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Abstract

One of the main purposes of object initialisation is to estab-

lish invariants such as a field being non-null or an immutable

data structure containing specific values. These invariants

are then implicitly assumed by the rest of the implementa-

tion, for instance, to ensure that a field may be safely derefer-

enced or that immutable data may be accessed concurrently.

Consequently, letting an object escape from its constructor

is dangerous; the escaping object might not yet satisfy its in-

variants, leading to errors in code that relies on them. Never-

theless, preventing objects entirely from escaping from their

constructors is too restrictive; it is often useful to call auxil-

iary methods on the object under initialisation or to pass it to

another constructor to set up mutually-recursive structures.

We present a type system that tracks which objects are

fully initialised and which are still under initialisation. The

system can be used to prevent objects from escaping, but

also to allow safe escaping by making explicit which ob-

jects might not yet satisfy their invariants. We designed, for-

malised and implemented our system as an extension to a

non-null type system, but it is not limited to this application.

Our system is conceptually simple and requires little anno-

tation overhead; it is sound and sufficiently expressive for

many common programming idioms. Therefore, we believe

it to be the first such system suitable for mainstream use.

Categories and Subject Descriptors D.3.3 [Language

Constructs and Features]: Classes and Objects

General Terms Design, Languages, Reliability

1. Introduction

Object-oriented programs maintain numerous invariants

about their heap data structures. These invariants reflect de-
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sign decisions that are crucial for developing, understanding,

and maintaining the code. They are assumed by method im-

plementations, for instance, to ensure that a field may be

safely dereferenced.

Most invariants do not hold for newly-allocated objects;

they need to be established during object initialisation before

the code operating on the object may rely on them. Main-

stream programming languages such as Java, C# and C++

provide constructors to separate initialisation code that has

to establish invariants from other code that may rely on the

invariants. A problem occurs when an object escapes from

its constructor before it is fully initialised. The escaping ob-

ject might not yet satisfy its invariants, which may lead to

errors in code that relies on them. Due to dynamic method

binding, determining which code potentially operates on an

escaped object is in general non-modular.

Escaping occurs if a constructor (1) calls a method on

the object under initialisation, (2) passes the object as an

argument to a method or constructor, or (3) stores the object

in a field of another object, in a static field, or in an array.

Letting an object escape from its constructor is often

considered bad programming practice. Many programming

guidelines and blogs recommend to avoid escaping, style

checkers such as PMD [1] issue warnings for some forms of

escaping, and languages such as Java and C# enforce some

ad-hoc rules to prevent some forms of escaping (for instance,

Java does not allow one to refer to the this literal before

calling the superclass constructor). However, none of these

approaches effectively prevents escaping.

Entirely preventing objects from escaping their construc-

tors would be too restrictive. It is useful to call auxiliary

methods on a new object, and to pass it to other construc-

tors to set up mutually-recursive structures. All three forms

of escaping occur in the Java API implementation. For in-

stance, a constructor of class LinkedList calls the method

addAll to add all elements of a collection to the new list; a

constructor of class ScrollPane passes this as argument

to a constructor of PeerFixer, which stores it in a field.

In this paper, we present a type system that tracks which

objects are fully initialised and which are still under initiali-

sation. The type system can be used to prevent objects from



escaping, but also to allow safe escaping by making explicit

which objects might not yet satisfy their invariants. Our ob-

jective is to design a system that is suitable for mainstream

use, which requires it to satisfy the following design goals:

1. Modularity: The type system can check each class sepa-

rately from its subclasses and clients.

2. Soundness: The system is type safe: objects that are con-

sidered to be fully initialised do satisfy their invariants.

3. Expressiveness: The type system handles common ini-

tialisation patterns. In particular, it allows objects to es-

cape from their constructors and supports the initialisa-

tion of cyclic structures.

4. Simplicity: The type system is conceptually simple and

requires little annotation overhead, making it easy and

convenient to learn and use.

For concreteness, we present our type system as an ex-

tension of a non-null type system [10], which has several

advantages: (1) Preventing null-dereferencing statically is

of great practical importance. (2) The expected invariant is

very clear: fields of non-null types contain non-null values.

(3) Targeting an invariant that can be checked by a type

system rather than runtime checks or verification allows us

to formalize the whole system in one coherent framework.

(4) Most of the related work on object initialisation has been

applied to non-null types, which enables detailed compar-

isons. Beyond non-nullness, our type system generally sup-

ports monotonic invariants: invariants that get established by

a constructor and are never violated afterwards. These invari-

ants include one-state invariants, which are supposed to hold

in each execution state (such as non-nullness of a field), as

well as two-state invariants, which are supposed to hold for

all pairs of states (such as immutability of a data structure).

Contributions. The key contribution of this paper is a type

system for object initialisation that is suitable for main-

stream use. More specifically, we present:

• the first type system for object initialisation that meets all

four design goals stated above;

• a formalization of the type system for a sequential core

language with non-null types, and preservation proof;

• a discussion of how to support concurrency and addi-

tional language features such as arrays and static fields;

• a discussion of how to support monotonic invariants be-

sides the non-nullity of fields;

• an implementation of the type checker in the Spec# com-

piler [15];

• an evaluation using two major applications written in

Spec# as well as examples from the literature.

Outline. In the next section, we provide the background

on non-null types, and discuss previous attempts to handle

object initialisation in this context. We present the design

of our type system informally in Sec. 3 and formalise it in

Sec. 4. We discuss extensions of our type system to further

language features and invariants in Sec. 5. We report on our

implementation and its application in Sec. 6, discuss related

work in Sec. 7, and conclude in Sec. 8.

2. Background on Non-Null Types

To detect null-dereferences statically, Fähndrich and Leino

proposed a non-null type system [10], in which reference

types can be annotated with non-nullity expectations. Their

idea has been widely adopted in the research community—

various non-null type systems have been developed for

Spec# (an extension of C#) [11, 15], Eiffel [6, 17, 19], and

Java [7]. In this section, we present those aspects of non-

null types that we build on and summarise previous work on

object initialisation in non-null type systems.

2.1 Non-Null Types

The existing non-null type systems share the same funda-

mental idea: each reference type C (in the declaration of a

field, variable, method signature, or in a cast, etc.) is replaced

by two variants C? and C!, indicating a possibly-null and a

non-null type, respectively. The type system enforces that

expressions with non-null types do not evaluate to the null

value; it then prevents null pointer exceptions by forbidding

the dereferencing of expressions with possibly-null types.

The doubly-linked list example in Fig. 1 (the motivating

example from [10]) illustrates the use of non-null types. Ev-

ery Node has references to its predecessor and successor in

the list. The corresponding fields prev and next are of the

non-null type Node!, which means that the list is cyclic. In

addition, each node has a non-null reference to the List ob-

ject it belongs to. The list elements stored in the nodes are of

type Object?, that is, are allowed to be null. Each instance

of class List stores a non-null reference to a sentinel node.

The method call this.sentinel.insertAfter(data) in

method insert type-checks because this is implicitly non-

null and sentinel is declared to be non-null; hence, both

expressions may be dereferenced.

C! is a subtype of C? for any C since C! is a speciali-

sation of C? both in terms of sets of possible values and in

terms of behaviour (one can do strictly less with a C? refer-

ence). With this subtype relation, the usual type rule for as-

signment ensures that only non-null values can be assigned

to variables declared with a non-null type (called non-null

variables in the following). In particular, it ensures that the

initialisation of non-null fields is monotonic: once a non-null

field has been initialised with a non-null value, it will never

store null. Downcasts from possibly-null types to non-null

types are possible and entail a runtime check.

2.2 Object Initialisation

The main technical challenge in designing a non-null type

system is how to handle object initialisation. The problem



class List {

Node! sentinel ;

List() { this.sentinel = new Node(this); }

void insert (Object? data) {

this.sentinel.insertAfter(data);

}

}

class Node {

Node! prev; Node! next;

List! parent;

Object? data;

// for sentinel construction

Node([Free] List! parent) {

this.parent = parent;

this.prev = this;

this.next = this;

}

// for data node construction

Node(Node! prev, Node! next, Object? data){

this.parent = prev.parent ;

this.prev = prev;

this.next = next;

this.data = data;

}

void insertAfter (Object? data) {

Node n = new Node(this, this.next, data);

this.next.prev = n;

this.next = n;

}

}

Figure 1. Doubly-linked list example. The List construc-

tor illustrates mutual object initialisation; the this reference

is passed to the first Node constructor and assigned to the

node’s parent field while the List object is still under ini-

tialisation. Like in Java’s LinkedList implementation, the

nodes of our list form a cyclic structure, whose initialisation

is illustrated by the first Node constructor. The [Free] an-

notation in its signature is explained in Sec. 3.

is that the runtime system initialises all fields of a new

object with zero-equivalent values. So even fields declared

as non-null start out being null. Until all non-null fields of

the newly-created object have been initialised with non-null

values, it would not be sound to make use of their declared

non-null information.

Several solutions have been proposed for tackling the

problem of initialisation for a non-null type system. They all

require constructors to initialise the non-null fields of their

class with non-null values before they terminate1. This is en-

forced statically using a straightforward definite assignment

analysis, which checks that each non-null field of a class can

be statically guaranteed to be assigned to at least once in its

constructor. The existing solutions differ in how they handle

objects that escape from their constructor. We summarise the

approaches in the following and evaluate them using the four

design goals stated in the introduction.

Raw Types. The original work of Fähndrich and Leino [10]

introduced raw types to handle initialisation. In addition to

the non-null information, raw types have an additional an-

notation indicating that the referred object may not be fully

initialised and, thus, may not be reliable in terms of non-

null guarantees. An object is allowed to escape via a method

or constructor call, provided the signature of the method or

constructor explicitly permits its receiver or arguments to be

raw (and consequently does not rely on their non-null guar-

antees). However, the system does not permit a raw refer-

ence to be assigned to a field of any object, even of the

referenced object itself. This restriction prevents common

implementations such as the mutual initialisation of multi-

ple objects, or cyclic data structures such as the Node struc-

ture in the example from Fig. 1. So with respect to our de-

sign goals, Fähndrich and Leino’s type system is relatively

simple2, sound, and modular, but not sufficiently expressive

to handle the initialisation of recursive structures. The only

work-around for this problem is to declare the fields of the

recursive structure with possibly-null types and to inject a

downcast each time they get dereferenced, which clutters up

the code and leads to unnecessary runtime checks.

