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We present three novel techniques for the verification of invariants in the setting of
Java-like languages including static fields and methods. Our techniques structure the
heap through universe types, and extend the Visibility Technique of Müller et al.
In order to cater for mutable static fields, we extend the classical universe types heap
topology with multiple trees, where each tree is rooted in a class. Thus classes may
naturally own objects as static fields.
We present a basic version of our approach, which allows trees to be visited at the
top and then navigated “downwards”, and which avoids dangerous call-backs through
effects which track static method calls. As well as the usual kinds of proof obligations
defining that certain invariants must hold at a given state, we employ a second kind
of obligation to show that certain other invariants are preserved between two states
(i.e., if they hold in the former state then they will still hold in the latter). This allows
us to deal with invariants whose expected truth-value cannot always be determined
statically in a modular way.
We then present two extensions of our basic technique, aimed at improving usability.
Firstly, we introduce a new universe annotation to allow safe callbacks between trees,
whereby trees may be visited not at the top, but at the point where a previous visit
“had left off”. Secondly, we refine our heap topology with a notion of ’levels’, which
stratify the heap and provide modularity with regard to library classes and the required
effects annotations.

1 INTRODUCTION

We propose three novel techniques for the verification of invariants in the setting
of Java-like languages including static fields and methods. The inclusion of static
fields leads naturally to a notion of static invariants, which belong to a class rather
than its instances. Our techniques extend the Visibility Technique (hereafter, VT)
of Müller et al. [12].

Visible states verification techniques permit certain invariants to be temporarily
broken during the execution of a method. These invariants are expected to hold
at the initial and final states of the method: the visible states1. VT is one such

1In the previous work of Müller et al. [12], the terminology “pre-state” and “post-state” is
used. We use these instead to refer to the states immediately before and after a method is called
(i.e., states of the caller), while we use “initial” and “final” to refer to the states immediately after
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technique, and uses universe types [1, 11] to hierarchically structure the heap. With
universe types, each object is either unowned or owned by another object, its owner.
In this paper, we assume that the unowned objects are owned by a designated root

entity, such that the overall topology is a tree. In VT, an object’s invariants may
only depend on the fields of the objects it owns, and those of its peers (those with
the same owner2). An object may only modify the fields of its peers, and may only
call methods of the objects it owns, and those of its peers (cf. Fig. 2 on page 8).
Thus call–backs, i.e., the possibility that while an object is executing a method it
(indirectly) calls a further method on itself, are only possible between peers. VT
requires method calls on peers to be preceded by a proof obligation establishing the
peers’ (and thus also the receiver’s own) invariants; the invariants of an object are
guaranteed to hold upon all entries to its method calls, including call-backs.

Incorporating statics, which are not part of VT, raises the following questions:

1. Where in the topology do static fields appear?

2. May instance methods update static fields?

3. May static invariants mention the fields of objects of their class?

4. May instance invariants mention static fields of their class, or of other classes?

5. Can static methods break invariants of objects, and if so, of which objects?

6. Can instance methods break static invariants, and if so, of which classes?

7. What proof obligations are necessary before a call to a static method?

8. What proof obligations are necessary before a call to an instance method?

We generalised the VT heap topology, and handle class objects in a natural way,
so that they can own objects referenced by their static fields. Since classes do not
naturally have owners themselves, we argue that the topology is naturally divided
into many trees, each one ‘rooted’ by a class. In order to make static methods usable,
we allow static method calls to be made from (inside) one tree to the top of another.
Thus, method calls may enter trees from the top, then navigate downwards, and
may then visit other trees, again entering from the top and navigating downwards
(cf. Fig. 3 on page 16). This feature introduces a new risk of dangerous callbacks
not present in VT—this time across classes, since a tree may be ‘reentered’ while a
method call on a receiver in the tree is already taking place.

In our basic technique, “VT with Statics” (VTS hereafter), we avoid such call-
backs by restricting method calls through an effects system which conservatively
approximates which classes may be (indirectly) visited during a method execution.
Furthermore, we extend the notion of proving invariants with that of preserving

the method is called, and before the method returns (cf. Definition 1).
2Note that an object is itself one of its peers.
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invariants. This is because we allow static invariants to depend on the fields of (all)
instances of a class: since instance methods may alter fields of such instances, it is
possible for instance methods to break static invariants. Rather than require such
methods to establish that the appropriate static invariants actually hold (which is
generally unfeasible, since an instance method will not generally have knowledge of
all other instances of the same class), we require these methods to preserve static
invariants, i.e., to prove that if the static invariant held at the initial state of a
method execution, it will still hold at the final state. We developed a detailed proof
of soundness for VTS.

For our design we used an idea of ‘filtering’: our aim was that filtering a stack
of VTS method calls by considering only the calls within a particular tree, should
result into a verification effort which would ‘look like’ that of VT (which is already
known to be sound for a heap topology based on a single tree). This idea guided
both our design of VTS, and the structure of our soundness proof.

Filtering also led us to “Strong VTS” (SVTS hereafter), an extension of VTS
which is a more permissive discipline with respect to calls between trees. To this end,
we introduced the new type-annotation strong, which expresses the permission to call
back into the middle of a previously-visited tree, at a location that could have been
visited from the last method call in that tree, (cf. Fig. 5 on page 27). The resulting
technique is motivated by practical considerations, and admits many more examples.
For example, when one passes an Object to a method call System.out.println(o),
it may be that the method implementation wishes to callback a toString() method
on o. Examples similar to this can be handled in SVTS because of the ability to
allow callbacks into previously-visited trees.

We also developed “layered VTS” (LVTS herafter), an alternative extension of
VTS, which stratifies the heap topology using ‘levels’, intended to reflect a layered
software architecture, and corresponding verification effort. In particular, we aim to
abstract away from the details of previously written classes (such as library classes).
The key observation is that library classes will never (directly) call static methods
on newer classes being verified, and so the possibility of dangerous callbacks is
naturally reduced when calling classes on a ‘lower level’, (cf. Fig. 6 on page 35).
This refinement allows for fewer (and more modular) effect annotations.

Unfortunately, the combination SVTS and LVTS seems to be possible only in
a limited form. Because the extra call-backs allowed by SVTS make it possible to
call from trees on lower levels to trees on higher levels, the refined effect annotations
employed in LVTS are no longer sufficient to predict all static method calls, and this
leads to potential unsoundness. We identify a restriction which restores soundness,
but at the cost of applicability to some examples.

This paper extends our preliminary work [16], presented at FTfJP 2008. The
VTS technique is similar to the “Basic Technique” in [16], but with quantified static
invariants, improvements to the effects annotations which allow more static method
calls between classes, and the concept of preservation. The LVTS technique is similar
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to the “Extended Technique” in [16], but again with the improvements mentioned
for VTS. The SVTS technique introduces the concept of strong references, which is
totally new.

Furthermore, the soundness proofs required the development of some exciting
formal techniques. In joint work with Francalanza [2] we have presented a generic
framework for describing existing visible state verification techniques, and for easily
obtaining soundness results for such techniques. However, dealing with the preser-
vation (rather than establishing) of invariants makes it impossible to directly adopt
the machinery of [2], and thus we developed our own proofs which reflected the
filtering idea, and which builds on the existing soundness result for VT. In order to
structure our arguments, we also developed the concept of semi visible state for a
method execution (which identify important mid-states of the method execution),
and the concept of losing (i.e., invalidating) invariants between such semi-visible
states. Several proofs run by induction on the number of indirect method calls
(thus reflecting the complete depth of execution), and on the number of semi-visible
states (thus reflecting the breadth of execution).

In Sec. 2 we give the background to visible states verification techniques, universe
types, and VT. In Sec. 3 we present the extended heap topology and static invariants.
In Sec. 4 we present VTS, and prove that it is sound. In Sec. 5 we present the
extensions to SVTS and LVTS. In Sec. 6 we discuss related work and conclude.

2 BACKGROUND

In this section, we give a brief introduction to the concepts on which our work is
based, particularly the Visibility Technique.

Visible States

Visible states verification techniques are defined around the notion of visible states,
which correspond to the initial and final states of each method execution. As men-
tioned in the introduction, we make use of slightly different terminology for visible
states than in the literature, as our soundness arguments rely on being able to dis-
tinguish the point in execution just before calling a method, from the point at the
beginning of method execution, and similarly to distinguish the point of returning
from a method body from the point immediately after the call. This is made formal
by the following definition:

Definition 1 (Visible states terminology) During execution of a method body
m, and considering a call to a further method m′, we use the following terminology
with respect to the call to m′:

pre-state refers to the point in execution of the body of m immediately before the
call to m′ is executed.
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initial state refers to the point in execution of the body of m′ just as it is starting
to be executed.

final state refers to the point in execution of the body of m′ just before control
returns from the call.

post-state refers to the point in execution of the body of m immediately after the
call to m′ is executed.

The visible states of a call to a method m′ are the initial and final states of the
method call.

At these visible states, the invariants of certain objects (exactly which objects
depends on the contents of the call stack, and on the particular technique) are
guaranteed to hold.

void meth(T1 x, T2 y) {

this . f = ....

x.g = ...

y.meth 2();

}

assume X�

check this in U�

check T1 in U�

check T2 in C, prove B�

prove E�

X \ V holds

?

6

Figure 1: Illustration of the use of the seven components.

Several visible states techniques have been suggested, e.g., [14, 4, 12, 9], and they
share many commonalities. As suggested in [2], these commonalities, as well as the
differences, can be distilled in terms of the following seven components:

X invariants expected to hold in visible states.

V invariants vulnerable to a method, i.e., which may be broken while it executes.

D invariants that may depend on a given heap location3.

B invariants that must be proven to hold before a method call.

E invariants that must be proven to hold at the end of a method body.

U permitted receivers for field updates.

C permitted receivers for method calls.

3By defining the invariants which may depend on a location, this component also characterises
indirectly the locations an invariant may depend on.

