
Lightweight Support for Magic Wands in an
Automatic Verifier

Malte Schwerhoff and Alexander J. Summers

ETH Zurich, Switzerland
malte.schwerhoff@inf.ethz.ch

alexander.summers@inf.ethz.ch

Abstract. Permission-based verification logics such as separation logic
have led to the development of many practical verification tools over
the last decade. Verifiers employ the separating conjunction A ∗ B to
elegantly handle aliasing problems, framing, race conditions, etc.
Introduced along with the separating conjunction, the magic wand con-
nective, written A −∗ B, can describe hypothetical modifications of the
current state, and provide guarantees about the results. Its formal seman-
tics involves quantifying over states: as such, the connective is typically
not supported in automatic verification tools. Nonetheless, the magic
wand has been shown to be useful in by-hand and mechanised proofs,
particularly for specifying loop invariants and partial data structures.
In this paper, we show how to integrate support for the magic wand
into an automatic verifier, requiring low specification overhead from the
tool user. We present additional features to make the magic wand inter-
act elegantly with abstract predicates, abstraction functions and “old”
expressions. Our solution is compatible with a variety of logics and un-
derlying implementation techniques.
Our approach is implemented, and a prototype is available to download.

1 Introduction

Permission-based verification logics, most notably separation logic [15], have
been widely developed in recent years, both to explore their theoretical proper-
ties and to serve as the bases for a variety of practical tools. The most well-known
feature of separation logic is its separating conjunction connective, ∗. An asser-
tion of the form A ∗ B intuitively expresses that the two conjuncts hold for
separate portions of the program heap; support for this connective can be used
to handle aliasing, framing, race conditions etc.

The magic wand connective −∗ was introduced along with the separating
conjunction. In a semantics based on partial heaps h (i.e., heaps modelled by
partial functions), its meaning can be defined as follows:

h ⊧ A −∗B ⇔ ∀h′ ⊥ h. (h′ ⊧ A ⇒ h ⊎ h′ ⊧ B)

Here, h′ ⊥ h expresses that the two states are compatible (neither do both require
access to the same heap location, nor do they disagree on any heap values), while



h ⊎ h′ denotes the composition of two partial heaps. Informally, an assertion of
the form A −∗ B can be understood as describing the effect of a hypothetical
modification of the current state (h, above): “if we add on any partial heap
satisfying A, then B will hold in the resulting state”.

Despite being included in the earliest works on separation logic, the magic
wand connective is generally not supported in automatic verifiers built upon
separation logic (and related) theories [2, 6, 8, 13]. The quantification over states
in the wand’s semantics makes lightweight support for the wand difficult, and
with no user direction, reasoning with magic wand assertions is undecidable [5].

The magic wand is, however, an important reasoning tool, particularly for
specifying partial versions of data structures, or protocols regarding their modi-
fication [10, 7, 9]. When working directly with loop invariants, iterative traversals
of data structures can be awkward to specify [21, 14] in separation logics; as we
illustrate in this paper, the magic wand can provide a simple solution.

Contributions. In this paper, we provide support for the magic wand in an
automated verifier, with lightweight annotation overhead for the user. The core
of our approach is an algorithm to automatically compute footprints for magic
wand instances, on which we build our encoding of wand-related operations. We
present extensions of this approach to integrate ghost operations (such as folding
predicates), and a novel expression construct (“now” expressions) which enables
functional properties of wands to be simply expressed. The running example
in our paper focuses on specifying a loop invariant, but our support for magic
wands is general, and can be directly employed for other use-cases. Our approach
is implemented, and our prototype is available to download [1].

2 Background and Presentation

In the PhD of Smans [19], the verification logic implicit dynamic frames was
introduced, providing permission-based reasoning similar to separation logic
(which can be encoded [17]), but with specifications closer to the (object-oriented)
programming language. We present our work with respect to a variant of implicit
dynamic frames, based on that used in the Chalice [13] tool.

Definition 1 (Assertions and Expressions). Assertions, ranged over by A,
and expressions, ranged over by e, are defined as follows (in which x ranges over
variables, f over field names, g over functions, P over predicates):

A ∶∶= e ∣ acc(e.f) ∣ P (e) ∣ A && A ∣ e⇒ A ∣ A −∗A
e ∶∶= x ∣ e.f ∣ g(e) ∣ !e ∣ e op e ∣ e ? e ∶ e ∣ unfoldingP (e)in e ∣ old(e)

Permissions are managed in the logic via accessibility predicates acc(e.f), which
denote the permission to access heap location e.f. The conjunction && behaves
as the separating conjunction ∗ in separation logics; in particular, an assertion
acc(x.f) && acc(y.f) is analogous to the separation logic assertion x.f ↦ ∗

2



y.f ↦ , and implies that x ≠ y. P (e) represents an instance of a predicate,
while g(e) is an invocation of a function; in this paper, we provide only unary
predicates and functions, for simplicity of presentation.

