
The Need for Flexible Object Invariants

Alexander J. Summers
Imperial College London
alexander.j.summers

@imperial.ac.uk

Sophia Drossopoulou
Imperial College London

s.drossopoulou
@imperial.ac.uk

Peter Müller
ETH Zürich

peter.mueller
@inf.ethz.ch

ABSTRACT
Specification and verification of object oriented programs
usually features in some capacity the concept of an object
invariant, used to describe the consistent states of an object.
Unavoidably, an object’s invariant will be broken at some
points in its lifetime, and as a result, invariant protocols
have been suggested, which prescribe the times at which
object invariants may be broken, and the points at which
they have to be re-established.

The fact that currently available invariant protocols do
not handle well some known examples, together with the fact
that object invariants and invariant protocols can largely
be encoded through methods’ pre- and post- conditions has
recently raised the question of whether they still have a role
to play, or should be replaced by more explicit pre- and post-
conditions for methods.

In this paper we argue that invariant protocols express
programmers’ intuitions, lead to better design, allow more
succinct specifications and proofs, and allow the expres-
sion of properties which involve many objects in a localised
manner. In particular, the resulting verification conditions
can be made simpler and more modular through the use of
invariant-based reasoning.

We also argue that even though encoding invariant pro-
tocols through methods’ pre- and post-conditions is possi-
ble, such an encoding loses important information, and as
a result makes specifications less explicit and program evo-
lution (whereby the program evolves after the encoding has
taken place) more error-prone. Finally, we show that such
encodings often cannot express properties over inaccessible
objects, whereas an appropriate invariant protocol can han-
dle them simply.

1. INTRODUCTION

Object Invariants
The coupling of functionality and state is fundamental to the
object-oriented programming paradigm. An object’s state

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWACO ’09, July 6 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-546-8/09/07 ...$10.00.

may change during program execution, and as a result the
object’s behaviour may change. Objects behave properly if
they are in a consistent state, and are implicitly expected by
programmers to be in such a consistent state at most times
of execution.

The pioneering work of Bertrand Meyer [10] suggested
that the specification and verification of object-oriented pro-
grams should be based on the concept of object invariant,
which describes the consistent states of an object. Object in-
variants provide a means of specification at the natural level
of the object itself, typically in terms of its fields. Method
pre- and post-conditions complement these object-level spec-
ifications by describing method behaviours in the traditional
procedural programming style.

Mixed Logics
An object’s invariant is usually expected to hold immedi-
ately before and after a method call to that object, but may
need to be temporarily broken. Typically, an object’s in-
variant may be broken while it is in some sense active (e.g.,
executing a method). We call mixed logic a logic which im-
plicitly enforces that certain objects’ invariants hold at par-
ticular points in an object’s lifetime, and incorporates these
facts into verification proofs. In a mixed logic, classes typi-
cally have explicitly declared invariants, and methods have
an implicit obligation to preserve relevant object invariants.
For example, using object invariants, an ordered list could
be specified as follows:

class OList{ // specified in a mixed logic
OList next;
Item contents ;

// invariant : Ordered(this)

// pre : none
// post: this . contains(it)
void insert (Item it) { ... }

... }

Pure Logics
On the other hand, if we conjoin the intended invariants
to the pre- and post-states of all methods of the particular
class, we explicitly require that an object’s invariant holds
immediately before and after a method call to that object.
We call pure logic a logic which does not support invariants
and reasons only based on method specifications. Thus, an
ordered list would be specified in a pure logic as follows:

class OList{ // specified in a pure logic
OList next;
Item contents ;

// pre : Ordered(this)
// post: Contains(this, it) ∧ Ordered(this)
void insert (Item it) { ... }

... }

Invariant Protocols
Invariants often describe not only constraints on the fields
of a single object, but relationships between the states of
collaborating objects. However, if an invariant depends on
the state of some other objects as well as its own state, then
the invariant may be broken while other objects are active.
In order to handle this complexity, an invariant protocol is
required, which determines at which points in a program the
invariant of an object may be assumed to hold, and at which
points it has to be established.

Müller et. al. suggested an invariant protocol, whereby
an object owns all objects on whose state its invariant de-
pends, the ownership hierarchy is a tree, and whereby the
invariant of an object can only be affected by its owner and
its owned objects [12]. This protocol has subsequently been
refined to deal with callbacks, visibility, dependency across
objects with a common owner, and subclasses [12, 6], dy-
namic ownership [1], or ownership types [9].

However, there are cases where the invariant dependency
is not a tree, e.g. the Subject and Observer pattern, and
where state modifying methods do not navigate the tree
from the top, e.g. the Composite. The Composite pattern
describes a tree data structure, which maintains some prop-
erty which relates each node to the nodes in its subtrees.1

We discuss here a variant of the Composite pattern, in
which an integer value is stored at each node, and the prop-
erty to maintain is that the value at each node is the maxi-
mum of the values stored in subtrees. To simplify matters,
we consider the addition of new children to a node, but not
the removal of children nodes.

class Node {
int initVal ;
int value ;
Node parent;
Set<Node> children;

Node(int initial) {
value = initVal = initial ;
parent = null ;
children = new Set<Node>;

}

void add(Node o) { ... }
}
We write the desired property as:

node(o) ⇔ value = max({initVal}∪{o′.value|o′ ∈ o.children})
1This pattern appears in various applications, e.g., in graph-
ics, when resizing a subcomponent could result in resizing all
enclosing components), or in file systems where increasing
the size of a file implicitly increases the sizes of the enclosing
directories.

