
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Automating Deductive Verification
for Weak-Memory Programs (extended version)

Alexander J. Summers · Peter Müller

Received: date / Accepted: date

Abstract Writing correct programs for weak memory
models such as the C11 memory model is challenging
because of the weak consistency guarantees these mod-
els provide. The first program logics for the verification
of such programs have recently been proposed, but their
usage has been limited thus far to manual proofs. Au-
tomating proofs in these logics via first-order solvers is
non-trivial, due to features such as higher-order asser-
tions, modalities and rich permission resources.

In this paper, we provide the first encoding of a weak
memory program logic using existing deductive verifi-
cation tools. Our work enables, for the first time, the
(unbounded) verification of C11 programs at the level
of abstraction provided by the program logics; the only
necessary user interaction is in the form of specifica-
tions written in the program logic and, in rare cases,
ghost operations.

We tackle three recent program logics: Relaxed Sep-
aration Logic and two forms of Fenced Separation Logic,
and show how these can be encoded using the Viper ver-
ification infrastructure. In doing so, we illustrate several
novel encoding techniques which could be employed for
other logics. Our work is implemented, and has been
evaluated on examples from existing papers as well as
the Facebook open-source Folly library.

Keywords Relaxed separation logic (RSL) · Fenced
separation logic (FSL) · Viper encoding · Weak
Memory · Program Verification

Department of Computer Science
ETH Zurich
Universitätstrasse 6
8092 Zurich
Switzerland
Tel.: +41 44 632 81 70
E-mail: alexander.summers@inf.ethz.ch
E-mail: peter.mueller@inf.ethz.ch

1 Introduction

Reasoning about programs running on weak memory
is challenging because weak memory models admit ex-
ecutions that are not sequentially consistent, that is,
cannot be explained by a sequential interleaving of con-
current threads. Moreover, weak-memory programs em-
ploy a range of operations to access memory, which re-
quire dedicated reasoning techniques. These operations
include fences as well as read and write accesses with
varying degrees of synchronisation. The complexity of
the underlying memory model and the non-existence (in
general) of a single ordering of events consistent with
the observations of all program threads makes writing
and reasoning about code combining these primitives
extremely difficult1.

Some of these challenges are addressed by the first
program logics for weak-memory programs, in partic-
ular, Relaxed Separation Logic (RSL) [43], GPS [41],
Fenced Separation Logic (FSL) [13], and FSL++ [14].
These logics apply to interesting classes of C11 pro-
grams, but their tool support has been limited to em-
beddings in Coq. Verification based on these embed-
dings requires substantial user interaction, which is an
obstacle to applying and evaluating these logics.

In this paper, we present a novel approach to au-
tomating deductive verification for weak memory pro-
grams. We encode large fractions of RSL, FSL, and
FSL++ (collectively referred to as the RSL logics) into
the intermediate verification language Viper [26], and
use the existing Viper verification backends to reason
automatically about the encoded programs. This en-
coding reduces all concurrency and weak-memory fea-
tures as well as logical features such as higher-order

1 For a general introduction to these reasoning challenges and
issues in defining the model itself, we refer the reader to [43].



2 Alexander J. Summers, Peter Müller

assertions and custom modalities to a much simpler se-
quential logic.

Defining a verification technique via an encoding
into Viper is much more lightweight than developing
a dedicated verifier from scratch, since we can reuse
the existing automation for a variety of advanced pro-
gram reasoning features. Compared to an embedding
into an interactive theorem prover such as Coq, our
approach leads to a significantly higher degree of au-
tomation than that typically achieved through tactics.
Moreover, it allows users to interact with the verifier
on the abstraction level of source code and annota-
tions, without exposing the underlying formalism. Ver-
ification in Coq can provide foundational guarantees,
whereas in our approach, errors in the encoding or bugs
in the verifier could potentially invalidate verification
results. We mitigate the former risk by a soundness ar-
gument for our encoding and the latter by the use of
a mature verification system. We are convinced that
both approaches are necessary: foundational verifica-
tion is ideal for meta-theory development and applica-
tion areas such as safety-critical systems, whereas our
approach is well-suited for prototyping and evaluating
logics, for making a verification technique applicable by
a wider user base, and for applying it more efficiently.