In contrast to separation logic, implicit dynamic frames allows heap-dependent
expressions such as x.f1.f2 > 0 to be used in assertions. This allows for a differ-
ent style of specification; in particular, heap-dependent functions can be defined
and used in expressions, similarly to the use of pure methods in assertions in
first-order-logic-based approaches such as e.g. JML [11]. Heap-dependent expres-
sions are only guaranteed a meaningful semantics when they are framed by the
permissions held in the state in which they are evaluated, meaning that for any
heap location dereferenced by the expression, a corresponding permission must
currently be held. Accessing heap locations in program statements is similarly
restricted; e.g. a field read x ∶= y.f is allowed only in states in which a permission
to the location y.f is held. An assertion is said to be self-framing if it requires
at least permissions to those locations on which the expressions it mentions de-
pend. For example, the assertion x.f > 0 is not self-framing, but the assertion
acc(x.f) ∗ x.f > 0 is. All assertions expressible in separation logic are self-framing
by construction [17]. To simplify this check, we require permissions to locations
to be syntactically mentioned before the location is dereferenced in an assertion
(this is analogous to the restriction in some separation-logic-based tools that
logical variables be bound to heap locations before their use).

2.1 Programming Language and Running Example

We present our work in the context of a small intermediate verification language
called SIL, which includes variables and object fields, methods with pre/post-
conditions, loops with invariants and if-conditionals. From a verification perspec-
tive, proof obligations can be expressed via exhaling and inhaling assertions [13],
which are permission-aware analogues of traditional assume/assert statements
used to express verification conditions. An operation exhale A (where A is an
assertion) can be understood to assert all of the logical properties described by
A, and to give away all of the permissions described by the assertion. inhale A
is the dual operation: it assumes the logical properties, and adds the permis-
sions to the current state. Thus, for example, a method call can be modelled by
exhaling the method’s precondition, and inhaling its postcondition.

Figure 1 shows a simple SIL program used as our running example. Un-
bounded data structures can be specified in SIL via recursive predicates [16],
such as List1, here. An instance of this predicate (written List(x)) represents
permissions to all directly and transitively (via next) reachable fields. Permis-
sions folded inside a predicate instance are not directly accessible by the verifier
until the predicate instance is unfolded ; the unfold statement on line 26 di-
rects the verifier to exchange the predicate instance for its body, making the
permissions to xs.val and xs.next available (and removing the predicate instance
List(xs)). We will sometimes refer to having a predicate instance P (e) by saying

1 For brevity, our List predicate precludes empty lists, but they can be defined as well.

3



0 var val ∶ Int
1 var next ∶ Ref
2

3 predicate List(ys ∶ Ref) {
4 acc(ys.val) && acc(ys.next) &&
5 (ys.next ≠ null ⇒ List(ys.next))
6 }
7

8 function sum_rec(ys ∶ Ref) ∶ Int
9 requires List(ys)

10 {
11 unfolding List(ys) in
12 (ys.val + (ys.next == null ? 0 ∶ sum_rec(ys.next ))) }
13

14 method sum_it(ys ∶ Ref) returns (sum ∶ Int)
15 requires ys ≠ null && List(ys)
16 ensures List(ys) && sum == old(sum_rec(ys))
17 {
18 var xs ∶ = ys;
19 sum ∶ = 0
20

21 while (xs ≠ null)
22 invariant ((xs ≠ null) ⇒ List(xs)) &&
23 sum == (old(sum_rec(ys)) - (xs == null ? 0 ∶

sum_rec(xs)));
24 {
25 unfold List(xs)
26 sum ∶ = sum + xs.val
27 xs ∶ = xs.next
28 }
29 // postcondition error ∶ no permission List(ys) available
30 }

Fig. 1. Running sum example (with insufficient loop invariant)

that we have permissions to P (e); a view that is motivated by fact that predi-
cate instances and their bodies need to be exchanged explicitly. The use of fold
and unfold statements is a common approach to taming recursive definitions in
automatic tools [20].

Following other implicit dynamic frames approaches [19, 13], SIL also sup-
ports recursively-defined functions. In our example, the function sum rec returns
the sum of the integer values stored in the linked-list. A SIL function’s body is
an expression, not a statement; evaluating a function invocation is therefore
side-effect free. A function’s precondition must require enough permissions to
guarantee that the function’s body is framed ; in this case, it requires an in-
stance of the List predicate. The body of the sum rec function computes the sum
in the natural recursive manner; the only non-standard feature is the unfolding.
This construct does not affect the value returned by the function; its only pur-
pose is to make the folded permissions available to the verifier while the actual
function body (after the “in”) is evaluated. We call an operation which modifies
only available permissions (but doesn’t change heap/expression values) a ghost
operation; the unfold statement in our example is also a ghost operation.

4



0 var xs ∶ = ys;
1 sum ∶ = 0
2

3 define A (xs ≠ null ⇒ List(xs))
4 define B List(ys)
5

6 package A --* B
7

8 while (xs ≠ null)
9 invariant (xs ≠ null ⇒ List(xs)) && (A --* B) &&

10 sum == old(sum_rec(ys)) - (xs == null ? 0 ∶ sum_rec(xs))
11 {
12 wand w ∶ = A --* B // give magic wand instance the name w
13

14 var zs ∶ = xs // value of xs at start of iteration
15 unfold List(xs)
16 sum ∶ = sum + xs.val
17 xs ∶ = xs.next;
18

19 package A --* (folding List(zs) in (applying w in B))
20 }
21 apply A --* B

Fig. 2. Our verified version of the body of sum rec, from Figure 1.