From our perspective, the most interesting features of the
pattern are that it is designed to cope with modifications
being made at arbitrary points in the data structure, and
not necessarily via the“parent”nodes, and that the invariant
node depends on more than one object. To deal with these
problems it has been suggested that an object should notify
the objects whose invariant is affected by any modification
to its own state [3, 11].

Object invariants - the end of the road?
On the other hand, conjoining invariants pre- and post-
conditions in method specifications can encode most of the
invariant protocols, and allows for more flexibility: if it is
intended that for some methods (e.g., helper methods) an
invariant need not hold, then the predicate expressing the
invariant need not be conjoined to the specification of that
method. More generally, properties across several objects
can be decomposed into weaker properties (via other predi-
cate definitions), and so it is easy to express that an “invari-
ant”partially holds. For these reasons, it has been suggested
by Parkinson [13] that the object invariant is, as a funda-
mental principle for object-oriented verification, superfluous.

The need for flexible object invariants
In this paper we argue that the object invariant can play an
important role in the design, specification and verification of
object-oriented programs, even though more work in mixed
logics is needed.

At a philosophical level, we believe that the concept of
object invariant is natural for object-oriented programmers,
because it expresses implicit information. Namely, in con-
trast to the functional programming paradigm, where all rel-
evant information is made explicit through parameter pass-
ing, in the object-oriented paradigm a large amount of the
relevant information is implicit in the state of the objects.
When reasoning about OO programs, explicit information is
expressed through methods’ pre- and post-conditions, while
implicit information is expressed through object invariants.

Another philosophical point is that an object invariant
can in some cases be understood to be part of the definition
of an intended type in a program. For example, having
defined a class to represent integers, a natural way to define
natural numbers is to write a subclass with the additional
invariant that the value stored is non-negative. Like types,
such an invariant provides implicit guarantees which hold
most of the time, and which may require special treatment
in some cases (as e.g., for assignment to arrays in Java).
In such cases, we believe it to be more natural to assume
the intended property by default, and to be aware of the
exceptions, rather than to assert explicitly the information
when we require it.

In this paper, we make three claims for the usefulness (and
in some cases, necessity) of object invariants. We substanti-
ate these claims by comparing relevant questions of design,
specification and verification in the contexts of pure logics
and mixed logics. Our three points are general, and at a
high-level: we do not consider any particular pure logic or
mixed logic for our arguments.

Invariant-based reasoning aids and improves soft-
ware design (Section 2). We believe that thinking in
terms of invariants can help to come up with good soft-
ware designs, and that a design can be made more ro-

bust by following an invariant-based philosophy. Fur-
thermore, we argue that if invariants are encoded into
pre- and post-conditions, essential design information
is lost, and its absence may lead to specification/de-
sign errors at the level of programmer specifications,
and less practical specifications and proof obligations
for automatic verification.

Software design can be exploited by invariant-based
reasoning (Section 3). We believe that for a verifica-
tion approach to be both natural to a programmer, and
scalable to large programming projects, it is essential
that the principles guiding the design of the code are
reflected and exploited in specifying and verifying the
code. Therefore, if code is designed with invariants in
mind, then it is natural and useful to reflect this in
the corresponding reasoning. In particular, invariants
allow a verification analogue to the concept of delega-
tion of responsibility, which is a fundamental aspect of
object-oriented design philosophy.

Object invariants allow local reasoning about global
properties (Section 4). We argue that invariant pro-
tocols express naturally the code patterns where ob-
jects notify other objects whose properties they may
have broken, and that object invariants allow the ex-
pression of these specification requirements in a local
way. Furthermore, we argue that object invariants are
the most natural way of maintaining properties which
depend on objects which are not accessible via field
accesses, and can permit a simpler and more practical
verification of such properties.

2. INVARIANT-BASED REASONING AIDS
AND IMPROVES SOFTWARE DESIGN

We believe that reasoning using invariants can help to
come up with good software designs, and that a design can
be made more robust by following an invariant-based philos-
ophy. Furthermore, we argue that if invariants are encoded
into pre- and post-conditions, essential design information is
lost, and its absence may lead to specification/design errors.
We illustrate these ideas in this section with three particular
points of interest.

2.1 Invariants impose consistency on future
code

Invariants do not express constraints only on a fixed set
of methods which currently exist (or are known about) in
a program, but also on future extensions of a class, both
when upgrading the definition of an existing class, and when
adding new subclasses. If one chooses to map invariants
down to the pre- and post-conditions of existing methods,
the restriction on future code is lost.

Consider the ordered list (OList) example from the in-
troduction. We consider upgrading the class definition by
adding a method set allowing the value stored at a spe-
cific index in the list to be updated (standard for the usual
lists in Java). Suppose that the method does not preserve
Ordered-ness (indeed, there is no natural implementation of
the intended operation which could guarantee to do so). In
the mixed logic approach such a method could not usually
be added to the class, since it would not adhere to the im-
plicit specification of preserving the invariant. In the pure

logic approach the method set could be specified and veri-
fied, since we are at liberty to omit the Ordered predicate
from the specification of the method.