The contributions of this paper are:

1. The first automated deductive verification approach
for weak-memory logics. We demonstrate the effec-
tiveness of this approach on examples from the lit-
erature, which are available online [28].

2. An encoding of large fractions of RSL, FSL, and
FSL++ into Viper. Various aspects of this encod-
ing (such as the treatment of higher-order features
and modalities, as well as the overall proof search
strategy) are generic and can be reused to encode
other advanced separation logics.

3. A prototype implementation, which is available on-
line [32, 33].

4. A proof sketch for the soundness of our encoding.

This paper is an extended version of our TACAS
paper [38]. It provides details of our support for rewrit-
ing atomic invariants (Sec. 3.3) and of our encoding
of compare-and-swap operations (Sec. 5), an extension
of our core techniques to support ghost state as em-
ployed in FSL++ (Sec. 4.3), as well as a proof sketch
of soundness and a discussion of completeness relative
to the RSL logics (Sec. 6).

1.1 Related Work

The existing weak-memory logics RSL [43], GPS [41],
FSL [13], and FSL++ [14] have been formalised in Coq;

Kaiser et al. [19] also encoded RSL into Iris [21]. These
formalisations were used to verify small examples. The
proofs were constructed mostly manually, whereas our
approach automates most of the proof steps. As shown
in our evaluation, our approach reduces the overhead
by more than an order of magnitude. The degree of
automation in Coq could be increased through logic-
specific tactics (e.g. [9, 35]), whereas our approach ben-
efits from Viper’s automation for the intermediate lan-
guage, which is independent of the encoded logic.

Jacobs [17] proposes a program logic for the TSO
memory model that has been encoded in VeriFast [18].
Applying this encoding requires a substantial amount
of annotations, whereas our approach provides a higher
degree of automation and handles the more-complex
C11 memory model.

Alglave et al. [3] propose a proof method for parallel
or distributed programs running on weakly-consistent
memory, which allows one to prove invariants such as
mutual exclusion of a synchronization algorithm. The
method relies on a so-called communication semantics
that characterises the permitted inter-process commu-
nications. The proof is then decomposed into showing
that the communication semantics implies the intended
invariants, and that all executions permitted by the
weakly-consistent memory comply with the communi-
cation semantics. Alglave et al. focus on a theoretical
exposition, whereas our work aims to automate proofs
for weak-memory programs.

Dan et al. [12] combine a static program analy-
sis together with a program transformation to over-
approximate all possible executions under weak mem-
ory into a single sequentially-consistent program exe-
cution. The resulting program can then be verified us-
ing standard verification techniques for sequential con-
sistency. Travkin et al. [40] apply a similar approach,
without using static analysis. Both approaches reflect
all possible executions of a weak-memory program, for
instance, to support subsequent model checking. How-
ever, they do not enable modular reasoning principles
for weak memory such as those provided by the RSL
logics that we automate.

Weak-memory reasoning has been addressed using
model checking (e.g. [1, 2, 7]), by enumerating thread
interleavings and taking into account the reorderings
permitted by weak memory. To improve the scalability
of model checking, Kokologiannakis et al. [20] propose
an alternative approach, which enumerates all consis-
tent execution graphs of a program up to a bound. This
approach has been implemented in a stateless model
checker for C11. These approaches are fully automatic,
but do not analyse code modularly, which is e.g. im-
portant for verifying libraries independently from their