The method sum it from the figure shows a straightforward iterative imple-
mentation to calculate the sum of the linked-list’s nodes. The method’s precon-
dition requires permission to an instance of the List predicate, and the postcon-
dition states that this predicate will be returned to the caller, along with the
knowledge that this iterative approach computes the same value as the function
sum rec. The old construct specifies that the nested expression should be eval-
uated in heap of the method’s prestate; note that old expressions do not affect
the evaluation of local variables.

Loop invariants play the usual role in SIL, but via inhale/exhale operations
in place of where they would be assumed/asserted in a first-order setting. In
particular, after the loop in method sum it, the loop invariant will be inhaled
before the postcondition is exhaled. However, since xs == null after the loop, the
invariant provides no permissions, and so exhaling the postcondition fails. A
simple fix for this problem is not obvious: there is no convenient way to specify
where to keep permissions to the “partial list” inspected so far by the loop [21,
14], nor is there an obvious position to insert appropriate fold statements to
reconstruct the desired predicate for the original list structure.

2.2 Specification using the Magic Wand

Figure 2 shows the body of the sum it method, verified using our magic wand
support. In particular, the loop invariant has been strengthened (line 9) to in-
clude the additional magic wand assertion2

(xs != null ==> List(xs)) −∗ List(ys).

2 We have used syntactic abbreviations (lines 3 and 4) to make the code more readable,
and to save repetition of these assertions; they are also supported in our tool.

5



Informally, this magic wand states “give me the remainder of the list (from
xs), and I will give you the entire list structure”. Thus, this assertion plays
the role of representing the permissions to the partial list inspected so far by
the loop; we say these permissions make up the footprint of the magic wand.
In particular, after the loop body, the magic wand from the loop invariant is
applied (on line 21); its left-hand-side (LHS) assertion must be given up, and
its right-hand-side (RHS) List(ys) is added to the state, providing the method’s
postcondition. Variable zs is used to refer to the linked-list node that xs points
to at the beginning of the current loop iteration, its purpose will become clear
in Section 4.1.

In the rest of the paper, we use this example to explain the details of our
general magic wand support. Section 3 describes the core of our solution: in par-
ticular, the automatic handling of footprints for magic wand instances. In Sec-
tion 4.1 we show how to integrate ghost operations such as folding and unfolding
with our magic wand support (cf. line 19), and in Section 4.2 we introduce a
magic-wand-specific generalisation of old expressions, which allows additional
functional properties to be added to our specifications easily.

3 Magic Wand Instances and Footprints

We present our approach to supporting the magic wand without relying on
any particular implementation strategy for the underlying verification tool. For
example, we are agnostic as to whether the verifier is based on symbolic execu-
tion, verification condition generation, or some other technique, so long as the
modelled program state admits a number of basic operations presented in the
next subsection. Moreover, although we present our approach in the context of
implicit dynamic frames, it is straightforward to adapt it to a separation-logic-
based tool or other permission-based verification logics.

3.1 Basic Operations

We use σ as a meta-variable ranging over program states as modelled in the
verifier. We do not prescribe a particular representation for these states; in a
tool based on symbolic execution, they could be sets of heap chunks along with
path conditions, while in a tool based on verification condition, they could consist
of total maps representing the heap and permissions held. States must be able
to record assumptions, permissions and magic wand instances. Figure 3 defines
the interface we expect to be provided by the underlying tool, in terms of a
handful of basic operations on states. We represent these basic operations as
functions on (and producing) states; in practice they could be implemented by
generating a corresponding program in an intermediate language, or by directly
executing corresponding operations to update internal state in a verification tool.
These definitions treat states as immutable data; modifications are reflected by
returning a new state (this could also differ in a real implementation).

6



assume(σ, e) ≈ assume that e holds in σ
assert(σ, e) ≈ assert that e holds in σ
has(σ, c) ≈ queries whether or not σ contains c (see caption)
add(σ, c) ≈ add access to c to σ
remove(σ, c) ≈ remove access to c from σ
equate(σ1, σ2, v) ≈ update σ1 s.t. it contains all assumptions from σ2 about v
if (e, σ) . . . else . . . ≈ Conditional operation, depending on meaning of e in σ

Fig. 3. Basic state operations. Some operations are overloaded: c can be an accessibility
predicate acc(x.f), a predicate instance P (x) or a magic wand assertion A −∗ B. v
denotes a variable x or a field x.f , or a sequence of these (for which the operation is
applied per element). All operations except has return an updated state σ′.