// pre : this.length ≤ i
// post: ...
void set(Item it , int i) { ... }

However, we argue that method set philosophically should
not belong to such a class, since it does not make sense for
ordered lists. The intended design of OList is not enforced
in the pure logic, but in the mixed logic, the invariant can
impose structure on all future versions of the class. Further-
more, the design intention is made explicit to the program-
mer in the declaration of the invariant.

One could argue that this potential anomaly is easily de-
tected: after calling rogue methods such as set which do not
preserve the Ordered property, the receiver object will be-
come largely unusable, since it will be impossible to satisfy
the pre-conditions of most other methods of that object. For
example, in verified code, after calling set on an object it is
no longer possible to call insert. However, the problem can
still only be detected at the level of client code when this
scenario actually occurs, and this compromises modularity.

Furthermore, despite the fact that set goes against the
intentions of OList, this will only be detected if client code
happens to call set. This means that the problem will only
be unreliably detected, possibly long after the class OList is
written. Instead, the violation of our intended design should
be detected at the point of defining and verifying the new
version of the OList class, since this is where the problem
occurs.

This difference between pure logics and mixed logics be-
comes even more apparent when considering subclasses. A
declared invariant specifies not just an implicit contract for
the method definitions in the same class, but for all sub-
classes also. In the case of overridden methods, this is not a
big issue, since behavioural subtyping [8] enforces that the
subclass version of the method still adheres to the superclass
specification. However, when a subclass defines new meth-
ods, we can observe a difference, in the same way as for
upgrading a class. While an invariant protocol would auto-
matically impose a restriction on the method bodies of any
newly-defined methods, if the invariant had already been
refactored into the pre- and post-conditions of the existing
methods, no such restriction would be imposed.

Even though not all existing code follows behavioural sub-
typing, and even though recent work has shown how to rea-
son about programs where subclass methods do not satisfy
the contract of overridden methods [14, 5], it is generally
accepted that behavioural subtyping leads to more robust
design.

2.2 Invariant protocols enforce robust client
interfaces

We believe that an invariant declares not only a prop-
erty which is intended to hold for an object, but also a
responsibility for maintaining it. In particular, the imple-
mentation of a class (and any other tightly-coupled classes)
should take responsibility for maintaining the invariant and
(ideally) clients should not need to be concerned with how
it is maintained. This not only provides a philosophical di-
vision of responsibility, but can aid modular reasoning, as
we will explain here.

Consider a variation of ordered lists which guarantees ad-
ditionally the property that a list contains no duplicates. We
consider this a new class with an intended invariant of the
form: Ordered(this) ∧ NoDups(this). However, for the sake
of the argument, we will write the specifications in a pure
logic style here. We consider the form of a class UniqueOList
along with two client classes:

class UniqueOList{
UniqueOList next;
Item contents ;

// pre : Ordered(list) ∧ NoDups(list)
// post: Ordered(list) ∧ NoDups(list)∧ this.contains(it)
void insert (Item it) { ... }
...

}

class ClientOne {
ClientTwo collaborator ;

// pre : Ordered(list) ∧ NoDups(list)
// post: NoDups(list)
void doStuff(UniqueOList list) {

//
list . insert (new Item());
// etc ..

// properties of list ?
collaborator .doMoreStuff(list) ;

}
}

class ClientTwo {

// pre : NoDups(this)
// post: NoDups(this)
void doMoreStuff(UniqueOList list) {

// do more stuff .. but don’t call methods on list
}

}
In the example code above, we have made use of the flex-

ibility permitted in a pure logic: we suppose that we are
in a situation where doMoreStuff does not depend on the
ordered-ness of the passed list, and so chooses not to re-
quire this property in its specification. This is acceptable
so long as the method doStuff doesn’t require ordered-ness
to be guaranteed in its post-condition. However, it would
not usually be allowed in a mixed logic setting, since the
intended invariant is not guaranteed to be preserved by the
specifications.

In principle, this set-up should verify in a pure logic. The
fact that some methods require properties of list weaker than
the notional invariant does not cause any difficulties, so long
as doMoreStuff doesn’t call any methods on list which re-
quire the full invariant. However, consider what happens if
the implementation of doMoreStuff in class ClientTwo is up-
graded. Suppose that in a new version, we wish to depend
on the property that list is sorted after all, perhaps because
we wish to call methods on list. Now, we need to strengthen
the pre-condition of doMoreStuff, in order to expect the full
invariant. But this implies that we must reverify doStuff
in class ClientOne also. Of course, this happens in general
when one wishes to vary the specification of a method - the

call-sites of the method must in general be reverified. But
the point here is that, the change in specification is due to
the weakness of requirements made on list in the first place.
Intuitively, since list is a UniqueOList it should be required
to satisfy the invariant of that class. Furthermore, we argue
that it should not be the responsibility of the client classes to
negotiate how much of this invariant they expect about list:
by declaring an invariant in the UniqueOList class, a com-
mon expectation is drawn up for all uses of such objects,
and responsibility for maintaining this property should be
enforced. In other words, allowing too much flexibility re-
garding the encoding of invariants breaks the philosophical
meaning of the invariant, and may potentially weaken modu-
lar reasoning by leaving contracts more vulnerable to change
during software evolution.

