 2.1), but this amounts to substantial work, including (1) the choice
of a suitable heap encoding (as discussed by Böhme et al. [19]), (2) a similar choice
for encoding permissions, which is particularly involved if the permission model
is richer than classical fractional permissions (such as Viper’s, Section 2.7), and (3)
appropriate encodings of permission logic features such as separating conjunction,
abstract predicates and magic wands. The required work significantly complicates
the development of new permission-based front ends, and we interpret the fact that
Chalice is the only permission-based Boogie front end as a consequence thereof. The
loss of structural information, resulting from the need to encode core concepts such
as a program heap, also impedes the development of efficient and precise back ends.

Boogie supports global variables and modifies-clauses for procedures and loops,
which (in combination with maps) enable different encodings of heaps and permis-
sions. In such encodings, fields (which are not a built-in concept) can be modelled as
elements of an uninterpreted type, which results in an additional loss of structural
information.

The resulting encoding, however, makes it possible to use program heaps analogous
to other values: heaps (that is, heap-modelling maps) can be stored in local vari-
ables and in other maps (and thus on encoded heaps), and they can be quantified
over; none of which can be done with Viper’s built-in heap. This increases Boogie’s
expressiveness, and enables, for example, the encoding of Viper’s labelled old expres-
sions (Section 2.2.3) in Boogie. Programs that use (encoded) heaps in such intricate
ways are very difficult to analyse statically, however, and since one of Viper’s goals
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is to facilitate the integration of verification and static analysis, we decided against
supporting the use of Viper’s built-in heap in such ways.

Boogie’s type system is richer than Vipers: it supports quantification over types,
both explicitly (via universal/existential quantifiers), and implicitly (via polymorphic
procedures and functions), and each type (whether built-in or custom) is automatically
equipped with a partial order. The latter is convenient for encoding, for example,
source-level class hierarchies; in Viper, corresponding partial orders can be defined
via appropriate domains.

The intermediate language of theWhy3 [18] verification infrastructure, calledWhyML,
is a sequential, first-order dialect of ML. WhyML supports all of Viper’s control flow
statements, with the exception of goto statements, but it also supports raising and
catching exceptions (which, for example, can be used to encode breaking out of
a loop, which could be encoded in Viper via goto statements). Similar to Boogie,
WhyML supports assert and assume statements that can be used to encode different
source-level semantics and (concurrency) features, as well as adding custom first-
order theories via uninterpreted types, functions and axioms. Unlike Boogie and
Viper, WhyML distinguishes between real and ghost code [47].

WhyML supports the declaration of (potentially recursive) records with named com-
ponents (comparable to structs with fields), and it allows mutable references. How-
ever, the language imposes static alias control for such references, which, for example,
rejects the definition of recursive records with mutable fields (as necessary, for ex-
ample, for mutable list or tree structures). Encoding program heaps in WhyML
that permit unrestricted aliasing therefore requires similar encoding efforts as re-
quired in Boogie, with all aforementioned disadvantages; and analogous for encoding
permissions and permission-based specifications. To our knowledge, no permission-
logic-based front end for Why3 exists.

Using Other Verification Languages as Intermediate Languages

Various automated verifiers exist (see also Section 1.2), with input languages that
have not explicitly been designed as intermediate verification languages, but which
could still be considered as potential target languages of other front ends.

Such verification languages typically offer bespoke support for a small set of high-
level programming (and specification) concepts, but do not provide constructs with a
lower abstraction level that facilitate the modelling of additional high-level concepts
not directly supported, such as Viper’s inhale/exhale statements. In situations
where the concepts supported by the source and the target language differ, front ends
may no longer be able to use the high-level concepts of the intermediate language
in their encodings, and may thus be left with the remaining language features (for
example, basic control flow statements), which can severely complicate the encoding
task, or even render it impossible. Poignantly formulated, the encoding is done
struggling against the language, rather than with its support.

Chalice, for example, has built-in support for several concurrency features, including
non-reentrantmonitors that can be acquired and released. To ensure deadlock-freedom
(recall Section 2.2.3), eachmonitor is associated with a waitlevel (a position in a partial
order), and Chalice prevents threads from acquiring monitors whose waitlevels are
not strictly greater than those of all monitors already held by the thread. The waitlevel
checks are built into the language and cannot be bypassed, which would be necessary
in an attempt to encode reentrant monitors by reusing Chalice’s support for non-
reentrant monitors. Due to the lack of inhale/exhale statements, the language
does not offer much support in this situation. Technically, it might be possible to
enocode inhale/exhale statements via invocations of methods with appropriate
post-/preconditions, but without support for methods that are parametric with
respect to their specifications (which is typically not given), such an encoding might
require one method per encoded statement.
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Permission Systems

This subsection briefly introduces relevant properties of permission systems4 and
gives an overview of existing systems, and discusses Viper’s permission system in
this context. The subsection is based on the introduction of the paper Constraint
Semantics for Abstract Read Permissions by Boyland, Müller, Schwerhoff and Summers
[28], published at FTfJP 2014.

Fractional permissions [25] (with permission amounts in R≥0 or Q≥0) are probably
the permission system most widely supported by automated verifiers for permission
logics, but alternatives exist [20, 43, 26]. To be useful for automatic program verifica-
tion, a permission system must have the following three key properties: the system
must be sufficiently expressive, it should require low annotation overhead, and it should
be amenable to automatic provers, especially SMT solvers.

Bornat et al. [20] identify two criteria that characterise expressive permission systems:
support for (1) unbounded divisibility (or “infinite splitting”), necessary, for example,
to specify programs which recursively fork threads and where all sub-threads need
read permission to a shared location (see also Section 2.7), and (2) unbounded counting,
required, for example, when one thread forks off an unbounded number of threads,
eachwith an identical permission, and thenwaits for them to finish (in arbitrary order).
A third requirement arises from scaling (partially (un)folding) abstract predicates,
which requires a permission system that supports multiplication.

To our knowledge, no existing implementation of a permission system satisfies all
of these requirements. Fractional permissions support unbounded divisibility and
multiplication, achieve low annotation overhead, and enjoy good support from SMT
solvers. However, unbounded counting seems impossible since if one starts with
a write permission (fraction 1), then however small a positive fraction q > 0 one
chooses to give to each sub-thread, there always is a point n after which 1− nq is no
longer positive.

Counting permissions [20] support unbounded counting by splitting a permission
into an unbounded number of units and the remainder. The system then tracks how
many units a thread holds (or how many it lacks for a full permission). However,
counting permissions support neither unbounded divisibility (because units cannot
be divided further), nor multiplication.

It is possible to compound fractional and counting systems [20], for example, by rep-
resenting permissions as a fraction plus a positive or negative number of units [84],
as implemented in Chalice. Dockins et al. [43] achieve this combination with a tree
system for permissions, but multiplication is not supported, and the encoding of
counting imposes additional structure (each counting permission is represented dif-
ferently), which potentially complicates implementation. The implemented decision
procedures by Le et al. based on this system [78] do not support counting. In our
experience (from working on Chalice), an implementation of a compound system can
lead tomany disjunctions in proof obligations (since access to a location is permitted if
the fraction or the unit count is positive), which potentially slows down SMT solvers.

Boyland [26] proposes a permission system based on Z[ε]+ (positive polynomials
over an infinitesimal) which satisfies all three criteria, but we are unaware of any
implementation using this complex and subtle system.

In recent work, Boyland et al. [28] introduced the concept of layered constraints, and
showed that fractional permissions, in combination with constraints over symbolic per-
mission amounts, suffice to support counting permissions (in addition to unbounded
divisibility and unrestricted multiplication). The formal model is quite complex, but
does not need to be exposed to users: it can be treated as if it were the real (or rational)

4A verification language (for example, Viper) implements a permission system, which is based on a
mathematical permission model, but includes additional aspects such as permission-typed expressions,
and a strategy for tracking permissions in the verification state. For brevity, we ignore this difference in
the context of this brief discussion.
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numbers with their usual arithmetic laws, which makes it intuitive to understand
(and straightforward to implement).

Viper’s permission system, presented in Section 2.7, implements fractional permis-
sions, and thus permits unbounded divisibility and multiplication, with low annota-
tion overhead and good SMT solver support. It also supports the idea of abstract read
permissions [58, 28] (via constraining blocks), which can substantially reduce the
annotation overhead in situations such as aforementioned recursive thread forking
(and improve modularity, as discussed in Section 2.7). Abstract read permissions
relieve users from having to pick explicit fractions in situations where any non-zero
amount suffices, for example, to read common data shared between forked threads.
The layered constraints introduced by Boyland et al. can be used to give a semantics to
abstract read permissions, and initial experiments showed that Viper’s support for ab-
stract read permissions is expressive enough to enable counting in certain situations.
We consider it future work to investigate how expressive the current support is, and
if necessary, how it could be improved to enable permission counting in general.

VeriFast [67] also supports (classical) fractional permissions, and thus allows unboun-
ded splitting (and multiplication), but not unbounded counting. However, VeriFast’s
standard library contains an encoding of counting permissions as tickets, which in-
volves ghost methods manipulating auxiliary separation logic predicates. The idea is
the following: counting starts by calling a ghost method start_counting(r, f) that
exhales f permissions to a resource (a field or predicate) r. Intuitively, the initially
exhaled permission amount f is used as a “pool” from which an unbounded amount
of tickets can be taken by calling a ghost method create_ticket(r) , which requires
a predicate initially provided by start_counting. Unlike counting permissions,
however, the tickets cannot be “summed up” easily, because they are encoded as
predicates, and thus cannot be counted (without further tickets). To sum up ticket
predicates, one needs additional recursive predicates that essentially encode a list of
tickets, or an additional ghost method that merges two tickets into a single ticket of
count two.

VeriFast supports permission-typed logical variables in specifications, and offers
limited support to instantiate these automatically, for example, at call site of a method.
However, only the first use of the variable is considered (so fractions cannot be
correlated) and that first use will use up all permissions that the caller has (so framing
is not supported).
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Chapter 3

Silicon: Symbolic Execution of
Viper

Symbolic execution was introduced four decades ago as a technique for testing, debug-
ging and verifying programs [74, 24, 54], but its practical breakthrough only came in
the early 2000s after significant advances in the field of constraint satisfiability solving
had been made that led to the development of high-performance SMT solvers [39,
92]. A major application area for symbolic execution is testing [33], where symbolic
execution is applied to increase the number of execution paths through a program
that are covered by tests. Another major application area is program verification, in
particular building automated verifiers for permission logics [12, 42, 119, 67, 116].
Across these areas, many different flavours of symbolic execution exist, but they
all share the same general idea: the execution proceeds using a symbolic state that
holds symbolic rather than concrete values, and each executed statement updates the
symbolic state according to its (abstract) semantics.

In the context of specification-based modular verification, such as Viper, a method
implementation can be verified by setting up an initial symbolic state representing all
concrete states that satisfy the precondition, by symbolically executing the method
body, starting from this initial state, and by checking that the postcondition holds in
the final state.

It is common for automated verifiers based on symbolic execution to invoke satis-
fiability solvers such as SMT solvers to discharge proof obligations that arise during
the verification: for example, if the current thread holds the permission to write to a
heap location, or if the precondition of a method call is satisfied. It is furthermore
common for symbolic-execution-based verifiers to branch over conditionals such as
if-then-else statements if the value of the condition is not statically known. In this
situation, both remaining paths through the program are symbolically executed: the
if branch under the assumption that the conditional is true, and the else branch
under the opposite assumption.

Another popular choice for building automated verifiers is verification condition gener-
ation. Given, for example, a method with pre- and postcondition, verifiers based on
this technique typically compute a single, potentially large formula from the post-
condition and the method body, called the weakest precondition [41] (of the method
body with respect to the postcondition). This weakest precondition formula has the
important property that, if the method is executed in a state that satisfies the formula,
then the postcondition will be established. Having computed this formula, auto-
mated verifiers then invoke, for example, an SMT solver to check if the user-specified
method precondition implies the weakest precondition.

Both techniques — symbolic execution and verification condition generation— thus
ultimately invoke SMT solvers to discharge proof obligations. Verifiers based on
symbolic execution, however, typically query the solver very often, at every step of
the symbolic execution, but each query is comparatively short and the information the
solver has is limited, for example, to the current execution path through the method.
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Verifiers based on verification condition generation, on the other hand, rarely query
the solver, for example, only once permethod, but each timewith substantial formulas
that encode the whole method body.

Compared to verification condition generation, the stepwise nature of symbolic
execution allows a more fine-grained control over the verification process, which
facilitates the development of efficient verifiers: in particular, because it enables
the use of dedicated data structures and algorithms, for example, to represent and
manipulate parts of the symbolic state, and it enables selecting when to make which
information from the symbolic state available to the underlying solver.

Building on this observation, the developers of Smallfoot [11], the first automated
verifier for separation logic, developed a style of symbolic execution that is tailored to
verifying programs with permission-based specifications, and that facilitates the use
of off-the-shelf SMT solvers by verifiers that ultimately handle a custom extension of
first-order logic (such as separation logic). The defining characteristic of Smallfoot-
style symbolic execution is the separation of the symbolic state into path conditions,
corresponding to program assertions expressed in first-order logic, for example,
equalities between symbolic values (pure assertions, Chapter 2), and a symbolic heap,
corresponding to assertions not expressed in first-order logic, for example, permis-
sions to fields, and predicate and magic wand instances (spatial assertions, Chapter 2).
Specialised algorithms and data structures are then employed to handle the latter,
and only the first-order-logic assertions are passed to the underlying SMT solver.

The state separation typically improves performance, but also entails incomplete-
nesses that are common among verifiers based on Smallfoot-style symbolic execution.
Such incompletenesses arise if facts that are available in the path conditions have not
yet been propagated to the symbolic heap, and vice versa. Consider, for example, the
Viper assertion acc(x.f, p) && acc(y.f, q) && R: the permissions to x.f and
y.f are part of the symbolic heap, whereas R is (assumed to be) pure and thus part
of the path conditions. If R implies 1 < p + q, then the semantics of the separating
conjunction and of permissions in turn imply that x and y cannot be aliases. Simil-
arly, if R implies that x and y are aliases, then this in turn implies acc(x.f, p + q).
However, both examples require reasoning across the separated state components,
which requires appropriate support from the verifiers. To improve performance, veri-
fiers often maintain a representation of the symbolic heap that under-approximates
permissions (which does not allow the reasoning required by the second example).

Since its introduction through Smallfoot, this style of symbolic execution has been suc-
cessfully used and extended by several other verifiers, such as jStar [42], VeriFast [67]
and VeriCool [121] (recall also Section 1.2), and it has become the predominant imple-
mentation technique for permission-based verifiers. Experience gained in the context
of Chalice has shown [72] that verifiers based on Smallfoot-style symbolic execution
usually perform better than comparable verifiers based on verification condition
generation; an experience that has also been reported elsewhere [118, 119].

Chapter Overview

This chapter presents symbolic execution rules for Viper, which constitute the core of
Silicon, Viper’s symbolic-execution-based verifier. The work was influenced strongly
by Smans’ work on symbolic execution for implicit dynamic frames [119], in particular
with respect to how the symbolic state is represented and how heap snapshots are
used to frame heap-dependent expressions (Section 3.1.2), how the symbolic execution
is built-up from four core execution primitives (Section 3.1.3), and the general way in
which the rules are presented.

The main contributions of this chapter are the following:

• A classification of aliasing-related incompletenesses (Section 3.4.2) that can arise
from the separation of the symbolic state (as previously illustrated), and that
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are commonly exhibited by verifiers based on Smallfoot-style symbolic exe-
cution (Section 3.7.3 discusses to which degree related verifiers exhibit such
incompletenesses).

• A lazy, failure-driven technique that reduces the number of situations in which
such incompletenesses arise in practice, without noticeably degrading perform-
ance (Section 3.4.2).

• Support for quantifiers over heap-dependent expressions, which are a corner-
stone of full-functional verification, but which have not previously been sup-
ported by verifiers based on symbolic execution (Section 3.4.3).

• A technique for joining symbolic execution paths that is a prerequisite for
supporting quantifiers over heap-dependent expressions (Section 3.4.3).

• Support for Viper’s permission introspection features (perm and forperm)
which, for soundness, requires a precise representation of the permissions avail-
able in a symbolic state, whereas verifiers typically use an under-approximation-
based heap representation.

• A technique for axiomatising heap-dependent functions to an SMT solver that
facilitates reuse of techniques that have been proposed in the context of verific-
ation condition generation, and that significantly improves completeness with
respect to reasoning about heap-dependent functions.

The remainder of this chapter is structured as follows: initially, the necessary back-
ground definitions (Section 3.1) and the symbolic execution primitives that are the
basic building blocks of the verifier (Section 3.1.3) are introduced. Next, the symbolic
rules for executing statements (Section 3.2), for producing (inhaling) and consuming
(exhaling) assertions (Section 3.3), and for evaluating expressions (Section 3.4) are
presented. Afterwards, it is shown how to establish the validity of specifications such
as method contracts (Section 3.5), and how to axiomatise heap-dependent functions
(Section 3.6). The chapter continueswith a thorough evaluation of Silicon (Section 3.7),
which includes a comparison with related work (Section 3.7.3), before it concludes
with a discussion of known limitations (Section 3.8).

3.1 Technical Prelude

3.1.1 Language

Figure 3.1 shows the subset of Viper for which symbolic execution rules are given in
this chapter. The subset covers all of Viper (as defined in Figure 2.2), except

• quantified permissions and magic wands, which are discussed in Chapter 4
and Chapter 5, respectively

• field declarations, which are effectively ignored by the symbolic execution: only
the used field identifiers and the corresponding types matter

• custom domain declarations because domain axioms (and domain function
declarations) are heap-independent, and directly translated to the underlying
SMT solver

• goto statements: Viper supports reducible control flow graphs in which back
edges are annotated with invariants, such that they can be treated analogous to
while loops during verification; handling forward edges in a symbolic execution
is straightforward. To simplify the presentation of the symbolic execution rules,
goto statements are therefore omitted.

• constraining blocks, which are not yet fully supported by Silicon (see also
Section 3.8), and the partial support is not essential for the discussion of the
symbolic execution rules
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• let expressions, whose support is conceptually straightforward, but slightly
complicates the presentation (Silicon fully supports let expressions)

Relative to Silicon’s actual implementation, the following changes to the syntax of
expressions have been made:

• In the implementation, permissions to fields are denoted by acc(e. f, p)
(where p denotes a permission-typed expression) and to predicate instances
by acc(pred(e), p). For uniformity, the notation acc(id(e), p) is used in the
formalisation to denote permissions to either a predicate instance or a field. In
the latter case, e is a singleton list: the field receiver. That is, p permissions to a
field e. f are denoted by acc( f(e), p).

• Standard old expressions are subsumed by labelled old expressions: instead of
the actual Viper syntax old(e), the formalisation uses the syntax old[pre](e)
and assumes that pre is a predefined label that denotes the prestate of the
method invocation to which the old expression conceptually belongs.

• For simplicity, universal and existential quantifiers may only have a single
trigger with a single expression inside.

• The formalisation supports a shape of forperm expressions that is more general
than the shape that Viper currently allows: Viper’s forperm expressions are
limited tomatching against fields (syntax forperm[ f] x : T :: e), whereas the
formalisation supports matching against fields and predicate instances (syntax
forperm x : T :: {id(e)} e). More details are given in Section 3.4.4.

program ::= decl
decl ::= preddecl | funcdecl | methdecl
preddecl ::= predicate pred(x: T) {a}
id ::= f | pred
funcdecl ::= function func(x: T): T

requires a
ensures e

{e}
methdecl ::= method meth(x: T) returns (y: T)

requires a
ensures a

{stmt}
stmt ::= var x: T | x := e | x := new( f) | x := meth(e) |

x. f := e | stmt; stmt | label lb |
inhale a | exhale a | assert a |
fold acc(pred(e), e) | unfold acc(pred(e), e) |
if (e) {stmt} else {stmt} |
while (e) invariant a {stmt}

a ::= e | acc(id(e), e) | [a, a] | a && a | e ? a : a
e ::= op(e) | e. f | func(e) | e ? e : e | old[lb](e) |

unfolding acc(pred(e), e) in e | perm(id(e)) |
forall x: T :: {e} e |
exists x: T :: {e} e |
forperm x: T :: {id(e)} e

Figure 3.1: The subset of Viper covered in this chapter. Overlining denotes repetition.
Metavariable f ranges over fields, T over types, x, y over variables, pred over predicates,
func over heap-dependent functions, meth over methods, and lb over labels. acc(id(e))
denotes permissions to a field (of a single receiver) or to a predicate instance (with
an arbitrary number of arguments). op denotes any heap-independent function of
arbitrary arity, including (dis)equality; arithmetic, relational and boolean functions
(and literals); set, sequence and multiset functions; and custom domain functions.
Custom domain declarations are omitted; for simplicity, they are treated in this thesis

as theories natively supported by the underlying SMT solver.
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In the rest of this chapter, all programs are assumed to be syntactically well-formed
in the usual sense: all used symbols (types, fields, variables, labels, methods etc.)
are properly declared, currently in scope, and of the expected type and arity, and
all expressions are well-typed. old expressions may only occur in postconditions of
functions and methods, and in method bodies.

3.1.2 Initial Definitions and Background Theory

In order to define the symbolic execution rules for the subset of Viper shown in
Figure 3.1, a few initial definitions are necessary.

Definition 1. Let foldl be the fold-left function as available in functional programming
languages such as Haskell. We omit its (standard) implementation, but we briefly
recapitulate its signature

foldl : X → Y → (X → Y → Y)→ Y

which can be understood as follows: the first parameter X denotes a collection (for
example, a sequence, a set or amap) of elements of some type X; the second parameter
of some type Y denotes the initial accumulator value; the third parameter of type
X → Y → Y denotes a combinator function that is applied pointwise to each collection
element and the current accumulator in order to obtain the next accumulator. The
result of foldl is the final accumulator.

We take the liberty of using n-ary functions in positions where a function of an n-
tuple is expected, and vice versa. This avoids cluttering the formalisation with trivial
operations that translate between tuples and multiple arguments, for example, when
applying foldl. C

Definition 2. The empty set symbol ∅ is used to denote empty sets, multisets, and
maps; set union ∪ and set subtraction \ are also overloaded and used with sets,
multisets, and maps. Curly braces denote set literals, for example, {a, b, c}. Updating
a map, denoted by m[k 7→ v], yields a map m′ that is equivalent to m, except that m′

maps k to v, that is, m′(k) = v.

Square brackets denote list literals, for example, [a, b, c], and the empty sequence is
denoted by [ ]. Prepending an element a to a sequence l is denoted by a :: l, and the
concatenation of two lists l1 and l2 is denoted by l1 ::: l2.

Iterated operators are used with sets and sequences, for example,
∧

vs denotes the
conjunction of all elements of the set or sequence vs. Whenever convenient, syntactic
repetition such as e is used analogously with iterated operators, as in

∧
e. C

Definition 3. Let S be the type of statements, with typical element stmt; let A be
the type of assertions, with typical element a; let E be the type of expressions, with
typical element e in case of arbitrary expressions and p in case of permission-typed
expressions; and let Var, a subtype of E, be the type of local variables.

Textual substitution of t3 (an expression, an assertion or a statement) for every occur-
rence of t2 in t1 is denoted as t1[t2 7→ t3]. C

Definition 4. Let R be the type of verification results: either success or failure. Verifica-
tion results can be composed using a short-circuiting ∧ operator. If Q is an operation
returning a verification result, then the verification result of success∧Q is Q’s result,
whereas failure∧Q short-circuits to failurewithout executing Q. C

Symbolic Values and Expressions

Definition 5. Let V be the type of symbolic values, with typical element v, and let
Perm, a subtype of V, be the type of symbolic permission values. C
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Many symbolic execution rules evaluate a program expression such as e to a symbolic
expression that denotes the symbolic value of e. In order to emphasise the relation
between program expressions and their respective symbolic values, we may use
primed versions for the symbolic expression that denotes the program expression’s
symbolic value: for example, a program expression e evaluates to a symbolic value
denoted by e′. In program snippets, we alternatively may use different fonts to distin-
guish between program expressions and their symbolic counterparts: for example, a
program variable x and its symbolic value x.

Symbolic expressions are terms and formulas of a many-sorted first-order logic (in
practice, the syntactical subset of formulas as defined by the SMT-LIB standard).
For each Viper type (built-in such as Int, and custom such as the Array type from
Section 2.5.1), we employ a matching sort in the signature of our logic. The signature
also includes the usual arithmetic operators, relational symbols and boolean connect-
ives, as well as an operator ite(v1, v2, v3) that denotes the function that returns v2 if
v1 is true, and v3 otherwise. The sort that corresponds to Viper’s permissions type
Perm can either be the rational or the real numbers, with multiplication, addition and
subtraction. Write permissions (write in Viper) are interpreted as the value 1, no
permissions (none in Viper) as 0.

Furthermore, let the signature contain sorts for Viper’s collection types, that is, for
Set[T], Seq[T] and Multiset[T], and functions representing the necessary collec-
tion operations, for example, set contains and sequence concatenation. Silicon does
not reason about these collections itself, it merely translates collection-typed expres-
sions to a corresponding symbolic expression, and delegates the entire reasoning
to the underlying SMT solver. Since SMT solvers (such as Z3 [92]) typically do not
natively support such collections, Silicon uses an axiomatisation of sets, sequences
and multisets that is emitted to the solver as part of Silicon’s background theory.
The axiomatisation is, modulo minor changes, the same as used by Dafny [82]. The
axiomatisation is omitted from this thesis since it is irrelevant for the discussion of
the symbolic execution.

In order to simplify the presentation of the symbolic execution rules, we take the
liberty of mixing program and symbolic expressions, for example, by substituting a
sub-expression (of a larger program expression) for the symbolic expression it has
been evaluated to. It will be ensured (by construction) that the substituted symbolic
expression’s sort corresponds to the type of the replaced program expression.

Fresh Identifiers

Definition 6. An identifier or a symbol is fresh with respect to a point during an
ongoing symbolic execution if the identifier syntactically differs from all identifiers
that have been used in the execution performed so far.

We use fresh in positions where any kind of identifier is expected. For example,
ι := fresh introduces a fresh identifier referred to by ι. fresh is always used such that
the context uniquely defines which kind of fresh identifier is needed, for example,
a fresh symbolic value or a fresh label identifier. In the case of symbolic values,
the context also uniquely determines the sort of the fresh symbolic value, and we
therefore omit any kind of sort annotation. C

Symbolic States

Definition 7. Let Σ denote symbolic states, with typical element σ. Symbolic states
are immutable records with at least the following entries (further entries are added
in later chapters):

• A store γ of type Γ that maps local variables to their symbolic values (that is, Γ
is the map type Var→ V).
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• A path condition stack π of type Π that records all assumptions that have been
made (phrased differently: all constraints that have been collected) on the
current verification path. Path conditions are symbolic expressions of boolean
sort, including quantified formulas.

• A symbolic heap h of type H that records which locations, that is, which fields,
respectively, predicate instances, are currently accessible and which symbolic
values they have.

• A labelled heapsmap lbh of type Label→ H that maps label identifiers to symbolic
heaps1.

C

Definition 8. We use curly braces to denote the construction of symbolic states: for
example, {γ := ∅, π := ∅, h := ∅, lbh := ∅} denotes the empty state, that is, a state
with each state entry initialised with its respective empty value. We also use curly
braces to denote state updates: for example, σ

{
γ := σ.γ[b 7→ true]

}
denotes a state

σ′ that is an exact copy of σ, except that the store of σ′ maps the local variable b to
the symbolic value true. C

The havoc function shown in Figure 3.2 is used to update a store by assigning a fresh
symbolic value to each variable in a given collection of variables.

01 havoc : Γ→ Var→ Γ
02 havoc(γ, x) =
03 foldl(x, γ, (λ xi, γi · γi[xi 7→ fresh]))

Figure 3.2: Havocing the values of variables in a symbolic store.

Definition 9. Path condition stacks π of type Π are sequences of path condition scopes,
where each scope is a triple (Id, V, Set[V]) consisting of a unique scope identifier, a
branch condition, and a set of path conditions. C

Scope identifiers are used to determine the branch and path conditions newly ob-
tained between two points during a symbolic execution, branch conditions represent
the condition of branches taken during an execution (they typically come from con-
ditionals in the program or in the specifications), and path conditions represent all
other constraints that have been collected during the execution. In comparison with
related work (for example, [119]), our representation of path conditions as a stack of
triples may look surprisingly complicated, but it is necessary in order to formalise
joining verification paths, as is discussed in Section 3.4.3.

The union of all path conditions and branch conditions contained in a given path
condition stack yields the set of constraints that have been collected on the corres-
ponding verification path. For convenience, we may use the term path conditions to
refer to this union in situations where the exact structure of a path condition stack
does not matter.

Figure 3.3 shows functions used by the symbolic execution to manipulate path condi-
tion stacks. pc-add adds a single path condition to the top-most path condition scope;
lifting pc-add such that it adds a collection of path conditions is straightforward, and
we use pc-add as if it were lifted accordingly.

pc-push pushes a new path condition scope onto a given stack of path conditions,
whereas pc-after returns only those scopes of a given path condition stack that have
been pushed after a specific scope (identified via its scope identifier), including that
scope itself.

1The current symbolic heap h is essentially a special case of a labelled heap and could be replaced by
looking up a dedicated label in the map of labelled heaps.
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01 pc-add : Π→ V → Π
02 pc-add(π, v) =
03 Let (id, bc, pcs) :: suffix match π
04 (id, bc, pcs∪ {v}) :: suffix
05

06 pc-push : Π→ Id→ V → Π
07 pc-push(π, id, bc) =
08 (id, bc, ∅) :: π
09

10 pc-after : Π→ Id→ Π
11 pc-after(π, id) =
12 Let prefix :::[(id, bc, pcs)] ::: suffix match π
13 prefix :::[(id, bc, pcs)]
14

15 pc-all : Π→ Set[V]
16 pc-all(π) =
17 foldl(π, ∅, (λ (idi, bci, pcsi), alli · alli ∪ {bci} ∪ pcsi))

Figure 3.3: Functions operating on path condition stacks: adding path conditions,
pushing new path condition scopes, retrieving path conditions recorded after a certain

point, and retrieving all recorded path conditions.

pc-all flattens a path condition stack by conjoining branch and path conditions across
all scopes of the given stack. Intuitively, the set of path conditions returned by pc-all
is the set of all constraints collected on the verification path represented by the given
stack.

Definition 10. Symbolic heaps h of type H are multisets of heap chunks of the shape
id(v; w), where id denotes a field or a predicate identifier. The semicolon separates
two sequences of arguments: the arguments before the semicolon are effectively
in-arguments, the remaining are out-arguments. More details follow shortly. C

Definition 11. If id denotes a field, such a chunk is called a field chunk and its shape
is id(r; v, p), where r, v and p are symbolic expressions that denote the receiver of
the location identified by r.id (in the program), the location’s symbolic value and the
permission amount provided by the chunk, respectively. Intuitively, a field chunk
can be understood as a points-to predicate from separation logic.

If id denotes a predicate, then the chunk is called a predicate chunk and its shape is
id(arg; s, p), where arg are the arguments of the corresponding predicate instance, s
is the snapshot of the predicate and p (as before) denotes the permissions provided by
that chunk. C

For uniformity, we may use the term snapshot to refer to predicate chunk snapshots
and field chunk values.

The snapshot of a predicate represents the values of the heap locations abstracted
over by the predicate, and is used to frame heap-dependent expressions that depend
on these heap locations: for example, a heap-dependent function that requires a
predicate instance in its precondition, which it then unfolds in the body (via an
unfolding). More details about snapshots are given in Section 3.2.

Definition 12. Let Id be the type of chunk identifiers, with elements of the shape id(v),
obtained by omitting the second argument sequence (the out-arguments) of a heap
chunk. C

Chunk identifiers are used for finding chunks in a symbolic heap that match a field
access (and analogous for predicate instances): for example, in order to evaluate a
field read e. f , which requires determining if the location is accessible and what its
symbolic value is. This is implemented by finding a chunk f (e′; v, p) that matches
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the field chunk identifier f (e′) (where e′ denotes the symbolic value corresponding
to e), and if the chunk provides sufficient permissions (0 < p), then v denotes the
required symbolic value.

The previous example illustrates why the first sequence of arguments of a heap
chunk denotes in- and the second denotes out-arguments: finding a heap chunk
(in a symbolic heap) is essentially a function of the in-arguments that returns the
out-arguments.

The following functions are used to manipulate symbolic heaps:

heap-add : H→ Π→ Id→ Snap→ Perm→ (H, Π)
heap-rem : H→ Π→ Id→ Perm→ (H→ Snap→ R)→ R

heap-add adds permissions to a heap, whereas heap-rem removes permissions. In-
tuitively, adding permissions adds a new heap chunk that provides the added per-
missions (an operation that cannot fail), and removing permissions subtracts the
required permissions from chunks in the heap. The latter can fail if the heap holds
fewer permissions than need to be removed. An initial implementation of these
functions is given in Section 3.3, and later on refined in Section 3.4.2 to account for
joining execution paths.

Checking and Asserting Path Conditions

Figure 3.4 shows two functions that check and assert, respectively, if a constraint,
that is, a boolean-sorted symbolic expression, is true in a given state. Intuitively, the
difference between checking and asserting a constraint is that the former may or may
not succeed in order for the verification to continue, whereas the latter must succeed.
For example, checking constraints is used to implement optimisations such a pruning
infeasible verification paths, whereas constraints are asserted during the verification
of a method postcondition.

check queries the underlying SMT solver to see if a given constraint is valid in a given
state. We assume that the solver returns either true or false, indicating whether or
not the constraint is valid. Since proof obligations arising from Viper programs are
in general undecidable, the solver may also return “unknown”, indicating that its
proof search did not yield a definite result. “unknown” is interpreted as a negative
result: that is, as false.

assert lifts the boolean result of check to a verification result (of type R). In practice,
assert takes a verification failuremessage as an additional argumentwhich iswrapped
by the returned failure, but for simplicity, failure messages are generally omitted from
the presentation of the symbolic execution.

01 check : Π→ V → Bool
02 check(π, v) = pc-all(π) `SMT v
03

04 assert : Π→ V → R
05 assert(π, v) =
06 if check(π, v) then success()
07 else failure()

Figure 3.4: Checking path conditions.
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Snapshots and Heap-Dependent Functions

Definition 13. Let Snap, a subtype of V, be the sort of snapshots, and let the signature
of the logic contain the following snapshot-related functions:

unit : Snap
pair : Snap→ Snap→ Snap
first : Snap→ Snap
second : Snap→ Snap

The constant unit is the empty snapshot, pair is used to construct pairs of snapshots,
and first and second are used to deconstruct pairs of snapshots into their constituents.
Constructing and deconstructing snapshots is axiomatised as follows:

∀s1, s2 : Snap · first(pair(s1, s2)) = s1 ∧ second(pair(s1, s2)) = s2

In addition, let the signature of the logic contain the following family of functions
(parameterised by the sort S):

boxS : S→ Snap
unboxS : Snap→ S

boxS is used to embed values of some sort S in the snapshot sort, and unboxS is the
corresponding inverse function that inverts the embedding. For a fixed sort S, the
two functions are axiomatised as follows:

∀v : S · unboxS(boxS(v)) = v
∀s : Snap · boxS(unboxS(s)) = s

C

For brevity, applications of these functions are omitted from the presentation of the
symbolic execution rules. For example, given a symbolic value 0 of sort Int, is is
implicitly understood that first(pair(0, _)) is of sort Int (and yields symbolic value 0)
because it abbreviates unboxInt(first(pair(boxInt(0), _))).

Definition 14. Let the signature of the logic contain, for each heap-dependent func-
tion occurring in the program under verification

function func(x : T) : Tr

of arity n, a corresponding function symbol of arity n + 1

func : x : S→ Snap→ Sr

where each sort Si is the sort corresponding to the type of the ith argument Ti, and
where sort Sr corresponds to the return type Tr. C

The additional function argument is the snapshot of the function, which represents
the symbolic values of the heap locations a function depends on, and is used to
frame function applications across heap modifications. An application func(e) of a
heap-dependent function (in a program) is encoded as the symbolic function applic-
ation func(e′, s), where e′ are the symbolic arguments, and where s is the function
snapshot. More details about the treatment of heap-dependent functions are given in
Section 3.4.3 and Section 3.6.
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3.1.3 Symbolic Execution Primitives

The symbolic execution engine implemented in Silicon is based on the four execution
primitives shown below, which execute statements, produce (inhale) and consume
(exhale) assertions, and evaluate expressions, respectively. These primitives, which
are elaborated in the remainder of this chapter, are presented in continuation-passing
style [49]: the last argument of each primitive is a continuation, that is, a function that
represents the remaining symbolic execution that still needs to be performed (in the
presentation of symbolic execution rules, continuations are typically denoted by the
letter Q, as in Figure 3.5).

exec : Σ→ S→ (Σ→ R)→ R
produce : Σ→ A→ Snap→ (Σ→ R)→ R
consume : Σ→ A→ (Σ→ Snap→ R)→ R
eval : Σ→ E→ (Σ→ V → R)→ R

exec (elaborated in Section 3.2) executes a statement in a given symbolic state, and
(potentially) invokes its continuation (third parameter) with an updated state. produce
(Section 3.3) implements inhaling an assertion, and its continuation is therefore
invokedwith an updated state as well. The snapshot parameter of produce determines
the symbolic values of heap locations to which permissions are inhaled (if any).
consume (Section 3.3) is the dual operation: it implements exhaling an assertion,
and the additional snapshot argument passed to its continuation represents the
symbolic values of heap locations to which permissions have been exhaled. eval
(Section 3.4) symbolically evaluates an expression in a given heap, which yields
a symbolic expression, and a potentially updated state in cases where new path
conditions were obtained during the evaluation. eval is also used in a lifted version
that evaluates a list of expressions to a list of corresponding symbolic expressions.

3.2 Executing Statements

In addition to the functions introduced in Section 3.1.2 that operate on states, and
to the four execution primitives introduced in Section 3.1.3, a number of auxiliary
functions are used in Silicon’s symbolic execution rules. These auxiliary functions
are gradually introduced in the remainder of this chapter, starting with Figure 3.5.

For a given assertion and a permission value, scalemultiplies the permission value
of each accessibility predicate occurring in the assertion by the permission value
passed to scale. The implementation of scale is omitted, it can be implemented as a
straightforward recursive transformer over the structure of assertions.

01 scale : A→ E→ A
02 scale : A→ Perm→ A
03 scale(a, p) = replace every acc(id(e), q) in a with acc(id(e), p · q)
04

05 branch : Σ→ V → (Σ→ R)→ (Σ→ R)→ R
06 branch(σ, v, Qv, Q¬v) =
07 (if ¬check(σ.π, ¬v) then Qv(σ

{
π := pc-push(σ.π, fresh, v)

}
)

08 else success())
09 ∧
10 (if ¬check(σ.π, v) then Q¬v(σ

{
π := pc-push(σ.π, fresh, ¬v)

}
)

11 else success())

Figure 3.5: Auxiliary functions for scaling assertions by permissions and for branching
the flow of the symbolic execution. The feasibility check is an optimisation, performed

to avoid exploring known-infeasible branches.
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The signature of scale is overloaded in order to allow scaling accessibility predicates by
a permission-typed Viper expression, respectively, by a permission-sorted symbolic
value. The latter results in a Viper assertion with an (already evaluated) symbolic
expression spliced in (recall that we generally allow mixing program and symbolic
expressions in this way).

branch enables splitting the symbolic execution into two paths: one path (Qv) is
taken under the assumption that v is true, the second path (Q¬v) is taken under the
assumption that v is false. As an optimisation, a feasibility check is performed to
avoid exploring known-infeasible branches (on which the additional assumption
about v would contradict the current path conditions).

01 exec(σ1, s1; s2, Q) =
02 exec(σ1, s1, (λ σ2 ·
03 exec(σ2, s2, Q)))
04

05 exec(σ, var x : T, Q) =
06 Q(σ

{
γ := havoc(σ.γ, x)

}
)

07

08 exec(σ1, x := e, Q) =
09 eval(σ1, e, (λ σ2, e′ ·
10 Q(σ2

{
γ := σ2.γ[x 7→ e′]

}
)))

11

12 exec(σ1, x. f := e, Q) =
13 eval(σ1, e, (λ σ2, e′ ·
14 consume(σ2, acc(x. f , 1), (λ σ3, _ ·
15 produce(σ3, acc(x. f , 1) && x. f == e′, Q)))
16

17 exec(σ1, x := new( f), Q) =
18 σ2 := σ1

{
γ := havoc(σ1.γ, x)

}
19 produce(σ2, acc(x. f , 1), fresh, Q)
20

21 exec(σ1, z := meth(e), Q) =
22 eval(σ1, e, (λ σ2, e′ ·
23 consume(σ2, methpre[x 7→ e′], (λ σ3, _ ·
24 σ4 := σ3

{
γ := havoc(σ3.γ, z), lbh := σ3.lbh[pre 7→ σ1.h]

}
25 produce(σ4, methpost[x 7→ e′][y 7→ z], fresh, (λ σ5 ·
26 Q(σ5

{
lbh := σ5.lbh[pre 7→ σ1.lbh(pre)]

}
))))))))

27 where methpre/methpost denotes the pre-/postcondition of method meth, where x are the
method’s formal input parameters, and where y are its formal output parameters; recall
that state entry lbh represents the labelled-old heap and that pre is a predefined label

27

28 exec(σ1, inhale a, Q) =
29 produce(σ1, a, fresh, Q)
30

31 exec(σ1, exhale a, Q) =
32 consume(σ1, a, (λ σ2, _ ·
33 Q(σ2)))
34

35 exec(σ1, assert a, Q) =
36 consume(σ1, a, (λ _, _ ·
37 Q(σ1)))
38
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39 exec(σ1, fold acc(pred(e), p), Q) =
40 eval(σ1, p :: e, (λ σ2, p′ :: e′ ·
41 assert(σ2.π, 0 ≤ p′) ∧ (
42 bdy := scale(predbody[x 7→ e′], p′)
43 consume(σ2, bdy, (λ σ3, s·
44 produce(σ3, acc(pred(e′), p′), s, Q))))))
45 where predbody denotes the body of predicate pred, and where x are the predicate’s formal

parameters
45

46 exec(σ1, unfold acc(pred(e), p), Q) =
47 eval(σ1, p :: e, (λ σ2, p′ :: e′ ·
48 assert(σ2.π, 0 ≤ p′) ∧ (
49 bdy := scale(predbody[x 7→ e′], p′)
50 consume(σ2, acc(pred(e′), p′), (λ σ3, s ·
51 produce(σ3, bdy, s, Q))))))
52

53 exec(σ, label lb, Q) =
54 Q(σ

{
lbh := σ.lbh[lb 7→ σ.h]

}
)

55

56 exec(σ1, if (e) {stmt1} else {stmt2}, Q) =
57 eval(σ1, e, (λ σ2, e′ ·
58 branch(σ2, e′,
59 (λ σ3 · exec(σ3, stmt1, Q)),
60 (λ σ3 · exec(σ3, stmt2, Q)))))
61

62 exec(σ1, while (e) invariant a {stmt}, Q) =
63 γ2 := havoc(σ1.γ, x)
64 produce(σ1

{
h := ∅, γ := γ2

}
, a && e, fresh, (λ σ3 ·

65 exec(σ3, stmt, (λ σ4 ·
66 consume(σ4, a, (λ _, _ · success()))))))
67 ∧
68 consume(σ1, a, (λ σ2, _ ·
69 produce(σ2

{
γ := γ2

}
, a && !e, fresh, Q)))

70 where x are the loop targets, that is, local variables that are declared outside of the loop
but assigned to inside the loop

Figure 3.6: Rules for the symbolic execution of statements.

Figure 3.6 presents the symbolic execution rules for executing statements. The rules
are presented in continuation-passing style, and pattern matching is used to define
the individual rules, for example, on line 1 and line 5. Pattern matching is also used
to indicate that arguments (or return values) have a certain structure, as on line 40.
An underscore denotes a pattern that matches everything without binding it, and
thus indicates that an argument (or return value) is irrelevant; for example, on line 14.
Symbols such as variables are declared either by binding them via pattern matching,
or on first use, for example, on line 18. Sequencing is expressed via indentation:
lines on the same indentation level, for example, line 18 and line 19, are sequentially
composed. Sequentially composed statements form a statement block, and the return
value of such a block is the return value of its last statement (as in Scala): for example,
the result of executing a new statement (line 17) is the result of the production in
line 19. To improve readability, statement blocks may be surrounded by parentheses
and indented: for example, the block on the lines 41 – 44, which returns a verification
result (recall that verification results can be composed via their short-circuiting ∧
operator).

Most of the symbolic execution rules shown in Figure 3.6 are self-explanatory, but a
few need additional explanations.
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An assignment x. f := e is executed by first obtaining the symbolic value of the
right-hand-side expression, followed by consuming write permission to x. f . The
consumption achieves two things: it ensures that sufficient permission is available,
and that the location’s current value is discarded (that is, havoced). How the latter is
technically achieved will become clear once the rule for symbolically evaluating a
field read has been presented (Figure 3.10). Afterwards, the previously exhaled write
permission is restored, and the location’s havoced (that is, fresh) value is constrained
to equal the assigned value.

A new statement havocs the target variable and adds write permissions per field
identifier fi included in the new statement. Note that the presented rule has been sim-
plified such that it does not encode the fact that the reference to a newly instantiated
object (here: the target variable) is different from each already existing reference In
many cases, reference disequalities are implied by the held permission amounts (see
also Section 3.4.2), but this does not always suffice. In its implementation, Silicon
additionally assumes that the reference to a newly instantiated object is different from
all references directly reachable in the current heap, which includes sets, sequences
and multisets of references, but not reference-typed locations folded in predicates.
Although incomplete, this approach works quite well in practice; more details are
given in the comparison to related work in Section 3.7.3.

Executing a method call z := meth(e) proceeds by consuming the method’s precon-
dition, with the actual (symbolic) arguments replacing the formal input parameters,
followed by havocing the call targets, and by producing the method’s postcondition,
again with appropriate substitutions for the formal input and output arguments.
Before the callee’s postcondition is produced, the heap in which the call is executed
(that is, the current heap) is installed as the callee’s old heap by updating the cor-
responding binding in the labelled-heaps maps. The latter is undone before the
execution continues after the call.

An assert statement checks the given assertion by exhaling it, but it afterwards
continues in the pre-exhale state. This gives assert the semantics of checking, but
not removing, permissions.

Folding a predicate instance, and unfolding it afterwards without temporarily “giving
it away” in between (exhaling it, and then inhaling an instance with the same argu-
ments but potentially different heap values), should not incur a loss of information:
that is, it should be possible to frame the values of heap-dependent expressions across
such fold-unfold pairs. Consider, for example, the snippet

predicate pair(x: Ref) { acc(x.f) && acc(x.g) }

inhale acc(x.f) && acc(x.g) && x.f == x.g
fold acc(pair(x))
// ... arbitrary code that does not exhale acc(pair(x))
unfold acc(pair(x))
assert x.f == x.g

To enable such framing, Smans [119] introduced the concept of predicate chunk
snapshots, which represent the values of the heap locations the predicate abstracts
over. In the previous example, pair abstracts over x.f and x.g, and the snapshot
of the folded pair instance thus is the pair of values (v1, v2), which in turn are
the symbolic values of x.f and x.g. That is, they are the snapshots of the field
chunks obtained from inhaling permissions to these locations, and removed as part
of the unfold. When the predicate instance is unfolded, the reverse takes place: the
pair instance chunk is removed in exchange for two field chunks, whose respective
snapshots are v1 and v2; the final assertion in the previous example therefore succeeds.

The symbolic execution rules for fold and unfold realise this approach to framing
as follows: a fold statement fold acc(pred(e), p) is executed by consuming the
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appropriately scaled body of the predicate, followed by producing the folded predic-
ate instance. Consuming (Figure 3.9) the body yields a snapshot that captures the
values of those heap locations to which (some) permissions have been consumed;
(v1, v2) in the previous example. The obtained snapshot is passed to the subsequent
produce (Figure 3.8) and thus used as the snapshot of the chunk corresponding to
the newly produced predicate instance.

An unfold statement is analogously executed, but this time, the snapshot is taken
from the chunk corresponding to the unfolded predicate instance and used to de-
termine the values of the (newly) produced heap locations. In the previous example,
the predicate chunk’s snapshot of the predicate (still) is (v1, v2), and producing the
predicate body with this snapshot adds two field chunks to the heap, corresponding
to x.f and x.g and with snapshots v1 and v2, respectively.

Loops are symbolically executed in two steps: the first step verifies the loop body
and re-establishes the invariant, the second step ensures that the invariant can be
established before the loop, and it sets up the state in which the execution proceeds
after the loop. In the first step, the invariant and the negated loop condition are
produced into a state with an empty heap and havoced loop targets, the body is
executed in the resulting state, and the postcondition is consumed afterwards. The
second step consumes the invariant from the initial state, which havocs locations
to which the loop required all available permissions. Subsequently producing the
invariant (and the negated loop guard) results in a state corresponding to the program
location after the loop, in which the execution is continued.

3.3 Producing and Consuming Assertions

The rules for producing and consuming assertions are shown in Figure 3.8 and Fig-
ure 3.9, respectively. Before presenting the rules, a few additional auxiliary functions
— shown in Figure 3.7 — need to be introduced that are used by the production and
consumption rules.

heap-add adds permissions to a state by adding a new heap chunk that provides the
corresponding permission amount. The dual operation is heap-rem, which removes
permissions from a state by trying to find a single chunk that provides at least the
permission amount that needs to be removed, and (if successful) by replacing the
found chunk with an updated chunk that provides the remaining permissions. If no
single chunk provides sufficient permission, a verification failure is raised.

There is an obvious discrepancy between heap-add and heap-rem: heap-add adds
permissions by creating new chunks, and due to fractional permissions, a heap might
contain multiple chunks for the same chunk identifier (for example, field location).
heap-rem, on the other hand, only looks at each chunk in isolation. This discrep-
ancy would result in several heap-related incompletenesses which are discussed in
Section 3.4.2, and as a consequence, a refined version of heap-add is presented there.

01 heap-add(h, π, id(v), s, p) =
02 (h ∪ {id(v; s, p)}, π)
03

04 heap-rem(h1, π1, id(v), p, Q) =
05 if (∃ id(w; s, q) ∈ h1 · check(π1,

∧
v = w ∧ p ≤ q)) then

06 h2 := (h1 \ {id(w; s, q)}) ∪ {id(w; s, q− p)}
07 Q(h2, s)
08 else
09 failure()

Figure 3.7: The first implementation of adding and removing permissions. The existen-
tial denotes a pattern match operation, and is not a logical existential (and not passed
to the underlying solver): it denotes an iteration (in arbitrary order) over heap chunks
in order to find one that matches the existential’s body. The existential also acts as a

binder (here: of w, s and q) whose scope extends to the end of the rule.
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01 produce(σ, v : V, s, Q) =
02 Q(π

{
π := pc-add(σ.π, {v, s = unit})

}
)

03

04 produce(σ1, e, s, Q) =
05 eval(σ1, e, (λ σ2, e′ ·
06 produce(σ2, e′, s, Q)))
07

08 produce(σ1, acc(id(e, p)), s, Q) =
09 eval(σ1, p :: e, (λ σ2, p′ :: e′ ·
10 Let v be e′ 6= null if id denotes a field, and true otherwise
11 (h3, π3) := heap-add(σ2.h, σ2.π, id(e′), s, p′)
12 π4 := pc-add(π3, {v, 0 ≤ p})
13 Q(σ2

{
h := h3, π := π4

}
)))

14

15 produce(σ1, a1 && a2, s, Q) =
16 produce(σ1, a1, first(s), (λ σ2 ·
17 produce(σ2, a2, second(s), Q)))
18

19 produce(σ1, e ? a1 : a2, s, Q) =
20 eval(σ1, e, (λ σ2, e′ ·
21 branch(σ2, e′,
22 (λ σ3 · produce(σ3, a1, s, Q)),
23 (λ σ3 · produce(σ3, a2, s, Q)))))
24

25 produce(σ, [a1,_], s, Q) =
26 produce(σ, a1, s, Q)

Figure 3.8: Producing (inhaling) assertions.

Figure 3.8 shows the symbolic execution rules for producing assertions. As before,
only the interesting cases are discussed. The first rule, with the explicit type ascrip-
tion v : V, matches symbolic expressions (such as those previously spliced into an
assertion), and adds them to the set of path conditions. The rule also adds the path
condition s = unit, making it explicit that the production snapshot s does not denote
any heap values.

Producing a conjunction a1 && a2 produces a1 followed by a2, and indirectly adds the
path condition that the snapshot of the conjunction is a pair of snapshots, whose
components are the snapshot of a1 and a2. Producing an accessibility predicate yields
the additional assumptions that the produced permission amount is non-negative and
that field receivers are non-null; both properties are checked by the corresponding
consume rule (presented next).

The rules for consuming assertions are shown in Figure 3.9. Function consume itself
creates a copy of the current heap, the consume heap, from which consume’ then
removes the permissions required by the assertion to consume. If consume’ succeeds,
the execution continues in the left-over heap.