Most of the basic operations are self-explanatory, but equate is quite subtle.
The idea is to be able to communicate information (e.g., logical constraints) from
one state to another. In particular, we use this operation to model adding the
information that the value of an expression in σ1 is actually the same value as it
had in σ2. equate(σ1, σ2, x.f) should produce a modified version of σ1, in which
information known about the value of x.f in σ2 has been copied/made available.
In practice, this operation often has a simple implementation; it could amount
simply to equating the symbolic values of x.f in the two states, or (in a tool
based on verification condition generation) simply adding the assumption that
the value of the expression is the same in the two states. In implementations in
which logical constraints (path conditions) are not stored globally, the operation
might require selectively copying such constraints.

The if conditional can be implemented differently in different tools: those
which translate to another language may represent this as an actual conditional,
whereas a symbolic-execution-based verifier would typically branch (that is, split
the proof of the program) at this point.

We can now define inhale and exhale operations as functions of states
(Figure 4), in terms of the basic operations above. We use the ↝ symbol to de-
note the desugaring/compilation of an operation into simpler ones. For example,
inhale(σ,acc(e.f)) ↝ add(σ,acc(e.f)) represents that inhaling an accessibility
predicate is defined as adding the appropriate permissions to the state.

3.2 Applying and Packaging Wand Instances

A magic wand instance held in a state represents a guarantee that the wand
could be applied in that state: if the wand’s LHS is given up, along with the
wand instance itself, then the wand’s RHS can be obtained. This amounts to the
Modus-Ponens-like inference rule from separation logic: A ∗ (A −∗B) ⊧ B , and
we analogously define the operation of applying a wand in a state as follows:

apply(σ,A −∗B) ↝ inhale(exhale(exhale(σ,A −∗B),A),B)

7



exhale(σ, a) ↝ exhale(σ,σ, a)
exhale(σ, σ̃, e) ↝ assert(σ̃, e)
exhale(σ, σ̃, c) ↝ if has(σ, c) remove(σ, c) else fail

exhale(σ, σ̃, a1 && a2) ↝ exhale(exhale(σ, σ̃, a1), σ̃, a2)
exhale(σ, σ̃, e⇒ a) ↝ if (e, σ̃) exhale(σ, σ̃, a) else σ

inhale(σ, e) ↝ assume(σ, e)
inhale(σ, c) ↝ add(σ, c)
inhale(σ, a1 && a2) ↝ inhale(inhale(σ, a1), a2)

Fig. 4. The interesting cases for the definitions of exhaling and inhaling assertions (see
also [13]). The second state parameter σ̃ for exhale is used to carry a copy of the original
state, used when checking boolean expressions (to avoid any loss of information due to
removed permissions). Here, as in Figure 3, c can denote a field permission, predicate
instance or wand assertion. fail is a short-hand for assert(σ,false).

We do not select when to apply wands automatically; instead, this is directed
via an explicit apply(A−∗B) command in the program source (see, for example,
line 21 of Figure 2).

For applying wands to be sound, it is necessary that a wand instance rep-
resents sufficient state such that, when combined with some state satsifying
its LHS, the RHS can be guaranteed to hold. In general, wand instances must
(implicitly) carry around sufficient permissions to guarantee that they can be
soundly applied; we call these permissions the footprint of the wand instance.
For example, the (rather trivial) wand instance true −∗ acc(x.f) has a footprint
consisting of the permission to location x.f; this permission must belong to the
wand instance, otherwise, when applying the wand we would effectively forge it
from nowhere.

When proving a new wand instance, we must not only guarantee that the
wand’s semantics holds in the current state (i.e., that it could be soundly imme-
diately applied), but also that this guarantee will be preserved until the point
where the wand instance is applied (perhaps in another method activation, since
the wand instance could be exhaled). Thus, proving a new wand also requires
determining a suitable footprint for the new wand instance that frames the in-
formation available in the current state on which the wand’s truth depends. This
is achieved by removing the footprint permissions from the current state, which
ensures that the corresponding locations cannot be modified until the wand has
been applied. Since the operation of proving a new wand instance also entails
removing a suitable footprint from the current state, we call the operation pack-
aging the wand instance. Once a wand instance is packaged, the permissions
belonging to its footprint cannot be retrieved until the wand instance is applied.

Analogously to applying wands, we require a package(A −∗ B) statement
to indicate where a new wand instance should be packaged. The key aspect of
making this step lightweight for the tool user is that we provide an algorithm
for computing a suitable footprint automatically. This is a challenging problem,
and our solution is elaborated in the next subsection.

8



3.3 Determining Wand Footprints

Automatically deciding on a suitable footprint for a new magic wand is challeng-
ing. To constrain the problem slightly, we limit our wand support to only allow
magic wand assertions A −∗B in which the assertions A and B are self-framing.
Thus, we disallow awkward assertions such as true −∗ x.f == 3. This is not a
strong restriction in practice; indeed, in separation logics, it is typically not even
possible to represent assertions which are not self-framing [17].