2.3 Invariant-based reasoning reflects cooper-
ation between objects

The concept of an object invariant can naturally lead to
programming patterns which allow a local and flexible im-
plementation of a constrained data structure, in which the
elements of the structure must maintain properties with re-
spect to one another. A good example is the Composite
pattern.

Now consider a näıve specification and implementation of
the add method, which does not consider how to preserve the
intended invariant node for the data structure as a whole:

// pre : o.parent == null ∧ node(this)
// post: children . contains(this) ∧ node(this)
void add(Node o) {

o.parent = this;
children .add(o);
value = // max{this.value, o.value};

}
The implementation satisfies its specification 2 and also

preserves the invariant of the receiver. But this misses the
point: the idea of the Composite pattern is that modifica-
tions can be sound so long as the invariants of nodes de-
pending on the locations are also maintained. The underly-
ing intention is for an implementation which is considerate
of the invariants of the nodes above the modified point in
the data structure. More explicitly, the implementation of a
method on an object o in the data structure needs to be con-
cerned not only with the invariant of o, but the invariants
of other objects in the data structure (regardless of whether
those objects are involved directly in the o’s invariant. This
can be achieved (for example), by the following alternative
implementation:

// pre : o.parent == null
// post: children . contains(this)
void add(Node o) {

o.parent = this;
children .add(o);
this.update();

}

void update() {
value =

// max {value}∪{o.value | children.contains(o)};
2Note that we do not need to require node(o) in the pre-
condition, since the node predicate is only concerned with
the direct children.

if (parent != null) parent .update();
}

The new implementation ensures that the invariant is pre-
served for all objects in the data structure. It is not nec-
essary to explore the data structure arbitrarily to guaran-
tee this; instead, the form of the desired invariant implies
that it can only be violated for an object o if either the
set o.children is modified, or o.value changes for some object
o′ contained in o.children. Turning this information on its
head, it becomes clear that whenever an object o′ obtains
a new parent, or changes its value while it has a parent, the
update() method should be called on that parent (which will
fix a broken invariant). The two calls to update() in the code
above correspond exactly to these cases.

The point we wish to illustrate with this example is that
it is the consideration of invariants of other objects which al-
lows flexible patterns such as the Composite, and the correct
identification of objects whose invariants are affected which
avoids being unnecessarily concerned with properties of ar-
bitrary objects in the data structure. Furthermore, since
this pattern is, we believe, designed with an invariant-based
reasoning in mind, it makes sense for the verification of the
pattern to follow a similar line of reasoning.

3. INVARIANT-BASED REASONING CAN
EXPLOIT SOFTWARE DESIGN

We believe that for a verification approach to be both
natural to a programmer, and scalable to large programming
projects, it is essential that the principles guiding the design
of the code are reflected and exploited in specifying and
verifying the code. Having argued in the previous section
that invariant-based reasoning can aid software design, we
wish to consider the dual perspective: we believe that, if
code is designed with invariants in mind, then it is natural
and useful to reflect this in the corresponding reasoning.

Where an invariant is guaranteed by provider code in an
encapsulated fashion (client code can neither observe the
invariant in a broken state, nor directly break it), it is in-
herent in the software design that the client code will implic-
itly depend on the invariant holding whenever it is useful.
This delegation of responsibility for a property is, we believe,
a fundamental aspect of object-oriented design philosophy.
Therefore, when reasoning, we would like to reflect this phi-
losophy where it applies.

To illustrate this point, consider client code manipulating
several OList instances. Considering the pure logic speci-
fication of OList, when we verify a client, we will need to
establish the Ordered predicate on the receivers before each
method call.

Item i , j ;
OList l1=new OList(); // 1: establishes Ordered(l1)
OList l2=new OList(); // 2: establishes Ordered(l2)
OList l3=new OList(); // 3: establishes Ordered(l3)
// some code // 4: to show Ordered(l1)
l1 . insert (i) ; // 5: establishes Ordered(l1)

// 6: to show Ordered(l2)
l2 . insert (j) ;

In particular, before the call l1.insert(i) the client has to
establish Ordered(l1), and thus will have to prove that the
“some code” preserves Ordered(l1). Similar arguments apply
to the call l2.insert(j).

At a practical level, even if these proof steps could be dis-
charged by a tool, they clutter the program proof, impose
more work on the verifier, and require proof steps which are
essentially superfluous. More importantly, these superflu-
ous steps ignore the promise made by the invariant, which
is to declare to clients that a property is guaranteed to be
preserved, and need not concern them. In a sense the argu-
ment for verification becomes non-modular, since the client
must instead be concerned with whether this property of the
object is preserved.

On the other hand, in a mixed logic, and provided the
class OList was written so as to preserve the invariant, and
provided the class OList does not leak any part of its internal
representation, all verification steps above are essentially su-
perfluous. Namely, the invariant protocol can enforce that
all objects of class OList when seen by the client, satisfy their
invariant.