Automating Deductive Verification for Weak-Memory Programs (extended version) 3

s ::= l := allocna() | l := allocρ(Q) | [l]σ := e | x := [l]σ
| fenceacq | fencerel(A) | x := CASτ (l, e1, e2)

where ρ ∈ {acq, RMW}, σ ::= na | τ ,
τ ∈ {acq, rel, rel_acq, rlx}

Fig. 1 Syntax for memory accesses. na indicates a non-atomic
operation; τ indicates an atomic access mode (as defined in
C11), discussed in later sections. ρ, and assertions A and in-
variants Q are program annotations, needed as input for our
encoding. Expressions e include boolean and arithmetic opera-
tions, but no heap accesses (as is standard for separation logics).
We assume that source programs are type-checked.

clients. Deductive verification enables modular proofs
by requiring specifications at function boundaries. Such
specifications can preserve arbitrarily-precise informa-
tion about the (unbounded2) behaviour of a program’s
constituent parts.

Automating logics via encodings into intermediate
verification languages is a proven approach, as witnessed
by the many existing verifiers (e.g. [10, 11, 23, 24])
which target Boogie [4] or Why3 [5]. Our work is the
first that applies this approach to logics for weak-memory
concurrency. Our encoding benefits from Viper’s native
support for separation-logic-style reasoning and several
advanced features such as quantified permissions and
permission introspection [26, 25], which are not avail-
able in other intermediate verification languages.

An overview of verification challenges and techniques
for weak memory, in particular, causally-consistent mem-
ory, is provided by Lahav [22].

1.2 Outline

The next four sections present our encoding for the core
features of the C11 memory model: we discuss non-
atomic locations in Sec. 2, release-acquire accesses in
Sec. 3, fences in Sec. 4, and compare-and-swap in Sec. 5.
We discuss soundness and completeness of our encoding
in Sec. 6; this includes details of the restrictions of our
work compared with general manual proofs based on
the original logics. We evaluate our approach in Sec. 7
including a comparison with all available pre-existing
examples using the original papers; Sec. 8 then con-
cludes. Further details of our encoding and examples
are available in our accompanying technical report [39].
A prototype implementation of our encoding (with all
examples) is available as an artifact [32, 33].

2 i.e. verifying all program behaviours, without bounding the
number of threads, loop iterations, heap size and so on.

A ::= e | l k7→ e | A1 ∗A2 | e⇒ A | (e ? A1 : A2)
| Uninit(l) | Acq(l,Q) | Rel(l,Q) | Init(l)
| 4A | 5A | RMWAcq(l,Q)

Fig. 2 Assertion syntax of the RSL logics. The top row of con-
structs are standard for separation logics; those in the second
row are specific to the RSL logics, and explained throughout
the paper. Invariants Q are functions from values to assertions
(cf. Sec. 3).

{true} l := allocna() {Uninit(l)}

{l 17→ _ ∨ Uninit(l)} [l]na := e {l 17→ e}

{l k7→ e} x := [l]na {x = e ∗ l k7→ e}

(l k7→ e ∗ l k′7→ e′)⇔ (e = e′ ∗ l k+k′7→ e)

{A1} s {A2}

{A1 ∗A′} s {A2 ∗A′}

{A1} s1 {A2} {A3} s2 {A4}

{A1 ∗A3} s1||s2 {A2 ∗A4}

Fig. 3 Adapted RSL rules for non-atomics, along with the
frame and parallel composition rules. Read access requires a
non-zero permission. Write access requires either write permis-
sion or that the location is uninitialised. The underscore _
stands for an arbitrary value. Here and throughout the paper,
permission amounts k are strictly positive: 0 < k ≤ 1.

2 Non-atomic Locations

We present our encoding for a small imperative pro-
gramming language similar to the languages supported
by the RSL logics. C11 supports non-atomic memory
accesses and different forms of atomic accesses. The ac-
cess operations are summarised in Fig. 1. We adopt the
common simplifying assumption [43, 41] that memory
locations are partitioned into those accessed only via
non-atomic accesses (non-atomic locations), and those
accessed only via C11 atomics (atomic locations). Read
and write statements are parameterised by a mode σ,
which is either na (non-atomic) or one of the atomic ac-
cess modes τ . We focus on non-atomic accesses in this
section and discuss atomics in subsequent sections.