Delayed Types. Fähndrich and Xia’s delayed types [11] dec-

orate reference types with a delay time which indicates the

notional point during execution after which the referenced

object satisfies its non-null annotations. Delay scopes are in-

troduced into the program text to indicate points at which

certain times will expire. Delay times on reference types can

be existentially quantified, with bounds expressing relation-

ships between various delay times. Because references to

many objects can share the same delay types, the system

is flexible enough to support practical examples. So with

respect to our design goals, delayed types are expressive,

sound, and modular. However, the complexity of the annota-

tions makes the system as presented in the paper unsuitable

for mainstream use.

Indeed, when implementing the system in Spec# [15],

Fähndrich and Xia decided to greatly cut down the complex-

ity of the type system, including only a single “Delayed”

1 Masked Types [21] free constructors from this obligation for those fields

that the constructor’s signature declares to be left un-initialised.
2 Some complexity comes from the fact that raw types include information

to which class in the inheritance hierarchy an object has been initialised.

For instance, raw(A) expresses that the fields declared in class A and its

superclasses have already been initialised, whereas the remaining fields of

the object might not.



attribute in the language, representing an unknown delay

time. The resulting implementation is however unsound: at

method calls it allows any parameters to be provided as de-

layed arguments, but inside the method bodies assumes each

such argument to have the same delay time. This assump-

tion can be exploited to provoke a null pointer exception;

we discuss such an example in Sec. 7. Fixing this problem

by enforcing that all delayed references have the same de-

lay time would make the system too inflexible to handle the

mutual initialisation of multiple objects.

Attached Types. Eiffel’s non-null types (called “attached

types”) do not appear to address the problem of object ini-

tialisation soundly. According to the Eiffel standard [6], a

field of class C may be considered properly set (essentially,

fully initialised) provided it “. . . is (recursively) properly set

at the end position of every creation procedure of C.” Since

objects may escape from their creation procedures (construc-

tors), this is not sufficient for soundness. The problematic

situation can sometimes be avoided by providing default cre-

ation procedures for all types of non-null fields—these get

implicitly called when a field is found not to be initialised

yet. However, default initialisation cannot handle cases such

as cyclic lists, or the mutual initialisation of objects. So with

respect to our design goals, attached types are simple, ex-

pressive, and modular, but not sound.

The actual Eiffel implementation appears (by experi-

ment) to actually prevent unsoundness by enforcing much

stronger rules: Using an object under initialisation as re-

ceiver or argument of a call is permitted if the code of

the called method type-checks without making non-null as-

sumptions for that object. For dynamically-bound methods,

this check needs to be repeated for each override of the

called method, which makes the type checking non-modular.

Moreover, an object may not be assigned to any field until

its initialisation is complete. This rule makes cyclic and mu-

tual initialisations impossible. So the Eiffel implementation

is simple and sound, but neither expressive nor modular.

Masked Types. The recent work of Qi and Myers [21] pro-

poses masked types to tackle object initialisation. This sys-

tem provides versions of class types in which any subset

of fields can be “masked”, indicating that the initialisation

of such fields cannot be relied upon. This permits various

kinds of incremental initialisation, including cyclic struc-

tures. However, even the simple examples found in their pa-

per require many annotations. So while this system is sound,

modular, and the most expressive approach yet, it is unlikely

that an average programmer would find it simple enough to

handle the everyday problem of sound object initialisation.

We provide a more detailed discussion and comparison with

Masked Types in Sec. 7.2.

Summary. As summarised by the following table, none of

the existing solutions for object initialisation in non-null

type systems satisfies all four design goals that we consider

essential for the usefulness of a type system. Delayed types

and masked types are the only sound systems that are suf-

ficiently expressive to handle recursive structures, but both

systems are conceptually complex and require significant an-

notation overhead. Since our goal is to develop a system for

mainstream use, we resolve the trade-off differently. As far

as practical examples are concerned, our system is slightly

less expressive than delayed types and masked types, but sig-

nificantly simpler.

System Simple Expressive Sound Modular

Raw Types X – X X

Delayed Types

(paper)

– X X X

Delayed Types

(implementation)

X X – X

Attached Types

(ECMA)

X X – X

Attached Types

(implementation)

X – X –

Masked Types – X X X

3. The Design

In this section, we explain the main concepts of our type

system informally. We introduce initialisation types that re-

flect whether an object has been fully initialised or is still un-

der initialisation, and motivate the most important type rules.

The type system is formalized in the next section. Additional

language features such as subclassing, arrays, generics, and

concurrency are discussed later in Sec. 5.

3.1 Initialisation States

Each object is in one of two initialisation states: it is ei-

ther under initialisation or it is initialised. When a new

object is allocated as part of executing a new-expression,

it is initially under initialisation until execution reaches a

point from which on we consider the object to be initialised.

This change of the initialisation state happens when a cer-

tain new-expression terminates, but not necessarily the new-

expression that created the object. We call the point at which

the state change occurs the commitment point of the object

and will explain later when it occurs.

Initialised objects have to satisfy their invariants, in par-

ticular, their non-null fields must contain non-null values.

Moreover, references stored in fields of an initialised object

must point to objects that are also initialised. This deep ini-

tialisation guarantee is important for the practicality of the

system. It ensures that all objects that are encountered while

traversing an object structure starting from an initialised ob-

ject are also initialised and, thus, the traversal can rely on the

invariants of the whole structure.

Objects under initialisation might satisfy their invariants,

but they are not required to. The fields of such objects may

store references to objects in either initialisation state. These

fields may refer to objects that are themselves under initiali-

sation, which allows one to initialise cyclic structures.



It is important to understand that initialisation states are

a purely conceptual notion. Neither do we store an object’s

initialisation state in memory nor is it generally possible to

infer an object’s initialisation state by inspecting the heap.

In particular, an object might satisfy its invariants but never-

theless be under initialisation because it has not yet reached

its commitment point. A program may still assign an un-

initialised object to a field of such an object and thereby vi-

olate its deep initialisation. Such assignments are no longer

possible once the object has passed its commitment point.

3.2 Initialisation Types

In our type system, the type of an expression reflects the ini-

tialisation state of the object the expression refers to at run-

time. It uses this information to provide guarantees about the

invariants of the object and to enforce restrictions that guar-

antee soundness. For this purpose, we equip each reference

type with one of the following three initialisation modifiers:

committed: Expressions of committed types evaluate to ref-

erences to initialised objects.

free: Expressions of free types evaluate to references to

objects under initialisation.

unclassified: Expressions of unclassified types may evalu-

ate to any reference. An unclassified type is a supertype

of the corresponding committed and free types.

Note that these initialisation modifiers are independent of

the non-nullity of a type—we can have both non-null and

possibly-null types with any of the three modifiers above (in

the latter case, guarantees about the “referred-to object” only

apply if the reference is not null). Despite attaching both nul-

lity and initialisation information to reference types, the an-

notation overhead of our system is low. Almost all references

handled in a program are committed, non-null references,

such that a suitable default avoids overhead for those refer-

ences. Initialisation modifiers need to be declared explicitly

only for non-trivial initialisation patterns. In our examples,

we make nullity information explicit; the default initialisa-

tion modifier for all reference types is committed, except for

the type of this inside a constructor, which is free. We use

the syntax [Free] and [Unclassified] to declare free and

unclassified types, resp. With these defaults, the List exam-

ple in Fig. 1 requires a single [Free] annotation.

Fig. 2 illustrates the use of these modifiers. When a new

object is allocated, its type is initially a free type (hence

the default for this in constructors). Once it reaches its

commitment point, the type changes to a committed type,

indicating that the program can now rely on the object to be

deeply initialised. The type system enforces that the object

will remain deeply initialised until its de-allocation.

3.3 Fields

Field types include non-null annotations, but no initialisa-

tion modifiers. In particular, there are no “free fields” for
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Figure 2. Newly-allocated objects have a free type until

they reach their commitment point, when the type changes

to a committed type for the rest of the object’s lifetime.

Unclassified types subsume free and committed types.

two reasons. First, the type of an object changes from free to

committed when it reaches its commitment point. This type

change would be problematic if the object was referenced

from a free field because this field would be ill-typed after

the type change. Second, free fields contradict the expecta-

tion that objects of committed types be deeply initialised.

Field Update. For a field update of the form x.f = y,

our type system performs nullity and initialisation checks.

The nullity checks are trivial: x must be non-null, and the

nullity of y must conform to the nullity declared for f . The

former check prevents null-pointer dereferencing whereas

the latter ensures that only non-null values are assigned to

non-null fields; in particular, this check ensures that the non-

nullity invariant is monotonic. Once a non-null field has been

assigned a non-null value, it will remain non-null.

For the initialisation types, the update is allowed if the

initialisation modifiers satisfy at least one of the following

two cases. First, if x is free, we may store objects with any

initialisation state in its fields. This is acceptable because the

free modifier does not make any guarantees about the ini-

tialisation state of reachable objects. In particular, allowing

y to be free enables the initialisation of cyclic structures, as

illustrated by Node’s first constructor (Fig. 1). All its field

updates type check because this is implicitly free inside a

constructor. Second, if y is committed, we may assign it to

fields of any object. If x is committed, then we preserve the

deep initialisation guarantee; if x is free or unclassified, it

does not make any guarantees about the initialisation state

of reachable objects anyway.

The following table summarises the admissible field up-

dates. The case where x is committed and y is free is dis-

allowed because such an update would violate the deep ini-

tialisation requirement for committed objects. An update is

allowed for unclassified references only if it is allowed for

both committed and free references.

x.f = y
y

committed free unclassified

x

committed X – –

free X X X

unclassified X – –



An important consequence of the rule for field updates is

that our type system must prevent aliasing between commit-

ted and free references, which we call cross-type aliasing. If

an object x was reachable via a committed and a free ref-

erence then one could use the free reference to store an un-

initialised (free) object in a field of x, which would clearly

violate the deep initialisation expectation of the committed

reference to x and therefore compromise soundness. Cross-

type aliasing is prevented by not having a subtype relation-

ship between committed and free types (in contrast to raw

types, which are supertypes of the corresponding non-raw

types [10]).

Field Read. When reading a field x.f , we infer the nullity

and initialisation expectation of the result as follows: The re-

sult is non-null if and only if f is declared non-null and x is

committed (recall that the committed type is the only type

that guarantees that the referenced object is initialised). The

result is committed if and only if x is committed (since com-

mitment provides a guarantee about all reachable objects);

otherwise the result is unclassified since the fields of free ref-

erences may store both free and committed references. The

following type summarises this rule.

x.f
f

C! C?

x

committed committed C! committed C?
free unclassified C? unclassified C?
unclassified unclassified C? unclassified C?

Consider the new-expression in method insertAfter

(Fig. 1). The type of the second argument this.next is

committed and non-null because this is by default com-

mitted in methods, as discussed in the next section.