Using the mixed logic specification of OList, and assuming
proper encapsulation, we can safely assume the invariant to
hold:

Item i , j ;
OList l1=new OList(); // 1: implicitly Ordered(l1)
OList l2=new OList(); // 2: implicitly Ordered(l2)
OList l3=new OList(); // 3: implicitly Ordered(l3)
// some code // 4:
l1 . insert (i) ; // 5:

// 6:
l2 . insert (j) ;

This does depend on an invariant-based approach flexi-
ble enough to handle complex examples, while guaranteeing
encapsulation where appropriate. This can be challenging:
although many current technologies exist which incorporate
invariant-based reasoning (e.g.,Boogie [1], OT, VT [12]), the
mechanisms which enforce encapsulation (typically based on
some form of ownership) are not flexible enough to handle
all natural examples. We believe that the development of
a more refined ability to describe patterns of encapsulation
and invariant protocols is important future work.

4. OBJECT INVARIANTS ALLOW LOCAL
VERIFICATION OF GLOBAL PROPER-
TIES

Object invariants and invariant protocols allow some re-
quirements to be global and implicit, and therefore allow
the specifications to be local, i.e., concerned with just one
object, rather than with a collection of objects.

4.1 Global properties of accessible objects
In section 2.3, we argued that the implementation of the

Composite pattern implicitly encodes an invariant-based ar-
gument. Since we believe that the design of the code should
be reflected in the specification and verification, we would
like to return to the question of how to specify and verify
this example.

4.1.1 Global properties of accessible objects - pure
logics

If one attempts to specify the implementation in a pure
logic, through predicates in the pre- and post-conditions,
then recursive predicates can be employed to capture the re-
quirements. Since there is no longer a protocol to guarantee

invariant preservation by default, it is typical to explicitly
express consistency recursively through the data structure.
For example, the following predicate expresses that a whole
tree is consistent:

tree (o) ≡ node(o) ∧ ∀ o’ ∈ o.children, tree(o’)

However, in order to specify the behaviour of this exam-
ple, given that parent fields get notified of updates, one needs
to recurse upwards through the structure, as well as down-
wards:

above tree(o) ≡
tree (o) ∧ ((o.parent == null) ∨

(above tree(o.parent)))

Furthermore, to specify the consistency properties which
are not affected by a call to update, one needs a predicate to
describe the areas of the tree which form the other branches:

other branches(o) ≡
((o.parent == null) ∨ (other branches(o.parent) ∧
∀ o’ ∈ o.parent.children, o’ 6=o ⇒ tree(o’)))

We can then specify the example as follows:

// pre : o.parent == null ∧ above tree(this)
// post: children . contains(this) ∧ above tree(this)
void add(Node o) {

o.parent = this;
children .add(o);
this.update();

}

// pre : other branches(this) ∧ ∀ o’ ∈ this.children,
tree(o’)

// post: above tree(this)
void update() {

value =
// max {value}∪{o.value | children.contains(o)};

if (parent != null) parent .update();
}

The resulting specification is adequate, but it is overly
conservative (since the predicate definition above tree is con-
cerned with the whole tree at a time, whereas the natural
argument is only concerned with at most one broken object,
along with the current receiver), and the choice of specifi-
cation is error-prone (since the requirement to preserve the
invariants of other objects is not inherent in the verification
effort). One might pick a more streamlined predicate defini-
tion, for example avoiding the redundancy in the predicate
above. Jacobs et al. [4] developed a cleverer definition of the
predicate for this example, splitting the tree into a subtree
and a context, in order to facilitate their separation-logic-
based verification. However, these predicates still ultimately
cover the whole tree at a time; it is less cumbersome to rea-
son about which invariants are broken, than to assert which
ones hold, as the predicates do.

4.1.2 Global properties of accessible objects - mixed
logics

For comparison, we consider how the example might be
specified in a mixed logic. In order to deal with update,
we need a construct to explicitly declare that the invari-
ant (tree(this)) which might by default be expected to hold
is actually allowed to be broken. We will use a construct
broken(o) to declare that the invariant of object o may be

broken when the method is called. However, in the post-
state, we still require that the corresponding invariant is
guaranteed to hold - in this way we reflect the role of the
update method, which is to fix a broken invariant.

// pre : o.parent == null
// post: children . contains(this)
void add(Node o) {

o.parent = this;
children .add(o);
this.update();

}

// pre : broken(this)
// post: true
void update() {

value =
// max {value}∪{o.value | children.contains(o)};

if (parent != null) parent .update();
}

Note that we do not require a post-condition for update,
but there is an implicit obligation to fix the invariant of
the receiver (and preserve all others), due to the declaration
broken in the pre-state. Note also that the implicit protocol
regarding invariants allows the specifications to be shorter,
and to concentrate on the specifics of the method behaviour.
In particular, there is no need or motivation to express prop-
erties of objects not concerned with the method implemen-
tations, in contrast to the situation with a pure logic.

There are two subtleties which have been glossed over in
the argument above. One is that, in order to make this kind
of invariant-based reasoning adequate, one needs to have
some restriction of which invariants may depend on which
objects’ fields. 3

The other subtlety to the reasoning about invariants above
is the following: we are tacitly assuming that the concepts
expressed by the field children and parent are inverse to one
another. Although this seems intuitive, there is nothing
in our specifications which actually enforces this fact. One
could express this through a further invariant however, and
the approach to verifying this kind of structural invariant is
discussed in the next subsection.

4.2 Global properties depending on inaccessi-
ble objects

There is an area where invariant-based reasoning seems
almost indispensable: in the verification of properties con-
cerning potentially inaccessible objects.