A package(A −∗B) command must not only determine a suitable footprint
for the new wand instance, but must check that the semantics of the wand
is guaranteed. That is, we must check that, given only the information from
the current state which is framed by permissions in the chosen footprint, if the
assertion is A is additionally added, we are guaranteed to reach a state in which
the assertion B holds. So long as we check this property correctly, we observe
that any choice of footprint for a new magic wand instance will be sound, in the
sense that if we succeed in packaging the wand instance, its semantics will be
guaranteed. For example, we could always choose the empty footprint, and not
use up any permissions at a package statement. This would only succeed in the
case where A and B are logically equivalent, which is not a particularly useful
case in general. Alternatively, we could choose the entire current state to be the
new wand instance’s footprint. This would allow many wands to be proven, but
would mean that the remaining program is almost certain not to verify. So, while
either of these approaches would be sound, they would not be useful in practice.

Intuitively, it makes sense to choose a footprint which is as small as possible,
while still allowing the packaging to succeed. However, the notion of “small as
possible” is not straightforward to define precisely. For example, consider a state
in which permission to x.f is held, and x.f has the value 3. Suppose that we
attempt to package the wand acc(x.f) −∗ (acc(x.f) && x.f == 3) in this state.
Thinking purely in terms of permissions, an empty footprint seems sensible, since
the wand’s LHS provides all of the permission that the RHS requires. However,
the heap fact x.f == 3 is not guaranteed to hold when one adds on an arbitrary
state satisfying acc(x.f); it could indeed be that the value has changed, since
no permission is to be kept with the wand instance. Thus, it might be tempting
to think that the wand’s footprint should include some permission to x.f, to
preserve the value.

We do not take this approach for three main reasons. Firstly, attempting
to determine precisely which logical properties entailed by the current state
might allow the truth of the wand RHS to be guaranteed, is too challenging
to be achieved automatically, and any attempt to do so is likely to produce
results which are hard to understand for a tool user (who doesn’t even explicitly
see the choice of footprint made). In particular, the user might be surprised
that more permissions have been lost in this step than they expected, because
(for example) they enabled enough extra facts to be preserved to contradict the
information from the wand’s LHS, and thus make the truth of the wand vacuous.
Secondly, any extra permissions added on to attempt to frame such extra facts,
are essentially guaranteed to be leaked ; if the wand does not explicitly include

9



package(σ,A −∗B) ↝
σemp := equate(∅, σ,vars(A −∗B))
σA := inhale(σemp,A)
(σ′A, σ

′, σ′foot) := exhale ext(σA, σA, σ, σ, σemp,B)
return add(σ′,A −∗B)

exhale ext(σlhs, σ̃lhs, σcurr, σ̃curr, σfoot,acc(e.f)) ↝
if has(σlhs, e.f) {

σ′lhs := remove(σlhs, e.f)
return (σ′lhs, σcurr, σfoot)

} else if has(σcurr, e.f) {
σ′curr := remove(σcurr, e.f)
σ′foot := add(σfoot, e.f)
σ′′foot := equate(σ′foot, σ̃curr, e.f)
return (σlhs, σ

′

curr, σ
′′

foot)

} else fail

exhale ext(σlhs, σ̃lhs, σcurr, σ̃curr, σfoot,A1 && A2) ↝

(σ′lhs, σ
′

curr, σ
′

foot) := exhale ext(σlhs, σ̃lhs, σcurr, σ̃curr, σfoot,A1)

(σ′′lhs, σ
′′

curr, σ
′′

foot) := exhale ext(σ′lhs, σ̃lhs, σ
′

curr, σ̃curr, σ
′

foot,A2)

return (σ′′lhs, σ
′′

curr, σ
′′

foot)

exhale ext(σlhs, σ̃lhs, σcurr, σ̃curr, σfoot, e) ↝
assert(σ̃lhs ⊍ σfoot, e)
return (σlhs, σcurr, σfoot)

Fig. 5. Packaging a wand instance. vars(A) returns the set of local variables in A.
σemp is empty except for local variables from A−∗B and assumptions about those from
σ. Permissions taken from σcurr contribute to the footprint, assumptions about the
corresponding locations are preserved via equate. Boolean assertions are checked in
the combination of the initial LHS state and the footprint. Other cases of exhale ext

are analogous to exhale, but expressions are evaluated in σ̃lhs ⊍ σfoot. ⊍ combines two
states by adding permissions and conjoining boolean assumptions, similar to ⊎ used in
separation logic.

the permissions in the right-hand-side, then they will not be recovered when the
wand is applied. Thirdly, if the required permissions are potentially available
from the wand’s LHS, it could be that the wand is intended to describe a different
state from that in which the wand is packaged. For example, in the same state as
above, packaging a wand (acc(x.f) && x.f == 4) −∗ (acc(x.f) && x.f > 3) will
only result in a wand which can be applied at some later program point if we do
not put any permissions from the current state into the footprint. Furthermore,
if the tool user intends extra permissions from the current state to be folded
into a wand, this can be easily controlled: by writing a RHS which requires more
permission than the LHS, this intention is made explicit.

Our chosen criterion for defining footprints is therefore: permissions required
by the wand’s RHS, which we cannot prove to be provided by the wand’s LHS.

10



This definition is simple, but writing an algorithm to compute it is still challeng-
ing: there is a potential circularity to the problem. The footprint for the wand is
determined in terms of the permissions required by the RHS assertion. Exactly
which permissions are required by the RHS can (due to implication/condition-
als) depend on properties of heap values. Properties known about heap values
in the current state may be soundly used if and only if permission to those heap
locations is included in the wand’s footprint (which we are trying to compute).