The initial heap is duplicated in order to ensure that exhaling an assertion such
as acc(x.f) && x.f == 0 does not fail because of the left-to-right order in which
conjunctions are handled: consuming the accessibility predicate removes permissions
to x.f from the heap, and evaluating the field read in the resulting heap would
otherwise then fail. Expressions such as x.f == 0 are therefore evaluated in the
original heap, while permissions are taken from the consume heap.

Analogous to the first rule for producing assertions, the first consume’ rule matches
symbolic expressions, which are asserted to be true. Consuming a symbolic ex-
pression yields the empty heap snapshot unit, thereby matching the corresponding
produce rule. All other rules are analogous to their produce counterparts.
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01 consume(σ1, a, Q) =
02 consume′(σ1, σ1.h, a, (λ σ2, h2, s ·
03 Q(σ2

{
h := h2

}
, s)))

04

05 consume′ : Σ→ H → A→ (Σ→ H → Snap→ R)→ R
06

07 consume′(σ, h, v : V, Q) =
08 assert(σ.π, v) ∧
09 Q(σ, h, unit)
10

11 consume′(σ1, h, e, Q) =
12 eval(σ1, e, (λ σ2, e′ ·
13 consume′(σ2, h, e′, Q)))
14

15 consume′(σ1, h1, acc(id(e), p), Q) =
16 eval(σ1, p :: e, (λ σ2, p′ :: e′ ·
17 Let v be e′ 6= null if id denotes a field, and true otherwise
18 assert(σ2.π, 0 ≤ p′ ∧ v) ∧ (
19 heap-rem(h1, σ2.π, id(e′), p′, (λ h2, s ·
20 Q(σ2, h2, s)))))
21

22 consume′(σ1, h1, a1 && a2, Q) =
23 consume′(σ1, h1, a1, (λ σ2, h2, s1 ·
24 consume′(σ2, h2, a2, (λ σ3, h3, s2 ·
25 Q(σ3, h3, pair(s1, s2))))))
26

27 consume′(σ1, h, e ? a1 : a2, Q) =
28 eval(σ1, e, (λ σ2, e′ ·
29 branch(σ2, e′,
30 (λ σ3 · consume′(σ3, h, a1, Q)),
31 (λ σ3 · consume′(σ3, h, a2, Q)))))
32

33 consume′(σ, h, [_, a2], Q) =
34 consume′(σ, h, a2, Q)

Figure 3.9: Consuming (exhaling) assertions.

Representing Partial Heaps as Snapshots

Snapshots are used to represent the values of the heap locations to which an assertion
includes permissions, that is, to the partial heap the assertion describes. Following
Smans’ work [119], Silicon represents snapshots as binary trees (nested pairs), whose
structure is determined by the structure of the source assertion, in particular by the
separating conjunctions that occur in the assertion. Leaves in the tree correspond to
either accessibility predicates or pure sub-assertions (of the overall assertion): for
accessibility predicates, the leaf is the value of the corresponding heap location (which
for predicate instances is itself a snapshot representing the partial heap described by
the instance), and for pure sub-assertions, the leaf is the unit value, expressing that
the sub-assertion does indeed not describe the shape of the heap.

Since snapshots represent heap values, they can be used to preserve values across
modifications of the symbolic heap, including fold-unfold pairs (as discussed in
Section 3.2): on fold, the partial heap described by the predicate instance’s body is
removed (by removing permissions) in exchange for the folded instance, and vice
versa on unfold. Folding the body yields a snapshot that describes the values in the
removed partial heap, which is stored alongside the folded predicate instance (as the
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snapshot of the corresponding predicate chunk), and then used on unfold in order to
“restore” the values of the partial heap to which permissions are (re)gained.

Snapshots can be obtained in two ways: by constructing a snapshot tree during the
consumption of an assertion (Figure 3.9), and by exploring (or deconstructing) a given
snapshot during the production of an assertion (Figure 3.8). For example, folding a
predicate proceeds by consuming the body (and storing the obtained snapshot in the
new predicate chunk), and unfolding proceeds by using that snapshot (taken from
the chunk) in the production of the predicate body in order to determine the values
(snapshots) of the newly produced heap chunks.

Preserving heap values this way requires (1) that the rules for producing and con-
suming assertions are symmetrical with respect to how they (de)construct snapshots
(which they are), and (2) that the structure of the snapshot always matches the struc-
ture of the assertions it is used with. In particular, it is only sound to use a snapshot
(obtained from consuming an assertion) in the production of the very same source
assertion, which includes the structure of the assertion.

In Silicon, snapshots that are used two or more times (such as the snapshots involved
with (un)folding predicates) are by-construction always used with the same source
assertion. However, due to inhale-exhale assertions, the structure of an assertion
when consumed might nevertheless differ from the structure it has upon production:
recall that an inhale-exhale assertion [a1, a2] is produced as a1 but consumed as a2.

In the context of this thesis, we therefore disallow occurrences of inhale-exhale
assertions in places where they would result in the (in general unsound) use of
snapshotswith assertions of varying structure. This disallows inhale-exhale assertions
in predicate bodies (as discussed, the same snapshot is consumed and produced) and
function preconditions (similar), but for example, not in method specifications: in
the latter case, the snapshot obtained from consuming the precondition at call site
is discarded (see the rule for executing method invocations in Figure 3.6) and not
used to produce the precondition when verifying the method body (discussed in
Section 3.5). Note that this restriction only applies to spatial inhale-exhale assertions
(which include accessibility predicates), not to pure inhale-exhale expressions, since
the latter always yield the unit snapshot, independent of its further structure. More
details about this limitation of the use of inhale-exhale assertions are provided in
Section 3.8.

3.4 Evaluating Expressions

The rules for symbolically evaluating expressions are in general more involved than
the symbolic execution rules presented so far, which is a consequence of the diversity
of Viper’s expression language, and cover language features such as unfolding
expressions, heap-dependent function applications, quantifiers and permission in-
trospection. The presentation of the evaluation rules is therefore divided into three
subsections, with an additional subsection dedicated to making information that is
implicitly available in the heap explicitly available to the underlying solver as path
conditions.

3.4.1 Basic Evaluation Rules

The first group of evaluation rules is shown in Figure 3.10. The rule for op(e)matches
any heap-independent function of arbitrary arity, including built-in boolean, arith-
metic and relation operators, domain function applications, and set, sequence and
multiset expressions; all of which can be represented by a corresponding symbolic
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function application op′(e′). For partial functions such as division or sequence index-
ing, appropriate checks need to be performed that ensure that the function is defined
for its arguments.

Evaluating a heap read e. f succeeds if a heap chunk for e. f can be found that provides
non-zero permissions, in which case that chunk’s snapshot is the symbolic value
resulting from the evaluation. If no such chunk exists, the verification fails. Recall
(Figure 3.7) that the existential denotes a pattern match operation that iterates over
all heap chunks, it is not a logical existential (and not passed to the underlying
solver). Evaluating a labelled old expression proceeds by temporarily making the
heap stored under the given label the current heap, in which the nested expression is
then evaluated as usual.

01 eval(σ1, v : V, Q) = Q(σ1, v)
02

03 eval(σ1, x, Q) = Q(σ1.γ(x))
04

05 eval(σ1, op(e), Q) =
06 eval(σ1, e, (λ σ2, e′ ·
07 Q(σ2, op′(e′))))
08

09 eval(σ1, e. f , Q) =
10 eval(σ1, e, (λ σ2, e′ ·
11 if (∃ f (v; s, p) ∈ σ2.h · check(σ2, v = e′ ∧ 0 < p)) then
12 Q(σ2, s)
13 else
14 failure())
15

16 eval(σ1, old[lb](e), Q) =
17 eval(σ1

{
h := lbh(lb)

}
, e, (λ σ2, e′ ·

18 Q(σ2
{

h := σ1.h
}

, e)))

Figure 3.10: A first set of symbolic evaluation rules: for local variables, heap-
independent functions, field reads and labelled old expressions.

3.4.2 Overcoming Heap Incompletenesses

Verifiers based on Smallfoot-style symbolic execution, which maintain the symbolic
state as two separate components (a set of path conditions and a set of heap chunks),
commonly exhibit heap-related incompletenesses2that arise from (1) the heap repres-
entation and management, which typically approximates the semantics of the spatial
aspects of a permission logic such as permissions and the separating conjunction, and
from (2) the state separation, which complicates proofs that require the combination
of spatial and pure reasoning, that is, of facts that are implied by the symbolic heap
with facts implied by path conditions.

Despite being commonly exhibited by verifiers based on Smallfoot-style symbolic
execution, however, there has not yet been an attempt (that we are aware of) to
systematically categorise such incompletenesses, to identify different kinds of incom-
pleteness, or to describe usage patterns that often cause incompletenesses.

To address this issue, we have identified three kinds of heap-related incompleteness
(which, without taking further measures, would be exhibited by the symbolic exe-
cution rules presented so far), alongside different aliasing patterns that potentially
complicate overcoming these incompletenesses. Afterwards, we describe a novel

2Orthogonal to this discussion are incompletenesses that arise from other sources such as a solver’s
incomplete support for certain theories, or generally undecidable theories.
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approach to reducing the number of situations in which these incompletenesses
can arise; the approach combines algorithms that “exchange” information between
the separate state components with a strategy for lazily applying these algorithms.
Finally (in Section 3.7), we compare Silicon’s implementation of this approach to
other verifiers based on Smallfoot-style symbolic execution, and demonstrate that the
technique indeed reduces the likelihood that incompletenesses can be observed.

Kinds of Incompleteness

Afirst kind of incompleteness can potentially be observedwhen exhaling permissions.
Recall the asymmetry between the implementations of heap-add and heap-rem from
Figure 3.7: heap-addpotentially addsmultiple heap chunks for the same heap location,
and semantically, the total permission amount (to a single location) held by such a
heap is the permission sum across all heap chunks for that location. heap-rem, in
contrast, looks at each chunk in isolation and greedily tries to find a single matching
chunk that provides sufficient permission. As a consequence of this asymmetry, the
following example, in which code comments are used to show the relevant parts of
the symbolic state, would incorrectly fail to verify:

inhale acc(x.f, 1/2) && acc(x.f, 1/2) (~Ex. 1-1~)
// h : f (x; _, 1/2), f (x; _, 1/2)

assert acc(x.f) // Might fail

This example can be made more challenging (for a symbolic execution engine) by
introducing definite aliasing between x and y:

inhale acc(x.f, 1/2) && acc(y.f, 1/2) (~Ex. 1-2~)
// h : f (x; _, 1/2), f (y; _, 1/2)

inhale x == y
assert acc(x.f) // Might fail

The complexity can be increased further by introducing disjunctive aliasing, which
describes situations in which a reference is an alias of at least one out of several other
references, as illustrated by the next example:

inhale acc(x.f) && acc(y.f) (~Ex. 1-3~)
inhale z == x || z == y
assert acc(z.f) // Might fail

A second, strongly related kind of incompleteness can potentially be observed when
reading a field. Consider the following example:

inhale acc(x.f, 1/2) && acc(x.f, 1/2) && x.f == 0 (~Ex. 2-1~)
// h : f (x; s1, 1/2), f (x; s2, 1/2)
// π : s1 = 0

exhale acc(x.f, 1/2)
// h : f (x; s2, 1/2)
// π : s1 = 0

assert x.f == 0 // Might fail (s2 = 0 unknown)

Recall the evaluation rule for field reads from Figure 3.10: the rule selects the first
matching heap chunk (that provides non-zero permissions) and returns its value as
the result of the field read. As a consequence, the information that a particular heap
location has a specific value could be tied to a single heap chunk, as in the previous
example. If this chunk could no longer frame its value, that is, if all permissions were
removed from the chunk, then the relevant information would be lost.

Analogous to the example illustrating the first kind of incompleteness, this example
can also be complicated further by introducing definite or disjunctive aliasing. The
aliasing information can also be introduced retrospectively, that is, only after already
having exhaled permissions to the (then) aliased location:
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inhale acc(x.f, 1/2) && acc(y.f, 1/2) && x.f == 0 (~Ex. 2-2~)
exhale acc(x.f, 1/2)
inhale x == y // Retrospectively learn aliasing
assert y.f == 0 // Might fail

A third kind of incompleteness can arise when facts implied by the semantics of
permissions are not available to the solver:

inhale acc(x.f) && acc(y.f) && z == x (~Ex. 3-1~)
assert x != y // Might fail
inhale acc(z.f, 1/10)
assert false // Might fail

As before, the example can be further complicated by introducing aliasing, either
immediately or retrospectively.

Overcoming Incompletenesses

Completely overcoming all of the incompletenesses would require the symbolic
execution to take a global view on the heap and its evolution: it would require changing
the rules for adding and removing permissions, respectively, and for reading fields,
such that all possible aliasing relations are taking into account; and in addition, it
would require some notion of the previous evolution of the heap in order to account
for retrospective aliasing.

Intuitively, this (likely to be expensive) strategy would result in a symbolic execution
engine that mimics the total heaps encoding of permission logics that verifiers based
on verification condition generation such as Chalice (and Viper’s second verifier,
Carbon) achieve by encoding heaps and permissions as mathematical maps. Such
verifiers typically do not exhibit any of the aforementioned incompletenesses.

Due to the potential complexity of the previously sketched strategy, Silicon imple-
ments an incomplete (but sound) approach where the greedy matching approach
described for removing permissions and evaluating field reads is complemented
by state consolidations which are performed in order to reduce the number of cases
in which incompletenesses arise from this greediness. (Note that we also explored
alternative, non-greedy approaches: to a limited extent in the context of permission
introspection, discussed in Section 3.4.4, and extensively in the context of quantified
permissions, discussed in Chapter 4.)

State consolidations potentially affect both components of a symbolic state: they
can make facts that are implied by the symbolic heap available to the solver (by
adding them as new path conditions), for example, non-aliasing relations that follow
from permission amounts, and they can rewrite the symbolic heap according to
information available in the path conditions, for example, merge chunks whose
receivers are aliased.

The extent to which state consolidations improve completeness is controlled by two
orthogonal parameters: to which degree (or which patterns of) aliasing is taking into
account, and how frequently they are applied. We concentrate on aliasing first, and
then discuss frequency of application.

State Consolidation Algorithms

A major task performed by Silicon’s state consolidation is merging field chunks
that definitely correspond to the same heap location, that is, chunks (for the same
field) whose receivers are definitely aliased; merging chunks means adding up their
permission amounts and equating their snapshots. Predicate chunks are merged
analogously: if all arguments are definitely equal. In addition, state consolidations
also infer reference disequalities from the chunks’ permission values. This approach
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usually works well in practice and overcomes the incompletenesses illustrated by the
previously shown examples Ex. 1-1, 1-2, 2-1 and 3-1. However:

(1) It does not prevent incompletenesses which are due to disjunctive aliasing.
(Ex. 1-3). To our knowledge, no verifier based on symbolic execution is complete
(with respect to the discussed heap-related incompletenesses) in the presence
of disjunctive aliasing; see also the comparison in Section 3.7.3.

(2) It does not prevent incompletenesses which are due to retrospective aliasing
(Ex. 2-2). We are not aware of a comparable verifier that is complete in the
presence of retrospective aliasing; see also Section 3.7.3.

(3) It still exhibits certain aliasing-related incompletenesses of the second kind
of incompleteness. The situation in which such incompletenesses can arise is
characterised in the remainder of this subsection. Comparable verifiers exhibit
similar incompletenesses, but to a greater extent, as shown in Section 3.7.3.

These remaining incompletenesses can often be overcome by adding (ghost) code.
For example, incompletenesses arising from disjunctive aliasing can be overcome by
forcing the symbolic execution engine to branch such that the disjunctive aliasing is
resolved and reduced to definite aliasing.

01 consolidate : H → Π→ (H, Π)
02 consolidate(h, π) =
03 hi := h; πi := π
04 do {
05 (hi, πi) := merge-into(∅, πi, hi)
06 πi := infer-disequalities(hi, πi)
07 πi := assume-valid-permissions(hi, πi)
08 } while (hi or πi changed)
09 (hi, πi)
10

11 merge-into : H → Π→ H → (H, Π)
12 merge-into(hdst, π, hsrc) =
13 foldl(hsrc, (hdst, π), (λ idi(vi, si, pi), (hdsti

, πi) ·
14 if (∃ idi(wi; ti, qi) ∈ hdsti

· check(πi,
∧

vi = wi)) then
15 s := fresh
16 sdef := (0 < pi ⇒ s = si) ∧ (0 < qi ⇒ s = ti)
17 hdsti+1

:= hdsti
\ {idi(wi; ti, qi)} ∪ {idi(wi; s, pi + qi)}

18 (hdsti+1
, pc-add(πi, sdef ))

19 else
20 (hdsti

∪ {idi(vi; si, pi)}, πi)))
21

22 infer-disequalities : H → Π→ Π
23 infer-disequalities(h, π) =
24 Let ps be the set of all unordered pairs { fi(vi, _, pi), fi(wi, _, qi)}
25 Let ps of different field chunks in h that have the same field identifier
26 foldl(ps, π, (λ { fi(vi, _, pi), fi(wi, _, qi)}, πi ·
27 if check(πi, pi + qi > 1) then pc-add(πi, vi 6= wi)
28 else π))
29

30 assume-valid-permissions : H → Π→ Π
31 assume-valid-permissions(h, π) =
32 Let h f ⊆ h contain all heap chunks for identifier f
33 foldl(h f , π, (λ fi(vi, _, pi), πi ·
34 pc-add(πi, pi ≤ 1)))

Figure 3.11: Silicon’s state consolidation algorithms. merge-into merges a heap hsrc
into hdst by merging definitely-aliased chunks. infer-disequalities makes reference
disequalities implied by permission amounts explicit by adding corresponding path
conditions. assume-valid-permissions adds the assumption that a well-formed state

cannot hold more than write permission to a field.
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A simplified version of Silicon’s state consolidation algorithm is shown in Figure 3.11.
The actually implemented version contains several optimisations that gain perform-
ance in practice but do not affect the worst-case complexity, which is cubic in the
number of heap chunks.

merge-into merges a heap hsrc into hdst by iterating over all chunks chi in hsrc, and if it
finds a matching chunk chj in hdst, it sums up their permission values and equates
their snapshots. It is this step that makes aforementioned greedy approaches to
finding matching heap chunks acceptable in practice because it consolidates the heap
such that a single chunk provides all permissions definitely held by the state to a
specific location, and because it equates the snapshots of merged chunks and thereby
“shares” information that was potentially tied to a single chunk (that is, snapshot).
This overcomes the incompletenesses illustrated by the previously shown examples
Ex. 1-1, 1-2 and 2-1.

In addition, infer-disequalities adds a reference disequality for each pair of field chunks
whose combined permission amount would (definitely) exceed write permissions,
and assume-valid-permissions constrains each field chunk to provide at most write per-
missions, fromwhich the infeasibility of certain verification pathsmight be concluded.
This overcomes the incompletenesses illustrated by Ex. 3-1.

Finally, consolidate consolidates a symbolic state by iteratively applying the previ-
ous three functions until no further changes can be made. The fix-point iteration
performed by consolidate (which is responsible for the operation’s cubic worst-case
complexity) is necessary because each iteration potentially adds path conditions that
enable a subsequent iteration to consolidate the state further. For example, merging
chunks for x1.f and x2.f adds the equality x1.f == x2.f, which in the presence of
a path condition such as x1.f == x2.f ==> x2 == x3would in turn allowmerging
chunks for x2.f and x3.f. In our experience, however, such situations rarely arise in
practice and consolidate typically terminates after two iterations.

Termination of consolidate is guaranteed as follows:

(1) A heap contains only finitely many heap chunks, and the repeated invocations
ofmerge-into either successively reduce the number of chunks, or do not change
the heap.

(2) The invocations of infer-disequalities and assume-valid-permissions do not affect
the heap directly, but the path conditions they add can potentially allow a
subsequent merge-into to merge additional chunks.

(3) infer-disequalities and assume-valid-permissions add path conditions on each
invocation, but two subsequent invocations add the same path conditions if no
chunks were merged in between, which does not change the overall set of path
conditions.

State Consolidation Frequency

Next, we discuss the frequency with which state consolidations are performed. An
ideal approach with respect to completeness would be to consolidate the state after
every state update, in particular, after adding permissions or path conditions. Perform-
ing state consolidations so frequently is expensive, since the worst-case complexity of
a consolidation is cubic in the number of heap chunks. Moreover, most consolidations
would probably be fruitless because in practice, the vast majority of path conditions
obtained during a symbolic execution do not affect the heap shape, and is instead
concerned with functional properties.

To achieve a practical trade-off between efficiency and completeness, Silicon imple-
ments a hybrid approach that combines statically and dynamically chosen consolida-
tion points: by performing a partial consolidation whenever permissions are added
to a state (using merge-into to add the new chunk), and by triggering a full state
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consolidation on failure, that is, whenever an assertion fails (after which the assertion
is checked again).

Merging new chunks into the current heap prevents the incompleteness illustrated
by example 1-1, but not the one illustrated by example 1-2 (but the more expensive
on-failure state consolidation does). Situations as illustrated by the first example,
however, have arisen in practical examples such as the encoding of an AVL-tree that
is part of Viper’s test suite, where permissions to a location are in general shared
between different data structure nodes (such as a parent and its children), but are
temporarily combined to perform certain operations (such as inserting a node).

Compared to (only) consolidating on-failure, merging new chunks into the current
heap has the advantage that it is relatively cheap (linear instead of cubic complexity).
Another potential advantage is a reduced number of assertions that are checked twice,
once before (which fails) and once after the on-failure consolidation.

It is of course possible to perform state consolidations at other statically chosen points
during the execution, for example, after an assertion such as a precondition has been
produced. We experimentally tried a corresponding strategy, but it increased the
average verification time by 50%. The runtimes of this experiment are the following
(the Viper test suite contained 540 test files when the experiment was conducted; see
Section 3.7 for more details on how we evaluate Silicon’s performance):

(1) Silicon base line (state consolidations as described here): 205s for all test files

(2) Consolidate after each invocation of produce, but don’t merge each new chunk
in separately: 310s in total; 5 fewer unexpected errors (prevented incomplete-
nesses); 1 additional incompleteness (due to not merging new chunks in)

(3) Consolidate after each invocation of produce and merge each new chunk in sep-
arately: 315s in total; 5 fewer unexpected errors (prevented incompletenesses)

Since it is difficult to statically identify points at which state consolidations improve
completeness in a practically relevant way without significantly degrading perform-
ance, Silicon instead implements a strategy that enables dynamically choosing the
points at which a state consolidation is to be performed. The strategy, implemented
by the try operation shown in Figure 3.12, effectively ensures that a state consolidation
is performed before a consume operation begins that would otherwise fail, in a way
that does not noticeably affect performance in practice: without try, the test suite
(which contained 552 tests when the experiment was conducted) completed in 234s
and 13 tests failed (due to incompletenesses), whereas with try all tests passed in
237s.

01 try : Σ→ (Σ→ (Σ→ R)→ R)→ (Σ→ R)→ R
02 try(σ, Qaction, Q) =
03 reslocal := failure()
04 resglobal :=
05 Qaction(σ,
06 (λ σ1 ·
07 reslocal := success()
08 Q(σ1)))
09 if reslocal is a failure then Qaction(σ

{
h, π := consolidate(σ.h, σ.π)

}
, Q)

10 else resglobal
11

12 consume(σ1, a, Q) =
13 try(σ1, (λ σ2, Qsucc · consume′(σ2, σ2.h, a, Qsucc)), Q)
14

15 heap-add(h, π, id(v), s, p) =
16 merge-into(h, π, {id(v; s, p)})

Figure 3.12: Silicon’s try function, implementing a scoped, failure-driven try-react-retry
execution flow.
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try takes two continuations as its arguments: the action continuation (Qaction) corres-
ponds to the action that is to trigger a state consolidation if it fails, and that is to be
retried after the consolidation. The second continuation (Q), as usual, denotes the
remainder of the verification.

In addition, Figure 3.12 shows updated versions of two previously shown rules. The
first is an updated version of consume from Figure 3.9, where the actual consume
operation is passed as the action continuation to try in order to ensure that the
consumption triggers a state consolidation, should it fail, after which it is retried.
The second updated rule is an improved version of heap-add from Figure 3.7, which
ensures that each newly added heap chunk is immediately merged with a potentially
already existing heap chunk with the same identifier.

The invocation of the success continuation, which is passed by try to the action con-
tinuation (line 6), marks the point at which the action successfully executed (and
shifts control back to try). This is necessary in order to limit the scope during which
a failure triggers a state consolidation and a subsequent re-execution of the action.
Intuitively, the success continuation acts like a backtracking barrier: once passed, a
later failure will not make the execution backtrack above the barrier in order to retry
an action that was performed above the barrier. In spirit, the success continuation is
therefore related to the cut in the Prolog language.

To illustrate the effect of the success continuation, consider the following snippet:

exhale true
...
exhale false // Expected to fail

The consume operation corresponding to the first exhale trivially succeeds, and the
verification can be continued. Eventually, the final exhale is reached, which fails,
triggers a state consolidation, and fails again. The execution therefore backtracks and
propagates the failure upwards, which, without the backtracking barrier, would result
in a state consolidation before the first exhale, followed by another execution of the
whole program. In substantial programs with many verification branches and nested
try operations, unrestricted backtracking would most likely have a severe negative
effect on performance in cases where the verification is expected to fail.

3.4.3 Branching and Joining Evaluations, and Quantifiers

Recall that Silicon branches over conditionals (as do similar verifiers): for example,
when executing if-then-else statements (Figure 3.6), and producing and consum-
ing conditional assertions (Figure 3.8 and Figure 3.9, respectively); performing the
dual operation of joining execution paths, in order to prevent an exponential blow-up
of paths, could thus be considered natural.

Intuitively, execution paths can be joined by taking the different symbolic states at the
join point, that is, at the end of the individual paths, and making them conditional
on the branch conditions under which they each were obtained. This intuitive idea
can be implemented for sets of path conditions by making the individual constraints
in the sets conditional on the corresponding branch conditions, and similarly for
symbolic heaps: by making the symbolic permission expressions of the individual
chunks conditionals of the branch conditions.

Joining path conditions and symbolic heaps in this way is precise with respect to
the (ideal) semantics of assertions: an assertion should hold after the join point if
and only if it holds on each individual path that reaches it (if the execution were
not joined). However, due to Silicon’s incomplete heap management described in
Section 3.4.2, joining heaps could cause aliasing-related incompletenesses in situ-
ations where the conditionals introduced in the permission expressions (by joining
chunks) prevent the greedy chunk lookup algorithms (Figure 3.7 and Figure 3.10)
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from finding a chunk that definitely provides sufficient permissions. Indeed, recall
from Section 3.4.2 that aliasing-related incompletenesses can often be overcome by
forcing the symbolic execution to branch over conditionals that (per branch) reduce
uncertain aliasing relations to definite aliasing, which can be handled by the com-
bination of greedy heap algorithms and state consolidations: heap joins effectively
introduce such aliasing-related uncertainty, and thus might prevent the greedy heap
algorithms from succeeding. An example that illustrates such incompletenesses (by
encoding the potential effects of heap joins) can be found in Listing B.1 in Appendix B.

Joining path conditions only does not entail similar problems, but limits the applicab-
ility of joins to execution paths that result in semantically equivalent symbolic heaps.
An important subset of the executions for which this is guaranteed is the evaluation of
expressions (which branch over conditionals, as is discussed shortly) because expres-
sions are pure and their evaluation does thus not modify the heap. This statement may
appear to be invalidated by the following two observations: (1) evaluating certain
expressions such as unfolding a predicate instance at least temporarily modify the
heap, and (2) evaluating an expression may trigger a state consolidation and thus
change the representation of the heap. However, the first kind of heap modification
is indeed only temporary and limited to the scope of the evaluated expressions (and
thus “reverted” afterwards), and the second kind can be ignored (that is, the con-
solidated heap can be replaced with the previous, unconsolidated version) without
changing the heap’s semantics. Hence, all states that are reached after the evaluation
of an expression (on potentially different evaluation paths through that expression)
can soundly be treated as having the same symbolic heap, that is, the one in which
the evaluation started.

Joining evaluation paths yields two results: (1) a symbolic state whose set of path
conditions includes the (appropriately conditionalised) path conditions obtained on
the individual paths, and (2) a single symbolic expression that jointly represents the
symbolic expressions obtained from the individual evaluations.

Joining branching evaluation paths potentially reduces the total number of paths
explored by the symbolic execution, but at the cost of more-complex path conditions
with additional conditionals, which potentially affects the performance of the solver,
for example, by causing case splits in proofs. Experience gained in previous work
[72], however, suggests that trading execution paths for disjunctions is beneficial and
can improve the overall verification time. Moreover, joining such evaluation paths is
even necessary in order to support quantifiers, as is discussed next.

Quantifiers over Branching Expressions

Consider this rule candidate for evaluating conditional expressions (that we cannot
actually use, as is explained shortly), which evaluates conditional expressions analog-
ously to how exec handles conditional statements: by branching over the condition.

eval(σ1, e1 ? e2 : e3, Q) =
eval(σ1, e1, (λ σ2, e′1 ·
branch(σ2, e′1,
(λ σ3 · eval(σ3, e2, Q)),
(λ σ3 · eval(σ3, e3, Q)))))

In addition, consider the following general strategy for symbolically evaluating quan-
tifiers such as forall x: T :: e: (1) add a fresh local variable y (with symbolic
value y) to the current symbolic store, (2) evaluate the quantifier body with y substi-
tuted for x (here, e[x 7→ y]), and (3) obtain the final result by nesting the resulting
symbolic expression (here, e[x 7→ y]) with y replaced by x under a (symbolic) quanti-
fier that binds x (here, ∀x : T · e).
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This strategy for evaluating quantifiers, however, does not compose with the previ-
ously shown rule candidate for evaluating conditionals, as illustrated by the following
quantifier (where f1 and f2, for simplicity, are heap-independent functions):

forall x: Int :: x > 0 ? f1(x) : f2(x)

Following the general strategy for evaluating quantifiers, the quantifier is instantiated
with a fresh variable y and the body is evaluated, which branches over the condition
y > 0: on one path, the branch condition is y > 0 and the resulting quantifier is
∀x : Int · f 1(x); on the other path, the branch condition is ¬(y > 0) and the resulting
quantifier is ∀x : Int · f 2(x). This requantification of partial evaluations of the body
(partial with respect to possible paths through the body) is unsound, since the result-
ing quantifiers fail to reflect the branch condition under which they were obtained
(and because the branch conditions included in the path conditions no longer relate
to the bound quantified variable).

Incorporating the branch conditions in each quantifier, as in ∀x : Int · x > 0⇒ f 1(x)
(and analogous for the other path), would be sound but incomplete: for example, it
would not be possible to assert f2(0) on the path with ∀x : Int · x > 0⇒ f 1(x).

To remedy the situation, it is necessary to join evaluation paths that branch under a
quantifier, and to construct a single symbolic expression that combines the partial
evaluations of the body in a way that reflects the branch condition under which they
were obtained.

One option is to join paths after evaluating the quantifier body; another option is to
join after evaluating a conditional. The options are equivalent in the context of the
previous example, the resulting quantifier would be ∀x : Int · ite(x > 0, f1(x), f2(x))
in both cases (where ite is a symbolic conditional).

Joining after evaluating a conditional, however, has a more general impact on the
control flow of the symbolic execution and potentially reduces the total number of
execution paths, as discussed earlier. Silicon therefore generally joins after evaluating
conditionals, not only in the context of quantifiers.

Evaluating Conditional Expressions

Joining evaluation paths can be implemented by a backtracking strategy: each path is
explored until the join point is reached, the current state is recorded and the path is
terminated, whichmakes the evaluation backtrack to the branch point and explore the
next path. Once all paths have been explored (up to the join point), the information
recorded on each path must be joined in a suitable way (explained below), and the
symbolic execution proceeds.

01 eval(σ1, e1 ? e2 : e3, Q) =
02 eval(σ1, e1, (λ σ2, e′1 ·
03 join(σ2,
04 (λ σ3, Qjoin ·
05 branch(σ3, e′1,
06 (λ σ4 · eval(σ4, e2, Qjoin)),
07 (λ σ4 · eval(σ4, e3, Qjoin))))),
08 (λ σ3, {({e′1}, e′2), ({¬e′1}, e′3)} ·
09 cond := ite(e′1, e′2, e′3)
10 Q(σ3, cond))))

Figure 3.13: Evaluating conditional expressions, by branching and joining, to a symbolic
conditional.
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Figure 3.13 shows a rule for symbolically evaluating conditionals that uses a backtrack-
ing-based join function to join the evaluation of the two branches of the conditional.
The implementation of join is shown in Figure 3.14, but to build up some intuition,
we first illustrate how it is used.

join takes two continuations: a branching continuation that corresponds to the exe-
cution that potentially branches and whose paths are to be joined, and, as usual, a
continuation that denotes the remainder of the execution that is to be executed after
the join point. In the rule for evaluating conditionals (Figure 3.13), the branching
continuation is defined on line 4, and the remainder continuation is defined on line 8.

The branching continuation is itself invoked with the join continuation, denoted by
Qjoin on line 4, as one of its arguments. An invocation of the join continuation marks
the join point, that is, the end of the current evaluation path, and shifts control back
to join in order to either explore the next evaluation path, or create the symbolic
conditional that represents the joined paths (line 9). The role of the join continuation
is hence similar to that of the success continuation used in the context of the try
function from Figure 3.12.

When evaluating a conditional e1 ? e2 : e3, the join point is reached after e2 and
e3 have been evaluated, and thus right before the remaining evaluation is started by
invoking the respective remainder continuation. Consequently, the join continuation
is passed as the remainder continuation to the evaluation of e2 (line 6) and e3 (line 7).
At the end of the evaluation of e2 (respectively, e3), the join continuation is then invoked
with the current state (which includes the branch conditions of the current path)
and the symbolic expression resulting from the evaluation as arguments. Control is
shifted back to join, which records the arguments in order to eventually create the
final result: the symbolic conditional (line 9).

After the evaluation paths of e2 and e3 have been joined, join’s remainder continuation
(whose definition starts at line 8) is invoked, with the previously recorded symbolic
expressions and the branch conditions under which these expressions have been
obtained as arguments. In the case of evaluating conditionals, the remainder continu-
ation expects that two paths were joined: one taken under the branch condition e′1
and with the result e′2, the other under the branch condition ¬e′1 and with the result
e′3. The final symbolic conditional is created (line 9), and the execution continues.

Joining General Evaluation Paths

Conditional expressions (which are pure) are not the only reason why the evaluation
of an expression might branch: in addition, any expression whose evaluation poten-
tially involves producing (or consuming) conditional assertions (which are spatial)
might result in branching evaluations because the produce operation branches over
conditionals (and analogous for consume). In Silicon, the only such expressions are
unfolding expressions and applications of heap-dependent functions: during the
evaluating of the former the body of the unfolded predicate is produced before the
nested expression is evaluated, whereas evaluating a function application entails con-
suming the function’s precondition (the corresponding evaluation rules are presented
in Figure 3.15 and Figure 3.16, respectively, and discussed shortly).

As an illustration, consider the following predicate containing nested spatial condi-
tionals:

predicate P(x: Ref, k: Int) {
x != null

? (acc(x.f) && k > 0 && (x.f != null
? (acc(x.f.f) && k == 2)
: k == 1))

: k = 0
}
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Unfolding the predicate, as in the following assignment to a local variable

m := unfolding acc(P(x, k)) in k

entails producing the predicate body (before evaluating the body of the unfolding),
which branches over the conditional assertion (recall Figure 3.8).

Joining the paths through the evaluation of the unfolding expression could be done
by (1) joining right after each conditional assertion, similar to the previously presen-
ted joining of conditional expressions, or (2) by joining after the whole unfolding
expression (including the nested expression, here k) has been evaluated. The first
option has the advantage of avoiding nested branches (in contrast to the second
option); however, it would require joining different symbolic heaps, which (as already
discussed at the beginning of Section 3.4.3) in combination with Silicon’s incomplete
heap management could cause aliasing-related incompletenesses.

Silicon therefore implements the second option, in a way that is similar to the joining
of conditional expressions but that accounts for nested branches:

(Step 1-1) Each path through the evaluation (of which the previous example admits
three) is explored all the way to the end of the evaluation (which, in the previous
example, includes the evaluation of k).

(Step 1-2) Per evaluation path, the branch conditions (such as x 6= null), all other
path conditions (such as k > 0) and the path result (which is k on all three paths
through the previous unfolding) are recorded.

(Step 2-1) Afterwards, the path conditions are joined as a set of implications, each
expressing that the path conditions recorded on a specific path hold if the
corresponding branch conditions are met.

(Step 2-2) The joined path result, on the other hand, must be a single symbolic value;
in the previously discussed case of joining the evaluation of a conditional expres-
sion the single value was obtained by constructing an appropriate symbolic ite
conditional. Since conditional assertions admit nested branches which now need
to be joined, we replace the symbolic conditional by a (per join) fresh, casewise
defined join function, whose value is the path result of a specific evaluation path
if the corresponding branch conditions hold.

The corresponding implementation is shown in Figure 3.14: a join operation that can
be used to join an arbitrary (finite) number of evaluation paths. The operation collects
the conditions and the symbolic expressions obtained on each path (corresponding
to Step 1-1 and Step 1-2), and joins the path conditions (Step 2-1) but leaves it up to
its clients (the remainder continuation) to join the path results (Step 2-2). Building on
join, the alternative version join’ also joins the latter (that is, it implements Step 2-2) in
the form of a casewise defined function with one case per joined path. The signature
of join is generic with respect to the types of path results it can handle, abstracted
over by the type variable Ω. In all of our use cases Ω is instantiated with V, the type
of symbolic values.

join proceeds in two major steps, which realise the previously described steps Step 1-1
and 1-2, respectively, Step 2-1 (Step 2-2 is implemented by join’). In the first step,
it invokes the branching continuation (line 5) to collect the necessary data, and if
the branching continuation succeeds, join joins the collected data (line 12), before
it passes the result to the remainder continuation. The join continuation passed to
Qbranch (line 7), which is to be invoked at the join point of each path, records the path
condition delta (pc-after, line 8) between the states in which the branching evaluation
started and ended. The join continuation also records the path result (ω, line 8), and
then terminates the current path.
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01 join : Σ→ (Σ→ (Σ→ Ω→ R)→ R)→ (Σ→ Set[(Set[V], Ω)]→ R)→ R
02 join(σ1, Qbranch, Q) =
03 id := fresh
04 data : Set[(Π, Ω)] := ∅
05 Qbranch(
06 σ1

{
π := pc-push(σ1.π, id, true)

}
,

07 (λ σ2, ω ·
08 data := data∪ {(pc-after(σ2.π, id), ω)}
09 success()))
10 ) ∧ (
11 (π2, ωs) :=
12 foldl(data, (σ1.π, ∅), (λ (πi, ωi), (πjoined, ωsi) ·
13 (cnds, bcsall) := pc-segs(πi)
14 (pc-add(πjoined, cnds), ωsi ∪ {(bcsall, ωi)})))
15 Q(σ1

{
π := π2

}
, ωs))

16

17 join′ : Σ→ (Σ→ (Σ→ V → R)→ R)→ (Σ→ V → R)→ R
18 join′(σ1, Qbranch, Q) =
19 Let jnfn be a fresh function symbol such that
20 1. its arity is |σ2.qvs|
21 2. it can be applied to the argument vector σ2.qvs
22 3. its return sort matches v’s sort
23 join(σ1,
24 Qbranch,
25 (λ σ2, (bcs, v) ·
26 jnfndef :=

∧
bcs⇒ jnfn(σ2.qvs) = v)

27 Q(pc-add(σ2, jnfndef ), jnfn(σ2.qvs))))
28 note that, for the set of currently quantified variables qvs, it holds that σ2.qvs = σ1.qvs
28

29 pc-segs : Π→ (Set[V], Set[V])
30 pc-segs(π) =
31 foldl(
32 reverse(π),
33 (∅, true),
34 (λ (_, bci, pcsi), (cndsi, bcsi) ·
35 (cndsi ∪ {

∧
(bcsi ∪ {bci})⇒

∧
pcsi}, bcsi ∪ {bci})))

Figure 3.14: Joining evaluation paths. join invokes a potentially branching evaluation,
records the obtained path conditions and evaluation results, and afterwards joins the
path conditions but not the evaluation results (this is up to clients). join’ also joins
the latter, in the form of a casewise defined join function. join employs pc-segs to
extract, from a given path condition stack, the branch-dependent path conditions and
the overall set of branch conditions. The former is used to join path conditions, the

latter to join evaluation results.

In join’s second step (beginning at line 11), the recorded path conditions (stacks πi) of
each previously explored path are joined, which implements Step 2-1. The recorded
path results (ωi) are not joined by join itself (and instead passed on to its caller, that
is, its remainder continuation); it is thus left to the client to implement Step 2-2.
One such client is the already presented rule for evaluating conditional expressions
(Figure 3.13), which joins the results of two paths by constructing an appropriate ite
expression. Another client is join’ (Figure 3.14), which joins arbitrarily many paths by
introducing a casewise defined join function. The latter will be discussed shortly.

To extract the path and branch conditions from the recorded stacks πi, join employs
the auxiliary function pc-segs that takes a path condition stack and returns two sets:
(1) The path conditions recorded by the stack as branch-dependent path conditions,
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that is, conditional on the branch conditions under which they were obtained, such
as x 6= null ⇒ k > 0 and x 6= null ∧ x. f 6= null ⇒ k = 2 for the first path through
the previous example of unfolding P(x, k) (for simplicity, x. f is used to denote the
symbolic value of x.f), and (2) the set of all branch conditions recorded by the stack,
such as {x 6= null, x. f 6= null} for the first path through the previous example.

To illustrate how join and join’ (Figure 3.14) implement the four steps Step 1-1 to 2-2,
consider once more the previously shown example of unfolding P(x, k) in k and
assume that join’ is used to join the three paths through the unfolded predicate body
(each of which ends with the evaluation of the path result k). From the definition
of join’ we see that most of the actual work is performed by join (Step 1-1 to 2-1),
join’ itself only joins the path results (Step 2-2). We therefore first discuss how the
execution of join proceeds for this particular example.

In the first step of the execution of join, the join continuation (line 7) is invoked three
times (once per path through the unfolded predicate body), each time with the same
path result k (instantiating ω) but with different path conditions; this implements
Step 1-1 and Step 1-2. In the second step of join, pc-segs is applied to each of the three
recorded path condition stacks (πi, on line 13) to extract the branch-dependent path
conditions (cnds) and the overall branch conditions for the whole path (bcsall). The
three respective pairs of values for (cnds, bcsall) are:(
{(x 6= null⇒ k > 0), (x 6= null∧ x. f 6= null⇒ k = 2)}, {x 6= null, x. f 6= null}

)(
{(x 6= null⇒ k > 0), (x = null∧ x. f = null⇒ k = 1)}, {x 6= null, x. f = null}

)(
{(x = null⇒ k = 0)}, {x = null}

)
The branch-dependent path conditions cnds are added to the symbolic state (by
invoking pc-add on line 14) such that they are available after the join point; this
concludes Step 2-1.

join also pairs each path result ωi (three times k in our example) with the overall
branch conditions bcsall (line 14) of the path that yielded the particular path result.
These pairs can later on be used to join the path results: in our example, this will be
done by join’ once the execution of join is finished (and its remainder continuation
invoked). In the context of our example, the corresponding pairs of branch conditions
and path results, denoted by (bcsall, ωi) on line 14, are{

({x 6= null, x. f 6= null}, k), ({x 6= null, x. f = null}, k), ({x = null}, k)
}

which are passed back to join’when join finishes (line 15).

join’ (starting on line 25) now performs the remaining Step 2-2 of joining the path
results: it introduces a fresh join function (denoted by jnfn) and defines it casewise
(set jnfndef constructed on line 26) using the branch conditions and path results that
join had passed on to join’ (the pairs (bcsall, ωi) that join passed to join’ instantiate
(bcs, v) on line 25). The newly introduced join function jointly represents the path
results of the joined paths, and is thus passed to the remainder continuation of join’
(line 27) as the (single) path result.

The introduction of the join function is technically slightly more involved, however:
when a branching evaluation is joined that is nested (somewhere) under a quantifier,
the resulting join function must (for soundness) be a function of the quantified
variables. These are recorded in the state entry σ.qvs (which is maintained by the
rule for evaluating quantifiers, shown in Figure 3.17), and passed as arguments to
the join function constructed by join’ (on line 26 and line 27).

Evaluating unfolding Expressions

Figure 3.15 shows a rule for evaluating unfolding expressions that uses join’ to join
the potentially branching production of the unfolded predicate body. Regarding the
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previous example of unfolding a predicate, the state resulting from evaluating the
unfolding according to the presented rules is the following:

m := unfolding acc(P(x, k)) in k
// γ : . . . , m 7→ jnfn1
// π : . . . , (x 6= null⇒ k > 0), (x 6= null∧ x. f 6= null⇒ k = 2),

(x = null∧ x. f = null⇒ k = 1), (x = null⇒ k = 0),
(x 6= null∧ x. f 6= null⇒ jnfn1 = k), (x 6= null∧ x. f = null⇒ jnfn1 = k),
(x = null⇒ jnfn1 = k)

assert m >= 0 // Succeeds

Evaluating unfolding expressions can potentially recurse indefinitely (see also the
comparison to VeriCool in Section 3.7.3) if the predicate is recursive and contains
an unfolding of another instance of the same predicate in its body (potentially
transitively through other predicate bodies or function preconditions).

In order to prevent such infinite recursive evaluations, one could record the identifiers
of visited predicates (for example, in an appropriate state entry), and replace recursing
unfolding expressions (at a configurable depth) with unknown symbolic values,
which would be used instead of the “real” symbolic values to which the expression
would evaluate. This approach is sound but potentially incomplete, and raises the
question how the depth at which the recursion is cut off should be chosen.

1 predicate LL(x: Ref, i: Int) {
2 acc(x.data, 1/2)
3 && acc(x.next)
4 && acc(x.next.data, 1/2)
5 && acc(LL(x.next, i + 1))
6 && (unfolding acc(LL(x.next, i + 1)) in x.next.data == i + 1)
7 }
8

9 method test01(z: Ref) {
10 inhale acc(LL(z, 0))
11

12 assert unfolding acc(LL(z, 0)) in
13 z.next.data == 1 /* Might fail */
14 }

Listing 3.1: Illustrating a potential incompleteness arising from naïvely breaking re-
cursive unfolding cycles.

Recall that Viper’s design with respect to predicates is to require explicit annotations
for (un)folding predicates, and that the verifier does otherwise not attempt to deduce
facts from predicate instances. In this light, consider the example shown in Listing 3.1
(which was extracted from a larger example encountered in practice): the unfolding
expression provided on line 12 explicitly instructs the verifier to use the correspond-
ing predicate body in order to prove the nested assertion z.next.data == i. The
predicate body contains another explicitly provided unfolding on line 6, andmaking
its nested assertion x.next.data == i + 1 available for the proof of the original
goal (z.next.data == i) is therefore in line with Viper’s treatment of predicates.

In Silicon, expressions nested under unfoldings can in general only be evaluated
after the predicate has been unfolded, the evaluation might otherwise fail due to
missing heap chunks. A suitable rule for evaluating unfolding expressions should
thus permit the evaluation of the unfolding on line 6, but it may skip the next
unfolding that is recursively reached, which (arguably) is no longer explicitly given
in the program (and since unfolding expressions cannot nest accessibility predicates,
skipping the entire expression cannot result in missing permissions in the context of
the ongoing surrounding unfolding).

The approach Silicon implements can thus be characterised as follows: it makes facts
entailed by unfolding expressions that explicitly occur in the program available, but
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bounds the evaluation of implicit unfolding expressions, that is, those transitively
reached during the evaluation of explicitly provided ones.

The corresponding evaluation rule is shown in Figure 3.15. The production of the
predicate body potentially branches, and the overall evaluation is thus joined in order
to support unfolding expressions under quantifiers (and to improve performance in
general). Infinite unfolding chains are prevented by “evaluating” implicit unfolding
expressions to fresh symbolic values. Differentiating between explicit and implicit
unfolding expressions requires some additional bookkeeping, which is omitted for
brevity.

Cutting off the recursion at a particular depth is theoretically incomplete, but the
approach we chose makes it difficult to actually observe such incompleteness (and we
did not yet observe any in practice): in order to observe that an implicit unfolding
has been cut off and replaced by an arbitrary value, it is necessary to explicitly unfold
equally deeply — in which case the previously cut-off unfolding will be evaluated
(and the next deeper implicit unfoldingwill be cut off).

01 eval(σ1, unfolding acc(pred(e), p) in b, Q) =
02 if the unfolding is explicit then
03 eval(σ1, p :: e, (λ σ2, p′ :: e′ ·
04 bdy := scale(predbody[x 7→ e′], p′)
05 consume(σ2, acc(pred(e′), p′), (λ σ3, s ·
06 join′(σ3,
07 (λ σ4, Qjoin ·
08 produce(σ4, bdy, s, (λ σ5 ·
09 eval(σ5, b, (λ σ6, b′ ·
10 Qjoin(σ6

{
h := σ2.h

}
, b′)))))),

11 Q))))))
12 else
13 Let recunf be a fresh function symbol such that
14 1. its arity is |σ1.qvs|
15 2. it can be applied to the argument vector σ1.qvs
16 3. its return sort matches b’s sort
17 Q(recunf (σ1.qvs))

Figure 3.15: Symbolically evaluating unfolding expressions in a way that makes all
facts entailed by explicitly provided unfolding expressions available, but still prevents

infinite recursive unfolding chains.

Evaluating Heap-Dependent Function Applications

Figure 3.16 shows a rule for evaluating applications of heap-dependent functions,
where join’ is used to join the potentially branching consumption of the function’s
precondition. Consuming the precondition not only checks whether the precondition
holds, it also computes the function’s snapshot that is used to frame the function
application: the result of evaluating a heap-dependent function is a symbolic function
application parameterised by the computed snapshot. The discussion of how to give
meaning to symbolic function applications is postponed until Section 3.6.
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01 eval(σ1, func(e), Q) =
02 eval(σ1, e, (λ σ2, e′ ·
03 join′(σ2,
04 (λ σ3, Qjoin ·
05 consume(σ3, funcpre[x 7→ e′], (λ σ4, s ·
06 Qjoin(σ4

{
h := σ3.h

}
, func(e′, s))))),

07 Q)))
08 where funcpre does not transitively contain another application of func

Figure 3.16: Symbolically evaluating applications of heap-dependent functions.

The rule for evaluating function applications potentially exhibits a recursion prob-
lem similar to that of evaluating unfolding expressions: the evaluation will recurse
indefinitely if consuming the function’s precondition entails evaluating another ap-
plication of the same function. Precisely checking such preconditions at call site,
that is, without cutting off potentially infinite recursions, would require a fix-point
computation. Since we (but also others [114]) have not yet encountered functions
with recursive preconditions in practice, Silicon rejects functions that recurse in their
preconditions.

Evaluating Quantifiers

Finally, Figure 3.17 shows the rule for evaluating quantifiers. After having evaluated
the trigger and the quantifier body (with the quantified variables x instantiated with
fresh variables y), two quantifiers are constructed. The first one, denoted by quant, is
the actual result of the evaluation, and passed to the remaining execution. The second
quantifier, denoted by quantpcs, aggregates the additional path conditions obtained
from evaluating the quantifier body, for example, the definition of join functions.
The path conditions aggregated by the second quantifier constrain symbolic values
(potentially) used by the first quantifier.

Both quantifiers use the same triggers to ensure that whenever the solver is in the
position to instantiate the first quantifier, the necessary information from the second
quantifier is available as well. Note that it would be incomplete to merge the two
quantifiers: depending on the context of the ongoing evaluation, the first quantifier
may be assumed or asserted, whereas the second quantifier is always to be assumed.

01 eval(σ1, forall x : T :: {e1(x)} e2(x), Q) =
02 id := fresh; y′ := fresh
03 σ2 := σ1

{
γ := σ1.γ[y 7→ y′], qvs := σ1.qvs∪ {y′}

}
04 σ3 := σ2

{
π := pc-push(σ2.π, id, true)

}
05 eval(σ3, e1(y), (λ σ4, e1(y)′ ·
06 eval(σ4, e2(y), (λ σ5, e2(y)′ ·
07 (pcs, _) := pc-segs(pc-after(σ5.π, id))
08 quant := ∀x : T′ · {e1(x)′} e2(x)′
09 quantpcs := ∀x : T′ · {e1(x)′}∧ pcs
10 σ6 := σ5

{
γ := σ1.γ, π := pc-add(σ5.π, quantpcs), qvs := qvs \ {y′}

}
11 Q(σ6, quant)))))
12 Variables y are fresh program variables, that is, they are not already bound in the current

store, and y′ are their fresh symbolic values

Figure 3.17: Symbolic evaluation rule for universal quantifiers (the rule for existential
quantifiers is analogous and omitted for brevity). We use the notation e(x) to emphasise
that variables x may occur in e (in addition to other variables), and we subsequently

use e(y) to denote the substitution of x for y in e.
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The rule for evaluating quantifiers does not perform any path joining itself, which cor-
responds to the implicit assumption that potentially branching evaluations are joined
in the context of their respective rules. In Silicon’s case, these are the previously dis-
cussed rules for evaluating conditionals, unfolding expressions and heap-dependent
function applications.