VOL 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 5



UNIVERSE-TYPE-BASED VERIFICATION TECHNIQUES FOR MUTABLE STATIC FIELDS AND METHODS

The use of these components should be clear from their description above, but
is also shown in Fig. 1 through annotating a method meth1: X may be assumed to
hold in the initial and final states of the method. Between these visible states, some
object invariants may be broken, but X \ V is guaranteed to hold. Field updates
and method calls are allowed if the receiver object is in U and C, respectively.
Before a method call is made (i.e., in the pre-state of the method call), B must be
proven. At the end of a method execution (i.e., in the final state of the method
execution), E must be proven. Finally, assignments to this.f and x.g affect at
most the corresponding D.

Universe Types and the Visibility Technique

One visible states technique, the Visibility Technique (VT), was developed on top of
universe types [12] with the aim to guide the verification process and to guarantee
modularity. Universe types [11] organise the heap into a tree topology, in which each
object is owned by another object. Universe modifiers describe the relative position
in the heap topology of one object with respect to another. For example, an object
o considers another object o′, as its peer if they have the same direct owner. An
object o considers o′ its rep if o is the direct owner of o′. The modifier rep stands for
‘representation’, and the intention is that the objects owned by an object make up
its “inner working” or representation. In particular, object invariants are restricted
to only depend on objects transitively owned, or peer objects. In order to make
verification of invariants depending on peer objects feasible, a notion of visibility
between classes is employed [12]. We ignore the consideration of visibility in this
paper, since they are orthogonal to the issues we address. In order to incorporate
visibility, one needs only to read all occurrences of ‘peer’ in our definitions as ‘visible
peer’.

In VT, reference types carry universe annotations (such as rep and peer), speci-
fying the intended topology. A third universe annotation, any, can be used to denote
that no topological constraint is made; such a reference may point to an object at
an arbitrary position in the heap topology.

Definition 2 (Contexts) For any receiver4 r, we use the context of r to mean r
itself plus all peers of r and all objects which are transitively owned by peers of r.
We write invariants within the context of r to mean all the invariants of receivers
in the context of r.

The owner-as-modifier discipline restricts field updates and method calls, such
that the fields of an object may only be modified when its owner is on the call
stack5 (intuitively, its owner “knows” about the modification). This is enforced by

4In the setting of VT, receivers are just objects. However, we will employ the same definition
later, when we will allow both classes and objects to be receivers.

5consisting of a sequence of activation records, each of which contains the then-current receiver
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requiring that the receiver of a new method call is always a rep or peer of the current
receiver. Such a call stack is illustrated in Fig. 2 in page 8; note that calls may only
go “down” or “sideways”. To control modifications, the fields of an object are only
allowed to be updated by one of its peers (note that an object regards itself as a
peer). Given these restrictions, VT imposes sufficient proof obligations to ensure
that whenever a method is called, the invariants of the new receiver and all objects
which the new receiver may (transitively) make calls on, are guaranteed to hold.

A more liberal policy is employed in the case of pure methods (i.e., methods
without side-effects - see [15] for a rigorous treatment). Since such methods cannot
make changes to the heap, it is clear that they cannot violate any invariants, and so
the rigorous discipline described above is not needed. For this reason, pure methods
may, in principle, be called on any references. However, even pure methods may
depend on certain invariants holding for their proper behaviour, and so it is only
safe to call even these if it can somehow be known that the new receiver is within the
context of the current receiver (and therefore some knowledge about the invariants
it may require to hold is available). This kind of information can usually only be
demonstrated by some means external to the type system.

The seven components from before have the following meaning for VT:

Definition 3 (The Visibility Technique) With the exception of D and U, these
parameters are considered with respect to a current method execution, say a method
m on receiver r.

X The invariants of receivers within the context of r are expected.

V The invariants of all transitive owners of r are vulnerable, plus invariants of peers
of r.

D The invariant of a receiver r may depend on the fields of a receiver r′ only if r is
a peer or transitive owner of r′.

B In the pre-state of a method call, if the callee is a peer of r, the invariants of all
peers must be established to hold.

E The invariants of all peers of r must be established to hold in the final state of a
method execution.

U A field of an object may only be assigned to by its peers (i.e., when one of its
peers is the current receiver).

C A call to another instance method is allowed if the callee is a peer or rep of r, or
if the method is pure and the callee is known to be within the context of r.

It can be shown that these parameters satisfy the soundness conditions presented
in [2]. In particular, X and V and the owner-as-modifier discipline, guarantee that
at any given time in execution, all objects are valid, except for those directly owned
by one of the receivers on the call stack, cf. Fig. 2.
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Figure 2: Ownership Tree and Con-
trol Flow; the arrows show consecu-
tive method calls and their receivers;
note that calls go only “down”, i.e., to
reps, or “sideways”, i.e., to peers. The
shaded area indicates the area where
objects satisfy their invariants.

Lemma 4 (Soundness of VT) For any method execution (r,m) in a program ver-
ified by VT, if the expected invariants X hold at the initial state of the method exe-
cution, then:

1. At the pre-state of every direct call (r′,m′) made during execution of the
method, the corresponding expected invariants X(r′,m′) hold.

2. At the final state of the method execution (r,m), the expected invariants X(r,m)

hold.

3 HEAP TOPOLOGY FOR STATIC FIELDS AND STATIC INVARI-
ANTS

In this section, we introduce the basic principles of our work, including a heap topol-
ogy which includes representations for classes, and a discussion of static invariants.

Heap Topology for Static Fields

The fundamental premise of this work is that classes should be able to own objects
in the same way that other objects can. For example, if the behaviour of a class
depends on a static field (to manage object creation, etc.) then this static field
naturally ‘belongs’ to the inner workings of the class: its representation. This gives
a natural interpretation of static rep fields: they should be treated analogously to
instance rep fields, but with a class as their owner [8].

Thus, we extend our heap topology to include classes. Classes are the ‘roots’
of trees in our topology. As there are generally several classes in a program, our
topology should allow for several such trees; we work with a forest. Furthermore,
with classes acting as roots, there is no longer a need for an abstract root entity;
these class-rooted trees make up the entire picture. Note that there are no objects at
the ‘same level’ as the class entities, and classes do not have owners. In this paper,
we do not consider a notion of static peer fields. Such fields would complicate the
techniques we present here, since we depend on the “roots” of trees in our topology
being fixed. If we were to allow (mutable) static peer fields, this assumption would
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not hold, and the techniques we provide would need to be extended. However, we
have not seen any practical need for code with static peer fields, and so we do not
regard this to be an important issue in this paper.

In most respects we interpret static fields and methods as if they were instance
fields and methods of the corresponding class object. That is, the class object (or
class for short) is the receiver for an execution of a static method. Executions of
static methods may update the fields of their receiver class, just like instance meth-
ods in VT may update fields of their receiver object. We will use the terminology
“receiver” to refer to either a class (in the case of a static method) or an object (in
the case of an instance method).

To summarise the ideas so far:

1. Each point in our heap topology corresponds to either an object or a class.

2. Objects (but not classes) each have exactly one owner (a class or an object).

3. Receivers (on the stack) can be either an object or a class.

Static Invariants

Since we propose that classes may own objects, it is natural to permit classes to
have invariants, describing the consistent states of those objects, just as objects may
describe the consistency of their owned objects using invariants. We call invariants
which belong to the class, rather than the instances of the class, “static invariants”6.
As an example of the use of such invariants, consider the following code:

class Person {
static rep List<any Person> population = new rep Vector<any Person>();
static double temperature = 15.0;

any String name;

//@ static invariant temperature == 45 − 30/(1+population.size())

public Person(any String name)
{

this .name = name;
population .add(this) ; // temporarily violates static invariant
temperature = 45 − 30/(1+population.size()); // reestablishes invariant
}

}

6Note that the term “class invariant” is used in the literature inconsistently with our intention—
it is often used synonymously with “object invariant”.
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The static invariant describes a temperature which ranges from 15 to 45, and
increases as the population increases in size7. This invariant is temporarily broken
during the execution of the constructor, since a new person is added to the list
before the temperature can be recalculated. However, the static invariant can be
reestablished by the end of the constructor, exactly as the visible states semantics
requires.

As well as the natural extension of ownership-based invariants to the case of
static fields, it is interesting to consider invariants which describe properties over
all instances of a class. For example, if we wished to write a class MyThread in
which each instance object was assigned a unique identifier id, we might like an
invariant to express that distinct MyThread objects have different ids8. These kinds
of invariants can involve both static fields and instance fields. We could also consider
adding to the example above, an invariant to express that all instances of Person

are contained within the list population.

It is desirable for our technique to handle these more expressive invariants. We
could allow instance invariants to mention static fields (of the same class, and per-
haps superclasses) in their invariants. The alternative approach is, instead of enrich-
ing instance invariants, to enrich static invariants with the ability to quantify over
all instances of a class. In fact, any instance invariant mentioning static fields can
always be expressed as a static invariant by adding a quantified object to replace
all the mentions of this. However, enriching static invariants in this way can be
more general if we allow multiple quantifiers. If we wanted to express the described
invariant of MyThread, we could do so by the static invariant forall MyThread

o1,o2: o1 6= o2 ⇒ o1.id6= o2.id. However, it is not clear how to express this at the
level of an instance invariant (without quantifiers).

We choose to add the ability to quantify over fields of instances in static invari-
ants. In static invariants of class c, if o is a quantified object variable, the only fields
of o which may be mentioned in the invariants are those declared in class c. This
restriction corresponds to the notion of subclass separation described for VT (see
[12] for details).

Remark. Although it is true that any instance invariant mentioning static fields
can be encoded as a static invariant quantifying over instances, this does not quite
mean the two possibilities are interchangeable with respect to our technique. The
reason is that although these invariants express the same properties, because one is
an invariant per object, and one is an invariant of the class, they will be expected to
hold at different times. For example, a static invariant of the form ∀o:c, p(o) will be
required to be preserved by all method calls, in our technique. However, the corre-
sponding instance invariant p(o) in class c is allowed to be temporarily broken for a

7The static fields can be thought of as belonging to the ‘world’ in which the people live, and as
such, describe state common to all of the people.