3.4 Methods and Constructors

Method signatures include initialisation modifiers for the

method parameters as well as for the receiver. The type rule

for method calls is like in all object-oriented languages: The

types of the actual arguments must be subtypes of the de-

clared parameter types. An analogous check is performed for

the receiver of a call. This rule ensures that an object under

initialisation may be passed to a method as receiver or argu-

ment only if the receiver or parameter in the method signa-

ture has a free or unclassified type. In both cases, the method

will not rely on the object to be initialised, which makes this

form of escaping safe. Method overriding requires the usual

contra-variance of parameter types and co-variance of result

types.

Constructors are treated analogous to methods, but their

signature does not contain an initialisation modifier for the

receiver because the receiver of a constructor is always free.

The first constructor in class Node declares its parameter

parent with a free-modifier. Therefore, the List construc-

tor may pass the free object this as an argument.

A definite assignment analysis enforces that the body of

a constructor establishes the invariant of the receiver, that

is, assigns non-null values to all non-null fields declared in

the enclosing class. In our example, both Node constructors

satisfy this analysis because they initialise all three non-null

fields.

Note that the definite assignment analysis is the reason

why we require invariants to be monotonic, even for free

objects. Assigning null to a non-null field of a free object

would not compromise soundness because free objects are

not expected to satisfy their invariants. However, if such non-

monotonic updates were permitted, the definite assignment

analysis would have to assume conservatively that each time

a free object is passed to a method or constructor, it will

come back with its fields set to null, even if they were

previously assigned non-null values. Such an analysis would

produce many false positives and, thus, not be practical.

3.5 Commitment Points

A central concept of our type system is the notion of commit-

ment point, the point in time when an object is no longer un-

der initialisation but now considered initialised; this change

of the initialisation state will be reflected in a change of the

object’s type from free to committed. The commitment point

may occur when two requirements are satisfied. First, the

type system must be able to determine statically that the ob-

ject is deeply initialised. Second, when an object reaches its

commitment point and becomes committed, the type system

must be able to guarantee that there are no free references

to the object. As explained earlier, such cross-type aliases

could be used to violate the deep initialisation of the object

and, thus, compromise soundness.

To satisfy these requirements, we define the commitment

point as follows. When a new-expression that takes only

committed arguments terminates then all objects that have

been created during the execution of this new-expression

(and the associated constructor) reach their commitment

point (unless they have already reached it when a nested

new-expression with only committed arguments terminated).

Consider the List constructor in Fig. 1. The Node object

n created by the expression new Node(this) does not yet

reach its commitment point when the new-expression termi-

nates because it takes a free argument, this. In fact, n is not

deeply initialised then because n.parent.sentinel is still

null and, therefore, violates the first requirement for commit-

ment points. The same argument applies if an unclassified

reference is passed as argument to a new-expression, since it

may (via subtyping) disguise a free reference. But when the

expression new List() terminates then both the new List

object and its sentinel node reach their commitment point.

This definition of commitment point leads to a very

simple type rule for new-expressions. An expression new

C(x1, . . . , xn) has type committed C! if the static types

of all actual arguments xi are committed. Otherwise, it has

type free C!. We justify our definition of commitment point

and the corresponding type rule for new-expressions in the

following.



New-Expressions with Free or Unclassified Arguments.

The List constructor illustrates why it would be unsound to

assign a committed type to new-expressions with at least one

free or unclassified argument. However, considering the new

object as free is safe if we can guarantee that there are no

cross-type aliases. This is the case because no local variables

refer to the new object and because inside the constructor,

the new object was referred to via a free reference and,

therefore, the constructor could not store the reference in the

field of a committed object.

New-Expressions with Committed Arguments Only. Con-

sider a new-expression where all arguments are committed

(which subsumes the case that the constructor does not have

parameters). Let n be the object that gets created by this

new-expression. During the execution of n’s constructor,

the set of reachable objects consists of the set of objects

R that are reachable from the new-expression’s arguments

and the set of objects N that includes n and all objects cre-

ated during the execution of n’s constructor. The situation

is illustrated in Fig. 3. For the List constructor, the set R

is empty, whereas N contains the new List object and its

sentinel node.

When the new-expression terminates, the constructors of

all objects in N have run and therefore, the non-null fields of

these objects contain non-null values. The values assigned

to their fields are references to objects in R or N because

these are all the reachable objects. Therefore, we know that

the objects in N are deeply initialised because all objects

reachable from them are in R or in N and thus initialised3.

So the first requirement for commitment points is satisfied.

To argue that the second requirement is satisfied, we

have to show that there is no cross-type aliasing, that is, no

free reference to an object in N . When the new-expression

terminates, no local variable refers to an object in N . The

only objects that possibly refer to objects in N are the objects

in N and R. These objects are all committed when the new-

expression terminates, and so is the reference to the new

object n.

Note that for constructors that have only committed for-

mal parameters, it might be tempting to consider the receiver

initialised as soon as the definite assignment analysis con-

firms that all fields have been initialised. However, this so-

lution would be unsound because it violates both require-

ments for commitment points. First, during the execution of

a constructor, we can in general not determine modularly

whether there are subclass constructors, which have not exe-

cuted yet. So there might be non-null fields declared in sub-

classes that have not been initialised. Second, the constructor

might have local variables that store free references to the re-

ceiver, which creates cross-type aliasing.

3 This argument generalises trivially to global data if the global vari-

ables (that is, static fields) are enforced to store committed references, see

Sec. 5.3.

N

n m

RX

Figure 3. Heap structure for the execution of a new-

expression that takes only committed arguments. Objects are

depicted by rounded boxes; references in fields and on the

stack are depicted by solid and dashed arrows, respectively.

The set N contains the objects created during the execu-

tion of the new-expression; the set R contains the (commit-

ted) objects reachable from the new-expression’s arguments.

Here, both objects in N are free until the new-expression ter-

minates and, therefore, cannot be referred to by the commit-

ted objects in R.

3.6 Dataflow Analysis

We use a simple intra-procedural dataflow analysis to refine

the non-nullity and initialisation information provided by the

type system. For instance, if a conditional-statement tests a

local variable x for being non-null then x may be assumed

to have a non-null type in the then-block of the conditional

and, therefore, may be dereferenced and assigned to non-

null variables. Similarly, a dataflow analysis can provide

initialisation information for unclassified variables and fields

of free objects. Such a dataflow analysis is important for

the practicality of the type system, but it is orthogonal to

the focus of this paper and therefore largely ignored in the

following. Any such analysis, whether simple or complex,

could be used to complement the type system we outline.

For example, if support is needed for initialising fields via

method calls, suitably chosen extra annotations on method

signatures and/or inter-procedural analyses could be used to

provide the necessary extra information to the type checker.

3.7 Runtime Support

As in other non-null type systems, we allow the down-

casting of an expression from a possibly-null type to a

non-null type. The associated runtime check ensures that

the expression indeed evaluates to a non-null value. We do

not however allow down-casts to change initialisation mod-

ifiers (from unclassified to free or committed) nor do we al-

low instanceof-expressions to check initialisation modifiers.

Such casts and instanceof-expressions would essentially re-

quire us to store each object’s initialisation state in the heap,

which leads to runtime overhead and problems with library

code. Consequently, the only runtime support our system re-



quires is simple non-null checks for down-casts to non-null

types.

4. The Formalisation

In this section, we present a formalisation of our approach.

Much of the formalisation is standard. However, the sound-

ness arguments for our system are subtle, especially the

treatment of commitment points described in Sec. 3.5. Our

soundness result (in Sec. 4.4) makes these arguments ex-

plicit.

4.1 Programming Language

We focus on a very simple language, which nonetheless il-

lustrates the main features of the problems of object initial-

isation and our solutions. We consider a simple class-based

language (without generics), in which we have exactly one

constructor per class. Note that we do not model calls to su-

pertype constructors here—a constructor is obliged to fully

initialise a new object.

DEFINITION 1 (Classes and Types). We assume a finite set

of classes, ranged over by C,D, and a pre-defined reflexive,

transitive, acyclic subclassing relation on classes, written

C ≤ D.

We assume a set of method names, ranged over by m, and

a set of field names, ranged over by f, g. We assume the

existence of a function flds() from classes to sets of field

names, and a function meths() from classes to sets of method

names.

Non-null annotations, ranged over by n, are defined by

n ::= ? | !
Initialisation modifiers, ranged over by k, are defined by:

k ::= 0 (free)

| 1 (committed)

| ⋄ (unclassified)

Types, ranged over by T , are defined by T ::= Ckn.

Simple Types, ranged over by t, are defined by t ::= C n.

For example, C0! is a type for a non-null free reference of

class C, while C⋄? is a type for a possibly-null unclassified

reference. Simple types are used in field declarations and in

casts, where initialisation modifiers are not permitted.

Subtyping combines specialisation of initialisation modi-

fiers, non-nullity and classes themselves (i.e., subclassing):

DEFINITION 2 (Type Relations). Initialisation specialisa-

tion is a binary relation on initialisation modifiers, written

k1 ≤ k2 and defined by: k1 ≤ k2 ⇔ k1 = k2 ∨ k2 = ⋄.

Non-null specialisation is a binary relation on non-null an-

notations, written n1 ≤ n2 and defined by: n1 ≤ n2 ⇔
n1 = n2 ∨ n2 =?.

Subtyping is a binary relation on types, written T1 ≤ T2 and

defined by:

C1
k1n1 ≤ C2

k2n2 ⇔ C1 ≤ C2 ∧ k1 ≤ k2 ∧ n1 ≤ n2.

We define three auxiliary predicates on types. nullable(Ckn)
holds exactly when n =?. committed(Ckn) holds exactly

when k = 1. free(Ckn) holds exactly when k = 0.

In order to define the type system and operational seman-

tics, we require the existence of field and method lookup

functions. In particular, we need to be able to retrieve the de-

clared (simple) type for a field in a class, and the signatures

of methods and constructors. Method signatures include the

possibility of specifying an initialisation modifier for the re-

ceiver of the method, as well as its arguments and return

type. Constructors only have such modifiers for arguments;

during execution of a constructor its receiver is always a free

reference, and after execution the initialisation type of the

new expression is determined by those of the passed argu-

ments (cf. Sec. 3.5). Both kinds of signatures also include

declarations of local variables used within the method body,

but this is just to simplify the formal presentation.

DEFINITION 3 (Field and Method Lookups). Field type

lookup is modelled by a partial function fType(C, f) from

pairs of class-name and field-name to simple types.

A Method Signature is a four-tuple (k, xi:Ti, T, yj :Tj),
whose elements are as follows4: (1) an initialisation mod-

ifier k, indicating the initialisation type of the receiver, (2) a

sequence xi:Ti of parameter names (variable names) along

with their declared types, (3) a type T representing the re-

turn value of the method, and (4) a sequence yj :Tj of local

variable names along with their declared types.