3.4.4 Permission Introspection

In Section 3.4.2, we argued why it is in general difficult for a symbolic execution
engine to avoid heap-related incompletenesses without degrading performance. As
a consequence, Silicon implements symbolic execution rules that potentially under-
approximate the permissions provided by a symbolic heap; a common design choice
among symbolic-execution-based verifiers. In particular, when exhaling permissions
(heap-rem from Figure 3.7), which is implemented by trying to find a single chunk
that definitely provides the required permission amount.

Using an under-approximation when exhaling permissions is sound because the
under-approximation is used as a lower bound: exhaling p permissions requires
proving that the current heap provides at least p permissions. If the proof succeeds
with the under-approximation then it will also succeed with the — potentially higher
— real value.

Using an under-approximation to establish an upper bound, however, would not
be sound (an over-approximation would), and Viper’s perm feature can be used to
express lower and upper permission bounds. With an under-approximation, exhaling
a lower bound such as perm(x.f) < q would be unsound and exhaling an upper
bound would be sound (but potentially incomplete), whereas inhaling a lower bound
would be sound (but potentially incomplete) and inhaling an upper bound would be
unsound.

Precisely representing the permissions a heap provides, however, is cheaper in the
context of permission introspection (Viper’s perm and forperm features) than it is in
the context of exhaling permissions: the former requires computing permission sums
that reflect all potential aliasing relations between field receivers (and analogous for
predicate arguments); the latter additionally requires removing permissions by updat-
ing heap chunks under consideration of all potential aliasing relations. Moreover, our
experience suggests that permission introspection is used only infrequently, whereas
exhaling permissions is a central operation of verifiers for permission logics.

.

01 eval(σ1, perm(id(e)), Q) =
02 eval(σ1, e, (λ σ2, e′ ·
03 Let hid ⊆ σ2.h contain all heap chunks for identifier id
04 sum := foldl(hid, 0, (λ id(v; _, p), q · q + ite(

∧
e′ = v, p, 0)))

05 Q(σ2, sum)
06

07 eval(σ1, forperm x : T :: {id(e(x))} b(x), Q) =
08 Let hid ⊆ σ.h contain all heap chunks with identifier id
09 Let z : T be fresh program variables s.t. |z| = |x|,
10 Let and let z′ be corresponding fresh symbolic values
11 cnj(z) := foldl(hid, true, (λ id(v; _, p), c ·
12 c && (p > none && e(z) == v ==> b(z))))
13 eval(σ1

{
γ := σ1.γ[z 7→ z′]

}
, cnj(z), (λ σ2, cnj(z)′ ·

14 Q(σ2
{

γ := σ1.γ
}

, ∀ x : T · cnj(x)′))

Figure 3.18: Symbolical evaluation rules for Viper’s permission introspection features:
perm and forperm. As before, we use the notation e(x) to emphasise that variables
x may occur in expression e. For brevity, we omit triggers from the final quantifier
(line 14): suitable triggers should be computed from the user-provided expressions

e(x) and b(x); see also the discussion of triggers in Section 2.6
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As usual in Viper, the semantics of perm and forperm treat predicate instances as
opaque, that is, permissions folded into predicate instances are not accounted for by
perm and forperm.

Figure 3.18 shows Silicon’s rule for evaluating perm expressions, which sums up
permissions across all heap chunks that potentially provide permissions to a location
x. f (or analogously, to a predicate instance). The resulting sum includes one summand
per field chunk f (yi; _, yi), each of which encodes that the corresponding chunk
provides pi permissions to x. f if the chunk’s receiver yi is an alias of x:

ite(y1 = x, p1, 0) + . . . + ite(yn = x, pn, 0)

Strongly related to perm are forperm expressions. Intuitively, a forperm expression

forperm x: Ref :: {x.f} b

binds the reference-typed variable x to every receiver r for which the heap provides
non-zero permissions r.f. For each such binding, the body b is evaluated. A se-
mantically correct translation of this forperm expression would thus be

forall x: Ref :: perm(x.f) > none ==> b

Evaluating this quantifier, however, will most likely fail due to Silicon’s greedy way of
evaluating field reads, as discussed in Section 3.4.2. In order to illustrate the problem,
consider the example

inhale acc(y1.f) && acc(y2.f) && y1.f == 1 && y1.f < y2.f
forperm x: Ref :: {x.f} x.f > 0

and assume that the forperm expression were desugared into

forall x: Ref :: perm(x.f) > none ==> x.f > 0

According to the rule for evaluating quantifiers (Figure 3.17), the quantifier body
would be evaluated for some arbitrary z, but the evaluation of z.f > 1would fail
because Silicon does not handle disjunctive aliasing: the rule for evaluating a field
read (Figure 3.10) tries to find a chunk which definitely provides non-zero permissions
to z.f; but all that is known from evaluating perm(z.f) is that the permission sum
over all receivers that are potential aliases of z is non-zero. In the example above, the
left-hand side of the implication evaluates to ite(y1 = z, 1, 0) + ite(y2 = z, 1, 0) > 0,
but even under this assumption, none of the chunks f (y1, _, 1) and f (y2, _, 1) definitely
provide non-zero permission to z.f.

Although the desugaring of forperm into a quantifier is not practically usable, it is
nevertheless instructive to discuss how the desugaring could look in the general case
(covering fields and predicates) in order to explain the solution that Silicon actually
implements. The general shape of forperm expressions is

forperm x : T :: {id(e)} b

where the expressions e occurring in the matching pattern {id(e)} typically (but not
necessarily) mention the quantified variables x. For example, {P(0, 1)}, {P(x, 1)},
{P(x, x + 1)} and {P(x, y)} are all possiblematching patterns that each constrain
(a subset of) the bound variables. A general desugaring of forpermwould thus be

forall x : T :: perm(id(e)) > none && constrain(x, e) ==> b

where constrain(x, e) denotes the constraints coming from the matching pattern.

Silicon effectively expands this quantifier into finitely many conjuncts by instantiating
the quantifier body manually (for arbitrary z), once for each heap chunk id(v; _, p),
such that (1) the permission check perm(id(e)) > none is replaced by p > none, and
(2) the variables z are appropriately constrained with respect to the symbolic values v
obtained from the current heap chunk; this implements constrain(z, v). In comparison
to the initial, hypothetical attempt of translating forperm into a regular quantifier, the
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expansion into conjuncts no longer suffers from the problem that the evaluation of
the body might fail due to disjunctive aliasing introduced by the quantification: the
expansion reduces disjunctive aliasing to definite aliasing by introducing branching
executions, a work-around already mentioned in Section 3.4.2.

The corresponding rule is shown in Figure 3.18. To illustrate how the rule evaluates
forperm expressions, consider the following snippet

predicate P(x: Ref, k: Int) { acc(x.f) && x.f == k }

forperm x: Ref :: {P(x, 0)} unfolding acc(P(x, 0)) in x.f == 0

and assume that the forperm is evaluated in a heap with the following predicate
chunks:

P(y1, 0; s1, p1), P(y2, 1; s2, p2), P(y3, 0; s3, p3), R(y4, 0; s4, p4)

The partially evaluated expression cnj constructed by the evaluation rule for forperm
expressions will comprise three conjuncts

(p1 > none && z == y1 && 0 == 0
==> unfolding acc(P(z, 0)) in z.f == 0)

&& ( p2 > none && z == y2 && 0 == 1
==> unfolding acc(P(z, 1)) in z.f == 0)

&& ( p3 > none && z == y3 && 0 == 0
==> unfolding acc(P(z, 0)) in z.f == 0)

but only for two of these (the first and the third), the nested unfolding expression
will be evaluated.

Note that the evaluation rule for forperm iterates over heap chunks, not over distinct
locations, which means that the body is potentially instantiated multiple times for the
same arguments, for example, if the heap contains multiple chunks for the same field
location. Evaluating the body once or multiple times is semantically equivalent since
forperm is an expression, but that would no longer hold if forperm were generalised
to a spatial assertion. For example, given the hypothetical snippet (with local variables
x, y and a)

inhale acc(x.f, 1/2) && acc(y.f, 1/2) && x == y
inhale forperm z: Ref :: acc(a.f)

it would make a difference whether or not a state consolidation is triggered before the
forperm is inhaled: if not, the second inhalewould be equivalent to inhaling false.
Such a generalisation is currently not supported in Viper, but could be supported by
building on our work in the context of quantified permissions (Chapter 4).

3.5 Well-definedness and Validity of Specifications

In order to bemeaningful, specifications such asmethod pre- and postconditionsmust
be well-defined, and they must be valid, for example, it must be verified that a method’s
postcondition follows from the method’s precondition and its body. Conceptually,
well-definedness and validity are orthogonal concerns that can be addressed separ-
ately; however, since their handling is intertwined in Silicon (for technical reasons),
we discuss both concerns in the same section.

Well-Definedness Properties

The properties that need to be checked in order to ensure that program specifications
are well-defined can be separated into two groups: properties that are essentially
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independent of the logic in which the specifications are expressed, and properties
that are specific to the used logic.

The first group contains properties such as termination of abstraction functions, and
that partial functions such as sequence indexing and numerical division are defined
for their arguments. Silicon does not yet verify function termination, but we believe
that it is straightforward to adapt function termination checks performed by other
verifiers such as VeriFast, Dafny and Chalice. The applicability of partial functions, on
the other hand, is checked as part of the corresponding evaluation rules (Section 3.4.1).

For specifications based on permission logics, it is additionally necessary to check
that assertions that may be used in different contexts are self- framing. Recall from
Section 2.2.1 that an assertion is self-framing if it requires permissions to at least those
locations it reads, which ensures that the well-definedness of the assertion does not
depend on the permissions held by the context in which the assertion is evaluated.
In the context of Viper, the following kinds of assertions must be checked for self-
framingness: predicate bodies, function preconditions (function postconditions must
be framed by the precondition), method pre- and postconditions, and loop invariants.

Checking Self-Framingness and General Well-Definedness

In Smans’work on symbolic execution [119], assertions are checked for self-framingness
by producing them into an empty state3: if an assertion accesses a heap location to
which it does not require permissions, the heap access would fail because the corres-
ponding symbolic execution rule would not be able to find a matching heap chunk.
Moreover, producing an assertion into an empty state ensures that the assertion is
generally well-defined (which includes being self-framing) because all remaining
well-definedness properties (such as the applicability of partial functions) are checked
as part of the production: when the individual sub-expressions are evaluated.

The same is in principle true for Silicon, but in order to account for inhale-exhale
assertions, it is in general necessary to produce two variants of each assertion: the
inhale variant, obtained by replacing all inhale-exhale assertions by their respective
inhale component, and the analogously obtained exhale variant. Recall (for example,
from the discussion Section 2.2.3) that an inhale-exhale assertion [a1, a2] is inhaled as
a1, but exhaled as a2 (the corresponding rules are shown in Figure 3.8 and Figure 3.9).

Implementation: Checking Well-Definedness and Validity

As an optimisation (which allows re-using intermediate results), Silicon combines the
checking of specification well-definedness with the checking of specification validity
in a single verify operation that verifies members such as methods: Figure 3.19 shows
the corresponding symbolic execution rules for methods, functions and predicates;
the verification of loop invariants is discussed shortly.

Due to the possible use of inhale-exhale assertions in method specifications, checking
well-definedness and validity of method specifications requires (in the general case)
three steps: checking well-definedness of the specification variant that is used at call
site, checking well-definedness of the variant used when verifying the method, and
checking that the postcondition is valid, that is, established by the method body. If
the specifications do not include inhale-exhale assertions, the first step subsumes
the second, which can then be skipped (this potential optimisation is not shown in
Figure 3.19).

3The state is empty except for the background theory and potentially other relevant information; for
example, when producing a postcondition the state may also contain information established by the
precondition that is needed for evaluating old expressions.
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The first step (starting on line 4) is implemented by producing the exhale-variant
of the precondition into an empty heap (which, as described earlier, ensures self-
framingness and general well-definedness), followed by producing the inhale-variant
of the postcondition (also into an empty heap). The second step (starting on line 8)
is implemented analogously, but with the opposite variant combination. After well-
definedness has been established, the third step (starting on line 12) is performed:
verifying the method body followed by checking the postcondition.

The second rule shown on Figure 3.19 handles function specifications analogously:
initially, the exhale-variant of the precondition is produced, followed by evaluating
the postcondition; this ensures well-definedness of the function with respect to call
sites. Recall that the function postcondition is an expression, not an assertion: it
can therefore contain neither inhale-exhale assertions (thus, only a single variant
of it exists) nor accessibility predicates, and is therefore evaluated, not produced.
Furthermore, function postconditions do not need to be self-framing, but they must
be framed by the corresponding preconditions. In a second step, the inhale-variant of
the precondition is produced, the function body is evaluated and the postcondition
is checked.

01 verify(π0, method meth(x : T) returns (y : T)) =
02 x′ := fresh; y′ := fresh
03 σ1 :=

{
γ := ∅[x 7→ x′][y 7→ y′], h := ∅, π := π0

}
04 produce(σ1, exh-variant(methpre), fresh, (λ σ2 ·
05 σ3 := σ2

{
h := ∅, lbh := σ2.lbh[pre 7→ σ2.h]

}
06 produce(σ3, inh-variant(methpost), fresh, (λ _ ·
07 success())))) ∧
08 produce(σ1, inh-variant(methpre), fresh, (λ σ2 ·
09 σ3 := σ2

{
lbh := σ2.lbh[pre 7→ σ2.h]

}
10 produce(σ3

{
h := ∅

}
, exh-variant(methpost), fresh, (λ _ ·

11 success())) ∧
12 exec(σ3, methbody, (λ σ4 ·
13 consume(σ4, methpost, (λ _, _ ·
14 success()))))
15

16 verify(π0, function fun(x : T): Tr) =
17 x′ := fresh
18 σ1 :=

{
γ := ∅[x 7→ x′], h := ∅, π := π0

}
19 produce(σ1, exh-variant(funcpre), fresh, (λ σ2 ·
20 eval(σ2

{
γ := σ2.γ[result 7→ fresh]

}
, funcpost, (λ _, _ ·

21 success())))) ∧
22 produce(σ1, inh-variant(funcpre), fresh, (λ σ2 ·
23 eval(σ2, funcbody, (λ σ3, body ·
24 consume(σ3

{
γ := σ3.γ[result 7→ fresh]

}
, funcpost, (λ _, _ ·

25 success()))))))
26

27 verify(π0, predicate pred(x : T)) =
28 x′ := fresh
29 σ1 :=

{
γ := ∅[x 7→ x′], h := ∅, π := π0

}
30 produce(σ1, inh-variant(predbody), fresh, (λ _ · success())) ∧
31 produce(σ1, exh-variant(predbody), fresh, (λ _ · success()))
32

33 inh-variant : A→ A
34 inh-variant(a) = Replace each occurrence of [a1, a2] in a by a1
35

36 exh-variant : A→ A
37 exh-variant(a) = Replace each occurrence of [a1, a2] in a by a2

Figure 3.19: Checking well-definedness and validity of member specifications. The
rules can be simplified if the specifications do not contain inhale-exhale expressions.
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Verifying a predicate body (the third rule from Figure 3.19) is straightforward: it only
requires checking well-definedness since checking whether or not a predicate body
(instance) is satisfied is part of the execution of fold statements.

In order to verify loop invariants, only a small change to the rule for executing
loops from Figure 3.6 is necessary. The rule already ensures well-definedness of the
inhale-variant of the loop invariant because the invariant is produced into an empty
heap before the loop body is executed, and producing an assertion is equivalent
to producing the assertion’s inhale-variant. Hence, the necessary change is to also
produce the exhale-variant into an empty state, the result of which can be discarded.
For brevity, we omit the additional step from the formalisation.

3.6 Axiomatising Heap-Dependent Functions

Recall that an application func(e) of a heap-dependent function is evaluated (Fig-
ure 3.16) by consuming the function’s precondition, which yields the function’s
snapshot s, and by constructing a symbolic function application func(e′, s) that is the
result of the evaluation.

In this section, we show how Silicon gives meaning to such symbolic function applic-
ations: by axiomatising the corresponding heap-dependent functions. This differs
from the approach used in Smans’ work [119], where heap-dependent functions
are evaluated on the fly: in addition to constructing a symbolic function application
func(e, s)′, Smans’ evaluation rule evaluates the function body b[x 7→ e] (where x
are the formal arguments) to a corresponding symbolic expression b′[x 7→ e′] and
subsequently adds the equality func(e′, s) = b′[x 7→ e′] as a new path condition. To
prevent recursive functions from causing infinite evaluation chains, recursive ap-
plications are evaluated to symbolic applications, but these remain “uninterpreted”
because the corresponding body instance is not evaluated (similar to how Silicon
prevents infinite predicate unfolding, as discussed in Section 3.4.3).

Instead of evaluating the bodies of heap-dependent functions each time such a func-
tion is applied, Silicon axiomatises heap-dependent functions once and for all, by
the following two-step approach: when checking well-definedness of a function and
verifying its postcondition (Figure 3.19), a mapping from accessibility predicates (in
the precondition) to the resulting heap chunks, and another mapping from heap
accesses (in the body) to the “accessed” heap chunks are recorded. Afterwards, and
based on the recorded mappings, two axioms are created per function definition and
emitted to the underlying solver: one axiom equates a symbolic function application
and the respective function body, the second encodes a function’s postcondition.

The major advantage of this approach over Smans’ approach is that axiomatising
functions simplifies the re-use of techniques that use sophisticated quantifier trig-
gering strategies (recall Section 2.6) to improve verifier completeness with respect
to reasoning about user-provided recursive functions. Several such techniques have
been proposed in the context of verifiers based on verification condition generation,
where it is common to axiomatise functions such that the SMT solver can only unroll
the function definition a fixed number of times (typical once or twice), which avoids
matching loops (infinite unrolling chains) at the expense of completeness.

An example of such a technique is work by Heule et al. [59] that uses triggers to allow
solvers to unroll recursive function definitions which depend on recursive predicates,
for example, a length function for lists, as deeply as the corresponding predicate was
explored by the program (via fold/unfold/unfolding). More details about this
technique are given in Section 3.7.3. Another example is work byAmin et al. [3], where
triggers are used to allow solvers to unroll function definitions arbitrarily4deeply if

4 In practice, the verifier still enforces an upper bound on the number of unrollings to achieve a good
trade-off between completeness and performance, see [3] for details.
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the value of the recursion variant (the ranking function) is statically bounded, for
example, if it is a literal.

For a verifier based on symbolic execution that maintains a symbolic heap that
is not (directly) accessible by the underlying solver, the main challenge posed by
axiomatising heap-dependent functions is to make the relevant parts of the heap
available to the solver without encoding the whole heap to it. This challenge can be
broken down into two sub-problems: (1) identifying the partial heap that a function
depends on and encoding it to the solver, and (2) relating heap-dependent expressions
used in the function’s definition, such as x.f, to the corresponding heap locations in
the encoded partial heap.

However, not only have we already solved both sub-problems, but we can also piggy-
back on the existing solutions in order to create the desired function axioms. The first
problem, identifying and encoding the relevant partial heap, has been solved in the
form of function snapshots; indeed, it already needed to be solved to achieve function
framing (recall Figure 3.16 on page 82). With this, the second problem becomes
relating heap-dependent expressions to the corresponding snapshot components:
that is, to the corresponding heap locations as encoded by the snapshot.

To obtain a mapping from heap-dependent expressions to snapshot components,
which can be used to axiomatise a function definition to the solver, we can utilise the
production rules from Figure 3.8 on page 64 in combination with the evaluation rules
from Figure 3.10 on page 67 and Figure 3.16 on page 82: producing an assertion, such
as a function’s precondition, yields heap chunks whose values are components of the
function snapshot, that is, it establishes a mapping between snapshot components
and heap locations; and evaluating a heap-dependent expression, for example, a
field read, implicitly establishes a mapping between the expression and the accessed
heap location. By composing these two mappings, the desired mapping from heap-
dependent expressions to snapshot components can be obtained.

As an example, consider the following function definition:

function fun(x: Ref, y: Ref): Int
requires acc(x.f) && y == x

{ y.f + 1 }

Producing the function precondition with an initial production snapshot s results in
a symbolic heap with the chunk f (x, first(s), 1) (and a, in this case irrelevant, path
condition second(s) = unit). Evaluating y.f in this state means finding a matching
chunk and returning its snapshot, which is first(s). This gives us the requiredmapping
from the heap access y.f to the function snapshot component first(s).

Based on the previously discussed observations, Silicon implements the following
algorithm for axiomatising heap-dependent functions:

(1) While establishing the validity of a function (Figure 3.19), Silicon records, in
dedicated state entries, branch-dependent mappings from field dereferences and
heap-dependent function applications to the corresponding snapshots, and
from perm and forperm expressions to the corresponding symbolic expressions.
When paths are joined, these mappings need to be joined as well: since they
are branch-dependent, the union of the mappings can be taken. Recording and
joining mappings requires straightforward changes to the corresponding rules.

(2) Afterwards, Silicon translates function definitions into a definitional axiom and
a postcondition axiom. The translation structurally recurses over the function
body, respectively, postcondition, and translates expressions as follows:

• Field accesses and heap-dependent function applications are translated
to the previously-recorded snapshots; perm and forperm are translated
to the recorded symbolic expressions. Since the recorded snapshots/val-
ues are branch-dependent, a single expression is potentially translated to
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multiple snapshots/values which are conditional on the recorded branch
conditions.

• unfolding expressions are translated by translating their body only.

• Accessibility predicates are omitted from the translation (they are trans-
lated to true).

• Occurrences of formal arguments are translated to the corresponding,
previously-recorded symbolic values.

• result is translated to the appropriate application of the currently trans-
lated function.

• All other expressions are translated to the corresponding symbolic expres-
sions understood by the underlying solver.

Next, we illustrate Silicon’s function axiomatisation algorithm with two examples.
For the sake of readability, the presented mappings and function axioms have been
slightly simplified. In particular, by simplifying symbolic conditionals where the if-
and the else-branch yield the same value, and by omitting snapshot components for
pure conjuncts: the latter would only increase the size of snapshots by adding (here
irrelevant) unit snapshots.

To illustrate the results of the axiomatisation algorithm, consider the following defin-
ition of a heap-dependent function:

function double(b: Bool, x: Ref, y: Ref, z: Ref): Int
requires acc(x.val) && acc(y.val)
requires b ? z == x : z == y

{
b ? x.val + z.val : y.val + z.val

}

While establishing the function’s validity, the following mapping from field derefer-
ences to snapshots is recorded:

x.val 7→ {({b}, first(s))}
y.val 7→ {({¬b}, second(s))}
z.val 7→ {({b}, first(s)), ({¬b}, second(s))}

Based on this mapping, the following definitional axiom is created:

∀ b, x, y, z, s · ite(b, z = x, z = y)⇒
double(b, x, y, z, s) =

ite(b, first(s) + ite(b, first(s), second(s)), second(s) + ite(b, first(s), second(s)))

Note that the resulting symbolic expressions can be simplified by applying a few
syntactic rewriting rules, if desired.

As a second illustrating example, consider the following function definition, which
has a conditional assertion in its precondition (recall that conditional assertions,
unlike conditional expressions, are not joined per se):

function zero(b: Bool, x: Ref, y: Ref, z: Ref): Int
requires b ? acc(x.val) && z == x

: acc(y.val) && z == y
{
z.val - (b ? x.val : y.val)

}

Producing the precondition branches over the spatial conditional, and on each path,
a single accessibility predicate is produced (acc(x.val), respectively, acc(y.val)),
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after which the body is evaluated. As a result, the following mapping is recorded:

z.val 7→ {({b}, s), ({¬b}, s)}

and afterwards, the following definitional axiom is created:

∀ b, x, y, z, s ·
ite(b, z = x, z = y)⇒
zero(b, x, y, z, s) = s− ite(b, s, s)

It might be unsettling to see that all accesses to z.val are translated to the same
snapshot value s, since z.val corresponds to x.val on one path and to y.val on the
other. This, however, is sound because the rules for producing and consuming spatial
conditionals are symmetric: consuming the function precondition at call site also
branches over the spatial conditionals, and on each path, only one of the accessibility
predicates is consumed, whose value is the function application snapshot on that
path.

To illustrate this, consider the following client of zero, where the relevant parts of
the symbolic state have been added as code comments:

method client1(b: Bool, x: Ref, y: Ref, z: Ref)
requires acc(x.val) && acc(y.val)
requires b ? z == x : z == y

{
// h : val(x; v, 1), val(y; w, 1)
// π : ite(b, z = x, z = y), . . .

var t: Int := zero(b, x, y, z)
// γ : . . . , t 7→ zerojoined(b, x, y, z)
// π : . . . , b⇒ zerojoined(b, x, y, z) = zero(b, x, y, z, v),
// π : ¬b⇒ zerojoined(b, x, y, z) = zero(b, x, y, z, w)

}

Consuming the precondition of zero branches over b, and the resulting paths are
joined according to the rule for evaluating function applications from Figure 3.16.

A different, but semantically equivalent behaviour can be observed if the client is
changed such that producing its precondition already branches over b:

method client2(b: Bool, x: Ref, y: Ref, z: Ref)
requires b ? acc(x.val) && z == x : acc(y.val) && z == y

{
// Branch one: h : val(x; v, 1), π : b, z = x, . . .
// Branch two: h : val(y; w, 1), π : ¬b, z = y, . . .

var t: Int := zero(b, x, y, z)
// Branch one: γ : . . . , t 7→ zero(b, x, y, z, v)
// Branch two: γ : . . . , t 7→ zero(b, x, y, z, w)

}

In contrast to client1, the symbolic execution now takes two paths through client2,
because producing the client’s precondition already branches over b. The application
of zero is evaluated per path, but consuming the function’s precondition effectively
does not branch again because one potential branch is always infeasible, and therefore,
the join operation performed as part of the function evaluation is essentially vacuous
because there is only one path to join.

For simplicity, we omitted two aspects from the discussion of axiomatising functions
that are crucial in practice but orthogonal to the work presented in this thesis: inter-
function dependencies and function axiom triggering. With respect to inter-function
dependencies, Silicon implements the approach described by Rudich et al. [114]: it
computes a function dependency graph, that is, a call graph between functions that
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includes calls made from specifications, and it processes the graph bottom up by
axiomatising (and checking the validity of) a function fun1 before a function fun2
if the latter depends on the former, which permits using properties of fun1 when
checking the validity of fun2.

Regarding function axiom triggering, Silicon implements the already mentioned ap-
proach by Heule et al. [59], which is in turn partially based on [83]: per axiomatised
function, a limited and an unlimited function symbol are declared, and recursive in-
vocations of a function are translated to the limited symbol. The function definitional
axiom relates the unlimited function to the function body, and it is also triggered on
the unlimited function. Since the body of the definitional axiom mentions only the
limited version, the solver cannot unroll the axiom arbitrarily deeply, which prevents
matching loops. The work of Heule et al. bases another triggering strategy on top
of limited functions that, as mentioned before, ensures that the solver can unroll
function definitions as deeply as the corresponding recursive data structure (if the
function is defined over such a structure), such as a linked list, is explored by the
program.

3.7 Evaluation

In order to assess the quality of Silicon we performed several (quantitative and
qualitative) evaluations:

(1) We evaluated Silicon’s performance (Section 3.7.1) by running Silicon on Viper’s
test suite (554 files in total) and comparing its verification times to those of
Viper’s second, verification-condition-generation-based verifier. The results
demonstrate that Silicon performs well in general (with a mean of 0.29 seconds
per file) and that it is in average more than seven times faster than Viper’s
second verifier.

(2) We evaluated the stability of Silicon’s performance (Section 3.7.1) by manually
seeding verification failures in the 20 longest (in terms of lines of code) and the
20 longest-running tests (27 files in total), and compared Silicon’s performance
on the original and the seeded versions; the results show that Silicon performs
equally well in both cases.

(3) We evaluated the completeness of Silicon in two ways (Section 3.7.2): (1) by
manually inspecting the 27 longest (as previously defined) files and counting
the number of assertions that exist solely to overcome an incompleteness of
the verifier: in average, one assertion per 1282 lines; and (2) by creating a test
suite dedicated to uncovering heap-related incompletenesses and encoding it
to the two closest-related existing verifiers (VeriFast [67] and VeriCool [120]):
the results show that Silicon exhibits fewer such incompletenesses.

(4) We performed a detailed comparison with existing verifiers (VeriFast and VeriCool;
Section 3.7.3), including a discussion of alternative solutions to common prob-
lems such as reasoning about mathematical data types (such as sequences) and
handling recursive definitions.

Further evaluations are presented in the remaining chapters: an evaluation of Silicon’s
support for quantified permissions and magic wands in Section 4.5 and Section 5.6,
respectively, and a concluding evaluation is shown in Chapter 6, where we evaluate
Silicon with respect to the problem statement from Section 1.1.

3.7.1 Performance

To evaluate the performance of Silicon, we compare Silicon against Viper’s second
verifier (called Carbon), which is based on verification condition generation (see
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Number of Average Mean time (s) Max. time (s)
Input programs programs size (LOC) Si C Si C

Chalice 246 121.94 0.29 2.53 16.00 19.45
Viper tests 261 34.09 0.27 1.94 18.72 24.36
VerCors 47 152.09 0.98 4.79 15.42 23.49

Figure 3.20: Performance evaluation of Silicon (Si) in comparison to Carbon (C). Lines
of code (LOC) measurements do not include whitespace lines and comments. All input
programswere run 10 times and average times recorded. Themean andmaximum times
were calculated based on these averages (standard deviations were always negligible).
Timings do not include JVM start-up time: we persist a JVM across test runs using the
Nailgun tool [88] (for Carbon, timings include start-up of Boogie [6]). All timings were
gathered on a Lenovo Thinkpad W540 running Windows 10 x64, with 16GB RAM.

also Figure 2.1). The performance is measured on the following collections of input
programs: our own Viper test suite, Viper programs generated by VerCors [16], and
programs generated from Chalice examples via Viper’s Chalice front end. The set of
VerCors examples was provided to us by the VerCors developers as representative of
their Viper usage. The input programs do not use quantified permissions or magic
wands, the corresponding chapters (Chapter 4 and Chapter 5, respectively) include
separate evaluation sections.

The results are shown in Figure 3.20. Both verifiers perform consistently well in the
average case, but Silicon is significantly faster. As the average times suggest, the
maximum times are true outliers — these were typically examples designed to be
complex, in order to test what the tools could handle. The Viper tests (which are
mostly regression tests) tend to be shorter and less challenging than the VerCors-
generated programs, which are representative of real usage of Viper as a back-end
infrastructure.

Since SMT encodings sometimes exhibit worse performance for failed verification
attempts, we also collected experimental data in order to determine the effect of
failures on the verification time. For this purpose, we took the 20 longest (in terms
of lines of code) and the 20 longest-running (in terms of verification time) examples
from the programs used in the previous evaluation (27 programs with a total of
11,675 lines of code) and ran Silicon on five versions of each of these programs in
which errors were seeded (135 programs in total). The results, reported in Figure 3.21,
show that the performance of Silicon is stable: in nearly all cases, the difference in
verification time between the original and the seeded version is marginal (and the
few outliers nevertheless verify in less than two seconds). Column “Mean original”
shows the times for the original versions (in seconds), column “Max. seeded” shows
the maximum across all five seeded versions. The differences in verification times
are shown in column “Differences”, in seconds and as the percentage difference.
Note that half of the original programs (13 out of 27) already contained verification
failures (typically a “faulty” client that, for example, intentionally violates a callee’s
precondition); these were preserved in the seeded versions. Programs that already
contained verification failures are marked with an asterisk in column “Program”. All
original programs are included in our test suite, their file names can be retrieved
from Figure B.1 in Appendix B.

3.7.2 Completeness

When verifying programs, the verification sometimes fails although all the necessary
information is available, which constitutes an incompleteness of the verifier (but
workarounds are usually possible, such as adding additional assertions or lemma
methods). In the context of Viper and Silicon, incompletenesses can be classified into
one of the following categories:
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Mean Max. Difference
Program original (s) seeded (s) (s) (%)

1 22.52 23.49 +0.96 +04.27
2 19.56 19.93 +0.37 +01.90
3∗ 17.73 18.23 +0.50 +02.84
4∗ 17.53 17.91 +0.38 +02.17
5 16.77 16.89 +0.12 +00.71
6 4.47 4.46 −0.01 −00.26
7∗ 2.83 2.84 +0.01 +00.33
8 2.27 2.18 −0.09 −03.89
9 2.23 2.27 +0.04 +01.75

10∗ 1.86 1.92 +0.06 +03.23
11 1.69 1.93 +0.25 +14.59
12 1.37 1.39 +0.02 +01.48
13 1.31 1.20 −0.11 −08.56
14∗ 1.20 1.18 −0.02 −01.47
15∗ 1.16 1.22 +0.06 +05.11
16 1.13 1.18 +0.05 +04.53
17∗ 1.12 1.19 +0.06 +05.58
18 1.02 0.83 −0.19 −19.06
19 1.00 1.30 +0.30 +30.08
20 0.81 0.97 +0.15 +18.81
21∗ 0.79 0.85 +0.06 +07.32
22∗ 0.79 0.80 +0.00 +00.57
23∗ 0.77 0.77 +0.00 +00.20
24∗ 0.77 0.81 +0.04 +05.57
25 0.71 0.69 −0.02 −03.14
26∗ 0.47 0.48 +0.02 +03.46
27∗ 0.38 0.38 +0.00 +00.97

Figure 3.21: Evaluating the stability of Silicon’s performance with respect to seeded
verification failures; the data was collected as in the previous experiment (Figure 3.20;

on the same hardware, averaged over ten runs).

Background theories In our experience, most exhibited incompletenesses are due
to incomplete axiomatisations of background theories such as sets, sequences
and multisets (see Listing B.2 in Appendix B for an example).

Proof principles Verification might fail because a mathematical proof principle is
not supported. In particular, Silicon does not have built-in support for inductive
reasoning, and since SMT solvers typically do not perform induction either,
proofs that require an inductive argument usually fail (see Listing B.3 in Ap-
pendix B for an example).

Implementation Incompletenesses can also arise from the implementation of Silicon,
such as the heap-related incompletenesses discussed in Section 3.4.2.

SMT solver In addition, some incompletenesses exhibited by Silicon originate from
incompletenesses in the underlying SMT solvers, for example, when reasoning
about undecidable, built-in theories such as non-linear integer arithmetic.

Language design Finally, there are situations in which the verification fails due to
decisions made when designing the Viper language and defining its semantics:
for example, in order to prevent non-terminating SMT solver runs, the un-
rolling depth of recursive functions is limited and triggers are used to control
quantifier instantiations (see Listing B.4 in Appendix B for an example). It is
debatable whether or not such verification failures should be considered as
incompletenesses.
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In order to evaluate the completeness of Silicon, we performed two experiments:
(1)we determined the number of intermediate assertions required by a set of examples,
and (2) we created a number of unit-test style test cases that challenge Silicon’s heap
management algorithms, encoded them for two other verifiers and compared the
exhibited incompletenesses.

For the first experiment, we manually inspected the 27 files used in the previous
evaluation (Figure 3.21) and removed all intermediate assertions that were not re-
quired for the verification to succeed (such assertions were typically left-overs from
previous attempts to debug a now-working proof). We consider an assertion — typic-
ally an assert, sometimes a pure exhale— as intermediate if it is not the final proof
obligation on a program path: any assert that is followed by another statement, or a
postcondition or loop invariant check, is considered as intermediate. Note that this
is a coarse but conservative over-approximation because it also considers assertions
as intermediate that encode proof obligations of the front end that are potentially
unrelated to the final proof obligation, for example, particular well-definedness
requirements. We also looked for other incompleteness-related workarounds, for
example, manually introduced case splits or postconditions that encode an inductive
argument, but found only one such workaround. In total, four out of 27 files required
at least one additional annotation to overcome an incompleteness:

• Program 1 required three additional assertions (across two different methods):
each assertion temporarily unfolds a predicate instance (via unfolding) tomake
facts from the predicate body available that are needed for proving subsequent
assertions (the assertions are needed by both Viper verifiers). Note that it is
debatable whether or not these assertions should be considered as intermediate
since Viper verifiers are not meant to reason about predicate definitions without
explicit direction (via (un)fold). However, the three assert statements match
our (over-approximating) definition of intermediate assertions and we therefore
counted them as such.

• Program 2 is a variant of program 1 in which (among other changes) a postcon-
dition has been strengthened. This version requires four additional assertions:
the three from above plus an additional unfolding (for the same reason).

• Program 3 required (for both Viper verifiers) one additional assertion to prove
a sequence-related property.

• Program 8 required (for both Viper verifiers) one additional function postcon-
dition that encodes an inductive argument.

The results show that Silicon performs well with respect to incompletenesses: only
four out of the 27 programs require additional annotations; for the inspected pro-
grams, this amounts to an average of one additional annotations per 1282 lines of
code.

For the second experiment, we used our experience gained from developing Silicon’s
state consolidation algorithms, and from working with Silicon in general, to craft a
number of challenging test cases with the goal of uncovering heap-related incom-
pletenesses. We then encoded these test cases for the two symbolic-execution-based
verifiers that are closest related to Silicon (VeriFast and VeriCool) and compared the
observed incompletenesses: the results are favourable for Silicon, which exhibits
fewer heap-related incompletenesses. The comparison is described in detail in the
next section, as part of a thorough, more general comparison between Silicon and the
two other verifiers.

3.7.3 Comparison with Related Verifiers

As discussed in Section 1.2, various automated verification tools for permission logics
exist, including symbolic-execution-based verifiers such as Smallfoot [11], jStar [42],
SpecCheck [119] and VeriFast [67], but also verifiers that are not based on symbolic
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Feature VeriCool VeriFast Silicon
Heap-dependent expressions 3 7 3
Mathematical collections (sets, . . . ) 3 7 3
Fractional permissions 3 7 3

Definite aliasing 3∗ (3) (3)
Disjunctive aliasing 7 7 7
Retrospective aliasing – 7 7
Path conditions from heap constraints (3) (3) (3)
Quantifiers 7 3 3
Permission introspection 7 7∗ 3
Object allocation 7 7 (3)
Function unrolling depth 7 – 3
Predicate unfolding depth 7∗ – 3

Table 3.1: Comparing VeriCool, VeriFast and Silicon on a selected set of features (in
a rather broad sense). Asterisked entries indicate that the comparison is subject to
restrictions, parentheses indicate that support for a feature is provided but incomplete,
and a dash indicates that a comparison cannot be made for conceptual reasons; in
each case, further details are given in the text. The second feature block (starting with
“definite aliasing”) refers to the sources of incompletenesses discussed in the context
of state consolidations (Section 3.4.2). “Object allocation” compares to which extent
verifiers encode the fact that a newly allocated object is indeed different from all existing
objects (Viper’s new statement Section 3.2). “Function unfolding depth” refers to the
need for preventing infinite recursive function unrollings, and how the maximum
recursion depth is chosen (Section 3.6). Similarly, “Predicate unfolding depth” refers to

the need for preventing infinite recursive unfolding evaluations.

execution, such as HIP/SLEEK [35] and GRASShopper [103]. Of these verifiers,
SpecCheck and VeriFast are closest related to Silicon (see Section 1.2 for an overview
and discussion of the other verifiers): they require fully-specified programs, they
support custom predicate definitions, they require explicit annotations to exchange
predicate instances for their bodies (and vice versa), and both strictly separate the
symbolic state into a verified-managed heap and solver-managed path conditions.
As far as we know, VeriFast is the only one of these four verifiers that is still under
active development.

SpecCheck was the first verifier for implicit dynamic frames, and its symbolic exe-
cution rules and their presentation had a strong influence on the work presented in
this thesis. To our knowledge, SpecCheck has been superseded by VeriCool [120], a
verifier for implicit dynamic frames that optionally uses either verification condition
generation or symbolic execution. Publications [122, 118, 120] only describe Veri-
Cool’s verification condition generation back-end, but as far as we know, its symbolic
execution back-end is essentially an improved version of SpecCheck. We will there-
fore compare Silicon to VeriCool’s symbolic execution back-end (version 3.4), and not
to SpecCheck (both SpecCheck and VeriCool are no longer under active development).
The specification features supported by VeriCool are essentially all supported by
Viper as well, which simplifies the comparison of the tools.

VeriFast is a mature verifier for separation logic, which has been successfully used in
various research experiments and in industrial case studies. The specification lan-
guage supported by VeriFast differs more strongly from Viper’s: for example, VeriFast
supports higher-order methods and predicates, but does not support heap-dependent
expressions such as Viper’s abstraction functions. The comparison therefore focuses
on the core language features, and on design choices that are characteristic for the
symbolic execution engines. An in-depth comparison of the specification languages
and an analysis of how the differences in language design affect how examples are
encoded and verified would be interesting and insightful, but is outside the scope of
this thesis.
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Table 3.1 lists features of Silicon, and indicates to which extent these are supported
by VeriCool and VeriFast. Regarding the comparison of potential incompletenesses
arising from how the verifiers handle the heap in the presence of different kinds of
aliasing (the second block in the table), a word of caution is in order. We are not aware
of any publications that describe the heap management of VeriCool or VeriFast, and
we therefore did a best-effort testing of the verifiers: we used our experience gained
from working with Silicon, and our knowledge about Silicon’s state consolidation
algorithms, to craft challenging tests cases which we encoded for all three verifiers (if
possible). The tests can be found in Appendix B.1.

Heap-dependent expressions Heap-dependent expressions, and in particular heap-
dependent abstraction functions, are a versatile specification feature (as argued
in Chapter 2) and commonly used in verification: traditionally in approaches
not based on a permission logic, for example, ownership or dynamic frames (see
also Section 1.2), but increasingly also in permission-logic-based approaches,
for example, verifiers based on implicit dynamic frames and by GRASShop-
per [103]. In addition to being an important feature of an intermediate verifica-
tion language, heap-dependent expressions also pose interesting challenges for
symbolic execution, and are therefore relevant for this comparison.

Mathematical collections VeriFast and Silicon both support mathematical collec-
tions such as sequences and sets, which are necessary to specify full-functional
properties. The individual support for such structures differs significantly
between Silicon and VeriFast, however: Silicon provides built-in support for
sequences, sets and multisets, and operations to manipulate them, by includ-
ing axiomatisations (taken from Dafny) of the mathematical structures in the
verifier’s background theory. In practice, the axiomatisation achieves a de-
cent trade-off between completeness and performance, but it is (inherently)
incomplete, and certain usage patterns are known to cause performance de-
gradation. Support for additional mathematical structures can be added to
Viper by declaring corresponding domains, as discussed in Section 2.5.

VeriFast does not include a similar axiomatisation in its background theory;
instead, it supports defining custom inductive data types such as Haskell-style
nil/cons lists, and (heap-independent and side-effect free) recursive functions
to manipulate them, for example, list indexing and list append. Relevant prop-
erties, for example, of indexing over append, are expressed as lemma functions:
abstract functions whose postcondition is the desired property. Lemma func-
tions need to be invoked explicitly (via ghost code), which reduces the degree
of automation VeriFast achieves, but in general improves performance since it
reduces the workload of the underlying solver. To increase automation, lemmas
can be marked as auto: heap-independent auto lemmas are encoded as axioms
to the solver (triggers can be provided in order to control axiom instantiations),
whereas heap-dependent lemmas are automatically instantiated by VeriFast
(according to heuristics). VeriFast’s standard library includes a definition of
lists, list-manipulating functions and lemma functions for various properties
thereof, as well as functions (and lemmas) for modelling sets on top of lists.

Fractional permissions VeriFast and Silicon support fractional permissions, which
are essential for encoding shared read access, whereas VeriCool does not. The
absence of fractional permissions significantly simplifies the management of
the symbolic heap because the need for merging chunks does not arise, and
without fractional permissions, it is impossible to express retrospective aliasing,
which eliminates a whole class of incompletenesses.

Definite aliasing We were not able to observe incompletenesses due to the verifiers’
heap management if only definite aliasing is present and if no fractional permis-
sions are used. This is not unexpected, since it is straightforward to manage the
heap in a complete way (assuming a perfect solver) in such a restricted setting.
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However, both VeriFast and Silicon are incomplete in the presence of fractional
permissions, as illustrated by the test cases shown in Appendix B.1.1. The tests
also give evidence that Silicon’s handling of the heap is slightly more complete
than VeriFast’s, which is due to Silicon’s try operation discussed in Section 3.4.2.
Although small, the difference is potentially important in practice because heap-
dependent expressions increase the potential number of program points at
which incompletenesses can be observed.

Disjunctive aliasing All three verifiers are equally incomplete in the presence of
disjunctive aliasing, but in each of the verifiers, disjunctive aliasing can be
reduced to definite aliasing by forcing the symbolic execution engine to branch
appropriately. See Appendix B.1.2 for the corresponding test cases.

Retrospective aliasing Retrospective aliasing cannot be expressed in VeriCool due
to the missing support for fractional permissions. VeriFast and Silicon are
equally incomplete in the presence of retrospective aliasing, but work-arounds
are possible. See Appendix B.1.3 for the corresponding test cases.

In Silicon, at least two work-arounds are possible (illustrated in Appendix B.1.3).
The first (test02a in Listing B.12) uses labelled old expressions to trigger a
retrospective state consolidation, whereas the second (test02b) uses an if state-
ment to force the verifier to eagerly branch over the future aliasing constraint.
The latter work-around is also possible in VeriFast.

Both work-arounds include inserting additional statements in a way that re-
quires foreseeing the potential incompleteness to a degree that is probably hard
to achieve during an automated encoding, which is likely to render the work-
arounds impractical for an intermediate verification language such as Viper.
For VeriFast, this is potentially less of a problem because it is not intended to
serve as an intermediate verification language.

So far, we did not encounter retrospective aliasing in practice, but it nevertheless
is an interesting kind of aliasing since it is challenging for verifiers based on
symbolic execution but does not pose any problems for verifiers based on
verification condition generation.

Path conditions from heap constraints Due to the separation of the state into a sym-
bolic heap and a set of path conditions, various constraints that are implicitly
present in the heap need to be added as path conditions in order to make them
available to the solver (as discussed in Section 3.4.2). All three verifiers are in-
complete in that respect, as illustrated by the test cases shown in Appendix B.1.4.
As before, some tests cannot be encoded in VeriCool due to its lack of support
for fractional permissions.

The tests also demonstrate that Silicon exhibits fewer incompletenesses; in
particular, that it is more stable with respect to changes in the specifications.
VeriCool, for example, infers receiver disjointness from permissions obtained in
the precondition, but not if the permissions are obtained from a called method’s
postcondition (tests test01 vs. test01a from Listing B.13 in Appendix B.1.4).
VeriFast does not exhibit this incompleteness, but it fails to infer receiver dis-
jointness if the relevant permissions are distributed over multiple chunks (tests
test01 vs. test02 from Listing B.14 in Appendix B.1.4).

Quantifiers First-order-logic quantifiers (recall Section 3.4.3) are encoded by Silicon
as a quantified formula to the underlying solver. VeriFast supports such quanti-
fiers as well (and encodes them analogously), but in practice, it seems much
more common to use variants of recursively defined, higher-order forall (re-
spectively, exists) functions that test if a given boolean function holds for each
(respectively, at least one) element of a collection, such as a list. We conjecture
that this is a consequence of VeriFast’s design decision to support mathematical
structures via inductive data types, recursive functions and explicitly invoked
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lemma functions, which integrates more naturally with recursive forall func-
tions than with quantifiers.

Analogous to the handling of mathematical collections, Viper favours automa-
tion at the price of potential performance degradation (if the quantifier triggers
are too permissive), whereas VeriFast favours performance at the price of ad-
ditional ghost code. The choice of trade-offs are a consequence of the design
philosophy behind the languages and tools, and reflect their intended use: re-
quiring ghost code (in ways that is challenging to anticipate automatically) can
significantly reduce the practical use of an intermediate verification language,
but is not a key concern for a verifier that is typically used to verify manually
encoded examples.

Permission introspection Viper supports permission introspection via the perm and
forperm expressions discussed in Section 3.4.4, which can be used to make
assertions conditional on the availability of permissions or to encode leak checks,
as discussed in Section 2.2.3.

VeriFast does not support a construct similar to forperm, but its C front end has
the special case of permission leak-checks built in because C requires manual
memory management; explicitly choosing to leak permissions is possible via
ghost statements. The Java front end does not have leak checks built in. Instead
of a perm expression, VeriFast supports asserting the existence of a points-to
predicate with an existentially quantified permission amount, which introduces
a new variable whose value is the permission amount of the asserted points-to
predicate. The newly introduced variable can then be used to, for example,
branch over the availability of permissions. However, since asserting points-to
predicates is subject to the previously discussed heap-related incompletenesses,
the obtained permission amount is potentially an under-approximation of the
actually available permission amount, which can result in incompletenesses
and unsoundnesses, as illustrated by the test cases shown in Appendix B.1.5.

Object allocation As illustrated by the test cases in Appendix B.1.6, VeriCool does
not appear to infer any reference disequalities from allocating new objects.
VeriFast appears to not infer any reference disequalities from allocating new
objects either, but it infers disequalities from the available permission amounts
(as already illustrated by the examples in Appendix B.1.4). Silicon is more
complete: it infers disequalities for all references directly reachable from the
current symbolic state, i.e. local variables and fields, but neither for references
hidden in predicates nor for references returned by functions (that only read
previously allocated state).

Function unrolling depth VeriCool and Silicon both support heap-dependent re-
cursive functions, which are routinely used to inspect recursively defined data
structures such as linked lists. An example is given in Appendix B.1.7, in which
a recursively defined function computes the length of a linked list.

As discussed in Section 3.6, Silicon axiomatises such function definitions to
the solver, whereas VeriCool (symbolically) evaluates the function body each
time a function is applied. Both approaches require taking measures to prevent
recursive functions from causing non-terminating verification runs: on each
application, VeriCool evaluates recursive functions up to a fixed depth (one),
and Silicon analogously allows the solver to instantiate the function definition
axiom once per application. Silicon complements this static approach by the
more dynamic approach from Heule et al. [59] that permits the solver to unroll
function definition axioms as deeply as the corresponding data structures were
inspected in the program (via fold/unfold(ing)). The example shown in
Appendix B.1.7 illustrates that Silicon’s approach to handling heap-dependent
functions is more complete than VeriCool’s, which, for example, fails to assert
that a list obtained from concatenating two nodes is of length two.
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For comparison, Appendix B.1.7 also includes an encoding of a linked list in
VeriFast. Instead of heap-dependent recursive functions, an additional argu-
ment of the list predicate is used to represent the length of the list, and the body
of the length function is essentially inlined in the predicate, with existentially
bound variables replacing recursive function invocations. This makes the pre-
dicate definition more involved: refining the linked list further, for example, by
requiring that all stored elements satisfy a certain property, requires adding
additional arguments to the predicate and assertions to its body, as discussed
in Section 2.4.

Due to this encoding, indefinite function unrolling is not an issue for VeriFast: as
in Viper, predicates need to be (un)folded explicitly (via open/close statements)
and can therefore not cause non-termination. However, the exclusive use of
predicates can incur the need for “no-op” open/close pairs that are necessary
in order to learn a fact from a predicate body, which might not be necessary in
an encoding that uses a corresponding getter function (because functions are
unrolled when applied). For an illustration, see test03 in Appendix B.1.7.

Predicate unfolding depth Viper’s unfolding expressions are analogous to Veri-
Cool’s opening expressions. As described in Section 3.4.3, explicit measures
need to be taken to prevent the symbolic execution from indefinitely recursing
while unfolding a predicate whose body (transitively) contains an unfolding
of another instance of the same predicate. Silicon prevents infinite recursion by
replacing recursive unfolding expressions with unknown values, as discussed
in Section 3.4.3. VeriCool, however, does not appear to take similar measures,
and crashes with a stack overflow. Corresponding test cases can be found in
Appendix B.1.8.

3.8 Limitations

In addition to the heap-related incompletenesses that are typical for verifiers based
on Smallfoot-style symbolic execution (as discussed in Section 3.7), Silicon has a few
other known limitations where its behaviour differs from the expected behaviour
(defining a formal semantics for Viper is active work in progress).

Constraining Blocks

Recall from Section 2.7 that Viper’s constraining blocks, which implement work
by Heule et al. [58] on abstract read permissions, can be used to avoid the need of
having to explicitly choose permission fractions in situations where any arbitrarily
small (but positive) fraction will suffice because the corresponding locations only
need to be read.

For example, the constraining block in the snippet

inhale acc(x.f)

constraining(p) {
exhale acc(x.f, p) && acc(x.f, p)

}

is conceptually translated by assuming, per accessibility predicate, that the abstract
permission amount to exhale (here p) is smaller than the still held permission amount:

inhale p < write
exhale acc(x.f, p)
inhale p < write - p
exhale acc(x.f, p)
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A naïve implementation of this idea, however, is prone to incompletenesses

constraining(p) {
exhale acc(x.f, p) && acc(x.f, 1/2)

}
// --- Incomplete if naively translated as: ---
inhale p < write // Permits 1/2 < p
exhale acc(x.f, p)
exhale acc(x.f, 1/2) // Could fail

and unsoundnesses

constraining(p) {
exhale acc(x.f, write - p) && acc(x.f, p)

}
// --- Unsound if naively translated as: ---
inhale p < write - p
exhale acc(x.f, write - p)
inhale p < write - (write - p) // Contradiction
exhale acc(x.f, p)

Heule et al. use a three-phase exhaling to prevent such incompletenesses and unsound-
nesses, but Silicon does not yet implement the approach and therefore exhibits both
issues. Implementing the three-phase exhaling is expected to be an engineering task
only.