2.1 RSL Proof Rules

Non-atomic memory accesses come with no synchroni-
sation guarantees; programmers need to ensure that all
accesses to non-atomic locations are data-race free. The



4 Alexander J. Summers, Peter Müller

RSL logics enforce this requirement using standard sep-
aration logic [27, 31]: programs that race on non-atomic
locations cannot be verified. We show the syntax of as-
sertions in Fig. 2, which will be explained throughout
the paper. A points-to assertion l k7→ e denotes a trans-
ferrable resource, providing permission to access the lo-
cation l, and expressing that l has been initialised and
its current value is e. Here, k is a fraction 0 < k ≤ 1;
k = 1 denotes the full (or exclusive) permission to read
and write location l, whereas 0 < k < 1 provides (non-
exclusive) read access [8]. Points-to resources can be
split and recombined, but never duplicated or forged;
when transferring such a resource to another thread it
is removed from the current one, avoiding data races
by construction. The RSL assertion Uninit(l) expresses
exclusive access to a location l that has been allocated,
but not yet initialised; l may be written to but not
read from. The main proof rules for non-atomic lo-
cations, adapted from RSL [43], are shown in Fig. 3.
The latter two rules included are the frame rule, used
for locally reasoning about only the relevant logical re-
sources (and preserving information about the others)
in any given proof step, and the rule for parallel com-
position, which allows modular proofs about parallel
threads. Other statement-level rules for e.g. sequential
composition or if-conditions are standard, and their en-
codings into Viper straightforward; we refer the reader
to [43] for a full set of these additional proof rules.

2.2 Encoding

The Viper intermediate verification language [26] sup-
ports an assertion syntax based on that of Implicit Dy-
namic Frames [36], a program logic related to separa-
tion logic [29], but which separates permissions from
value information. Viper is object-based; the only mem-
ory locations are field locations e.f (in which e is a ref-
erence, and f a field name). Permissions to access these
heap locations are described by accessibility predicates
of the form acc(e.f, k), where k is a fraction as for
points-to predicates above (k defaults to 1). Assertions
that do not contain accessibility predicates are called
pure. Unlike in separation logics, heap locations may
be read in pure assertions.

We model C-like memory locations l using a field
val of a Viper reference l. Consequently, a separation
logic assertion l

k7→ e (denoting k permission to the
location l storing value e) is represented in Viper as
acc(l.val, k) && l.val == e. We assume that mem-
ory locations have type int, but a generalisation is triv-
ial. Viper’s conjunction && treats permissions like a sep-
arating conjunction, requiring the sum of the permis-

field val: Int
field init: Bool

bbUninit(l)cc  acc(l.val) && acc(l.init) && !l.init

bbl k7→ ecc  acc(l.val, k) && acc(l.init, k) &&
l.val == bbecc && l.init

[[l := allocna()]]  l := new(); inhale bbUninit(l)cc
[[x := [l]na]]  assert l.init; x := l.val
[[[l]na := e]]  l.val := bbecc; l.init := true

Fig. 4 Viper encoding of the RSL assertions and the rules for
non-atomic memory accesses from Fig. 3.

sions in each conjunct, and acts as logical conjunction
for pure assertions (just as ∗ in separation logic).

Viper provides two main statements for encoding
proof rules: inhale A adds the permissions denoted by
the assertion A to the current state, and assumes pure
assertions in A. This can be used to model gaining new
resources, e.g., acquiring a lock in the source program.
Dually, exhale A checks that the current state satisfies
A (otherwise a verification error occurs), and removes
the permissions that A denotes; the values of any loca-
tions to which no permission remains are havoced (as-
signed arbitrary values). For example, when forking a
new thread, its precondition is exhaled to transfer the
necessary resources from the forking thread. Inhale and
exhale statements can be seen as the permission-aware
analogues of the assume and assert statements of first-
order verification languages [24]. Viper also provides
an assert statement; analogous to exhale, assert A
checks that the current state satisfies A, but does not
remove any permissions.

