
A Formal Semantics for Isorecursive and
Equirecursive State Abstractions

Alexander J. Summers1 and Sophia Drossopoulou2

1 ETH Zurich alexander.summers@inf.ethz.ch
2 Imperial College London s.drossopoulou@imperial.ac.uk

Abstract. Methodologies for static program verification and analysis
often support recursive predicates in specifications, in order to reason
about recursive data structures. Intuitively, a predicate instance repre-
sents the complete unrolling of its definition; this is the equirecursive
interpretation. However, this semantics is unsuitable for static verifi-
cation, when the recursion becomes unbounded. For this reason, most
static verifiers differentiate between, e.g., a predicate instance and its
corresponding body, while providing a facility to map between the two;
this is the isorecursive semantics. While this latter interpretation is usu-
ally implemented in practice, only the equirecursive semantics is typically
treated in theoretical work.
In this paper, we provide both an isorecursive and an equirecursive for-
mal semantics for recursive definitions in the context of Chalice, a ver-
ification methodology based on implicit dynamic frames. We show that
development of such formalisations requires addressing several subtle is-
sues, such as the possibility of infinitely-recursive definitions and the
need for the isorecursive semantics to correctly reflect the restrictions
that make it readily implementable. These questions are made more chal-
lenging still in the context of implicit dynamic frames, where the use of
heap-dependent expressions provides further pitfalls for a correct formal
treatment.

1 Introduction

Recursive definitions of a program’s state, are widely employed in techniques for
program specification, verification and static analysis. Common techniques in-
clude recursive predicates, pure methods, abstraction functions and model fields.
The ability to express recursion in specifications is needed to describe programs
which themselves manipulate recursively-defined data structures, since it is im-
possible for a specification to explicitly describe each of the locations involved
when accessing the structure. For example, a method which computes the sum
of the values in a linked-list will need to access a statically-unbounded number
of heap locations to do so. To solve this specification problem in the context of
permission-based methodologies such as separation logic, recursive abstract pred-
icates [15] were introduced. Predicate definitions can be provided as part of a
program’s specification, and the meaning of a predicate name is defined in terms

of an assertion (the predicate body), which may itself include instances of the
same predicate. In this way, it is possible for a predicate instance to implicitly
require permission to access, e.g., every next field in a linked-list. The intuitive
meaning of such a predicate symbol, is that it represents everything implied by
the (recursive) unrolling of its definition; this is the equirecursive interpretation
of the recursive definition [1].

However, static verifiers (and other tools) cannot predictably reason directly
in terms of an equirecursive semantics, since at verification time it is impossible
to know when to stop unrolling such a definition. For this reason, many verifiers
make use of ghost fold and unfold operations for handling recursively-defined
predicates, which explicitly exchange a predicate name for its body (or vice
versa). These operations may be explicitly provided in the source code (e.g.,
[9, 11]), implicitly specified via heuristic rules (e.g., [5]), or tools may try to
infer them by other means (e.g., [2]); their eventual role is the same. In the
absence of fold and unfold operations, the information implied by the unrolling
of a currently-held predicate instance is not made available to the verifier. Such
a treatment of recursive definitions differentiates between holding a predicate
instance and holding its body, while providing a means by which the one can be
explicitly exchanged for the other; this is the isorecursive interpretation.

The critical aspect of an isorecursive semantics is that it can be used as the
basis for building static tools, while the equirecursive semantics cannot (without
the undesirable possibility of potentially infinitely applying recursive definitions,
in a so-called matching loop [12]). Nonetheless, an equirecursive semantics is
much closer to an intuitive runtime model for a methodology, and theoretical
papers which formalise verification logics typically treat recursive definitions in
this natural way [16]. This creates a mismatch between the formalised assertion
logic semantics, and that typically implemented in tools; one of the aims of this
paper is to address this mismatch.

Abstraction functions provide a different mechanism for expressing proper-
ties of recursive structures. Function definitions can traverse data structures,
and return abstract values which summarise the contents in ways which ab-
stract over the underlying representation. Pure methods, as used in specification
methodologies such as Eiffel, JML and Spec] play a similar role, as do model
fields. Formalising such functions in a specification language requires care, since
a function which is not well-defined (e.g., bad() = bad() + 1) can easily lead to
inconsistency in the logic; this issue is complicated by the fact that many useful
heap-dependent functions do not always have an obvious termination measure
expressible in terms of their arguments. Indeed, a normal length() function will
typically not terminate for cyclic list structures. Furthermore, the unrolling of
function definitions also needs careful control for a static tool to handle them
practically.

In this paper, we investigate the isorecursive and equirecursive semantics
of recursive specification constructs. Concretely, we base our work on the im-
plicit dynamic frames (IDF) specification logic of Smans [21]. This logic has
been recently shown [17, 18] to have close connections with separation logic,

2

however, it has the advantage for us of including both recursive predicates and
heap-dependent abstraction functions, as well as the ability to express unfolding
expressions which explicitly “peek” inside recursive definitions; the combination
of these features making the work presented both more challenging and more
general. The recursive aspects of IDF have not been given a direct assertion
semantics before; we give both isorecursive semantics (suitable as the basis for
a verifier) and equirecursive semantics (suitable for comparison with a runtime
model, and for proving soundness). We extend both assertion semantics to corre-
sponding Hoare Logics, based on a subset of the Chalice programming language
[10], and discuss how our isorecursive model lends itself to implementation, and
the related possibility of isorecursive states not having a “real” equirecursive
counterpart. We define mappings from the isorecursive model to the equirecur-
sive, and show how the various corresponding concepts are formally related.
Finally, we define a novel interleaving operational semantics for our language,
and prove soundness of our Hoare Logics.

While we work in the context of IDF, the issues arising regarding recursive
definitions are much more generic, and the discussions and solutions presented
here can easily be adapted for the formalisation of approaches based on e.g.,
separation logic, and are relevant for the construction of soundness arguments
for other techniques such as decision procedures and static analyses for recur-
sive definitions. One of the goals of this work is to identify and elaborate on
the challenges which arise, in order to help other researchers facing them. The
development of such formalisations requires addressing several subtle issues, re-
garding both the possibility of infinitely-recursive definitions and the need for the
isorecursive semantics to correctly reflect the restrictions that make it readily im-
plementable. The mismatch between the intuitive (equirecursive) semantics and
that implemented in tools can lead to pitfalls in practice; for example, a proto-
type implementation of recursive definitions in the Chalice verifier was unsound
for this reason; a correct solution has only recently been proposed [7].

Contributions The contributions of this paper are:

– An equirecursive semantics for IDF expressions and assertions, including
recursive functions and predicates. This is the first direct assertion semantics
for IDF which handles recursive definitions.

– An isorecursive semantics for IDF expressions and assertions; to our knowl-
edge, this is the first such assertion semantics which reflects the distinction
between holding a predicate and knowing its body.

– Hoare logics for both approaches; in particular, the isorecursive Hoare Logic
includes novel rules for folding and unfolding predicates, and tracking asso-
ciated information with unfolding expressions.

– Encodings and results which formally relate the two semantics, connecting
that used at verification time with that used in soundness proofs.

– A novel operational semantics for Chalice, and a soundness result showing
that (isorecursive) verification guarantees runtime soundness. This is the first
soundness proof for the Chalice approach including recursive definitions.

3

2 Equirecursive Semantics for Predicates and Functions

In this section we define the syntax and semantics of expressions and assertions
in the equi-recursive setting. Our treatment is based on the work of Parkinson
and Summers [17]. Their work did not include any kind of predicates or functions
in the assertion language; we address these issues here.

2.1 Implicit Dynamic Frames

Implicit dynamic frames allow expressions e which depend on the heap, e.g.,
assertion x.f.g = this. In order to make the meaning of such assertions ro-
bust to interference from other threads, a notion of permission is employed.
Special assertions acc(e.f) called accessibility predicates denote a permission
to access the heap location e.f , at most one of which is present in the system
at any one time. Assertions used in specifications must be self-framing, which
means they must have permissions to all heap locations that they dereference
in expressions. For example, the assertion x.f.g = this is not self-framing, but
acc(x.f) ∗ acc(x.f.g) ∗ x.f.g = this is. The separating conjunction ∗ is related
to that of separation logic; it acts just as logical conjunction, but behaves multi-
plicatively with respect to accessibility predicates; that is, acc(x.f) ∗acc(this.f)
requires permission to both locations separately, and so its meaning implicitly
guarantees that this and x cannot be aliases.

Defining a formal assertion semantics for implicit dynamic frames is chal-
lenging. Parkinson and Summers [17] defined a semantics for a core of the logic,
and, among other questions, addressed the question of the semantics of asser-
tions which are not self-framing. For example, what should be the meaning of
x.f.g = this ? In a state which does not hold permissions to the two heap loca-
tions, evaluation of this expression depends on the other threads, and so giving
it a deterministic semantics seems incorrect. However, the difficulty is that a
compositional definition of the semantics of assertions cannot “see” whether the
appropriate permissions to x.f and x.f.g are held by the current thread. The
solution used in [17] is, to give the expression the semantics it should have as-
suming the appropriate permissions are held; i.e., read from the heap regardless.
Since all assertions are additionally checked to be self-framing, in the end this
means that the above semantics is only applied in the situation in which it
makes sense. As we will show in subsection 2.3, similar issues arise when adding
recursive definitions to the logic, their treatment needs to be different.

2.2 Recursive Predicates and Functions

Implicit dynamic frames supports two kinds of recursive definitions in asser-
tions. In this paper, we use the terminology of the Chalice tool [10], and call
them predicates and functions. Predicates can be defined recursively, and their
bodies are assertions. Allowing specifications to mention predicates as well as
field permissions and boolean expressions, makes it possible for, e.g., a pre-
condition to require all permissions to a recursive data structure. For example,

4

a predicate List storing all permissions in a linked list could be defined by:
List ≡ acc(this.next) ∗ acc(this.val) ∗ (next 6= null→ next.List)

Implicit dynamic frames also supports recursively-defined functions as part
of the expression syntax. For example, the assertions this.length() = 4 and
this.itemAt(2) = 0 use functions to expose additional information about the
internals of a list. Functions typically correspond to the “pure methods” of an
implementation3. Termination of function definitions is essential for soundness,
once they are permitted in assertions. For example, a definition bad() = 1+bad()
would allow the verifier to deduce inconsistency wherever this definition was
made available.