8This is an actual property of the Thread class in the Java API, except in the case where
identifiers are manually specified.
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particular object o while methods are executing on, for example, objects owned by o.
On the other hand, the static invariant ∀o:Singleton, o == Singleton.instance
could be broken while a static method of Singleton is executing (perhaps some
extra instances are temporarily created, for debugging purposes), while the corre-
sponding instance invariant o == Singleton.instance, enforced per object, would
require (for a verified program) that no other instances ever exist (since these ob-
jects’ invariants could never be established).

4 THE BASIC TECHNIQUE (VTS)

In this section, we present our basic technique, “VT with Statics” (VTS hereafter),
in which we allow for static fields, methods and invariants, and avoid dangerous
call-backs via static methods by restricting method calls through an effects system.
Furthermore, we extend the notion of proving invariants with that of preserving
invariants. This is because we allow static invariants to depend on the fields of (all)
instances of a class: since instance methods may alter fields of such instances, it is
possible for instance methods to break static invariants. Rather than require such
methods to establish that the appropriate static invariants actually hold (which is
generally unfeasible, since an instance method will not generally have knowledge of
all other instances of the same class), we require these methods to preserve static
invariants, i.e., to prove that if the class invariant held in the initial state of a method
execution, it will still hold at the final state. We will present a detailed proof of
soundness for VTS.

Having defined a suitable heap topology and notion of invariants, in this section
we generalise VT to our setting, defining a new technique, VTS. In order to describe
our ideas, we require a notation to discuss sequences of legal calls in our technique.
For reasons which will become apparent later in this section, we find it useful to
employ a notion of call stack which records the current receiver (which may be either
an object or a class), and the current method name. We omit an explicit treatment
of addressing and the tracking of method parameters, since they are orthogonal to
the issues we address here.

Definition 5 (Receivers and call stacks) A receiver r is either an object o (in
the case of an instance method call) or a class c (in the case of a static method call).

A call stack σ is a sequence of stack frames, each of which is a pair of receiver
and method-name (r,m) (representing an active call to receiver r of method m). We
write ε for an empty stack. Stacks are formally defined by:

σ = ε | σ◦(r,m)

We write σ1+σ2 to denote concatenating two stacks, in the obvious way.
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The most important aspect of the design of our technique can be understood as
follows. We understand how VT guarantees soundness using a heap topology with
only one tree. We wish to make use of our more general topology with many trees,
but in such a way that we maintain the essential discipline of VT. Therefore, we
aim to ensure that the behaviour of our technique as regards each individual tree
is analogous with what VT prescribes. In other words, when one examines only a
single tree, our technique should ‘look like’ VT. We refer to this design principle as
‘filtering’, since we consider legal sequences of method calls after they are filtered to
only include those receivers in a particular tree. In particular, we designed VTS to
be a proper generalisation of VT, in the sense that if one only ever visits one tree
in a particular program, the resulting verification effort is exactly that specified by
VT. We will bear this principle in mind throughout the rest of this paper. It seems
reasonable to specify that instance method calls should be restricted in exactly the
same way as in VT (e.g., a call to a method which is not pure may only be made
on a peer or rep receiver).

How then, to handle static method calls? According to VT, a method call is only
allowed if the caller receiver is either the owner or a peer of the callee receiver. Since
classes do not have either owners or peers, this would make static methods impossible
to call. Instead, we consider the implications of our ‘filtering’ idea. According to this
idea, we should allow calls to static methods exactly when the resulting permitted
stacks, when filtered by each individual tree, would yield permitted VT stacks. This
means that there is no problem with calling a static method on a class whose tree
has not yet been visited on the call-stack, since, when filtered, this will ‘look like’ a
call-stack which begins at the root of the tree (as all stacks do in VT). Furthermore,
it is acceptable for a tree to be revisited (re-entered) by a static method call, so long
as no instance methods have been called (otherwise, since the tree will be entered
back at the root, the filtered stack will ‘jump’ back upwards), and so long as the
invariants of the class have been preserved (this then ‘looks like’ a call from the class
at the root of the tree to itself, when filtered).

However, consider the following situation. Suppose we start off with a class c
as receiver of a (static) method execution. c then calls an instance method on an
owned (rep) object o. By some mid-point of this method’s execution, it may be that
the invariants of both c and o are broken (as is permitted by visible states). Suppose
a further subcall is made to a static method of a class c′. Now, if it is either the
case that c = c′, or that a further sequence of subcalls results in a callback to c, we
have a problem; the invariants of c, and objects owned by c have been left broken,
and so it is not safe to revisit c’s tree. This callback problem can also be understood
from the point of view of filtering: in the problematic cases described, the filtered
stack concerning only the tree of c will involve a sequence of receivers c, o, c, and
the implicit call from o back up to c is not permitted by VT, precisely because the
expected invariants are not guaranteed to hold in this case.

We are led to the following two conclusions, regarding the executions of static
methods (on a class c, say). Firstly, if a subcall is made to an instance method of
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an object, and this subcall may eventually result in a callback to a static method
on the same class c, we must forbid it (due to the invariants remaining broken in c’s
tree). Secondly, if an execution of a static method of c makes a subcall to a static
method of a class c′, and this subcall may eventually (or immediately, in the case
c′ = c) result in a callback to a static method on the same class c, we must ensure
that the invariants of the class c are reestablished before the call is made (so that
these invariants hold if and when the callback is made).

In both scenarios, we require the ability to predict whether a method call may
eventually result in a call to a class c. Since this information cannot be inferred
modularly at compile-time, we instead approximate the required information using
effect annotations.

Effect Annotations.

For each class c and method m, we require a set of effects, Effs(c,m), predicting
which classes may have static methods called on them as a result of calling m of c.
Effs(c,m) is a (possibly empty) set of class names. This is described by requirements
1-3 in Def. 6 below.

Definition 6 (Effect Annotations) 1. Within the body of a method m of class
c, if there is a call e.m′(. . .) and e has static type c′, then Effs(c′,m′) ⊆
Effs(c,m).

2. Within the body of a method m of class c, if there is a call c′.m′(. . .) to a static
method m′ of class c′, then

(a) Effs(c′,m′) ⊆ Effs(c,m) and

(b) c′ ∈ Effs(c,m).

3. If c′ is a subclass of c which overrides a method m, then Effs(c′,m) ⊆
Effs(c,m).

For convenience, we will allow ourselves to write Effs(o,m) to mean Effs(c,m)
where c is the dynamic class of o. This means in particular that Effs(r,m) is defined
for any receiver r which had a method m.

If, from within the body of a static method m of class c, we make a call to a
(static or instance) method m′ defined in class c′ (with a different receiver), and if
this method call may eventually result in a callback to c, then as a consequence of
Def. 6, we must have c ∈ Effs(c′,m′). Therefore, we can rule out dangerous callbacks
on c by insisting that any instance method which is called from a static method of c
does not contain c in its effects. Furthermore, if, from a static method of c, a further
static method is called which has c in its effects, then the invariants of c must be
reestablished before the call is made.
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Note that the third criterion above presents issues for subclassing: in order
to retain modularity, one cannot override a superclass method with a definition
which has extra effects. This seems potentially quite a strong restriction, since (at
least) one might consider using static methods of different library classes in a new
definition. This problem is addressed in Section 5.

We depend on the following property for the soundness of VTS:

Definition 7 (System invariant for VTS) For any method (r,m), if there is a
possible execution of the method which results (possibly indirectly) in a call to a static
method (c,m′), then c ∈ Effs(r,m).

This essential property states that the effect annotations conservatively predict
static method calls. Such predictions must be ‘propagated backwards’ through the
sequence of calls. The following result formalises these facts.

Proposition 8 (Effects are propagated and conservative) 1. For any per-
mitted sequence of method calls σ◦(r,m), and for all (r′,m′) ∈ σ, we have
Effs(r,m) ⊆ Effs(r′,m′).

2. For any permitted sequence of method calls σ◦(c,m), and for all (r′,m′) ∈ σ,
we have c ∈ Effs(r′,m′).

Proof 9

1. By straightforward induction on the definition of σ, using Definition 6 above.

2. By straightforward induction on the definition of σ, using part 1 and Definition
6.

Preserving quantified invariants

Our decision to allow static invariants to quantify over all instances of the same
class means that additional proof obligations are required in order to preserve these
invariants. Any method which modifies the field of an object may potentially break
the invariants of the class of the object, or any of its superclasses. Since objects
can be modified by their peers, this means that any instance method execution on
an object o can potentially break the invariants of the classes and superclasses of
the peers of o. It is however difficult from the point of view of an instance method
execution on o to determine statically which of these static invariants are actually
expected during the method execution. For example, if o happens to be owned by
class c (and therefore the instance call on o is the (possibly indirect) result of a
static method call on c), the invariants of c may reasonably be broken for the entire
duration of the instance method execution. However, o is not naturally aware of its
owner, and so is unable to tell whether the invariant of c is expected.
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Since it cannot be statically determined whether a particular static invariant
is expected for an instance method execution, a conservative approach is to insist
that the static invariants which are vulnerable to an instance method execution are
preserved by the execution; that is, it is required to prove that if such an invariant
holds in the initial state of the instance method, it is guaranteed to hold in the
final state. This is a different kind of proof obligation from those considered in
[2], and indeed, in most verification techniques based on invariants. The formal
notions of the seven parameters employed in [2] are not sufficient to express proof
obligations regarding preserving rather than asserting invariants, nor to cover the
possibility that the precise expected invariants for a method execution may not be
known statically9. In Sec. 4 we will give a proof for our technique which reflects
this idea of preserving invariants, where appropriate. We also discuss a concept of
filtering, which is an attempt to map the soundness issues for our complex technique
back to the soundness issues in VT. However, this attempt is only partial: the issue
of preserving invariants remains essential to our work, and without a significant
extension to [2] this makes the generic soundness proof of that paper impossible to
make use of. Nonetheless, we believe that the seven parameters described in that
paper neatly characterise the essential aspects of a verification technique, and we
will employ the same seven concepts (in a purely illustrative role) here, in order to
structure our definitions.