A Constructor Signature is a two-tuple (xi:Ti, yj :Tj), simi-

larly declaring parameters and local variables.

Method signature lookup is modelled by a partial func-

tion mSig(C,m) from pairs of class-name and method-

name to method signatures. It satisfies the usual variance

requirements for subclassing (covariant return types and

contravariant parameter types).

Method body lookup is modelled by a partial function

mBody(C,m) (with the same domain as mSig) from pairs

of class-name and method-name to statements.

Constructor signature lookup is modelled by a function

cSig(C) from class-names to constructor signatures. Con-

structor body lookup is modelled by a function cBody(C)
from class-names to statements.

Our statements include assignments, method calls, object

creation and casts. We do not include conditionals since they

would only be of interest when combining our type system

with a dataflow analysis (Sec. 3.6). Note that we do not have

a return statement; methods return the value of a pre-defined

local variable res. For simplicity, we treat field assignments,

calls, object creation, and casts as statements. Complex ex-

pressions can be decomposed using local variables.

4 We use vector notation xi for sequence/repetition with elements indexed

by i (the index clarifies which terms vary in a sequence). Use of different

indexes indicates sequences with different index sets.



DEFINITION 4 (Expressions and Statements). We assume a

set of program variables, ranged over by x, y, z, including a

distinguished variable this. Expressions, ranged over by e,

are defined by the following grammar:

e ::= x | x.f | null

Statements, ranged over by s, are defined by the following

grammar, with the extra restriction that (in all cases) x may

not be the special variable this:

s ::= x = e (variable assignment)

| z.f = y (field assignment)

| x = y.m(zi) (method call)

| x = new C(zi) (object creation)

| x = (t)y (cast)

| s1; s2 (sequential composition)

Note that casts employ only simple types. As discussed in

Sec. 3.7, we do not support casts that change the initialisa-

tion type of a reference.

4.2 Type System

We now turn to the definition of our type system, which

includes definite assignment checks. There are two kinds of

checks made. Firstly, a set ∆ of definitely assigned program

variables is used in judgements, to (conservatively) track

which variables can be safely read from. Local variables can

only be safely read from if they are named in the set ∆; this

is necessary since all local variables are initialised to null in

our operational semantics, regardless of their types. When

typing expressions, we enforce this check—an expression is

only well-typed if it reads only from variables named in the

current ∆. When typing statements we use a “before” and

“after” ∆ to track this information in the type system.

Secondly, we employ a set of field names Σ, which con-

servatively record which fields of the current receiver are

definitely assigned during execution of a statement. This set

is relevant only for constructors; it is used to enforce the re-

quirement that constructors guarantee to assign all non-null

fields. Since we do not need to make any intermediate checks

based on this set, it only occurs once in each typing judge-

ment, indicating the fields definitely assigned between the

beginning and end of execution of the statement.

DEFINITION 5 (Static Type Assignment). A type environ-

ment Γ is a partial function from program variables to types.

An assigned variables set ∆ is a set of variable names (in-

dicating which have been definitely assigned). An assigned

fields set Σ is a set of field names (indicating which fields of

the receiver have been definitely assigned).

Expression typing is defined by judgements Γ;∆ ⊢ e : T ,

indicating that e has type T under assumptions Γ, possibly

reading variables in ∆. The judgements are defined in Fig. 4.

Statement typing is defined by judgements Γ;∆ ⊢ s | ∆′; Σ,

indicating that s is well-typed under assumptions Γ, reads

only variables in ∆ and, after execution, will guarantee

that variables ∆′ and fields Σ are definitely assigned. The

judgements are defined in Fig. 5.

x ∈ ∆
(TVAR)

Γ;∆ ⊢ x : Γ(x)
(TNULL)

Γ;∆ ⊢ null : Ck?

Γ;∆ ⊢ x : Ck1 ! fType(C, f) = D n1

k2 =

{

1 if k1 = 1
⋄ otherwise

n2 =

{

! if n1 =! and k1 = 1
? otherwise

(TFLD)
Γ;∆ ⊢ x.f : Dk2n2

Figure 4. Expression typing.

Γ;∆ ⊢ e : T T ≤ Γ(x)
(TVARASS)

Γ;∆ ⊢ x = e | ∆ ∪ {x}; ∅

Γ;∆ ⊢ x : Ck1 ! fType(C, f) = D n

Γ;∆ ⊢ y : T T ≤ Dk2n

k1=0 ∨ k2=1

Σ =

{

{f} if x = this

∅ otherwise
(TFLDASS)

Γ;∆ ⊢ x.f = y | ∆;Σ

Γ;∆ ⊢ y : Ck1 !
mSig(C,m) = (k2, xi:Ti, T, yj :Tj)

Γ;∆ ⊢ zi : T
′
i T ′

i ≤ Ti

T ≤ Γ(x) k1 ≤ k2
(TCALL)

Γ;∆ ⊢ x = y.m(zi) | ∆ ∪ {x}; ∅

cSig(C) = (xi:Ti, yj :Tj)
Γ;∆ ⊢ zi : T

′
i T ′

i ≤ Ti

k =
∧

committed(T ′
i ) Ck! ≤ Γ(x)

(TCREATE)
Γ;∆ ⊢ x = new C(zi) | ∆ ∪ {x}; ∅

Γ;∆ ⊢ y : Ckn1 t = D n2 Dkn2 ≤ Γ(x)
(TCAST)

Γ;∆ ⊢ x = (t)y | ∆ ∪ {x}; ∅

Γ;∆ ⊢ s1 | ∆1; Σ1 Γ;∆1 ⊢ s2 | ∆2; Σ2

(TSEQ)
Γ;∆ ⊢ s1; s2 | ∆2; Σ1 ∪ Σ2

Figure 5. Statement typing.

Our expression typing judgement plays a dual role in

our formalisation. It checks not only that the expression is

typeable in a standard way, but also that it can be “read

from”; any variable mentioned has to be known to be already



assigned. Since our judgement does not include subtyping

(which is dealt with at the level of typing statements), we

have the property that a variable x can be typed exactly

with the type Γ(x), and only when x occurs in ∆ (i.e., it

has been assigned). When defining subsequent typing rules,

we choose between applying the rule (TVAR) to variables, or

just looking up the type Γ(x) directly, depending on whether

or not we require the variable to already be assigned.

The rule (TVAR) looks up the type for a variable in the en-

vironment, also checking that the variable has already been

assigned (i.e., it is named in ∆). The rule (TNULL) allows

a null expression to be typed with any class and initiali-

sation type, but of course it must take a possibly-null type.

The rule for field read, (TFLD), first checks that the receiver

expression x is typeable with a non-null type; this also im-

plicitly enforces the requirement that x is known to be as-

signed (this would not have been the case if we had looked

up the type for x directly in Γ). Then, based on the class

type C of x, the appropriate field type is retrieved (this im-

plicitly requires that the field is defined for the class). The

type for the whole expression is then derived. The class type

is whatever was declared in the field type. The type is com-

mitted if the receiver expression x was typed as committed,

and is unclassified otherwise. Finally, the expression is non-

null if the field was declared non-null and the receiver was

also of committed type; otherwise, the expression is typed

as possibly-null. Note that while we have no subtyping here,

we build it into the statement typing rules where required.

In the rules for statement typing (Fig. 5), we take care to

“update” the variables known to be assigned (via the second

set of variables in the judgements), and also to record the

fields of this which get assigned values (this information is

only needed for checking constructor bodies, but for simplic-

itly, we accumulate it in general). The rule for variable as-

signment, (TVARASS), checks that the source expression is

typeable with a subtype of the declared type of the variable,

and adds the variable to those known to be assigned. Note

that the destination variable is not subject to the expression

typing judgement; this means we do not erroneously insist

on it being assigned beforehand (while any variables refer-

enced in the source expression must be). In the rule for field

assignment, (TFLDASS), we require both the receiver and

the source variable to be assigned and typeable, and impose

the extra requirement that the receiver must be free or the

source variable must be committed. If the receiver is this,

we also record the field to be assigned, in the set Σ.

The rule for method call (TCALL) checks that the receiver

is assigned and non-null, and then checks that the types

of the receiver, arguments and return value destination, all

agree with the declared method signature. Note that in the

case of the receiver, this involves checking that the receiver

initialisation type k1 specialises the initialisation type k2
declared for the receiver in the method signature. Σ is empty

in this rule; the basic flow analysis we use here does not

handle initialisation via a method (but see Sec. 3.6).

The rule for object creation (TCREATE) specifies that

the initialisation type of the returned value is defined to be

committed (1) if all the arguments have committed types,

and free (0) otherwise; we denote this “conjunction” with the

shorthand
∧

committed(T ′
i ). Our rule for casting (TCAST)

incorporates a variable assignment, and allows the class type

and non-null type of the value to change arbitrarily, but

does not affect the initialisation type. Finally, our rule for

sequential composition (TSEQ) chains together the inference

of which variables have been assigned, and accumulates

the fields of this known to have been assigned in either

statement.

If one wanted to adapt our formalisation to check for

some other kind of invariant (such as immutability) and not

for non-null types, the changes that would be needed are

fairly small. Firstly, one should remove the requirement that

variables dereferenced always have non-null types (TFLD,

TFLDASS, TCALL). One might also simplify/modify the rule

for computing the type of a field read (TFLD). The role of Σ
in our judgements is specific to tracking progress towards

a newly-constructed object being initialised. The use of this

judgement for the proof might well vary depending on the

invariant in question. Finally, the check for a well-formed

constructor (WFCONS) below would need to be adjusted

to guarantee initialisation with respect to the invariant in

question (for non-null types, we require that every non-null-

declared field of the new object gets assigned).

We can now type check class definitions.

DEFINITION 6 (Well-formed program). A program is well-

formed if for each class C of the program, each method m ∈
meths(C) is well-formed (⊢m C,m), and the constructor is

well-formed (⊢C C). These judgements are defined in Fig. 6.

mBody(C,m) = s

mSig(C,m) = (k, xi:Ti, T, yj :Tj)
¬nullable(T ) ⇒ res ∈ ∆

Γ = (xi:Ti, this:C
k!, yj :Tj , res:T )

Γ; {xi, this} ⊢ s | ∆;Σ
(WFMETH)

⊢m C,m

cBody(C) = s cSig(C) = (xi:Ti, yj :Tj)
{f∈flds(C) | ¬nullable(fType(C, f))}⊆Σ

Γ = (xi:Ti, this:C
0!, yj :Tj)

Γ; {xi, this} ⊢ s | ∆;Σ
(WFCONS)

⊢C C

Figure 6. Well-formed methods and constructors.