2.3 Handling Infinite Recursion

The introduction of recursively-defined functions and predicates opens up the
potential of non-termination when evaluating assertions. What should be the
semantics of a predicate instance whose definition can be unrolled infinitely?
And what should be done with function definitions that do not terminate? It
is tempting to say that definitions which may not terminate should be forbid-
den. But this would be too restrictive: for example, even though the linked
list predicate List from the previous section does not terminate in a heap in
which this = this.next, such predicate definitions are essential for traversing re-
cursive data structures, and cannot be dispensed with. Similarly, a function
length() = (this.next = null ? 1 : 1 + next.length())does not terminate in the case
that this = this.next. Indeed, there is not even any obvious termination measure
in terms of the function’s signature that could be used to prove termination of
this function definition. Nonetheless, such functions cannot be dispensed with
either.

For the equirecursive setting, in which an idealised mathematical semantics
is appropriate, an elegant (and reasonably standard) way of handling custom
predicate definitions is to make the semantics of infinitely-unrollable predicate
instances false. We take this approach; that is, we interpret predicate definitions
by their least fixed points. In this way, we build into the logic the implicit
assumption that all predicate instances have finite definitions. Forbidding infinite
predicate instances does not harm our expressiveness in practice, since, as will be
explained in the next section, such predicate instances could never be obtained in
a verifier based on an isorecursive semantics. Thus, any program point at which
an infinite predicate instance is required (for example, in a method precondition
of the form List ∗ this = this.next) is actually unreachable code, and thus it is
operationally consistent to assign false to such assertions.

Now consider the semantics of potentially-non-terminating functions. The ex-
ample of the length function makes clear that we must admit function definitions
which do not necessarily terminate in all states. This means that any assertion
semantics we define needs to cope with the possibility of evaluating a function
call whose näıve semantics would cause undefinedness. For example, consider

3 Indeed, this is the terminology used in [21].

5

the assertion List ∗ length() = 3. In the case where this = this.next holds, List
will be false (due to the least fix-point treatment of predicates), and we would
like the overall assertion should also mean false. But a näıve definition for ex-
pression semantics might give the conjunct in which the function call occurs an
ill-defined meaning. To avoid the need for relying on a short-cutting semantics
for conjunctions, we define an expression semantics that is total, even for natu-
rally non-terminating function calls. We achieve this by the introduction of error
values, which are dummy values used in place of a non-terminating expression
evaluation. Since the overall assertion will be false whenever these error values
occur, this means that we implement the natural semantics for function calls in
all situations where the meaning matters.

2.4 Syntax

Definition 1 (Expressions and Assertions). We define the syntax of equi-
expressions (ranged over by e) and equi-assertions (ranged over by a)as follows:

e ::= null | true | false | x | e.f | e.g(e) | e = e | (e ? e : e)
a ::= e | acc(e.f , q) | e→ a | a ∗ a | e.P | Thread(x,m, y, z)

In the above, x, y, z range over program variables, f over field identifiers, g over
function names, P over predicate names, m over method names, and q over
rational numbers in (0, 1]. There are three special reserved variable names: this
(representing the current receiver), X (representing the current method param-
eter) and method (representing name of the current method); these may not be
used explicitly in expressions, and their role will be explained shortly.

The Thread(x,m, y, z) assertion is used to record information about other threads
currently running, as will be explained in the next subsection. We implicitly re-
quire expressions and assertions to be type-correct, e.g. in e.f the type of e
should have a field f . Other connectives over equi-expressions, such as ∧, ∨ and
¬ can be encoded. Note that the implication connective → is restricted to only
allow expressions (rather than assertions) on the left-hand side. This restriction
is common to most practical verification tools based on separation logic or im-
plicit dynamic frames; it makes it possible to avoid an assertion semantics which
needs to quantify over states (see e.g., [14, 17]); a problematic feature for auto-
matic verification. Similarly, negation is only encodable for boolean expressions.
Thus, acc(this.f , 1) ∗ this.f = 5, and this.f = 5 → acc(this.f , 1) are assertions
according to our definitions, while acc(this.f , 1)→ this.f = 5 is not.

2.5 Semantics

As in [17], the semantics of assertions is defined in terms of permission masks
π, heaps H, and environments σ. As usual, we need a ∗ operator to combine
permissions.

6

Definition 2 (Preliminaries).
We assume a set of values consisting of at least true, false, null, object identifiers

(ranged over by ι), thread identifiers (ranged over by t), method names (ranged
over by m), and one distinct error value per type tp (denoted by errortp).
Environments, ranged over by σ, are maps from variables to values.
Heaps, ranged over by H, are maps from pairs of either object identifier and field
name or thread identifier and field name, to values.
Equi-permission-masks, ranged over by π, are maps from pairs of either object
identifier and field name or thread identifier and field name, to nonnegative
values in Q.
We define the operator + to combine permissions as follows:

+ : perms×perms→ perms and (π+π′)(ι, f) = π(ι, f)+π′(ι, f).
An equi-permission-mask π is well-formed, written |= π, if its range is within
[0..1] : |= π iff ∀ι, f. π(ι, f) ∈ [0..1]
The lookup function Body returns the definition of a function or a predicate.
Predicates have the implicit parameter this, and functions have the implicit pa-
rameters this, and X.

An unusual feature above is the inclusion of field locations (in heaps and per-
mission masks) with thread identifiers as receiver. This is in order to permit as-
sertions which track information about other threads; we use three ghost fields,
called recv, param, meth, which are used to record the receiver, parameter and
current method name for a given thread identifier. These fields (which are the
only fields defined for a thread identifier) are ghost in the sense that they are
not present in runtime heaps (see Section 7).

A further novelty in definition 2 is the error value, errortp, which we motivated
earlier; it is used to define the value of expressions when their evaluation is
infinite:

Definition 3 (Value of Equi-Expressions).
We define evaluation of expressions in a state consisting of heap H, and

environment σ, through predicate ⇓H,σ as follows :
x ⇓H,σ σ(x) null ⇓H,σ null true ⇓H,σ true false ⇓H,σ false
e.f ⇓H,σ v if e ⇓H,σ ι and H(ι, f) = v.
e.g(e′) ⇓H,σ v if e ⇓H,σ ι and e′ ⇓H,σ v′ and Body(g) ⇓H,σ′ v,

where σ′ = [this,X 7→ ι, v′].
e = e′ ⇓H,σ true if e ⇓H,σ v and e′ ⇓H,σ v for some v.
e = e′ ⇓H,σ false if e ⇓H,σ v and e′ ⇓H,σ v′ and v 6= v′.
(e1 ? e2 : e3) ⇓H,σ v if e1 ⇓H,σ true and e2 ⇓H,σ v.
(e1 ? e2 : e3) ⇓H,σ v if e1 ⇓H,σ false and e3 ⇓H,σ v.

We now define the value of an expression e in the context of H and σ, as follows:

|dec|H,σ =

{
v if e ⇓H,σ v
errortp if 6 ∃v. e ⇓H,σ v and e has type tp.

Thus, in a configuration H0, σ0 where z points to a cycle, we obtain that
|dz.length()c|H0,σ0

=errorint, and |dz.length() = 3c|H0,σ0
= errorbool. Moreover, we

can represent z.length() 6= 3 through (z.length() = 3 ? false : true) and then we

7

would obtain |dz.length() 6= 3c|H0,σ0
= errorbool. The presence of error values in

the above definition may seem surprising, but we will shortly show that such
values can only occur when the meaning of the expression is irrelevant to the
assertion in which it occurs. First, we define the semantics of equi-recursive
assertions:

Definition 4 (Semantics of Equi-Assertions). We define the semantics of
assertions in a state comprising of permissions π, heaps H, and environment σ,
as the least fixpoint of the following equations:

π,H, σ |=E e ⇐⇒ |dec|H,σ = true
π,H, σ |=E acc(e.f , q) ⇐⇒ π(|dec|H,σ, f) ≥ q
π,H, σ |=E e→ a ⇐⇒ |dec|H,σ ⇒ π,H, σ |=E a
π,H, σ |=E a1 ∗ a2 ⇐⇒ ∃π1, π2 : π = π1 + π2

and π1, H, σ |=E a1 and π2, H, σ |=E a2
π,H, σ |=E e.P ⇐⇒ π,H, σ |=E Body(P)[e/this]
π,H, σ |=E Thread(x,m, y, z) ⇐⇒ π[σ(x), recv] = 1 ∧H[σ(x), recv] = σ(y)

∧ π[σ(x), param] = 1 ∧H[σ(x), param] = σ(z)
∧ π[σ(x), meth] = 1 ∧H[σ(x).meth] = m

Equi-entailment a |=E a
′ holds if: ∀π,H, σ. π,H, σ |=E a =⇒ π,H, σ |=E a

′.

Thus, in H0, σ0 from above we have π,H0, σ0 6|=E z.length() = 3. And if,
as before, we represent z.length() 6= 3 through (z.length() = 3 ? false : true) we
obtain π,H0, σ0 6|=E z.length() 6= 3. Note that π,H, σ |=E e.P holds, if π,H, σ |=E

BodyP[e/this] holds in a finite unfolding. Therefore, we also obtain π,H0, σ0 6|=E

z.Acyclic.

Moreover, if we represent ¬(z.length() = 3) through (z.length() = 3) →
false, we obtain that π,H0, σ0 |=E ¬(z.length() = 3). This may seem to be a
concern, given that π,H0, σ0 6|=E z.length() 6= 3.