Such an example arises in the PIP4, which - in a simplified
view - is based on a graph structure, represented by Node
objects, in which a Node has at most one parent and where
cycles in the parent relation are possible. A Node’s field

3This problem can be tackled in several ways: one could
have a methodology to track which objects depend on the
field for their invariants (e.g., the friends work of Barnett
and Naumann [3], and the work of Middelcoop [11]), or one
could in certain cases apply the ideas of visibility-based in-
variant reasoning (i.e., visibility-based invariants in Spec]
[2], and to the visibility technique of Müller et al. [12]).
One could also hope to encapsulate the fields of the data
structure, in such a way that client code would be unable to
depend on them for invariants (this is difficult if the client in-
variants can depend on state indirectly, via e.g., pure method
calls in specifications).
4the Priority Inheritance Protocol [15]

value is expected to be the maximum of its initVal value,
and the initVal value of all its (transitive) descendants:

P1(n) ≡
n.value=max({n.initVal} ∪ {n′.value|n∈n′.parent∗})

The problem with property P1 is that it is concerned with
arbitrary other nodes in the graph, and so is expensive to
check and awkward to verify. Instead, it is advantageous for
the implementation to be concerned with a localised version
of this invariant: nodes should be concerned only with their
immediate neighbours in the graph structure. Intuitively,
the following alternative local invariant can be aimed for:
the current value of a node is the maximum of its initVal
field and the value field of all direct children:
P2(n) ≡ n.value=max({n.initVal}∪{n′.value|n=n′.parent})

If all nodes maintain this property, then an inductive ar-
gument can be made to show that the invariant originally
intended is guaranteed, i.e, we can show that

∀n : Node.P1(n) ↔ ∀n : Node.P2(n).
The PIP example is very similar to the Composite. The

key difference is that the “parent” relationship no longer
philosophically reflects a “part of” relationship between the
objects, but a rather looser association between essentially
independent entities. In particular, the implementation does
not naturally require references from a Node to its children.
This presents difficulties in verifying the intended invariant.
From a practical perspective, it is possible to have cycles in
the data structure, which is forbidden for the Composite.

In the interest of brevity, in the current paper we have
considerably simplified the problem, and in particular we do
not allow the removal of parent edges in the implied graph
(but deal only with addition of new edges). Below we give
an implementation of class Node, intended to maintain P2
for all Node objects:

class Node {
Node parent;
int initVal , value ;

Node(int val) {
parent = null ; initVal = value = val;

}

// pre : nd.parent == null
void acquire(Node nd) {

nd.parent = this; this .update(nd.value) ;
}

protected update(int newValue) {
if (newValue > value)
{ value = newValue;

if (parent != null){ parent .update(value) ; } }
}

}
At an informal level the partial correctness of the class

Node as above is obvious (in fact, with some work one can
also argue termination, but this is not directly of interest to
us here). Nevertheless, the specification and verification of
class Node pose some problems, because P2(n) depends on
all nodes pointing to it; which, in particular are not acces-
sible from n.

We envisage four approaches to the problem: 1. Add
ghost state to track the objects in question, 2. Extra pa-
rameters to the predicates to express the base of reference,
3. Explicit use of universal quantification, 4. Considerate

Programming. We briefly discuss the four approaches.

4.2.1 Ghost state to track the objects in question
An initial reaction is to add ghost state which tracks the

objects in question. Then we could transform our require-
ment to

P2a(n) ≡
n.value=max({n.initVal}∪{n′.value|n′∈n.children})

and specify our code as follows:

class Node {
Node parent;
int initVal , value ;
ghost Set<Node> children;

// pre : P2a(this) ∧ P2a(nd) ∧ ...
// post: P2a(this) ∧ P2a(nd) ∧ ...
void acquire(Node nd) { ... }
...
}

However, this reduces the problem to one of consistency of
the ghost state: how can it be known that all nodes whose
parent points to the current object, are actually stored in
the ghost state of the object? In other words, how can we
establish P2b, where

P2b(n) ≡ n.children = {n′ | n = n′.parent}
Again, this is a property concerned with potentially inac-
cessible objects on the heap. This approach has brought
no progress: we still do not have a way to handle such an
invariant.

4.2.2 Further parameters as frames of reference
We consider attempting to track the state of the object

graph in the specification, by introducing a set of nodes as
as a frame of reference. We require such a set to be closed
under parent field references, and its elements to satisfy a
variant of property P2 restricted to the children nodes from
that set:

P3(NS) ≡ ∀n ∈ NS : P4(n, NS) ∧ n.parent ∈ NS
P4(n, NS) ≡ n.value =
max({n.initVal} ∪ {n′.value | n′∈NS ∧ n = n′.parent})

We now introduce a static field NodeSet to track the set
of nodes5. We sketch the specification of the class Node as
follows:

class Node {
Node parent;
int initVal , value ;
static Set<Node> NodeSet;

// pre : P3(NodeSet)
// post: P3(NodeSet) ∧ this ∈ NodeSet
Node(int value) { ... NodeSet.add(this); }

// pre : P3(NodeSet) ∧ this, nd∈NodeSet
// ∧ nd.parent = null
// post: P3(NodeSet) ∧ ∧ nd.parent = this
void acquire(Node nd) { ... }

// pre :
P3(NodeSet \ {this}) ∧ this.parent ∈ NodeSet

// this.value == max({...} \ {newValue})
5We could have also kept the set in some other globally
accessible way, or even passed it as a parameter.