Definition 10 (VTS) We highlight the main differences with VT (cf. Definition 3)
in bold below. As previously, these parameters are considered with respect to a
current method execution (r,m).

X The invariants of receivers within the context of r are expected, plus invariants
within the context of all classes c such that c ∈ Effs(r,m).

V The invariants of all transitive owners of r are vulnerable, plus invariants of peers
of r, and the static invariants of their classes and superclasses.

D The invariant of a receiver r may depend on the fields of a receiver r′ only if
either r is a peer or transitive owner of r′ or r′ is an object and r is the
class of r′.

B In the pre-state of a method call, if the callee is a peer of r, the invariants of all
peers must be established to hold. Similarly, if the caller is a class c and
the new call is to a static method with c in its effects, the invariants
of c must be established. Furthermore (in all cases), the invariants
of the (super)classes of all of the peers of the caller receiver must be
shown to be preserved (since the initial state of the caller’s method
body).

9Although this kind of proof obligation is unusual compared with the existing literature, it has
been suggested in the recent work of Middelkoop et. al. [10].
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E The invariants of all peers of r must be established to hold in the final state of a
method execution. Furthermore, the invariants of the (super)classes of
all of the peers of the current receiver must be shown to be preserved
(since the initial state of the method execution).

U A field of an object may only be assigned to by its peers (i.e., when one of its
peers is the current receiver). A (static) field of a class may be assigned
to when the current receiver has a peer of that class (or a subclass
of that class).

C From an instance method body (i.e., r is an object), a call to another instance
method is allowed if the callee is a peer or rep of r, or if the method is pure
and the callee is known to be within the context of r. From an instance
method body, a call to a static method is always allowed. From a
static method body (r is a class c), a call to a static method (of any
class) is always allowed, while a call to an instance method is allowed
if c is not in the effects of the method, and either the callee is a rep
of c or the method is pure and the callee is known to be within the
context of r.

Figure 3: Calls stacks across several trees, invariants hold in shaded areas.

Soundness.

Throughout this section (and particularly in the statement of our results), we assume
that all methods have been successfully verified by VTS (i.e., all of the static proof
obligations have been shown). In order to aid our discussions later, we consider the
concept of a filtered call stack : given a call-stack and a specific tree in the topology,
the corresponding filtered call-stack is the sequence of frames obtained by deleting
all those with receivers which are not in the tree.

Definition 11 (Roots and filtered stacks) Define the root of a receiver as fol-
lows: For any class c, define root(c) = c. For any object o with owner(o) = r, define
root(o) = root(r).
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Now, define the filtering of a stack by a tree (‘rooted’ at class c) recursively, by:

filter(ε, c) = ε

filter(σ◦(r,m), c) =

{
σ′◦(r,m) root(r) = c
σ′ otherwise

}
where σ′ = filter(σ, c)

We can show the following result, which states that if a class c′ is in the effects of
the currently-executing method, then the current stack either contains no receivers
from the tree of c′, or at most c′ itself. In particular, once an object from the tree of
c′ is on the stack, it is impossible that c′ is in the effects of the currently-executing
method.

Lemma 12 (Effects and stacks) For any call-stack σ◦(c,m) resulting from a per-
mitted sequence of method calls, if c′ ∈ Effs(c,m) then the only receiver (if any)
occurring in frames in filter(σ◦(c,m), c′) is c′ itself.

Proof 13

By straightforward induction on the definition of σ, using Definition 6. The proof
depends on the fact that no objects from the tree of c′ can be receivers on the stack
unless c′ precedes them as a receiver on the stack. In this case, the restrictions of
Definition 6 prevent any instance method from being called which still has c′ in its
effects. Therefore, no such instance methods can be called, by Proposition 8.

We also find it convenient to describe significant ‘mid-points’ of a method exe-
cution. In order to reason about soundness for subcalls, it is useful to consider the
pre- and post-states of these, along with the initial and final states of the method
body.

Definition 14 (Semi-visible states) For any method execution (r,m), the semi-
visible states10 of the method execution are each of the following states which are
reached during the execution:

1. the initial state of the method execution

2. the pre- and post-states of each direct subcall made during the method execution

3. the final state of the method execution

Note that, if the semi-visible states are numbered from zero, then between any
odd semi-visible state which is not the final state and the subsequent semi-visible
state, a direct subcall (and no other execution) is made. Between any even semi-
visible state and the subsequent one, no subcalls are made (control remains solely
with receiver r). This is illustrated in Figure 4.

10Note that the initial and final states are themselves visible states in our terminology, whereas
the pre- and post-states of subcalls immediately precede or follow visible states (initial and final)
of the called method, respectively.
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void pyramid volume(Double width, Double height)
{

double volume, base, b, h;

b = base.getValue() ;

h = height.getValue() ;

base = b∗b;
volume = base ∗ height / 2;
return volume;
}

s0 (initial state)�

s1 (pre-state)�
s2 (post-state)�
s3 (pre-state)�
s4 (post-state)�

s5 (final state)
�

Figure 4: Semi-visible states.

Note also that semi-visible states are a runtime notion, defined with respect
to a particular method execution; in general it cannot be known statically what
the semi-visible states of a particular method execution will be at runtime, since
the particular branches taken and termination of the method cannot be known.
However, they are used in our reasoning about soundness with respect to actual
executions of programs.

Definition 15 (Lost invariants) For any method execution and any two semi-
visible states of the execution si and sj (where i ≤ j), the invariants lost between si

and sj are those invariants which were true at si and no longer hold at sj.

Before we tackle the main soundness result, it is useful to state a lemma de-
scribing limits on the invariants which could be lost while execution remains with
a particular receiver (i.e., no subcalls are made). In fact, we consider execution
between two consecutive semi-visible states of a method execution during which no
subcall is made. In this case, the invariants of objects which are reps and peers of
the current receiver may be violated (lost), just as in VT. Because static invari-
ants may also depend on the fields of such objects, in principle one might expect
these to be potentially lost. However, VTS imposes strong proof obligations about
these invariants, guaranteeing essentially that none are lost since the initial state of
the method execution. When considering invariants lost between two consecutive
semi-visible states si and si+1, there is still one obscure case to consider: it could
be that a static invariant which did not hold at the initial state happens to have
been made true by state si. In this case, the proof obligations say nothing about
this static invariant (which did not hold at the initial state), and so it may in fact
be lost between si and si+1.

Lemma 16 For any method execution (r,m), let si and si+1 be any consecutive
semi-visible states of the method execution such that i is even (in which case, there
are no calls made between these states; control remains with receiver r). Then the
only invariants lost between these states are either invariants of peers and transitive
owners of r, or static invariants of classes of peers of r which did not hold at the
initial state of the method execution.
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Proof 17 Between these states, the only fields which can be updated (U) are fields
of peers of r and static fields of classes (and superclasses) of peers of r. Therefore,
the only invariants (D) which may potentially be lost between si and si+1 are those
of peers and transitive owners of r, and those of classes of peers of r. However, our
technique imposes a proof obligation at semi-visible state si+1 (B or E depending on
whether si+1 is the pre-state of a subcall or the final state of the method execution)
that no invariants of classes of peers of r are lost between s0 and si+1.

We can now show a more general result, which states that, for a sequence of
method calls to break an invariant from a certain tree, at least one method call must
have a receiver in the same tree. This is so essentially because the only invariants
vulnerable ‘across trees’ are (quantified) static invariants, and the proof obligations
of VTS ensure that these are preserved during execution.

Proposition 18 (Trees must be called to be broken) For any method execu-
tion (r,m), let s0, s1, . . . be the semi-visible states of the execution. Then, for any
class c and for any semi-visible state si of the execution, if during execution between
s0 and si, control never reaches a receiver r′ with root(r′) = c, then none of the
invariants within the context of c are lost between s0 and si.

Proof 19 By induction on the number, j, of (direct or indirect/transitive) method
calls made between s0 and si (note that this number must be finite, since we have
assumed si to be a semi-visible state of the method execution). We show the result
for an arbitrary class c. By assumption, root(r) 6= c.

(j = 0): Then i = 1 and either si is the final state of the method execution (r,m),
or is the pre-state of the first subcall. By Lemma 16, the only invariants which
may be lost between s0 and s1 are those of peers and transitive owners of r. In
particular, no invariants from other trees can be lost.

(j = k + 1): Let sl be the semi-visible state preceding the last direct subcall (r′,m′)
between s0 and si (i.e., l = i− 1 if i is even, and l = i− 2 if i is odd). Between
s0 and sl there are strictly fewer than j method calls, none of which reach a
receiver from c’s tree, by assumption. By induction, no invariants from c’s tree
are lost between s0 and sl. Now consider the execution of the subcall (r′,m′).
Between the initial and final state of this method execution, there must be
strictly fewer than j method calls, and so by induction, no invariants from
the tree of c are lost during execution of this method, either. Therefore, no
invariants from the tree of c are lost between the pre- and post-states (sl and
sl+1) also. In the case l = i− 1 we are done. On the other hand, if l = i− 2
then i is odd and so l + 1 is even. By Lemma 16, the only invariants which
may be lost between sl+1 and sl+2 are those of peers and transitive owners of
r. In particular, no invariants from other trees can be lost.
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In the following, we will write XV T

(r,m) to denote the expected invariants for a

method (r,m) in VT (considering only the heap topology restricted to the tree of
root(r))11. We will write XV TS

(r,m) to denote the expected invariants for a method (r,m)

in our technique (Definition 10).

Definition 20 (Notations for expected invariants) We re-express the expected
invariants for VTS as follows:

XV TS

(r,m) = XV T

(r,m) ∪
⋃

c∈Effs(r,m)

context(c)

Theorem 21 (Soundness of VTS follows from soundness of VT) For any method
execution (r,m) in a program verified by the VTS technique, suppose the current
stack is of the form σ◦(r,m). If XV TS

(r,m) holds at the initial state of the method exe-
cution, then:

1. At every semi-visible state of the method execution:

(a) For every class c, if any invariants within context(c) have been lost since
the initial state of the method execution, then filter(σ◦(r,m), c) is a non-
empty stack, with lastmost frame (r′,m′), say. Furthermore, any in-
variants within context(c) which are lost are all invariants of peers or
transitive owners of (r′,m′).