These concerns are eliminated once we add the definition of framed expres-
sions and assertions. Essentially, we define a judgement which ensures for a given
expression or assertion that a particular state holds enough permissions to access
all fields, and that all involved function calls, or predicate applications have a
finite unrolling. We then define an assertion to be self-framing if it can only hold
in states in which it is framed. In this way, we guarantee that all assertions are
either trivially false, or else their semantics will not include calculation of error
values, and thus the intuitive semantics of expressions is restored.4

Definition 5 (Framed and Self-Framing Equi-Assertions). An equi-expression
e, or assertion a is equi-framed in a state consisting of H, π and σ, as the least

4 The concept of self-framing assertion was introduced in [21], and described algorith-
mically in [22]; a more abstract formalisation for assertions not including predicates
was developed in [17].

8

fixpoint satisfying the following equations:

|=π,H,σ
frmE null |=π,H,σ

frmE true |=π,H,σ
frmE false |=π,H,σ

frmE x

|=π,H,σ
frmE e.f ⇐⇒ |=π,H,σ

frmE e ∧ π(|dec|H,σ, f) > 0

|=π,H,σ
frmE e.g(e′) ⇐⇒ |=π,H,σ

frmE e ∧ |=π,H,σ
frmE e′ ∧ |=π,H,σ′

frmE Body(g)
where σ′ = [this,X 7→ |dec|H,σ, |de′c|H,σ]

|=π,H,σ
frmE e = e′ ⇐⇒ |=π,H,σ

frmE e ∧ |=π,H,σ
frmE e′

|=π,H,σ
frmE e1?e2 : e3 ⇐⇒ |=π,H,σ

frmE e1 ∧ (π,H, σ |=E e2⇒|=π,H,σ
frmE e3)

∧ (π,H, σ 6|=E e1 ⇒ |=π,H,σ
frmE e2)

|=π,H,σ
frmE acc(e.f , q) ⇐⇒ |=π,H,σ

frmE e

|=π,H,σ
frmE e→ a ⇐⇒ |=π,H,σ

frmE e ∧ (π,H, σ |=E e⇒|=π,H,σ
frmE a)

|=π,H,σ
frmE a1 ∗ a2 ⇐⇒ |=π,H,σ

frmE a1 ∧ |=π,H,σ
frmE a2

|=π,H,σ
frmE e.P ⇐⇒ |=π,H,σ

frmE e ∧ |=π,H,σ
frmE Body(P)[e/this]

|=π,H,σ
frmE Thread(x,m, y, z) ⇐⇒ true

An equi-expression e is framed by an assertion a, written a |=frmE e, if, (for all

π,H, σ) we have π,H, σ |=E a implies that |=Π,H,σ
frmE e.

An equi-assertion a is self-framing, written |=frmE a if, for all H, π and σ:

π,H, σ |=E a ⇒ |=π,H,σ
frmE a

Thus, x = 3 is always framed, and thus self-framing trivially, and so are
acc(e.f , q) and Thread(x,m, y, z), while x.next 6= null is framed only when the
state holds permission to the heap location x.next. Moreover, note that the
expressions x.next = x.next and x.next 6= x.next (encoded through (x.next =
x.next)?false : true as earlier), and the assertion ¬(x.next = x.next) (encoded
through ((x.next = x.next) → false) as earlier) are not self-framing. Sim-
ilarly, x.length() is framed only in states where we hold the permissions to
all the fields in the list, and also, where x is an acyclic list. In particular,
x.List ∗ x.length() == 4 is self-framing.

The definitions provided in this section give a direct semantics to well-defined
recursive functions and predicates, in which function calls are always equal to
their bodies (when this yields a well-defined value), and predicates are also eval-
uated in terms of their bodies directly. This semantics is unsuitable for usage in
an implementation for three reasons:

1. Treating a predicate instance as meaning its full unrolling yields an unim-
plementable semantics for checking truth and entailment of assertions; the
unbounded unrolling of such a definition cannot be performed in a static
tool.

2. Treating a function call as always equal to its body also naturally leads to
unbounded instantiation of the recursive definition, in order to evaluate the
meaning of assertions in which the function is called.

3. Checking well-definedness and framing of predicate and function definitions
is also not practical, since (according to Definition 5), this also depends on
being able to evaluate the entire unrolling of the definitions.

In the next section, we turn to the corresponding isorecursive notions, to address
these issues.

9

Discussion In the remainder of this section, we reflect on some considered design
alternatives.

In earlier attempts to define a suitable semantics, we considered making the
evaluation of expressions (particularly functions) dependent on holding sufficient
permissions to frame the expressions. This seems intuitive, since reading heap
locations without permissions can, at runtime, yield an undefined result (due to
race conditions), while evaluating non-terminating functions is clearly undefined
at runtime. However, once expression semantics is allowed to be undefined, one
either needs to allow the assertion semantics to also provide undefined results,
or to provide rules for when to promote undefined results to true or false. The
use of additional error values errortp allowed us to avoid this; instead taking an
“optimistic” semantics of expressions, and then enforcing framedness separately.

Verification tools often require abstraction functions to have a precondition,
which is a predicate which guarantees that the function body terminates, and
that the context of a call will hold sufficient permissions. This is natural for the
modelling of partial functions, however, we found that our equirecursive seman-
tics could exploit the use of error values (which implicitly make all functions
total) to avoid explicit preconditions. This is consistent with an optimistic ex-
pression semantics, and it is not the semantics of this section which needs to be
readily checkable in static tools. Preconditions for functions will appear in the
isorecursive semantics of the next section.

3 Isorecursive Semantics for Predicates and Functions

In this section, we introduce an assertion semantics in the iso-recursive style. In
the iso-recursive approach, predicates are differentiated from their bodies; this
is handled in the logic by treating predicate names merely as another kind of
permission, which can be rewritten into the corresponding body of the predicate
by explicit extra fold and unfold statements in the program. With this approach,
there are then two different notions of permission a thread can have; the explicit
permissions, which can be represented in a permissions masks as usual, and
the implicit permissions, which are those which are folded (perhaps recursively)
inside of predicates held in the explicit permissions. Moreover, in the iso-world,
functions are equipped with preconditions, which control when the function may
be called; thus, the precondition ensures that the body of the function is well-
defined in the particular configuration. To differentiate isorecursive definitions
from their equirecursive counterparts, we typically use corresponding upper-case
metavariables (Π for masks, E for expressions, etc.).

Definition 6 (Iso-Expressions and Iso-Assertions). We define the syntax
of iso-expressions (ranged over by E) and iso-assertions (ranged over by A),
by the following grammars, in which x ranges over program variables, f ranges
over field identifiers, g over function names, P over predicate identifiers, and q
ranges over rational numbers in the range (0, 1]:

10

E ::= null | true | false | x | E.f | E.g(E) | E = E | (E ?E :E)
| unfoldingE.P inE

A ::= E | acc(E.f, q) | E → A | A ∗A | acc(E.P) | Thread(x,m, y, z)
In addition to the lookup function Body from the equi-programs, we also require
a lookup function Pre which is given the name of of an iso-function and returns
an assertion, which is the precondition of a function.

To continue our example from earlier, a length function in the iso-setting,
length, would come with a precondition, Pre(length) = acc(this.List), where the
predicate List would be defined through:

acc(this.next, 1) ∗ ((this.next = null ? true : acc(this.next.List))),
and where Body(length) would be

unfolding this.List in (this.next = null ? 0 : 1 + this.next.length()).
The syntax of iso-expressions is the same as that of equi-expressions, with

the exception of unfoldingE1.P inE2 which does not exist in the equirecursive
setting. The value of this expression is the same as that of E2, however, the way
such an expression is checked to be framed in a state is different; the unfolding
of the predicate P means that E2 may depend on permissions which come from
the body of E1.P .

The difference between equi-assertions and iso-assertions is the replacement
of the assertion of predicate e.P , by the permissions to the predicate, denoted
acc(E.P) above. The semantics of e.P differs from that of acc(E.P), in that the
former unfolds all recursive definitions, while the latter only requires permission
to the predicate instance - more in definition 9. To keep the presentation simple,
we only support full permissions on predicates; i.e., we do not allow predicate in-
stances themselves to be “split”. Some tools support this, and the corresponding
extension of our model would be straightforward.

Definition 7 (Semantics of Iso-Expressions). We define the evaluation of
iso-expressions E in a state comprising of heaps H, and environment σ, in the
analogous manner to definition 3, for example,

E = E′ ⇓H,σ false if E ⇓H,σ v and E ⇓H,σ v′ and v 6= v′.
with the following additional case:

unfoldingE1.P inE2 ⇓H,σ v if E2 ⇓H,σ v.
Moreover, as in definition 3, if E has type t, then

|dEc|H,σ = v, if E ⇓H,σ v, and errortp, otherwise.
The full definition appears in the appendix.

Thus, in a state H1, σ1 where z points to an acyclic list of two elements,
we would have |dz.Lengthc|H1,σ1

=2, and in H0, σ0 from earlier, we would have
|dz.Lengthc|H0,σ0= errorint.

In order to model iso-assertions, we extend the concept of permission mask,
so that it also holds permissions to predicate instances.

Definition 8 (Iso-Permissions and Permissions Collection). Isorecursive
permission masks, Π ∈ Perms, are mappings from pairs of object or thread
identifiers and field names to non-negative values in Q, and from pairs of object
identifiers and predicate identifiers to non-negative values in Z.

11

The function PI collects the permissions explicitly required by an assertion,
PI : IsoAssertion×Heap× Env→ Perms

PI(E,H, σ) = ∅
PI(acc(E.f, q), H, σ) = { (|dEc|H,σ, f) 7→ q }
PI(E → A,H, σ) = PI(A,H, σ) if |dEc|H,σ = true, ∅ otherwise
PI(A ∗A′, H, σ) = PI(A,H, σ) + PI(A

′, H, σ)
PI(acc(E.P), H, σ) = { (|dEc|H,σ, P) 7→ 1 }
PI(Thread(x,m, y, z), H, σ) = { (σ(x), recv) 7→ 1, (σ(x), param) 7→ 1,

(σ(x), meth) 7→ 1}
The operation �, applied to permission mask Π, address ι and predicate identifier
P in a heap H, is defined only when Π(σ(x), meth]) ≥ 1, and removes the
permission to ι.P from the Π, and adds all the permissions obtained by unfolding
the predicate body once.
Π �H ι.P = 7→ Π(ι, P)− 1] + PI(Body(P), H, σ), where σ(this) = ι.