// post: P3(NodeSet)
protected update(int newValue) { ... }
}

In the approach presented above the set NodeSet may con-
tain unrelated nodes; as such, the specification of the be-
haviour of one Node is concerned with essentially arbitrary
other Nodes in the graph of objects – one might consider
this “paranoid” reasoning! This abandons any kind of lo-
cality in the specification, and means that a representation
of the graph is (implicitly or explicitly) carried around to
perform the reasoning. From the point of view of the actual
implementation, which manages to be extremely local (each
Node only needs access to its parent), such a global approach
to the verification would be disappointing. 6

Furthermore, the introduction of a new entity NodeSet is
tantamount to the introduction of ghost state.

Most importantly, the specification given above is weaker
than the intended specification where all Nodes satisfy prop-
erty P2. In particular, there is no guarantee that

o.parent∈Node.NodeSet =⇒ o∈Node.NodeSet
And thus, there is still no guarantee that
∀o∈Node.NodeSet : P2(o)

Nor is there a guarantee that
∀o∈Node.NodeSet : P2(o.parent)

Therefore, this approach has brought no further progress
than the ghost state introduced in section 4.2.1.

4.2.3 Explicit use of universal quantification
We can encode the intended invariant ∀n : Node.P2(n) as

part of the pre- and post-conditions for all methods:

class Node {
Node parent;
int initVal , value ;

// pre : ∀n : Node.P2(n)
// post: ∀n : Node.P2(n)
Node(int value) { ... }

// pre : ∀n : Node.P2(n) ∧ nd.parent == null
// post: ∀n : Node.P2(n) ∧ nd.parent == this
void acquire(Node nd) { ... }

// pre : ∀n : Node \ {this}.P2(n) ∧
// this.value == max({...} \ {newValue})
// post: ∀n : Node.P2(n)
protected update(int newValue) { ... }
}

The specification above correctly expresses the behaviour
of the class Node, but has the disadvantage that it requires
universal quantification. Universal quantification in spec-
ifications is not supported by all approaches (for example,
separation logics do not admit quantification over the heap).
However, even when they are, they have both philosophical
and practical disadvantages. The specification using univer-
sal quantification abandons any kind of local characterisa-
tion of the behaviour of the method, despite its rather local
implementation. By contrast, an invariant protocol typically
provides a way of maintaining global program invariants that

6This approach may look more natural in the functional
programming context (where all information is passed ex-
plicitly), but looks less natural in object-oriented (where we
expect to deal with implicit information).

reflect the quantification over objects through fairly simple
proof obligations about the invariants of particular objects.
Furthermore, the more-specific proof obligations about the
invariants of particular objects are much more practical for
theorem provers than to show that the quantified formulas
are preserved across a method execution.

4.2.4 Considerate Programming
From the point of view of the implementation, the intu-

itive reason why the intended invariant is guaranteed can
be seen by inspection of the methods. Here, as soon as
any parent or value field modification is made, which might
potentially break the invariant of another object, the appro-
priate object is notified (via the method update), and so is
able to account for the change.

This pattern of programming is typical of invariant-style
reasoning - rather than declaring explicitly which objects are
in which states, one instead ensures that the invariants of all
objects will be preserved by every method call. In particular,
we like to call this “considerate” reasoning - a method body
must take into account the possible effects it has on the prop-
erties of other objects, regardless of whether those objects
are relevant for the properties of the current receiver. The
knowledge that all objects behave“considerately”(according
to a specified invariant protocol) allows implicit knowledge
that these invariants are preserved, without requiring access
to them directly.

Although this reasoning style seems natural with invari-
ants it is not directly supported in the mainstream verifi-
cation methodologies. Nonetheless, existing research shows
that such a reasoning style is feasible and sound [3, 11].
We believe that such considerate programming/reasoning
should be expressible in specifications, and supported by
verification tools.

We employ the broken construct again to indicate that,
contrary to the default behaviour, the invariant of an object
is not required to hold in the pre-state of a method:

class Node {
Node parent;
int initVal , value ;
// INV P2(this)

Node(int value) { ... }

void acquire(Node nd) { ... }

// pre : broken(this)∧
// this.value = max({...} \ {newValue})
protected update(int newValue) { ... }
}

We believe that the style advocated above directly ex-
presses the intuition guiding the thinking behind the code.
It hides all unnecessary details from the client. Further-
more, verification of the class will reflect the strategy in the
design of the code - namely ”consideration”, and the fact
that modification of field newValue affects the validity of the
invariant P2 for the parent of the current object, but no
other objects.

5. CONCLUSIONS
We have argued that the concept of invariant is both nat-

ural and useful for many aspects of object-oriented verifica-
tion. Invariants can express the design intentions of a pro-

grammer, and provide an implicit contract for future sub-
classes which cannot be captured directly by method speci-
fications. Furthermore, the ability to separate the concerns
of the invariant from the method specifications themselves
makes clear the division of responsibility in the verification,
and avoids unnecessarily cluttering the client specifications
with properties guaranteed by code they cannot see. For
these reasons, pure logics, while flexible, require more veri-
fication steps than mixed logics, and are not always able to
express the intended structure of an argument, as it corre-
sponds with the particular program design.