(b) All invariants within
⋃

c∈Effs(r,m) context(c) hold.

(c) If the state is a pre-state of a direct subcall (r′,m′), say, then the invari-
ants XV TS

(r′,m′) hold.

2. At the final state of the method execution, XV TS

(r,m) holds.

Proof 22 We show all parts simultaneously, by strong induction on the number k
of (transitive) subcalls made during execution of (r,m)

(k = 0): Then there are only two semi-visible states: the initial and final states of
the method execution, and control is always with receiver r in between. We
show each part separately:

1. (a) The result is immediate for the initial state, since no invariants can
yet have been lost. In the final state, Lemma 16 implies that the only
invariants lost must be those of peers and transitive owners of r.

11Note that for any receiver r, XV T

(r,m) = context(r). However, we use the former notation when
we wish to explicitly depend on the definitions in VT, for our arguments.
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(b) The result is immediate for the initial state, since no invariants can
yet have been lost. In the final state, Lemma 16 implies that the
only invariants lost must be in the tree of r. The only way that⋃

c∈Effs(r,m) context(c) can include any invariants from the tree of r

is if root(r) ∈ Effs(r,m). By Lemma 12, this would imply that r =
root(r) = c′, say. By part 1a, at most the invariants of c′ itself may
have been lost from this tree, in this case. But the proof obligations
for the end of the method execution (E) ensure that these invariants
are preserved.

(c) The case is vacuous.

2. By assumption, XV TS

(r,m) holds at the initial state of the method execution.
By the previous part, the only invariants from XV TS

(r,m) which may poten-
tially be lost between the initial state and the final state are those of peers
of r. However, the proof obligations for the final state of the method
execution (E) ensure that these invariants are preserved.

(k = j + 1): 1. By secondary induction on the index i of the semi-visible state.

(i = 0): (a) Immediate, since no invariants can yet have been lost.

(b) By assumption, XV TS

(r,m) holds at the initial state of the method
execution.

(c) The 0-th semi-visible state is the initial state of the method exe-
cution, not the pre-state of any subcalls.

(i = n+ 1): By inner induction, we can assume the result holds at the
n-th visible state. We consider two cases:

(n is even):(a) By Lemma 16, the only invariants lost between sn

and sn+1 are either peers and transitive owners of r, or else
are invariants of classes which did not hold at s0 (and therefore
are not lost between s0 and sn+1).

(b) By assumption, the invariants within
⋃

c∈Effs(r,m) context(c) hold
at the initial state of the method. By induction, they also hold
at the nth state. Lemma 16 implies that the only invariants lost
between sn and sn+1 must be in the tree of r. The only way
that

⋃
c∈Effs(r,m) context(c) can include any invariants from the

tree of r is if root(r) ∈ Effs(r,m). By Lemma 12, this would
imply that r = root(r) = c′, say. By part 1a, at most the in-
variants of c′ itself may have been lost from this tree, in this
case. But the proof obligations imposed at state sn+1, which is
with the pre-state of a method call (B) or the final state of the
current method execution (E) ensure that these invariants are
preserved.

(c) When the n+1-th state is a pre-state of a call (r′,m′), we must
show that XV TS

(r′,m′) holds. By part 1a, we know that the only
invariants lost in the tree of the current receiver are those which
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could have been lost in an instance method call in VT on the
same receiver. Since the B proof obligation made before the call
to (r′,m′) in the VTS technique implies the B proof obligation
for the VT technique, then by the soundness of VT (Lemma
4), it guarantees the invariants XV T

(r′,m′) hold in the n+1th state.

We conclude by part 1b (and Definition 20).

(n is odd): Then between the nth and n+1th state, a single method
call is made, say to (r′,m′). We consider two cases:

root(r′) = root(r): Then, for the call to be legal, r′ must be
either the rep or peer of r, i.e., this is a call which would
have been allowed in VT. We wish to show that the invari-
ants XV TS

(r′,m′) hold in the nth state. By inner induction and part
1a, we know that considering the tree of r alone, no more in-
variants have been lost since the initial state (when XV T

(r,m) held)
than could have been lost for a method body according to VT
(i.e., only invariants of peers and transitive owners of r). Fur-
thermore, our B proof obligation in VTS implies the analogous
proof obligation for VT. Therefore, by the soundness of VT
(Lemma 4(1)), the invariants XV T

(r′,m′) hold at state sn.

By induction, the invariants in
⋃

c∈Effs(r,m) context(c) hold at
state sn.
By Proposition 8, we know that Effs(r′,m′) ⊆ Effs(r,m), and
it follows that the invariants in

⋃
c∈Effs(r′,m′) context(c) hold

at sn. This means (Definition 20) that all of the invariants
XV TS

(r′,m′) hold at sn, the pre-state of the call to (r′,m′). By

(outer) induction, all of these invariants hold at the post-state
of the call (r′,m′) and 1a holds. To show 1b, we need to be
sure that

⋃
c∈Effs(r,m) context(c) hold at state sn+1. We know

that these invariants held at sn, and furthermore that for all
c ∈ Effs(r′,m′) the invariants in context(c) still hold at sn+1.
However, for any c /∈ Effs(r′,m′), none of the invariants in
context(c) may be lost during the call (r′,m′), by Propositions
8 and 18, therefore we can conclude 1b. Note that 1c is vacuous
in this case.

root(r′) 6= root(r): Then r′ = c′ for some c′ ∈ Effs(r,m). Again,
we aim to show that the invariants XV TS

(r′,m′) hold in the nth state.

Note that XV T

(c′,m′) = context(c′) which is contained within the

set
⋃

c∈Effs(r,m) context(c) known to hold at sn. Similarly to the

previous case, we know that Effs(c′,m′) ⊆ Effs(r,m), and so
the rest of the invariants in XV TS

(r′,m′) also hold at sn. By (outer)
induction, all of these invariants hold in the final state of the
call (r′,m′), and so they hold at sn+1, and any invariants lost
are those permitted by 1a. We obtain 1b by similar argument
to the previous case, and 1c is again vacuous.
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2. In the final state of (r,m), by part 1a, we know in particular that in the
tree of r, no more invariants may have been lost (since the initial state of
the method) than might be in VT. Furthermore, the E obligation imposed
by VTS implies that imposed by VT in the final state. By the soundness
of VT (Lemma 42), we know that these proof obligations are sufficient to
guarantee that XV T

(r,m) hold at the final state of (r,m). Furthermore, by part

1b, we know the invariants in
⋃

c∈Effs(r,m) context(c) also hold. Therefore,
all invariants in XV TS

(r,m) hold, as required.

Static Initialisation

We have not discussed static initialisation so far in this paper. In brief, we are able
to incorporate the Java semantics for static initialisation with our technique. In
terms of our topology, initialisation is best modelled by considering that the tree
owned by a class comes into existence at the moment static initialisation of the class
begins (and is initially empty, apart from the owning class). We require that static
initialisers establish the invariants of the corresponding class. When verifying the
code of a static initialiser, it is safe to assume the invariants of any objects which are
created during the initialisation (and owned by the class), but no static invariants of
other classes can be known to hold, and so it would be dangerous to permit calls to
static methods of other classes (we forbid this). This is because static initialisers are
not called in a controlled manner, and there is no opportunity to employ the effects
sets in the way we do for method calls in order to ensure that certain classes are not
already on the call-stack when the code is executed. It may also safely be assumed
that no instances of the class exist when the static initialisation is executed (since,
by the Java semantics, the class must be loaded and initialised before any instances
can be created). Therefore, any static invariants which quantify over instances of
the class will automatically be vacuously true. In practice, we believe we can handle
many practical examples of static initialisers, since we can naturally permit new
objects to be created, and have the fields modified and methods called in the usual
way for object instances. The only serious restriction is the inability to make static
method calls during an initialiser, but this restriction can be partly lifted by the
extended technique presented in Section 5.

Assuming Static Invariants in Proofs

An aspect of verification we have not examined in detail is how proof obligations are
actually discharged. In particular, when one wishes to do verification in practice,
it is important to know what assumptions can be made for the proofs which our
techniques require. According to the discussions so far, static invariants are only
known to hold at the initial and final states of static method calls on the same class,
as well as in the initial and final states of methods with the corresponding class in
their effects (since such a class is guaranteed by our technique to be in a consistent
state—cf. Definition 20). However, it seems reasonable in practice that an instance
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method might wish to depend on static invariants actually holding for its verification.
For example, if the Thread class maintains a static invariant that all instances have
unique identifiers, this is likely to be useful for the verification of instance methods
of Thread. Our technique as presented thus far verifies instance methods without
general explicit knowledge of which static invariants hold (although such invariants
must be preserved). It is, however, easy to extend method specifications to allow
explicit declarations of extra static invariants the method depends on. This can be
most easily encoded into VTS by manually adding some classes to the effects set of
the method (in which case, their invariants will be required to hold by VTS). Even
better, such explicitly declared dependencies on static invariants can be treated as
a separate kind of effects set (secondary to those existing in VTS), which can be
propagated independently. This allows us to handle extra examples in which a static
invariant is required and can be guaranteed to hold, but the class is already on the
call-stack, and some of its owned objects may not be in a consistent state. In this
case, it would be unsafe to make a call on the class (which might result in calls to
its owned objects), but can still be safe to depend on the class’ static invariants
holding, which could be expressed through the two separate effects sets.

5 REFINEMENTS

In this section we propose two refinements to VTS which make it more widely-
applicable. The first refinement, “strong VTS” (hereafter SVTS) adds an extra
facility for callbacks to be made between trees: In VTS, re-entrance of a tree is only
possible when a static method of class c calls out to another tree and then that
call re-enters c. SVTS allows control to re-enter a previously visited tree generally
at positions which could have been called from the last frame in that tree. This
extra flexibility is needed, for instance, when a static method calls instance methods
of its arguments. The second refinement, “layered VTS” (hereafter LVTS), allows
for a more-refined notion of effect annotations, by stratifying the heap topology into
“levels” in such a way that calls down to lower levels can never callback, and so need
not be considered in the effect annotations. This refinement reduces the annotation
burden and also allows overriding methods to call static methods of lower levels, even
if their classes are not explicitly mentioned in the effects of the overridden method.
Finally, we will discuss the issues involved in combining these two extensions.