As for the equirecursive case, we have a liberal treatment of permission masks
Π, which allows permissions to fields be any rational numbers, even if they exceed
1. Because we do not work with full knowledge of the permissions contained
within predicate instances, we cannot in general rule out the possibility that
the assertions we handle implicitly require more than the full permission to a
field. In other words, there is always the possibility for isorecursive permission
masks to have no corresponding well-formed equirecursive permission mask. For
uniformity, therefore, we ignore this issue in our isorecursive model, and address
it in the following section.

Definition 9 (Semantics of Iso-Assertions). We define the semantics of
iso-assertions in a state comprising of an iso-permission mask Π, heap H, and
an environment σ, as the smallest fixed point satisfying the following properties:

Π,H, σ |=I E ⇐⇒ |dEc|H,σ = true
Π,H, σ |=I acc(E.f, q) ⇐⇒ Π(|dEc|H,σ, f) ≥ q
Π,H, σ |=I E → A ⇐⇒ Π,H, σ |=I E ⇒ Π,H, σ |=I A
Π,H, σ |=I A1 ∗A2 ⇐⇒ ∃Π1, Π2 : Π=Π1 +Π2 ∧ Π1, H, σ |=I A1

∧Π2, H, σ |=I A2

Π,H, σ |=I acc(E.P) ⇐⇒ Π(|dEc|H,σ, P) ≥ 1
Π,H, σ |=I Thread(x,m, y, z) ⇐⇒ Π[σ(x), recv] = 1 ∧H[σ(x), recv] = σ(y)

∧ Π[σ(x), param] = 1 ∧H[σ(x), param] = σ(z)
∧ Π[σ(x), meth] = 1 ∧H[σ(x).meth] = m

Iso-entailment A |=I A
′ holds if: ∀Π,H, σ. Π,H, σ |=I A =⇒ Π,H, σ |=I A

′.

Crucially, the semantics of predicate permissions acc(E.P , n) do not involve
recursion; it is sufficient to simply check that permission to the predicate instance
is in the direct permissions. This does not directly enforce that the body of the
predicate holds in the current state, but, as we shall show in the next section,
we push this concern to the definition of a “good” isorecursive state; since a
verifier cannot in general enforce that a recursive definition holds, this has to be

12

pushed to the soundness of the underlying methodology (i.e., the equirecursive
semantics).

We can now define the notion of framing for iso-expressions and iso-assertions
(cf. Definition 5 for the equi-world).

Definition 10 (Framed and Self-Framing Iso-Assertions). An iso-assertion
expression E, or assertion A is iso-framed in a state consisting of H, Π and
σ, as defined by judgements |=Π,H,σ

frmI E and |=Π,H,σ
frmI A. Full definitions are pro-

vided in the appendix, but all cases of these judgements are analogous to those
of Definition 5, with the following exceptions:

|=Π,H,σ
frmI E.g(E′) ⇐⇒ |=Π,H,σ

frmI E ∧ |=Π,H,σ
frmI E′ ∧

Π,H, σ′ |=I Pre(g)
where σ′ = [this,X 7→ |dEc|H,σ, |dE′c|H,σ]

|=Π,H,σ
frmI unfoldingE.P inE′ ⇐⇒ |=Π,H,σ

frmI E ∧Π(|dEc|H,σ, P) ≥ 1 ∧
|=Π′,H,σ

frmI E′

where Π ′ = Π �H |dEc|H,σ.P
|=Π,H,σ

frmI acc(E.P) ⇐⇒ |=Π,H,σ
frmI E

An iso-expression E is framed by an assertion A, written A |=frmIE, if, (for all

Π,H, σ) we have Π,H, σ |=I A implies that |=Π,H,σ
frmI E.

An iso-assertion A is self-framing, written |=frmIA if, for all H, Π and σ:

Π,H, σ |=I A ⇒ |=Π,H,σ
frmI A

For example, Thread(x,m, y, z) and this.List are self-framing assertions, while
this.next=null is not.

The rule at the heart of the iso-expressions is the one describing framing
for unfoldingE.P inE′: it requires that the context holds permission to the
predicate E.P, and adds the permissions from the body of E.P into the currently
held permissions, in order to check framedness of E′. Therefore, in a context
where Π(σ(this),next) = 0, and Π(σ(this),List) = 1, the expression this.next is
not framed, while the expression unfolding this.List in this.next is.

Most importantly, the notion of framing no longer requires a recursive traver-
sal of predicate definitions, as opposed to that from definition 5, which required
potentially infinite unrolling. This can only be justified with two further ingre-
dients; firstly, that predicate definitions are always self-framing and functions
are only applied in contexts where their bodies are guaranteed to terminate,
and secondly that holding a predicate always implicitly guarantees that its body
holds in the same state. The former of these two ingredients is provided by the
following definition, while the second is provided by the notion of “good state”
in the next section.

Definition 11 (Well-formed Definitions).
The definition of an iso-predicate P is well-formed, if |=frmI Body(P).
The definition of an iso-function g is well-formed, if: (1) |=frmI Pre(g),

and (2) ∀Π,H, σ.(Π,H, σ |=I Pre(g) =⇒ (|=Π,H,σ
frmI Body(g) ∧ |dBody(g)c|H,σ 6=

errortp)), where tp is the return type of g.
A program is well-formed if all function and predicate definitions are well-

formed.

13

For example, a function bad, defined as bad(x) = bad(x) + 1, would be well-
formed it is precondition was false, and not otherwise. Moreover, the function
length with precondition List is well-formed, and would not be well-formed with
precondition, say, true.

Note that this notion of well-formedness can be checked without unrolling
definitions recursively. In the next section, we will show how the isorecursive
definitions above correctly approximate the corresponding equirecursive notions.

Discussion We considered making the error value errortp, an (unknown) element
of the type tp. This approach of underspecification is taken in some classical logic
based handlings of partial functions. This would work correctly for the semantics
of assertions, but would not work correctly for Definition 11, since we check that
functions do not evaluate to this value. For example, equating errorbool with
true or with false, would turn a boolean function g(x) = (x > 3), into a badly-
formed function.

Returning to the three points outlined at the end of the previous section, we
can see that our isorecursive definitions directly handle the first and third points
of the list (the semantics of predicates, and the checking of framing of expres-
sions and assertions), without requiring a recursive unrolling of any definition.
These can therefore be implemented effectively in a static tool. With respect to
the second point of our list, our isorecursive expression semantics still defines
function calls directly in terms of their bodies. Many tools handle this problem
by applying a variety of additional heuristics, ghost code markers or triggers
[12], in order to implement a constrained version of the definition we employ
here. Since we did not want to prescribe exactly how this definition should be
constrained, we left this point open in the above. In particular, it is possible for
a reasonably complete handling of this definition to be achieved based only on
the folding and unfolding of predicates [7].

4 Comparing the Assertion Semantics

We now turn to relating our two semantics. Our eventual goal is to define an era-
sure, mapping our isorecursive constructions to their equirecursive counterparts,
in order to show that verification based on isorecursive semantics gives a sound
approximation of verification based on equirecursive semantics. In particular,
we will show that fold, unfold and unfolding (which are essential for defining
semantics in the isorecursive sense) can all be eliminated from the language, and
the resulting program still satisfies the erased version of its specifications. Since
permissions (let alone permissions to predicates) are not reflected at runtime,
this leads us closer to a runtime model suitable for proving soundness with re-
spect to an operational semantics. In this section, we focus on the relationship
between the two semantics for assertions.

Definition 12 (Encoding). The encoding 〈〈 〉〉 maps isorecursive expressions
and assertions to their equirecursive counterparts, typically by injection, e.g.
〈〈x 〉〉 = x, 〈〈E.f 〉〉=〈〈E 〉〉.f , and 〈〈acc(E.f, q) 〉〉=acc(〈〈E 〉〉.f , q).

14

For the cases specific to iso-expressions and assertions, we have
〈〈unfoldingE.P inE′ 〉〉 =〈〈E′ 〉〉, and 〈〈acc(E.P) 〉〉=〈〈E 〉〉.P .

The full definition appears in the appendix.

Unfolding expressions are unnecessary in the equirecursive world, where pred-
icates and their bodies are not differentiated between. However, the unrolling
of predicate definitions may still lead to the discovery that too many field per-
missions were implicitly held in an isorecursive state; not all isorecursive masks
have an equirecursive analogue. This is described in the next definition.

Definition 13 (Encoding permissions). The (partial) translation 〈〈 〉〉 en-
codes isorecursive permission maps Π into equirecursive permission maps π,

〈〈Π 〉〉H = {(ι, f) 7→ q | Π[ι, f] = q}+ {(t, f) 7→ q | Π[t, f] = q}+ 〈〈Π ′ 〉〉H
where Π ′ =

∑
Π(ι.P)>0(PI(Body(P), H, [this 7→ ι]))

Note that 〈〈Π 〉〉H may not be well-defined (if a predicate instance held in Π
has an infinite unfolding; then the definition above will not terminate), and
even when defined, it may not yield a well-formed equi-permissions-mask (cf.
Definition 2), if too many field permissions are accumulated. Furthermore, it
could be that the constraints required in the bodies of predicates are not always
correctly reflected in an iso-recursive state. Thus, we define the notion of a
“good” isorecursive state.

Definition 14 (Good Iso-States). An isorecursive state defined by heap H,
iso-permissions-mask Π and environment σ is “good”, if:

1. 〈〈Π 〉〉H is defined, and satisfies |= (〈〈Π 〉〉H).
2. For all ι, P such that Π[ι, P] > 0, (〈〈Π 〉〉H), H, σ′ |=E w.P is satisfied, where

w is a fresh variable, and σ′ is the environment σ extended with the mapping
[w 7→ ι].

Note, in particular, that the second of these two requirements enforces that
the original state does not hold permission to any predicate instance whose
definition can be unrolled infinitely. As motivated in Section 2, such predicates
are interpreted as false in the equirecursive semantics in any case, so ruling out
such states in advance is consistent with this view. In general, good iso-states
are those which can have a meaningful corresponding equirecursive counterpart;
all others are artifacts of the incomplete knowledge provided by isorecursive
definitions.