Inhale-Exhale Assertions and Snapshots

Recall from Section 3.3 that inhale-exhale assertions [a1, a2] affect the structure of as-
sertions because of the asymmetry between how inhale-exhale assertions are inhaled
(as a1) and exhaled (as a2). Furthermore, recall that snapshots are used to represent
the values of the partial heap an assertion describes, and that this representation
requires the structure of the snapshot to match the structure of the assertion. For
example, folding a predicate instance yields a snapshot (by consuming the instance’s
body) describing the values of the partial heap folded into the instance, and upon a
subsequent unfolding of the instance, the snapshot is used to “restore” the values of
this partial heap (when producing the body).

The structural representation of heap values via snapshots complicates the use of
inhale-exhale assertions (spatial assertions, not pure expressions) in positions in
which the same snapshot is potentially used with the consumption and production of
assertions: in Silicon, such positions are predicate bodies and function preconditions.
Silicon currently disallows inhale-exhale assertions in such positions; allowing them
without taking further measures would be unsound, as illustrated by the following
example:

predicate pair(x: Ref) {
[acc(x.f) && acc(x.g),
acc(x.g) && acc(x.f)]

}

// h : f (x; 22, 1), g(x; 3, 1)
assert x.f == 22 && x.g == 3
fold acc(pair(x))

// h : pair(x; (3, 22), 1)
unfold acc(pair(x))

// h : f (x; 3, 1), g(x; 22, 1)
assert x.f == 3 && x.g == 22 // Would incorrectly succeed



102 Chapter 3. Silicon: Symbolic Execution of Viper

Lifting this restriction is not straightforward, and probably requires a more semantic
(and less structural) representation of snapshots, for example, as maps from locations
to values, which is likely to be more expensive (in terms of solver involvement) than
the current structural representation. However, a similar problem already needed to
be solved in in the context of quantified permissions; the solution performs well and
can probably be adapted in order to lift the restriction on the use of inhale-exhale
assertions.

Inhale-Exhale Assertions and Well-Definedness Checks

Recall from the discussion in Section 3.5 that inhale-exhale assertions also complicate
the well-definedness checks of, for example, method specifications: since the specific-
ations used at call site differ from those used when verifying the method body, two
different specification variants (combinations of pre- and postconditions) need to be
checked for well-definedness.

Silicon currently only checks the callee-variant of specifications that use inhale-exhale
assertions for well-definedness (using a1 for every such assertion), and thus does not
report malformed specifications such as the following:

method bad(x: Ref)
requires [true, x.f == 0] // Not reported as non-self-framing

{}

Implementing the necessary checks (discussed in Section 3.5) is expected to be straight-
forward.

General Shape of forperm

Viper does not yet support the general shape of forperm expressions that is discussed
in Section 3.4.4, and consequently, neither does Silicon. forperm expressions are
currently limited to fields, the supported syntax is forperm[ f] x :: e, where f is a
field and x is fixed to type Ref.
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Chapter 4

Quantified Permissions

Specifying general unbounded heap structures using recursive predicates — which
are typically the only means for specifying such structures that existing automated
verifiers for permission logics provide — can become cumbersome if the pattern
according towhich a structure is accessed does not follow the corresponding predicate
structure (for example, traversing a doubly-linked list from the end) or in general
follows no specific order, such as traversing an array or a graph (as was already
argued in Section 2.3). In such cases, programmers are typically required to provide
substantial manual proof steps (for example, as ghost code) to bridge the mismatch
between the program’s access pattern and the imposed predicate structure.

Iterated separating conjunction [108] is an alternative way to denote permissions to
a set of heap locations, which has, for example, been used in by-hand proofs to
specify arrays [108], cyclic data structures [14, 136], the objects stored in linked lists
[42], and graph algorithms [136]. Unlike recursive predicates, an iterated separating
conjunction does not prescribe any particular traversal order.

Despite its usefulness and inclusion in early presentations of separation logic, no
(already) existing program verifier supports general iterated separating conjunction
directly. Among the tools based on symbolic execution (recall Section 1.2 and Sec-
tion 3.7.3), Smallfoot does not support iterated separating conjunction, neither does
VeriCool’s symbolic execution back-end, and VeriFast and jStar allow programmers
to encode only some forms of iterated separating conjunction via abstract predicates
that can be manipulated by auxiliary operations and lemmas (in VeriFast) or tailored
rewrite rules (in jStar). For arrays, this encoding is partially supported by libraries.
However, in the general case, programmers need to provide the extra machinery,
which significantly increases the necessary manual effort.

Among the verifiers based on verification condition generation, Chalice [84] supports
only a restricted formof iterated separating conjunction (ranging over all objects stored
in a sequence), and VeriCool uses an encoding that leads to unreliable behaviour of
the SMT solver [120, p. 46]. The GRASShopper tool [103] does not provide built-in
or general support for iterated separating conjunction, but some ingredients of the
technique presented here (particularly, the technical usage of inverse functions) have
been employed there in specifications involving arrays. The Dafny verifier [82] can be
used to write similar set- and quantifier-based specifications, but it neither supports
permission-based reasoning nor concurrency (nor expressive language constructs
such as in-/exhale that facilitate the encoding thereof).

This chapter presents the first symbolic execution technique that directly supports
general forms of iterated separating conjunction. The technique is compatible with
other features of permission logics: it supports fractional permissions, such that a heap
location may be ranged over by several iterated separating conjunctions, and it allows
iterated separating conjunction to occur in predicate bodies and in the preconditions
of abstraction functions. This combination of features allows one to specify and verify
challenging examples such as graph-marking algorithms (see Appendix C) that so
far were beyond the scope of automated verifiers based on permission logics.
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Chapter Overview

Viper supports iterated separating conjunction in the form of quantified permission
assertions, and we use the term quantified permissions, as in previous chapters, to refer
to Viper’s language feature that corresponds to the separation logic connective iterated
separating conjunction.

The work described in this chapter has in parts been published at CAV 2016, in
the paper Automatic Verification of Iterated Separating Conjunctions using Symbolic Ex-
ecution by Müller, Schwerhoff and Summers [95]. At the verification competition
VerifyThis@ETAPS’16 [62], quantified permissions was awarded the Distinguished
User-Assistance Tool Feature price for the feature that proved particularly useful during
the competition.

The main contributions of this chapter are:

(1) A language feature, called quantified permissions, that enables the direct use
of general iterated separating conjunctions in a permission-based verification
language.

(2) A novel representation of the partial heaps denoted by an iterated separating
conjunction, along with algorithms to manipulate this representation.

(3) A technique to preserve across heap changes the values of expressions that
depend on unbounded sets of heap locations as denoted by iterated separating
conjunctions.

(4) An integration of iterated separating conjunction with all other important Viper
features (in addition to heap-dependent functions), in particular, with predic-
ates, magic wands and permission introspection.

(5) An SMT encoding of the necessary axioms and proof obligations that carefully
controls quantifier instantiations.

(6) An implementation of (most of) the presented technique in Silicon.

The remainder of this chapter is structured as follows: the main technical challenges
addressed by our work are explained in Section 4.1, and illustrated with a simple
motivating example. A design for a symbolic heap that can represent permissions
described by iterated separating conjunctions is presented in Section 4.2, followed by
an explanation of the symbolic evaluation of expressions and framing with respect
to this heap representation in Section 4.3. Afterwards, we discuss the controlling of
quantifier instantiations in Section 4.4. An evaluation of the presented technique, as
implemented in Silicon, is presented in Section 4.5, and Section 4.6 gives additional
details of the implementation.

4.1 Motivation and Technical Challenges

Listing 4.1 introduces the running example of this chapter, which illustrates the
use of quantified permissions (in a pseudo-code that resembles Viper, but natively
supports arrays and parallel composition): method replace replaces all occurrences
of integer fromwith integer to in the segment of array a between left and right. The
recursive calls to smaller array segments are performed concurrently using parallel
composition ‖. The second precondition requires access permissions to all elements
in the array segment, and the first postcondition returns these permissions to the
caller; both are expressed using quantified permissions. Arrays are encoded in Viper
as discussed in Section 2.5.1: by declaring a custom Array domain, an injective Ref-
typed function loc, and a field val (of appropriate type), such that loc(a, i).val
models the array slot a[i].
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1 method replace(a: Int[], left: Int, right: Int,
2 from: Int, to: Int)
3 requires 0 <= left < right <= a.length
4 requires forall i: Int :: left <= i < right ==> acc(a[i])
5 ensures forall i: Int :: left <= i < right ==> acc(a[i])
6 ensures forall i: Int :: left <= i < right ==>
7 (old(a[i]) == from
8 ? a[i] == to
9 : a[i] == old(a[i]))

10 {
11 if (right - left <= 1) {
12 if(a[left] == from) { a[left] := to }
13 } else {
14 var mid := left + (right - left) / 2
15

16 replace(a, left, mid, from, to)
17 ‖
18 replace(a, mid, right, from, to)
19 }
20 }

Listing 4.1: A parallel replace operation on array segments. The second precondition
and the first postcondition employ quantified permissions to specify permissions to
the elements of the array. Arrays are encoded in Viper as discussed in Section 2.5.1.

The running example illustrates several technical challenges that must be addressed
in order to support quantified permissions in an automated verifier. These challenges
are discussed next, and for each challenge, we briefly recapitulate how the corres-
ponding challenge has been solved for the simpler case of non-quantified permissions
(as discussed in Chapter 3) and we describe how quantified permissions complicate
the challenge.

(1) Permissions and heap values must be represented in the verification state, for
example, to represent the array locations to which permissions are obtained
from the precondition on line 4 of Listing 4.1. In the non-quantified setting,
permissions and heap values are represented as heap chunks that each map
a single field location to a permission and a location value (and similar for
predicate instances), and constraints on these values are recorded in the path
conditions. In order to support quantified permissions, heap chunks must be
generalised to denote permissions to an unbounded number of locations, and
encode a symbolic value per location.

(2) It must be possible to remove permissions, for example, on line 17 for the parallel
calls or when exhaling the postcondition on line 5. Without quantified permis-
sions, Silicon in general1 under-approximates the permissions a symbolic heap
provides by only taking permissions into account that are definitely available
(for a specific heap location). Such an approximation is in general incomplete
(but sufficiently complete in practice, as shown in Section 3.7), but very efficient.
With the addition of quantified permissions, such an under-approximation
is no longer an option, however: when exhaling the postcondition on line 5,
permissions must be taken from both available generalised heap chunks (one
chunk per recursive call), but for an arbitrary a[i], no individual heap chunk
definitely provides the required permission. Moreover, removing quantified
permissions from a generalised chunk may affect only some of the locations to
which it provides permissions: for example, when exhaling the precondition
of the first recursive call, the permissions required for the second call must be
retained in the symbolic state.

1The exception are Viper’s permission introspection features (Section 3.4.4) which, for soundness,
require a precise permission representation.
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(3) Similarly, it must be possible to check for permissions in a state, for example,
when accessing a[left] on line 12, and supporting quantified permissions
complicates this challenge analogously to how quantified permissions affect
removing permissions: permissionsmay be spread acrossmultiple heap chunks,
and in the presence of fractional permissions, these chunks may even partially
overlap (that is, partially provide fractions to the same locations).

(4) Previously, it also sufficed to consider each heap chunk in isolation when evalu-
ating heap-dependent expressions. With the addition of quantified permissions,
however, heap-dependent expressions under quantifiers may rely on symbolic
values from multiple heap chunks: for example, proving the postcondition on
line 6 requires information from both recursive calls.

(5) Silicon’s technique for framing the values of heap-dependent expressions across
heap changes — the snapshots introduced in Chapter 3 — needs to be general-
ised as well, since heap-dependent expressions, such as pure quantifiers over
heap locations and functions whose preconditions use quantified permissions,
may be framed by an unbounded number of symbolic values (see Appendix C,
Listing C.2 for an example of such a function).

The technique presented in this chapter is the first to provide automated solutions to
these challenging problems. Section 4.2 tackles the first three problems; Section 4.3
tackles the remaining two.

4.2 Treatment of Permissions

The canonical shape of quantified permission assertions as currently supported by
Viper is

forall x : T :: c(x) ==> acc(e(x). f, p(x))

in which c(x) is a boolean expression, e(x). f denotes a field location, and p(x) is an
expression denoting a permission amount. We write c(x) (and analogously, e(x) and
p(x)) to emphasise that the variable x may occur in the expression c (potentially in
addition to other bound or free variables).

More-complex assertions can be desugared into this canonical shape, for instance, iter-
ating over the conjunction of two accessibility predicates can be encoded by repeating
the quantification over each conjunct. Nested quantified permission assertions are
not yet supported, but an extension is possible (see also Section 4.6). The canonical
shape is sufficient to directly support quantifying over all receivers in a set (useful
for graph examples), and over integer indices into an array, as used by the running
example shown in Listing 4.1.

The permission expression p(x)may be a complex expression including conditionals,
and need not evaluate to the same value for each instantiation of x. This enables
encoding complex access patterns such as requiring non-zero permission to every nth
slot of an array, which is, for example, important for the verification of GPU programs
[16]. As before, pure quantifiers over potentially heap-dependent expressions can be
used to specify functional properties.

In the remainder of this section, we present the first key ingredient of our symbolic
execution technique: a representation of quantified permissions as part of the verifier’s
symbolic state along with algorithms to manipulate this representation.
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4.2.1 Symbolic Heap Representation

To simplify the presentation, the core idea behind our heap representation is first
introduced in the context of field locations, and then generalised to predicate instances;
afterwards, the corresponding symbolic execution rules are presented in full detail.

Quantified Field Chunks

The field chunks introduced in Chapter 3 are of the shape f (o; v, p), which can
be understood as mapping a field receiver o to a location value v and permission
amount p. A naïve generalisation of this representation would be to make o, v and
p functions of the variable x bound by a quantified permission assertion (recall the
canonical shape of quantified permission assertions introduced above). However,
such a representation would have severe drawbacks. Checking whether a heap
chunk provides permission to a location y. f (challenge 2 above) amounts to the
existential query ∃x · o(x) = y, and SMT solvers typically provide poor support for
such existential queries. In the presence of fractional permissions, determining how
much permission such a heap chunk provides is worse still, requiring to calculate the
sum of all p(xi) such that xi satisfies the existential query.

Our design avoids these difficulties with a simple restriction: it requires the receiver
expressions e(x) in a quantified permission assertion to be injective in x, for all values
of x to which the assertion provides permission. Under this restriction, it can soundly
be assumed that the mapping between the bound variable x and receiver expression
e(x) is invertible for such values, by some function e−1. A quantified permission
assertion over receivers r = e(x) can then be represented by directly quantifying over
references r (instead of x): by replacing each occurrence of x with e−1(r) throughout
the assertion.

The resulting design is to use quantified field chunks of the shape f (r; sm(r), p(r)), in
which r, which is implicitly bound in such a chunk, plays the role of a quantified
(reference-typed) receiver. A quantified field chunk represents p(r) permission to
all locations r. f ; p(r) may be any expression denoting a permission amount. The
domain of a quantified field chunk is the set of field locations r. f for which p(r) > 0.
The values of these locations are modelled by the snapshot map sm: such maps from
references to field values generalise the snapshots of non-quantified field chunks and
record the snapshot (that is, value) per location to which a quantified field chunk
provides non-zero permission. Details about snapshot maps are given in Section 4.3.

The aforementioned injectivity of field receiver expressions e(x) is asserted when a
quantified permission assertion is exhaled, and assumed when a quantified permis-
sion assertion is inhaled2 (the corresponding symbolic execution rules are shown in
Figure 4.1); injectivity is assumed by axiomatising a fresh inverse function. That is,
inhaling a quantified permission assertion

forall x : T :: c(x) ==> acc(e(x). f,p(x))

entails declaring a fresh inverse function3

e−1 : Ref → T

and adding a quantified field chunk

f (r; sm(r), ite(c(e−1(r)), p(e−1(r)), 0))

2In future versions of Viper (and Silicon) we might check injectivity on inhale as well, for example, in
order to reduce the likelihood of not detecting inconsistent preconditions.

3For simplicity, we use the Viper type T in the presented encoding, instead of an appropriate sort S
that (in Silicon’s background theory, recall Section 3.1.2) corresponds to T; all following encodings in this
chapter are simplified analogously.
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to the symbolic heap that provides permissions to all field locations specified by
the source-level quantified permission assertion (and zero permissions to all other
locations). The inverse function could then be axiomatised by adding the follow-
ing constraints to the path conditions (the final constraints are shown in the next
subsection):

∀r : Ref · c(e−1(r)) ∧ 0 < p(e−1(r))⇒ e(e−1(r)) = r
∀x : T · c(x) ∧ 0 < p(x)⇒ e−1(e(x)) = x

The injectivity restriction does not limit the data structures that can be handled by
our technique, provided specifications are expressed appropriately. The restriction
applies to memory locations, not to the values stored in the locations. Many examples
such as quantified permissions ranging over array indices or elements of a set naturally
satisfy the restriction. Ranges that may contain duplicates (for instance, the fields
of all objects stored in an array) can be encoded by mapping them to a set (thereby
ignoring multiplicities) or by using complex permission expressions p that reflect
multiplicities appropriately.

Quantifications over Finite Domains

As it was shown above, the definition of inverse functions would implicitly assume
that the set T over which the quantified permission assertion ranges is of the same
cardinality as the set of references Ref — an assumption that would be unsound in
general, for example, when quantifying over booleans. Consider the snippet

inhale forall b: Bool :: true ==> acc(e(b).f)

where the expression e(b) maps each b to one of two different references. If the
generated first inverse axiom were

∀r : Ref · true⇒ e(e−1(r)) = r

then e−1 would constitute a bijection between Ref and Bool, and thus unsoundly
assume that the two sets were of the same cardinality.

We prevent this unsoundness by effectively limiting the domain of the inverse function
to the image of e, which we achieve by introducing an uninterpreted function imge
that identifies the references in the image of e. Concretely, we declare a fresh function

imge : Ref → Bool

that evaluates to true for each reference r in the image of e. The latter is axiomatised
as follows:

∀x : T · c(x) ∧ 0 < p(x)⇒ imge(e(x))

Given such an image function imge, we can now axiomatise the inverse function e−1

as follows:

∀r : Ref · imge(r) ∧ c(e−1(r)) ∧ 0 < p(e−1(r))⇒ e(e−1(r)) = r
∀x : T · c(x) ∧ 0 < p(x)⇒ e−1(e(x)) = x

General Quantified Chunks

The presented idea enables support for quantified permission assertions over field
locations (and is already implemented in Silicon), but not yet for quantified permis-
sion assertions over predicate instances. A corresponding generalisation is possible,
however (but not yet implemented in Silicon, see also Section 4.6), as is discussed
next.
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As the first step, the canonical shape of quantified permission assertions is generalised
to

forall x : T :: c(x) ==> acc(id(e(x)), p(x))

where id(e(x)), as in previous chapters, denotes either a predicate instance (with
multiple arguments e(x)) or a field location (in which case id(e(x)) denotes a field
location e(x).id). Since predicate instances may have multiple arguments, it is neces-
sary to also generalise the inverse function that belongs to a quantified permission
assertion such that it maps a vector of arguments e(x) to the quantified variable x.
Such generalised inverse functions are axiomatised as

∀r : E · imge(r) ∧ c(e−1(r)) ∧ 0 < p(e−1(r))⇒ ∧
ei(e−1(r)) = ri

∀x : T · c(x) ∧ 0 < p(x)⇒ e−1(e(x)) = x

where the quantified variables r correspond to the arguments e(x): one variable
ri : Ei per expression ei(x) : Ei. The corresponding generalised image function imge is
axiomatised as follows:

∀x : T · c(x) ∧ 0 < p(x)⇒ imge(e(x))

Finally, we generalise the previously introduced quantified field chunks to (general)
quantified chunks, which are of the shape

id(r; sm(r), ite(c(e−1(r)), p(e−1(r)), 0))

where the snapshot map sm is of type E → Snap (details about snapshot maps are
given in Section 4.3), and where e−1 : E→ T is a generalised inverse function.

Integrating Quantified and Non-Quantified Permissions

Mixing quantified permission assertions with regular accessibility predicates (that is,
non-quantified permission assertions) concerned with the same identifier (field or
predicate) in specifications is desirable, and supported by Silicon. For example,:

inhale forall x: Ref :: x in xs ==> acc(x.f)
inhale y in xs
exhale acc(y.f)

For ease of presentation, throughout this chapter we treat regular accessibility pre-
dicates acc(id(e)) as syntactic sugar for the quantified permission assertion

forall x : E :: x == e ==> acc(id(x))

For example, acc(y.f) is interpreted as

inhale forall x: Ref :: x == y ==> acc(x.f)

Correspondingly, consuming/producing a regular accessibility predicate is inter-
preted as consuming/producing the corresponding quantified permission assertion.
Handling regular accessibility predicates this way makes it unnecessary to mix quan-
tified and non-quantified chunks (for the same identifier) in a symbolic heap; in the
rest of this chapter we therefore consider only symbolic heaps that are exclusively
composed of quantified chunks. Silicon’s implementation, however, special-cases
regular accessibility predicates in order to optimise performance, as is discussed in
Section 4.6.
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4.2.2 Inhaling and Exhaling Quantified Permissions

The symbolic execution rules for producing and consuming quantified permission
assertions, which are based on the symbolic heap design explained above, are shown
in Figure 4.1. The evaluation performed in the first line will be discussed shortly; its
relevant results are the symbolic expressions c(x)′, e(x)′ and p(x)′.

01 produce(σ1, forall x : T :: c(x) ==> acc(id(e(x)), p(x)), sm, Q) =
02 eval(σ1, forall x : T :: {e(x)} c(x) ==> D(e(x), p(x)),
03 (λ σ2, (∀x : T · {e(x)′} c(x)′ ⇒ D′(e(x)′, p(x)′)) ·
04 Let imge be a fresh function of type E→ Bool
05 imgdef := ∀x : T · c(x)′ ∧ 0 < p(x)′ ⇒ imge(e(x)′)
06 Let e−1 be a fresh function of type E→ T
07 inv1 := ∀r : E · imge(r) ∧ c(e−1(r))′ ∧ 0 < p(e−1(r))′

08 ⇒ ∧
ei(e−1(r))′ = ri

09 inv2 := ∀x : T · c(x)′ ∧ 0 < p(x)′ ⇒ e−1(e(x)′) = x
10 ch := id(r; sm(r), ite(c(e−1(r)), p(e−1(r)), 0))
11 h3 := σ2.h ∪ {ch}
12 π3 := pc-add(σ2.π, {inv1, inv2, imgdef })
13 Q(σ2

{
h := h3, π := π3

}
)))

14

15 consume′(σ1, h, forall x : T :: c(x) ==> acc(id(e(x)), p(x)), Q) =
16 Proceed as above to obtain c(x)′, e(x)′ and p(x)′, let σ2 be the post-state
17 Let y1, y2 be fresh symbolic constants of type T
18 assert(σ2.π, (c(y1)

′ ∧ c(y2)
′ ∧ 0 < p(y1) ∧ 0 < p(y2) ∧ e(y1)′ = e(y2)′)

19 ⇒ y1 = y2)
20 Introduce fresh functions e−1 and imge,
21 Introduce and axioms inv1, inv2 and imgdef as above
22 sm, smdef , _ := qp-summarise(h, id)
23 h3 := qp-remove(σ2.π, h, id, (λ r · ite(c(e−1(r)), p(e−1(r)), 0)))
24 π3 := pc-add(σ2.π, {inv1, inv2, imgdef , smdef })
25 Q(σ2

{
π := π3

}
, h3, sm)

Figure 4.1: Produce and consume rules for quantified permission assertions. The
consumption rule employs two auxiliary operations: qp-summarise yields a snapshot
map sm that summarises the snapshots (heap values) of all chunks for id; qp-remove
removes the permissions to be consumed from the symbolic heap and returns an
updated heap. The assumptions (produce), respectively, assertions (consume) about
field receivers not being null and permission amounts being non-negative, which are
present in the regular produce/consume rules for permissions (Figure 3.8/Figure 3.9),

have been omitted for brevity.
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Following the encoding described in the previous subsection, the production rule
introduces a fresh inverse function e−1 (starting on line 6), which is constrained as the
partial inverse of the (evaluated) arguments e(x) by adding the axioms inv1 and inv2
to the path conditions. Similarly, it introduces a fresh image function imge (starting
on line 4), defined by the axiom imgdef . The triggers chosen for the corresponding
quantified axioms are discussed separately in Section 4.4. The rule also adds the
newly-produced quantified chunk (line 10) to the current heap.

The snapshot map sm models the values of the heap locations in the domain of
the new quantified chunk. As before (recall the discussion of using snapshots for
framing from Section 3.3), the produce rule is parameterised with the snapshot (map)
sm, which enables “producing” quantified chunks that assign particular values to
the heap locations they provide permissions to. As before (recall Section 3.1.2), we
omit explicitly boxing snapshots (of sort Snap) to/from the appropriate sorts (here
E→ Snap).

In order to construct symbolic expressions such as the definitional axioms of the
newly-introduced inverse function, it is necessary to evaluate the pure subexpressions
c(x), e(x) and p(x) of the quantified permission assertion — all of which potentially
mention the quantified variable x — to the corresponding symbolic expressions c(x)′,
e(x)′ and p(x)′. Evaluating quantified expressions is technically involved, however:
recall (from Figure 3.17 on page 82) that evaluating a quantified expression is not
straightforward and requires the construction of two quantifiers, one corresponding
to the evaluated expression and one aggregating additional path conditions obtained
during the evaluation of the quantifier’s body. In order to avoid duplicating significant
parts of the corresponding evaluation rule, a dummyquantified expression containing
the relevant pure subexpressions is constructed (on line 2), evaluated as usual (that
is, by the rule for evaluating quantified expressions) and afterwards decomposed
(via pattern matching on line 3) to obtain the desired symbolic expressions. To
simplify constructing a type-correct dummy expression, the pure subexpressions are
“wrapped” in an application of a dummy function D (with symbolic counterpart D′)
that itself has no meaning (that is, is not axiomatised in any way). A simple, syntactic
pre-analysis — inspecting all quantified permission assertions syntactically occurring
in the program under verification — suffices to determine which dummy functions
D/D′ are required (and to then declare them): one function per vector of types E.

Given the production rule from Figure 4.1, inhaling the second precondition of the
running example from Listing 4.1 (at the start of checking the method body) entails
introducing an inverse function a−1 mapping array locations back to corresponding
indices, axiomatised as

∀i : Int · left ≤ i < right⇒ a−1(ai) = i
∀r : Ref · left ≤ a−1(r) < right⇒ aa−1(r) = r

where ai denotes the ith array location (not the value at that location), and then adding
the quantified chunk

val(r; sm(r), (ite(left ≤ a−1(r) < right, 1, 0)))

Correspondingly, inhaling the first postcondition of the recursive calls yields a new
inverse function each; and the symbolic heap at the program point after the calls
contains two quantified chunks, one for each array segment.

The consumption rule for quantified permission assertions is initially similar to the
production rule, one difference being that the injectivity of the argument expressions
is checked before defining the inverse function. Removing permissions from the heap
is more complex than adding permissions because it may involve updates to many
existing quantified chunks in the symbolic state. This operation is delegated to the
auxiliary operation qp-remove, shown in Figure 4.2.
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The injectivity check performed when consuming a quantified permission assertion
guarantees that the introduced inverse functions exist and satisfy the constraints
added to the path conditions, which is required for soundness. If there is a correspond-
ing exhale (consume) point for each inhaling (produce) of quantified permissions,
then the check performed on exhale also covers the inverse functions introduced
during a corresponding inhale.

In addition to an updated symbolic state, consuming a quantified permission assertion
also returns (as before in Chapter 3) a snapshot that represents the values of those
heap locations to which permissions have been removed. Computing this snapshot
is delegated to the auxiliary operation qp-summarise, discussed in Section 4.3.1.

Removing Permissions

The previously shown rule for consuming a quantified permission assertion (Fig-
ure 4.1) delegates the task of removing sufficient permission from a given symbolic
heap to qp-remove, which is shown in Figure 4.2 and discussed next.

01 qp-remove(π, h, id, q) =
02 Let hid ⊆ h be all chunks for identifier id
03 h′id := ∅
04 qneeded := q
05 foreach id(r; smi(r), qi(r)) ∈ hid do
06 qcurrent := λr ·min(qi(r), qneeded(r))
07 qneeded := λr · qneeded(r)− qcurrent(r)
08 h′id := h′id ∪ {id(r; smi(r), qi(r)− qcurrent(r))}
09 assert(π, ∀r · qneeded(r) = 0)
10 (h \ hid) ∪ h′id
Figure 4.2: The qp-remove operation. The symbolic expression q maps the arguments
r of an identifier id (such as a single reference r if id denotes a field) to a permission
amount. qp-remove checks that the symbolic heap contains at least q(r) permission to

each heap location id(r), and removes it.

qp-remove takes as inputs a stack of path conditions π, a symbolic heap h, an identifier
id (denoting a field or a predicate), and a function-typed symbolic expression q that
yields, for each argument vector r, the permission amount for location id(r) to be
removed. qp-remove fails with a verification error if the initial heap does not contain
the permissions denoted by q, and otherwise returns an updated symbolic heap that
provides q permissions less than the initial heap. This is achieved by iterating over
all available chunks for id, greedily taking as much of the still-required permissions
(qneeded) as possible from the current chunk (qcurrent). Updating the chunks is expressed
by the pointwise construction of function-typed symbolic expressions describing
the corresponding permission amounts; they involve permission arithmetic, but
no existential quantifiers, and can be handled efficiently by the underlying SMT
solver. After the iteration, qp-remove asserts that all requested permissions have been
removed.

In the running example (Listing 4.1), the second precondition is exhaled (consumed)
before each recursive call; this requires finding the appropriate permissions from
the (single) quantified chunk in the state at this point, and removing them. Dually,
when exhaling the postcondition at the end of the method body, all permissions from
both of the two quantified chunks yielded by the recursive calls must be removed:
the iteration in the qp-remove algorithm achieves this.

Note that qp-remove’s permission accounting is precise, which is important for sound-
ness and completeness: itmaintains the invariant that (for all r), the difference between
the permissions held in the initial state and those requested via parameter q is equal
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to the difference between those held in the updated state and those still needed. If
the operation succeeds, the last check implies that those permissions still needed are
exactly 0, from it follows that precisely the correct amounts were subtracted.

Relation to Disjunctive Aliasing

Recall from the classification of aliasing-related incompletenesses typically exhibited
by verifiers based on symbolic execution (Section 3.4.2 and Section 3.7.3) that disjunct-
ive aliasing describes situations in which a reference x is an alias of at least one out
of several other references y, but it is not statically known which yi is aliased by x.
Disjunctive aliasing naturally arises in the context of quantified permissions (and a
verifier supporting quantified permissions should therefore not exhibit incomplete-
nesses arising from disjunctive aliasing), for example, when exhaling permissions to
a single slot a[i], for an arbitrary but valid index i, of an array a to which quantified
permissions have been inhaled: in this case a[i] aliases one of the array slots a[0], . . . ,
a[n− 1], but it is not statically knownwhich one. Resolving disjunctive aliasing by for-
cing the verifier to branch over possible aliasing relations — a potential work-around
suggested in Section 3.4.2 — is not possible in this situation because the number of
aliasing relations is statically unknown (if the array length is).

Consuming (exhaling) permissions via qp-remove is complete in the presence of
disjunctive aliasing because it accounts for all possible aliasing relations across all
chunks (unlike the previously shown heap management algorithms from Chapter 3,
which only consider a single, definitely aliased chunk): this is achieved by iterat-
ively updating the still-needed permission expression qneeded such that, for a given
reference r, the permission amount denoted by the expression is decreased by the
permission amount that the current heap chunk could provide for r if the reference
happened to be in the domain of the chunk (which may follow from the current path
conditions). Indeed, the disjunctive aliasing tests discussed in Section 3.7.3 succeed if
the quantified permission algorithms presented in this chapter are used, as illustrated
by Listing C.6 in Appendix C.

4.3 Treatment of Symbolic Values

We have so far addressed the first three technical challenges described in Section 4.1
that need to be solved in order to support iterated separating conjunctions: we
introduced quantified permissions, a language feature of Viper that enables encoding
iterated separating conjunctions, and we presented a novel heap representation for
quantified permissions together with algorithms that let the verifier efficiently add,
as well as check for and remove permissions. In this section we present our solution
to the remaining two challenges, concerned with the evaluation and framing of
heap-dependent expressions: the handling of fields and predicates are discussed
first, after which the treatment of heap-dependent functions is discussed. Operation
qp-summarise, which has already been used in the consumption rule for quantified
permission assertions (Figure 4.1), is introduced in the context of evaluating field
reads. The operation is more general, however, and used in other contexts as well
(for example, in Figure 4.4).

4.3.1 Handling Fields and Predicates

Quantified field chunks f (r; sm(r), q(r)) represent value information via the snapshot
map sm. The existence of such a chunk in a symbolic heap allows, for any receiver in
the domain of the heap chunk, the evaluation of a read of field f to an application
of the snapshot map. Intuitively, sm represents a partial function from this domain
to symbolic values (of the type of the field f ). Since SMT solvers typically do not
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natively support partial functions, snapshot maps are modelled as under-specified
total functions from the receiver reference (the field f is fixed) to the type of f . These
functions are applied only to references whose f field location is in the chunk’s domain.
This is why the consume rule for quantified permission assertions (Figure 4.1) does
not need to explicitly remove information about the values stored in the locations
whose permissions are removed; the underlying total function still represents appro-
priate values for the new (smaller) domain. Moreover, permissions are never added
to already-existing chunks: instead, the rule for producing quantified permission
assertions (Figure 4.1) adds a new chunk with a fresh snapshot map (whose domain
is implicitly defined by the chunk’s permissions).

Summarising Values

Inhaling permissions (Figure 4.1) adds a fresh heap chunk with a fresh snapshot
map, and a symbolic heap may thus contain multiple chunks for the same field,
each with its own snapshot map. In the presence of fractional permissions, the
domains of these chunks may overlap such that the value of one location x. f may be
represented bymultiple snapshotmaps. Similarly, the value of x. f may be represented
by multiple maps when the receiver x is quantified over and the permissions to
different instantiations of the quantifier are recorded in different chunks. Therefore,
all of these value maps need to be considered when evaluating such a field access.

In order to incorporate information from all relevant chunks, and to provide a simple
translation for field lookups, the snapshot maps of all chunks for a field f are lazily
summarised before an expression e. f is evaluated. This summarisation is defined by
the qp-summarise operation shown in Figure 4.3. For each chunkwith the appropriate
identifier id, such as a field f , it equates a newly-introduced snapshot map with the
snapshot map in the chunk at all locations in the chunk’s domain. Analogously, it
builds up a symbolic permission expression summarising the permissions held per
field location, across all heap chunks for id; the resulting expression is later used to
assert that appropriate permissions are held somewhere in the summarised state.

Note that the definition of qp-summarise does not depend on path conditions, only on
the symbolic heap; it can be computed without querying the SMT solver. This is be-
cause all relevant information is maintained as symbolic expressions recorded by the
chunks (which are updated by qp-remove), which can be combined by qp-summarise
in order to achieve the desired summarisation (see Section 4.6 for a comment on the
size of the expressions resulting from executions of qp-remove and qp-summarise).

01 qp-summarise(h, id) =
02 Let hid ⊆ h be all chunks for identifier id
03 Let sm be a fresh snapshot map of type E→ Snap
04 smdef := ∅
05 perm := λr · 0
06 foreach id(r; smi(r), qi(r)) ∈ hid do
07 smdef := smdef ∪ {∀r : E · 0 < qi(r)⇒ sm(r) = smi(r)}
08 perm := λr · perm(r) + qi(r)
09 (sm, smdef , perm)
10 where E are the sorts corresponding to the arguments of id, for example, Ref if id denotes

a field

Figure 4.3: The qp-summarise operation iterates over all chunks for id in a given heap
and computes (1) a snapshot map sm that summarises the heap values potentially
represented by multiple chunks, and (2) a permission-typed symbolic expression perm

that summarises the permission amounts provided by individual chunks.
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A New Evaluation Rule for Field Reads

Building on qp-summarise, the rule for symbolically evaluating field reads can be
defined as shown in Figure 4.4. The evaluation proceeds by asserting that at least
some permission to the field location is held in the current symbolic heap, followed
by invoking the remainder continuation with the symbolic value of the field lookup:
the summarising snapshot map applied to the field receiver. Via the path conditions
generated by qp-summarise, any properties known about the snapshot maps of the
corresponding quantified chunks will also be known about the resulting symbolic
value. Silicon memoizes qp-summarise, avoiding the duplication of the function
declarations and path conditions defining the snapshot maps and permission values;
more details about this memoization are provided in Section 4.6.

01 eval(σ1, e. f , Q) =
02 eval(σ1, e, (λ σ2, e′ ·
03 sm, smdef , perm := qp-summarise(σ2.h, f )
04 assert(σ2.π, 0 < perm(e′))
05 Q(σ2

{
π := pc-add(σ2.π, smdef )

}
, sm(e′))))

Figure 4.4: Symbolically evaluating a field read. The symbolic field value is obtained
by applying the summarising snapshot map sm to the symbolic receiver e′.

Unchanged Field- and Predicate-Related Rules

The rules for executing assignments e1. f := e2 and new statements x := new( f),
respectively, do not need to change with respect to their definition from Figure 3.6,
because they essentially desugar into already redefined operations: exhaling and
inhaling permissions, and inhaling value constraints. A field write e1. f := e2 is
effectively desugared into the sequence of statements (where e′2 denotes the symbolic
value of e2)

exhale acc(e1. f)
inhale acc(e1. f)
inhale e1. f == e′2

The exhale checks that the heap has the required permission and removes it; the
inhales create a new chunk with the previously-removed permission and constrain
the associated snapshot map such that it maps receiver e1 to the symbolic value of e2.

For example, the field write a[left] := to in the running example (Listing 4.1 on
page 105) is executed in a symbolic heap with a single quantified chunk that provides
full permission to each array location. After the field write has been executed, the
heap contains two quantified chunks: the initial one, still providing full permission
to each array location except for a[left] (and with an unchanged snapshot map), and
a second one that provides full permission to a[left] only, with a fresh snapshot
map representing the updated value.

The rules for executing fold and unfold statements (Figure 3.6), as well as the rule
for evaluating unfolding expressions (Figure 3.15), can also remain as previously
defined because they also build on inhaling and exhaling permissions.

4.3.2 Heap-Dependent Functions

Framing Heap-Dependent Function Applications

Recall from Chapter 3 (in particular, from Figure 3.16) that Silicon’s encoding of heap-
dependent functions, and of applications thereof, uses function snapshots (introduced
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by Smans et al. [119]) to represent the symbolic values of the heap locations a function
depends on. Consequently, two function applications (on the SMT level) yield the
same result if they take the same arguments and have equal function snapshots.

Quantified permissions complicate this approach because a function whose precon-
dition contains a quantified permission assertion may depend on an unbounded set
of heap locations, and the values of these locations cannot be represented by a fixed
number of snapshots. It is also not possible to represent them directly as a snapshot
map since these are modelled at the SMT level as under-specified total functions,
causing two problems. First, requiring equality of total functions would include
locations the heap-dependent function does not actually depend on; since the values
for these locations are under-specified, the equality check would fail even when the
function value could be soundly framed. Second, a function cannot be used as a
function argument in the first-order logic supported by SMT solvers.

We address both problems by introducing a second kind of snapshot maps, called
partial snapshot maps, which are used instead of the previously introduced snapshot
maps whenever such a map is used as the snapshot of a heap-dependent function
application (for performance reasons we continue to encode snapshot maps that
are not used as function snapshots, such as those recorded in quantified chunks, as
total functions on the SMT level). Partial snapshot maps are encoded on the SMT
level by applying defunctionalisation [107] (addressing problem two) and by explicitly
modelling their partial domains (addressing problem one). The encoding requires
the following steps:

• Add an uninterpreted sort PSM to the background theory, alongside two func-
tions per field or predicate identifier id (used in the program under verification):
domainid : PSM → Set[E] and lookupid : PSM → E → Snap, where E are the
sorts of the parameters of id. Function domainid represents the domain of the
partial snapshot map, and lookupid is used for applying a partial snapshot map
(to a receiver reference or to predicate arguments). If id denotes a field, E is
the single sort Ref , and the result of applying the lookup function needs to be
boxed to the expected field type (omitted as usual).

• In all rules and operations presented so far (and in the remainder of this chapter),
snapshot map lookup sm(r)must be treated as syntactic sugar for lookupid(sm, r)
if sm denotes a partial snapshot map (this information and the identifier id can
be preserved by additional, straightforward bookkeeping).

• In order to prove equality when two partial snapshot maps are equal as par-
tial functions, add the following extensionality axiom per field or predicate
identifier id:

∀ psm1, psm2 : PSM ·
domainid(psm1) = domainid(psm2) ∧
∀r : E · r ∈ domainid(psm1)⇒ lookupid(psm1, r) = lookupid(psm2, r)
⇒

psm1 = psm2

• Change the rule for symbolically evaluating function applications (Figure 3.16)
such that it sets a partiality flag (that is, a new state entry such as σ.psm) to true
before the function precondition is consumed, and back to false afterwards. The
flag is used to indicate that snapshot maps obtained from consuming quantified
permission assertions that occur in the function’s precondition are encoded as
partial snapshot maps.

• Change qp-summarise (Figure 4.3) such that it creates and axiomatises partial
snapshot maps if the partiality flag is set (line 3), which includes adding the
following path condition that defines the domain of the newly introduced partial
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snapshot map sm (c, e−1 and p need to be passed as arguments to qp-summarise):

∀r : E · r ∈ domainid(sm)⇔ c(e−1(r)) ∧ 0 < p(e−1(r))

That is, the domain of a partial snapshot map consists of all heap locations for
which the corresponding quantified permission assertion specified non-zero
permissions.

In order to prevent the solver from reasoning about snapshot map equality
outside of a partial snapshot map’s domain, the axiom (line 7 of Figure 4.3)
that pointwise relates the summarising partial snapshot map to the snapshot
map provided by a chunk (encoded as a total function) needs to be changed as
follows:

smdef := smdef ∪ {∀r : E · 0 < qi(r) ∧ r ∈ domainid(sm)⇒ sm(r) = smi(r)}

That is, by adding (if the partiality flag is set) the second conjunct on the left
of the implication, which restricts applications of the partial snapshot map to
elements from its domain. This mirrors the already present restriction 0 < qi(r),
which restricts the equality to elements from the domain of the chunk’s snapshot
map: as defined in Section 4.2.1, the domain of a chunk’s snapshot map is
implicitly defined by the permissions qi the chunk provides.

Axiomatising Heap-Dependent Functions

Recall from Section 3.6 that Silicon axiomatises heap-dependent functions by first
recording mappings from heap-dependent expressions (for example, field reads) to
the corresponding symbolic values (that is, to the snapshots of the accessed heap
chunks) while the function is checked for well-definedness, followed by translating
the function definition into a definitional axiom and a postcondition axiom. In the
latter step, the previously recorded mappings are used to translate heap-dependent
expressions.

In order to integrate quantified permissions into this approach to axiomatising heap-
dependent functions, it is additionally necessary to record all definitions that arise
from using quantified permissions in functions, such as the inverse functions in-
troduced by using quantified permission assertions in a function’s precondition or
the definitions of snapshot maps introduced by qp-summarise (Figure 4.3) when
evaluating a heap access in a function’s body: it is these definitions that give mean-
ing to the symbolic values that are (already being) recorded in the mapping from
heap-dependent expressions to symbolic values. During the translation of a heap-
dependent function into corresponding axioms, the recorded definitions are then
included as part of the definitional and the postcondition axiom.

1 function eq(xs: Seq[Ref], ys: Seq[Ref]): Bool
2 requires |xs| <= |ys|
3 requires forall i: Int :: 0 <= i && i < |xs| ==> acc(xs[i].f)
4 requires forall i: Int :: 0 <= i && i < |xs| ==> acc(ys[i].f)
5 ensures result <==> forall i: Int ::
6 0 <= i && i < |xs|
7 ==> xs[i].f == ys[i].f

Listing 4.2: An abstract function that defines equality between two sequences of heap-
allocated cells by pairwise comparison of the cells’ values.

Without quantified permissions, the map from heap-dependent expressions to sym-
bolic values records, for a field read x. f , a mapping from x. f to some chunk’s snapshot
s; with quantified permissions, the recorded mapping is from x. f to the application
sm(x) of a snapshot map sm constructed by qp-summarise. To ensure that all con-
straints that determine the value represented by sm are preservedwhen the function is
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axiomatised, it is necessary to record also the following information: (1) the definition
of sm itself, as emitted by qp-summarise (Figure 4.3), (2) the definition of sm’s domain
if qp-summarise declares a partial snapshot map, (3) the definition of inverse functions
e−1 introduced when producing/consuming quantified permission assertions that
directly (in a function’s precondition) or indirectly (for example, due to an unfold-
ing in the function’s body) occur in the function definition, and (4) the definition
of the image functions imge that are introduced alongside inverse functions (recall
Section 4.2.1).

As an example, consider the heap-dependent function eq from Listing 4.2 that ex-
presses equality of two sequences of simple cells (objects with a single integer field
f) pairwise in terms of equality of the cells’ values. The function is abstract and its
axiomatisation therefore consists of the following postcondition axiom only:

∀ xs, ys, s ·
∧ |xs| ≤ |ys| ⇒

eq(xs, ys, s)⇔ ∀ 0 ≤ i < |xs| · sm1(xs[i], xs, ys, s) = sm2(ys[i], xs, ys, s)

/* Def. of image function imgxs introduced in line 3 */
∧ ∀i · 0 ≤ i < |xs| ⇒ imgxs(xs[i], xs, ys, s)

/* Def. of image function imgys introduced in line 4 */
∧ ∀i · 0 ≤ i < |xs| ⇒ imgys(ys[i], xs, ys, s)

/* Def. of inverse function xs−1 introduced in line 3 */
∧ ∀i · 0 ≤ i < |xs| ⇒ xs−1(xs[i], xs, ys, s) = i
∧ ∀r · imgxs(r, xs, ys, s) ∧ 0 ≤ xs−1(r, xs, ys, s) < |xs| ⇒ xs[xs−1(r, xs, ys, s)] = r

/* Def. of inverse function ys−1 introduced in line 4 */
∧ ∀i · 0 ≤ i < |xs| ⇒ ys−1(ys[i], xs, ys, s) = i
∧ ∀r · imgys(r, xs, ys, s) ∧ 0 ≤ ys−1(r, xs, ys, s) < |xs| ⇒ ys[ys−1(r, xs, ys, s)] = r

/* Def. of snapshot map sm1 for field read xs[i].f in line 7 */
∧ ∀r · 0 ≤ xs−1(r, xs, ys, s) < |xs| ⇒ sm1(r, xs, ys, s) = first(s)(r)
∧ ∀r · 0 ≤ ys−1(r, xs, ys, s) < |xs| ⇒ sm1(r, xs, ys, s) = second(s)(r)

/* Def. of snapshot map sm2 for field read ys[i].f in line 7 */
∧ ∀r · 0 ≤ xs−1(r, xs, ys, s) < |xs| ⇒ sm2(r, xs, ys, s) = first(s)(r)
∧ ∀r · 0 ≤ ys−1(r, xs, ys, s) < |xs| ⇒ sm2(r, xs, ys, s) = second(s)(r)

The first main conjunct of the axiom (the first and second line of the body of the
outermost quantifier) encodes the function’s postcondition; all subsequent conjuncts
correspond to quantified-permission-related definitions. The first two pairs of sub-
sequent conjuncts are the definitions of the image function (recall Section 4.2.1) intro-
duced when inhaling the preconditions on line 3, respectively, line 4 of Listing 4.2;
the next two pairs are the corresponding inverse functions; the last two pairs are the
definitions of the summarising snapshot maps4 introduced during the evaluation of
the field reads xs[i].f, respectively, ys[i].f on line 7. For soundness, the recorded
functions must be functions of the arguments of the axiomatised heap-dependent
function (here eq), as illustrated by the application sm1(xs[i], xs, ys, s).

Function eq has two preconditions that require permissions, and the function snap-
shot s is therefore a pair of snapshots, that is, s = (first(s), second(s)). The first
component, first(s), is the snapshot map of the quantified chunk that corresponds
to the quantified permission assertion on line 3 of Listing 4.2 (as usual, snapshots
are implicitly unboxed to the appropriate type), and analogously for the second
component and the assertion on line 4.

4Recall that the implementationmemoizes snapshot maps: the definitions of sm1 and sm2 are equivalent,
and Silicon’s implementation only introduces a single summarising snapshot map sm.
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Illustrating Function Framing

In order to illustrate how the previously discussed postcondition axiom is used
to frame applications of eq across unrelated heap changes we will step through
the symbolic execution of a simple client of eq next. The client starts by inhaling
permissions to two arrays xs and ys (for ease of presentation, we omit details such as
eq’s first postcondition |xs| < |ys| and simply assume that they are satisfied):

inhale forall i: Int :: 0 <= i && i < |xs| ==> acc(xs[i].f)
inhale forall i: Int :: 0 <= i && i < |ys| ==> acc(ys[i].f)

According to the rule for producing quantified permission assertions from Figure 4.1,
this adds two heap chunks f (r; sm1(r), q1(r)) and f (r; sm2(r), q2(r)) to the symbolic
heap, where the symbolic permission expression q1 is λr · ite(c1(xs−1

1 (r)), 1, 0) and
where the condition c1 is λi · 0 ≤ i < |xs|. Moreover, appropriate definitions (ac-
cording to Figure 4.1) of the inverse function xs−1

1 and the image function imgxs1
are

added to the path conditions. The constituents of the second heap chunk, q2, c2, ys−1
1

and imgys1
are defined analogously. The client continues by assuming that xs and ys

are equal according to eq:

inhale eq(xs, ys)

Following Section 4.3.2, this adds the path condition eq(xs, ys, (psm1, psm2)), where
the partial snapshot map psm1 (and analogous for psm2) is defined according to
Section 4.3.2, that is, by the following path conditions:

∀r : Ref · r ∈ domain f (psm1)⇔ c1(xs−1
1 (r)) ∧ 0 < q1(r)

∀r : Ref · 0 < q1(r) ∧ domain f (psm1)⇒ psm1(r) = sm1(r)
∀r : Ref · 0 < q2(r) ∧ domain f (psm1)⇒ psm1(r) = sm2(r)

Next, the client updates some heap location z.f which is known to not be aliased
from xs or ys (the client previously inhaled write permission to z.f):

z.f := 0

Recall that a field assignment can be treated as exhaling and re-inhaling permission
(Section 4.3.1), and that exhaling permission to a single location can be handled by
exhaling an appropriate quantified permission assertion that denotes permission to a
single location only (Section 4.2.1). The chunks for field f (of which there are three in
the heap: two for the arrays xs and ys, and one for z.f) are thus updated according
to qp-remove from Figure 4.2: by updating the symbolic permission expressions
qi such that they no longer provide permission to z.f. In case of the chunks for
xs and ys, however, this update does not change the denoted permission values
because the solver can deduce (from the inverse functions and the permission-induced
information that z.f is not aliased) that the location z.fwas not in the domain of the
chunks corresponding to the arrays xs and ys. For simplicity, we therefore continue
the execution as if qp-remove had updated the chunk for z.f only, but not those for
the arrays xs and ys. Finally, the client asserts that xs and ys are still equal:

assert eq(xs, ys)

This introduces two new partial snapshot maps psm3 and psm4, whose definitions are
equivalent to those for the previously introduced maps psm1 and psm2. Using these
definitions and the extensionality axiom for partial snapshot maps (introduced at
the beginning of Section 4.3.2), the solver can conclude that psm3 and psm4 are equal
to psm1 and psm2, respectively, and thus that eq(xs, ys, (psm3, psm4)) is equal to the
previously added path condition eq(xs, ys, (psm1, psm2)), which proves the client’s
assertion.
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Performance

Silicon’s support for quantified permissions performswell in general, as demonstrated
by the evaluation in Section 4.5, both for succeeding and failing verification runs.
However, we observed performance degradation in examples with lots of (repeated)
function applications: for example, given the function definition

function foo(xs: Set[Ref]): Bool
requires forall x: Ref :: x in xs ==> acc(x.f)

the following snippet verifies instantaneously

inhale forall x: Ref :: x in xs ==> acc(x.f)
inhale foo(xs)
exhale foo(xs)

If the exhale is repeated 20 times (without any heap modifications in between),
Silicon needs about five seconds to verify the example, and with 40 repetitions the
verification time increases to more than 100 seconds. In contrast, Viper’s second,
verification-condition-generation-based verifier exhibits essentially the same veri-
fication time for all three versions of the example. We have not yet investigated the
problem thoroughly, but we see two potential (not necessarily orthogonal) causes for
the slowdown: (1) repeated applications of qp-remove, performed when exhaling
the function’s precondition, which update heap chunks in order to subtract the per-
missions required by the precondition; and (2) repeated introductions of fresh but
semantically equivalent inverse functions (for the quantified permission assertion in
the precondition) and snapshot maps (passed to the function as its heap snapshot).