In particular, in any style of specification and verification,
the problem of establishing whether a particular property
(which may be expressed by a predicate, invariant or other-
wise) is preserved by execution of code arises frequently (the
frame problem). While there are techniques for reasoning
directly about framing (using footprints, modifies clauses,
framing inference rules etc.), mixed logics can exploit prop-
erties such as encapsulation and information hiding to dras-
tically reduce the number of proof obligations which need
to be discharged by any of these methods. The invariant
protocol inherent in a mixed logic can provide guarantees
that these simplified proof obligations are sufficient, which
are justified once and for all by a soundness proof for the
technique, rather than requiring justification each time the
situation arises during verification. At the end of section
3, and in section 4.2.4, we discussed examples of the uses
of such invariant protocols, at the level of sketches. Fully
worked out, and implemented protocols exist, e.g., invariant
protocols for private invariants [6], where restrictions on the
accessibility of the fields mentioned in an invariant are used
to simplify proof obligations, and the Boogie methodology
[7], where proof obligations for individual objects are suffi-
cient to maintain a global property that quantifies over all
objects, and specifies which invariants are known to hold.

We have also argued that invariants can help reflect prop-
erties inherent in a software design, and that this can help
keep the verification argument closer to the original inten-
tions of the implementation. Perhaps the best example
of this is the Composite pattern, whose design appears to
strongly reflect an invariant-based thinking, and whose ver-
ification is made significantly simpler in a verification ap-
proach which does the same. More generally, while invari-
ant protocols can be restrictive, they also add structure to
the verification effort, and to the proofs themselves. Since
the patterns that a protocol describes (should) naturally oc-
cur in software designs, the ability to re-use the structured
arguments which a mixed logic provide saves unnecessary
repetition in the verification effort.

As a separate point, we have observed that mixed logics
allow the verification of “global” properties over potentially
inaccessible objects, and in a local way. We have argued
that the key to the flexible verification of these examples
is the “considerate reasoning” which comes naturally with
invariants.

While we have shown many important uses for invariants,
and particularly for the “considerate programming” philoso-
phy which comes with the reasoning, we do not believe that
existing technologies for invariant-based reasoning support
a rich enough variety of verification patterns. In particular,
the pattern of reasoning present in the Composite and PIP
examples is not naturally supported by mainstream verifica-
tion technologies. Identifying the prevalent and useful pat-

terns which arise in verification, and how they can be mixed
within a large program will be interesting future work.

As future work we hope to develop further techniques to
support verification efforts which can be flexible, natural,
and appealing to programmers. To this end, we believe that
a verification approach which can closely reflect the design
decisions of programmers is essential, and that as we have
explained, invariants will play a vital role.

Acknowledgements
We would like to thank Frank Piessens for many detailed
discussions and suggestions on the content of this paper.
We would also like to thank the anonymous referees for their
helpful feedback.

This work was funded in part by the IST-2005-015905
MOBIUS project.

6. REFERENCES
[1] M. Barnett, R. DeLine, M. Fähndrich, K. R. M.

Leino, and W. Schulte. Verification of object-oriented
programs with invariants. JOT, 3(6):27–56, 2004.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The
Spec# programming system: An overview. In
CASSIS, LNCS, pages 49–69. Springer-Verlag, 2005.

[3] M. Barnett and D. Naumann. Friends need a bit more:
Maintaining invariants over shared state. In MPC,
volume 3125 of LNCS, pages 54–84. Springer, 2004.

[4] Frank Piessens Bart Jacobs, Jan Smans. Verifying the
composite pattern using separation logic. In SAVCBS,
2008.

[5] W.-N. Chin, C. David, H. Nguyen, and S. Qin.
Enhancing modular oo verification with separation
logic. In POPL. ACM Press, 2008.

[6] G. T. Leavens and P. Müller. Information hiding and
visibility in interface specifications. In ICSE, pages
385–395. IEEE, 2007.

[7] K. R. M. Leino and P. Müller. Object invariants in
dynamic contexts. In ECOOP, volume 3086 of LNCS,
pages 491–516. Springer-Verlag, 2004.

[8] B. Liskov and J. Wing. A behavioral notion of
subtyping. ACM ToPLAS, 16(6):1811–1841, 1994.

[9] Y. Lu, J. Potter, and J. Xue. Object Invariants and
Effects. In ECOOP, volume 4609 of LNCS, pages
202–226. Springer-Verlag, 2007.

[10] B. Meyer. Object-Oriented Software Construction.
Prentice-Hall, 1988.

[11] R. Middelkoop, C. Huizing, R. Kuiper, and E. J. Luit.
Invariants for non-hierarchical object structures.
Electr. Notes Theor. Comput. Sci., 195:211–229, 2008.

[12] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens.
Modular invariants for layered object structures.
Science of Computer Programming, 62:253–286, 2006.

[13] M. Parkinson. Class invariants: the end of the road?
In International Workshop on Aliasing, Confinement
and Ownership, 2007.

[14] M. Parkinson and G. Bierman. Separation logic,
abstraction and inheritance. In POPL, pages 75–86.
ACM Press, 2008.

[15] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Trans. Comput.,
39(9):1175–1185, 1990.