To break this circularity, we simultaneously construct a state correspond-
ing to the wand’s footprint, while evaluating the wand’s RHS. Our algorithm
is shown in Figure 5, and works as follows. We first construct a hypotheti-
cal extra state representing the information provided by the wand’s LHS (we
achieve this by inhaling the LHS, starting from an empty state). We then define
exhale ext: a generalisation of the exhale operation (Figure 4), which takes
two initial states σlhs and σcurr (and corresponding copies of their original val-
ues), and attempts to perform the exhale by taking permissions preferentially
from σlhs (corresponding to the wand’s LHS) and only from σcurr (the original
state in which the package takes place) when needed. In the process, we con-
struct a third state σfoot corresponding to the footprint we have found so far;
we use this to track which information from the original state can be used when
checking boolean assertions. In particular, we use the equate operation to copy
information from the state before the package operation (σ̃curr), whenever we
determine that permission is to be included in the footprint state. Whenever we
need to evaluate an expression, we use the combined information from both σlhs
and σfoot. If the operation exhale ext fails, this is either because a permission
needed in the RHS could not be found in either state, or because some logical
property required is not known to hold, given the information from σlhs and σfoot
(as computed so far).

It is important that only properties framed by the wand’s chosen footprint are
used when checking the RHS. For example, suppose that a state σ holds permis-
sion to integer fields x.f and y.f, with values 1 and 2, respectively. The operation
package(σ, (acc(x.f) && x.f == 2) −∗ (acc(x.f) && acc(y.f) && x.f == y.f))
will succeed, and the footprint acc(y.f) will be removed from the state as a
result. Note that y.f == 2 is preserved from the original state, but, importantly,
the fact x.f == 1 is not used when checking the wand’s RHS.

4 Extensions: Handling Predicates and Functions

In this section, we present two extensions of the basic support for wands outlined
so far. In Section 4.1, we show how we incorporate ghost operations (such as
folding and unfolding predicates) into the packaging of new magic wands, which
is crucial for making our approach usable in a verifier which distinguished a
predicate from its body. In Section 4.2, we introduce a new feature based on the
idea of old expressions, which enables relationships between the states in which a
wand is packaged and applied to be expressed and reasoned about simply. Both
of these extensions are supported by our implementation.

11



4.1 Packaging Wands with Ghost Operations

The support for packaging magic wands presented in Section 3 can be used with
wands that include predicate instances (and even nested magic wands), but is
not always useful as it stands. For example, it is often convenient to be able to
express “missing parts” of predicate instances using magic wands, but to show
that these parts can be reassembled back into a complete predicate instance,
requires the predicate instance to be folded. More generally, it is convenient to
be able to express wands A −∗B in which the proof that, when given A we can
obtain B may make use of ghost operations, such as folding predicates.

This situation arises in our running example (Figure 2), when re-establishing
the magic wand in our loop invariant: (xs != null ==> List(xs))−∗List(ys), ex-
pressing that we can obtain the “full list” if we give up the “remainder list”
starting from xs. Consider how we can re-establish this invariant: in particu-
lar, the state at line 18. In this state, we have the permissions acc(zs.val) and
acc(zs.next) (obtained from the unfold at line 15), and the magic wand instance
w from the loop invariant at the beginning of the iteration (line 12), which has
the same RHS, but requires List(zs) on its LHS. We don’t directly hold enough
permissions to package the wand needed in our new loop invariant; conceptually,
those missing are in the footprint of the wand instance w. However, given the
LHS assertion (xs != null ==> List(xs)), we can obtain the RHS if we first fold
the predicate List(zs), and then apply the wand instance w. These ghost opera-
tions explain how, given the LHS, we can rearrange the permissions in our state
to obtain the desired RHS, requiring in the process the additional permissions
acc(zs.val) and acc(zs.next) and the wand instance w.

In order to allow such ghost operations to be expressed when packaging
wands, and inspired by the unfolding expression already in our language, we
extend our syntax for package commands, to the form package(A −∗G), where
G is an assertion B possibly wrapped by ghost operations, as defined by:

G ∶∶= A ∣ foldingP (e)inG ∣ unfoldingP (e)inG ∣ applyingA1 −∗A2 inG

A successful package(A −∗ G) statement does not add a wand instance of the
form (A −∗G) to the state, but rather (A −∗B) where B is the assertion nested
in the ghost operations. The role of the ghost operations is to indicate only
how the wand’s semantics can be achieved, but do not affect what the resulting
wand instance represents. Concretely, the above extended syntax is used for the
package statement on line 19 of Figure 2, to justify the wand instance required
for the re-established loop invariant, according to the argument presented above.