Essentially, every method body (WFMETH) must be typeable

with respect to its signature, under the assumption that all



parameters are initially assigned. Furthermore, the method

body must assign to the result variable res (of course, this

restriction could be relaxed to support void methods). For

constructors (WFCONS), the body must be typeable with

respect to its signature, along with the assumption that the

receiver is a free, non-null reference of the appropriate class

type. Furthermore, every non-null-declared field of the class

must be assigned a value in the method body.

4.3 Semantics

We adopt a reasonably standard heap model on which to

define our operational semantics. Note that the heap model

does not contain any type-system-specific information; in

particular, no support for the initialisation aspects of our

type system is needed at runtime; as we described earlier,

initialisation states of objects are purely conceptual, and

used to explain the workings of the static type system. This

fact is essential for the feasibility of our type system for

mainstream languages.

DEFINITION 7 (Heaps, Values and Allocation). We assume

a finite set of addresses, ranged over by ι.

Values, ranged over by v are defined5 by v ::= ι | null.

A heap h is a pair (hv, hc) of partial functions; hv from pairs

of address and field-name to values, and hc from addresses

to class names. The domains of the functions are related by:

dom(hc) = {ι | ∃f.(ι, f) ∈ dom(hv)}. As shorthand, we

will typically use h in place of hv or hc.

We write heap lookup as h(ι, f) (defined as hv(ι, f), only

when (ι, f) ∈ dom(hv)).
We write h[(ι, f) 7→v] for heap update/extension (meaning

standard map update of hv).

We write class lookup as cls(h, ι), meaning hc(ι) (provided

that ι ∈ dom(hc)).
We model object allocation via a function alloc which

takes a heap and a class-name as parameters, and returns a

pair of heap and address, satisfying the following properties:

(h′, ι) = alloc(h,C) ⇒















ι 6∈ dom(hc)
h′
v = hv[(ι, fi) 7→ null]

where fi = flds(C)
h′
c = hc[ι 7→ C]

We can now define the evaluation of expressions. Note that

evaluation is not guaranteed per se to produce a value, since

we might dereference a null variable. We model this by

introducing an exception state (later, our main theorem will

show that for a well-typed program, this exception state is

never encountered).

DEFINITION 8 (Expression evaluation). A stack frame σ is

a partial function from program variables to values. We

write σ(x) to denote the corresponding lookup (defined only

when x ∈ dom(σ)), and we write σ[x 7→v] for stack update.

5 Note that we use both null as an expression in the source language, and

null as a distinguished value. However, the two are always distinguishable

by context.

Extended Values, ranged over by V , are values v plus the

special value derefExc (denoting failure to obtain a value).

Expression evaluation maps an expression e, heap h and

stack frame σ to an extended value. It is written ⌊e⌋h,σ, and

defined as follows:

⌊x⌋h,σ = σ(x) ⌊null⌋h,σ = null

⌊x.f⌋h,σ =







h(ι, f) if σ(x) = ι and

f ∈ flds(cls(h, ι))
derefExc otherwise

We can now define our operational semantics.

DEFINITION 9 (Operational Semantics). Exception States,

ranged over by ǫ, are one of three possible concrete values:

ǫ ::= ok | derefExc | castExc.

Runtime Type Assignment assigns simple types to runtime

values, according to the subclassing relationship in the pro-

gram. It is defined in Fig. 7. We define a big-step operational

semantics via judgements ǫ, h, σ, s  h′, σ′, ǫ′, indicat-

ing the execution of statement s starting in exception state

ǫ, heap h and stack-frame σ, and finishing with heap h′,

stack-frame σ and exception state ǫ′. The rules are defined

in Fig. 8.

(RNULL)
h ⊢ null : C?

cls(h, ι) ≤ C
(RADDR)

h ⊢ ι : C n

Figure 7. Runtime type assignment.

4.4 Soundness Results

We can now turn to the formalisation of our soundness

results. Firstly, we need to formally define our initialisation

and reachability concepts.

DEFINITION 10 (Initialisation and Reachability). An ad-

dress is locally initialised in a heap, written init(h, ι), if

all non-null fields contain non-null values:

init(h, ι) ⇔ (∀f ∈ flds(cls(h, ι)) :
¬nullable(fType(cls(h, ι), f)) ⇒ h(ι, f) 6= null)

An address reaches another address in a heap, written

reaches(h, ι1, ι2), as defined recursively by the least fixpoint

solution of the following equation:

reaches(h, ι1, ι2) ⇔ ι1 = ι2
∨ ∃f, ι3 : h(ι1, f) = ι3 ∧ reaches(h, ι3, ι2)

Given an address and heap, the set of addresses reachable,

written reachable(h, ι) is defined by: reachable(h, ι) = {ι′ |
reaches(h, ι, ι′)}.

An address is deeply initialised in a heap, written as a pred-

icate deep init(h, ι), if all reachable addresses are locally

initialised:

deep init(h, ι) ⇔ ∀ι′ ∈ reachable(h, ι) : init(h, ι′)



⌊e⌋h,σ = v
(VARASS)

ok, h, σ, x = e  h, σ[x 7→v], ok

⌊e⌋h,σ = derefExc
(VARASSBAD)

ok, h, σ, x = e  h, σ, derefExc

σ(x) = ι
(FLDASS)

ok, h, σ, x.f = y  h[(ι, f) 7→σ(y)], σ, ok

σ(x) = null
(FLDASSBAD)

ok, h, σ, x.f = y  h, σ, derefExc

σ(y) = ι C = cls(h, ι)
mSig(C,m) = (k, xi:Ti, T, yj :Tj)

σ1 = this 7→ι, xi 7→σ(zi), res7→null, yj 7→null

mBody(C,m) = s ok, h, σ1, s  h′, σ′, ǫ
(CALL)

ok, h, σ, x = y.m(zi)  h′, σ[x 7→σ′(res)], ǫ

σ(y) = null
(CALLBAD)

ok, h, σ, x = y.m(zi)  h, σ, derefExc

cSig(C) = (xi:Ti, yj :Tj)
(h1, ι1) = alloc(h,C)

σ1 = this7→ι1, xi 7→σ(zi), yj 7→null

cBody(C) = s ok, h1, σ1, s  h′, σ2, ǫ
(CREATE)

ok, h, σ, x = new C(zi)  h′, σ[x 7→ι1], ǫ

h ⊢ σ(y) : t
(CAST)

ok, h, σ, x = (t)y  h, σ[x 7→σ(y)], ok

h 6⊢ σ(y) : t
(CASTBAD)

ok, h, σ, x = (t)y  h, σ, castExc

ok, h, σ, s1  h1, σ1, ok

ok, h1, σ1, s2  h2, σ2, ǫ
(SEQ)

ok, h, σ, s1; s2  h2, σ2, ǫ

ok, h, σ, s1  h1, σ1, ǫ ǫ 6= ok
(SEQBAD)

ok, h, σ, s1; s2  h1, σ1, ǫ

Figure 8. Operational semantics.

Now, we are in a position to specify exactly what our type

system preserves about the stack and the heap. We identify

five conditions which go together to make up a “good” con-

figuration. The first just forces the stack to have a suitable

domain, while the second is the standard property that fields

contain only objects which agree with their declared class

type. The third expresses the meaning of our definite as-

signment checks for local variables, and the fourth expresses

that stack variables which have been initialised contain suit-

able values. Finally, we characterise the type invariants of

our system: committed references are deeply initialised and

cannot reach objects directly referred to by free references.

DEFINITION 11 (Good Configurations). A pair of heap and

stack-frame is a good configuration for Γ,∆, written Γ;∆ ⊢
h, σ, if the following conditions hold:

1. dom(σ) = dom(Γ) ∧ this ∈ dom(σ)

2. ∀ι ∈ dom(h), f ∈ flds(cls(h, ι)) : (ι, f) ∈ dom(h) ∧
(h(ι, f) 6= null ⇒ cls(h, h(ι, f)) ≤ fType(cls(h, ι), f))

3. ∀x ∈ dom(σ) :
(¬nullable(Γ(x)) ∧ x ∈ ∆ ⇒ σ(x) 6= null)

4. ∀x ∈ dom(σ) : (σ(x) 6= null ⇒ h ⊢ σ(x) : Γ(x))

5. ∀x, y ∈ dom(σ) : (committed(Γ(x)) ⇒
deep init(h, σ(x)) ∧
(free(Γ(y)) ⇒ ¬reaches(h, σ(x), σ(y))))

We can now state our desired soundness theorem:

THEOREM 1 (Preservation and Safety). If Γ;∆ ⊢ h, σ and

Γ;∆ ⊢ s | ∆′; Σ and ok, h, σ, s  h′, σ′, ǫ and ǫ 6=
castExc all hold, then Γ;∆′ ⊢ h′, σ′ ∧ ǫ = ok.

The proof of this theorem is challenging for a number of rea-

sons. Not only is the design of our approach centred around

reachability in the heap, but we present “good configura-

tions” as a property local to each particular stack-frame. This

means that there is much work to do in the proof when we

change stack frame, particularly for a method or construc-

tor return. Furthermore, because initialisation states are not

present at runtime, we need to infer the expected initiali-

sation state for an object via the static types of references

to that object. In fact, we identified a number of interesting

properties of our formalisation (some of which were not ini-

tially obvious) which lead to the proof. For any well-typed

statement execution in our semantics the following proper-

ties hold in addition to the properties claimed in the theorem:

1. The domain of the stack is preserved, and the domain of

the heap only grows.

2. After execution of the statement, all non-null fields in Σ
of the receiver object contain non-null values.

3. Non-null fields which were initialised before execution

of the statement, are still initialised afterwards.

4. Objects locally initialised before the execution of the

statement are still locally initialised afterwards.

5. Any objects newly-allocated during the execution of the

statement are locally initialised afterwards.

6. Any object which is not locally initialised and reachable

from a stack variable after execution,is reachable from a

stack variable before execution.

7. If, after execution, an object ι is reachable from a com-

mitted stack variable, and both ι and the object referred



to by the stack variable exist before execution, then ι was

reachable from a committed stack variable before execu-

tion.

8. If, after execution, an object ι1 reaches an object ι2 re-

ferred to by a free stack variable, and both objects exist

before execution, then ι1 reaches an object referred to by

a free stack variable before execution.

9. If an object ι1 reaches another ι2 after execution, and

both objects exist before execution, then at least one

of the following properties must hold before execution:

(a) ι1 reaches ι2. (b) ι2 can be reached from a committed

stack variable. (c) ι1 reaches an object referred to by a

free stack variable, and ι2 can be reached from a (possibly

different) stack variable.