In Lemma 1 we show that we can map a judgement back from the equirecur-
sive world to the isorecursive, starting from a ”good” state in the isorecursive
world. Then, in Theorem 1, we show our erasure results.

Lemma 1. In a well-formed program the following properties hold:

1. If Π(ι.P) > 0, then 〈〈Π 〉〉H = 〈〈Π �H ι.P 〉〉H .
2. If π,H, σ |=E 〈〈A 〉〉, then ∃Π s.t. (Π,H, σ) is a good iso-state, 〈〈Π 〉〉H = π,

and Π,H, σ |=I A.

15

Theorem 1 (Erasure Results).

1. |d〈〈E 〉〉c|H,σ = |dEc|H,σ.
2. If Π,H, σ |=I A and (Π,H, σ) is a good iso-state,

then 〈〈Π 〉〉H , H, σ |=E 〈〈A 〉〉.
3. If (Π,H, σ) is a good iso-state and |=Π,H,σ

frmI A, then |=〈〈Π 〉〉,H,σ
frmE 〈〈A 〉〉.

4. If all functions and predicates are well-formed, then if an iso-assertion A is
self-framing, then 〈〈A 〉〉 is self-framing.

5. If A |=I A
′, then 〈〈A 〉〉 |=E 〈〈A′ 〉〉.

The proof sketches are given in the appendix. These results demonstrate that
the more-readily-checkable isorecursive notions supplied in the previous section,
accurately approximate the intended underlying equirecursive notions.

In the following sections, we extend this argument to Hoare Logics for a small
language. We will then be in a position to prove that verifying a program with
respect to isorecursive definitions, is sufficient to guarantee soundness, via our
erasure results, and a soundness proof with respect to equirecursive semantics.

5 Hoare Logic for Iso-Assertions

In this section, we define an axiomatic semantics for a small (but representative)
subset of Chalice, with respect to our iso-recursive assertion semantics (as defined
in Section 3). This is the semantics closest to most implementations, but it is not
so intuitive or useful as a runtime model. In the following section, we will define
a corresponding Hoare Logic for our equirecursive semantics, and demonstrate
the relationship between the two.

5.1 Chalice Syntax

We begin by defining our Chalice subset:

Definition 15 (Isorecursive Chalice Syntax). We assume a set of pre-
defined methods, ranged over by m. For simplicity, methods are assumed to have
exactly one parameter, and to always return a value. Furthermore, method names
are assumed to be unique in the whole program.
Simple statements, ranged over by R, and statements, ranged over by S, are
mutually defined by the following grammars:

R ::= skip | x:=E | x.f :=y | return x | x:= new c | (if B then S1 else S2)
| x:= fork y.m(z) | y:= join x | foldx.p | unfoldx.p

S ::= R | (R;S)

A statement S is return-ended if the right-most simple statement occurring in
its structure is of the form return x; i.e., it can be constructed by the following
sub-grammar: S ::= return x | (R;S)
Composition of statements s1 and s2, for which we use the (overloaded) notation
(S1;S2), results in a statement which represents appending the two sequences of
simple statements; i.e., when S1 is not a simple statement (say, S1 = (R;S′)),
is defined by recursively rewriting ((R;S′);S2) = (R; (S′;S2)).

16

Our syntax only allows for sequential compositions to be nested to the right,
which simplifies the definition of the operational semantics (see Section 7), since
we do not need a separate concept of evaluation contexts for such a simple
language. Our language only allows general expressions e within variable as-
signments, and otherwise employs only program variables for expressions, but
the generalisation is easily encoded (or made). Multi-threading is achieved by
the ability to fork and join threads. The statement w:= fork m.y(z) has the
meaning of starting an invocation of a call to method m (with receiver y and
parameter z) in a new thread. The returned value (stored in w) is a token, which
gives a means of referring to this newly-spawned thread. Such a token can be
used to join the thread later (which has the operational meaning of waiting for
the thread to terminate, and then receiving its return value); this is provided by
the x:= join w statement. In order to model information about active thread-
s/tokens, we need to extend our assertion logic with an additional assertion
Thread(x,m, y, z), which has the meaning that x stores a token corresponding
to a forked thread executing method m with receiver y and parameter z. In
order to represent this in our assertion semantics, we extend our heaps with
extra thread objects, which store the information m,y,z in ghost fields. These
fields cannot be referred to directly in assertions, but we extend our semantic
judgement with the following rule:
π,H, σ |=E Thread(x,m, y, z)⇔
π[σ(x), recv] = π[σ(x), param] = π[σ(x),meth] = 1
∧ H[σ(x).recv] = σ(y) ∧H[σ(x).param] = σ(z) ∧H[σ(x).meth] = m

and identically for its isorecursive semantics. Thus, Thread(x,m, y, z) is a self-
framing assertion, which can be passed between threads to indicate which thread
has permission to join a token.

We do not include loops, since they present no relevant challenges compared
with recursion. While we do not support a method call statement, we do allow
the fork and join of method invocations. A normal method call of the form
x:= m.y(z) can be encoded by a sequence (w:= fork m.y(z) ;x:= join w)
(for some fresh variable w).

5.2 Hoare Logic

We now define the Hoare Logic corresponding to isorecursive assertion semantics.

Definition 16 (Isorecursive Hoare Logic). Isorecursive Hoare Triples are
written `I {A} S {A′}, where A and A′ are self-framing isorecursive assertions,
and S is an Isorecursive Chalice statement. The rules are shown in Figure 1.
We leave implicit the requirement that A and A′ are always self-framing; in
particular, whenever we write a triple (even as a new conclusion of a derivation
rule), this requirement must be satisfied in addition to the explicit premises.

Our Hoare triples employ isorecursive assertions as pre- and post-conditions,
with the restriction that the assertions used must always be self-framing. The
restriction to self-framing assertions is important for soundness. For example,
without this requirement, it would naturally be possible to derive triples such as

17

`I {x.f = 1} (skip; skip) {x.f = 1}, which, when evaluated at runtime, might
not be sound (another thread could modify the location x.f during execution).
Indeed, in our soundness proof, the requirement that every thread has a self-
framing pre-condition is essential to the argument.

(skipI)
`I {A} skip {A}

A[E/x] |=frmIE
(varassI)

`I {A[E/x]} x:=E {A}

(fldassI)
`I {x 6= null ∗ acc(x.f, 1)} x.f :=y {acc(x.f, 1) ∗ x.f = y}

(retI)
`I {A} return x {A ∗ result = x}

fi = fields(c)
(newI)

`I {true} x:= new c {(∗acc(x.fi, 1))}

`I {A ∗B} S1 {A′} `I {A ∗ ¬B} S2 {A′}
(ifI)

`I {A} (if B then S1 else S2) {A′}

A = Pre(m)[y/this][z/X]
(forkI)

`I {y 6= null ∗A} x:= fork y.m(z) {Thread(x,m, y, z)}

A′ = Post(m)[y/this][z/X][w/result]
(joinI)

`I {Thread(x,m, y, z)} w:= join x {A′}

`I {A} R {A′} `I {A′} S {A′′}
(seqI)

`I {A} (R;S) {A′′}

A1 |=I A3 `I {A3} s {A4} A4 |=I A2
(consI)

`I {A1} s {A2}

`I {A} S {A′} |=frmIA
′′ mods(S) ∩ FV(A′′) = ∅

(frameI)
`I {A′′ ∗A} S {A′ ∗A′′}

A′ = Body(P)[x/this]
(foldI)

`I {A ∗A′ ∗B} fold acc(x.P , q) {A ∗ acc(x.P , q) ∗ unfolding x.P inB}

A′ = Body(P)[x/this]
(unfoldI)

`I {A ∗ acc(x.P , q) ∗ unfolding x.P inB} unfold acc(x.P , q) {A ∗A′ ∗B}

Fig. 1. Hoare Logic for Isorecursive semantics

Some of the rules (such as the treatment of conditionals, and the rule of con-
sequence, (consI))) are standard, but others warrant discussion. The frame rule
(frameI)) (whose role is to preserve parts of the state which are not relevant for

18

the execution of the particular statement) is similar to that typically employed
in separation logics [8]. The extra assertion A′′ can be “framed on” under two
conditions; firstly, that no variables mentioned in A′′ are modified by the state-
ment s, and secondly, that A′′ is self-framing. The two conditions are necessary
for similar reasons; if the execution of s could change the meaning of A′′, then to
simplify conjoin it unchanged to both pre- and post-condition would be incor-
rect. The two ways in which the state can change in our language are through
variable assignments (whose effects are tamed by the first requirement) and field
assignments (which cannot affect the meaning of A′′, since A′′ is self-framing,
and therefore comes along with sufficient permission to rule out assignment to
the fields on which its meaning depends).

The (varassI) rule is similar to a standard Hoare Logic rule for assignment,
but with the extra requirement that the expression to be assigned is readable in
the pre-condition state. The premise guarantees that fields are only read when
appropriate permissions are known to be available, and functions are only applied
when their pre-conditions are known in the state. The rule (fldassI) is slightly
subtle: it must avoid the possibility of outdated heap-dependent expressions
surviving the assignment; the requirement for full permission to the written
field location from the pre-condition forces any information previously-known
about that location to be discarded (i.e., using rule (consI)) prior to applying
this rule.

The rules for forking and joining threads employ the special Thread(x,m, y, z)
assertion, discussed above. Our formulation does not allow this knowledge to
be split amongst threads (though it can be passed from thread to thread in
contracts).