The encoding of the rules for non-atomics from Fig. 3
is presented in Fig. 4. bbAcc  . . . denotes the encod-
ing of an RSL assertion A as a Viper assertion, and
analogously [[s]]  . . . for source-level statements s.

The first two lines introduce two fields, val and
init. Since Viper does not have a built-in notion of
initialisation, we use the boolean init field to reflect
whether a memory location has been initialised. The
assertion encodings use both fields and the correspond-
ing permissions. Allocation is modelled by obtaining
a fresh reference (via new()) and inhaling permissions
to its val and init fields; assuming !l.init reflects
that the location is not yet initialised. Viper implic-
itly checks the necessary permissions for field accesses
(verification fails otherwise). Hence, the translation of a
non-atomic read needs to check explicitly only that the
read location is initialised before obtaining its value.
Analogously, the translation of a non-atomic write only
stores the value and records that the location is now
initialised.



Automating Deductive Verification for Weak-Memory Programs (extended version) 5

Q1 ≡ (V 6= 0⇒ a
17→ 42) Q2 ≡ (V 6= 0⇒ b

17→ 7)

{true}
a := allocna(); b := allocna(); l := allocacq(Q1∗Q2); [l]rel := 0

{Acq(l,Q1) ∗ Init(l)}
while([l]acq == 0);
x := [a]na
[a]na := x+ 1
{true ∗ a 17→ 43}

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
{Uninit(a) ∗ Uninit(b) ∗ Rel(l,Q1∗Q2)}

[a]na := 42
[b]na := 7
[l]rel := 1
{true ∗ Init(l)}

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
{Acq(l,Q2) ∗ Init(l)}
while([l]acq == 0);
y := [b]na
[b]na := y + 1
{true ∗ b 17→ 8}

{true ∗ a 17→ 43 ∗ b 17→ 8 ∗ Init(l)}

Fig. 5 An example illustrating “message passing” of non-atomic ownership, using release acquire atomics (inspired by an example
from [13]). Annotations are shown in blue. This example corresponds to RelAcqDblMsgPassSplit in our evaluation (Sec. 7).

Note that Viper’s implicit permission checks are both
necessary and sufficient to encode the RSL rules in
Fig. 3. In particular, the assertions l 17→ _ and Uninit(l)
both provide the permissions to write to location l. By
including acc(l.val) in the encoding of both asser-
tions3, we avoid the disjunction of the RSL rule.

Like the RSL logics, our approach requires program-
mers to annotate their code with access modes for lo-
cations (as part of the alloc statement), and specifica-
tions such as pre and postconditions for methods and
threads (as well as loop invariants and, in rare cases,
ghost statements). Given these inputs, Viper constructs
the proof automatically. In particular, it automatically
proves entailments, and splits and combines fractional
permissions (hence, the equivalence in Fig. 3 need not
be encoded). Automation can be increased further by
inferring some of the required assertions, but this is or-
thogonal to the encoding presented in this paper.

3 Release-Acquire Atomics

The simplest form of C11 atomic memory accesses are
release write and acquire read operations. They can be
used to synchronise the transfer of ownership of (and
information about) other, non-atomic locations, using
a message passing idiom, illustrated by the example in
Fig. 5. This program allocates two non-atomic locations
a and b, and an atomic location l (initialised to 0),
which is used to synchronise the three threads that are
spawned afterwards. The middle thread makes changes
to the non-atomics a and b, and then signals completion
via a release write of 1 to l; in the separation logic sense
of reasoning about this program, the thread gives up
ownership of the non-atomic locations via this signal.
The other threads loop attempting to acquire-read a

3 By convention, we use math-font variables for meta/logi-
cal variables and those from source programs (e.g. in Uninit(l);
we use corresponding code-font variables for the Viper vari-
ables corresponding to these source-level variables (e.g. in
acc(l.val)).

non-zero value from l. Once they do, they each gain
ownership of one non-atomic location via the acquire
read of 1 and access that location. The release write and
acquire reads of value 1 enforce ordering constraints on
the non-atomic accesses, preventing the left and right
threads from racing with the middle one.