Property 9 particularly deserves explanation. It reflects the

connecting of objects that can possibly happen during exe-

cution. Because committed references can be assigned to any

fields, an object reachable from a committed local variable

before execution could potentially be reachable by any ob-

ject after execution. The only other kind of field assignment

we allow, is the assignment of references to the fields of free

references. In this case, an object which newly reaches an-

other must have previously reached the receiver of such a

field update, that is, a free reference. We use all of the above-

mentioned properties to strengthen our induction hypothesis;

we prove the following lemma (from which Theorem 1 fol-

lows), which includes properties 1–9:

LEMMA 1 (Preservation and Safety (strengthened)). If

Γ;∆ ⊢ h, σ and Γ;∆ ⊢ s | ∆′; Σ and

ok, h, σ, s  h′, σ′, ǫ and ǫ 6= castExc all hold, then:

0. Γ;∆′ ⊢ h′, σ′ ∧ ǫ = ok

1. σ′(this) = σ(this) ∧ dom(σ′) = dom(σ) ∧ h ≤ h′

2. ∀f ∈ Σ : (¬nullable(fType(cls(h, σ(this)), f)) ⇒
h′(σ(this), f) 6= null)

3. ∀ι ∈ dom(h) : ((¬nullable(fType(cls(h, ι), f)) ∧
h(ι, f) 6= null) ⇒ h′(ι, f) 6= null)

4. ∀ι ∈ dom(h) : (init(h, ι) ⇒ init(h′, ι))

5. ∀ι ∈ dom(h′) : (ι 6∈ dom(h) ⇒ init(h′, ι))

6. ∀ι ∈ dom(h′), x ∈ dom(σ′) : (reaches(h′, σ′(x), ι) ∧
¬init(h′, ι) ⇒ (∃y ∈ dom(σ) : reaches(h, σ(y), ι)))

7. ∀ι ∈ dom(h′), x ∈ dom(σ′) : (reaches(h′, σ′(x), ι) ∧
committed(Γ(x)) ∧ ι ∈ dom(h) ∧ σ′(x) ∈ dom(h) ⇒
(∃y ∈ dom(σ) : committed(Γ(y))∧reaches(h, σ(y), ι)))

8. ∀ι ∈ dom(h′), x ∈ dom(σ′) : (reaches(h′, ι, σ′(x)) ∧
free(Γ(x)) ∧ ι ∈ dom(h) ∧ σ′(x) ∈ dom(h) ⇒
(∃y ∈ dom(σ) : free(Γ(y)) ∧ reaches(h, ι, σ(y))))

9. ∀ι1 ∈ dom(h), ι2 ∈ dom(h) : (reaches(h′, ι1, ι2) ⇒
reaches(h, ι1, ι2) ∨ (∃x ∈ dom(σ) : committed(Γ(x)) ∧
reaches(h, σ(x), ι2)) ∨ (∃y ∈ dom(σ), z ∈ dom(σ) :
free(Γ(y)) ∧ free(Γ(z)) ∧ reaches(h, ι1, σ(y)) ∧
reaches(h, σ(z), ι2)))

PROOF 1. By (elaborate) induction on the derivation of

ok, h, σ, s  h′, σ′, ǫ. The full proof and accompanying

lemmas are available in our technical report [23].

5. Extensions

In this section we discuss how to support additional language

features and approaches to make our type system even more

expressive.

5.1 Concurrency

Our type system naturally extends to concurrency. The only

requirement that is necessary to preserve soundness is that

each object is thread-local until it is initialised. That is, we

maintain an invariant that any shared object (reachable from

more than one thread) is initialised. Sharing uninitialised

objects could lead to cross-type aliases when the object

reaches its commitment point in the thread that created it.

In Java this invariant can be maintained by two rules.

Firstly, only initialised Thread objects can be started; that is,

the Thread.start method requires a committed receiver.

This rule ensures that starting a new thread preserves the in-

variant because the Thread object can only reach initialised

objects. Secondly, only committed references can be stored

in static fields (see below). This rule ensures that threads

cannot pass free references from one thread to another via

a static field. Since starting a thread is a “synchronization

action” in Java’s memory model, this argument also applies

to Java’s weak memory model.

The rules for concurrency are an example where we use

initialisation types to prevent escaping (namely escaping of

a free reference from the creating thread) rather than making

escaping safe (as for the escaping from constructors).

5.2 Arrays

Arrays do not have constructors and their number of ele-

ments might not be statically known. Therefore, it is not

easily possible to use a definite assignment analysis to deter-

mine when an array has been initialised. Delayed types [11]

allow programmers to call a special marker method to indi-

cate that an array of non-null elements has been initialised;

the method performs a runtime check to ensure that the array

elements are indeed non-null.

We adopt this approach and use the return from the

marker method as the commitment point for the array. How-

ever, since we do not store initialisation states at runtime, we

cannot check at runtime that the array elements are them-

selves initialised, that is, we cannot check that the array is

deeply initialised. Therefore, we ensure deep initialisation of

the array by a type rule. An array update of the form a[i] =

e requires e to have a committed type. This rule is more re-

strictive than the corresponding rule for field updates; it does

not allow one to store free objects in any arrays and, there-

fore, does not support the initialisation of cyclic structures

that include an array of non-null elements.



The initialisation modifier of a new array with a non-

null element type is unclassified. An array reference is never

free, which avoids cross-type aliases when the array reaches

its commitment point. The initialisation modifier of a new

array with a possibly-null element type is committed. Such

arrays do not have an invariant to establish and (as all arrays)

can never reach uninitialised objects. So they can safely be

regarded as committed at creation.

5.3 Static Fields

Static fields belong to classes rather than objects and are ini-

tialised by static class initialisers rather than constructors. It

is in general not possible to determine modularly when static

class initialisers execute and, thus, when a static field is ini-

tialised. Therefore, we use a conservative type rule: static

fields must not have non-null types and may only be assigned

null and committed objects. The latter requirement is neces-

sary to guarantee that objects cannot reach uninitialised ob-

jects when they reach their commitment point (see Sec. 3.5)

and to handle concurrency (see Sec. 5.1).

5.4 Factory Methods

One alternative approach to initialisation is the use of factory

methods, in which complex initialisation code is performed

in a (usually static) method rather than a constructor. We

could extend our technique to handle factory methods, at

the expense of more complex annotations. Firstly, to allow

interesting initialisation in factory methods, we would need

to support a special kind of “weak constructor” which is

not obliged to initialise the fields of the new object. Weak

constructors could only be invoked via new expressions in

factory methods (or super calls from weak constructors),

and would always return a free reference. Further, we would

need the ability to mark certain methods as factory methods,

which would be tasked with initialising the returned object

(which must have been newly-allocated). Calls to factory

methods could then be treated similarly to our rules for

handling new expressions. So far, such an extension has not

appeared to be worth the additional complexity involved.

5.5 Subclassing

Extending our formalisation with subclassing and inheri-

tance affects the definite assignment analysis for construc-

tors and the dataflow analysis in general Sec. 3.6. The def-

inite assignment analysis requires each constructor to ini-

tialise the non-null fields of the enclosing class. Fields de-

clared in superclasses will be initialised by a superclass con-

structor. Since our field initialisation is monotonic, this is

sufficient to ensure that all non-null fields of an object have

been initialised when the new-expression terminates; that is,

when the last constructor of the object has run.

The dataflow analysis may safely assume that after a

call to a super-constructor, each non-null field f declared

in a superclass contains a non-null value. So it is safe to

give this.f a non-null type even though this is free.

After a call to a constructor of the same class, one may

additionally assume that the non-null fields of that class have

been initialised.

Note that this design avoids having to parameterise our

types with type frames (as in raw types), to express partial

initialisation: our free references, along with the dataflow

analysis, already give us the expressiveness we require. Note

further that we do not need to prevent dynamically-bound

method calls on free references (a common source of initial-

isation errors); our type system will check that such calls can

handle free receivers, which will in turn force the method

implementation not to assume that the receiver is initialised.

5.6 Generics

We allow type arguments for generic classes to include non-

nullity modifiers but not initialisation modifiers. The solu-

tion for non-nullity is adopted from Spec#. Parameterising a

class with initialisation modifiers isn’t very useful because

field types cannot have initialisation modifiers. For example,

a committed instance of class List<T> may store only com-

mitted objects; thus it would not be meaningful to instantiate

the type parameter T with a free or unclassified type.

It is potentially useful to parameterise methods with ini-

tialisation modifiers. For instance, an identity-method works

for each of the three initialisation modifiers. To avoid having

to define several copies of such a method for different ini-

tialisation modifiers, we can support for polymorphism over

initialisation modifiers in method signatures. We omitted the

feature here and in our implementation because we have not

yet seen code “in the wild” that needs the extra expressive-

ness provided. However, we did include it in our extended

formalisation and soundness proof [23].

5.7 Committed-only Fields

The type system presented so far does not generally handle

situations where a constructor stores a committed reference

into a field of its receiver, and then reads it back to perform

some computation on it. For example, consider the following

code (based on an example we found while experimenting

with our implementation):

class C {

Stack! s; // library class

public C(object o) {

this.s = new Stack(); // committed value

... // other code

this.s.push(o); // fails to type-check

}

}

The problem here is that the push method of class Stack

does not (and cannot be expected to) support anything but

a committed receiver. However, since this is free, the field

read this.s has an unclassified type and, thus, the call does

not type check. One might initially think that this problem

can be best handled by extending the dataflow analysis to

remember the initialisation states of values stored in fields.



However, one cannot (soundly and modularly) preserve this

information across method calls because the method might

reassign the field, possibly with a free value.

We observed that many fields are only ever used to store

committed values (at all program points), and for such fields,

one would prefer to make this discipline explicit and use

the information to refine our type system’s expressiveness.

In fact, it is sufficient to distinguish two kinds of fields:

committed-only and standard fields. A committed-only field

may only be assigned values which have committed types.

Any value which is read from a committed-only field can (if

known not to be null) be assumed to refer to an initialised

object; we therefore give such field-reads a committed type

even when reading from a receiver which is not committed.

Committed-only fields proved useful in many practical

examples. In fact, we found it most fruitful in our experi-

ments to make committed-only the default declaration for

fields, and to introduce explicit annotations only for those

fields which need to store non-committed references at some

point during initialisation. This means a few extra annota-

tions are required for the initialisation of interesting cyclic

structures, but on the other hand examples like the one above

can be supported without annotations.

5.8 Invariants

We presented our type system as an extension to a non-

null type system, but it is far more general. Our approach

supports all monotonic one-state and two-state invariants

that satisfy the following two requirements.

First, it must be possible to determine that the invariant

holds for the new object at the end of a new-expression.

For non-null types, we achieve that with a flow analysis.