SVTS—Safe callbacks

In the definition of the VTS technique, we observed that much of the design of the
technique, and the argument for soundness, depended on the idea of ‘filtering’; that,
from the point of view of just one tree in the topology, the ‘filtered’ flow of control
within that tree corresponds to a sequence of method calls permitted by VT, and
that the proof obligations imposed also correspond, and guarantee invariants in a
similar way to VT. However, our technique currently only allows control to pass to
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a new tree at the ‘root’, by calling static methods. This means that is impossible to
“resume” control in a tree except in the special case that only the ‘root’ has been
called so far. From the point of view of the ‘filtering’ idea, it seems that it should
be possible to allow a more permissive discipline regarding control passing between
trees, so long as the original ideas of VT are respected ‘per tree’.

Introducing callbacks.

We consider a refinement of our technique with the ability to make calls directly
to objects in other trees. This kind of extension seems desirable for practical, as
well as philosophical reasons. To illustrate the practical reasons we consider a slight
variation of the standard way to print objects to the terminal in Java12 13:

class System {
static void print (any String s)
{

// send the string to the terminal window
}

static void print (any Object o)
{

System.print (o. toString ()) ; //subcall not permitted on any reference
}
}

The overloaded method print has a direct implementation for String argu-
ments, and requires all other objects to first generate their String representations,
which can then be passed to the direct implementation. This code is very natural,
but requires a callback to be made on Objects o which are passed to a static method
of System. In the technique presented thus far, this callback is not permitted, since
even pure methods (which toString could feasibly be) may be called only on re-
ceivers in the context of the current receiver. The reason for this restriction is that
otherwise our technique cannot guarantee statically that the invariants of the callee
will hold, and therefore to guarantee the safe execution of the method.

However, this restriction seems too strong in our generalised heap topology. From
the point of view of the receiver which calls System.print(o), if it passes an object
which it regards as its rep or peer, it is easy for it to guarantee that the invariants of
o hold. Furthermore, unless a callback is made into the tree in which o belongs, its
invariants will continue to hold during execution of System.print(o) (regardless
of the actual code in the print method), by Proposition 18. We therefore propose
a new universe annotation, strong any, whose intended semantics is that the object

12Thanks to Rustan Leino for suggesting this example.
13We have made the print methods directly available as static methods of the System class,

rather than as instance methods of the stream in the static out field of the class. This is because,
in the technique presented in this section, we cannot generally handle direct calls to instance
methods of static fields (rather than calling via a static method of the class). We will explain how
to eliminate this restriction at the end of this subsection.
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referred to is guaranteed to be safe to make a callback on; we will permit all calls
on strong any references. We consider strong any to be a specialisation of any, and
a strong any reference can be upcast to any if desired (losing the special semantics
associated with a strong any reference type), but downcasts are not permitted. Our
strong any annotation expresses that an object’s invariant may be assumed to hold
without constraining the object’s position in the ownership topology. In that sense,
it is similar to a Spec# specification stating that an object is peer-consistent. How-
ever, since we use a type system, we have to over-approximate the consistency of
objects and enforce a stronger system invariant, as we discuss next.

Details.

In order to ensure soundness, we design an extension of our technique to guarantee
the following ‘system invariant’:

Definition 23 (System invariants for SVTS) At any semi-visible state of any
method execution (r,m), for which o is a strong any reference in scope:

1. o is guaranteed to be from a different tree to the current receiver.

2. The invariants within o’s context are guaranteed to hold.

3. Any two strong any references in scope refer either to different trees from each
other, or to objects which have identical contexts (i.e., which are peers of one
another).

4. o is guaranteed to be from a different tree than any class c with c ∈ Effs(r,m).

The second criterion is necessary in order to ensure that the currently-executing
method cannot violate invariants within the context of o. The need for the third
and fourth criteria will be made clear later in this section.

Since this system invariant is expressed and guaranteed in terms of the current
receiver and the history of calls on the stack, it would not be consistent to allow
strong any to be used for the type of a field (since, a different sequence of calls might
reach the same object while the referred object’s invariants did not hold). Because
the properties guaranteed by strong any are specific to a particular method execu-
tion, we only allow this universe annotation to be used for the formal parameters
to methods. We do not allow it for the return types of methods (since again, the
system invariants might not be maintained after the method returns, particularly
the fourth criterion above).

In fact, a general difficulty with the creation of strong any references is that
whenever a receiver has concrete knowledge about its relation in the heap topology
with an object (i.e., when it regards the object as a rep or peer), then it comes from
the same tree as the object, and to consider such an object as a strong any would
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Figure 5: Calls across trees, invariants hold in shaded areas. The bold line indicates
a call on a strong any argument.

violate our system invariant. We evade this difficulty by allowing strong any to be
used as a modifier for formal method parameters, and allowing actual arguments
to be implicitly promoted from rep or peer to strong any at the time of calling the
method, so long as the method call is to a different tree. This means that the
invariants within the context of the passed reference can be naturally guaranteed,
automatically in the case of a rep, and by imposing a proof obligation that all peer
invariants are established first, in the case of a peer. Note that we do not allow
explicit casts of rep or peer references to strong any. Thus, the only way in which
new strong any references can come into existence in the program is by implicit
promotion, during calls to other trees.

As a further refinement to our idea, there is actually no need to avoid impure calls
being made on strong any references. The reason for this is that we have chosen that
only a rep or peer of the last receiver in the same tree could be passed as a strong any
reference, and we impose the same proof obligations beforehand as we would if we
were calling a (potentially impure) method on the referred object directly. Therefore,
we can view our strong any references, as ‘permitted next receivers’ in other trees,
which relates neatly to the idea of filtering.

Example.

We can now rewrite the example presented above in a way which can be accommo-
dated:

class System {
static void print (any String s)
{

// send the string to the terminal window
}

static void print (strong any Object o)
{

System.print (o. toString ()) ; //subcall permitted on strong any reference
}
}
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class c{
rep Object o;

void m() {
System.print (o); // promote rep as strong any
}
}

Note that during an execution of m() above, it is guaranteed to be safe to promote
o to strong any when making the call on System; it must be that System is from a
different tree, since otherwise such an execution of m() could not be reached (by the
owner-as-modifier property, it would have to be reached via another active static
method execution on System, and the effects would have ruled out reaching the
method m() which might call back to System.

Passing strong any references.

We observe that it is safe (i.e., the system invariant is preserved) to pass an existing
strong any reference from a method to a subcall, so long as the subcalls do not
reenter the tree in which the referenced object resides. There are two ways in which
this potential problem could occur.

Firstly, the tree could be reentered at the root, via a static method call to the
class c at the root of the tree. Due to the effect annotations, this can only happen
if the strong any reference was created during execution of another method on class
c, and no objects in the same tree are currently receivers on the call stack. We
can therefore rule out this problematic case specifically by defining that, during
execution of a static method of class c, if a (static) subcall is to be made for which
c is in the effects, no strong any references may be passed.

Secondly, the tree could be reentered by a callback to a strong any reference, as
we have now permitted. We can avoid violating the system invariant by requiring
that any references passed as strong any must be known to have contexts disjoint
from the strong any receiver. In practice, unless some extra machinery is employed to
guarantee such disjointnesses, this will mean that when a call is made to a strong any
receiver, no strong any arguments can be passed.

We do not allow strong any annotations to be used in the return types of method
calls: this is because there are no guarantees that the point to which the method
returns will not be within the same tree as the referenced object, and so violate the
system invariant.

Overlapping strong any references.

The ability to allow (impure) callbacks into trees adds great flexibility. However,
a subtle problem arises when multiple strong any parameters have different (but
overlapping) contexts, as is illustrated by the following example:
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class CompositeInt {
rep Integer child = new Integer(1);
int total = 2;

// invariant total > child .getValue()

int getTotal () {
return total ;
}

double calculateRatio () {
return total / ( total − child .getValue()) ;
}

void violate () {
CompositeInt.bad(child , this) ; // pass rep/peer as strong any
}

static void bad(strong any Integer i , strong any CompositeInt o) {
i . setValue(o.getTotal ()) ;
o. calculateRatio () ;
}

void attempt() {
child . setValue(this . getTotal ()) ; // breaks invariant of this
this . calculateRatio () ; // rejected by our technique
}
}

In this case, the method violate passes a CompositeInt instance o along with its
child, both as strong any references (to match the signature of bad). The resulting
call i.setValue(o.getTotal()) breaks and does not reestablish the invariant of o,
which then receives a dangerous callback. The reason for this problem can be seen by
examining the method attempt. Here, equivalent method calls are made to those
resulting from violate, but without the indirection of the strong any references.
The difference is that control returns to the instance in between these two calls,
at which point an extra proof obligation (which fails) is required before calling
calculateRatio. This obligation is applied too early when the analogous calls are
made via bad; when the this reference is passed as a strong any the invariants are
established ready for any callback to be made, but these invariants are then broken
in between this point and the call to calculateRatio.

To guarantee that the contexts of multiple strong any references only overlap
when they are identical (and therefore avoid the unsoundness described above), we
employ the following restriction: it is not permitted for both a rep and a peer to
be implicitly promoted to strong any for the same method call. This avoids the
mismatch between proof obligations: even if many callbacks are made to strong any
references, the invariants expected and reestablished for each of these callbacks will
be the same each time.
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For similar reasons, it would be unsound for a method with a class c in its effects
to have a strong any reference passed to it which refers to an object in the same
tree as c. This would mean that the method would have the ability to callback to
different points in the same tree, just like in the example above. However, the only
way in which this could happen is when a class c calls another class c′, passing a rep
object as a strong any parameter. We rule this case out explicitly in our definitions
below.

Definitions.