As future work, we plan to address the performance issue in two ways, the first
of which is to implement additional memoization and caching mechanisms that
reduce the number of introduced inverse functions and snapshot maps, similar to
the already implemented memoization of qp-summarise that reduces the number of
snapshotmaps introduced by the latter (further details are provided in Section 4.5 and
Section 4.6). In addition, we plan to reconsider the semantics of function preconditions
with respect to permissions: currently, function preconditions combine permissions
via separating conjunctions (as do all other assertions), but since functions can only
read the heap, regular (non-separating) conjunctions typically result in function
definitions that, with respect to non-permission-related properties, are equivalent to
the definitions with enforced separation. We believe that such a change can improve
the handling of heap-dependent functions because it will no longer be necessary to
(temporarily) exhale permissionswhen checking a function application’s precondition,
which in turn avoids modifying the symbolic heap, and in the context of quantified
permissions, introducing new definitions (for example, of inverse functions).

4.4 Controlling Quantifier Instantiations

We so far omitted the triggers from quantifiers that are generated by our technique
for supporting quantified permissions, but as previously discussed (Section 2.6), it
is important to carefully control quantifier instantiations when working with SMT
solvers. In this section, we recapitulate the quantifiers generated by our approach,
and discuss the choice of their triggers.

Instantiations of the axioms that define inverse and image functions (recall Sec-
tion 4.2.1) are controlled as follows (the axioms are unchanged, and only repeated
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here to provide context for the triggers):

∀r : E · {e−1(r)} imge(r) ∧ c(e−1(r)) ∧ 0 < p(e−1(r))⇒ ∧
ei(e−1(r)) = ri

∀x : T · {e(x)} c(x) ∧ 0 < p(x)⇒ e−1(e(x)) = x
∀x : T · {e(x)} c(x) ∧ 0 < p(x)⇒ imge(e(x))

The first axiom’s trigger, e−1(r), is essential for relating occurrences of the inverse
function to the original expressions e; which is particularly important since quantified
chunks mention only the inverse function, not the e themselves. The case of the
second axiom’s trigger is almost symmetrical, but comes with extra technicalities.
Since the e come from the source program, they may not (all) be expressions allowed
in triggers. Recall from the discussion in Section 2.6 that triggers must typically
include at least one function application (if an e(x) were simply x, it could not be
used), and no built-in operators such as addition. In the former case, the trigger
sm(x) is used, where sm is the snapshot map of the relevant chunk; the quantifier
will then be instantiated whenever a value from the chunk is looked up, which is
when the definition of the inverse function is needed. In the latter case, Viper’s trigger
inference attempts to find triggers (Section 2.6); if it fails we resort to leaving the SMT
solver to infer triggers. The trigger for the third axiom (defining imge) is also e(x) (if
possible; otherwise, the same alternative triggers as for the second axiom are used):
this ensures that the solver can use the definition of imge whenever it instantiates the
first axiom, which uses imge.

Instantiating either of the two inverse axioms gives rise to potentially new function
application terms suitable for triggering the other axiom. For example, when in-
stantiating the second axiom due to a (single) term of the shape e(x), the equality
e−1(e(x)) = x is obtained, in which the function application e−1(e(x)) matches the
trigger of the first inverse axiom. Instantiating this axiom, in turn, will provide the
equalities e(e−1(e(x))) = e(x). Note however, that this will not cause a matching
loop, because SMT solvers consider quantifier instantiations modulo known equal-
ities. Thus, the function application e(e−1(e(x))) = e(x) does not give rise to a new
instantiation of the second axiom, since the term e−1(e(x)) to be matched against the
quantified variable is already known to be equal to x, which was used for the prior
instantiation.

Instantiations of the axiom that relates summarising snapshot maps to the snapshot
maps of heap chunks (see qp-summarise from Figure 4.3) are controlled by two
alternative triggers:

∀r : E · {sm(r)}{smi(r)} 0 < qi(r)⇒ sm(r) = smi(r)

The alternatives allow instantiating the axiom if either of the two snapshot maps
has been applied to the terms instantiating r. This flexibility is important because
of how qp-summarise relates the newly-generated snapshot map to each quantified
chunk individually, which indirectly allows deriving relationships between two
evaluated expressions: the evaluations introduce summarising snapshot maps sma(r)
and smb(r), respectively, each of which is related to all smi(r) in the heap; hence,
relationships between sma(r) and smb(r) can be derived via the smi(r).

Instantiations of the domain definition axiom emitted by the updated qp-summarise
operation described in Section 4.3.2 — extended such that it can generate partial
snapshot maps — are controlled as follows:

∀r · {r ∈ domainid(sm)} r ∈ domainid(sm)⇔ c(e−1(r)) ∧ 0 < p(e−1(r))

The trigger allows instantiating the axiom whenever the solver needs to learn which
locations are in the domain of the partial function modelled by a partial snapshot
map. In particular, the extensionality axiom for partial snapshot maps (recapitulated
below) involves proving that the domains of two such maps are equivalent, which in
general requires instantiating the corresponding domain definition axioms.
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The last axiom to consider is the extensionality axiom, introduced in Section 4.3.2
in order to prove equality of partial snapshot maps. Recall that partial snapshot
maps are used only as function snapshots, to frame applications of heap-dependent
functions, and that (dis)equality of two such maps is relevant only when reasoning
about the corresponding function applications. To control the number of potential
instantiations, we exploit a technical detail of our encoding:

∀ psm1, psm2 : PSM · {boxPSM(psm1), boxPSM(psm2)}
domainid(psm1) = domainid(psm2) ∧
∀r : E · r ∈ domainid(psm1)⇒ lookupid(psm1, r) = lookupid(psm2, r)
⇒ psm1 = psm2

The chosen trigger allows the solver to instantiate the axiom with partial snapshot
maps that are used as function snapshots, which will be embedded into the snapshot
sort Snap by “wrapping” them in an application of the appropriate box function
(introduced in Section 3.1.2).

4.5 Evaluation

To evaluate the performance of our techniques as implemented in Silicon, we ran
experiments with three kinds of input programs: (1) nine hand-coded verification
problems involving arrays and graphs (listed below), including the running example,
(2) 65 examples generated by VerCors [2], which use our implementation to encode
GPU verification problems, and (3) 82 additional regression tests. All examples are
included in Viper’s test suite, which is part of Viper’s sources. Further information
can be found on the Viper project page [94].

The hand-coded verification problems are the following:

• arraylist is an encoding of a list implemented on top of an array, with opera-
tions to append an element to the list, and to insert an element into the list such
that the list, if it was sorted before, remains sorted afterwards.

• array-quickselect is an encoding of a (recursive) quickselect implementation
over an array, with strong specifications such as “the array has been permuted”,
and “the nth smallest element has been selected”.

• binary-search-array is an encoding of an (iterative) binary search performed
over a sorted array.

• graph-copy is the encoding of an algorithm that copies a graph. Its specifica-
tions make use of a custom axiomatisation of maps to record relations between
original and copied nodes.

• graph-marking is the encoding of a graph marking algorithm, in the spirit of
mark-and-sweep garbage collectors, with strong specifications such as “nodes
reachable from marked nodes are marked themselves”.

• longest-common-prefix is a challenge from the VerifyThis Verification Com-
petition 2012: finding the longest common prefix of two arrays.

• max-array-elimination is a challenge from the COST Verification Competi-
tion 2011: finding the maximum in an array by elimination.

• max-array-standard is an encoding of the straightforward way of finding the
maximum in an array; it uses the same interface specifications and the same
client as the previous example.

• parallel-array-replace is the running example from this paper: replace
each occurrence of an element in an array segment by recursing over the two
half-segments in parallel.
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Program Size
(LOC)

Time
(s)

w/o
memoiz.

w/o
triggers

w/o
ordering

arraylist 114 1.93 −7.29% −16.53% +2.82%
quickselect 132 2.51 +24.44% −4.23% +1.92%
binary-search 47 0.31 +14.15% −8.94% +20.22%
graph-copy 120 1.81 +14.93% +21.21% +82.49%
graph-marking 53 1.71 +41.29% −30.95% +2.72%
longest-common-prefix 34 0.19 +6.51% −10.73% +24.59%
max-elimination 59 0.50 +45.41% −0.07% +11.66%
max-standard 53 0.24 +16.40% +2.43% +24.82%
parallel-replace 56 0.27 +3.71% −6.12% +20.56%

Figure 4.5: Performance evaluation of Silicon on verification challenges. Lines of code
(LOC) neither includes blank lines nor comments. Column “Time (s)” gives runtimes
of the base version of Silicon; the remaining columns show the percentage difference

in time relative to the base version.

No. Size Time w/o memoiz. w/o triggers w/o ordering

Program Set
Files
(#)

Mean
(LOC)

Mean
(s)

Max
(s)

Mean
(±)

Max
(s)

Mean
(±)

Max
(s)

Mean
(±)

Max
(s)

VerCors 65 104 0.72 11.81 +0.92% 15.71 -4.40% 8.83 +64.80% 58.04
Regressions 82 34 0.22 3.41 +0.58% 3.81 -2.24% 3.38 +62.88% 4.86

Figure 4.6: Performance evaluation of Silicon on two sets of programs: the “VerCors” set
contains (non-trivial) programs generated by the VerCors tool, “Regressions” contains
(usually simple) regression tests; column “Files” displays the number of files per

program set.

Figure 4.5 shows the results for (1), and Figure 4.6 those for (2) and (3). The experi-
ments were performed on an Intel Core i7-4770 3.40GHz with 16GB RAMmachine
running Windows 7 x64 with an SSD. The reported times are averaged over 10 runs
of each verification (with negligible standard deviations). Timings do not include
JVM start-up; as before, the Nailgun tool [88] was used to persist a JVM across test
runs.

The experiments show that Silicon is consistently fast: all examples verify in a few
seconds. Since SMT encodings sometimes exhibit worse performance for failed verific-
ation attempts, we also tested four variants of each example from Figure 4.5 in which
errors were seeded: in all cases the errors were detected with lower runtimes (which
can be explained by the fact that Silicon stops verifying the current verification unit,
such as a method, as soon as the first error is detected).

To evaluate the impact of the chosen quantifier triggers on the performance, (see
Section 4.4), we also compare with a variant of the implementation in which triggers
are omitted, resorting to Viper (and Z3) to infer triggers. The relative times are shown
in the “w/o triggers” columns. It can be observed that this variant typically improves
verification time. However, the triggers chosen automatically by Viper and Z3 are
too strict: 7% of the programs (11 out of the 156 original programs) fail spuriously in
this version. This, as well as a general reduction in quantifier instantiations, explains
the effect on the runtime: the longest-running example in the base implementation
(averaging 11.82s) takes only 3s without predefined triggers, but incorrectly fails to
verify. The longest-running example in the variant without triggers takes 8.83s but
also has a high standard deviation of 4.71s, suggesting that performance becomes
unpredictable when triggers are selected automatically. The triggers that we choose
thus avoid spurious errors and provide predictable, fast performance.

To measure the effect of memoizing invocations of qp-summarise, we disabled this
feature and measured the difference in runtimes over the same inputs. As shown
in the “w/o memoiz.” columns, disabling this optimisation typically increases the
runtime, but not enormously; a likely explanation for the relatively small difference
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is that qp-summarise performs the iteration over quantified chunks without querying
the SMT solver, and that the chosen quantifier triggers are sufficiently restrictive.
The number of chunks in a given symbolic state is also typically kept small: Silicon
performsmodular verification permethod/loop body, and eagerly removes quantified
chunks that no longer provide permissions (after an exhale, see Section 4.6).

The columns labelled “w/o ordering” show the effect of another optimisation: a
heuristic that aims at ordering the chunks that qp-remove iterates over such that
the likelihood of finding the required permissions among the first few chunks is
increased, which allows qp-remove to terminate prematurely. More details about this
optimisation are given in Section 4.6.

4.6 Implementation

Observations and Optimisations

When discussing qp-summarise (Figure 4.3 on page 114), it was mentioned that Silicon
memoizes snapshot maps in order to reduce the number of introduced maps, which
in general reduces the verification time (as shown in Section 4.5). The current memo-
ization strategy is simple: Silicon maintains a cache that maps a set of heap chunks
(all for the same location identifier such as a field name) to a snapshot map previously
introduced when summarising the heap values recorded by this set of chunks; if
a cache entry exists the previously computed snapshot map is reused (instead of
recomputing the summary). Cache entries are kept for the current execution path
only, that is, removed when Silicon backtracks, which prevents potentially unsound
reuse of snapshot maps on paths with equivalent symbolic heaps but different path
conditions. As future work, we plan to investigate the possibility of memoizing
inverse functions as well.

Another optimisation is concerned with the handling of non-quantified permission
assertions: in Section 4.2.1, it was stated that a (non-quantified) assertion acc(id(e))
could be understood as syntactic sugar for the quantified permission assertion
forall x : E :: x == e ==> acc(id(x)). To optimise performance, Silicon does
not implement this desugaring, and instead special-cases non-quantified permission
assertions. On inhale, such an assertion still yields a quantified chunk (not mixing
quantified and non-quantified permissions in a symbolic heap simplifies the exe-
cution, and a simple, syntactic pre-analysis suffices to determine which fields are
used in combination with quantified permissions), but no inverse function is intro-
duced (which would be axiomatised as the identity function). On exhale, the axioms
introduced by qp-summarise (defining the values, and potentially the domain, of a
snapshotmap) are not quantified, but instead pre-instantiatedwith the single possible
argument vector (for example, the domain axiom would be domainid(sm) = {e}).

It was mentioned in Section 4.5 that Silicon removes heap chunks that no longer
provide any permissions: this is done in the loop in qp-remove (Figure 4.2). This
check amounts to an SMT solver query, whose runtime potentially outbalances the
gain possibly obtained from reducing the heap size. A coarse experimental evaluation
performed during the development indicated that a good performance trade-off is
achieved by running this query with a short time-out (with a current default value of
250ms).

Silicon also implements a simple, syntax-driven heuristic that determines the order
in which qp-remove iterates over the heap chunks to find the required permissions,
aiming to increase the likelihood that the iteration can be ended prematurely. The
heuristic implements the observation that permissions are often inhaled and sub-
sequently exhaled with syntactically similar receiver expressions (respectively, pre-
dicate argument expressions). This is typically the case for loop invariants, but also
common in other specifications, for example, in a method contract that requires and
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ensures permissions to all xs[i]. The heuristic therefore orders the heap chunks
according to how closely the exhale-receiver and the inhale-receiver (who need to be
recorded in heap chunks on inhale) match. To benefit from the ordering, qp-remove
checks after every iteration if sufficient permission have already been removed, in
which case the iteration is ended prematurely. The corresponding solver query is
again run with a short time-out (defaulting to 250ms) in order to prevent that re-
peated (unsuccessful) queries render the optimisation counter-productive. Ending
the iteration early also helps with reducing the size of the generated symbolic per-
mission expressions: qp-removemodifies the permission expression of each chunk it
iterates over by subtracting the permission amount the chunk can provide to certain
locations. If the chunk cannot provide any permissions to these locations then the
solver will deduce that the subtracted amount equals zero, but this incurs additional
work. Experimental evaluations (Section 4.5) have shown that the simple chunk
ordering heuristic, in combination with repeatedly checking if sufficient permission
have already been removed, is quite effective in practice and reduces the average
verification time by more than one third (Figure 4.6).

Another potential target for optimisations could be the extensionality axiom that
defines the equality of two partial snapshot maps (discussed in Section 4.3.2): the
axiom admits a quadratic number of instantiations because it can be instantiated for
each (ordered) pair of partial snapshot maps. This may be a factor contributing to
the performance issues we observed when verifying programs with many function
applications (Section 4.3.2), and as future work we plan to investigate the potential
for breaking the axiom’s symmetry with respect to instantiations by ordering the
snapshot maps according to the point at which they were introduced by the symbolic
execution.

Lastly, we noticed that repeated executions of qp-remove (Figure 4.2 on page 112) can
result in relatively large symbolic permission expressions: in practice, we observed
dozens of lines of SMT-LIB code if pretty-printed in a human-readable way, and even
a few hundred in the case of appropriately tailored stress tests. We did not observe
this to be a problem for the underlying solver, however, but it impedes debugging
the generated encoding and Silicon therefore implements a few simple, syntactic
rewriting rules that aim at reducing the size of the generated symbolic expressions
(and work reasonably well in practice).

Unsupported Features

Silicon’s implementation does not yet support predicates or magic wands under
quantified permissions, but because of Silicon’s uniform representation of the corres-
ponding instances in the heap, extending the existing implementation is expected to
be straightforward. The symbolic execution rules presented in this chapter already
account for predicates under quantified permissions, and how an integration of magic
wands and quantified permissions can be achieved is briefly discussed next (more
details are provided in Chapter 5).

Magic wand instances are represented as magic wand chunks, which are of the same
shape as predicate chunks: a magic wand chunk wanduid(v; s, p) represents an in-
stance of a particular magic wand (the latter is uniquely identified by wanduid) with
“arguments” v and snapshot s, and it provides p permissions to the wand instance.
Consequently, magic wand instances are inhaled and exhaled similarly to predicate
instances, that is, by corresponding produce and consume rules, and magic wand
chunks can be lifted to quantified chunks in the same way that predicate chunks are.
Implementing this lifting and supporting magic wands under quantified permissions
is left as future work.
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Generalising the symbolic execution rules for Viper’s permission introspection fea-
tures perm and forperm also remains future work. After having decided on ap-
propriate syntax, perm and forperm over fields can be supported as follows (and
analogously for predicates):

• Recall from Figure 4.2 that perm(x. f) is evaluated to a symbolic permission
sum that represents the total permission amount provided by a symbolic heap:
each (non-quantified) heap chunk f (yi; _, pi) contributes a summand of the
shape ite(x = yi, pi, 0) to the total sum. Correspondingly, each quantified chunk
f (r; _, pi(r)) needs to contribute a summand of the shape pi(x) — the equality
test between receivers is already included in the symbolic permission expression
pi recorded by quantified chunks.

• Similarly, recall from Figure 4.2 that forperm[ f] x :: b(x) is evaluated by
instantiating the body b(x)with all possible receivers to which a given symbolic
heap provides permissions: the resulting symbolic value consists of conjuncts of
the shape pi > 0⇒ b(yi), one for each (non-quantified) heap chunk f (yi; _, pi).
Correspondingly, each quantified chunk f (r; _, pi(r)) needs to contribute a
conjunct ∀x · pi(x) > 0⇒ b(x).

Regarding the state consolidations discussed in Section 3.4.2, two aspects are worth
mentioning:

• Recall that state consolidations are used to avoid certain incompletenesses
that typically arise from separating the symbolic state into heap chunks and
path conditions; in particular, that all (non-quantified) chunks that provide
permissions to the same heap location are merged during a state consolidation.
This is necessary because the algorithms concerned with non-quantified chunks
greedily operate on the first matching chunk only. Quantified chunks do not
need to be merged since the quantified permission operations presented in this
chapter (qp-summarise and qp-remove) always take all quantified chunks into
account.

• However, state consolidations also make field receiver disequalities explicit
(as path conditions) that are implied by the permission amounts provided
by (non-quantified) chunks: for each unordered pair of chunks f (x; _, p) and
f (y; _, q), the path condition x = y⇒ p + q ≤ 1 is added. Correspondingly, for
each unordered pair of quantified chunks f (r; _, p(r)) and f (r; _, q(r)), the path
condition ∀r1, r2 · r1 = r2 ⇒ p(r1) + q(r2) ≤ 1 needs to be added. Silicon does
not yet implement the latter.

Recall (Section 4.2.1) the canonical shape of quantified permission assertions used in
this thesis, which suffices to specify and verify interesting examples (as demonstrated
in the evaluation in Section 4.5):

forall x : T :: c(x) ==> acc(id(e(x)), p(x))

As future work, we plan to generalise this canonical shape in two directions: first,
by generalising the implication’s right-hand side such that it may contain multiple
accessibility predicates (for example, acc(x.f) && acc(x.g)) and also pure con-
straints (such as x.f == x.g). This generalisation is purely for convenience and can
be implemented as a source-to-source translation on the Viper level, thus avoiding the
need for adding new symbolic execution rules to Silicon. The second generalisation
would be to add support for multiple bound variables (that is, nesting quantified
permission assertions on the right-hand side; nesting on the left-hand side is not
allowed since the left-hand side must be an expression), which would increase the
expressiveness of Viper. This generalisation would entail a corresponding general-
isation of the inverse functions introduced by our approach: currently, these map a
vector of values (such as predicate arguments) to a single value (corresponding to the
single quantified variable bound by a quantified permission assertion); they would
have to be generalised to functions from vectors to vectors.
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Chapter 5

Magic Wands

Separation logic’s separating conjunction, denoted by ∗, is the defining connective of
separation logic and used to combine assertions such that a1 ∗ a2 can be understood
as the following constraint: the current state σ can be partitioned into two states, σ =
σ1 ] σ2, such that σ1 satisfies a1 and σ2 satisfies a2. Here, ] denotes the combination
of two compatible partial program states; in particular that the partial states do not
disagree on the values of local variables and heap locations.

The separating implication, or magic wand a1 –∗ a2, a connective originally introduced
along with the separating conjunction in the first papers on separation logic [64, 99,
108], can instead be understood as a constraint on a hypothetical extension of the current
state: “if any partial heap satisfying a1 is added, the resulting state will satisfy a2”.
The semantics of the magic wand connective is defined as follows:

σ |= a1 –∗ a2 ⇔ ∀σ′ ⊥ σ · (σ′ |= a1 ⇒ σ ] σ′ |= a2)

Here, σ′ ⊥ σ expresses that the hypothetical extension σ′ is compatible with the
current state: per memory location, the combined permission amounts do not exceed
write permissions, and the states agree on the values of local variables and heap
locations.

The ability to express guarantees about hypothetical (future) additions to the state
makes the magic wand well-suited for concisely specifying partial versions of data
structures, for example, for describing ongoing traversals of data structures [130, 87].
Such situations commonly require specifications (for example, of loops) expressing
that the overall data structure (such as a tree) is re-obtained by “plugging back” the
traversed and potentially manipulated part (a sub-tree) into the untouched rest of
the structure (the surrounding tree). A related use case for magic wands is enabling
clients to reason about “recombining” a view on thewhole data structurewhile hiding
the internal definitions, which has been used for specifying protocols that enforce
orderly modifications of data structures [76, 52, 68]. Yang employs themagic wand for
a by-hand proof of the Schorr-Waite graphmarking algorithm [136], while Dodds et al.
employ it for specifying synchronisation barriers for deterministic parallelism [44].

Despite its history and this variety of applications, the magic wand connective is
generally not supported in automated verifiers built upon separation logic (and
related theories) [11, 42, 67, 84]; the only exceptions are our verification infrastructure
Viper, and VerCors [17] (see also Section 5.8).

The quantification over states in the wand’s semantics makes the connective challen-
ging to support in automated tools. Recent developments in propositional separation
logics [81, 61] show its proof theory to be intricate. In the presence of local variables
and fields (selector functions), reasoning without any user guidance is known to be
undecidable [29]. We address the problem of magic wand support in the context of
Viper: in particular, we support magic wands in combination with arbitrary user-
defined predicates and functions; due to a novel approach for automatically choosing
suitable footprints of magic wands, the required user annotations remain lightweight.
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Chapter Overview

The work described in this chapter has in parts been published at ECOOP 2015, in
the paper Lightweight Support for Magic Wands in an Automatic Verifier by Schwerhoff
and Summers [117]. The chapter shows how to support the magic wand connective
in an automated verifier, including the following specific contributions:

• A design for the representation of wands in a symbolic verification state, and
the provision of suitable ghost operations for directing their use (Section 5.2.1).

• An automatic strategy and a corresponding algorithm for choosing suitable foot-
prints for magic wand instances, without additional user direction (Section 5.2.2
and Section 5.2.3).

• A mechanism for integrating existing ghost operations (such as folding predic-
ates) with our automatic footprint computation, and a soundness argument for
the presented algorithms (Section 5.3).

• A set of additional heuristics, which aim to infer the magic-wand-related an-
notations required by our approach (Section 5.5).

• An implementation of (most of) the presented techniques in Silicon, along
with examples demonstrating the conciseness and versatility of the approach
(Section 5.6).

• An integration of magic wands with all other important Viper features (in
addition to predicates), in particular with quantified permissions, the framing
of heap-dependent expressions such as functions, and permission introspection
(Section 5.7).

The remainder of this chapter is structured as follows: a motivating example is
shown in Section 5.1 and used to illustrate the use of magic wands in specifications.
The representation of magic wands in our technique, related annotations and our
automatic footprint computation algorithm are presented in Section 5.2. Next, the
integration of existing ghost operations such as unfolding is presented in Section 5.3,
alongside a soundness argument for the involved algorithms; followed by Section 5.4,
which explains how our technique enables framing of heap-dependent expressions.
Heuristics that attempt to infer magic-wand-related annotations are discussed in
Section 5.5; afterwards, Section 5.6 and Section 5.7 provide an evaluation and a general
discussion of the implementation, respectively. The chapter concludes in Section 5.8
with a discussion of the related work.

5.1 Background and Motivation

Listing 5.1 shows a simple Viper program used as the running example of this chapter:
a straightforward iterative implementation to calculate the sum of the nodes in a
linked list. In this subsection, we give a high-level overview of the concepts involved
in the specification and attempted verification of this example.

The precondition of method sum_it requires an instance of the usual list predicate,
and the method’s postcondition promises that such an instance will be returned to
the caller, along with the guarantee that the returned value is the sum of the values
stored in the list.

The verification of the while loop (line 23) relies on the provided loop invariant,
which (among other properties) specifies that the loop context holds permission to
the suffix of the input list starting at xs. The loop is straightforward: in each iteration,
it unfolds the current list predicate instance list(xs)—which makes permissions
to xs.val and xs.next, and potentially to list(xs.next), available — before it
updates the sum and advances the current node pointer xs.



5.1. Background and Motivation 129

1 field val: Int
2 field next: Ref
3

4 predicate list(ys: Ref) {
5 acc(ys.val) && acc(ys.next)
6 && (ys.next != null ==> acc(list(ys.next)))
7 }
8

9 function sum_rec(ys: Ref): Int
10 requires acc(list(ys))
11 {
12 unfolding acc(list(ys)) in
13 ys.val + (ys.next == null ? 0 : sum_rec(ys.next)) }
14

15 method sum_it(ys: Ref) returns (sum: Int)
16 requires ys != null && acc(list(ys))
17 ensures acc(list(ys))
18 ensures sum == old(sum_rec(ys))
19 {
20 var xs: Ref := ys
21 sum := 0
22

23 while (xs != null)
24 invariant xs != null ==> acc(list(xs))
25 invariant sum == old(sum_rec(ys))
26 - (xs == null ? 0 : sum_rec(xs))
27 {
28 unfold acc(list(xs))
29 sum := sum + xs.val
30 xs := xs.next
31 }
32

33 /* Postcondition error: permissions required by list(ys)
34 * are not available */
35 }

Listing 5.1: Running example (with insufficient loop invariant): iteratively computing
the sum of a linked list.

The loop terminates once the end of the list is reached, at which point xs is null. The
loop invariant does not provide any permission in this situation and the first post-
condition (line 17) therefore fails to verify because the predicate instance list(ys)
is not available: it has been unfolded completely during traversal of the list, but
the permissions obtained from each unfoldwere not retained in the loop invariant.
These “unfolded” permissions can be retained using a list segment predicate which
describes the already traversed list prefix (as illustrated by the examples shown in
Section 2.3.1), but the resulting encoding is rather cumbersome since it requires the
declaration of an appropriate list segment predicate and the provision and use of
(ghost) code that manipulates list segment instances (such as the concat lemma
method shown in Section 2.3.1 which appends to the end of a list segment). In the
next subsection we will instead describe how magic wands can be used to specify
the loop without having to introduce additional specification-only predicates and
methods.

Overview of our Magic Wand Support

Listing 5.2 shows the body of the sum_it method, specified using Viper’s magic
wand support (the full example is shown in Listing D.1 in Appendix D). The loop
invariant has been strengthened (line 11) to include an additional magic wand in-
stance (xs != null ==> acc(list(xs)) --* acc(list(ys)) (as usual, the use of
macros is optional but makes the code more readable).
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1 var xs: Ref := ys
2 sum := 0
3

4 define A xs != null ==> acc(list(xs))
5 define B acc(list(ys))
6

7 package A --* B
8

9 while (xs != null)
10 invariant xs != null ==> acc(list(xs))
11 invariant A --* B
12 invariant sum == old(sum_rec(ys))
13 - (xs == null ? 0 : sum_rec(xs))
14 {
15 wand w := A --* B /* Give magic wand instance the name w */
16

17 var zs: Ref := xs /* Value of xs at start of iteration */
18 unfold acc(list(xs))
19 sum := sum + xs.val
20 xs := xs.next
21

22 package A --* folding acc(list(zs)) in applying w in B
23 }
24

25 apply A --* B

Listing 5.2: The verified version of the body of sum_it, from Listing 5.1.

Informally, this magic wand instance represents the following promise: “if you give
up permission to the remainder of the list (starting at xs), you will in exchange be
given permission to the entire list structure (starting at ys)”. This assertion plays the
role of representing the permissions to the partial list inspected by the loop so far; we
say these permissions make up the footprint of the magic wand.

The footprint of amagicwandmust include enough permissions tomake this informal
promise justified. In order to ensure that the promise remains justified until it is
used, the footprint is removed from the current symbolic heap when a new magic
wand instance is created, which effectively renders the corresponding heap locations
immutable until the wand instance is used. More details follow in Section 5.2.1.

The verifier can be directed to create a new magic wand instance (and to choose a
suitable footprint) using a package statement, such as that used on line 7 of Listing 5.2,
which creates the wand instance necessary for showing that the loop invariant holds
on entry. There, an empty footprint suffices since xs and ys are equal at this point
(due to line 1).

Figure 5.1 conceptually illustrates the permissions that the magic wand instance in
our loop invariant represents, by stepping through the important stages of verifying
the loop body (for simplicity, the cases of xs/xs.next being null are ignored in the
illustration). At the beginning of the loop body, the magic wand’s footprint includes
the permissions (to fields val and next) from the head of the linked list ys all the way
down to — but excluding — the current node xs. The remaining permissions, that is,
those to the current node and the tail of the list, are contained in the predicate instance
list(xs). The latter is then unfolded, providing permissions to the fields of xs (that
is, to acc(xs.val) and acc(xs.next)) and xs is afterwards advanced such that it
points to the next node (that is, to zs.next). In order to re-establish the loop invariant,
in particular, to re-establish that the wand instance includes the permissions to the
already-visited prefix of the list, it is necessary to add the permissions to zs.val and
zs.next to the wand instance. This is achieved by the final package statement: the
ghost operations on the right-hand side of the wand force the wand’s footprint to
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ys xs null

list(xs) --* list(ys) list(xs)

var zs: Ref := xs;  unfold list(xs);  sum := sum + xs.val;  xs := xs.next

ys zs xs null

list(zs) --* list(ys) list(xs)
acc(zs.val)
acc(zs.next)

package list(xs) --* folding list(zs) in
applying list(zs) --* list(ys) in
list(ys)

ys zs xs null

list(xs) --* list(ys) list(xs)

Figure 5.1: Illustration of the bookkeeping of permissions in the loop invariant from
Listing 5.2, via magic wand and predicate instances. The magic wand instances cover
permissions to the prefix of the list (starting at ys) that has already been traversed by

the loop. For simplicity, the cases of xs/xs.next being null are ignored.

include the footprint of the wand held so far, plus the permissions to zs.val and
zs.next (necessary for the folding ghost operation on line 22 of Listing 5.2).

The role of these ghost operations is explaining to the verifier how, given the left-
hand-side assertion, the right-hand-side assertion can be obtained1; their role is thus
comparable to that of other ghost operations such as unfolding. Further details
about such ghost operations are provided in Section 5.3. Given these operations, the
computation of the wand instance’s footprint, that is, of the extra permissions which
must be associated with the new instance, is performed automatically; the automated
footprint computation is an important contribution of this chapter.

A wand instance, together with its left-hand-side assertion, can be exchanged for
the right-hand-side assertion; this is called applying the magic wand instance. For
example, after the loop body in Listing 5.2, the magic wand instance from the loop
invariant is applied (line 25): the instance and its left-hand side must be given up,
and its right-hand side list(ys) is added to the verification state, providing the
permission required by the method’s postcondition.

The support for magic wands presented in this chapter allows a natural specification
of such “left-over” parts of data structures, in a way which requires few annotations,
and applies equally well to other data structures and predicates. This is an important
use case of magic wands, but (as previously discussed) not the only one (e.g. [76,
52, 68, 136, 44]); the possibility of practical tool support via the contributions of this
chapter will likely also lead to further applications being explored.

5.2 Magic Wand Support with Automatic Footprints

In this chapter, our technique for supporting the magic wand connective in an auto-
mated verifier is presented in the context of symbolic execution, and in particular

1Variable zs records the node that xs pointed to at the beginning of the current loop iteration, while w
gives a name to the magic wand instance belonging to the loop invariant at the start of the iteration. Both
are not strictly necessary, but make the annotations on line 22 succinct.
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in the context of the symbolic execution rules presented in previous chapters. The
technique is more general, however: in [117] we present our technique independ-
ent of any particular implementation strategy for the underlying verification tool,
and we have already implemented the technique in both Viper verifiers (symbolic-
execution-based Silicon and verification-condition-generation-based Carbon; recall
Figure 2.1 and Section 3.7.1). Moreover, our approach is presented in the context
of implicit dynamic frames but does not depend on any special feature of this logic
(such as heap-dependent expressions): it is therefore straightforward to adapt it to a
separation-logic-based tool or to other permission logics.

5.2.1 Representing Wand Instances as Opaque Resources

Recall (from the beginning of this chapter) that reasoning about magic wands is in
general undecidable if no user guidance is provided. In order to devise an approach
that is based on user guidance but still reasonably lightweight and that can be effi-
ciently implemented, we took inspiration from the handling of (recursive) predicates:
just as for predicates, our approach requires instructing the verifier to create new
magic wand instances (package) and to apply their meaning while verifying code
(apply). In between packaging and applying awand instance, the instance is treated—
analogous to a predicate instance — as an opaque resource recorded in the verification
state: when one is available, the verifier need not attempt to deduce anything that
follows from the wand’s semantics, without instruction to do so.

The choice to use such an opaque magic wand instance must be directed by a ghost
statement apply a1 --* a2 (see, for example, line 25 of Listing 5.2). Recall the formal
semantics of a magic wand assertion from the beginning of this chapter (note: change
of variable names):

σfoot |= a1 –∗ a2 ⇔ ∀σlhs ⊥ σfoot · (σlhs |= a1 ⇒ σlhs ] σfoot |= a2)

This semantics intuitively says that a1 –∗ a2 is true in a state σfoot if it is guaranteed that
any state created by combining this state with some additional state σlhs satisfying
a1, satisfies a2. One can see this as a definition in terms of what can be deduced
from a magic wand, according to the following Modus-Ponens-like inference rule
from separation logic: a1 ∗ (a1 –∗ a2) |= a2. The operation of applying a magic wand
instance is defined analogously (shown in Figure 5.5); intuitively represented by the
following sequence of Viper statements:

apply a1 --* a2 can be understood as exhale a1 && (a1 --* a2)
inhale a2

Just as for predicate instances, the opaque treatment of magic wand instances requires
for soundness that the state σfoot in the semantics above must notionally belong to the
magic wand instance, in the sense that the program is not allowed to modify that
part of the state until the wand instance is applied. We call such a state the footprint
of the magic wand instance. Whenever a new magic wand instance is to be added
to the verification state, it is therefore necessary to compute some suitable part σfoot
of the current state σ, that will suffice to guarantee the wand’s semantics, and then
remove σfoot from the current state, and in its place add the new magic wand instance.
We call this operation (of choosing a suitable footprint for a magic wand instance and
exchanging the footprint for the wand instance) packaging the magic wand instance,
and use a ghost command package a1 --* a2 to direct the verifier to perform a
corresponding package operation.

Given a suitable choice of footprint (discussed next in Section 5.2.2), the operation
of packaging a magic wand can intuitively be understood as the following sequence
of Viper statements, where afoot is an assertion describing a suitable footprint of the
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magic wand instance to package:

package a1 --* a2 can be understood as exhale afoot
inhale a1 --* a2

5.2.2 Strategy for Choosing Footprints

The representation of magic wands as opaque resources in the verification state, and
their manipulation via lightweight user annotations, requires automatically choosing
a suitable footprint for amagicwand instance, which is challenging. As outlined in the
previous subsection, a package operation package a1 --* a2 must attempt to choose
a footprint σfoot, which can be any portion of the current state as long as it satisfies the
wand’s semantics. In checking this criterion, it would be unsound to use any facts
from the current state which are not framed by permissions that were chosen for the
footprint, since these facts might no longer be true by the time the wand instance is
applied2. For example, when packaging acc(x.f) --* acc(x.f) && x.f == 3 in
a state where x.f == 3, this fact may be used only if permission to x.f is included
in the wand instance’s footprint: otherwise, the value of x.f could be changed by the
time the wand instance is applied.

Choosing a suitable footprint for a magic wand instance is complicated by the
quantification over hypothetical states σlhs in the wand’s semantics: (1) the wand’s
left-hand side a1 is to be evaluated in such a σlhs state (that is, not in the current
state), and moreover (2) depending on that state, different choices of the footprint
state σfoot may be possible such that the wand’s right-hand side a2 is satisfied by the
combination of σfoot and σlhs. To illustrate this difficulty, consider the magic wand
(acc(x.b) && x.b ==> acc(x.f)) --* acc(x.f): its left-hand side would eval-
uate to true in a hypothetical state with permission to x.b and x.f if x.bwere true,
in which case the empty footprint would suffice to satisfy the wand’s semantics; as
would the combination of a hypothetical state with permission to x.b only and a
footprint which provides the necessary permission to x.f, if x.bwere false.

In deciding on a strategy for choosing footprints, the choice of a wand instance’s
footprint could soundly be restricted to any portion of the current state if a subsequent
check ensures that the choice suffices to guarantee the wand’s semantics. Certain
strategies for choosing a footprint are, however, more useful than others.

For example, one could always choose the empty state as a footprint σfoot and therefore
not use up any permissions at a package statement; the check of the wand’s semantics
would then fail in all cases but those where a1 entails a2. Alternatively, one could
always choose σfoot to be the entire current state. This would allow many wands to
be proven, but the subsequent verification will almost certainly fail due to missing
permissions. Although either of these approaches would be sound, they would not
be useful in practice.

Intuitively, it makes sense to choose a footprint which is as small as possible, while
still guaranteeing enough information for the wand’s semantics. However, the notion
of “as small as possible” is not straightforward to define precisely. For example,
the semantics of a wand a1 –∗ a2 can be satisfied by choosing a footprint state which
includes enough permissions such that a state satisfying a1 can never again be ob-
tained: this would yield a true wand instance — the inability to find a σlhs state that is
compatible with this choice of footprint makes the semantics of the wand vacuously
true — but one which could never be applied, which is not useful as a verification
construct.

Recall the previous example, in which acc(x.f) --* acc(x.f) && x.f == 3 is
to be packaged in a state in which x.f == 3. As discussed, this fact may only be

2We only allow magic wand assertions a1 --* a2 in which both assertions a1 and a2 are self-framing
(recall Section 2.2.1). This is not a strong restriction in practice; indeed, in standard separation logics, all
assertions are self-framing [102].



134 Chapter 5. Magic Wands

soundly used when proving the right-hand side of the wand if permission to x.f
goes into the wand’s footprint (and is thus removed from the current state). Although
this extra logical fact is useful in proving the right-hand side, such a decision would
again yield a wand instance which cannot be applied: since the left-hand side of
the wand requires this permission to be provided when applying the wand instance.
Essentially, any permissions which are taken from the current state although they
are already provided by the left-hand side of the wand, are leaked at the point of
packaging an instance of that wand, which is typically not useful for verifying the
rest of the program.

Motivated by these observations, our strategy for choosing wand footprints is: include
all permissions required by the wand’s right-hand side which cannot be proven to be provided
by the wand’s left-hand side. Note that restricting the choice of footprint to only these
permissions is not really a restriction in practice: if the tool user intends to include
extra permissions from the current state in a wand’s footprint, they can achieve it by
writing a right-hand side which requires more permissions than the left-hand side
provides.

For example, our strategy does not allow packaging the (already shown) wand

acc(x.f) --* acc(x.f) && x.f == 3

in a state such that x.f == 3: permission to x.f are provided by the left-hand side
and thus not taken from the current state; consequently, asserting the right-hand side
in the combination of an empty footprint with the left-hand side will fail. The user
can remedy this situation in two ways, however: by “forcing” the footprint to include
some permission to x.f, or by strengthening the left-hand side. Changing the wand
to

acc(x.f, 1/2) --* acc(x.f) && x.f == 3

means that 1/2 permission to x.f are included in the wand, which effectively renders
the location immutable and thus allows using the fact x.f == 3when proving the
right-hand side. Alternatively, the wand’s left-hand side can be strengthened:

acc(x.f) && x.f == 3 --* acc(x.f) && x.f == 3

Permission to x.f remain in the current state (and the location mutable), but the
wand can only be applied in states where x.f == 3.

5.2.3 Automated Footprint Computation

The idea of the previously described strategy for choosing a wand instance’s footprint
is simple, but devising an algorithm that automates the footprint computation is still
challenging: there is a technical circularity to the problem. The footprint for a wand is
determined in terms of the permissions required by its right-hand side. Exactly which
permissions are required by the right-hand side can (due to conditionals) depend on
properties of heap values. Properties known about heap values in the current state
may be soundly used if and only if permissions to those heap locations are included
in the wand’s footprint — whose computation is ongoing.

To break this circularity, we devised an algorithm that simultaneously checks the right-
hand side of the wand to be packaged, which includes determining the required
permissions and constructs a new state σused which contains these permissions. The
required permissions are taken from the current state if they cannot be proved to be
provided by the wand’s left-hand side; thus, the algorithm implicitly carves out a
suitable footprint for the wand from the current state.



5.2. Magic Wand Support with Automatic Footprints 135

01 exec(σ1, package a1 --* a2, Q) =
02 produce(σ1

{
h := ∅

}
, a1, fresh, (λ σlhs ·

03 consume-ext([σlhs.h, σ1.h], σlhs
{

h := ∅
}

, a2, (λ [_, h2], _, _ ·
04 Let ch be a magic wand chunk corresponding to a1 --* a2
05 Q(σ1

{
h := heap-add(h2, ch)

}
)))))

Figure 5.2: Simplified rule for packaging magic wand instances. Potentially branching
executions (of produce and consume-ext) are not accounted for, and neither is the
framing of heap locations to which all permission are lost to the wand instance’s
footprint. The rule is gradually refined in Section 5.4.1 and Section 5.4.2 to account for

framing and branching executions, respectively.

Packaging Magic Wands

A simplified algorithm is shown in Figure 5.2 (with additional definitions such as
that of consume-ext shown in Figure 5.3), formalised as a symbolic execution rule.
The simplified rule focuses on the handling of permissions, and does neither account
for framing heap values across package-apply pairs (similar to framing across fold-
unfold statements, as discussed in Chapter 3), nor for magic wands that include
conditionals (and can result in branching executions of package/apply statements).
Both can result in incompletenesses; how to avoid them is discussed in Section 5.4.1
(framing) and Section 5.4.2 (branching). In both subsections, the rules for executing
package and apply statements are gradually extended.

Given a current state and a wand instance to package, the rule proceeds as follows: it
first creates an arbitrary hypothetical state σlhs satisfying the wand’s left-hand side a1
(by producing a1 into an empty heap). The next step combines removing a suitable
footprint from the current state and checking the right-hand side in the combination
of the footprint and the left-hand-side state: this is done by consume-ext (defined in
Figure 5.3), which takes permissions from the current heap σ1.h only if they are not
provided by the left-hand-side heap σlhs.h. Finally, a representation of the packaged
wand instance (as a magic wand chunk, which are similar to predicate chunks and
defined in Section 5.2.5) is added to the remainder of the (initial) current heap h2
and the verification continues: the footprint has been consumed and replaced by the
packaged wand instance.

Note that on line 5, heap-add is used as if it only returned an updated heap, whereas
the signature given in Section 3.1.2 allows heap-add to also return potentially updated
path conditions: for example, the refined definition of heap-add from Section 3.4.2may
add equalities between snapshots (obtained from merging chunks). To simplify the
presentation, we omit the potentially updated path conditions throughout this chapter
(which in practice would result in incompletenesses, as discussed in Section 3.4.2,
and is not done in Silicon’s implementation).

Keeping the initial heap σ1.h and the hypothetical extra heap σlhs.h separate is essential
for a correct checking of the right-hand side. A naïve implementation which simply
combined both heaps before checking the wand’s right-hand side (and determining a
suitable footprint) would be unsound: the combination might be inconsistent, which
would unsoundly trivialise the check. For example, the operations

inhale acc(x.f)
package acc(x.f) --* false

and

inhale acc(x.f, 1/3) && x.f == 1
package acc(x.f, 1/3) && x.f == 2 --* false
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should fail (in consistent states), but might unsoundly succeed if the current and the
left-hand-side state were combined: in the first case because of too much permission,
in the second because of contradicting value facts.

Assumptions (path conditions) obtained from producing the hypothetical left-hand
side must be available when checking the right-hand side, for example, to allow
packaging the vacuous wand false --* false, but they must be retracted once the
package operation finished: asserting false should fail after this vacuous wand has
been packaged. This is achieved in Figure 5.2 by making the path conditions obtained
from producing the left-hand side available to the subsequent check of the right-hand
side (done by consume-ext, which is discussed shortly). After the right-hand side
has been checked, however, the verification continues (on line 5) with the (initial)
current path conditions, and thus discards the path conditions obtained from the
hypothetical left-hand side.

Removing Footprints and Checking Right-Hand Sides

Recall that the strategy for automatically choosing wand footprints is to take permis-
sions required by the right-hand side from the left-hand-side heap if possible, and
only otherwise from the current heap. This is implemented as an extended version
of the consume operation, called consume-ext (defined in Figure 5.3), and used by
the previously discussed rule for packaging wands (Figure 5.2).

This operation achieves two goals: it computes a footprint and removes it from
the current heap, and it simultaneously checks that the right-hand side holds (in
the combination of the footprint and the left-hand side). To achieve its goals, the
operation attempts to successively construct a state (denoted by σused) that satisfies the
right-hand side, by transferring permissions from the left-hand-side heap whenever
possible, and only otherwise from the current heap. The footprint of a wand instance
is thus only computed implicitly and the constructed state (which satisfies the right-
hand side if consume-ext succeeds) is not the footprint itself: it is a combination of
the footprint and (a part of) the left-hand side heap.

consume-ext takes the following three inputs (in addition to the usual continuation):

(1) A stack h of symbolic heaps, which (for now) is the left-hand-side heap on top
of the current heap, expressing that permissions are preferentially to be taken
from the left-hand-side heap. Stacks of greater height are necessary in order to
package nested wands, which in turn requires nesting package operations and
thus multiple left-hand-side heaps; this is explained in Section 5.3.

(2) A state σused, typically empty on the initial invocation of consume-ext (for ex-
ample, when used by package). As described, σused is successively populated
by transferring permission from the stack of heaps (so that it eventually is the
combination of footprint and left-hand side), and it is used to check the wand’s
right-hand side.

(3) An assertion a, which is thewand’s right-hand side (for example, when consume-
ext is used by package) or a suffix thereof. This assertion determines σused —
permissions required by a are transferred into σused — and is itself checked in
σused.

If consume-ext succeeds, it returns (passes to its continuation) the stack of remainder
heaps not transferred into σused, σused itself (which by-construction satisfies a), and a
snapshot that (as usual) represents the values of the heap locations to which permis-
sions were consumed (transferred). Note that the simplified package rule presented
in Figure 5.2 ignores the snapshot: its discussion is postponed until Section 5.4.1.

consume-ext recurses over the assertion a (that is, the wand’s right-hand side), and
maintains the following invariant: at any point during the execution of consume-ext,
the current σused.h satisfies the prefix of the initial a that has been processed so far.
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01 consume-ext : List[H]→ Σ→ A→ (List[H]→ Σ→ Snap→ R)→ R
02 consume-ext(h, σused, acc(id(e), p), Q) =
03 eval(σused, p :: e, (λ σused1

, p′ :: e′ ·
04 transfer(h, σused1

.h, σused1
.π, id(e′), p′) matches

05 Some(h1, hused2 , s) :
06 Q(h1, σused1

{
h := hused2

}
, s)

07 None :
08 failure()))
09

10 consume-ext(h, σused, e, Q) =
11 eval(σused, e, (λ σused1

, e′ ·
12 assert(σused1

.π, v) ∧
13 Q(h, σused1

, unit)
14

15 consume-ext(h, σused, a1 && a2, Q) =
16 consume-ext(h, σused, a1, (λ h1, σused1

, s1 ·
17 consume-ext(h1, σused1

, a2, (λ h2, σused2 , s2 ·
18 Q(h2, σused2 , pair(s1, s2))))))

Figure 5.3: consume-ext transfers the footprint of a from h into σused. Other cases of
consume-ext (for example, for conditionals) are analogous to consume (as illustrated by
the rule for separating conjunction), but such that expressions are evaluated in σused.
Some[T] and None are of type Option [T], corresponding to the homonymous Scala type
(and to Haskell’s Maybe). Operation transfer returns such an Option; keyword matches

allows pattern matching against the return value.

Recall that both sides of a wand have to be self-framing; on a wand’s right-hand
side the permission to access a heap location thus occurs before any expressions
that depend on the location’s value. It is therefore guaranteed that consume-ext can
(attempt to) transfer permission into σused before it needs to check any expression (in
σused) that potentially accesses a corresponding heap location.

For most assertions, operation consume-ext is defined analogously to consume (re-
call Section 3.3), as illustrated by the definition of consume-ext for a1 && a2. The
only interesting cases are those for permissions (case acc(id(e), p)) and pure as-
sertions (case e): consuming permissions transfers permissions from the stack of
heaps into σused (or fails, if permissions cannot be found); consuming a pure assertion
entails evaluating and asserting it in σused. When consuming an assertion such as
acc(x.f) && x.f > 0, permissions to x.f are first transferred into σused, and the
pure assertion x.f > 0 can thus afterwards be (evaluated and) checked in σused (recall
that both sides of a magic wand are required to be self-framing).

Transferring permissions is implemented by the transfer operation, which traverses
the stack of heaps top-down and greedily transfers as many permissions as possible
(and still needed) from each heap into hused. As results, transfer returns the remainder
heaps, hused extended with the transferred permissions, and a snapshot that corres-
ponds to the value of the location to which permission were transferred. transfer
therefore corresponds to the core of our strategy of only taking permissions from
the current state if absolutely necessary. Note that the presented implementation
of transfer is slightly simplified because it does not equate snapshots in cases were
permissions are taken frommultiple heaps (denoted by s1 and s2 in the corresponding
rule), which could result in incompletenesses. Silicon’s implementation, however,
adds appropriate equalities to the path conditions.
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01 transfer : List[H]→ H → Π→ Id→ Perm→ Option[(List[H], H, Snap)]
02 transfer(h :: h, hused, π, id(v), p) =
03 heap-rem-max(h, π, id(v), p) matches
04 Some(h1, s1, p1) :
05 hused1

:= heap-add(hused, id(v), s1, p− p1)
06 if check(π, p1 = 0) then
07 Some(h1 :: h, hused1

, s1)
08 else
09 transfer(h, hused1

, π, id(v), p1) matches
10 Some(hrem, hused2 , s2) : Some(h1 :: hrem, hused2 , s2)
11 None : None
12 None :
13 transfer(h, hused, π, id(v), p) matches
14 Some(hrem, hused1

, s) : Some(h :: hrem, hused1
, s)

15 None : None
16

17 transfer([], hused, π, id(v), p) = None
18

19 heap-rem-max : H → Π→ Id→ Perm→ Option[(H, Snap, Perm)]
20 heap-rem-max(h, π, id(v), p) =
21 if (∃ id(w; s, q) ∈ h) · check(π,

∧
v = w) ∧ 0 < q) then

22 h1 := h \ {id(w; s, q)} ∪ {id(w; s, q−min(p, q))}
23 Some(h1, s, p−min(p, q))
24 else
25 None

Figure 5.4: h denotes a (potentially empty) stack of heaps, h :: h places h on top of
h, [] denotes the empty stack. transfer descends a stack of heaps and tries to transfer
sufficient permissions to hused. Per heap, heap-rem-max removes as many permissions

as possible (and still needed).

The transfer operation in turn employs heap-rem-max to remove permissions from
individual heaps. The implementation of heap-rem-max, shown in Figure 5.4, cor-
responds to the permission removal operation heap-rem used in Chapter 3 (defined
in Section 3.3), except that heap-rem-max returns the permission amount that still
needs to be removed (from another heap) instead of immediately failing if the heap
does not provide sufficient permission. This simple implementation of heap-rem-max
gives rise to the incompletenesses discussed in detail in Chapter 3, for example, in the
presence of disjunctive aliasing (recall in particular Section 3.4.2 and Section 3.7.3).
However, the choice of implementation is orthogonal to our technique for support-
ing magic wands and computing wand footprints: more involved implementations
such as the permission removal operation used in the context of quantified permis-
sions (Chapter 4), which is complete with respect to disjunctive aliasing, could be
plugged-in instead.