For other one-state invariants, one could use an assertion

that the invariant holds; the assertion can then be checked at

runtime or verified statically. For two-state invariants such as

immutability, no check is required; it suffices to check that

the invariant holds for all pairs of states from now on.

Second, it must be possible to check that the invariant is

monotonic. For non-null types, we achieve that by prevent-

ing programs from storing null in non-null fields. For other

one-state and two-state invariants, one could add an assertion

to each field update with a committed or unclassified receiver

that checks a condition that is sufficient for the preservation

of the invariant (for instance in the form of update guards

[3]). For immutability, this assertion would always fail.

6. Experimental Evaluation

In order to evaluate our type system in practice, we wrote

a modified version of the Spec# compiler [15], implement-

ing our type system. Starting from Spec# gave us the prac-

tical advantage that the existing non-null type checking

and dataflow analysis could be reused. Our implementation

adapted and replaced the implementation of delayed types;

in most cases we were greatly aided by being able to adapt

or extend the existing code written by Manuel Fähndrich

and Songtao Xia. In the implementation (unlike our formal-

isation), we made use of the dataflow analysis to infer the

initialisation states for local variables. This makes the sys-

tem much more usable for substantial code. Our compiler

implements the type system presented in this paper, with ad-

ditional support for base calls, static fields and methods, and

arrays (see Sec. 5.2). In the course of our experiments, we

realised that the committed-only-fields extension (discussed

in Sec. 5.7) would enable us to handle many more cases, and

so we also implemented this extension.

We tested our implementation on two fairly large code-

bases - a version of SSCBoogie (the Spec# verifier, which is

written entirely in Spec#), and an old version of the widely-

used Boogie program verifier (written in Spec#; we used

an older version because the Boogie project has been mi-

grated to pure C# since June 2010). As well as these two

large projects, we also tested our compiler against the Spec#

collections used by the compiler itself, and by-hand encod-

ings of the examples found in this paper. All of this code

was already written with non-null annotations (but without

appropriate initialisation annotations).

Our approach was to start from the code without any

initialisation-related annotations, and first see how many

type-checking warnings were issued by our compiler; this

indicates how many cases were not already handled by the

defaults in our type system. We then investigated how many

of these warnings could be eliminated by the addition of

[Free] and [Unclassified] annotations, without performing

any other changes to the code itself. This process was very

mechanical; in the end, it amounted to the systematic appli-

cation of three rules:

1. When the type system warned that the receiver of a

method call was expected to be initialised, but was not

guaranteed to be so (i.e., its static type was free or unclas-

sified) we annotated the signature of the called method

with [Unclassified].

2. When the type system warned that an argument to a

method call was expected to be initialised, but was not

guaranteed to be so (i.e., its static type was free or unclas-

sified) we annotated the formal parameter of the called

method with [Unclassified].

3. When the type system warned that we attempted to store

a non-committed value in a committed-only field, we

removed the committed-only status from the field.

The results of this annotation effort are shown in Fig. 9. In

some cases (particularly for the first two rules above), these

rules had to be iterated; when we mark a new receiver of a

method as [Unclassified], for example, this means that any

uses of the receiver inside the method body might no longer

type-check. In the case of the third rule, it could be that parts

of the code already depend on the committed-only status of

the field; in this case, unless those parts could themselves



Boogie SSCBoogie Other

Lines of code 43996 15672 1739

Total warnings 43 108 19

Annotations used 74 28 19

Warnings removed 42 106 18

Warnings remaining 1 2 1

Figure 9. Experimental evaluation results. Our modified

version of the Spec# compiler was run on two large projects:

a Spec# version of the Boogie verifier, and the verifier for the

Spec# language itself, SSCBoogie. We also ran our compiler

on several small, challenging examples, including those used

in this paper (included together under “Other” in the table).

We show the total type-checking warnings generated for

the un-annotated code, indicating how many initialisation

problems are not handled by the defaults in our type system.

We then annotated the code in a mechanical fashion, to see

how many warnings could be removed. The (few) remaining

cases indicate that some code refactoring was still needed

to make the code type-check, by moving some code which

depends on initialisation being complete, to outside of a

constructor body.

be fixed with annotations as above, we marked the case as

one which required refactoring (cf. “Warnings remaining”

in the table). This also applied if we found that we needed to

add annotations to code to widely-used superclasses, since

these would in general prohibit interesting implementations.

Similarly, we were not able to annotate any library code.

The results provide convincing evidence that our type

system is usable; we found only four points in the code ex-

amined where we couldn’t make the code type-check sim-

ply by adding appropriate annotations. The first of these in-

volved calling a method on the receiver in a constructor, and

then within the method relying on a non-null field contain-

ing a non-null value. Two cases involved passing the this

reference from a constructor as an argument to an overrid-

den method call for which we could not re-annotate the su-

perclass signature. The final case is the example discussed

in Sec. 7.2. All four cases could be handled by moving the

problematic lines to outside of the constructor (which makes

sense in general, since there might still be subclasses to ini-

tialise after the constructor executes).

The number of annotations required in our experiments

is very low; on average about one annotation per warning

about initialisation, and per about 500 lines of code. In

fact, it was often the case that several warnings could be

removed by a single annotation, while in the worst case we

had to provide thirteen annotations to deal with one original

issue, when an escaping object was passed between many

calls before finally being captured in the field of another

new object. Because of our positive experiences and the

soundness guarantees our type system provides, we plan that

our implementation will replace the current release of Spec#.

We anticipated worse results than we actually discov-

ered, because the old approach to initialisation in Spec#

supported optional “non-delayed constructors”, which en-

courage a programming style in which extra code can be

(soundly) included in the body of a constructor, after ini-

tialisation is known to be completed. These “non-delayed

constructors” initialise the type-frames of an object bottom-

up rather than top-down; one must initialise the non-null

subclass fields before the superclass ones. This initialisation

must take place before the “base” (“super”, in Java) call is

made in the constructor body. In this way, one can be sure

that after the base call is made, the object has been initialised

at all type-frames, and therefore can take part in arbitrary

code. We chose not to support this feature in our type sys-

tem or implementation, mainly because it requires runtime

behaviour which is not typically supported by mainstream

OO languages; for example, these constructors cannot be

supported directly in Java or C#. We were pleasantly sur-

prised to find that, even given an initial codebase which in-

cluded many complex constructor definitions which allowed

the newly constructed object to escape in interesting ways,

our type system was able to handle virtually all cases eas-

ily. We judge this to be because the complicated construc-

tors still typically enforced an informal discipline for han-

dling escaped objects; such objects were sometimes captured

in the fields of other objects under initialisation, but almost

never had their own fields written to, and those fields which

were read from an escapee object typically only ever stored

committed values or null, at all program points. Thus, the

combination of free references (particularly inside construc-

tors), [Unclassified] annotations to support the passing of

escaped objects, and committed-only fields, allows to pro-

grammer to enforce these apparent informal policies in a

way which can be expressed and directly checked in our type

system.

7. Related Work

7.1 Avoiding Initialisation Bugs

We first revisit some of the related work discussed in Sec. 2,

with respect to a simple example of faulty object initialisa-

tion, shown in Fig. 10. A non-null type system must reject

the constructor of class C because its execution leads to a

null dereference exception. The constructor first initialises

field f with a reference to the (already initialised) object

p. The next statement is the one that causes the problem: it

stores the this reference in a field of the initialised object p,

which violates the deep initialisation guarantee of p. This vi-

olation is then exploited in the third statement by expecting

falsely that all objects reachable from p are initialised and,

thus, their non-null fields contain non-null values, which is

not the case for this.g.

Raw types prevent this example by forbidding raw refer-

ences to be stored in any field. So if setF’s parameter q is

typed as raw, the method body does not type check. If q is not



public class C

{

C! f, g;

public setF(C! q) { this.f = q; }

public C(C! p) {

this.setF(p); // alias p as this.f

this.f.setF(this); // assign this to p.f

this.g = p.f.g.f; // null ptr exception

}

}

Figure 10. Example of faulty object initialisation.

raw then the call this.f.setF(this) does not type check

because this is raw inside the constructor. However, while

this solution is type-safe, it prevents implementations such

as the first Node constructor in Fig. 1, which assigns objects

that are still under initialisation to all three fields. Delayed

types prevent the faulty example essentially by requiring of

the call this.f.setF(this) that this and this.f (that

is, p) have the same delay time, which is not the case be-

cause p is initialised, but this is not. We already argued in

the introduction that this treatment is sound, but makes the

system complex. The simplified version of delayed types im-

plemented in Spec# does not prevent the example, which il-

lustrates that this system is unsound! If both the receiver and

the parameter of setF are marked as delayed, the type sys-

tem assumes that both have the same delay time and permits

the assignment. However, this assumption is not (and can-

not) be checked at the call site, which causes the unsound-

ness.

Let’s now discuss how our system prevents the faulty ex-

ample from Fig. 10. Consider the second call to setF in C’s

constructor. The receiver of this call, this.f, is unclassi-

fied because this is not committed. Therefore, the call type

checks only if setF’s receiver is declared unclassified. The

argument of the call, this, can be typed with a free or un-

classified modifier. So the call type checks only if setF’s pa-

rameter q is declared free or unclassified. In both cases, the

field update in setF’s body is rejected by the type checker

(the receiver of the update is not free and the right-hand side

is not committed). This illustrates that our system prevents

storing objects that are not expected to be initialised in fields

of objects that are expected to be initialised, which prevents

the unsoundness.

7.2 Comparison with Masked Types

Since we believe Masked Types to be the most expressive

comparable approach to object initialisation, we provide a

more-detailed comparison with our approach here. Fig. 11

shows the running example from the Masked Types paper

[21]. Masked Types allow a programmer to flexibly express

a wide variety of different refinements of a class type. For

example, while the types Leaf and Binary are standard OO

class types, the type Binary\parent!
\left[root.parent]\right[root.parent] describes a

reference to a Binary object whose parent is not assigned,

and whose left and right fields may refer to a objects

which cannot be assumed to be fully initialised until the field

root.parent is assigned a value (this is called a condi-

tional mask on the fields). Using the various kinds of field

masks included in their type system, it is possible to stati-

cally describe arbitrary combinations of uninitialised fields

and mutually-dependent conditions under which masks can

be lifted, and the fields read from. A programmer can poten-

tially express precisely under which conditions a field can

be soundly assumed to be permanently initialised, on a per-

field basis. Furthermore, method and constructor signatures

are annotated with explicit effects which describe how the

mask information associated with references passed to the

call evolves during the method execution. In contrast to our

system, the programmer is not forced to initialise all non-

null fields before a constructor terminates; instead, a con-

structor can employ an effects annotation to make explicit

the state of each uninitialised field, potentially in terms of

conditional masks which can later be lifted in the client code.