In the following definition, we highlight the main differences with VTS (cf. Definition
10) in bold:

Definition 24 (The SVTS technique) X The invariants of receivers within the
context of r are expected, plus invariants within the context of all classes c
such that c ∈ Effs(r,m), plus invariants within the contexts of each
strong any reference in scope.

V The invariants of all transitive owners of r are vulnerable, plus all transitive
owners of each strong any reference in scope14, plus invariants of peers
of r, and the static invariants of their classes and superclasses.

B In the pre-state of a method call, if the callee is a peer of r, or if a peer of r is
to be promoted as a strong any argument to the call, the invariants
of all peers must be established to hold. Similarly, if the caller is a class c and
the new call is to a static method with c in its effects, the invariants of c must
be established. Furthermore (in all cases), the invariants of the (super)classes
of all of the peers of the caller receiver must be shown to be preserved (since
the initial state of the caller’s method body).

C From an instance method body (i.e., r is an object), a call to another instance
method is allowed if the callee is a peer or rep of r, or if the callee is a
strong any reference, or if the method is pure and the callee is known to
be within the context of r. From an instance method body, a call to a static
method is always allowed. From a static method body (r is a class c), a call
to a static method (of any class) is allowed unless both a strong any
parameter is passed to the method and c is in the effects of the
method, while a call to an instance method is allowed if c is not in the effects
of the method, and either the callee is a rep of c or the method is pure and the
callee is known to be within the context of r.

Any strong any references in scope when a method call is made
may be passed as strong any arguments to the method call so long

14These invariants are vulnerable because they may depend on fields modified during calls to
the strong any reference. However, note that such invariants will also not be expected to hold for
these calls, and so do not play a significant role in our soundness arguments.
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as it is not a call to a different tree (i.e., not a call on a strong any
reference itself, or a static method call, excepting the special case
of a class “calling itself”). Such references may also be ‘upcast’ as
any references, if that is all that the method requires.

If a method requires strong any arguments and rep or peer refrences
are passed in their place, these references are implicitly promoted
to strong any, provided the call is made to a different tree (i.e., the
call is either itself a call on a strong any reference, or a call to a
static method, excepting the special case of a class “calling itself”).

The components D, E, and U are identical to Definition 10.

Soundness.

We discuss briefly how soundness of the SVTS technique can be deduced from sound-
ness of the VTS technique. Essentially, the argument follows exactly the same lines.
However, our expected set now has the following format (cf. Definition 20):

XSV TS

(r,m) = XV T

(r,m) ∪
⋃

c∈Effs(r,m)

context(c) ∪
⋃

o∈strong any(r,m)

context(o)

where by strong any(r,m) we mean the set of all strong any references in scope for
the method body (r,m)15.

We made our soundness argument for VTS rather more general than it needs to
be (particularly regarding filtering of stacks, which in VTS may only reenter a tree
when only the root has been visited anyway), in order that the argument adapts
straightforwardly for SVTS. Indeed, we can prove an analogous result to Theorem
21 in a very similar way. The only extra difficulty is in showing that, when control
switches from one tree to another (either calling or returning from a method), the
expected invariants contributed by the strong any references in scope always hold.
This is achieved by adding extra cases to the soundness theorem to require that the
system invariant is preserved at all times. In fact, we can show as a lemma that for
each o ∈ strong any(r,m), root(o) 6= root(r), and for o1, o2 ∈ strong any(r,m), either
context(o1) = context(o2) or root(o1) 6= root(o2). We then prove a main soundness
theorem with a similar form to that of VTS, but add the requirement that at every
semi-visible state of the method (r,m), the invariants within the contexts of all
strong any references hold.

15Technically, the required information about strong any references in scope requires us to store
arguments in our stack frames, as well as receivers and method names. Such an extension is
straightforward, and does not affect the rest of this work.
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Remarks.

We can add further flexibility to the SVTS technique by allowing static final fields to
act as further “roots” in our topology. In our example above, we made print a static
method of System. This simplified the example, but in reality, a String is printed
in Java via an instance method of the stream in the static field System.out (as
in System.out.println()). Firstly, this is problematic for our technique, since it
involves a direct call to an object owned by System, without calling an intermediate
static method on the class. More subtly, our technique would impose a restriction
that the implementation of println() could not call other static methods of System,
because our effect annotations would rule this out while control was with an object
owned by System. We observe firstly, that for static final fields16, it would usually
be guaranteed that there is a unique, fixed instance object stored, and it would be
possible to extend our approach to treat this as a ‘fixed position’ in our topology,
just as the classes are. If we were to make System.out a ‘root’ of a tree in its own
right, and consider it analogously to a separate class as far as effect annotations
were concerned, this would make calling methods such as System.out.println()

directly a natural feature, while providing additional flexibility for such methods to
make use of other parts of the System class.

Unfortunately, although this approach works in general for static final fields, it is
not actually applicable to the particular case of System.out. This is because, despite
the final declaration, for backwards-compatibility reasons in Java it is possible to
modify the object referenced by this field, using the static method setOut. This
opens up a more-difficult problem: if out is a mutable object, then it cannot be
easily considered a root of a tree in our topology (and be included soundly in effect
annotations etc.), but at the same time, calls are made directly to out and not via
static methods of System: our technique would naturally forbid these. We argue
that the reason such calls are made directly is that the PrintReader referenced
by out has only a weak relationship with the class System itself. While System

is responsible for initialising and re-assigning the object, and provides a means of
accessing the object, via the class name, it does not obviously have concerns which
are deeply entangled in the workings of the object. In particular, it seems plausible
that any invariants declared in the class System would not need to depend on the
fields of the object out. This suggests a weaker association than that which the
universe modifier rep specifies: there is a kind of ownership in terms of managing
the identity of the out object, but it does not need to be as deep as rep allows. In
particular, it is not necessary for System to have invariants which depend on the
fields of out. If this weaker ownership relationship could be formalised in a variant
of our system (perhaps with another universe modifier), we could then consider
allowing calls such as System.out directly. This could be sound, even though it
involves entering a tree lower than the root, because there is no danger of leaving
invariants further up in the tree broken. In terms of effect annotations, we would

16The field out of System is declared final in Java, but (as a special case) can actually be
modified - see next paragraph
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consider a call to a method of System.out, say, in the same way as a call to System,
in order to rule out dangerously reentering the tree, as usual.

The possible implications of this notion of ownership without deep dependencies
should be explored in future work: it might well be that it is useful for describing
certain object structures in a flexible way, as well as for dealing with static fields in
a flexible manner.

LVTS—reducing effects annotations through levels

In this section we revert to the original definition of VTS (without strong any ref-
erences), and consider a different extension of the technique (after which, we will
consider the implications of combining the two refinements).

The effects as described so far require annotations for all classes used in a pro-
gram. This requirement leads to a high annotation burden, compromises information
hiding, and limits the usability of the technique presented so far, as the following
example illustrates.

Example 25 (Method Overriding and Effects) Consider the String class of
the Java API. An implementation of this class can exploit the fact that strings are
immutable in Java, and so share instances of objects, by using static fields from
class String to maintain a ‘pool’ of used String instances. A method intern is
provided in class String to access these pooled references, implemented using static
fields and methods. Consider now that we want to write a class which overrides the
equals() method inherited from Object:

class MyClass extends Object{
boolean equals(Object o)
{

String s = new String(”Equals() Called”);
System.print (s .toLowerCase());
return this == o;
}
}

It happens that the implementation of toLowerCase involves calling the static
method intern of the String class, which in turn results in accessing the static
data of the class. In this case, our previous definitions imply that we need to have
String∈ Effs(MyClass,equals), and because of Def. 6 (item 3), we also need that
String∈ Effs(Object,equals). But, it is unlikely that this effect was predicted
when the class Object was given effect annotations. Therefore, this method defini-
tion would be illegal. This illustrates an annotation problem (annotations may need
recomputing), an information-hiding problem (our code should not need to know how
the methods in String are implemented), and a usability problem (our technique for-
bids our intended method declaration).
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To alleviate this burden, we introduce a refinement, whereby we group classes
in a linear hierarchy of ‘levels’, such that the code of lower-level classes does not
mention the higher-level classes17. The intuition is that library classes should have
been previously verified and belong on a ‘lower level’ than the classes which the
programmer is now writing. We express the levels through a function Lvl( ) which
maps classes to integers.

Definition 26 (Valid Levels) c mentions c′ ⇒ Lvl(c) ≥ Lvl(c′).

Because classes in the lower levels do not ‘know about’ classes in the upper
levels, it is impossible for them to make static calls on the classes in the upper levels
(cf. Fig. 6). We therefore design our technique around the following crucial ‘system
invariant’:

Definition 27 (System Invariant for LVTS) If a method call is made to a re-
ceiver in a particular level, no resulting subcall is made to a receiver in a higher
level. In particular, when a method call is made to a receiver with a lower level than
the current receiver, it may not result in calls being made to receivers on the same
level as the current receiver.

Therefore, if we consider verification of the topmost level, then when a call is
made down to a lower level, the effect annotations are no longer necessary18. Thus,
we refine our effect annotation sets to only mention classes on the same level as
the method being verified. The new conditions on effects (in which differences in
comparison with Def. 6 are shown in bold) are:

Definition 28 (Refined Effects) 1. If c′ is in Effs(c,m) then Lvl(c′) = Lvl(c).

2. Within the body of a method m of class c, if there is a call e.m′(. . .) and e has
static type c′, and Lvl(c) = Lvl(c′), then Effs(c′,m′) ⊆ Effs(c,m).

3. Within the body of a method m of class c, if there is a call c′.m′(. . .) to a static
method m′ of class c′ and Lvl(c) = Lvl(c′), then

(a) Effs(c′,m′) ⊆ Effs(c,m) and

(b) c′ ∈ Effs(c,m).

4. If c′ is a subclass of c which overrides a method m, then Effs(c′,m) ⊆
Effs(c,m)

17For example, we could consider the Java API classes (e.g., Object and String) to be on a
lower level than our classes, and it would be naturally guaranteed that the API classes do not
mention ours.