For space reasons, we do not present the details of how to extend our foot-
print algorithm (Figure 5) to these extended package statements. However, the
ghost operations are taken into account when computing the wand’s footprint.
Essentially, the idea is that any permissions which result from a ghost opera-
tion can be provided for the wand’s RHS for free, but instead, any permissions
required by the ghost operation must instead be found (from either the wand’s
LHS, or the current state). In particular, in our example, the footprint of the
new wand instance added at line 19 consists of the permissions acc(zs.val) and

12



acc(zs.next) (those required for the folding, and not found on the wand’s LHS),
and the wand instance w (required for the applying, and not provided by the
LHS or the folding). The full support is implemented in our prototype [1].

4.2 Handling Additional Functional Properties

The features presented so far are sufficient to verify our original running example
(Figure 1), but the specification is somewhat weak. We consider strengthening
the postcondition of sum it to express that the list sum does not change3:

ensures List(ys) && sum == old(sum_rec(ys)) &&
sum_rec(ys) == old(sum_rec(ys))

How should we extend our loop invariant in order to verify this postcondition?
In particular, it seems we should strengthen the RHS of the magic wand used
in our loop invariant, to be List(ys) && sum rec(ys) == old(sum rec(ys)), thus
guaranteeing the new postcondition. However, packaging this wand (both at line
6 and line 19) now fails. The reason is, that the wand LHS is too unconstrained;
it allows for the “remainder” of the list (from xs) to be provided with any sum;
therefore, we are unable to prove that the resulting sum for the whole list is
unchanged.

Intuitively, we need to specify that the list provided in the wand’s LHS must
also be unchanged. However, we cannot write old(sum rec(xs)); for the package
statement on line 19, the verifier will complain that we don’t hold the precondi-
tion of this function (i.e., the predicate instance List(xs), for the current value
of xs in the loop body, in the method’s pre-state. Thus, we have no direct way
to express in the wand that the list provided when the wand is applied should
have the same sum as that where the wand is packaged.

While it is possible to work around this problem, either by expressing the
current sum of the remaining list indirectly as old(sum rec(ys)) − sum, or by
instrumenting the program with extra state recording the value of sum rec(xs)
at the point where the magic wand is packaged, for more complex examples
(particularly those using more intricate data structures such as trees), these
solutions become cumbersome. Instead, we add a small extra feature to our
assertion language, inspired by old expressions.

We extend our expression syntax to include a new construct now(e), which
may only occur in the LHS or RHS of a magic wand assertion. Similar to the
old(e) construct, now(e) changes the heap in which e is evaluated, in this case
to be the heap in which this wand instance was added to the state. Thus, now(e)
evaluates e in the heap immediately after the enclosing magic wand instance
was packaged, or inhaled. In particular, the expression e must be framed by
permissions in that state.

We can now write a magic wand assertion to express our intended restriction
for our example:

3 It is also possible to express that the sequence of values stored in the list doesn’t
change, we chose the weaker property for simplicity of presentation.

13



(xs != null ==> List(xs) && (sum_rec(xs) == now(sum_rec(xs))))
−∗ List(ys) && sum_rec(ys) == old(sum_rec(ys))

Given the semantics for now described above, we have to take care when
exhaling a magic wand instance which uses now expressions: when the assertion
is correspondingly inhaled, the expressions will effectively be re-interpreted with
respect to this state. To avoid introducing unsoundness this way, we add an
additional proof obligation when exhaling such a wand, that all now expressions
are framed by permissions exhaled along with the wand, and have the same values
when exhaled as they did in the heap in which now is currently interpreted. The
restriction to have unmodified values could be weakened in some cases, but so
far this has not been needed in our examples.

Using our now feature, we can verify the version of our running example with
the strengthened postcondition. With respect to the code of Figure 2, only lines
3 and 4 (defining the magic wand assertion used) need changing; the resulting
code verifies. Note that the feature employed can also be used in examples which
modify the underlying data structure; the magic wand used could then specify
a constraint on e.g. sum rec(xs) as some function of now(sum rec(xs)).

5 Conclusions and Related Work

We have presented a way of supporting magic wands in automatic verifiers, that
requires little specification overhead and is still expressive enough to encode
general uses of the logical connective. Most important is our ability to com-
pute suitable footprints for magic wands automatically, which greatly simplifies
the annotation effort required. Our work makes few assumptions about the un-
derlying verifier, and should be relatively easy to apply in other tools/logics.
The extra expressiveness of our “now” expressions may be hard to adapt to a
separation-logic-based tool (in which expressions are usually too limited), but
this feature is an extension.

The problems of tracking permissions in loop invariants are discussed in de-
tail by Tuerk [21], who proposed alternative pre/postcondition specifications for
loops. A magic wand of the form: prerest && (postrest −∗ postall) gives an alter-
nate expression of this idea (where “rest” refers to the remaining loop iteration,
and “all” the entire loop). However, Tuerk’s work does not provide a way to
incorporate ghost operations: it is not suitable for a verifier using fold/unfold.