Masked Types are highly expressive; they can encode

arbitrarily complicated idioms in a precise and statically-

checked way. But this complexity inevitably finds its way

into the type system itself, even at the source level. As we ex-

plained in our design goals, we believe that an important cri-

terion for widespread adoption of a type system is simplicity,

which encompasses both the conceptual understanding re-

quired to use the system, and the level of annotation required

for typical programming idioms. The Masked Types syntax

for annotations includes grammars for flexible effects anno-

tations and sequenced masks, abstractions over masks, con-

straints on these abstract masks, and so on. The concepts and

notations a programmer must learn in order to understand

and use this type system are both numerous and sophisti-

cated in nature. Furthermore, fully understanding the typing

rules can be quite subtle, e.g., for eliminating field masks:

“In general, if some dependencies form a strongly connected

component in which no mask depends on a mask outside the

component, they can all be removed together”. For these rea-

sons, we believe that the technical complexity and richness

of the type annotation language, while extremely powerful,

makes the system unsuitable for widespread use by program-

mers, which was our overall design aim.

A modified version of the binary tree example (using our

type system) is shown in Fig. 12. To be able to type the ex-

ample, we had to make two changes. Firstly, the original

example initialises the parent of the new Binary object

outside the constructor (in the last line of Fig. 11). Since

our system enforces that constructors initialise all non-null

fields, we added a default assignment of the parent field in



class Node {

Node! parent;

Node() effect *! -> *! { }

}

final class Leaf extends Node {

Leaf() effect *! -> parent! { }

}

final class Binary extends Node {

Node left, right;

Binary(Node\parent!\Node.sub[l.parent] ->

*[this.parent] l,

Node\parent!\Node.sub[r.parent] ->

*[this.parent] r)

effect *! -> parent!, left[this.parent],

right[this.parent]

{

this.left = l;

this.right = r;

l.parent = this;

r.parent = this;

}

}

Leaf\parent! l = new Leaf();

Leaf\parent! r = new Leaf();

Binary\parent!\left[root.parent]

\right[root.parent] root = new Binary(l, r);

root.parent = root; // Now fully initialised

Figure 11. Tree with back-pointers using masked types.

class Node. Secondly, the Binary constructor in the origi-

nal example assigns this to the parent field of the argu-

ments l and r. Our system does not permit these assign-

ments because this is free inside the constructor and, thus,

may be assigned only to fields of other free objects. How-

ever, l and r are considered committed in our example code.

The reason the masked types typing is sound (even though

it points the constructor arguments at an object under ini-

tialisation), is that the constructor signature builds in the

requirement that the l and r parameters passed must not

yet have had their parent fields initialised. Effectively, this

means that their constructor definition can only be used with

Leaf instances which are themselves still under initialisa-

tion. Our constructor, on the other hand, must be called with

initialised Leaf arguments (we could weaken this require-

ment my annotating the parameters as unclassified); in the

client code our Node constructor takes care of the default

initialisation for us. Note that our refactored code would re-

main typeable without extra annotations even if the Leaf

and Binary classes were not declared final, which is not

the case for the original code.

class Node {

Node! parent;

Node() { parent = this; }

}

class Leaf extends Node { }

class Binary extends Node {

Node! left, right;

Binary(Node! l, Node! r)

{

this.left = l;

this.right = r;

}

}

Leaf! l = new Leaf();

Leaf! r = new Leaf();

Binary! root = new Binary(l, r);

l.parent = root;

r.parent = root;

Figure 12. Tree with back-pointers in our type system.

The comparison of the two versions of the example il-

lustrates that our version reduces the annotation overhead

tremendously. We do not have to add a single annotation to

handle the initialisation of the cyclic structure6. Our system

does not directly support the deferral of initialisation until af-

ter the constructor has terminated; if such a deferred initial-

isation is required, the constructor needs to assign a dummy

object to the non-null field, which gets replaced later (similar

dummy assignments are sometimes necessary for local vari-

ables in Java and C# to pass the definite assignment checks).

However, the implementation is also more general; we do

not require Leaf objects to be partially initialised in order to

add them to Binary objects.

We believe that these differences illustrate different mo-

tivations. Masked Types provide a very general and expres-

sive solution (which can handle more-complex typing disci-

plines with regard to initialisation), and also tackles alterna-

tive problems such as object recycling, which our paper does

not. Our motivation, on the other hand, is very much to keep

to a proposal which is as simple and lightweight as possible

for programmers to be able to use for the specific problem

of object initialisation.

7.3 Other Related Work

Haack and Poll present a type system for object immutabil-

ity [12], which has some similarities to our work. As they

remark in Section 4 of their paper, the initialisation prob-

lem for immutability is simpler because one does not need

6 Although, with the committed-only-fields extension (Sec. 5.7) we need a

single annotation on the field parent to override our chosen default.



to handle complex interactions between immutable and mu-

table references, unlike the problems of initialising mutual or

cyclic data structures with non-null types. The same is true

for the Javari work of Tschantz and Ernst [24]. However,

the work of Haack and Poll can support initialisation of im-

mutable structures by introducing extra generic “qualifier”

arguments to methods, and using these to explicitly scope

and then end the initialisation phase for a group of objects.

This requires extra annotation overhead, although some an-

notations can be inferred for their system. In recent work,

Zibin et al. present a type system which combines ownership

types with immutability [25]. This system can handle cyclic

data structures, provided they are initialised under a single

common owner object; in our terminology, the owner’s com-

mitment point can be used to implicitly define the commit-

ment point of all owned objects, which can be initialised

flexibly in the meantime.

Various implementations and practical works have been

based on the original proposals of Fähndrich and Leino [10]

(with their “raw types” approach to object initialisation).

Several implementations have been based on pluggable

types frameworks [4]. Andreae et al. developed the Java-

COP framework, and implemented a non-null type checker

in the framework [2]. Ekman and Hedin [7] have written a

pluggable types implementation of the type system on top of

their JAstAdd compiler framework [8]. Papi et al. have de-

veloped the Checker framework [20], to facilitate the flexi-

ble development of type systems based on customisable Java

annotations. This framework has since been used to develop

many type checkers for different properties [9]. As future

work, we aim to develop a pluggable types implementation

using one of these frameworks, so that we can also evaluate

our design against Java code.

Hubert et al. [14] present a machine-checked analysis for

inferring non-null types, and Hubert has also extended this

work to the level of Java bytecode [13]. Male et al. [16]

also present a bytecode verification for non-null types, while

Chalin and James [5] present an empirical study on the use

(and defaults) of non-null types. All of these works take

essentially the original “raw types” approach of Fähndrich

and Leino (if any) to object initialisation; that is, they cannot

handle examples involving mutual or cyclic initialisation

(with the exception of some special cases for the “this”

reference in the work of Hubert et al.).

Spoto and Ernst [22] have recently presented an inter-

procedural flow analysis (implemented in the Julia tool) for

inferring “raw” annotations from unannotated Java byte-

code; their technique can also be broadly applied to other

initialisation-related properties.

In other recent work, Zibin et al. [26] present a type-

system for object initialisation in the open-source language

X10. Their work has similar design goals to ours in terms of

simplicity and soundness, but they are more restrictive; they

require that dynamic method calls be forbidden on objects

under initialisation (for the sake of ease of understanding by

the user). The implemented version of their type system also

does not support cyclic patterns of initialisation, although a

possible extension to handle this is sketched.

8. Future Work and Conclusions

8.1 Future Work

Since the annotation efforts required in our experiments

turned out to be very mechanical, it seems natural to in-

vestigate the possibility of developing inference tools to

provide or suggest annotations for existing code. We have

not yet seen many cases in practice where such inference

would need to be sophisticated, but in principle there are

some interesting design choices to be made. For example,

so far whenever we found that a method was called with

a non-committed actual parameter, we tried annotating the

method formal parameter with [Unclassified]. However, in

cases where such a method is only called with free actual

parameters, one might gain flexibility by choosing a [Free]

annotation; this would allow the passed parameter to have

its fields written to. So far in the code we have examined,

we have not seen any cases where an object escapes from

its constructor and then has its fields written to via other

methods; it seems that this (difficult to reason about) coding

pattern is typically avoided.

The experimental results obtained with our implementa-

tion are very promising, and we plan to extend our experi-

ments to further codebases. Since Spec# is a superset of C#

2.0, one possibility is to port existing C# codebases to Spec#,

allowing us to experiment with annotating widely-used class

implementations. We plan to migrate our implementation to

the open source version of the Spec# compiler. As mentioned

above, we also plan to implement our type system in a plug-

gable types framework for Java; this will provide a simple

way to access large bodies of critical code, and see how well

our annotations work for, e.g., the Java standard libraries.

It will also provide a more convenient means for other re-

searchers to experiment with using our type system directly.

We are also interested in developing prototype implemen-

tations for other suitable languages, and to apply our type

system to the initialisation of invariants other than non-null

types. We have been informed that the Eiffel development

team plan to adopt and implement our approach to handle

initialisation in the Eiffel language [18].

8.2 Conclusions

We have presented a novel type-based approach to object

initialisation, based on a simple distinction between objects

known to be under initialisation, and objects known to be

initialised. The core of our system has been formalised and

proven sound, specifically for the problem of handling ob-

ject initialisation for non-null types, but in a way which gen-

eralises to other monotonic object invariants such as im-

mutability. Our type system is implemented, and experi-



ments on large codebases have yielded promising results

both in terms of expressiveness and ease of use. While our

implementation is based around Spec#, the type system itself

is suitable for use in any heap-based language with explicit

constructors (or an equivalent language concept).

Since the goal of our work was to design a system suitable

for mainstream use, let us revisit the design goals which we

highlighted in the introduction.

Our type system is modular; each method is type-checked

independently of the others, and the usual rules for co- and

contra-variant method overriding allows our analysis to re-

main ignorant of overriding subclass implementations.

The type system is sound; we have provided a detailed

formalisation for a small language which illustrates the criti-

cal aspects of the problem, and the full soundness proofs are

available online in our technical report [23].

Our presented solution is suitably expressive; our experi-

ments on large volumes of code show that the defaults in our

type system handle the vast majority of constructors; almost

all remaining cases can be dealt with simply by the straight-

forward addition of type annotations.

Last, but not least, our type system is simple. Understand-

ing how to use the system requires classifying objects into

just two initialisation states, and handling references using

just three initialisation modifiers (the most common being

the default). Our experiments show that the modifiers are

rarely needed, and are generally sufficient to handle interest-

ing initialisation patterns which do arise, both in practice and

in research papers. We believe that the conceptual simplicity

of our approach, along with its low annotation burden and

lack of required runtime support, make it a promising candi-

date for future use in mainstream programming languages.
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