The two most important rules for the isorecursive semantics are those for
folding and unfolding predicate instances. For example, consider folding a pred-
icate instance, as defined by rule (foldI)). It is easy to see that this rule should
exchange the body of the predicate instance (the assertion A′ for a permission
to the predicate itself). The challenge is to enable the preservation of infor-
mation which was previously framed by the predicate’s contents, even though
those permissions have (after folding) been stored into the predicate body. For
example, consider a predicate P whose definition is acc(this.g, 1). In a state
in which we know acc(this.g) ∗ this.g = 4, we could not treat a fold of P
as a simple exchange of acc(this.g) for acc(this.P), since, in the resulting
state, this.g = 4 would not be framed. Instead, our rule allows us to derive
the post-condition acc(this.P) ∗ unfolding this.P in this.g = 4, which is self-
framing. Furthermore, in order to handle the possibility that we wish to pre-
serve an expression which is framed partially by the permissions required by
a predicate body, we allow the presence of a further assertion A in the rule.
This allows, e.g., a pre-condition such as acc(this.f) ∗ acc(this.g) ∗ this.f =
this.g for a statement fold acc(this.P) to be used to derive a post-condition
acc(this.f)∗acc(this.P)∗unfolding this.P in this.f = this.g, in which the ad-
ditional assertion (acc(this.f) in this case) provides additional permissions re-
quired for self-framing. The condition that A must be self-framing is necessary

19

to avoid that A itself might represent information which was only framed by
permissions from the body of P .

The rule for unfolding predicates is exactly symmetrical with that for folding
predicates. In particular, it enables information from unfolding expressions de-
pending on the predicate to be unfolded, to be preserved (without an unfolding
expression) in the post-state.

We can characterise the derivable triples in our Hoare Logic, using a gener-
ation lemma; an example case is shown here.

Lemma 2 (Generation Lemma).

– `I {A} x:=E {A′} ⇔
∃A′′.(A′′ s.f. ∧ A |=I A

′′[E/x] ∧ A′′[E/x] |=frmIE ∧ A′′ |=I A
′)

– Remaining cases in the appendix.

6 Hoare Logic for Equi-Assertions

In this section, we employ a second Hoare Logic based on our equirecursive
assertion semantics. Firstly, we define an “erased” form of our statement syn-
tax, in which only equi-recursive expressions are used, and no fold and unfold
statements may occur.

Definition 17 (Equirecursive Chalice Syntax). Simple runtime statements,
ranged over by r, and runtime statements, ranged over by s, are mutually defined
by the following grammars:

r ::= skip | x:=e | x.f :=y | return x | x:= new c | (if b then s1 else s2)
| x:= fork y.m(z) | y:= join x

s ::= r | (r; s)

The notions of return-ended statements and composition of statements are anal-
ogous to those of Definition 15.

We can now define the equirecursive analogue of Definition 16.

Definition 18 (Equirecursive Hoare Logic). Equirecursive Hoare Triples
are written `E {a} s {a′}, where a and a′ are self-framing equirecursive asser-
tions, and s is an equirecursive Chalice statement. For space reasons, the full
rules are not given here. However, all rules are analogous to those of our Isore-
cursive Hoare Logic (Definition 16), except that the corresponding equirecursive
notions of entailment, self-framing, statements, assertions etc. are used through-
out. In addition, there are no rules for fold and unfold statements (since these
do not occur in equirecursive Chalice). The full rules are given in the appendix
(Figure 4).

We now extend our previous erasure results (mapping isorecursive to equirecur-
sive assertions) to also define an erasure on statements. This operation applies
erasure to all assertions and expressions, and replaces all fold/unfold statements
with skip.

20

Definition 19 (Encoding iso-statements to equi-statements). We over-
load the encoding 〈〈 〉〉 to map isorecursive to equirecursive statements, as:

〈〈x:=E 〉〉 = x:=〈〈E 〉〉 〈〈 (S1;S2) 〉〉 = (〈〈S1 〉〉; 〈〈S2 〉〉)
〈〈 (if E then S1 else S2) 〉〉 = (if 〈〈E 〉〉 then 〈〈S1 〉〉 else 〈〈S2 〉〉)

〈〈 foldx.P 〉〉 = skip = 〈〈unfoldx.P 〉〉
〈〈S 〉〉 = S otherwise

Theorem 2. If A,A′ are self-framing iso-assertions, and S is an isorecursive
Chalice statement, then

`I {A} S {A′} ⇒ `E {〈〈A 〉〉} 〈〈S 〉〉 {〈〈A′ 〉〉}

7 Operational Semantics and Soundness

In this section, we show soundness of our formalisations, with respect to an
interleaving small-step operational semantics. We formalise our runtime model
with respect to a collection of threads and objects, together referred to as runtime
entities. We do not model explicit object allocation; instead, we assume that
all objects are pre-existing (and already have classes), but have a flag which
indicates whether they are truly allocated or not. When unallocated, an object
holds the permission to all of its own fields. Thus, we never need to create or
destroy permission in the system; it is merely transferred from entity to entity.
Similarly, we do not model creation of new threads, but just assume that idle
thread entities exist in the system, which can be assigned a task (i.e., a method
invocation) to begin executing.

Definition 20 (Runtime Ingredients). Recall that object identifiers are ranged
over by ι, and the (disjoint) set of thread identifiers is ranged over by t. We as-
sume a fixed mapping cls(ι) from object identifiers to class names.
A runtime heap h is a mapping from pairs of object identifier and field name,
to values.
A thread configuration T is defined by T ::={σ, s} | idle
A thread entity is a thread configuration labelled with a thread identifier, Tt. A
thread entity is called active if it is of the form {σ, s}t.
An object state O is defined by O ::= alloc | free, and an object entity is an
object state labelled with an object identifier, written Oι.
A labelled entity Nn is defined by Nn::=Tt | Oι, where the label n denotes the
thread or object identifier of the entity, respectively.

Note that, in contrast to the heaps of Definition 2, runtime heaps do not store
ghost information about thread identifiers. At runtime, this information is di-
rectly available via the thread configurations present.

We define two main types of small-step transitions, which we call local and
paired transitions. A local transition is one which affects only a single (thread)
entity and the heap.

21

Definition 21 (Local transitions). Local transitions map a heap and thread
entity to a new heap and thread entity (with the same thread identifier), and are
written h, Tt l−→ h′, T ′

t . These rules have the expected shape, e.g.

|dec|h,σ = v
(varassS)

h, {σ, (x:=e; s)}t l−→ h, {σ[x 7→v], s}t
The full rules for local transitions and are defined in Figure 5 in the appendix.

σ(y) = ι σ′ = [this 7→ ι,X 7→ σ(z),method 7→ m] s′ = 〈〈Body(m) 〉〉
(forkS)

h, ({σ, (x:= fork y.m(z) ; s)}t1‖idlet2)

p−→ h, ({σ[x7→t2], s}t1‖{σ
′, s′}t2)

σ1(y) = t2
(joinS)

h, ({σ1, (x:= join y ; s)}t1‖{σ2, return z}t2)

p−→ h, ({σ1[x7→σ2(z)], s}t1‖idlet2)

cls(ι) = c fi = fields(c) h′ = h[(ι, fi) 7→null]
(newS)

h, ({σ, (x:= new c; s)}t‖free(c)ι) p−→ h′, ({σ[x7→ι], s}t‖alloc(c)ι)

Fig. 2. Paired transitions

The more complex transitions are concerned with forking and joining threads,
and with object allocation. In the case of forking and joining, we define transi-
tions which simultaneously involve two thread entities; one which is executing the
fork/join statement, and one which represents the thread being forked/joined.
In the case of a fork, the second thread entity must be initially idle, while in the
case of a join, it must have finished executing and be ready to return. Object
allocation, on the other hand, is a transition involving a thread entity and an
object entity together; it takes an object entity in the free state (and of the
appropriate class), and switches it to alloc.

Definition 22 (Paired transitions). Paired transitions map a heap and a
pair of entities to a new heap and pair of entities (with the same identifiers),
and are written h, (Tt‖Nn) p−→ h′, (T ′

t‖N ′
n). They are defined in Figure 2.

We can now define the operational semantics for a whole system.

Definition 23 (Runtime Configurations and Operational Semantics).
A runtime entity collection C is a pair (Tt, Oι) consisting of a set of thread
entities (one for each thread identifier t) and a set of object entities (one for
each object identifier ι). A runtime configuration is a pair h,C of a runtime
heap and a runtime entity collection.

The interleaving operational semantics of such a configuration is given by a
transition relation of the form h,C c−→ h′, C ′, and is defined by the reflexive,
transitive closure of the rules in Figure 3.

22

C[t] = (Tt) h, Tt l−→ h′, T ′
t

(selectLocalS)
h,C c−→ h′, C[t 7→T ′

t]

C[t] = (Tt) C[n] = (Nn) h, (Tt‖Nn) p−→ h′, (T ′
t‖N ′

n)
(selectPairS)

h,C c−→ h′, C[t7→T ′
t][n7→N ′

n]

Fig. 3. Configuration transitions

In order to reuse our equirecursive assertion logic semantics for runtime con-
figurations, we define a mapping Heap back from runtime configurations to heaps
(cf. Definition 2). An application of this map Heap(h,C) simply reconstructs the
ghost information about threads, from the information in the runtime entity col-
lection, adding it to the heap information in h. We also require an equirecursive
permission collection function PE, which collects all of the permissions explic-
itly or implicitly required in equi-assertions a. Both operators are defined in the
appendix.

We can now turn to the central notion of our soundness proof; what it means
for a runtime configuration to be valid. Essentially, this prescribes that the per-
missions to the fields of all allocated objects can be notionally divided amongst
the active threads (point 3 below), and suitable preconditions for the statements
of each thread can be chosen that are satisfied in the current runtime configura-
tion, and for which each statement can be verified (via our equirecursive Hoare
Logic) with respect to the thread’s current postcondition.

Definition 24 (Valid configuration). A runtime configuration (h,C), is valid
if there exists a set of equirecursive assertions at, (one for each thread identifier
t), such that:

1. For each thread entity of the form idlet, at = true.
2. For each thread entity of the form {σt, st}t in C, letting H = Heap(h,C),

we have both PE(at, H, σt), H, σt |=E at and `E {at} st {Post(σt(method))}.
3. |= (

∑
t∈C PE(at, h, σt)) + (

∑
free(c)ι∈C

∑
f∈fields(c){(ι, f) 7→ 1})+

(
∑

idlet∈C{(t, recv) 7→ 1, (t, param) 7→ 1, (t, meth) 7→ 1})

Finally, we can turn to our main soundness result, which shows that modular
verification of each definition in the program, using our isorecursive semantics,
is sound with respect to the interleaving operational semantics of the language.