Recently, Blom and Huisman [3] added support for magic wands to their Ver-
Cors verifier, which translates Java programs with separation-logic-style specifi-
cations into Chalice programs. Chalice does not support magic wands natively,
which are therefore eliminated during the translation by a clever encoding into
additional classes and objects that represent magic wand instances. Although
technically different from our approach, their approach is conceptually similar
in that wands a treated as self-contained elements of the verification state that
can be created and applied, and that “carry” enough permissions such that as-
suming the RHS of the wand when applying it is sound. However, their approach

14



requires the user to explicitly compute and specify the wand’s footprint, which
increases the annotation overhead, and can also be challenging if many path
conditions need to be considered in the process. Moreover, their work does not
address nested wands such as A −∗ (B −∗C) or (A −∗B) −∗C.

The VeriFast tool [8] can work around the absence of magic wands using
lemma function pointers and predicates. One can model a wand A−∗B, using a
predicate F (manually encoding the wand’s footprint), and pointer to a lemma
function with precondition F ∗A and postcondition B, whose body shows how
to rewrite the state. This requires significant insight and overhead for the user,
and (we believe) cannot represent nested magic wands.

Lee and Park have recently developed a proof system for a separation logic
supporting the magic wand connective [12], which also provides a decision proce-
dure for propositional separation logic (without variables). In a richer assertion
language such as ours, the magic wand is known to be undecidable [5]: our use
of package and apply statements along with our deterministic approach for wand
footprints makes our solution practical.

In the context of a permission-based type system, Boyland [4] has defined
a “sceptre” operator to represent “borrowing” of permission. This connective
is more restricted than the general magic wand, but sufficient for many loop
invariants. The PhD thesis of Retert [18] provides an abstract-interpretation-
based approach supporting this connective.

As future work, we are keen to try out our new tool support in other contexts.
For example, we believe that magic wands can be used to support reasoning
about closures, in which it is convenient to be able to express assertions of the
form post1 −∗ pre2, to express that, “after calling closure 1, we will be able to
call closure 2”, in a context in which the concrete pre/postconditions are not
known. The relationship between old expressions in closure specifications and
now expressions in such magic wands, seems particularly interesting.

We are also interested in exploring further automation of our approach. In
particular, it seems that applying wands could be made an automatic heuristic
when an assertion fails; since there are a (usually small) finite number of wand
instances in the state, one could even try näıvely applying each (and back-
tracking if necessary). Automating package statements is harder, because of the
need to integrate appropriate ghost operations in some cases. We are currently
investigating whether static analysis can be employed to infer loop invariants
which include these magic wands, along with appropriate package operations.

References

1. Our implementation. http://www.pm.inf.ethz.ch/research/semper/Silicon .
2. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic as-

sertion checking with separation logic. In FMCO, pages 115–137, 2005.
3. S. Blom and M. Huisman. Witnessing the elimination of magic wands, November

2013.
4. J. T. Boyland. Semantics of fractional permissions with nesting. ACM Trans.

Program. Lang. Syst., 32(6):22:1–22:33, Aug. 2010.

15



5. R. Brochenin, S. Demri, and E. Lozes. On the almighty wand. Inf. Comput.,
211:106–137, Feb. 2012.

6. D. Distefano and M. J. Parkinson. jstar: towards practical verification for java. In
G. E. Harris, editor, OOPSLA, pages 213–226. ACM, 2008.

7. C. Haack and C. Hurlin. Resource usage protocols for iterators. Journal of Object
Technology, 8:55–83, 2009.

8. B. Jacobs and F. Piessens. The verifast program verifier. Technical report,
Katholieke Universiteit Leuven, August 2008.

9. J. B. Jensen, L. Birkedal, and P. Sestoft. Modular verification of linked lists with
views via separation logic. Journal of Object Technology, 10:2:1–20, 2011.

10. N. R. Krishnaswami. Reasoning about iterators with separation logic. In Proceed-
ings of SVCBS 2006, pages 83–86, New York, NY, USA, 2006. ACM.

11. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT S.E. Notes, 31(3):1–38, 2006.

12. W. Lee and S. Park. A proof system for separation logic with magic wand. In
Principles of Programming Languages (POPL) (to appear). ACM Press, 2014.

13. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
ESOP, pages 378–393, 2009.

14. T. Maeda, H. Sato, and A. Yonezawa. Extended alias type system using separating
implication. In Proceedings of TLDI ’11, pages 29–42. ACM, 2011.

15. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In CSL, pages 1–19, London, UK, 2001. Springer-Verlag.

16. M. Parkinson and G. Bierman. Separation logic and abstraction. In POPL, pages
247–258. ACM Press, 2005.

17. M. J. Parkinson and A. J. Summers. The relationship between separation logic
and implicit dynamic frames. In LMCS, 8(3:01):1–54, 2012.

18. W. S. Retert. Implementing Permission Analysis. PhD thesis, Milwaukee, WI,
USA, 2009.

19. J. Smans. Specification and Automatic Verification of Frame Properties for Java-
like Programs. PhD thesis, FWO-Vlaanderen, May 2009.

20. A. J. Summers and S. Drossopoulou. A formal semantics for isorecursive and
equirecursive state abstractions. In Proc. of ECOOP ’13, pages 129–153, 2013.

21. T. Tuerk. Local reasoning about while-loops. In VSTTE - Theory Workshop
(VS-THEORY 2010), 2010.

16