In order to illustrate how the packaging of a magic wand instance proceeds, consider
the following example:

inhale acc(x.f) && acc(x.g) && x.f == 2 && x.g == 1
package acc(x.f) && x.f == 1

--*
acc(x.f) && acc(x.g) && x.f == x.g /* Succeeds */

assert x.f == 1 /* Fails (correctly) */

The initially constructed left-hand-side state (line 2 of Figure 5.2) contains permission
to x.f and the information that x.f has the value 1 (in the left-hand-side heap).
In the next step (line 3), consume-ext is invoked in order to compute a footprint
for the right-hand side and remove it from the current state, and to check that the
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footprint and the left-hand side satisfy the right-hand side. The left-hand-side heap
(σlhs.h) corresponds to acc(x.f), whereas the current heap (σ1.h) corresponds to
acc(x.f) && acc(x.g). The second argument of consume-ext (σlhs

{
h := ∅

}
) is the

initial σused state into which permissions are transferred: its heap is empty, but it
contains the path conditions from the current and the left-hand-side state. consume-
ext recurses over the wand’s right-hand side and first transfers permission to x.f
and x.g from the left-hand-side heap, respectively, the current heap into σused: both
transfers are done by transfer, which has to take permission to x.g from the current
heap because it cannot take them from the left-hand-side heap. Due to the permission
transfer (that is, the transfer of the corresponding heap chunks), the facts x.g == 1
(from the current heap) and x.f == 1 (from the left-hand-side heap) are available in
σused. Hence, when consume-ext finally checks the constraint x.f == x.g (in σused),
permission to both locations are available and the equality can be proven. After
consume-ext removed the footprint from the current state and checked the wand’s
right-hand side (line 3 of Figure 5.2), the remainder of the left-hand-side heap is
discarded3, whereas the remainder of the current heap (h2) is used for the remaining
verification, after the packaged wand instance has been added (line 5). The final
assert in the above example thus fails as expected: x.f still has the value 2 (in h2)
and the hypothetical fact x.f == 1 (from the wand’s left-hand side) is no longer
available.

5.2.4 Applying Magic Wands

Recall (Section 5.2.1) that applying a magic wand a1 --* a2 can be understood as
exhaling a1 && (a1 --* a2), followed by inhaling a2. This intuitive idea is formal-
ised in Figure 5.5, which shows a simplified version of the rule for applying magic
wands. Analogous to the simplified rule for packaging wands (Figure 5.2), the rule
for applying wands does not yet account for branching executions and framing values
(via snapshots). The rule is straightforward: it first consumes the left-hand side a1
and a magic wand chunk that corresponds to the wand instance to apply (details
about magic wand chunks are given in Section 5.2.5), and afterwards it produces the
right-hand side a2 (and continues the verification).

Effectively, applying a wand instance exchanges the instance and the left-hand side
for the right-hand side. This exchange is justified by the previously described package
operation: it ensures that any left-hand side combined with the instance’s footprint
satisfies the right-hand side and it removed the footprint, which notionally belongs
to the wand instance and is regained as part of the obtained right-hand side when
the instance is applied.

01 exec(σ1, apply a1 --* a2, Q) =
02 Let idwand(e′) be a magic wand chunk identifier
03 Let corresponding to a1 --* a2
04 consume(σ1, a1, (λ σ2, _ ·
05 consume(σ2, acc(idwand(e)), (λ σ3, _ ·
06 produce(σ3, a2, fresh, Q)))))

Figure 5.5: Simplified rule for applyingmagicwand instances, implementing theModus-
Ponens-like rule for wands. The rule does not yet account for framing and for branching
executions, the respective refinements are made in Section 5.4.1 and Section 5.4.2.

So far, we discussed (simplified versions of) the operations for packaging and applying
magic wands, and in particular how the package operation implements our strategy
for choosing suitable footprints. In the next section we provide details about the
representation of magic wand instances in the symbolic state (as magic wand chunks).

3It would be possible to warn users that a wand’s left-hand side requires more permissions than
necessary (which are effectively leaked when the wand is applied), but this is currently not done.
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Afterwards, we extend the packaging operation to account for ghost operations (such
as (un)folding) which may be required when packaging a wand in order to guide
the verifier during the proof of the right-hand side.

5.2.5 Magic Wand Chunks

In the previous presentation of the rules for packaging and applying wands (for
example, Figure 5.2) it was stated that there is a way of representing magic wand
instances in the symbolic heap such that instances can be added to and removed from
symbolic heaps: this subsection provides the previously omitted details.

Requirements

Our representation of magic wand instances is motivated by two requirements: (1) it
must be possible to look up wand instances in different states, and (2) looking up
wand instances must be implementable efficiently. To illustrate this difficulty, consider
the magic wand (acc(x.b) && x.b ==> acc(x.f)) --* acc(x.f): its left-hand
side would evaluate to true in a hypothetical state with permission to x.b and x.f if
x.b were true, in which case the empty footprint would suffice to satisfy the wand’s
semantics; as would the combination of a hypothetical state with permission to x.b
only and a footprint which provides the necessary permission to x.f, if x.b were
false.

To illustrate the first requirement, consider the following example:

n := m - 1
inhale acc(x.f) && x.f > n + 1 --* acc(x.f) && x.f > m
// Should fail
assert acc(y.f) && y.f > n + 1 --* acc(y.f) && y.f > m
y := x; n := n + 1
// Should hold
assert acc(y.f) && y.f > n --* acc(y.f) && y.f > m

All wands are specific to the (at the respective points) current values of the occurring
local variables x, y, n and m: the first assert should fail because ymight not be an alias
of x, whereas the second assert should succeed (due to the preceding assignments
to y and n).

The illustrated property does not only hold for local variables: sub-assertions oc-
curring in a magic wand can in general be partitioned into those whose values are
completely independent of the hypothetical left-hand-side state and those whose
values are (at least in part) determined by the state in which the wand will eventually
be applied in. The first partition includes heap-independent expressions (such as x, n
and n + 1 from above), but also old expressions: these may be heap-dependent, but
the dependency is on a known heap and not on the hypothetical one.

This observation constitutes the first step towards our representation of magic wand
instances in the symbolic heap: it allows substituting assertions whose value is
determined by the current (or any other known) state for their symbolic values, and
comparing these values when looking up a specific wand instance.

Handling the remaining assertions in a similar way is complicated by their depend-
ency on the hypothetical left-hand-side state, and in general involves (potentially
undecidable) entailment checks between wand instances. To account for the second
requirement from above — the representation of magic wand instances should facilit-
ate efficient instance lookup — we instead compare the remaining assertions purely
syntactically, and represent magic wand instances as parametric “structural skeletons
with holes”: the holes correspond to assertions whose values are independent of the
hypothetical state, and the structural skeleton is given by the remaining assertions.
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To illustrate this representation, consider the magic wand

acc(x.f) && x.f > n + 1 --* acc(x.f) && x.f > m

that is inhaled at the beginning of the previous example, whose representation in the
symbolic state can be understood as follows:(

acc(__.f) && __.f > __ --* acc(__.f) && __.f > __
)(

x, x, n + 1, x, x, m
)

That is, as the application of symbolic values to the structural skeleton with holes
(the arguments take the positions of the holes from left to right).

Based on this representation, we define two wand instances to match if their skeletons
match structurally (syntactically) and if their arguments are pairwise (semantically)
equivalent. Only the latter involves queries to the underlying solver, and these are
usually of limited complexity (in particular when compared to proper entailment
checks between wand instances). With this representation of wand instances and
the corresponding definition of when instances match, the first assert statement
from the example above indeed fails (as expected), whereas the second one (correctly)
verifies.

Since instance lookup is partially based on a syntactic comparison, its efficiency comes
at the cost of completeness, as illustrated by the following snippet:

inhale true --* acc(x.f) && acc(y.f)
assert true --* acc(y.f) && acc(x.f) // Fails (incompleteness)

However, due to the simplicity of the representation and the lookup approach, it is
straightforward to explain (and to understand) why and when such incompletenesses
can arise (and in most cases also how to overcome them). It is also possible to
relate such incompletenesses to similar incompletenesses that arise in the context of
predicates, instances of which are also treated as an opaque entity and matched by
combining syntactic and semantic equality:

predicate P(x: Ref, y: Ref) { acc(x.f) && acc(y.f) }

inhale acc(P(x, y))
exhale acc(P(y, x)) // Fails (incompleteness)

While of course not ideal, this consistency might facilitate explaining and understand-
ing such potentially arising incompletenesses.

Magic Wand Chunks

Based on the discussed ideas and definitions, we represent magic wand instances
in symbolic heaps as magic wand chunks of the shape id(v; _), where id uniquely
denotes a specific wand skeleton, and where v are the instance arguments, that is,
the symbolic values that replaced the evaluated sub-assertions. Since a given Viper
program only contains a statically known set of magic wand skeletons (obtained
by replacing appropriate sub-assertions by holes), it is always possible to represent
each such skeleton by a unique id. Wand chunks also include a snapshot (here
omitted) which is used to preserve the values of locations to which (all) permissions
were (temporarily) “lost” to a magic wand instance. More details about wand chunk
snapshots are provided in Section 5.4.1.

We do not support fractional wand instances (and wand chunks thus do not record
a permission amount, which is effectively fixed to 1): the certainty that each wand
instance can be applied only once simplifies the handling of snapshots and path
conditions (more details are given in Section 5.4.1), and we so far did not come across
the need for fractional instances. Our approach can be extended to support fractional
instances, however, as is discussed in Section 5.7.
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Note that this representation of magic wand instances (as magic wand chunks) is ana-
logous to the representation of predicate instances; this enables a direct integration of
wand chunks with previously presented algorithms for manipulating heaps (such as
the operations consume-ext, transfer and heap-rem-max, but also the symbolic execu-
tion rules discussed in Chapter 3), both in terms of permissions and snapshots. As a
consequence, no additional measures need to be taken to, for example, support magic
wands inside predicate bodies or to integrate magic wands with Viper’s permission
introspection features (Section 3.4.4). For the same reason, it is also straightforward to
support magic wands in quantified permission assertions. The opposite (quantified
permission assertions in magic wands) is possible as well, see Section 5.7.

The previously discussed rules for packaging and applying wands (Figure 5.2 and Fig-
ure 5.5, respectively) need to change as follows in order to properly use magic wand
chunks: packaging requires (on line 4 of Figure 5.2) extracting all value-determined
expressions e (defined next) and evaluating these (in the initial state σ1) to the cor-
responding symbolic expressions e′, determining the unique id idwand associated
with the skeleton of the wand to package (that is, after replacing the expressions e in
a1 --* a2 with “holes”), and finally constructing the magic wand chunk represent-
ing the packaged wand instance (idwand(e′; _)). The rule for applying wand instances
needs to change analogously (on line 2 of Figure 5.5).

The set of value-determined sub-expressions of a magic wand are those sub-expressions
that are either old expressions or heap-independent expressions. An expression is
heap-independent if it does not contain any of the following expressions: a field read,
a predicate unfolding or an application of a heap-dependent function.

5.3 Integrating Ghost Operations

The magic wand support described in the previous section (packaging and applying
instances, and representing them in the symbolic state) forms the core of our solution,
but it is not yet expressive enough to integrate well with all features of Viper, such as
predicates. In particular, in the proof (packaging) of a new magic wand instance, it is
often necessary to be able to specify ghost operations between the hypothetical addition
of the wand’s left-hand side and the proof of the right-hand side. For example, this
might be necessary because the wand’s right-hand side is a predicate instance that
can be folded only once the state described by the wand’s left-hand side is provided.

The running example fromListing 5.2 on page 130 exhibits an instance of this situation
on line 22, when re-establishing the magic wand in the loop invariant. Recall that
the wand (xs != null ==> acc(list(xs))) --* acc(list(ys)) expresses that
a predicate instance describing the complete list can be obtained by giving up the
“remainder list” starting at xs. Consider how this invariant can be re-established at the
end of the loop body: in particular, the state before line 22. In this state, permissions
to the fields zs.val and zs.next of the current node (obtained from the unfold at
line 18) are available, as is the magic wand instance w from the loop invariant at the
beginning of the iteration (line 15), which has the same right-hand side, but requires
acc(list(zs)) on its left-hand side. Not all permissions required to package the
wand instance needed in the new loop invariant are directly available; conceptually,
those missing are in the footprint of the wand instance w. However, given the left-
hand side assertion (xs != null ==> acc(list(xs))), the right-hand side can be
obtained by first folding the predicate instance list(zs), and then applying the
wand instance w. These ghost operations explain how, given the left-hand side, the
permissions available in the state can be rearranged to obtain the desired right-hand
side, which requires in the process the additional permissions acc(zs.val) and
acc(zs.next) and the wand instance w (these constitute the footprint of the new
wand instance).

g ::= a | folding acc(pred(e), e) in g
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| unfolding acc(pred(e), e) in g
| packaging a -* g in g
| applying a -* a in g

Figure 5.6: Extending the syntax of Viper’s assertion to support nesting a wand’s
right-hand side in a chain of ghost operations.

01 nested : G→ A
02 nested(g) = g matches
03 folding _ in g1 : nested(g1)
04 unfolding _ in g1 : nested(g1)
05 applying _ in g1 : nested(g1)
06 packaging _ in g1 : nested(g1)
07 a : a

Figure 5.7: nested returns the inner-most assertion nested in a chain of ghost operations;
its definition matches Figure 5.7.

5.3.1 Extended Algorithms

In order to allow ghost operations such as (un)folding a predicate instance to be
expressed when packaging wand instances, we generalise the package statement to
the form package a --* g, where g is an assertion a possibly nested inside ghost
operations, as defined by Figure 5.6.

This definition allows nesting an assertion inside a ghost operation for each ghost
operation that Viper supports in statement position: (un)fold, package and apply
(in other verifiers, more could be added). The difference is that the syntax here
indicates that the ghost operation should be applied during the footprint computation
for the new wand instance, rather than in the current state.

A successful package a --* g operation does not add a wand instance of the form
a --* g to the state, but rather a --* nested(g), where nested(g) is the inner-most
assertion nested in the ghost operations (as defined in Figure 5.7). The role of the
ghost operations is to indicate how the wand’s semantics can be guaranteed, but they
do not affect what the resulting wand instance represents.

nested(folding acc(list(zs)) in applying w in acc(list(xs)))
= acc(list(xs))

The automatic footprint computation is extended to support these ghost operations,
as shown in Figure 5.8 and Figure 5.9. The rules given there define a modified version
of package, and how to execute the ghost operations. The latter requires finding
and transferring suitable permissions from the stack of input heaps, such that the
specified ghost operation can be executed. For example, in order to execute a folding,
it must be possible to find, in the input heaps, the permissions required by the body
of the corresponding predicate instance.

Note that the rules for package, packaging and applying provided in this section
are simplified analogously to the previously presented rules for package and apply:
they focus on the handling of permissions and do not account for potential incomplete-
nesses arising from framing heap values across package-apply pairs and branching
executions. These aspects are discussed in Section 5.4.
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01 exec(σ1, package a --* g, Q) =
02 produce(σ1

{
h := ∅

}
, a, fresh, (λ σlhs ·

03 σemp := σlhs
{

h := ∅
}

04 exec-ext([σlhs.h, σ1.h], σemp, g, (λ [hlhs1
, h2], σused, _ ·

05 Let ch be a magic wand chunk corresponding to a --* nested(g)
06 Let (as discussed in Section 5.2.5)
07 Q(σ1

{
h := heap-add(h2, ch)

}
)))))

Figure 5.8: Packaging a wand with ghost operations proceeds analogous to Figure 5.2,
but checking the right-hand side (which involves computing a footprint) is preceded
by executing the ghost operations via exec-ext (which potentially affect the footprint

computation).

01 exec-ext : List[H]→ Σ→ G→ (List[H]→ Σ→ Snap→ R)→ R
02

03 exec-ext(h, σops, folding acc(pred(e), p) in g, Q) =
04 eval(σops, p :: e, (λ σops1

, p′ :: e′ ·
05 σemp := σops1

{
h := ∅

}
06 bdy := scale(predbody[x 7→ e′], p′)
07 consume-ext(σops1

.h :: h, σemp, bdy, (λ hops2
:: h1, σused1

, _ ·
08 exec(σused1

, fold acc(pred(e′), p′), (λ σused2 ·
09 exec-ext(h1, merge-into(σused2 , hops2

), g, Q)))))))
10

11 exec-ext(h, σops, unfolding acc(pred(e), p) in g, Q) =
12 eval(σops, p :: e, (λ σops1

, p′ :: e′ ·
13 σemp := σops1

{
h := ∅

}
14 a := acc(pred(e′), p′)
15 consume-ext(σops1

.h :: h, σemp, a, (λ hops2
:: h1, σused1

, _ ·
16 exec(σused1

, unfold acc(pred(e′), p′), (λ σused2 ·
17 exec-ext(h1, merge-into(σused2 , hops2

), g, Q)))))))
18

19 exec-ext(h, σops, applying a1 --* a2 in g, Q) =
20 Let idwand(e′) be a magic wand chunk identifier corresponding
21 Let to a1 --* a2 (as discussed in Section 5.2.5)
22 σemp := σops

{
h := ∅

}
23 a := (a1 && acc(idwand(e′)))
24 consume-ext(σops.h :: h, σemp, a, (λ hops2

:: h1, σused1
, _ ·

25 exec(σused1
, apply a1 --* a2, (λ σused2 ·

26 exec-ext(h1, merge-into(σused2 , hops2
), g, Q)))))

27

28 exec-ext(h, σops, packaging a1 --* g1 in g2, Q) =
29 produce(σops

{
h := ∅

}
, a1, s, (λ σlhs ·

30 σemp := σlhs
{

h := ∅
}

31 exec-ext([σlhs.h, σops.h] :: h, σemp, g1, (λ [_, hops1
] :: h1, _, _ ·

32 Let ch be a magic wand chunk corresponding to a1 --* nested(g1)
33 exec-ext(h1, σops

{
h := heap-add(hops1

, ch)
}

, g2, Q)))))))
34

35 exec-ext(h, σops, a, Q) =
36 consume-ext(σops.h :: h, σops

{
h := ∅

}
, a, Q)

Figure 5.9: Executing ghost operations. The first three rules exhibit the same struc-
ture: (1) consume-ext determines the footprint of the operation and transfers it from
σops1

.h :: h to σemp.h, yielding hops2
:: h1 and σused1

.h, (2) the actual operation is per-
formed, rewriting σused1

.h into σused2
.h, and (3) the execution continues in the updated

states. The packaging ghost operation proceeds analogously to the package statement.
The last case handles assertions with no further ghost operations.
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As an example, consider the package statement on line 22 of Listing 5.2, and assume
that σ denotes the state before the package statement. Hence, line 22 corresponds to
performing an operation

exec(σ, package A --* folding acc(list(zs)) in ..., Q)

Following Figure 5.8, this will essentially result in

exec-ext([σlhs.h, σ.h], σemp, folding acc(list(zs)) in ..., (λ . . .))

which means that all permissions necessary for executing the ghost operations must
come from either the current heap σ.h or the hypothetical left-hand side heap σlhs.h.

The rules for executing the first three ghost operations shown in Figure 5.9 (that is,
(un)folding and applying) exhibit the same structure: first, consume-ext is used to
find the permission necessary for executing the ghost operation at hand (and to check
that all necessary pure assertions are true), and to transfer the corresponding heap
chunks from σops1

.h :: h into σemp, which yields hops2
:: h1 (the remainders of the input

heaps) and σused1
. Next, the actual ghost operation is performed on σused1

, which
is thereby rewritten into σused2 . Note that this operation is guaranteed to succeed
because of the preceding consume-ext. This rewriting of the state does not change
which assertions are satisfied by the state in terms of the ideal semantics of assertions,
but for a verifier which differentiates between predicate instances and their bodies
(and between wand instances and their footprints), the ghost operation can affect
what the tool can show about the resulting state. Finally, the execution continues in
the updated states.

In the context of the operations on line 22 of the running example (Listing 5.1),
the execution of the ghost operation folding acc(list(zs)) in ... proceeds by
invoking

consume-ext([σemp.h, σlhs.h, σ.h], σemp, list(zs)body, (λ . . .))

which transfers the footprint of the body of list(zs) to σemp (the second argu-
ment). The footprint comprises acc(zs.val) and acc(zs.next), and, assuming
zs.next != null, the predicate instance list(zs.next). As before, the algorithm
tries to take as many permissions as possible from σlhs.h (in general: from the top
of the stack), but since σlhs.h only provides list(zs.next), the other permissions
are taken from σ.h (the current heap). The resulting stack of heaps is [∅, hlhs1

, h1]
(where hlhs1

is also the empty heap ∅), along with the single state σused1
which is a

state satisfying list(zs)body.

In the next step, σused1
is rewritten into σused2 by folding list(zs), which replaces the

permissions required by the predicate body by an instance of the predicate. Finally,
the execution of the package statement from line 22 continues by invoking

exec-ext([hlhs1
, h1], σused2 ] σemp, applying w in acc(list(ys)), Q)

thus executing the applying ghost operation, which proceeds by transferring the
predicate instance list(zs) (the left-hand side of w) and the wand instance w itself
from [σused2 .h, hlhs1

, h1] to another fresh state σemp. In particular, list(zs) is taken
from σused2 .h, and w is taken from h1. Afterwards, apply is executed to rewrite the
state that now contains list(zs) and w (denoted by σused1

on line 25 of Figure 5.9)
such that it contains the right-hand side of w, that is, list(ys) (denoted by σused2 on
line 25). Finally, list(ys) itself is transferred into a fresh σemp (see the last rule of
Figure 5.9). This concludes the execution of the ghost operations, the computation
and removal of the wand instances footprint, and the checking of the right-hand side;
the only thing left to do is adding the packaged wand instance to the state (before
continuing the verification). Consequently, the execution returns to the package rule
from Figure 5.8, in which the σused is essentially a state satisfying exactly list(ys)—
and as such, satisfies the right-hand side of the wand instance that was to be packaged.
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The remainder of the left-hand side heap, hlhs1
, is discarded (in the running example,

it is empty anyway), and the remainder of the current heap, h2, is extended with an
instance of A --* acc(list(ys)) before the symbolic execution continues to verify
the remainder of the program. The permissions taken from the initial (current) heap
σ1.h, that is, the difference between σ1.h and h2 (acc(zs.val) and acc(zs.next), as
well as the wand instance w) conceptually make up the newly-added wand’s footprint.

Two cases from Figure 5.8 remain to explain: the first matches the ghost operation
packaging a1 --* g1 in g2, the second matches ghost-operation-free assertion a.
The first case, which represents a recursive packaging of a wand instance (necessary,
for example, for packaging nested magic wands of the form a1 --* (a2 --* a3))
works similarly to the package statement: it creates a hypothetical left-hand side state
σlhs satisfying a, pushes the corresponding heap onto the stack of already existing
heaps, and executes ghost operations potentially occurring in g1 (to which σlhs is
available). Finally, it adds the magic wand instance a1 --* nested(g1) to the verific-
ation state and continues the execution. Note that the possibility of nesting package
operations makes it necessary to work with heap stacks of arbitrary height: without
it, a fixed number of heaps would suffice.

The last case, executing a ghost-operation-free assertion a, only applies to the inner-
most assertion nested inside a chain of ghost operations (that is, a is nested(g), for the
g that is the right-hand side of the wand instance currently being packaged). At this
point, the footprint computation falls back to the consume-ext operation of Figure 5.3.

5.3.2 Soundness of the Footprint Computation

In comparison to the symbolic execution rules presented in the previous chapters, the
rules for handling magic wands are significantly more involved, in particular those
for executing ghost operations. We therefore deem it necessary to sketch a formal
soundness argument for the core of the presentedmagicwand support, the soundness
of which essentially depends on the correctness of the footprint computation. In
particular, we argue why the state removed by a package operation satisfies the
properties that it was a part of the original state and satisfies the semantics of the
newly-packaged wand (thus, any future apply of the wand instance will be justified).
In the process, similar results are formulated for each of the operations heap-rem-max,
transfer (both shown in Figure 5.4), consume-ext (Figure 5.3) and exec-ext (Figure 5.9),
which are ultimately instantiated to show the desired property for package.

Preliminaries

We prove properties of the symbolic execution with respect to the semantics of Vi-
per assertions. Assertion semantics have not yet been formalised for all of Viper’s
features, but previous work by Parkinson and Summers [102] and Summers and
Drossopoulou [126] provide semantics for a subset of Viper that could be extended
accordingly. The first work [102] introduces a semantics for a permission logic that
combines elements of implicit dynamic frames (the permission logic that Viper uses,
introduced by Smans et al. [118]) and separation logic: the resulting logic is called
total heaps permission logic, and it includes accessibility predicates (to fields), magic
wands, separating conjunctions and heap-dependent expressions (field dereferences).
The second work [126] extends this logic with equi- and isorecursive semantics for (po-
tentially recursive) predicates and functions: given a (recursively defined) predicate
(or function), the equirecursive semantics treats a predicate instance as equivalent to
its body, whereas the isorecursive semantics does not; the latter is thus closer to how
most verifiers (including Silicon) reason about recursive definitions.

The assertion semantics in their work are given with respect to a program state
consisting of a store S mapping variables to values, a total heapH mapping pairs of
object identifiers and field names to values, and a permission mask P mapping such
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pairs to permission values. In their semantics, a field read can always be evaluated
to a value (which may be “undefined” due to potential race conditions), but in a
well-defined program in which all assertions are self-framing (recall Section 2.2.1: an
assertion is self-framing if it requires permissions to all heap locations it accesses),
such potentially undefined field reads can occur only as part of assertions that are,
due to insufficient permissions, false in any event.

The definition of well-definedness used in their work is similar to the definition used
in Section 3.5: a program is well-defined if (1) each function body is framed by its
function’s precondition, (2) each function application is guaranteed to terminate if
its precondition holds, (3) functions are only applied when their preconditions hold,
(4) all specifications, including predicate bodies, are self-framing, and (5) partial
functions are only applied if their preconditions hold. In the rest of this section, we
only concern ourselves with well-defined programs. Fully defining a similar assertion
semantics for Viper is outside of the scope of this thesis, we only provide the core
cases (taken from [102] and [126]) to illustrate how such a semantics could look.

Definition 15 (Satisfiability of Path Conditions). Let τ denote the background theory
used by Silicon: a many-sorted first-order logic with non-linear integer and real
arithmetic, theories for sets and sequences, axiomatisations of heap-dependent func-
tions, definitions for snapshots, and all other requirements from Section 3.1.2 (and
subsequent chapters). Then, let τ ` π denote that the path conditions π are satisfiable
with respect to the background theory τ. C

Definition 16 (Evaluating Expressions). Expressions are evaluated in a store and a
heap, denoted by JeKS ,H. Assuming a well-formed program, the evaluation function
can be defined as follows:

JxKS ,H = S(x)
Jop(e)KS ,H = op(JeKS ,H)
Je. f KS ,H = H(JeKS ,H, f )
Jfunc(e)KS ,H = Jfuncbody[x 7→ e]KS ,H
Je1 ? e2 : e3KS ,H = if Je1KS ,H then Je2KS ,H else Je3KS ,H

As before (for example, in Figure 3.1 on page 52), op(e) denotes any heap-independent
function of arbitrary arity, including literals. The value of a function is obtained by
evaluating the expansion of its body (with actual instead of formal arguments), which
is finite due to the requirements imposed on well-defined programs. Note that
expression evaluation is in general a partial function (for example, in the case of
division), but this is not a problem in practice due to the aforementioned restriction
to well-formed programs. C

Definition 17 (Operations on Symbolic States). Two permission masks P1 and P2
are compatible, denoted by P1 ⊥ P2, if ∀ o, f · P1(o, f ) + P2(o, f ) ≤ 1.

The combination of two permission masks, denoted by P1 ∗ P2, is defined pointwise
as (P1 ∗ P2)(o, f ) = P1(o, f ) + P2(o, f ) if P1 ⊥ P2 (and is otherwise undefined).

The readable locations of a permission mask P , denoted by rds(P), are all locations
to which P provides non-zero permissions: rds(P) = {(o, f ) | P(o, f ) > 0}. The
complement is denoted by rds(P).

Two program heapsH1 andH2 agree on a set of locations L, denoted byH1
L≡ H2, if

∀ (o, f ) ∈ L · H1(o, f ) = H2(o, f ). C

Definition 18 (Disjoint State Extensions). The set of locally-havoced disjoint extensions
of a program heap H and a permission mask P are all extensions H′ and P ′ such
that P ′ is compatible with P andH′ agrees withH on all locations except those to
which P ′ newly provides permissions:

locDisjExt(H,P) = {(H′,P ′ | P ′ ⊥ P ∧H′
rds(P)∪rds(P ′)

≡ H)} C
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Definition 19 (Total Heaps Assertion Semantics). The satisfaction relation |= for as-
sertions with respect to program states is defined as the least fixpoint of the following
equations:

S ,H,P |= e ⇔ JeKS ,H = true
S ,H,P |= acc(e. f , p) ⇔ P(JeKS ,H, f ) ≥ JpKS ,H
S ,H,P |= a1 ∗ a2 ⇔ ∃P1,P2 · P = P1 ∗ P2 ∧ S ,H,P1 |= a1 ∧

S ,H,P2 |= a2
S ,H,P |= acc(pred(e), p) ⇔ S ,H,P |= scale(predbody[x 7→ e], p)
S ,H,P |= a1 --* a2 ⇔ ∀ (H′,P ′) ∈ locDisjExt(H,P)·

S ,H′,P ′ |= a1 ⇒ S ,H,P ∗ P ′ |= a2 C

Definition 20 (Concretisation of Symbolic States). The concretisation of a symbolic
state σ = (γ, h, π), denoted by C(γ, h, π), yields the set of program states that the
symbolic state represents. The concretisation is defined as follows, given that n is the
number of heap chunks in h:

C(γ, h, π) =
{
(S ,H,P) | ∃ P1, . . . ,Pn+1 · P1 ∗ . . . ∗ Pn+1 = P ∧ (τ `

(
∧

π) ∧
(∀ x ∈ dom(γ) · γ(x) = S(x)) ∧
(∀ idi(v; s, p) ∈ h if idi(v) matches

f (v) :
(S ,H,Pi) |= acc(v. f, p)) ∧
s = snap(acc(v. f, p),S ,H,Pi)

pred(v) :
(S ,H,Pi) |= acc(pred(v), p)) ∧
s = snap(acc(pred(v), p),S ,H,Pi)

idwand(v) :
(S ,H,Pi) |= idwand(v)) ∧
s = snap(idwand(v),S ,H,Pi)))

}
C

For brevity, we use symbolic values in assertions (for example, in acc(v. f, p))
which can be regarded as syntactic sugar for extending the appropriate program
store with fresh variables constrained to equal the symbolic values occurring in the
assertions (such as v and p) and substituting the symbolic values in the assertions for
the corresponding fresh variables. Moreover, we take the liberty of using the internal
representation of magic wand instances (idwand(v)) as an assertion, instead of the
syntactically correct form a1 --* a2. However, the latter is uniquely determined by
the former and a conversion is straightforward.

The concretisation of a symbolic state can be understood as a filter on program states
that starts by requiring that the symbolic path conditions must be satisfiable with
respect to a candidate program state (and the background theory τ), and that then
adds further constraints that must be satisfiable in order for the candidate state to
be included in the concretisation. More precisely, a program state (S ,H,P) is in the
concretisation of a given symbolic state (γ, h, π) if it meets the following requirements:

(1) The permission mask P can be decomposed into n + 1 sub-masks: one for each
of the n chunks in the symbolic heap (further constraints will follow), plus an
additional sub-mask that corresponds to permissions not represented in the
symbolic heap but held in the program state, for example, in parent call frames.

(2) The path conditions π are satisfiable with respect to the background theory τ
used by Silicon (in subsequent items, satisfiability with respect to τ is implicit).

(3) It must be possible to assign the same values to the symbolic store γ as are
provided by the program store S .
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(4) Pairing up each heap chunk idi with the corresponding sub-mask Pi, the pro-
gram sub-state (S ,H,Pi) must satisfy the accessibility predicate that corres-
ponds to the current heap chunk idi, and it must be possible to assign values to
the chunk’s symbolic snapshot such that the symbolic snapshot is equal to the
“real” snapshot of the corresponding accessibility predicate, that is, the snapshot
computed from the program sub-state (snap is defined next in Definition 21).

The decomposition of a permission mask P into individual sub-masks Pi is in general
not unique, but this is not an issue: a program state is in the concretisation of a sym-
bolic state as long as there exists at least one decomposition for which the constraints
imposed by the concretisation function are satisfiable.

Definition 21 (Semantic Snapshots). The semantic snapshot of an assertion a in a
program state (S ,H,P), denoted by snap(a,S ,H,P), is defined if S ,H,P |= a and
as the least fixpoint of the following equations:

snap(acc(e. f, _),S ,H,P) = H(JeKS ,H, f )
snap(e,S ,H,P) = unit
snap(a1 && a2,S ,H,P) = pair(snap(a1,S ,H,P), snap(a2,S ,H,P))
snap(acc(pred(e), _),S ,H,P) = snap(predbody[x 7→ e],S ,H,P)
snap(b ? a1 : a2,S ,H,P) = if JbKS ,H then snap(a1,S ,H,P)

else snap(a2,S ,H,P)

snap(a1 --* a2,S ,H,P) =



λshyp · snap(a2,S ,H′,P ∗ P ′)
choose() if ∃ (H′,P ′) ∈ locDisjExt(H,P)
choose() such that S ,H′,P ′ |= a1
choose() and shyp = snap(a1,S ,H′,P ′)
choose() otherwise C

Note that the snapshots returned by snap are of sort Snap (recall Section 3.1.2), that
is, of the same sort as the symbolic snapshots used by Silicon (and correspondingly,
the embedding of heap location values into Snap is omitted). This design decision is
possible because the sorts (such as for booleans, integers and references) used by the
symbolic execution (that is, the sorts of symbolic values) are the same sorts as used by
the program states, and it is a sensible choice because it enables a direct comparison
of symbolic and semantic snapshots.

All cases are straightforward except the one for magic wands: this case requires
arguing that the snapshot of a magic wand in a given program state is uniquely
determined, which in particular requires (1) arguing that the non-deterministic choice
of a possible state extensionH′ and P ′ does not affect the snapshot of the right-hand
side (if the imposed constraints are met), and (2) an explanation of the use of the
angelic choice [48] operator choose() if no suitable state extension exists. Before we
discuss the two issues, observe (from the definition of snap for magic wands) that the
permission masks P and P ′ are the footprint, respectively, the left-hand-side mask
of the magic wand instance under consideration.

We address the angelic choice first: if there exists no possible extension of the foot-
print that satisfies the imposed constraints, then this characterises a vacuous wand
instance that cannot be used, for example, because the chosen footprint includes
permission that are (also) required by the left-hand side. Consequently, the snapshots
of such inapplicable wands are effectively irrelevant because they will never be used.
However, satisfying the semantics of these wands is trivial exactly because there are
no possible state extensions and the definition of snap must therefore account for such
wands. In the context of the concretisation of symbolic states the definition should be
such that, given a symbolic state with inapplicable wand instances (whose snapshots
can in general be arbitrary), it does not result in unsatisfiable constraints that remove
program states from the concretisation that (trivially) satisfy such wand instances.
We therefore assume an angelic choice of a snapshot: its concrete value is irrelevant
since the snapshot will never be applied, but the snapshot may occur in constraints
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(see the definition of the concretisation function), and the angelic choice ensures that
the satisfiability of the overall constraints (which determines the membership of a
program state in the concretisation) does not depend on this choice.

Next, we address the non-deterministic choice of a possible state extension. Let
(H′,P ′) and (H′′,P ′′) be two such state extensions (that satisfy the imposed con-
straints), and (1) observe that the combination of P with P ′/P ′′ satisfies a2 (because
S ,H,P |= a1 --* a2), and (2) recall from the definition of locally-havoced disjoint
extensions (Definition 18) that the values of H′/H′′ may only differ from those of
H for locations to which P (that is, the wand instance’s footprint) does not provide
any permission. Furthermore, (3) observe (from the definition of snap) that the
snapshot of an assertion (such as a2) is ultimately determined by the accessibility
predicates for fields that (transitively) occur in the assertion: for each acc(e. f, _),
the snapshot contains an entry H′(e, f ) (respectively, H′′(e, f )). For an arbitrary
such accessibility predicate occurring in a2 (that is, the wand’s right-hand side), the
corresponding permission are either provided (at least partially) by the wand’s foot-
print P or (exclusively) by P ′/P ′′ (which satisfy a1). In the first case, observation
(2) implies that H′(e, f ) = H(e, f ) = H′′(e, f ). Otherwise, it follows from the con-
straint shyp = snap(a1,S ,H′,P ′) (imposed by the definition of snap), the analogous
constraint forH′′/P ′′, and from observation (3) that there exists a component sj of
shyp (the snapshot that represents the heap values of the left-hand side a1) such that
H′(e, f ) = sj = H′′(e, f ). Hence, H′ and H′′ agree in both cases on all values that
possibly determine the returned snapshot. Finally, (4) observe (from the definition
of snap) that the exact permission amount provided by P ′/P ′′ does not determine
the values of the snapshot, except that it may (recursively) affect the potential choice
of state extensions for nested wands that occur in a1 or a2. However, by combining
the arguments from the discussion about the angelic choice of snapshots (in cases
where no state extension exists) with the arguments from the current discussion, we
conclude that this potential effect does not pose a problem: if there are potential
state extensions then their heaps agree on all relevant locations; if there are not (for
specific choices of P ′/P ′′ that prevent the nested wands from being applied), then
the angelic choice ensures that the satisfiability of the overall constraints does not
depend on the snapshots chosen for these inapplicable wand instances.

Definition 22 (Symbolic States Assertion Semantics). The satisfaction relation |= for
assertions with respect to symbolic states is defined in terms of the program states in
the concretisation of the given symbolic state:

γ, h, π |= a⇔ ∀(S ,H,M) ∈ C(γ, h, π) · S ,H,M |= a C

Definition 23 (Operations on Symbolic States). The proof sketches to come make use
of the following sub-state, respectively, sub-heap relation v:

σ1 v σ2 ⇔ ∀a · σ1 |= a ⇒ σ2 |= a
h1 v h2 ⇔ ∀a, γ, π · γ, h1, π |= a ⇒ γ, h2, π |= a

In addition, the proof sketches use h1 ∪ h2 to denote the union of two symbolic heaps
h1 and h2. Recall (from Section 3.1.2) that symbolic heaps are defined to be multisets
of heap chunks; the result of a heap union is the straightforward union of the two
multisets. C

Definition 24 (Leads-to Relation). The proof sketches employ the leads-to relation
;, used as in exec(. . . , Q) ; Q(. . .), which expresses that the execution of an oper-
ation (here exec) eventually results in the execution of another operation (here the
continuation Q).

The leads-to relation is used in order to specify properties of the results of operations
that do not (directly) return their results but instead pass them on to another (nested)
operation, typically the outer operation’s continuation. We omit the formal definition
of the leads-to relation since itwould effectively require the provision of an operational
semantics for the language in which the symbolic execution rules are formalised. C
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Proof of Soundness of the Footprint Computation

By convention, we use unprimed variables (such as σ and h) to denote input argu-
ments, primed versions (such as σ′ and h′) to indicate corresponding outputs and
hatted versions (such as ĥ) to indicate the “removed parts” of input heaps.

The first theorem is concerned with heap-rem-max (Figure 5.4), which removes as
many permissions as possible from a given symbolic heap.

Theorem 1. If heap-rem-max(h, π, id(v), p) = Some(h′, _, p′) then there exists ĥ such
that:

(P1) ĥ∪ h′ v h

(P2) ∀γ · γ, ĥ, π |= acc(id(v), p− p′)
C

The first property of Theorem 1 states that the input heap h can be partitioned into
the sub-heap ĥ, removed by heap-rem-max, and the returned remainder heap h′;
these two properties imply that heap-rem-max does not add permissions. The second
property states that the removed sub-heap provides the permissions that were to be
removed, that is, that sufficient permission were removed from the input heap h.

Proof of Theorem 1. The proof is straightforward: instantiating the removed heap ĥ
to be {id(w; s, min(p, q))}, both properties follow immediately.

The next theorem is concerned with transfer (Figure 5.4), which transfers permissions
from a stack of heaps into hused.

Theorem 2. If transfer(h, hused, π, id(v), p) = Some(h′, h′used, _) then there exist ĥ such
that:

(P1) ĥ∪ h′ v h

(P2) h′used v (
⋃
ĥ) ∪ hused

(P3) ∀a, γ · γ, hused, π |= a ⇒ γ, h′used, π |= a && acc(id(v), p)
C

The first property is a lifting of the first property proven for heap-rem-max to a stack
of heaps: the output heaps h′ are obtained by removing ĥ from the input heaps h. The
second property states that permissions added to hused have been removed from the
stack of input heaps, and the third property states that the part h′used was extended
with provides the required permissions. In combination, the three properties state
that transfer indeed transfers sufficient permissions from the input heaps into hused.

Proof of Theorem 2. The proof proceeds by induction on the stack of input heaps. All
cases in which transferwould return None (such as when the heap stack is empty) can
be ruled out because a return value of None would contradict the assumption made
in Theorem 2. If heap-rem-max returns Some(h′′, _, p′′), it has removed a ĥ′′ from h
that satisfies the properties from Theorem 1. In case all required permissions were
transferred (p′′ = 0), instantiating ĥwith ĥ′′ :: ∅ suffices to satisfy all three properties:
the first is obvious; the second holds because the permissions added to h′used have
been removed from the top of the stack; the third holds because sufficient permission
have been added to h′used. In case further permissions need to be transferred (p′′ 6= 0),
instantiating ĥwith ĥ′′ :: ĥ′′′, where ĥ′′′ are the sub-heaps removed by the recursive
invocation of transfer (to which the induction hypothesis applies), in combination
with the respective properties of heap-rem-max and transfer, suffices to show the
desired properties. If heap-rem-max returns None, the properties follow from the
induction hypothesis applied to the recursive invocation if ĥ is instantiated with
∅ :: ĥ′′, where ĥ′′ are the parts the recursive invocation transferred.
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The next theorem is analogous to the previous, but concerned with consume-ext
(Figure 5.3), that is, with the operation that in parallel removes the footprint of a
wand instance and checks the instance’s right-hand side.

Theorem 3. If consume-ext(h, σused, a, Q) ; Q(h′, σ′used, _), that is, if the continuation
Q is eventually invoked with the specified arguments, then there exist ĥ such that:

(P1) ĥ∪ h′ v h

(P2) σ′used.h v (
⋃
ĥ) ∪ σused.h

(P3) ∀a1 · σused |= a1 ⇒ σ′used |= a1 && a
C

The first two properties of consume-ext are analogous to those of transfer, and the
third property is a generalisation thereof, since consume-extfinds sub-heaps satisfying
a general assertion instead of a single accessibility predicate.

The proof of Theorem 3 requires two additional lemmas: the first states that the
evaluation of an expression does not semantically modify the symbolic heap (whose
structure might change, however, because of state consolidations).

Lemma 1. If eval(σ, e, Q) ; Q(σ′, _) then ∀a · σ.h |= a⇔ σ′.h |= a. C

The second lemma states a similar property: that executing a ghost operation does
not semantically modify the heap (the lemma for fold is shown, those for unfold
and apply are analogous).

Lemma 2. If exec(σ, unfold acc(pred(_), _), Q) ; Q(σ′) then ∀a · σ.h |= a ⇔
σ′.h |= a. C

Proof of Theorem3. The proof proceeds by induction on the structure of the assertion
a. In case of acc(id(e), p), the desired results immediately follow from transfer (and
Lemma 1). In case of a pure assertion e, the properties hold if ĥ are instantiated with
∅ (nothing is consumed). The only interesting case is that of a1 && a2: applying the
induction hypothesis to each of the two recursive invocations implies the existence of
removed heaps ĥ′′ and ĥ′′′, respectively. By instantiating ĥ with ĥ′′ ∪ ĥ′′′, each of the
three desired properties can be shown by appropriately combining the corresponding
properties of ĥ′′ and ĥ′′′.

The next theorem is again similar to the previous, but about exec-ext (Figure 5.9),
that is, the operation that executes ghost operations potentially occurring on the
right-hand side of a magic wand instance to be packaged.

Theorem 4. If exec-ext(h, σops, g, Q) ; Q(h′, σ′ops, _) then there exist ĥ such that:

(P1) ĥ∪ h′ v h

(P2) σ′ops.h v (
⋃
ĥ) ∪ σops.h

(P3) σ′ops |= nested(g)
C

The first two properties of exec-ext are analogous to those of consume-ext and transfer.
The third one expresses the intuitive understanding that exec-ext (if it succeeded)
removed a suitable footprint for the wand that is being packaged, whose actual right-
hand side is nested(g). In the process, the ghost operations nesting g rewrite σops.h,
which may entail transferring further permissions into the footprint.

Proof of Theorem 4. The proof proceeds by induction on the structure of the as-
sertion g. The cases for (un)folding/applying ... in g1 are all similar to each
other: let ĥ′′ be the heaps removed by the invocation of consume-ext, and let ĥ′′′
be the heaps removed by the final recursive invocation of exec-ext (to which the
induction hypothesis applies), and recall (Lemma 2) that executing a ghost opera-
tion does not semantically affect the heap since it only rewrites the representation.
Instantiating ĥ with ĥ′′ ∪ ĥ′′′, properties (P1) and (P2) can be shown by appropriately
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combining the properties of ĥ′′ and ĥ′′′ guaranteed by the respective theorems. Show-
ing (P3) is straightforward and only requires observing that nested(g) is equivalent to
nested(g1). In case of packaging ... in g2, properties (P1) and (P3) can be shown
analogously, but proving (P2) is more involved, and in particular requires the follow-
ing observations: the first recursive invocation of exec-ext indeed removes a footprint
for the nested packaged wand (follows from suitably combining (P2) and (P3) of
exec-ext), and since any footprint is at least as “expressive” (in terms of what can be
deduced from it) as the corresponding wand instance (this follows from the wand’s
semantics, see Definition 19), replacing the footprint with a wand instance does not
increase the expressiveness of the resulting state. In case of a (ghost-operation-free)
assertion a, the desired properties follow directly from Theorem 3.

Theorem 5. If exec(σ, package a --* g, Q) ; Q(σ′ ∪ {idwand(_; _)}) then there
exist ĥ such that:

(P1) ĥ∪ σ′.h v σ.h

(P2) σ.γ, ĥ, σ.π |= a --* nested(g)
C

Theorem 5 finally expresses the desired property of package: that packaging a wand
indeed removes a footprint and thus, that adding a corresponding wand instance to
the verification state is justified.

Proof of Theorem 5. The proof is straightforward: both properties (in particular,
the second) can be shown by combining the properties obtained from instantiating
Theorem 4 for the invocation to exec-ext, if ĥ is chosen to be the heap removed by the
latter.

With Theorem 5, we conclude the discussion of supporting ghost operations such as
unfolding in our automatic footprint computation, which is necessary in order to
integrate our magic wand support with other Viper features that require user annota-
tions, such as predicates. We also shift the focus of the discussion from permissions
to heap values: the next section discusses potential value-related incompletenesses
and how to overcome them.

5.4 Magic Wand Snapshots

The presentation of our technique for supporting magic wands focused so far on
the handling of permissions, in particular on how to automatically compute suitable
footprints. In this section we discuss two challenges that are related to the values
of heap locations (rather than permissions to those locations), and that can result
in incompletenesses if left unaddressed: (1) framing the values of heap locations
to which permissions are temporarily “lost” to a magic wand instance’s footprint
across package-apply pairs, and (2) handling branching executions of package that
(speculatively) branch over values from the hypothetical left-hand-side heap and
“synchronising” such branches across package-apply pairs. The key to addressing
both sources of incompleteness are magic wand chunk snapshots, which are introduced
next.

5.4.1 Framing

Consider the program in Listing 5.3 and observe that the footprint of the packaged
magic wand instance is the permission to x.g, and that the final assertion should
hold because x.g had value 1 when permission to x.gwas given up (as the wand’s
footprint) and x.f has value 2 when the wand is applied.

This reasoning requires framing the value of x.g across package-apply pairs, similar
to how it is necessary to frame the value of locations to which permissions are folded



154 Chapter 5. Magic Wands

1 field f: Int
2 field g: Int
3

4 predicate pair(x: Ref) {
5 acc(x.g) && acc(x.f)
6 }
7

8 function sum(x: Ref): Int
9 requires acc(pair(x))

10 { unfolding acc(pair(x)) in x.f + x.g }
11

12 method test(x: Ref) {
13 inhale acc(x.f) && acc(x.g)
14 x.g := 1
15 package acc(x.f) --* folding acc(pair(x)) in acc(pair(x))
16 x.f := 2
17 apply acc(x.f) --* acc(pair(x))
18 assert sum(x) == 3
19 }

Listing 5.3: A simple Viper program illustrating framing issues that arise from our
treatment of magic wands.

into a predicate instance across fold-unfold pairs. The latter was discussed in detail
in Chapter 3 (in particular in Section 3.3) and is achieved via predicate snapshots,
which represent the values of the partial heap described by a predicate instance:
upon fold, the consumption of the body yields a snapshot that represents the values
of the locations to which permissions were (partially) consumed; this snapshot is
stored in the folded predicate chunk and used upon unfold to restore the values of
the locations to which the predicate body provides permissions again.

This idea can be adapted for magic wand chunks as follows: during the packaging
of a wand instance the right-hand side is consumed, and the obtained snapshot —
which includes the values of the footprint locations — can be stored as the snapshot
of the packaged wand instance (that is, of the corresponding magic wand chunk).
The snapshot is then used upon applying the wand instance to restore the values of
those locations to which permissions come from the instance’s footprint.

In the (simplified) rule for packagingmagic wands, shown in Figure 5.2, the consump-
tion of the right-hand side takes place on line 3: it computes a suitable wand instance
footprint and removes it from the current heap, and it returns a snapshot (omitted in
Figure 5.2, but shown in the definition of consume-ext in Figure 5.3) representing the
heap values of the consumed right-hand side. This snapshot in general comprises
heap values from the footprint and the (at the point of packaging) hypothetical left-
hand side, and it can thus be understood as a function of the heap values of the actual
left-hand side that will be provided if the wand instance is applied.

To illustrate this idea, consider again the previous example from Listing 5.3: the
snapshot of the predicate instance obtained from folding pair(x) on line 15 is the
pair of snapshots (1, s), where 1 is the value of x.g (permission to which go into the
packagedwand instance’s footprint) and s is the hypothetical value of x.f (permission
to which are provided by the left-hand side). The snapshot of the consumed right-
hand side (which, after having erased the ghost operations, is just acc(pair(x)))
therefore is the pair (1, s), and the snapshot of the packaged wand instance thus is
λs · (1, s), making it a function of the heap values of the to-be-provided left-hand side.
When the wand instance is applied on line 17, the snapshot obtained from consuming
the actually provided left-hand side is 2 (the value of x.f): applying it to the wand
instance’s snapshot yields (1, 2), which in turn is used to determine the heap values
of the produced right-hand side (that is, it becomes the snapshot of the predicate
instance pair(x)). Consequently, the final assertion succeeds.
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01 exec(σ1, package a --* g, Q) =
02 slhs := fresh
03 produce(σ1

{
h := ∅

}
, a, slhs, (λ σlhs ·

04 exec-ext([σlhs.h, σ1.h], σlhs
{

h := ∅
}

, g, (λ [_, h2], _, srhs ·
05 Let idwand(e′) be a magic wand chunk identifier corresponding
06 Let to a --* nested(g) (as discussed in Section 5.2.5)
07 ch := idwand(e′; (λ slhs · srhs))
08 Q(σ1

{
h := heap-add(h2, ch)

}
)))))

09

10 exec(σ1, apply a1 --* a2, Q) =
11 Let idwand(e′) be a chunk identifier corresponding to a1 --* a2
12 consume(σ1, a1, (λ σ2, slhs ·
13 consume(σ2, acc(idwand(e)), (λ σ3, (λ shyp · swand) ·
14 produce(σ3, a2, (λ shyp · swand)(slhs), Q)))))

Figure 5.10: Rules for packaging and applying magic wand instances that account for
framing the values of locations to which permissions were transferred into an instance’s

footprint. Differences relative to the previous rules are highlighted.

Figure 5.10 shows rules for packaging and applying wand instances that implement
the discussed idea of magic wand chunk snapshots as functions of the left-hand-
side heap (differences with respect to to the simplified rules shown in Figure 5.2,
respectively, Figure 5.5, are highlighted).

When a magic wand instance is packaged, a fresh snapshot slhs is used to represent
the values of the hypothetical left-hand-side heap (by using it as the production
snapshot of the left-hand side on line 3). The snapshot srhs that represents the values
of the right-hand side (obtained from consuming the right-hand side on line 4) is in
general composed of values (snapshot components) from the current heap and from
the left-hand-side heap: the former in case permissions (to a specific heap location)
are provided by the footprint, the latter in case the permissions come from the wand’s
left-hand side. srhs can therefore be understood as a function of slhs, and consequently,
the new chunk’s snapshot is set to be λslhs · srhs.

Upon application of a wand instance, the snapshot slhs representing the values of the
actually provided left-hand side is applied to the snapshot of the “applied” magic
wand chunk and used to determine the values of the obtained right-hand side (line 14).