Theorem 3 (Soundness of Isorecursive Hoare Logic). For a well-formed
program, if all method definitions satisfy `I {Pre(m)} Body(m) {Post(m)}, and
if h,C is a valid configuration, and if C, h c−→ C ′, h′, then C ′, h′ is a valid
configuration.

Note that the use of our isorecursive Hoare Logic here, reflects the fact that
a program must be verifiable statically. However, our earlier results easily allow
us to connect (in the proof) with the equirecursive notions, which are closer to
the actual runtime. A proof sketch is provided in the appendix.

23

8 Related Work and Conclusions

This paper has explored the many challenges involved in handling flexible re-
cursive specification constructs in ways which are both amenable for formal
mathematical proofs (the equirecursive setting), and implementation in prac-
tical static tools (the isorecursive setting). Our work is set in the context of
implicit dynamic frames, which supports an interesting combination of recursive
predicates, functions and unfolding expressions, each of which provides addi-
tional challenges. However, the issues we have described show up in many other
settings, including those which do not support all three features simultaneously.

The first formally rigorous treatment of recursive predicates in the context
of permission-based logics was proposed in [15] for separation logic [8, 13]; this
treatment was further developed in [16]. In both works, and in many subsequent
formal papers, the (only) meaning of recursive predicates is given by the least
fix-point of the unrolling of their bodies, i.e., the equirecursive treatment.

Many existing verification tools based on separation logic, such as jStar [5]
and VeriFast [9], support custom recursive definitions in the form of abstract
predicates. jStar applies a sequence of inbuilt heuristics (which can be user-
defined) to decide on the points in the code at which to fold or unfold recursive
definition, while VeriFast requires the user to provide fold and unfold state-
ments explicitly (which can nonetheless be inferred in some cases). The full
unrolling of a recursive definition is not made available to the verifier; the isore-
cursive interpretation is used for the implementations.

The problem of handling partial functions in a setting with only total func-
tions has received much prior attention, in several areas (see [20] for an excellent
summary). We aimed to avoid allowing “undefined” to be a possible outcome
in our semantics, for the reasons explained in Section 2. As an alternative, we
could have considered taking the approach of semi-classical logics (e.g., [23]),
and allowing undefined expressions but assertions. In a sense, our solution is
somewhat similar, since we use the extra errortp values to circumvent potential
undefinedness for expressions.

The combination of fractional permissions [4] with separation logic for con-
current programming was proposed in [3]. These ideas were adapted to concur-
rent object oriented programming and formalised in [6], and further adapted to
the implicit dynamic frames [21] setting and implemented in the form of Chalice
[10]. The Chalice approach has been formalised [19] through a Hoare Logic for
implicit dynamic frames. However, neither [6], nor [19] give a treatment of re-
cursive predicates and functions. A verification condition generation semantics
for implicit dynamic frames was developed and proven sound in [22].

As future work, we would like to investigate how easily one can build a
soundness proof for such a particular implementation on top of the formalisms
we have provided here. We would also like to explore how to connect the notions
of isorecursive definitions provided here with other related areas, such as tools
for shape and static analysis, in which different but related issues regarding the
bounding of recursive definitions arise.

24

References

1. M. Abadi and M. P. Fiore. Syntactic considerations on recursive types. In Pro-
ceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science
(LICS 1996), pages 242–252. IEEE Computer Society Press, July 1996.

2. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular Automatic
Assertion Checking with Separation Logic. In FMCO, 2005.

3. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL, pages 259–270, 2005.

4. J. Boyland. Checking interference with fractional permissions. In SAS, 2003.
5. D. DiStefano and M. J. Parkinson. jStar: Towards practical verification for Java.

In OOPSLA. ACM Press, 2008.
6. C. Haack and C. Hurlin. Separation logic contracts for a Java-like language with

fork/join. In International Conference on Algebraic Methodology and Software
Technology (AMAST’08), July 2008.

7. S. Heule, I. T. Kassios, P. Müller, and A. J. Summers. Verification condition
generation for permission logics with abstract predicates and abstraction functions.
Technical Report 776, ETH Zurich, 2012.

8. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In POPL, pages 14–26. ACM Press, 2001.

9. B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens.
VeriFast: A powerful, sound, predictable, fast verifier for C and Java - invited
paper. In NFM, 2011.

10. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
G. Castagna, editor, European Symposium on Programming (ESOP), volume 5502
of Lecture Notes in Computer Science, pages 378–393. Springer-Verlag, 2009.

11. K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with
Chalice. In Foundations of Security Analysis and Design V, volume 5705 of LNCS,
pages 195–222. Springer-Verlag, 2009.

12. M. Moska l. Programming with triggers. In SMT ’09: Proceedings of the 7th Inter-
national Workshop on Satisfiability Modulo Theories, 2009.

13. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In CSL, pages 1–19, London, UK, 2001. Springer-Verlag.

14. M. Parkinson. Local Reasoning for Java. PhD thesis, University of Cambridge,
November 2005.

15. M. Parkinson and G. Bierman. Separation logic and abstraction. In POPL, pages
247–258. ACM Press, 2005.

16. M. Parkinson and G. Bierman. Separation logic, abstraction and inheritance. In
POPL, pages 75–86. ACM Press, 2008.

17. M. Parkinson and A. J. Summers. The Relationship between Separation Logic and
Implicit Dynamic Frames. In ESOP, 2011.

18. M. Parkinson and A. J. Summers. The Relationship between Separation Logic and
Implicit Dynamic Frames. Logical Methods in Computer Science, 2012. To appear.

19. A. Raad and S. Drossopoulou. A sip of the chalice. In FTfJP, July 2011.
20. M. Schmalz. Formalizing the logic of event-B. PhD thesis, ETH Zurich, November

2012.
21. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic

frames and separation logic. In ECOOP, volume 5653, pages 148–172, July 2009.
22. J. Smans, B. Jacobs, and F. Piessens. Implicit Dynamic Frames. ToPLAS, 2012.
23. W.M.Farmer. A partial functions version of church’s simple theory of types. Jour-

nal of Symbolic Logic, 55:1269–91, 1990.

25

A Full Definitions, Proofs, Further Lemmas

A.1 Iso-Semantics

Definition 7 [Value of Iso-Recursive Expressions] We define evaluation of
expressions in a state consisting of heap H, and stack frame σ, through predicate
⇓H,σ as follows :

x ⇓H,σ σ(x) null ⇓H,σ null true ⇓H,σ true false ⇓H,σ false

E.f ⇓H,σ v if E ⇓H,σ ι and H(ι, f) = v.
E.g(E′) ⇓H,σ v if E ⇓H,σ ι and E′ ⇓H,σ v′ and Body(g) ⇓H,σ′ v′,

where σ′ = [this,X 7→ ι, v].
E = E′ ⇓H,σ true if E ⇓H,σ v and E′ ⇓H,σ v for some v.
E = E′ ⇓H,σ false if E ⇓H,σ v and E′ ⇓H,σ v′ and v 6= v′.
(E1 ?E2 :E3) ⇓H,σ v if E1 ⇓H,σ true and E2 ⇓H,σ v.
(E1 ?E2 :E3) ⇓H,σ v if E1 ⇓H,σ false and E3 ⇓H,σ v.
unfoldingE1.P inE2 ⇓H,σ v ifE ⇓H,σ v

We now define the value of an expression e in the context of heap H as follows:

|dEc|H,σ =

{
v if E ⇓H,σ v
errort if 6 ∃v.E ⇓H,σ v and E has type t.

Definition 10 [Framed and Self-Framing iso-assertions]

We define the notion of iso-assertion expressions E, or assertions A being
iso-framed in a state consisting of H, Π and σ, written |=Π,H,σ

frmI E and |=Π,H,σ
frmI A

as the least fixed point satisfying the following equations:

|=Π,H,σ
frmI null |=Π,H,σ

frmI true |=Π,H,σ
frmI false |=Π,H,σ

frmI x

|=Π,H,σ
frmI E.f ⇐⇒ |=Π,H,σ

frmI E ∧ Π(|dEc|H,σ, f) > 0

|=Π,H,σ
frmI E.g(E′) ⇐⇒ |=Π,H,σ

frmI E ∧ |=Π,H,σ
frmI E′ ∧ Π,H, σ′ |=I Pre(g)

where σ′ = [this,X 7→ |dEc|H,σ, |dE′c|H,σ]

|=Π,H,σ
frmI E = E′ ⇐⇒ |=Π,H,σ

frmI E ∧ |=Π,H,σ
frmI E′

|=Π,H,σ
frmI E1?E2 : E3 ⇐⇒ |=Π,H,σ

frmI E ∧ (Π,H, σ |=I E ⇒ |=Π,H,σ
frmI E′)

∧ (Π,H, σ 6|=I E ⇒ |=Π,H,σ
frmI E′′)

|=Π,H,σ
frmI unfoldingE.P inE′ ⇐⇒ |=Π,H,σ

frmI E ∧Π(|dEc|H,σ, P) ≥ 1 ∧ |=Π′,H,σ
frmI E′,

where Π ′ = Π �H |dEc|H,σ.Pσ
|=Π,H,σ

frmI acc(E.P) ⇐⇒ |=Π,H,σ
frmI E

|=Π,H,σ
frmI E → A ⇐⇒ |=Π,H,σ

frmI E ∧ (Π,H, σ |=I E ⇒|=Π,H,σ
frmI A)

|=Π,H,σ
frmI A1 ∗A2 ⇐⇒ |=Π,H,σ

frmI A1 ∧ |=Π,H,σ
frmI A2

An iso-assertion A is self-framing, written |=frmIA if, for all H, Π and σ:

Π,H, σ |=I A ⇒ |=Π,H,σ
frmI A

A.2 Comparing the Assertion Semantics

Definition 12[Encoding iso-assertions to equi-assertions]

26

We now define the encoding 〈〈 〉〉 which maps isorecursive expressions and
statements to their equirecursive counterparts:

〈〈null 〉〉 = null
〈〈 false 〉〉 = false
〈〈 true 〉〉 = true
〈〈x 〉〉 = x

〈〈E.f 〉〉 = 〈〈E 〉〉.f
〈〈E1 == E2 〉〉 = 〈〈E1 〉〉 == 〈〈E2 〉〉
〈〈E.g(E′) 〉〉 = 〈〈E 〉〉.g(〈〈E′ 〉〉)

〈〈E?E′ : E′′ 〉〉 = 〈〈E 〉〉?〈〈E′ 〉〉 : 〈〈E′′ 〉〉
〈〈unfoldingE.P inE′ 〉〉 = 〈〈E′ 〉〉

〈〈acc(E.f, q) 〉〉 = acc(E.f, q)
〈〈acc(E.P) 〉〉 = 〈〈E 〉〉.P
〈〈A ∗A′ 〉〉 = 〈〈A 〉〉 ∗ 〈〈A′ 〉〉
〈〈E → A 〉〉 = 〈〈E 〉〉 → 〈〈A 〉〉

Lemma 1 In a well-formed program,

1. IfΠ,H, σ is a good iso-state, andΠ(ι.P) > 0, then 〈〈Π 〉〉H = 〈〈Π �H ι.P 〉〉H .
2. If π,H, σ |=E 〈〈A 〉〉, then ∃Π s.t. (Π,H, σ) is a good iso-state, 〈〈Π 〉〉H = π,

and π,H, σ |=I A.