18To handle dynamic binding, we require the effects of methods that override methods in lower
levels to be empty and, thus, independent of the effects of the overridden method.
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The refined conditions given permit smaller effects sets for methods than those of
Def. 6. Considering the example at the start of the section, it is no longer necessary
(or indeed, allowed) for String to be in Effs(MyClass,equals).

In the following definition, the only explicit change compared with Definition 10
is to the X parameter, but because of the restriction of effects sets to only classes on
the same level, the points at which the effects sets are checked are less restrictive.

Definition 29 (The LVTS technique) X The invariants of receivers within the
context of r are expected, plus invariants within the context of all classes c such
that c ∈ Effs(r,m), plus invariants within the contexts of all classes c′

with Lvl(c′) < Lvl(r).

All other components are identical to Definition 10.

Remark. Considering the earlier discussion of static initialisation (Section 4), with
the LVTS refinements we no longer need the full restriction that no static method
calls can be called from a static initialiser. Rather, it is safe for classes of lower
levels (than the class being initialised) to have static methods called on them, but
not classes of the same level. This is because, a static initialiser c will only be
executed when c, or a subclass of c, is (first) mentioned in the body of an executing
method. By our restrictions on levels, the method body must come from a class of
equal or higher level than c, and thus, the call-stack must not have currently visited
classes of lower levels than c.

Figure 6: Trees in one level. The current level may call into the lower level, but no
calls from the lower level may come into the current level. The level of an object is
determined by the class that transitively owns the object, not by the object’s type.

Soundness.

We discuss briefly how soundness of the LVTS technique can be deduced from sound-
ness of the VTS technique.
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We write Lvl(o) for the level of an object, defined to be the level of the class which
transitively owns the object (i.e., the class which is the ‘root’ of the appropriate tree).
We can then show the following property, which corresponds to our claimed system
invariant:

Proposition 30 (Levels do not Increase through Calls) 1. If object o is tran-
sitively owned by class c, and if c′ is the dynamic class of o, then Lvl(c) ≥
Lvl(c′).

2. For any stack σ◦(c,m)+σ′◦(o,m′), in which σ′ consists exclusively of instance
method calls, if c′ is the dynamic class of o, then Lvl(c) ≥ Lvl(c′).

3. For any stack σ◦(r1,m1)+σ
′◦(r2,m2), in which r1, r2 can be any receivers, we

have Lvl(r1) ≥ Lvl(r2).

4. For any stack σ◦(c,m)+σ′◦(c,m′), for all the receivers r from frames in σ′,
we have Lvl(r) = Lvl(c).

Proof 31 1. By induction on the number of objects created (in the tree). For
the inductive step, we use the fact that the class of the creator of an object
(i.e., the receiver of the method execution which causes it to be created) must
explicitly mention the dynamic class of the new object in its code, and so we
obtain the required inequality by Definition 26.

2. Since instance method calls can only be made on peers and reps, it must be
the case that c transitively owns o. If we iteratively follow the creator of o, its
creator, etc., we must eventually reach c (since this tree originally contained
only c). Therefore, the result follows from the previous two parts.

3. By induction on the number of static method calls in the sequence. If none,
then the result follows from the previous part. For the inductive step, suppose
we make an extra static call on class c′. If the currently-executing method is a
static method (c,m), say, then c′ must be mentioned in the method m of c, and
by Definition 26 we obtain Lvl(c) ≥ Lvl(c′). On the other hand, if the previous
method is an instance method (o,m), let c1 be the dynamic type of o, and let
c2 be the class in which the definition of m is found, from class c1. We have
c1 ≤ c2, and so Lvl(c1) ≥ Lvl(c2). Since the method m of class c2 mentions c′,
we must have Lvl(c2) ≥ Lvl(c).

4. Consider any intermediate receiver r. By applying Proposition 30(2), twice,
we obtain Lvl(c) ≥ Lvl(r) and Lvl(r) ≥ Lvl(c).

This allows us to construct similar soundness arguments to those for VTS. In
fact, we explain here a neat way to obtain such a soundness result. We can, in fact,
consider an encoding of LVTS into a variant of VTS, in which we regard all classes on
lower levels than the receiver of a method to be implicitly included in the effects of
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the method. In this way, we make explicit in the effects sets the implicit permission
to call down to any classes in lower levels. If we consider these extended effects
sets then it turns out that the soundness argument works out analogously to that
of VTS. The proposition above guarantees that even with these implicitly extended
effects sets, effects sets never increase as new calls are made, and that the effects
conservatively predict the trees which may be entered by new calls (cf. Proposition
8).

Remarks.

We have allowed the organisation of levels to be very flexible, and thus the effects
and levels can be used to complement each other in various ways. Considering
the extreme case of only one level, we return to VTS, where all the work must
be done by the effects. On the other hand, if every class has a level to itself, we
essentially impose a total ordering on classes (which may not be possible within
our restrictions, for all programs), and no effect annotations are required at all. In
practice, we envisage that the levels will be used to separate away previously written
library classes from those being currently developed and verified.

Combining levels with callbacks

In this section we consider the combination of both refinements: the inclusion of both
strong any references and the heap topology stratified with levels. Unfortunately,
the two extensions do not work well together. The reason for this is that the smaller
effects sets made possible with the levels are only adequate so long as callbacks
are known not to be made from lower to higher levels. With the ability to pass
strong any references in a call ‘down’ levels in the topology, callbacks from lower to
higher levels become possible.

As an outlined example, consider the following code:

// LEVEL 2
class B extends A{

void m1(){
A.m2(this); // promote this as strong any

}
void m3( ){

A.m4();
}

}

// LEVEL 1
class A{

.... // some static invariant

static void m2(strong any A a){
// do something to break the static invariant of A

a.m3();
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}

static void m4(){ .... }

The call to A.m4 is made while the static invariant of A is temporarily violated.
However, since A is on a lower level to B, no effects need to be given for the call to
A.m2. This means that the resulting call to m4 is not accurately predicted by the
effects of m2, and so can be reached when the appropriate invariant does not hold.
Note that it would not be possible to exploit this problem to make dangerous static
method calls on the higher level, since these calls would be caught by the effects; it
is the fact that we re-enter the lower levels without computing effects on that level
that creates the difficulty.

Unfortunately, this problem seems hard to avoid. The very nature of the effects
computed for LVTS means that there is no statically-available information about the
results of calls down to lower levels (since such calls are not regarded as significant
in the computation of effects). Furthermore, it is not statically known whether a
strong any reference in scope might refer to an object in a higher level (its static
type may be a class of a lower level than its dynamic type).

We can recover soundness by enforcing the (very strong) restriction that when-
ever a strong any reference is passed to a lower level, no invariants are broken in
the lower level (while the strong any reference is in scope). In this way, if the lower
level is unexpectedly re-entered, no invariants will be broken at the time. Unfor-
tunately, a method with a strong any parameter has no information about which
level the strong any reference came from, and so we must conservatively impose that
all methods with strong any parameters avoid breaking any invariants. This cre-
ates particular problems for instance methods, since the receiver will not typically
know its owner, and will not be able therefore to ensure that it preserves all invari-
ants which may depend on the fields it modifies. For this reason, we must forbid
strong any references from being passed to impure instance methods. In the case of
pure methods, no invariants can be lost during their execution and so a restriction
is unnecessary19.

6 CONCLUSIONS, RELATED WORK, AND FUTURE WORK

We have outlined three verification techniques based on the visibility technique [12],
catering for static fields, methods, and invariants. In the process, we extended the
usual heap topology of ownership types, and tackled potential callbacks through a
combination of effects, levels, and the owner-as-modifier discipline. We have shown
two ways in which our basic technique can be improved, making it applicable to

19Note that pure methods may create new objects, and this might in principle have implications
for any static invariants quantifying over all instances of a class. However (although we have
not explicitly mentioned constructors in this paper), any constructors should preserve such static
invariants appropriately, just like instance methods.
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more examples.

Universe types as implemented in JML [6] require static fields to be readonly.
JML’s static invariants may only refer to static fields, while instance invariants may
refer to both static and instance fields [6, Sec. 8.2]. In JML and in our work, both
instance and static invariants are supposed to hold in visible states [12]. In JML’s
universe types, static methods are executed relative to the context of the object
who called the static method. This allows one to implement static factory methods,
which create new objects in the context of their caller. We can extend our approach
to support factory methods by incorporating ownership transfer [13], allowing a
method to create a new object, but to postpone the decision of assigning it an
owner. Alternatively, we can incorporate a second ‘flavour’ of static methods, which
are executed relative to the callee. This has the advantage that it can also naturally
handle utility classes, in which additional functionality is added to an existing class
via static methods in a secondary class. Since this pattern is fairly common, this
extension seems worthwhile. However, it is straightforward to add these ‘relative’
methods to our work, and orthogonal to the main issues tackled in this paper.

Leino and Müller [8] extend the Boogie methodology [7] to static invariants:
static fields may be reps; static invariants may mention static rep fields and also
quantify over objects of their class. The callback problem is solved by making
explicit the state in which static invariants may be assumed to hold, and by enclosing
expressions that potentially break the static invariant of a class in expose blocks. In
order to support abstraction in method specifications, a validity ordering is used to
allow a class to implicitly expect the static invariants of ‘smaller’ classes. This issue
is similar to one of the motivations for introducing our levels. The validity ordering,
however, has the side-effect for static initialisation that subclasses be initialised
before superclasses.

In Jacobs et al.’s work [5], Spec# annotations are suggested to cater for local
reasoning in the presence of multithreading. Again, static fields may be reps, and
static invariants may depend on the (transitively) owned objects. Both our system
and theirs need to address potential circularities: ours in order to avoid visiting
classes in an inconsistent state, and [5] in order to prevent deadlocks. They require
a partial ordering of locks, which, in a way, corresponds to our levels. Two locks on
the ‘same level’ are not allowed to be consecutively acquired. In contrast, we permit
method calls between classes on the same level, if the effects allow it. Our work may
be seen as the visible-states-based counterpart of [5, 8].
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