5.4.2 Branching Executions

In this subsection we discuss potential incompletenesses arising from branching
package operations, and how magic wand chunk snapshots can be used to pre-
vent them. As an illustration of this problem, consider the example shown in List-
ing 5.4, for which the symbolic execution of the package statement branches over
the unknown hypothetical value of x.b (when consuming the right-hand side in
order to compute and remove the packaged instance’s footprint). On one out of two
potential symbolic execution paths, the wand’s footprint consumed during pack-
aging would not match the footprint produced as part of the obtained right-hand
side at the point where the wand were applied: for example, considering the if-
branch of the right-hand side during packaging, which would remove a footprint of
acc(x.f, 1/10)), but the else-branch during applying, which would add a footprint
of acc(x.f, 1/10) && acc(x.g, 1/10). The resulting state would hold too many
permissions — acc(x.f, 2/10) && acc(x.g, 3/10)— but since the state would
be consistent, the final assertion would incorrectly fail.
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1 inhale acc(x.b) && acc(x.f, 2/10) && acc(x.g, 2/10)
2 inhale x.f == 2 && x.g == 1
3 package acc(x.b) --* acc(x.b)
4 && (x.b
5 ? acc(x.f, 1/10)
6 : acc(x.f, 1/10) && acc(x.g, 1/10))
7 x.b := false
8 apply /* same wand */
9 assert perm(x.f) == perm(x.g)

Listing 5.4: A simple Viper program illustrating a potential incompleteness arising
from branching executions (here: of package).

01 exec(σ1, package a --* g, Q) =
02 slhs := fresh
03 idscope := fresh
04 σemp := σ1

{
h := ∅, π := pc-push(σ1.π, idscope, true)

}
05 produce(σ1

{
h := ∅

}
, a, slhs, (λ σlhs ·

06 exec-ext([σlhs.h, σ1.h], σlhs
{

h := ∅
}

, g, (λ [_, h2], σused, srhs ·
07 (_, bcs) := pc-segs(pc-after(σused.π, idscope))
08 Let idwand(e′) be a magic wand chunk identifier
09 Let corresponding to a --* nested(g)
10 ch := idwand(e′; (λ slhs · srhs))
11 Q(σ1

{
h := heap-add(h2, ch), π := pc-add(σ2.π, bcs)

}
)))))

12

13 exec(σ1, apply a1 --* a2, Q) =
14 Let idwand(e′) be a chunk identifier corresponding to a1 --* a2
15 consume(σ1, a1, (λ σ2, slhs ·
16 consume(σ2, acc(idwand(e)), (λ σ3, (λ shyp · swand) ·
17 produce(σ3

{
π := pc-add(σ3.π, shyp := slhs)

}
, a2, swand, Q)))))

Figure 5.11: The final rules for packaging and applying magic wand instances: in
addition to accounting for framing, these rules also account for branching executions.

Differences relative to the previous rules are highlighted.

This potential incompleteness is caused by mismatching assumptions about the
(conceptually) same value of x.b: on one path through the packaging operation, the
symbolic execution speculates that the hypothetical (future) value of x.bmight be true,
but when the wand is applied later on (and the value is fixed), the initial assumption
is not checked against the actual value, and the infeasibility of the incorrectly taken
execution path is thus not detected.

Detecting such an infeasible path (and thereby preventing incompletenesses such as
the previously illustrated one) requires preserving branch conditions that speculate on
hypothetical left-hand-side values after the packaging operation finished (in contrast
to regular path conditions coming from the hypothetical left-hand side, which must
be retracted). This is achieved by the final versions of the rules for packaging and
applying magic wands, shown in Figure 5.11.

When packaging a wand instance, the branch conditions obtained from producing a
hypothetical left-hand side and consuming the right-hand side are (as usual) recorded
in the path conditions, from which they are extracted afterwards (by computing the
delta in branch conditions between the states on line 4 and line 7) and then preserved
by adding them to the final state (line 11). Upon applying a wand (also shown in
Figure 5.11), it is necessary to synchronise the branch taken on package (by speculating
on hypothetical left-hand-side heap values) with the branch taken on apply (which is
determined by values from the actually provided left-hand side).
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It order to see how this synchronisation can be achieved, consider again the previous
example where the execution of package branches over the hypothetical value of
x.b: this value is the snapshot4 slhs used to produce the hypothetical left-hand side
(see line 2 and line 5 of Figure 5.11). The branch condition resulting from taking the
(with hindsight infeasible) if-branch thus is slhs = true (which is then preserved after
the package operation succeeded). However, when the packaged wand instance is
afterwards applied, the actual value of x.b turns out to be false and the else-branch is
taken instead.

Synchronising these branches can be achieved by substituting, in the path conditions,
all occurrences of the snapshot that represents the heap values of the hypothetical left-
hand side for the snapshot that represents the heap values of the actual left-hand side:
in the rule for applying wands (in Figure 5.11), this would correspond to replacing
all occurrences of shyp (taken from the “applied” wand chunk on line 16) with slhs
(obtained from consuming the left-hand side on line 15). Note that this substitution
can be understood as instantiating path conditions that are functions of the left-hand-
side heap with the appropriate actual heap values, similar to how the magic wand
chunk snapshot (λshyp · swand) is a function of the left-hand-side heap and can thus
be instantiated.

However, instead of actually performing these instantiations (of path conditions and
the magic wand snapshot), the rule for applying wand instances equates the formal
snapshot argument shyp with the actual snapshot argument slhs and then uses the
function body swand (and analogously, the path conditions) without substituting shyp
for slhs (on line 17 of Figure 5.11). Letting the formal argument shyp escape this way
is sound because: (1) by construction, each shyp is a unique, that is, syntactically
different, symbol (see line 2 of Figure 5.11), and (2) each wand chunk can be applied
at most once, due to the absence of fractional wands. Fractional wands would allow
applying a single wand chunk multiple times, in which case the taken approach
of equating the actual and the formal left-hand-side snapshot would no longer be
sound: it would result in the in general unsound assumption that the values of each
provided left-hand side are the same. In order to support fractional wands, it would
therefore be necessary to properly instantiate magic wand chunk snapshots and path
conditions.

5.4.3 Ghost Operations

The previously presented rules for executing the ghost operations packaging and
applying (Figure 5.9 on page 144) need to be changed analogously to the final rules
for executing the corresponding statements package and apply (Figure 5.11); for
brevity, these changes are omitted.

It is not necessary to change the rules for the remaining ghost operations (that is,
for (un)folding predicates), also shown in Figure 5.9: these rules transfer snapshots
between states (as part of transferring permissions) and they rewrite the state rep-
resentation (which typically affects the structure of snapshots, for example, when a
predicate instance is folded), but they ultimately preserve the left-hand-side snapshot
between producing the hypothetical left-hand side and consuming the innermost
right-hand-side assertion that finally yields the magic wand chunk’s snapshot.

5.4.4 Soundness of the Snapshot Computation

The main theorem of a soundness proof concerned with the computation of ma-
gic wand snapshots would state that the wand instance’s snapshot obtained from
packaging a wand does not provide more information than the footprint that has

4In general, the heap values of the hypothetical left-hand side are components of slhs, but in this example
the left-hand side contains only a single accessibility predicate and the value of the corresponding location
is therefore slhs itself.
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been removed during the package operation. Such a theorem could be expressed
by stating that if a magic wand chunk (recording such a snapshot), obtained from a
package operation in some state σ, is afterwards “applied” in another state σ0 then
the resulting state is no more expressive than the combination of σ0 with the footprint
removed during the original package operation (from which the wand chunk and its
snapshot were obtained).

We believe that it is possible to prove the main theorem similarly to how the main
theorem (Theorem 5) from the sketch of soundness of the footprint computation is
proven: by proving similar results for the “lower-level” operations such as heap-rem-
max, transfer, consume and consume-ext. For example, a corresponding theorem
for consumewould state that if a snapshot, obtained from consuming an assertion
a in a state σ, is afterwards used to produce a in another state σ0 then the resulting
state is no more expressive than the combination of σ0 with the sub-heap removed
during the original consumption. This lemma, for example, can be argued intuitively
as follows, assuming that a result similar to Theorem 3 (concerned with consume-ext)
is proven for consume (which we expect to be straightforward because Theorem 3 is
essentially a generalised version of consume): given an initial state σ and an assertion
a, consume removes a sub-heap ĥ of σ that satisfies (the spatial sub-assertions of) a.
By construction, the snapshot returned by consume is composed of heap values from
the removed sub-heap, and the snapshot can therefore not provide more information
than the sub-heap it was computed from.

However, a proper formalisation of the main theorem and the necessary lemmas
would require a notion of “relatedness” between the states from which snapshots
are computed and the states in which they are used, such as the state σ in which
a wand instance is packaged and the state σ0 in which it is subsequently applied.
Being appropriately related requires, for example, that all conditionals included
in an assertion evaluate to the same value in both states, and that all expressions
in the “holes” of a magic wand instance (Section 5.2.5) evaluate (pairwise) to the
same symbolic values. We expect that formally defining “relatedness” will require a
representation of snapshots that provides additional information about the relation
between the snapshot and the partial heap it corresponds to, that is, the partial heap
it was obtained from. Currently, (1) a snapshot is effectively just a tree of values with
no (explicit) relation to the heap locations to which these values correspond, and no
information under which condition (if any) this correspondence holds; and (2) this
relation is (implicitly) restored when a snapshot is used to produce an assertion, but
there are no checks in place that guarantee5 that the assertion has any relation to
the originally consumed partial heap (recall also the discussion of the limitations
of the current representation of snapshots from Section 3.3). We believe that the
representation of snapshots can be extended accordingly (potentially for the purpose
of the proofs only, not for the actual implementation), for example, as a map from
locations to values, and that this will enable us to prove the previously described
results. However, such a change wouldmost likely affect the majority of the presented
rules and increase their complexity by additional, snapshot-related “bookkeeping”,
and a proof of soundness for the snapshot computation is therefore left as future
work.

5.5 Inferring Annotations

In order to reduce the annotation overhead involved in specifyingmagic-wand-related
ghost operations, Silicon additionally implements a set of simple (and optional)
heuristics that attempt to insert additional package and apply operations into an
input program. As described in Section 5.3, a package operation may also require
nested ghost operations in order to succeed; the heuristics also attempt to infer these.

5An external argument is necessary to provide these guarantees, as discussed in Section 3.3.
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1 var xs: Ref := ys
2 sum := 0
3

4 while (xs != null)
5 invariant xs != null ==> acc(list(xs))
6 invariant (xs != null ==> acc(list(xs))) --* acc(list(ys))
7 invariant sum == old(sum_rec(ys))
8 - (xs == null ? 0 : sum_rec(xs))
9 {
10 unfold acc(list(xs))
11 sum := sum + xs.val
12 xs := xs.next
13 }

Listing 5.5: Verified version of the body of sum_it (Listing 5.1), with heuristics enabled.

The heuristics are failure-driven (similar to the try-react-retry execution flow discussed
in Section 3.4.2 in the context of heap incompletenesses and state consolidations):
if exhaling (consuming) an assertion a, for example, a loop invariant, fails due to
insufficient permissions (to a field, a predicate or a wand), then the heuristics are
applied in order to search for ghost operations that avoid the failure. The heuristics
search (in a depth-first manner) for a sequence of ghost operations (comprised of
(un)folding, applying and packaging) that would rewrite the state such that the
initially missing permissions can be found. The width of the search tree is bounded
by the number of predicate andmagic wand instances held in the current state (which
is finite and typically small). The depth of the search is bounded by a configurable
threshold. The candidate ghost operations are also ordered according to a number
of syntactic criteria on the symbolic state and program text, as a coarse estimate of
which operations are “likely” to be successful: for example by preferentially unfolding
predicate instances whose bodies appear (according to a syntactic inspection) to
contain a suitable permission.

Currently, Silicon implements the following heuristics: (1) apply and unfold wand
and predicate instances, respectively, that potentially contain the missing permission,
(2) package and foldmissingwand and predicate instances, respectively, and (3) apply
and unfold any other wand and predicate instances, respectively, that the current
state contains. The heuristics are (currently) applied only when the verification fails
due to insufficient permission because the failing assertion is a suitable criterion for
deciding which heuristic to attempt (for example, which predicate to unfold first).
If an assertion fails otherwise, that is, because of a functional property, it is less
clear how useful the failed assertion would be in order to guide potential heuristics;
investigating this is left as future work. The three heuristics are tried in the order in
which they are presented: the first heuristic is to apply/unfold any wand/predicate
instances that the state contains and that may provide the missing permission. In
case of a missing wand/predicate instance, an alternative heuristic is to attempt
packaging/folding the missing instance: this heuristic comes second because, if the
state held a wand/predicate instance that could be applied/unfolded to gain the
missing instance, an attempt to packaging/folding another instance is in general less
likely to succeed (since it might require permission which are already transitively
in the instance that should be applied/unfolded instead). Note that VeriFast [67]
implements a similar heuristic (essentially (1) and (2) from above), which attempts to
unfold predicate instances that appear to provide missing permission, and to fold
missing instances. The heuristics implemented by Silicon are more general, however,
since they also account for magic wands (which are not supported by VeriFast);
VeriFast also does not (currently) implement heuristic (3).

As an example, consider the loop body from the running example (Listing 5.2), and
assume that the package statement on line 22 were removed. The resulting program
cannot (immediately) be verified, in particular because the verifier fails to prove that
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the invariant is preserved by the loop body because it cannot find the wand instance
A --* acc(list(ys)) in the current state. This triggers the heuristics, which first
detect that there is no predicate (or wand) instance in the current state that can be
unfolded (or applied) to get a suitable wand instance. The heuristics then try to
package A --* acc(list(ys)), which fails because the required predicate instance
list(ys) cannot be found in either the current state or the hypothetical left-hand-
side state. This failure triggers the heuristics again, and results in an attempt to
apply the wand instance w (which mentions list(ys)). Applying w fails as well,
however, because this wand’s left-hand side list(zs) is missing. The heuristics
are triggered once again, and try to fold list(zs), which succeeds. The previously
failing operations are then retried: that is, applying w and exhaling list(ys), both
of which succeed now. With these nested ghost operations, the initially triggered
packaging of A --* acc(list(ys)) also succeeds, which enables the verifier to find
the previously missing wand instance, and therefore, to show that the loop invariant
is preserved.

Silicon’s heuristics enable removing all package and apply statements from the
examples listed in Section 5.6. Regarding the running example (Listing 5.2), they also
enable removing w and zs (which were only used to facilitate writing the package
statement on line 22), declared on line 15 and line 17, respectively. The resulting
encoding of the running example is shown in Listing 5.5: Silicon verifies it if heuristics
are enabled. The latter is currently done by adding the declaration of a special field
(field __CONFIG_HEURISTICS: Bool) to the program for which heuristics are to be
enabled. In future versions of Silicon, it should be possible to enable heuristics in a
more suitable manner, for example, via a command-line option.

5.6 Evaluation

To evaluate the performance of our technique for supporting magic wands, we evalu-
ated Silicon on a number of interesting examples, listed below. In addition to these,
Viper’s test suite also contains numerous regression tests that make use of magic
wands, but these are typically short and simple, and were thus not included in the
evaluation.

The evaluation was performed on a Intel Core i7-2600K 3.40GHz machine running
Windows 10 x64 from an SSD. Each example6 is included in two versions; the version
with the suffix _heuristics.sil is the example with heuristics activated andwith all
magic-wand-related annotations removed. The reported runtimes are averaged over
ten runs per example (the standard deviations were always less than 0.1s), and (as in
previous evaluations) the Nailgun tool was used to persist a JVM between verification
runs. Per example, two runtimes are provided: the first figure is the runtime of the
version of the example that includes all magic-wand-related annotations, the second
figure is the runtime if the annotations are not included and instead inferred by the
heuristics (that is, of the example version with the suffix _heuristics.sil).

• list_sum.sil is the running example of this chapter. It verifies in 0.3s, both
with and without heuristics enabled.

• list_insert.sil is an encoding of an iterative algorithm for inserting a value
into a sorted linked list. It verifies in 1.0s/2.0s (without/with heuristics).

• tree_delete_min.sil is an encoding of challenge 3 from the VerifyThis verific-
ation competition at Formal Methods 2012 [63], which was verifying an iterative
implementation removing the minimal element from a binary search tree. The
example verifies in 0.4s/0.5s. VerCors [17] (the only comparable tool we are
aware of with magic wand support) requires substantially more annotations
to specify this example, and takes substantially longer to verify the example:

6The examples are included in Viper’s test suite, which is part of Viper’s sources. Further information
can be found on the Viper project page [94].
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[17] reports a runtime of 13 minutes (on a comparable machine). According
to personal communication with the authors, the runtime has since been de-
creased to 60s by replacing the previously used verification back end Chalice
[84] with Viper (and Silicon). However, VerCors still uses its own encoding of
magic wands (see Section 5.8), not our direct support for magic wands.

• un_currying.sil demonstrates how nested ghost operations can be used to
prove the standard “currying” and “uncurrying” property of magic wands:
a1 ∗ a2 –∗ a3 ⇔ a1 –∗ (a2 –∗ a3). The “⇒” case is especially interesting since it
requires nested packaging operations. The example verifies in 0.2s, both with
and without heuristics enabled.

• conditionals.sil illustrates the use of magic wands where the footprint is
affected by conditionals whose guards depend on locations that are provided
by the left-hand side of the wand. The example verifies in 0.2s. No version
for activated heuristics is provided because adding assertions that initially fail
(and then trigger the heuristics) amounts to more work than directly writing
the corresponding package/apply statements.

5.7 Implementation

Section 5.4.2 described the potential problem of incompletenesses arising from as-
sumptions made about the hypothetical left-hand side (on apply) that do not hold for
the actually provided left-hand side (on package), and explained how path conditions
and wand chunk snapshots can be used to prevent such incompletenesses: by ensur-
ing that contradicting assumptions result in inconsistent states and by terminating
infeasible execution paths.

To prevent taking such infeasible execution paths in the first place (each of which
potentially branches again, for example, due to subsequent conditionals or further
package statements), the implementation performs a join of all execution paths
through a package statement. The join is similar to the join of branching expression
evaluations discussed in detail in Section 3.4.3, but more involved since it requires
joining symbolic heaps (in addition to path conditions). As before, joining paths
effectively shifts work from the verifier to the prover, by reducing the number of
execution paths at the expense of disjunctions in the path conditions. It would be
interesting, regarding Silicon’s style of symbolic execution in general, to investigate
if this trade-off between execution paths and disjunctive path conditions exhibits a
sweet spot and if it is possible to devise heuristics that guide the verifier towards that
spot.

Silicon’s implementation does not yet support the following features and feature
combinations; their implementation is left as future work:

• Magic wand snapshots, discussed in Section 5.4, are not supported and the
examples discussed in that subsection therefore cannot currently be verified.

• Magic wands are not integrated into Viper’s permission introspection features
(perm and forperm, recall Section 3.4.4). However, due to the uniform repres-
entation of heap chunks, we do not expect any conceptual problems to arise
from integrating magic wands with (for)perm.

• Using quantified permission assertions (Chapter 4) on the left- or right-hand
side of a wand is not yet supported, but is not expected to pose conceptual
problems: similarly to how consume-ext extended consume for non-quantified
permissions (transferring permissions from a stack of heaps into a target heap,
instead of just removing them), consume-ext needs a case for quantified permis-
sion assertions, which would be analogous to the regular rule for consuming
such assertions (Figure 4.1), but invoking an extension of qp-remove that trans-
fers permissions from a stack of heaps.
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• The opposite integration — specifying permission to an unbounded number of
magic wand instances via quantified permissions — is not yet supported either,
but implementing the corresponding support is expected to be straightforward,
due to Silicon’s uniform representation of chunks: magic wand chunks are,
from a technical point of view, essentially predicate chunks, and can therefore
be lifted to quantified chunks in the same way that predicate chunks are.

• Magic wands are not yet supported in function preconditions because Viper
does not provide an applying ... in e expression (the applying ghost oper-
ation discussed in Section 5.4.3 is only supported on the right-hand side of a
wand to package) that applies a magic wand for the scope of the nested expres-
sion, similar to an unfolding expression. Without such an expression, there
is no way to make use of magic wands in a function’s body. Furthermore, in
order to frame functions with magic wands in their preconditions, it would be
necessary to implement support for magic wand chunk snapshots.

Extending Silicon’s implementation correspondingly is possible: the rule for
applying would be similar to that for unfolding (Figure 3.15), and would
require an analogous joining of local execution branches; and integrating magic
wands and their chunks’ snapshots into Silicon’s technique for axiomatising
functions would require recording a similar mapping from (syntactic) magic
wand assertions to the corresponding wand chunks, as is already done for fields
and predicates (Section 3.6).

Since wand chunk snapshots are functions — as are the snapshots of quantified
chunks (recall Chapter 4 and in particular Section 4.3.2) — and because SMT
solvers typically do not support higher-order functions, it would again be
necessary to apply defunctionalisation [107] in order to encode heap-dependent
functions whose preconditions require magic wand instances.

• Fractional wand instances are currently not supported by Silicon, but an exten-
sion is possible: besides adapting Viper’s grammar accordingly (for example,
to support appropriate accessibility predicates of the shape acc(a --* g, p))
and to recording symbolic permission expressions in magic wand chunks, the
main changewould affect the use of magic wand chunk snapshots and of branch
conditions that mention values from the hypothetical left-hand side. Recall
(from Section 5.4) that wand chunk snapshots are functions of the actually
provided left-hand side (Section 5.4.1) and that branch conditions that mention
values from the hypothetical left-hand side can be understood analogously, and
that the current rules for applying magic wand instances (Section 5.4.2) does
not (need to) perform proper instantiations of snapshots and branch conditions
(and instead equates the formal and the actual function arguments) exactly
because each wand chunk can only be “applied” once. In order to support
fractional wand instances, it would be necessary to properly instantiate wand
chunk snapshots and branch conditions.

5.8 Related Work

Lee and Park have recently developed a proof system for a separation logic support-
ing the magic wand connective [81], and also provided a decision procedure for
propositional separation logic (that is, without variables). In a richer logic such as
Viper’s, however, the magic wand is known to be undecidable [29]. Our technique
addresses this difficulty with the combination of apply and package annotations
(which can often be inferred by simple heuristics, see Section 5.5), along with novel
algorithms for computing appropriate magic wand footprints automatically.

In parallel with the work presented here, Blom and Huisman have developed support
formagicwands in their VerCors verifier [17]. VerCors verifies Java programs enriched
with separation-logic-style specifications, andmagic wands are eliminated during the



5.8. Related Work 163

translation by a clever encoding into ghost data (“witness objects”) that represents
magic wand instances. This translation is automatic, but (similar to our work) also
requires annotations to direct the creation and use of magic wands. In contrast to our
approach, the user must also manually specify annotations defining the permissions
and logical facts to be used from the current state for each wand’s footprint, which
are then combined to show the wand’s right-hand side via arbitrary user-defined
ghost code. The ability to use arbitrary code is potentially more flexible than the fixed
set of ghost operations supported by Viper (for example, ghost methods could be
employed), but the resulting annotation overhead is significantly higher than with the
automatic footprint computation presented in this chapter (even comparing without
the additional heuristics described in Section 5.5). Moreover, their translation does
not support nested wands such as a1 –∗ (a2 –∗ a3) or wands inside predicate definitions
(although it might be possible to extend their approach accordingly). It is also unclear
how efficient the resulting encoding into ghost data is in practice, as illustrated by
the verification challenge example discussed in Section 5.6, whose verification takes
60 seconds in VerCors but only 0.5s in Silicon.

In the context of a permission-based type system, Boyland [27] has defined a “sceptre”
operator to represent “borrowing” of permission. This connective is more restricted
than the general magic wand, but is sufficient for many loop invariants, such as the
one of this chapter’s running example. The PhD thesis of Retert [106] provides an
abstract-interpretation-based approach supporting this connective.

The specific problem of rewriting and maintaining appropriate predicate definitions
during data structure traversals has already received much attention. Without an
alternative to simple fold/unfold annotations, one needs to define a new predicate
type to represent “partial” versions of the data structure, and write ghost methods
to “append” to this partial version, as well as to rewrite it into the original predicate
once the traversal is completed. The problems of tracking suitable permissions in
loop invariants are discussed in detail by Tuerk [130], who proposed alternative pre-
/postcondition specifications for loops. A magic wand of the form prerest ∗ (postrest –∗
postall) gives an alternate expression of his idea (where “rest” refers to the remaining
loop iteration, and “all” to the entire loop). Making use of magic wands is more
general than Tuerk’s proof rule, for example when further code after the loop is
needed before restoring the overall predicate, as in the tree-min-delete challenge
(Section 5.6).

A variety of existing work aims to reduce the annotation overhead associated with
managing and rewriting predicate definitions with explicit fold and unfold oper-
ations. For example, Smallfoot [11] and GRASShopper [103] achieve concise spe-
cifications without user direction by building in specific support for list and tree
predicates. Lee et al. [80] provide a static analysis capable of identifying when objects
participate in many such data structures simultaneously. Nguyen and Chin [98] and
Brotherston et al. [31] provide techniques for proving and applying user-supplied
lemmas automatically. Chin et al. [35] provide support for a wider class of predicate
definitions, including functional abstractions of data structures, provided that exactly
one reference parameter is traversed in the predicate’s definition. Their entailment
checker “carves out” a suitable portion of the input heap, which (for one input heap)
is similar to the operation of our footprint computation algorithm.

These techniques improve the usability of recursive predicate reasoning, and can
complement our work in a practical tool. Each comes with limitations: they cannot
be applied equally to fully general predicates. One consequence of available magic
wand support is that iterative code (such as our running example) can be specified
without the need for extra predicate types to represent “partial” versions of data
structures. These extra predicates do not describe structures which the program oper-
ates on, and are cumbersome to define for structures more complex than linked lists;
loop invariants employing magic wands can be defined analogously for other data
structures, and also support the specification of functional properties (for example,
the use of sum_rec in our example).
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VeriFast [67] is a mature and expressive verifier for programs annotated with separa-
tion logic. We believe that it is possible to partly work around the absence of magic
wands using VeriFast’s support for lemma function pointers and predicates. One can
encode a wand a1 –∗ a2, using a predicate F (representing the wand’s footprint), and
a pointer to a lemma function with precondition F ∗ a1 and postcondition a2, whose
body shows how to rewrite the state (for example, by (un)folding predicates). The
need to define the footprint manually, however, entails substantial additional over-
head (to define a predicate for each footprint, and the appropriate lemmamethods for
manipulating them) for the user, compared to automatically computing a footprint.
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Chapter 6

Conclusions and Future Work

We presented Viper, the first verification infrastructure for permission-based reason-
ing, designed with the goal of providing a reusable infrastructure that facilitates the
development of automated program verifiers for different programming languages,
specification styles and permission logics. In particular, we presented an expressive
intermediate verification language and a powerful symbolic-execution-based verifier
for this language.

6.1 Concluding Evaluation

Problem Statement

In order to evaluate the overall contributions of this thesis (evaluations of specific
aspects of the presented work were shown in Section 2.8, Section 3.7, Section 4.5
and Section 5.6), we revisit the requirements for a verification infrastructure that
we derived from our problem statement (see Section 1.1) and evaluate the work we
presented against these requirements.

The first requirement we identified was that an intermediate verification language
should provide a level of abstraction that enables the encoding of different program-
ming languages and specification styles but does not impede the development of
efficient and precise verifiers and static analysers. The key design decisions we made
in order to ensure that Viper meets this requirement are: (1) to provide a built-in
notion of a heap and of permissions, which facilitates the development of efficient and
precise back ends, and (2) to complement higher-level features such as if-then-else
statements, loops, methods, predicates and functions with lower-level features such
as the novel inhale and exhale statements (but also, for example, with goto state-
ments). This ensures the expressiveness and flexibility necessary for encoding a
diverse range of high-level concepts, and it enables encodings that preserve the struc-
tural information typically needed by static analysers in order to compute precise
results.

Viper’s expressiveness has been demonstrated in different ways: (1) by the existence
of several front ends for different programming languages that implement different
high-level concepts (a list of Viper front ends is presented shortly), (2) by presenting
possible encodings of different concurrency features, such as lock synchronisation and
asynchronousmethod calls, (3) by specifying and verifying awide range of properties,
including the shape of data structures and their functional behaviour, the absence of
resource leaks, and deadlock freedom, (4) by discussing different specification styles,
for example, specifications based solely on predicates and specifications that combine
predicates, magic wands and abstraction functions, and (5) by enabling specifications
that have been used for years in by-hand proofs but so far were beyond the scope of
automated verifiers, such as specifications based on iterated separating conjunctions
or magic wands.
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Moreover, with the development of Silicon we demonstrated that Viper’s express-
iveness does not impede the development of efficient and precise back ends: Silicon
in general exhibits good and predictable performance, and a degree of automation
and completeness that is higher than that of other symbolic-execution-based verifiers.
Silicon has been carefully engineered to achieve this challenging combination by,
among other things, (1) complementing cheap, greedy algorithms with more expens-
ive, lazily-triggered state consolidation algorithms that overcome certain kinds of
heap-related incompletenesses without additional directions from users, (2) carefully
encoding proof obligations to the underlying SMT solver; in particular, by controlling
the number of potential quantifier instantiations, and (3) implementing a variety of
technical optimisations such as heuristically ordering the inputs of some algorithms
and memoizing the results of others. In addition to developing two verifiers for
Viper, our research group is also working on a permission inference system based on
abstract interpretation: initial results of this line of work indicate that Viper programs
are also amenable to precise static analyses.

Another requirement that was derived from the problem statement is that an inter-
mediate verification language should enable users to declare and specify arbitrary
heap-implemented data structures as well as a wide range of mathematical structures
(for example, to serve as abstractions of the heap-implemented ones), and that it
should be possible for users to express the necessary definitions directly on the level
of the intermediate verification language: Viper meets this requirement as well.

A third requirementwe identifiedwas the suitability formanually encoding examples,
for instance, when experimenting with alternative encodings and for educational
purposes. We argue that Viper is suitable for such applications as well: its combina-
tion of lower- and higher-level language constructs, advanced features such as the
automatic computation of magic wand footprints, and design decisions such as sup-
porting mathematical data structures via uninterpreted functions and axioms (which
increases the degree of automation) achieve a good balance between expressiveness
and conciseness. So far, we have used Viper (without a front end) for giving various
demos, in the verification competition VerifyThis@ETAPS’16 [62] and during lectures
and assignments at the Marktoberdorf Summer School 2016 [105], and we consider
the successful outcomes and the positive feedback we received as anecdotal evidence
supporting our claim. We also received positive feedback for how verification failures
are reported, but did not perform a systematic evaluationwhichwould allow drawing
sound conclusions with respect to how helpful Viper’s error reporting is.

Another requirement that we derived from our problem statement is that potential
automation limitations should be understandable on the level of the intermediate
verification language and not require detailed knowledge about the verifier’s imple-
mentation. Regarding Viper and Silicon, we conclude that this requirement is largely
fulfilled: most automation limitations follow from deliberatelymade and theoretically
motivated design decisions, such as the need for (un)fold/package/apply state-
ments and manually encoding proofs by induction as a consequence of the logical
complexity of recursive definitions, magic wands and inductive theories, respect-
ively. The only exceptions we are currently aware of (ignoring incompletenesses
that originate from the SMT solver, for example, when reasoning about undecidable,
built-in theories such as non-linear integer arithmetic) arise from (1) incomplete
axiomatisations of background theories such as sets, sequences and multisets; these
incompletenesses are exhibited by both Viper verifiers, and (2) Silicon’s incomplete
management of the symbolic heap (that is, the remaining incompletenesses that are
not overcome by Silicon’s lazily triggered state consolidations). Both kinds of incom-
pletenesses can be overcome by adding additional assertions, but the evaluation of
Silicon (Section 3.7) indicates that this is not often necessary in practice.

The last requirements we derived are related to performance: a verifier should be
sufficiently fast such that it can be used in an IDE-like manner to continuously verify
programs in the background, and possible performance limitations (if any) should be
understandable on the level of the intermediate verification language. We consider
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the first aspect as met: the performance evaluations presented in this thesis show
that Silicon performance well in general and can therefore indeed be used as the back-
ground verifier of a verification IDE (a corresponding plug-in for VSCode [90] will
be released soon), and they also show that Silicon’s performance is stable across suc-
ceeding and failing verifications. The evaluation of Silicon with respect to the second
aspect is less clear, however: the only major performance issue we are currently aware
of is due to repeated applications of heap-dependent functions that use quantified
permissions in their specifications, but the resulting performance degradation can
only be explained on the level of Silicon’s implementation (and is not exhibited by
Viper’s other, verification-condition-generation-based verifier). However, we believe
that it is possible to overcome this problem (as discussed in Section 4.3.2), and plan
to do so in future work.

Impact

The Viper verification infrastructure already had noteworthy impact that goes beyond
published papers and that demonstrates the significance of the work presented in
this thesis: (1) Viper was used in the VerifyThis@ETAPS’16 verification competition
and won the Distinguished User-Assistance Tool Feature award for quantified permis-
sions, and during lectures and student assignments at the Marktoberdorf Summer
School 2016, (2) Viper is already being used at two universities other than ETH, (3) six
Viper front ends have been developed so far and the development of two more has
recently been started, and (4) the work on two additional Viper tools, an alternative
back end and a permission inference, has recently yielded first results.

Of the six existing Viper front ends, we consider four as comprehensive front ends
(and the remaining as prototypical), two of which have been developed by our group:
a front end for (an extended version of) Chalice [75, 89] that encodes various con-
currency features and related properties such as finite blocking, and a front end
for Python programs that is part of the SCION project [8] for developing a secure,
next-generation internet architecture. The other two comprehensive front ends are
part of the VerCors project [16] developed at the University of Twente: a front end for
Java programs and another one for programs written in OpenCL. Since the front ends
support different programming languages, properties and specification styles, they
typically also generate encodings that use different Viper features to different degrees.
For example, the OpenCL front end makes heavy use of quantified permissions (to
encode matrices), whereas the Chalice front end relies on Viper’s permission intro-
spection features (to reason about finite blocking). The two prototypical front ends
have been developed in order to experiment with encodings of particular language
features: a Scala front end [30, 50] to experiment with verifying lazily executed code,
and a Rust front end [53] to explore the possibility of inferring permission annotations
from Rust’s ownership-based type system. The development of two further front
ends has recently been started: a front end for investigating potential encodings of
relaxed separation logic for C11 programs [132], developed by our group, and a C#
front end [100], developed at the Charles University in Prague.

The Viper verification infrastructure also enables the development of verification tools
other than front ends: so far, of an experimental back end [57] that encodes Viper
programs to the GRASShopper verifier [103], and an abstract-interpretation-based
inference for quantified permissions [134]; both tools are work in progress, but first
results are promising.

6.2 Future Work

As future work, we suggest to investigate the potential for using Viper in order to
develop automated verifiers for recently published, highly-specialised separation lo-
gics such as TaDA [109], tailored towards the verification of lock-free concurrent code
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that uses atomic instructions (such as compare-and-swap), and LiLi [86], developed
for proving safety and liveness properties of concurrent objects. In by-hand proofs,
such logics have been used to prove substantial properties of intricate programs,
but the proofs quickly become unmanageable due to the number of required proof
steps and side conditions. So far, no automated verifiers for these logics exist, which
is problematic for two reasons: (1) applying the logics to programs longer than a
dozen lines of code can be very cumbersome, which impedes understanding potential
shortcomings of the logics and identifying areas of further research, and (2) estab-
lishing confidence in the correctness of manually constructed proofs is difficult, even
for proofs about very short programs. As a first step towards building automated
verifiers for such logics we suggest to develop automated proof outline checkers, that
is, tools that take as input a substantially simplified proof outline (similar to those that
are typically provided in the papers that present the logics) and that automatically
fill in the omitted proof steps and verify the proof outline.

In addition to new front ends concerned with automating proofs in specialised
separation logics, we also suggest to develop front ends in order to experiment
with specifying and verifying code that follows certain “modern” programming
paradigms that gained substantial popularity in recent years, in particular actor-
based concurrency (for building distributed systems) and reactive programming (for
building dataflow-centric systems and user interfaces). Both paradigms originate
from functional programming languages with referentially transparent computations,
a restriction that simplifies reasoning about the event-based, non-local nature of the
style of programming these paradigms advocate. However, the paradigms are also
increasingly being used in imperative languages, for example, JavaScript, Scala and
C#, where the paradigms are typically implemented in libraries that make heavy use
of closures for modelling event-based computations. Reasoning about imperative
code that follows these paradigms is significantly more difficult than reasoning about
corresponding functional code because the former may use mutable shared state, for
example, to improve performance. We expect that the development of appropriate
front ends will pose several research challenges, such as designing suitable specifica-
tion languages; additionally, the development might uncover limitations of Viper’s
intermediate language (and thus result in language extensions that enable or facilitate
desirable encodings) and its back ends (for example, performance or completeness
issues of the verifiers).

Silicon also presents various opportunities for future work, with challenges ranging
frommainly theoretical tomostly technical. On the theoretical side, one could increase
the confidence in the correctness of Silicon’s symbolic execution rules, for example,
by proving soundness of the computation and use of snapshots; as discussed in
Section 5.4.4, this is expected to require an alternative, less syntactical representation
of snapshots. In more substantial work, one could also identify a core subset of
Viper and Silicon, and attempt to mechanise soundness proofs for this subset, as was
done for Featherweight VeriFast [133]. In order to increase confidence in Silicon’s
implementation — correctness of which would need to be proven independently of
any soundness proofs about Silicon’s formalisation—one could explore the possibility
of testing Silicon’s implementation against the semantics of Viper (which are currently
being formalised). To that end, one could take the operational semantics for Viper
and mechanise them in a way that (1) does not require much encoding effort and
thus minimises the risk of introducing bugs during the mechanisation, and (2) yields
an executable version of the semantics. A candidate for such a mechanisation might
be the K framework [112]. The executable semantics could then serve as a test oracle:
for a concrete input state and a piece of Viper code, the executable semantics would
determine the expected successor state(s), and after setting up a symbolic state that
corresponds to the concrete state and symbolically executing the code, one could
check (for example, via an appropriate encoding into SMT) if the symbolic output
state corresponds to the concrete output state(s).



6.2. Future Work 169

Another possible direction of future work is to explore if Silicon would benefit from
implementing Jahob’s [137] approach of decomposing proof obligations into sim-
pler sub-obligations that fall into specific logical fragments and can be handled by
specialised solvers, or according to some other classification, such as whether or not
a fact is concerned with permissions. For example, we occasionally observed that
the verification time (of both Viper verifiers) increases if fixed fractions (such as 1/2

and 1/4) are replaced by symbolic fractions and appropriate inequalities (such as
p1, p2 and p2 < p1); such inequalities are also generated during the translation of
Chalice’s abstract read permissions [58] into Viper. In the presence of predicates, the
inequalities may also include non-linear arithmetic (such as p3 < p1 p2) as a result
of fractionally unfolding predicates. In order to check for satisfiability of arithmetic
inequalities, SMT solvers typically try to find satisfying assignments, whereas it
would suffice to “just” know that the inequalities are satisfiable. It might therefore
improve performance if a different solver were used for permission queries. A re-
lated optimisation might be to “hide” permission-related facts from the SMT solver
when checking functional program properties: the latter are often independent of
permission-related facts (ignoring, for example, reference disequalities), in which case
the solver would needlessly take them into consideration (by trying to find satisfying
assignments).

As future work with a focus on software engineering one could devise an architecture
and a corresponding API for Silicon that facilitates the integration and orchestration
of “actions” which are executed in response to certain events, in particular to veri-
fication failures. Such an architecture should enable the implementation of the two
already existing (and currently hard-coded) actions — performing state consolida-
tions, and heuristically (un)folding predicates and packaging/applying wands — as
separate “plug-ins”. The architecture should also be flexible and facilitate declaring,
for instance, when an action is triggered (for example, by any verification failure,
by insufficient permissions only, or simply periodically), to which extent already
performed symbolic execution steps are to be re-executed afterwards (for example,
only the previously failing one or all steps after the last inhaling of permissions)
and in which order alternative actions should be tried. Using this architecture it
should be possible to declare, for example, a chain of actions such that a state consol-
idation is performed in response to insufficient permissions, after which the failing
assertion is checked again and if it still fails, the heap management is switched from
Silicon’s cheap but incomplete default algorithms to the complete but more expensive
quantified-permission-style algorithms, and the assertion is checked once more.
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Appendix A

Viper

1 /* An encoding of a linked list using predicates and
2 * abstraction functions, and a client of the list.
3 */
4

5 /****************** Nodes ******************/
6

7 field data: Int
8 field next: Ref
9

10 predicate lseg(this: Ref, end: Ref) {
11 this != end ==>
12 acc(this.data) && acc(this.next)
13 && lseg(this.next, end)
14 && unfolding lseg(this.next, end) in
15 this.next != end ==> this.data <= this.next.data
16 }
17

18

19 /* The additional postcondition (the first two ensures-clauses)
20 * are required by Silicon because of a technical limitation:
21 * the body of the recursive invocation of lsegContent is not
22 * available to the verifier when proving the last
23 * postcondition, which therefore fails.
24 * Overcoming this limitation is possible, e.g. by following
25 * A. Rudich, A. Darvas and P. Mueller: Checking Well-
26 * Formedness of Pure-Method Specifications, FM’08
27 * and planed as future work.
28 */
29 function lsegContent(this: Ref, end: Ref): Seq[Int]
30 requires lseg(this, end)
31 ensures this == end ==>
32 result == Seq[Int]()
33 ensures this != end ==>
34 result[0] == unfolding lseg(this, end) in
35 this.data
36 ensures forall i: Int, j: Int ::
37 0 <= i && i < j && j < |result| ==>
38 result[i] <= result[j]
39 {
40 this == end
41 ? Seq[Int]()
42 : unfolding lseg(this, end) in
43 Seq(this.data) ++ lsegContent(this.next, end)
44 }
45

46 function lsegLength(this: Ref, end: Ref): Int
47 requires lseg(this, end)
48 ensures result == |lsegContent(this, end)|
49 {
50 unfolding lseg(this, end) in
51 this == end ? 0 :
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52 1 + lsegLength(this.next, end)
53 }
54

55 /****************** Lists ******************/
56

57 field head: Ref
58

59 predicate List(this: Ref) {
60 acc(this.head) && lseg(this.head, null)
61 }
62

63 function content(this: Ref): Seq[Int]
64 requires List(this)
65 ensures forall i: Int, j: Int ::
66 0 <= i && i < j && j < |result| ==>
67 result[i] <= result[j]
68 {
69 unfolding List(this) in lsegContent(this.head, null)
70 }
71

72 function length(this: Ref): Int
73 requires List(this)
74 ensures result == |content(this)|
75 {
76 unfolding List(this) in lsegLength(this.head, null)
77 }
78

79 function peek(this: Ref): Int
80 requires List(this)
81 requires 0 < length(this)
82 ensures result == content(this)[0]
83 {
84 unfolding List(this) in unfolding lseg(this.head, null) in
85 this.head.data
86 }
87

88 method create() returns (this: Ref)
89 ensures List(this)
90 ensures content(this) == Seq[Int]()
91 {
92 this := new(*)
93 this.head := null
94 fold lseg(this.head, null)
95 fold List(this)
96 }
97

98 method concat(this: Ref, ptr: Ref, end: Ref)
99 requires lseg(this, ptr)
100 requires lseg(ptr, end)
101 requires end != null ==> acc(end.next, 1/2)
102 requires 0 < |lsegContent(this, ptr)|
103 && 0 < |lsegContent(ptr, end)|
104 ==>
105 lsegContent(this, ptr)[|lsegContent(this, ptr)|-1]
106 <= lsegContent(ptr, end)[0]
107 ensures lseg(this, end)
108 ensures lsegContent(this, end) ==
109 old(lsegContent(this, ptr) ++ lsegContent(ptr, end))
110 ensures end != null ==> acc(end.next, 1/2)
111 {
112 if(this != ptr)
113 {
114 unfold lseg(this, ptr)
115 concat(this.next, ptr, end)
116 fold lseg(this, end)
117 }
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118 }
119

120 method insert(this: Ref, elem: Int) returns (index: Int)
121 requires List(this)
122 ensures List(this)
123 ensures 0 <= index && index <= |old(content(this))|
124 ensures content(this) ==
125 old(content(this))[0..index]
126 ++ Seq(elem)
127 ++ old(content(this))[index..]
128 {
129 var tmp: Ref
130 index := 0
131

132 unfold List(this)
133

134 if(this.head != null)
135 {
136 unfold lseg(this.head, null)
137 }
138 if(this.head == null || elem <= this.head.data)
139 {
140 tmp := new(*)
141 tmp.data := elem
142 tmp.next := this.head
143 fold lseg(this.head, null)
144 fold lseg(tmp, null)
145 this.head := tmp
146 }
147 else
148 {
149 var ptr: Ref := this.head
150 fold lseg(this.head, ptr)
151 index := index + 1
152 while( ptr.next != null
153 && unfolding lseg(ptr.next, null) in
154 ptr.next.data < elem)
155 invariant acc(this.head)
156 invariant acc(ptr.next) && acc(ptr.data)
157 invariant ptr.data <= elem
158 invariant lseg(ptr.next, null)
159 invariant lseg(this.head, ptr)
160 invariant
161 forall i: Int ::
162 0 <= i && i < |lsegContent(this.head, ptr)|
163 ==> lsegContent(this.head, ptr)[i] <= ptr.data
164 invariant
165 forall i: Int ::
166 0 <= i && i < |lsegContent(ptr.next, null)|
167 ==> ptr.data <= lsegContent(ptr.next, null)[i]
168 invariant index-1 == |lsegContent(this.head, ptr)|
169 invariant
170 old(content(this)) ==
171 lsegContent(this.head, ptr)
172 ++ Seq(ptr.data)
173 ++ lsegContent(ptr.next, null)
174 {
175 unfold lseg(ptr.next, null)
176 index := index + 1
177 var ptrn: Ref := ptr.next
178 fold lseg(ptrn, ptrn)
179 fold lseg(ptr, ptrn)
180 concat(this.head, ptr, ptrn)
181 ptr := ptrn
182 }
183
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184 tmp := new(*)
185 tmp.data := elem
186 tmp.next := ptr.next
187 ptr.next := tmp
188 fold lseg(ptr.next, null)
189

190 fold lseg(ptr, null)
191 concat(this.head, ptr, null)
192 }
193

194 fold List(this)
195 }
196

197 method dequeue(this: Ref) returns (res: Int)
198 requires List(this)
199 requires 0 < length(this)
200 ensures List(this)
201 ensures res == old(content(this)[0])
202 ensures content(this) == old(content(this)[1..])
203 {
204 unfold List(this)
205 unfold lseg(this.head, null)
206 res := this.head.data
207 this.head := this.head.next
208 fold List(this)
209 }
210

211 /****************** Client ******************/
212

213 // Monitor invariant:
214 // List(this) && length(this) <= old(length(this))
215 field held: Int
216

217 method test(mon: Ref)
218 // Check that all monitors have been released
219 ensures [true, forperm[held] r :: false]
220 {
221 // Acquire the monitor (without deadlock checking)
222 inhale List(mon)
223 inhale acc(mon.held)
224

225 label acq
226

227 if(2 <= length(mon)) {
228 var r1: Int
229 r1 := dequeue(mon)
230 assert r1 <= peek(mon)
231 }
232

233 // Release the monitor
234 exhale List(mon) && length(mon) <= old[acq](length(mon))
235 exhale acc(mon.held)
236 }

Listing A.1: An encoding of a sorted linked-list based on list segments, as discussed in
Section 2.4. Referenced on page 34.
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Silicon

1 field f: Int
2

3

4 method test01(x: Ref, y: Ref)
5 requires acc(x.f)
6 ensures acc(x.f)
7 {
8 if (x == y) {
9 exhale acc(x.f)
10 inhale acc(y.f)
11 }
12 }
13

14 method test01join(x: Ref, y: Ref)
15 requires acc(x.f)
16 ensures acc(x.f) /* Fails now */
17 {
18 // if (x == y) {
19 exhale acc(x.f, x == y ? write : none)
20 inhale acc(y.f, x == y ? write : none)
21 }
22

23

24 method test02(x: Ref, y: Ref)
25 {
26 if (x != y) {
27 inhale acc(x.f)
28 } else {
29 inhale acc(x.f, 1/2)
30 inhale acc(y.f, 1/2)
31 }
32

33 assert acc(x.f)
34 }
35

36 method test02join(x: Ref, y: Ref)
37 {
38 // if (x != y)
39 inhale acc(x.f, x != y ? write : none)
40 // else
41 inhale acc(x.f, x == y ? 1/2 : none)
42 inhale acc(y.f, x == y ? 1/2 : none)
43

44 assert acc(x.f) /* Fails now */
45 }

Listing B.1: Illustrating that joining symbolic heaps after branching over conditionals,
in combination with Silicon’s greedy heap management, can incur incompletenesses.

Referenced on page 74.
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No. Original file name
1 AVLTree.nokeys.sil
2 chaliceSuite_substantial-examples_AVLTree.nokeys.chalice.sil
3 testTreeWand.sil
4 testTreeWandE1.sil
5 0075_AVLTree.nokeys.sil
6 testTreeWandE2.sil
7 sequences.sil
8 chaliceSuite_predicates_LinkedList-various.chalice.sil
9 testListAppend.sil

10 oldC2SCases_nonnull_inference.chalice.sil
11 RingBufferRd.sil
12 testHistoryThreadsApplication.sil
13 chaliceSuite_regressions_workitem-10221.chalice.sil
14 oldC2SCases_quantifiers.chalice.sil
15 oldC2SCases_linked_list.chalice.sil
16 chaliceSuite_examples_PetersonsAlgorithm.chalice.sil
17 oldC2SCases_fields_fork_join.chalice.sil
18 chaliceSuite_general-tests_ll-lastnode.chalice.sil
19 chaliceSuite_examples_producer-consumer.chalice.sil
20 chaliceSuite_examples_iterator.chalice.sil
21 chaliceSuite_general-tests_cell-defaults.chalice.sil
22 oldC2SCases_basic.chalice.sil
23 oldC2SCases_eval_and_branching.chalice.sil
24 chaliceSuite_permission-model_basic.chalice.sil
25 chaliceSuite_examples_cell.chalice.sil
26 testThreadInheritanceE1.sil
27 oldC2SCases_controlflow.chalice.sil

Figure B.1: The original file names of the tests used in Section 3.7.1 to evaluate the
stability of Silicon’s performance by seeding verification failures. Referenced on page 93.

1 method test(ms1: Multiset[Ref], n: Int) {
2 inhale |ms1| == n
3 var ms2: Multiset[Ref] := ms1 intersection ms1
4 assert ms2 == ms1
5 assert |ms2| == n /* Fails without the preceding assertion */
6 }

Listing B.2: Illustrating an incompleteness in Viper’s axiomatisation of multisets: an
intermediate assertion is required to prove the final assertion. Referenced on page 94.
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1 function fac(n: Int): Int
2 requires 0 <= n
3 ensures 0 < result /* Encode inductive argument */
4 { n <= 1 ? 1 : n * fac(n - 1) }
5

6 method test_fac(n: Int)
7 requires 0 <= n
8 /* Requires function postcondition (or induction) */
9 ensures 0 < fac(n)
10 {}
11

12

13

14 field next: Ref
15

16 predicate list(this: Ref) {
17 acc(this.next) && (this.next != null ==> list(this.next))
18 }
19

20 function len(this: Ref): Int
21 requires list(this)
22 ensures 0 < result /* Encode inductive argument */
23 {
24 unfolding list(this) in
25 1 + (this.next == null ? 0 : len(this.next))
26 }
27

28 method test_len(this: Ref)
29 requires list(this)
30 ensures list(this)
31 /* Requires function postcondition (or induction) */
32 ensures 0 < len(this)
33 {}

Listing B.3: Illustrating an incompleteness that is due to not having built-in support
for induction: additional function postconditions are necessary in order to perform
inductive reasoning and to prove the method postconditions. Referenced on page 94.



186 Appendix B. Silicon

1 field next: Ref
2

3 predicate list(this: Ref) {
4 acc(this.next) && (this.next != null ==> list(this.next))
5 }
6

7 function len(this: Ref): Int
8 requires list(this)
9 ensures 0 < result /* Encode inductive argument */

10 {
11 unfolding list(this) in
12 1 + (this.next == null ? 0 : len(this.next))
13 }
14

15 function after(this: Ref, i: Int): Ref
16 requires list(this)
17 requires 0 <= i && i < len(this)
18 {
19 unfolding list(this) in
20 (i == 0 ? this.next : after(this.next, i - 1))
21 }
22

23 method test_recursion(this: Ref) {
24 inhale list(this) && len(this) == 3
25 assert unfolding list(this) in
26 unfolding list(this.next) in
27 unfolding list(this.next.next) in true
28 /* Fails without the preceding assertion */
29 assert after(this, 2) == null
30 }
31

32

33

34 function id(i: Int): Int { i }
35

36 method test_triggers1(xs: Seq[Int]) {
37 inhale 0 < |xs|
38 inhale forall i: Int :: {id(i)}
39 0 <= i && i < |xs| ==> xs[i] == i
40 /* The next assertions fails because the explicitly speci-
41 * fied trigger is too strict. Specifying the trigger
42 * {xs[i]}, or letting Viper select triggers automatical-
43 * ly, will allow the assertion to suceed.
44 */
45 assert xs[0] == 0
46 }
47

48 method test_triggers2(xs: Seq[Int]) {
49 inhale 0 < |xs|
50 inhale forall i: Int :: 0 <= i && i < |xs| ==> id(xs[i]) == i
51 /* The next assertion fails because the triggers automati-
52 * cally chosen by Viper (since none have been provided
53 * explicitly) are too strict: Viper choses
54 * {|xs|}{id(xs[i])} as the (alternative) triggers.
55 */
56 assert xs[0] == 0
57 }

Listing B.4: Illustrating an incompleteness arising fromdecisionsmadewhen designing
the Viper language: preventing non-terminating SMT solver runs by curbing the
unrolling of recursive functions and using triggers to control quantifier instantiations.