Proof. Part 1, by direct application of the definitions. Part 2 follows by induction
on the structure of A; when A is an E, using Theorem 1.1.

Theorem 1

1. |d〈〈E 〉〉c|H,σ = |dEc|H,σ.
2. If Π,H, σ |=I A, and (Π,H, σ) is a good iso-state, then 〈〈Π 〉〉H , H, σ |=E

〈〈A 〉〉.
3. If (Π,H, σ) is a good iso-state, and |=Π,H,σ

frmI A, then |=〈〈Π 〉〉,H,σ
frmE 〈〈A 〉〉.

4. If all functions and predicates are well-formed, then if A is iso-self-framing,
then 〈〈A 〉〉 is equi-self-framing

5. If A |=I A
′, then 〈〈A 〉〉 |=E 〈〈A′ 〉〉.

Proof. Part 1 by showing that termination of E or 〈〈E 〉〉 implies that |d〈〈E 〉〉c|H,σ =
|dEc|H,σ - this is by induction on the derivation of ⇓H,σ . This results also gives
that the term E loops forever if and only if 〈〈E 〉〉 loops forever. Part 2 by in-
duction on the structure of A.

Part 3 follows by induction on A, and requires an analogous lemma for ex-
pressions.

Part 4, follows from Lemma 1 and part 3.
For Part 5, take any H, H ′, π, σ, st: π,H, σ |=E 〈〈A 〉〉. We want to show

that π,H, σ |=E 〈〈A′ 〉〉. Because we have π,H, σ |=E 〈〈A 〉〉, by application of
Lemma 1, we obtain that there exists a Π, s.t. 〈〈Π 〉〉H = π, and H |= Π, and
Π,H, σ |=I A. By the assumption, we obtain that Π,H, σ |=I A

′. This, together
with part 2 gives that 〈〈Π 〉〉H , H, σ |=E 〈〈A′ 〉〉.

27

A.3 Isorecursive Hoare Logic

Lemma 2 [Generation Lemma]

1. `I {A} skip {A′} ⇔ A |=I A
′

2. `I {A} x:=E {A′} ⇔
∃A′′.(A′′ s.f. ∧ A |=I A

′′[E/x] ∧ A′′[E/x] |=frmIE ∧ A′′ |=I A
′)

3. `I {A} x.f :=y {A′} ⇔
∃A′′.(A′′ s.f. ∧ A |=I acc(x.f, 1) ∗A′′ ∧ acc(x.f, 1) ∗ x.f = y ∗A′′ |=I A

′)

4. `I {A} (if B then s1 else s2) {A′} ⇔ `I {A ∧B} s1 {A′} ∧
`I {A ∧ ¬B} s2 {A′}

5. `I {A} (r; s) {A′} ⇔ ∃A′′.(`I {A} r {A′′} ∧ `I {A′′} s {A′})
6. `I {A} return x {A′} ⇔ A ∗ result = x |=I A

′

7. `I {A} x:= fork y.m(z) {A′} ⇔ A |=I y 6= null ∗ (Pre(m)[y/this][z/X]) ∧
Thread(x,m, y, z) |=I A

′

8. `I {A} w:= join x {A′} ⇔
∃A′′,m.(A |=I A

′′ ∗ Thread(x,m, y, z) ∧
A′′ ∗ Post(m)[y/this][z/X][w/result] |=I A

′)

9. `I {A} x:= new c {A′} ⇔ A ∗ (∗acc(x.fi, 1)) |=I A
′

10. `I {A} fold acc(x.P , q) {A′} ⇔
∃A′′, B.(A′′ s.f. ∧ A |=I (A′′ ∗ Body(P)[x/this] ∗B) ∧
(A′′ ∗ acc(x.P , q) ∗ unfolding x.P inB) |=I A

′

11. `I {A} unfold acc(x.P , q) {A′} ⇔
∃A′′, B.(A′′ s.f. ∧ A |=I (A′′ ∗ acc(x.P , q) ∗ unfolding x.P inB) ∧
(A′′ ∗ Body(P)[x/this] ∗B) |=I A

′

A.4 Equirecursive Hoare Logic

(See Figure 4)

A.5 Operational Semantics

The operational semantics for local transitions appears in figure 5.

A.6 Hoare Logic for Equi Assertions and Programs

A.7 Soundness

Definition 25 (Mapping Runtime Configurations to Heaps). The map-
ping Heap maps from runtime configurations to heaps, according to the following
definition:

Heap(h,C) = H where:
∀ι. ∀f ∈ fields(cls(ι)). H[ι, f] = h[ι, f] , and,
∀{σ, s}t ∈ C. H[t, recv] = σ(this) ∧H[t, param] = σ(X) ∧H[t, meth] = σ(method)

28

(skipE)
`E {a} skip {a}

a[e/x] |=frmE e
(varassE)

`E {a[e/x]} x:=e {a}

(fldassE)
`E {x 6= null ∗ acc(x.f, 1)} x.f :=y {acc(x.f, 1) ∗ x.f = y}

(retE)
`E {a} return x {a ∗ result = x}

fi = fields(c)
(newE)

`E {true} x:= new c {(∗acc(x.fi, 1))}

`E {a ∗ b} s1 {a′} `E {a ∗ ¬b} s2 {a′}
(ifE)

`E {a} (if b then s1 else s2) {a′}

a = Pre(m)[y/this][z/X]
(forkE)

`E {y 6= null ∗ a} x:= fork y.m(z) {Thread(x,m, y, z)}

a′ = Post(m)[y/this][z/X][w/result]
(joinE)

`E {Thread(x,m, y, z)} w:= join x {a′}

`E {a} r {a′} `E {a′} s {a′′}
(seqE)

`E {a} (r; s) {a′′}

a1 |=I a3 `E {a3} s {a4} a4 |=I a2
(consE)

`E {a1} s {a2}

`E {a} s {a′} |=frmE a
′′ mods(s) ∩ FV(a′′) = ∅

(frameE)
`E {a′′ ∗ a} s {a′ ∗ a′′}

Fig. 4. Hoare Logic for Equirecursive semantics

Definition 26 (Permissions Collection for Equi-Assertions).

29

(skipS)
h, {σ, (skip; s)}t l−→ h, {σ, s}t

|dec|h,σ = v
(varassS)

h, {σ, (x:=e; s)}t l−→ h, {σ[x7→v], s}t

σ(x) = ι h′ = h[(ι, f) 7→σ(y)]
(fldassS)

h, {σ, (x.f :=y; s)}t l−→ h′, {σ, s}t

|dbc|h,σ = true
(iftrueS)

h, {σ, ((if b then s1 else s2); s3)}t l−→ h, {σ, (s1; s3)}t

|dbc|h,σ = false
(iffalseS)

h, {σ, ((if b then s1 else s2); s3)}t l−→ h, {σ, (s2; s3)}t

Fig. 5. Local transitions

The function PE collects the permissions explicitly or implicitly required by equi-
assertions PE : EquiAssertion×Heap× Env→ Perms
PE(a, h, σ) = {(t, this), (t,X), (t, meth) 7→ 1 |

∃z∈V arId, t∈ThrdId. σ(z) = t}
∪ PauxE (a, h, σ)

PauxE (e, h, σ) = ∅
PauxE (acc(e.f , q), h, σ) = { (|dec|h,σ, f) 7→ q }
PauxE (e→ a, h, σ) = PauxE (a, h, σ) if |dec|h,σ = true, ∅ otherwise
PauxE (a ∗ a′, h, σ) = PauxE (a, h, σ) + PauxE (a′, h, σ)
PauxE (e.P , h, σ) = PauxE (Body(P), h, σ′), where σ′(this) = |dec|h,σ.

Theorem 3 [Soundness of Verification] For a well-formed program, if
all method definitions satisfy `I {Pre(m)} Body(m) {Post(m)}, and if h,C is a
valid configuration, and h,C c−→ h′, C ′, then h′, C ′ is a valid configuration.

Proof. Sketch: By induction on the length of the execution C c−→ C ′. The proof
relies on three main points. Firstly, for every local and paired transition, the
corresponding Hoare triple never requires more permission in the postcondition
than in the precondition. Secondly, for every such transition, a heap location is
only modified if full permission to the location was required in the precondition
of the corresponding triple. Thirdly, since all pre-conditions are self-framing, the
preconditions of all other entities remain unaffected by these modifications. This
relies on the (easy) lemma that, if π,H, σ |=E a holds, and a is self-framing, then
in a heap H ′ which agrees with H on at least the values of locations to which π
requires permission, π,H ′, σ |=E a also holds (this is sometimes called stability
of assertions).

30