Referenced on page 94.
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B.1 Comparing VeriCool, VeriFast and Silicon

The examples shown in this section comprise various small tests that illustrate heap-
related incompletenesses discussed in the comparison of VeriCool, VeriFast and
Silicon in Section 3.7.3. Each test has been encoded for all three verifiers (if possible).

B.1.1 Definite Aliasing

The following examples are referenced on page 98.

1 class Cell {
2 int val;
3 }
4

5 class Tests {
6 void inhale_val(Cell c)
7 requires c != null;
8 ensures acc(c.val);
9 {
10 assume false;
11 }
12

13 void exhale_val(Cell c)
14 requires c != null &*& acc(c.val);
15 ensures true;
16 {
17 assume false;
18 }
19

20 void inhale_val_eq(Cell c, int i)
21 requires c != null &*& acc(c.val);
22 ensures acc(c.val) &*& c.val == i;
23 {
24 assume false;
25 }
26

27

28 void test01a(Cell c1, Cell c2)
29 requires c1 != null &*& c2 != null;
30 requires acc(c1.val) &*& c2 == c1;
31 requires c1.val == 1;
32 {
33 assert c2.val == 1;
34 }
35

36 void test01b(Cell c1, Cell c2)
37 requires c1 != null &*& c2 != null;
38 requires acc(c1.val) &*& c2 == c1;
39 {
40 inhale_val_eq(c1, 1);
41 assert c2.val == 1;
42 }
43

44 void test01v(Cell c1, Cell c2)
45 requires c1 != null &*& c2 != null;
46 requires acc(c1.val) &*& c1.val == 1;
47 {
48 assume c2 == c1;
49 assert c2.val == 1;
50 }
51

52

53 predicate pure bool eq(Cell c1, Cell c2) {
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54 return c1 == c2;
55 }
56

57 void test01d(Cell c1, Cell c2)
58 requires c1 != null &*& acc(c1.val) &*& c1.val == 0;
59 requires eq(c1, c2);
60 {
61 assert opening eq(c1, c2) in c2.val == 0;
62 }
63 }

Listing B.5: Testing VeriCool’s handling of the heap in the presence of definite aliasing.
Referenced on page 98.

1 #include <stdlib.h>
2

3 struct Cell {
4 int val;
5 };
6

7 void inhale_val(struct Cell* c, real p)
8 //@ requires 0 <= p && p <= 1;
9 //@ ensures [p]c->val |-> _;

10 {
11 //@ assume(false);
12 }
13

14 void exhale_val(struct Cell* c, real p)
15 //@ requires 0 <= p && p <= 1 &*& [p]c->val |-> _;
16 //@ ensures true;
17 {
18 //@ assume(false);
19 }
20

21 void inhale_val_eq(struct Cell* c, int i)
22 //@ requires c->val |-> _;
23 //@ ensures c->val |-> i;
24 {
25 //@ assume(false);
26 }
27

28

29 void test01a(struct Cell* c1, struct Cell* c2)
30 //@ requires c1->val |-> 1 &*& c2 == c1;
31 //@ ensures true;
32 {
33 //@ assert c2->val == 1;
34

35 //@ assume(false);
36 }
37

38 void test01b(struct Cell* c1, struct Cell* c2)
39 //@ requires c1->val |-> _ &*& c2 == c1;
40 //@ ensures true;
41 {
42 inhale_val_eq(c1, 1);
43 //@ assert c2->val == 1;
44

45 //@ assume(false);
46 }
47

48 void test01c(struct Cell* c1, struct Cell* c2)
49 //@ requires c1->val |-> 1;
50 //@ ensures true;
51 {
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52 //@ assume(c2 == c1);
53 //@ assert c2->val == 1;
54

55 //@ assume(false);
56 }
57

58

59 void test02a(struct Cell* c1, struct Cell* c2)
60 /*@ requires [1/3]c1->val |-> _ &*& c1 == c2
61 &*& [1/3]c2->val |-> _; @*/
62 //@ ensures true;
63 {
64 //@ assume(c1->val == 1);
65 exhale_val(c1, 1/3);
66 //@ assert c2->val == 1;
67

68 //@ assume(false);
69 }
70

71 void test02b(struct Cell* c1, struct Cell* c2)
72 //@ requires [1/3]c1->val |-> _;
73 //@ ensures true;
74 {
75 //@ assume(c1 == c2);
76 inhale_val(c2, 1/3);
77 //@ assume(c1->val == 1);
78 exhale_val(c1, 1/3);
79 //@ assert c2->val == 1;
80

81 //@ assume(false);
82 }
83

84

85 void test03a(struct Cell* c1, struct Cell* c2)
86 /*@ requires [1/3]c1->val |-> ?v &*& c1 == c2
87 &*& [1/3]c2->val |-> ?w; @*/
88 //@ ensures true;
89 {
90 //@ assert v == w;
91

92 //@ assume(false);
93 }
94

95 void test03b(struct Cell* c1, struct Cell* c2)
96 /*@ requires [1/3]c1->val |-> ?v &*& [1/3]c2->val |-> ?w
97 &*& c1 == c2; @*/
98 //@ ensures true;
99 {

100 //@ merge_fractions c2->val |-> _;
101 //@ assert v == w; // FAILS w/o merge_fractions
102

103 //@ assume(false);
104 }
105

106 void test03c(struct Cell* c1, struct Cell* c2)
107 //@ requires [1/3]c1->val |-> _ &*& [1/3]c2->val |-> _;
108 //@ ensures true;
109 {
110 //@ assume(c1 == c2);
111 //@ assume(c1->val == 1);
112 //@ assert c2->val == 1;
113 //@ merge_fractions c2->val |-> _;
114 exhale_val(c1, 1/3);
115 //@ assert c2->val == 1; // FAILS w/o merge_fractions
116

117 //@ assume(false);
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118 }
119

120

121 void test04a(struct Cell* c1, struct Cell* c2)
122 //@ requires [1/3]c1->val |-> _;
123 //@ ensures true;
124 {
125 inhale_val(c2, 1/3);
126 //@ assume(c1 == c2);
127 //@ assert [1/3]c1->val |-> _ &*& [1/3]c1->val |-> _;
128 //@ merge_fractions c1->val |-> _;
129 //@ assert [2/3]c1->val |-> _; // FAILS w/o merge_fractions
130 //@ assume(c1->val == 1);
131 exhale_val(c1, 1/3);
132 //@ assert c2->val == 1; // FAILS w/o merge_fractions
133

134 //@ assume(false);
135 }
136

137 void test04b(struct Cell* c1, struct Cell* c2)
138 //@ requires [1/3]c1->val |-> _ &*& [1/3]c2->val |-> _;
139 //@ ensures true;
140 {
141 //@ assume(c2->val == 1);
142 //@ assume(c1 == c2);
143 //@ merge_fractions c1->val |-> _;
144 exhale_val(c2, 1/3);
145 //@ assert c1->val == 1; // FAILS w/o merge_fractions
146

147 //@ assume(false);
148 }

Listing B.6: Testing VeriFast’s handling of the heap in the presence of definite aliasing.
Referenced on page 98.

1 field val: Int
2

3 method test01a(c1: Ref, c2: Ref)
4 requires acc(c1.val) && c2 == c1
5 requires c1.val == 1
6 {
7 assert c2.val == 1
8 }
9

10 method test01b(c1: Ref, c2: Ref)
11 requires acc(c1.val) && c2 == c1
12 {
13 inhale acc(c1.val) && c1.val == 1
14 assert c2.val == 1
15 }
16

17 method test01c(c1: Ref, c2: Ref)
18 requires acc(c1.val) && c1.val == 1
19 {
20 inhale c2 == c1
21 assert c2.val == 1
22 }
23

24

25 predicate eq(c1: Ref, c2: Ref) { c1 == c2 }
26

27 method test01d(c1: Ref, c2: Ref)
28 requires acc(c1.val) && c1.val == 0 && acc(eq(c1,c2))
29 {
30 assert unfolding acc(eq(c1, c2)) in c2.val == 0
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31 }
32

33

34 method test02a(c1: Ref, c2: Ref)
35 requires acc(c1.val, 1/3) && c1 == c2 && acc(c2.val, 1/3)
36 {
37 inhale c1.val == 1
38 exhale acc(c1.val, 1/3)
39 assert c2.val == 1
40 }
41

42 method test02b(c1: Ref, c2: Ref)
43 requires acc(c1.val, 1/3)
44 {
45 inhale c1 == c2
46 inhale acc(c2.val, 1/3)
47 inhale c1.val == 1
48 exhale acc(c1.val, 1/3)
49 assert c2.val == 1
50 }
51

52

53 method test03a(c1: Ref, c2: Ref, v: Int, w: Int)
54 requires acc(c1.val, 1/3) && c1.val == v
55 requires c1 == c2
56 requires acc(c2.val, 1/3) && c2.val == w
57 {
58 assert v == w
59 }
60

61 method test03b(c1: Ref, c2: Ref, v: Int, w: Int)
62 requires acc(c1.val, 1/3) && c1.val == v
63 requires acc(c2.val, 1/3) && c2.val == w
64 requires c1 == c2
65 {
66 assert v == w
67 }
68

69 method test03c(c1: Ref, c2: Ref)
70 requires acc(c1.val, 1/3) && acc(c2.val, 1/3)
71 {
72 inhale c1 == c2
73 inhale c1.val == 1
74 assert c2.val == 1
75 exhale acc(c1.val, 1/3)
76 assert c2.val == 1 // FAILS w/o preceding assert
77 }
78

79

80 method test04a(c1: Ref, c2: Ref)
81 requires acc(c1.val, 1/3)
82 {
83 inhale acc(c2.val, 1/3)
84 inhale c1 == c2
85 assert acc(c1.val, 2/3)
86 inhale c1.val == 1
87 exhale acc(c1.val, 1/3)
88 assert c2.val == 1 // FAILS w/o preceding assert
89 }
90

91 method test04b(c1: Ref, c2: Ref)
92 requires acc(c1.val, 1/3) && acc(c2.val, 1/3)
93 {
94 inhale c2.val == 1
95 inhale c1 == c2
96 assert true // Triggers a heap compression
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97 exhale acc(c2.val, 1/3)
98 assert c1.val == 1 // // FAILS w/o preceding assert
99 }
100

101

102 function reqval(c: Ref, p: Perm): Bool
103 requires none <= p && p <= write
104 requires acc(c.val, p)
105

106 method test05a(c1: Ref)
107 requires acc(c1.val, 1/3) && acc(c1.val, 1/3)
108 requires reqval(c1, 2/3)
109 {}
110

111 method test05b(c1: Ref, c2: Ref)
112 requires acc(c1.val, 1/3) && acc(c2.val, 1/3)
113 requires c1 == c2 && reqval(c1, 2/3)
114 {}

Listing B.7: Testing Silicon’s handling of the heap in the presence of definite aliasing.
Referenced on page 98.

B.1.2 Indefinite Aliasing

The following examples are referenced on page 98.

1 class Cell {
2 int val;
3 }
4

5 class Tests {
6 void test01(Cell c1, Cell c2, Cell c3)
7 requires c1 != null &*& c2 != null;
8 requires acc(c1.val) &*& acc(c2.val);
9 requires (c3 == c1 || c3 == c2);

10 {
11 assert acc(c3.val); // FAILS
12 }
13

14 void test02a(Cell c1, Cell c2, Cell c3)
15 requires c1 != null &*& c2 != null;
16 requires acc(c1.val) &*& acc(c2.val);
17 requires (c3 == c1 || c3 == c2);
18 {
19 c3.val = 0; // FAILS
20 }
21

22 void test02b(Cell c1, Cell c2, Cell c3)
23 requires c1 != null &*& c2 != null;
24 requires acc(c1.val) &*& acc(c2.val);
25 requires (c3 == c1 || c3 == c2);
26 {
27 if (c3 == c2) {
28 c3.val = 0;
29 }
30 }
31 }

Listing B.8: TestingVeriCool’s handling of the heap in the presence of indefinite aliasing.
Referenced on page 98.

1 #include "stdlib.h"
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2

3 struct Cell {
4 int val;
5 };
6

7

8 void test01(struct Cell* c1, struct Cell* c2, struct Cell* c3)
9 /*@ requires c1->val |-> _ &*& c2->val |-> _
10 &*& (c3 == c1 || c3 == c2); @*/
11 //@ ensures true;
12 {
13 //@ assert [_]c3->val |-> _; // FAILS
14

15 //@ assume(false);
16 }
17

18 void test02a(struct Cell* c1, struct Cell* c2, struct Cell* c3)
19 /*@ requires c1->val |-> _ &*& c2->val |-> _
20 &*& (c3 == c1 || c3 == c2); @*/
21 //@ ensures true;
22 {
23 c3->val = 0; // FAILS
24

25 //@ assume(false);
26 }
27

28 void test02b(struct Cell* c1, struct Cell* c2, struct Cell* c3)
29 /*@ requires c1->val |-> _ &*& c2->val |-> _
30 &*& (c3 == c1 || c3 == c2); @*/
31 //@ ensures true;
32 {
33 if (c3 == c2) {
34 c3->val = 0;
35 }
36

37 //@ assume(false);
38 }

Listing B.9: Testing VeriFast’s handling of the heap in the presence of indefinite aliasing.
Referenced on page 98.

1 field val: Int
2

3 method test01(c1: Ref, c2: Ref, c3: Ref)
4 requires acc(c1.val) && acc(c2.val) && (c3 == c1 || c3 == c2)
5 {
6 assert acc(c3.val) // FAILS
7 }
8

9 method test02a(c1: Ref, c2: Ref, c3: Ref)
10 requires acc(c1.val) && acc(c2.val) && (c3 == c1 || c3 == c2)
11 {
12 c3.val := 0 // FAILS
13 }
14

15 method test02b(c1: Ref, c2: Ref, c3: Ref)
16 requires acc(c1.val) && acc(c2.val) && (c3 == c1 || c3 == c2)
17 {
18 if (c3 == c2) {
19 c3.val := 0
20 }
21 }
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Listing B.10: Testing Silicon’s handling of the heap in the presence of indefinite aliasing.
Referenced on page 98.

B.1.3 Retrospective Aliasing

The following examples are referenced on page 98.

1 #include <stdlib.h>
2

3 struct Cell {
4 int val;
5 };
6

7 void exhale_val(struct Cell* c, real p)
8 //@ requires 0 <= p && p <= 1 &*& [p]c->val |-> _;
9 //@ ensures true;

10 {
11 //@ assume(false);
12 }
13

14

15 void test01(struct Cell* c1, struct Cell* c2)
16 //@ requires [1/3]c1->val |-> _ &*& [1/3]c2->val |-> _;
17 //@ ensures true;
18 {
19 //@ assume(c1->val == 1);
20 exhale_val(c1, 1/3);
21 //@ assume(c1 == c2);
22 //@ assert c2->val == 1; // FAILS
23

24 //@ assume(false);
25 }
26

27 void test02(struct Cell* c1, struct Cell* c2)
28 //@ requires [1/3]c1->val |-> _ &*& [1/3]c2->val |-> _;
29 //@ ensures true;
30 {
31 //@ assume(c1->val == 1);
32 /*@ if (c1 == c2) {
33 merge_fractions c2->val |-> _;
34 assert c2->val == 1;
35 } @*/
36 exhale_val(c1, 1/3);
37 //@ assume(c1 == c2);
38 //@ assert c2->val == 1;
39

40 //@ assume(false);
41 }

Listing B.11: Testing VeriFast’s handling of the heap in the presence of retrospective
aliasing. Referenced on page 98.

1 field val: Int
2

3 method test01(c1: Ref, c2: Ref)
4 requires acc(c1.val, 1/3) && acc(c2.val, 1/3)
5 {
6 inhale c1.val == 1
7 exhale acc(c1.val, 1/3)
8 inhale c1 == c2
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9 assert c2.val == 1 // FAILS
10 }
11

12 method test02a(c1: Ref, c2: Ref)
13 requires acc(c1.val, 1/3) && acc(c2.val, 1/3)
14 {
15 inhale c1.val == 1
16 label pre_exhale
17 exhale acc(c1.val, 1/3)
18 inhale c1 == c2
19 assert old[pre_exhale](c2.val == 1)
20 assert c2.val == 1
21 }
22

23 method test02b(c1: Ref, c2: Ref)
24 requires acc(c1.val, 1/3) && acc(c2.val, 1/3)
25 {
26 inhale c1.val == 1
27 if (c1 == c2) {
28 assert c2.val == 1
29 }
30 exhale acc(c1.val, 1/3)
31 inhale c1 == c2
32 assert c2.val == 1
33 }

Listing B.12: Testing Silicon’s handling of the heap in the presence of retrospective
aliasing. Referenced on page 98.

B.1.4 Path Conditions from Permissions

The following examples are referenced on pages 98, 99.

1 class Cell {
2 int val;
3 }
4

5 class Tests {
6 void inhale_val(Cell c)
7 requires c != null;
8 ensures acc(c.val);
9 {
10 assume false;
11 }
12

13

14 void test01(Cell c1, Cell c2)
15 requires c1 != null &*& c2 != null;
16 requires acc(c1.val) &*& acc(c2.val);
17 ensures c1 != c2;
18 {}
19

20 void test01a(Cell c1, Cell c2)
21 requires c1 != null &*& c2 != null;
22 {
23 inhale_val(c1);
24 inhale_val(c2);
25 assert c1 != c2; // FAILS
26 }
27

28 void test01b(Cell c1, Cell c2)
29 requires c1 != null &*& c2 != null;
30 {
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31 inhale_val(c1);
32 inhale_val(c2);
33 assume c1 == c2;
34 assert false; // FAILS
35 }
36

37

38 predicate pure bool pred_val(Cell c) {
39 return c != null &*& acc(c.val);
40 }
41

42 void test03a(Cell c1, Cell c2)
43 requires c1 != null &*& acc(c1.val);
44 requires pred_val(c2);
45 {
46 open pred_val(c2);
47 assert c1 != c2; // FAILS
48 }
49 }

Listing B.13: Testing to which extent VeriCool infers path conditions from heap-related
information. Referenced on pages 98, 99.

1 #include "stdlib.h"
2

3 struct Cell {
4 int val;
5 };
6

7 void inhale_val(struct Cell* c, real p)
8 //@ requires 0 <= p && p <= 1;
9 //@ ensures [p]c->val |-> _;

10 {
11 //@ assume(false);
12 }
13

14

15 void test01(struct Cell* c1, struct Cell* c2)
16 //@ requires c1->val |-> _ &*& c2->val |-> _;
17 //@ ensures true;
18 {
19 //@ assert c2 != c1;
20

21 //@ assume(false);
22 }
23

24 void test01a(struct Cell* c1, struct Cell* c2)
25 //@ requires true;
26 //@ ensures true;
27 {
28 inhale_val(c1, 1/1);
29 inhale_val(c2, 1/3);
30 //@ assert c2 != c1;
31

32 //@ assume(false);
33 }
34

35 void test01b(struct Cell* c1, struct Cell* c2)
36 //@ requires true;
37 //@ ensures true;
38 {
39 inhale_val(c1, 1/1);
40 inhale_val(c2, 1/3);
41 //@ assume (c1 == c2);
42 //@ assert false;
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43 }
44

45

46 void test02(struct Cell* c1, struct Cell* c2)
47 /*@ requires [1/3]c1->val |-> _
48 &*& [2/3]c2->val |-> _ &*& [1/3]c2->val |-> _; @*/
49 //@ ensures true;
50 {
51 //@ merge_fractions c1->val |-> _;
52 //@ merge_fractions c2->val |-> _;
53 //@ assert c2 != c1; // FAILS despite merge_fractions
54

55 if (c1 == c2) {
56 //@ merge_fractions c1->val |-> _;
57 //@ assert false; // FAILS w/o merge_fractions
58 }
59

60 //@ assume(false);
61 }
62

63 void test02a(struct Cell* c1, struct Cell* c2)
64 //@ requires true;
65 //@ ensures true;
66 {
67 inhale_val(c1, 1/2);
68 inhale_val(c1, 1/2);
69 inhale_val(c2, 1/3);
70 //@ merge_fractions c1->val |-> _;
71 //@ merge_fractions c2->val |-> _;
72 //@ assert c2 != c1; // FAILS despite merge_fractions
73

74 //@ assume(false);
75 }
76

77 void test02b(struct Cell* c1, struct Cell* c2)
78 //@ requires true;
79 //@ ensures true;
80 {
81 inhale_val(c1, 1/2);
82 inhale_val(c1, 1/2);
83 inhale_val(c2, 1/3);
84 //@ assume(c1 == c2);
85 //@ merge_fractions c1->val |-> _;
86 //@ merge_fractions c2->val |-> _;
87 //@ assert false; // FAILS w/o merge_fractions
88

89 //@ assume(false);
90 }
91

92

93 //@ predicate pred_val(struct Cell* c) = c->val |-> _;
94

95 void test03a(struct Cell* c1, struct Cell* c2)
96 //@ requires c1->val |-> _ &*& pred_val(c2);
97 //@ ensures true;
98 {
99 //@ open pred_val(c2);

100 //@ assert c1 != c2;
101

102 //@ assume(false);
103 }
104

105 void test03b(struct Cell* c1, struct Cell* c2)
106 /*@ requires [2/3]c1->val |-> _ &*& [2/3]pred_val(c2)
107 &*& c1 == c2; @*/
108 //@ ensures true;
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109 {
110 //@ open [2/3]pred_val(c2);
111 //@ assert false;
112 }
113

114 void test03c(struct Cell* c1, struct Cell* c2)
115 //@ requires [2/3]c1->val |-> _ &*& [2/3]pred_val(c2);
116 //@ ensures true;
117 {
118 //@ open [2/3]pred_val(c2);
119 //@ merge_fractions c1->val |-> _;
120 //@ assume(c1 == c2);
121 //@ assert false; // FAILS despite merge_fractions
122

123 //@ assume(false);
124 }
125

126

127 void test04(struct Cell* c1, struct Cell* c2)
128 /*@ requires [1/3]c1->val |-> ?v &*& [1/3]c2->val |-> ?w
129 &*& v != w; @*/
130 //@ ensures true;
131 {
132 //@ assert c1->val != c2->val;
133 //@ assert c1 != c2; // FAILS
134 }

Listing B.14: Testing to which extent VeriFast infers path conditions from heap-related
information. Referenced on pages 98, 99.

1 field val: Int
2

3 method test01(c1: Ref, c2: Ref)
4 requires acc(c1.val) && acc(c2.val)
5 {
6 assert c2 != c1
7 }
8

9 method test01a(c1: Ref, c2: Ref) {
10 inhale acc(c1.val)
11 inhale acc(c2.val)
12 assert c2 != c1
13 }
14

15 method test01b(c1: Ref, c2: Ref) {
16 inhale acc(c1.val)
17 inhale acc(c2.val, 1/3)
18 inhale c1 == c2
19 assert false
20 }
21

22

23 method test02(c1: Ref, c2: Ref)
24 requires acc(c1.val, 1/3)
25 requires acc(c2.val, 2/3) && acc(c2.val, 1/3)
26 {
27 assert c2 != c1
28

29 if (c1 == c2) {
30 assert false
31 }
32 }
33

34 method test02a(c1: Ref, c2: Ref) {
35 inhale acc(c1.val, 1/2)
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36 inhale acc(c1.val, 1/2)
37 inhale acc(c2.val, 1/3)
38 assert c2 != c1
39 }
40

41 method test02b(c1: Ref, c2: Ref) {
42 inhale acc(c1.val, 1/2)
43 inhale acc(c1.val, 1/2)
44 inhale acc(c2.val, 1/3)
45 inhale c1 == c2
46 assert false
47 }
48

49

50 predicate pred_val(c: Ref) {
51 acc(c.val)
52 }
53

54 method test03a(c1: Ref, c2: Ref)
55 requires acc(c1.val)
56 requires acc(pred_val(c2))
57 {
58 unfold acc(pred_val(c2))
59 assert c1 != c2
60 }
61

62 method test03b(c1: Ref, c2: Ref)
63 requires acc(c1.val, 2/3)
64 requires acc(pred_val(c2), 2/3)
65 requires c1 == c2
66 {
67 unfold acc(pred_val(c2), 2/3)
68 assert false
69 }
70

71 method test03c(c1: Ref, c2: Ref)
72 requires acc(c1.val, 2/3)
73 requires acc(pred_val(c2), 2/3)
74 {
75 unfold acc(pred_val(c2), 2/3)
76 inhale c1 == c2
77 assert false
78 }
79

80

81 method test04(c1: Ref, c2: Ref)
82 requires acc(c1.val, 1/3) && acc(c2.val, 1/3)
83 requires c1.val != c2.val
84 {
85 assert c2 != c1 // FAILS
86 }

Listing B.15: Testing to which extent Silicon infers path conditions from heap-related
information. Referenced on pages 98, 99.

B.1.5 Permission Introspection

The following examples are referenced on page 99.

1 field val: Int
2

3 /*
4 * inhale perm(x.f) > p (potentially unsound if permissions
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5 * are under-approximated)
6 */
7

8 method test01a(c1: Ref, c2: Ref)
9 requires acc(c1.val, 1/2) && acc(c2.val, 1/2) && c1 == c2

10 {
11 assume perm(c1.val) >= 1/1
12 assert false // FAILS expectedly
13 }
14

15 method test01b(c1: Ref, c2: Ref, c3: Ref)
16 requires acc(c1.val, 1/2)
17 requires acc(c2.val, 1/2) && acc(c2.val, 1/2)
18 requires c3 == c1 || c3 == c2
19 {
20 assume perm(c3.val) >= 1/1
21 assert false // FAILS expectedly
22 }
23

24 method test01c(c1: Ref, c2: Ref)
25 requires acc(c1.val, 1/2) && acc(c2.val, 1/2)
26 {
27 assume perm(c1.val) >= 1/1
28 assume c1 == c2
29 assert false // FAILS expectedly
30 }
31

32 method test01d(c1: Ref, c2: Ref)
33 requires acc(c1.val, 1/2) && acc(c2.val, 1/2)
34 {
35 assume perm(c1.val) >= 1/1
36 exhale acc(c1.val, 1/2)
37 assume c1 == c2
38 assert false // FAILS expectedly
39 }
40

41 /*
42 * exhale perm(x.f) < p (potentially unsound)
43 */
44

45 method test02a(c1: Ref, c2: Ref)
46 requires acc(c1.val, 1/2) && acc(c2.val, 1/2) && c1 == c2
47 {
48 assert perm(c1.val) <= 1/2 // FAILS expectedly
49 }
50

51 method test02b(c1: Ref, c2: Ref, c3: Ref)
52 requires acc(c1.val, 1/2) && acc(c2.val, 1/2)
53 requires acc(c3.val, 1/2)
54 requires c3 == c1 || c3 == c2
55 {
56 assert perm(c3.val) <= 1/2 // FAILS expectedly
57 }
58

59

60 /*
61 * exhale perm(x.f) > p (potentially incomplete)
62 */
63

64 method test03a(c1: Ref, c2: Ref)
65 requires acc(c1.val, 1/2) && acc(c2.val, 1/2) && c1 == c2
66 {
67 assert perm(c1.val) >= 1/1
68 }
69

70 method test03b(c1: Ref, c2: Ref, c3: Ref)
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71 requires acc(c1.val, 1/2) && acc(c2.val, 1/2)
72 requires acc(c3.val, 1/2)
73 requires c3 == c1 || c3 == c2
74 {
75 assert perm(c3.val) >= 1/1
76 }

Listing B.16: Tests that illustrate potential unsoundnesses and incompletenesses that
could arise if perm under-approximated permission amounts. Referenced on page 99.

1 #include <stdlib.h>
2

3 struct Cell {
4 int val;
5 };
6

7 void exhale_val(struct Cell* c, real p)
8 //@ requires 0 <= p && p <= 1 &*& [p]c->val |-> _;
9 //@ ensures true;
10 {
11 //@ assume(false);
12 }
13

14

15 /*
16 * inhale perm(x.f) > p (potentially unsound if permissions
17 * are under-approximated)
18 */
19

20 /* Definite aliasing */
21 void test01a(struct Cell* c1, struct Cell* c2)
22 /*@ requires [1/2]c1->val |-> _ &*& [1/2]c2->val |-> _
23 &*& c1 == c2; @*/
24 //@ ensures true;
25 {
26 ///@ merge_fractions c1->val |-> _;
27 //@ assert [?p]c1->val |-> _;
28 //@ assume(p >= 1/1);
29 //@ assert false; // HOLDS unsoundly w/o merge_fractions
30 }
31

32 /* Indefinite aliasing */
33 void test01b(struct Cell* c1, struct Cell* c2, struct Cell* c3)
34 /*@ requires [1/2]c1->val |-> _ &*& [1/2]c2->val |-> _
35 &*& [1/2]c3->val |-> _
36 &*& (c3 == c1 || c3 == c2); @*/
37 //@ ensures true;
38 {
39 //@ merge_fractions c1->val |-> _;
40 //@ assert [?p]c3->val |-> _;
41 //@ assume(p >= 1/1);
42 //@ assert false; // HOLDS unsoundly
43 }
44

45 /* Retrospective aliasing */
46 void test01c(struct Cell* c1, struct Cell* c2)
47 //@ requires [1/2]c1->val |-> _ &*& [1/2]c2->val |-> _;
48 //@ ensures true;
49 {
50 //@ assert [?p]c1->val |-> _;
51 //@ assume(p >= 1/1);
52 //@ assume(c1 == c2);
53 //@ assert false; // HOLDS unsoundly
54 }
55
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56 /* Retrospective aliasing */
57 void test01d(struct Cell* c1, struct Cell* c2)
58 //@ requires [1/2]c1->val |-> _ &*& [1/2]c2->val |-> _;
59 //@ ensures true;
60 {
61 //@ assert [?p]c1->val |-> _;
62 //@ assume(p >= 1/1);
63 exhale_val(c1, 1/2);
64 //@ assume(c1 == c2);
65 //@ assert false; // HOLDS unsoundly
66 }
67

68

69 /*
70 * exhale perm(x.f) < p (potentially unsound)
71 */
72

73 void test02a(struct Cell* c1, struct Cell* c2)
74 /*@ requires [1/2]c1->val |-> _ &*& [1/2]c2->val |-> _
75 &*& c1 == c2; @*/
76 //@ ensures true;
77 {
78 //@ merge_fractions c1->val |-> _;
79 //@ assert [?p]c1->val |-> _;
80 //@ assert p <= 1/2; // HOLDS unsoundly w/o merge_fractions
81

82 //@ assume(false);
83 }
84

85 void test02b(struct Cell* c1, struct Cell* c2, struct Cell* c3)
86 /*@ requires [1/2]c1->val |-> _ &*& [1/2]c2->val |-> _
87 &*& [1/2]c3->val |-> _
88 &*& (c3 == c1 || c3 == c2); @*/
89 //@ ensures true;
90 {
91 //@ merge_fractions c1->val |-> _;
92 //@ assert [?p]c3->val |-> _;
93 //@ assert p <= 1/2; // HOLDS unsoundly
94

95 //@ assume(false);
96 }
97

98

99 /*
100 * exhale perm(x.f) > p (potentially incomplete)
101 */
102

103 void test03a(struct Cell* c1, struct Cell* c2)
104 /*@ requires [1/2]c1->val |-> _ &*& [1/2]c2->val |-> _
105 &*& c1 == c2; @*/
106 //@ ensures true;
107 {
108 //@ merge_fractions c1->val |-> _;
109 //@ assert [?p]c1->val |-> _;
110 //@ assert p >= 1/1; // FAILS w/o merge_fractions
111

112 //@ assume(false);
113 }
114

115 void test03b(struct Cell* c1, struct Cell* c2, struct Cell* c3)
116 /*@ requires [1/2]c1->val |-> _ &*& [1/2]c2->val |-> _
117 &*& [1/2]c3->val |-> _
118 &*& (c3 == c1 || c3 == c2); @*/
119 //@ ensures true;
120 {
121 //@ merge_fractions c1->val |-> _;
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122 //@ assert [?p]c3->val |-> _;
123 //@ assert p >= 1/1; // FAILS
124 }

Listing B.17: Encodings of the tests from Listing B.16 that illustrate unsoundnesses
and incompletenesses that arise from under-approximating permission amounts. Ref-

erenced on page 99.

B.1.6 Object Allocation

The following examples are referenced on page 99.

1 class Cell {
2 Cell val;
3

4 Cell()
5 ensures acc(val);
6 {}
7 }
8

9 class Tests {
10 void test01() {
11 Cell c1 = new Cell();
12 Cell c2 = new Cell();
13 assert acc(c1.val) && acc(c2.val);
14 assert c1 != c2; // FAILS
15 }
16

17 void test02(Cell c1) {
18 Cell c2 = new Cell();
19 assert c1 != c2; // FAILS
20 }
21

22 void test04(Cell c1)
23 requires c1 != null &*& acc(c1.val);
24 requires c1.val != null &*& acc(c1.val.val);
25 {
26 Cell c2 = new Cell();
27 assert c2 != c1.val || c2 != c1.val.val; // FAILS
28 }
29

30

31 predicate pure bool pred_val(Cell c) {
32 return c != null &*& acc(c.val);
33 }
34

35 void test05(Cell c1)
36 requires pred_val(c1);
37 {
38 Cell c2 = new Cell();
39 open pred_val(c1);
40 assert c2 != c1.val; // FAILS
41 }
42 }

Listing B.18: Testing to which extent VeriCool infers reference disequalities from object
allocation. Referenced on page 99.

1 #include "stdlib.h"
2

3 struct Cell {
4 struct Cell* val;
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5 };
6

7

8 void test01()
9 //@ requires true;

10 //@ ensures true;
11 {
12 struct Cell* c1 = malloc(sizeof(struct Cell));
13 struct Cell* c2 = malloc(sizeof(struct Cell));
14 if (c1 == 0 || c2 == 0) abort();
15 //@ assert c1 != c2;
16

17 //@ assume(false);
18 }
19

20 void test02(struct Cell* c1)
21 //@ requires c1 != 0;
22 //@ ensures true;
23 {
24 struct Cell* c2 = malloc(sizeof(struct Cell));
25 if(c2 == 0) abort();
26 //@ assert c1 != c2; // FAILS
27

28 //@ assume(false);
29 }
30

31 void test03(list<struct Cell*> cs)
32 //@ requires 0 < length(cs) && head(cs) != 0;
33 //@ ensures true;
34 {
35 struct Cell* c2 = malloc(sizeof(struct Cell));
36 if (c2 == 0) abort();
37 //@ assert c2 != head(cs); // FAILS
38

39 //@ assume(false);
40 }
41

42 void test04(struct Cell* c1)
43 /*@ requires [1/3]c1->val |-> ?c1v
44 &*& [1/3]c1v->val |-> ?c1vv; @*/
45 //@ ensures true;
46 {
47 struct Cell* c2 = malloc(sizeof(struct Cell));
48 if (c2 == 0) abort();
49 //@ assert c2 != c1v;
50 //@ assert c2 != c1vv; // FAILS
51

52 //@ assume(false);
53 }

Listing B.19: Testing to which extent VeriFast infers reference disequalities from object
allocation. Referenced on page 99.

1 field val: Ref
2

3 method test01() {
4 var c1: Ref; c1 := new(val)
5 var c2: Ref; c2 := new(val)
6 assert c1 != c2
7 }
8

9 method test02(c1: Ref) {
10 var c2: Ref; c2 := new(val)
11 assert c1 != c2
12 }
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13

14 method test03(cs: Seq[Ref])
15 requires 0 < |cs|;
16 {
17 var c2: Ref; c2 := new(val)
18 assert c2 != cs[0]
19 }
20

21 method test04(c1: Ref)
22 requires acc(c1.val, 1/3) && acc(c1.val.val, 1/3)
23 {
24 var c2: Ref; c2 := new(val)
25 assert c2 != c1.val && c2 != c1.val.val
26 }
27

28

29 predicate pred_val(c: Ref) {
30 acc(c.val)
31 }
32

33 method test05(c1: Ref)
34 requires acc(pred_val(c1))
35 {
36 var c2: Ref; c2 := new(val)
37 unfold acc(pred_val(c1))
38 assert c2 != c1.val // FAILS
39 }
40

41

42 predicate abs(c: Ref)
43

44 function fun(c: Ref): Ref
45 requires acc(abs(c))
46

47 method test06(c1: Ref)
48 requires acc(abs(c1))
49 {
50 var c2: Ref; c2 := new(val)
51 assert c2 != fun(c1) // FAILS
52 }

Listing B.20: Testing to which extent Silicon infers reference disequalities from object
allocation. Referenced on page 99.

B.1.7 Function Unrolling Depth

The following examples are referenced on pages 99, 100.

1 class Node {
2 Node next;
3

4 Node()
5 ensures acc(next) &*& next == null;
6 {}
7

8 predicate pure bool node() {
9 return acc(next)
10 &*& ifthenelse(next != null, next.node(), true);
11 }
12

13 pure int length()
14 requires node();
15 ensures result > 0;
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16 {
17 return
18 1 + opening node() in
19 ifthenelse(next != null, next.length(), 0);
20 }
21 }
22

23 class Client {
24 void test01() {
25 Node n1 = new Node();
26 n1.next = null;
27 close n1.node();
28

29 Node n2 = new Node();
30 n2.next = n1;
31 close n2.node();
32

33 assert n2.length() == 2; // FAILS
34 }
35

36 void test02(Node n4)
37 requires n4 != null &*& n4.node() &*& n4.length() == 4;
38 {
39 open n4.node();
40 open n4.next.node();
41 open n4.next.next.node();
42 open n4.next.next.next.node();
43

44 assert n4.next.next.next.next == null; // FAILS
45 }
46

47 void test03(Node n)
48 requires n != null &*& n.node();
49 ensures n.node();
50 ensures n.length() > 0;
51 /* FAILS: Function postconditions appear to be ignored */
52 {
53 open n.node(); // Do not ...
54 close n.node(); // ... help
55 }
56 }

Listing B.21: A VeriCool example illustrating that the depth to which the solver can
unroll function definitions should be determined dynamically. Referenced on pages 99,

100.

1 field next: Ref
2

3 predicate node(this: Ref) {
4 acc(this.next) && (this.next != null ==> acc(node(this.next)))
5 }
6

7 function length(this: Ref): Int
8 requires acc(node(this))
9 ensures result > 0

10 {
11 1 + unfolding acc(node(this)) in
12 this.next == null ? 0 : length(this.next)
13 }
14

15 method test01() {
16 var n1: Ref; n1 := new(next)
17 n1.next := null
18 fold acc(node(n1))
19
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20 var n2: Ref; n2 := new(next)
21 n2.next := n1
22 fold acc(node(n2))
23

24 assert length(n2) == 2
25 }
26

27 method test02(n4: Ref)
28 requires acc(node(n4)) && length(n4) == 4
29 {
30 unfold acc(node(n4))
31 unfold acc(node(n4.next))
32 unfold acc(node(n4.next.next))
33 unfold acc(node(n4.next.next.next))
34

35 assert n4.next.next.next.next == null
36 }
37

38 method test03(n: Ref)
39 requires acc(node(n))
40 ensures acc(node(n)) && length(n) > 0
41 {}

Listing B.22: A Silicon example illustrating that the depth to which the solver can
unroll function definitions should be determined dynamically. Referenced on pages 99,

100.

1 #include "stdlib.h"
2

3 struct Node {
4 struct Node* next;
5 };
6

7 /*@
8 predicate node(struct Node *this; int len) =
9 this != 0
10 &*& this->next |-> ?nxt
11 &*& (nxt != 0
12 ? ( node(nxt, ?nxtlen)
13 &*& nxtlen > 0 &*& len == 1 + nxtlen)
14 : len == 1);
15 @*/
16

17 void test01()
18 //@ requires true;
19 //@ ensures true;
20 {
21 struct Node* n1 = malloc(sizeof(struct Node));
22 if(n1 == 0) abort();
23 n1->next = 0;
24 //@ close node(n1, ?len1);
25

26 struct Node* n2 = malloc(sizeof(struct Node));
27 if(n2 == 0) abort();
28 n2->next = n1;
29 //@ close node(n2, ?len2);
30

31 //@ assert len2 == 2; // SUCCEEDS
32

33 //@ assume(false);
34 }
35

36 void test02(struct Node* n4)
37 //@ requires node(n4, ?len4) &*& len4 == 4;
38 //@ ensures true;
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39 {
40 //@ open node(n4, len4);
41 //@ open node(n4->next, _);
42 //@ open node(n4->next->next, _);
43 //@ open node(n4->next->next->next, _);
44 //@ assert n4->next->next->next->next == 0;
45

46 //@ assume(false);
47 }
48

49 void test03(struct Node* n)
50 //@ requires node(n, ?len);
51 //@ ensures node(n, len) &*& len > 0;
52 // len > 0 FAILS w/o open-close pair
53 {
54 //@ open node(n, len);
55 //@ close node(n, len);
56 }

Listing B.23: A VeriFast example illustrating how the linked-list example is encoded in
VeriFast. Referenced on pages 99, 100.

B.1.8 Predicate Unfolding Depth

The following examples are referenced on page 100.

1 class Node {
2 Node next;
3 int val;
4

5 /* CRASH: The definition of node01 results in a
6 * StackOverflowError, probably during the predicate’s
7 * well-definedness check.
8 */
9

10 predicate pure bool node01() {
11 return
12 acc(next) &*& acc(val) &*&
13 ifthenelse(
14 next != null,
15 next.node01()
16 &*& opening next.node01() in val < next.val,
17 true);
18 }
19

20 /* CRASH: The definitions of node02 and get02 result in a
21 * StackOverflowError, probably during the well-definedness
22 * check of the predicate or the function.
23 */
24

25 predicate pure bool node02() {
26 return
27 acc(next) &*& acc(val) &*&
28 ifthenelse(
29 next != null,
30 next.node02() &*& val < next.get02(),
31 true);
32 }
33

34 pure int get02()
35 requires node02();
36 { return opening node02() in val; }
37 }
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Listing B.24: A VeriCool example illustrating that the symbolic evaluation of an
unfolding expression can indefinitely recurse if no explicit countermeasures are taken.

Referenced on page 100.

1 field next: Ref
2 field val: Int
3

4 predicate node01(this: Ref) {
5 acc(this.next) && acc(this.val) &&
6 (this.next != null ==>
7 acc(node01(this.next)) &&
8 unfolding acc(node01(this.next)) in
9 this.val < this.next.val)
10 }
11

12 method test01(n: Ref)
13 requires acc(node01(n))
14 {
15 assert
16 unfolding acc(node01(n)) in
17 n.next != null ==>
18 unfolding acc(node01(n.next)) in n.val < n.next.val
19 }
20

21 predicate node02(this: Ref) {
22 acc(this.next) && acc(this.val) &&
23 (this.next != null ==>
24 acc(node02(this.next)) && this.val < get02(this.next))
25 }
26

27 function get02(this: Ref): Int
28 requires acc(node02(this))
29 { unfolding acc(node02(this)) in this.val }
30

31 method test02(n: Ref)
32 requires acc(node02(n))
33 {
34 assert
35 unfolding acc(node02(n)) in
36 n.next != null ==> n.val < get02(n.next)
37 }

Listing B.25: An example illustrating that Silicon prevents indefinitely recursing sym-
bolic evaluations of unfolding expressions. Referenced on page 100.
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Appendix C

Quantified Permissions

Listing C.1 shows an encoding of the running example fromChapter 4. The example is
included as parallel-replace in the test set described in Section 4.5. The encoding
uses the array domain discussed in Section 2.5, and parameterised macros (first used
in Section 2.2.2), which are inlined similarly to C-style macros, to allow reusing pre-
and postconditions. The parallel recursive calls are modelled by appropriate exhale
(fork) and inhale (join) statements.

1 define pre1(a, l, r)
2 0 <= l && l < r && r <= len(a)
3 define pre2(a, l, r)
4 forall i: Int :: l <= i && i < r ==> acc(loc(a, i).val)
5 define post1(a, l, r)
6 pre2(a, l, r)
7 define post2(a, l, r)
8 forall i: Int :: l <= i && i < r ==>
9 (old(loc(a, i).val == from)
10 ? loc(a, i).val == to
11 : loc(a, i).val == old(loc(a, i).val))
12

13 method replace(a: Array, left: Int, right: Int,
14 from: Int, to: Int)
15

16 requires pre1(a, left, right)
17 requires pre2(a, left, right)
18 ensures post1(a, left, right)
19 ensures post2(a, left, right)
20 {
21 if (right - left <= 1) {
22 if(loc(a, left).val == from) {
23 loc(a, left).val := to
24 }
25 } else {
26 var mid: Int := left + (right - left) \ 2
27

28 //fork-left
29 exhale pre1(a, left, mid) && pre2(a, left, mid)
30

31 //fork-right
32 exhale pre1(a, mid, right) && pre2(a, mid, right)
33

34 //join-left
35 inhale post1(a, left, mid) && post2(a, left, mid)
36

37 //join-right
38 inhale post1(a, mid, right) && post2(a, mid, right)
39 }
40 }

Listing C.1: The running example from Listing 4.1, encoded in Viper.
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Listing C.2 shows a client that uses replace, and a heap-dependent boolean func-
tion contains that yields true if an array contains a given value in the array prefix
[0..before). contains is intentionally left abstract (that is, it has no body) to demon-
strate that the only way of reasoning about the function is via function framing, which
indeed allows proving the final assertion.

1 method client(a: Array)
2 requires 1 < len(a)
3 requires forall i: Int ::
4 0 <= i && i < len(a) ==> acc(loc(a, i).val)
5 requires contains(a, 5, 1)
6 {
7 replace(a, 1, len(a), 5, 7)
8 assert contains(a, 5, 1) // Requires function framing
9 }

10

11 function contains(a: Array, v: Int, before: Int): Bool
12 requires 0 <= before && before <= len(a)
13 requires forall i: Int ::
14 0 <= i && i < before ==> acc(loc(a, i).val)

Listing C.2: Client of the replacemethod from Listing C.1. Function framing allows
proving the assertion in method client.

Listing C.3 shows an encoding of a graph-marking algorithm in Viper; included as
graph-marking in the test set described in Section 4.5.

The macro INV describes a graph in terms of accessibility predicates and closure
properties over a given set of nodes (of the graph): the first three foralls denote
(quantified) permissions to the fields of each node in the set of nodes, the remaining
two foralls express that the set of nodes is closed under following the left and
right fields.

1 field left: Ref
2 field right: Ref
3 field is_marked: Bool
4

5 /* Automatically chosen triggers are not always ideal, using
6 * hand-picked triggers can improve performance noticeably, as
7 * witnessed by this example.
8 */
9

10 define INV(nodes)
11 !(null in nodes)
12 && (forall n: Ref :: n in nodes ==> acc(n.left))
13 && (forall n: Ref :: n in nodes ==> acc(n.right))
14 && (forall n: Ref :: n in nodes ==> acc(n.is_marked))
15 && (forall n: Ref :: {n.left in nodes}{n in nodes, n.left}
16 n in nodes && n.left != null ==> n.left in nodes)
17 && (forall n: Ref :: {n.right in nodes}{n in nodes, n.right}
18 n in nodes && n.right != null ==> n.right in nodes)
19

20 method trav_rec(nodes: Set[Ref], node: Ref)
21 requires node in nodes && INV(nodes)
22 requires !node.is_marked
23

24 ensures node in nodes && INV(nodes)
25

26 /* We do not unmark nodes. This allows us to prove that the
27 * current node will be marked.
28 */
29 ensures forall n: Ref :: {n in nodes, n.is_marked}
30 n in nodes ==> (old(n.is_marked) ==> n.is_marked)
31 ensures node.is_marked



Appendix C. Quantified Permissions 213

32

33 /* The nodes is not being modified. */
34 ensures forall n: Ref :: {n in nodes, n.left}
35 n in nodes ==> (n.left == old(n.left))
36 ensures forall n: Ref :: {n in nodes, n.right}
37 n in nodes ==> (n.right == old(n.right))
38

39 /* Propagation of the marker. */
40 ensures forall n: Ref :: {n in nodes, n.is_marked}
41 {n in nodes, n.left.is_marked}
42 n in nodes ==> ( old(!n.is_marked)
43 && n.is_marked ==>
44 (n.left == null || n.left.is_marked))
45 ensures forall n: Ref :: {n in nodes, n.is_marked}
46 {n in nodes, n.right.is_marked}
47 n in nodes ==> ( old(!n.is_marked)
48 && n.is_marked ==>
49 (n.right == null || n.right.is_marked))
50 {
51 node.is_marked := true
52

53 if (node.left != null && !node.left.is_marked) {
54 trav_rec(nodes, node.left)
55 }
56

57 if (node.right != null && !node.right.is_marked) {
58 trav_rec(nodes, node.right)
59 }
60 }

Listing C.3: An encoding of a simple graph-marking algorithm in Viper.

Listing C.4 shows a client that asserts that the graph marking algorithm indeed marks
all nodes of a connected graph; the same assertions fails in the second client shown
in Listing C.5 because its graph contains unconnected nodes.

1 method client_success() {
2 var a: Ref; a := new(*); a.is_marked := false
3 var b: Ref; b := new(*); b.is_marked := false
4

5 a.left := b; a.right := null
6 b.left := null; b.right := a
7

8 var nodes: Set[Ref] := Set(a, b)
9

10 assert forall n: Ref :: n in nodes ==> !n.is_marked
11

12 trav_rec(nodes, a)
13

14 assert forall n: Ref :: n in nodes ==> n.is_marked
15 }

Listing C.4: A client of the graph marking algorithm that sets up a small graph and
asserts that all nodes in the graph have been marked.

1 method client_failure() {
2 var a: Ref; a := new(*); a.is_marked := false
3 var b: Ref; b := new(*); b.is_marked := false
4

5 a.left := a; a.right := a;
6 b.left := a; b.right := a;
7

8 var nodes: Set[Ref] := Set(a, b)
9
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10 assert forall n: Ref :: n in nodes ==> !n.is_marked
11

12 trav_rec(nodes, a)
13

14 /* The assertion is expected to fail because b is in nodes,
15 * but b is not reachable from a
16 */
17 assert forall n: Ref :: n in nodes ==> n.is_marked
18 }

Listing C.5: A client of the graph marking algorithm that sets up a small graph, but
node b is not reachable from the start node and thus not marked, which makes the

final assertion fail.

Listing C.6 demonstrates that the heap management algorithms used in the context
of quantified permissions can handle disjunctive aliasing (discussed in Section 3.4.2),
unlike the greedy algorithms that Silicon uses per default.

1 field val: Int
2

3 define MARK_val_FOR_QP
4 /* Using field val in a quantified permission assertion marks
5 * it as a field for which the QP algorithms are to be used.
6 * Note that the assertion is vacuous and does not specify any
7 * permissions.
8 */
9 forall c: Ref :: false ==> acc(c.val)

10

11 method test01(c1: Ref, c2: Ref, c3: Ref)
12 requires acc(c1.val) && acc(c2.val) && (c3 == c1 || c3 == c2)
13 ensures MARK_val_FOR_QP
14 {
15 assert acc(c3.val)
16 }
17

18 method test02a(c1: Ref, c2: Ref, c3: Ref)
19 requires acc(c1.val) && acc(c2.val) && (c3 == c1 || c3 == c2)
20 ensures MARK_val_FOR_QP
21 {
22 c3.val := 0
23 }

Listing C.6: The disjunctive aliasing tests from Listing B.10 succeed if the heap man-
agement algorithms for quantified permissions are used. Referenced on page 113.
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Magic Wands

1 field val: Int
2 field next: Ref
3

4 predicate list(ys: Ref) {
5 acc(ys.val) && acc(ys.next)
6 && (ys.next != null ==> acc(list(ys.next)))
7 }
8

9 function sum_rec(ys: Ref): Int
10 requires acc(list(ys))
11 {
12 unfolding acc(list(ys)) in
13 ys.val + (ys.next == null ? 0 : sum_rec(ys.next)) }
14

15 method sum_it(ys: Ref) returns (sum: Int)
16 requires ys != null && acc(list(ys))
17 ensures acc(list(ys))
18 ensures sum == old(sum_rec(ys))
19 {
20 var xs: Ref := ys
21 sum := 0
22

23 define A xs != null ==> acc(list(xs))
24 define B acc(list(ys))
25

26 package A --* B
27

28 while (xs != null)
29 invariant xs != null ==> acc(list(xs))
30 invariant A --* B
31 invariant sum == old(sum_rec(ys))
32 - (xs == null ? 0 : sum_rec(xs))
33 {
34 wand w := A --* B /* Give magic wand instance the name w */
35

36 var zs: Ref := xs /* Value of xs at start of iteration */
37 unfold acc(list(xs))
38 sum := sum + xs.val
39 xs := xs.next
40

41 package A --* folding acc(list(zs)) in applying w in B
42 }
43

44 apply A --* B
45 }

Listing D.1: The running example from Chapter 5: a straightforward iterative imple-
mentation to calculate the sum of the nodes in a linked list. Referenced on page 129.
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