3.1 RSL Proof Rules

The RSL logics capture message-passing idioms by as-
sociating a location invariant Q with each atomic loca-
tion. Such an invariant is a function from values to as-
sertions; we represent such functions as assertions with
a distinguished variable symbol V as parameter. Loca-
tion invariants prescribe the intended ownership that
a thread obtains when performing an acquire read of
value V from the location, and that must correspond-
ingly be given up by a thread performing a release write.
The main proof rules [43] are shown in Fig. 6.

When allocating an atomic location for release/ac-
quire accesses (first proof rule), a location invariant Q
must be chosen (as an annotation on the allocation).
The assertions Rel(l,Q) and Acq(l,Q) record the in-
variant to be used with subsequent release writes and
acquire reads. To perform a release write of value e

(second rule), a thread must hold the Rel(l,Q) asser-
tion and give up the assertion Q[e/V]. For example, the
line [l]rel := 1 in Fig. 5 causes the middle thread to
give up ownership of both non-atomic locations a and
b. The assertion Init(l) represents that atomic location l
is initialised; both Init(l) and Rel(l,Q) are duplicable as-
sertions: once obtained, they can be passed to multiple
threads.

Multiple acquire reads might read the value writ-
ten by a single release write operation; RSL prevents
ownership of the transferred resources from being ob-
tained (unsoundly) by multiple readers in two ways.
First, Acq(l,Q) assertions cannot be duplicated, only
split by partitioning the invariant Q into disjoint parts.



6 Alexander J. Summers, Peter Müller

{true} l := allocacq(Q) {Rel(l,Q) ∗ Acq(l,Q)}

{Q(e) ∗ Rel(l,Q)} [l]rel := e {Init(l) ∗ Rel(l,Q)}

{Init(l) ∗ Acq(l,Q)} x := [l]acq {Q[x/V] ∗ Acq(l, (V 6= x⇒ Q))}

Init(l) ⇔ Init(l) ∗ Init(l) Rel(l,Q) ⇔ Rel(l,Q) ∗ Rel(l,Q)

Acq(l,Q1 ∗ Q2) ⇔ Acq(l,Q1) ∗ Acq(l,Q2)

Q1 |= Q2 ⇒ Acq(l,Q1) |= Acq(l,Q2)

Fig. 6 Adapted RSL rules for release-acquire atomics. Loca-
tion invariants Q are parameterised by the value read from or
written to the location. This value is represented by the free
variable V in location invariants. Q(e) denotes Q with e substi-
tuted for V.

For example, in Fig. 5, Acq(l,Q1) is given to the left
thread, and Acq(l,Q2) to the right. Second, the rule for
acquire reads adjusts the invariant in the Acq assertion
such that subsequent reads of the same value will not
obtain any ownership.

3.2 Encoding

A key challenge for encoding the above proof rules is
that Rel and Acq are parameterised by the invariant
Q; higher-order assertions are not directly supported
in Viper. However, for a given program, only finitely
many such parameterisations will be required, which
allows us to apply defunctionalisation [30], as follows.
Given an annotated program, we assign a unique in-
dex to each syntactically-occurring invariant Q (in par-
ticular, in allocation statements, and as parameters to
Rel and Acq assertions in specifications). This allows
us to parameterise Viper-level assertions with indices
rather than other assertions and, thus, avoids higher-
order assertions. Furthermore, we assign unique indices
to all immediate conjuncts of these invariants, which
allows us to refer to individual conjunctions when an
Acq assertion is split according to the penultimate line
of Fig. 6. We write indices for the set of indices used
in the current example. For each i in indices, we write
inv(i) for the invariant which i indexes. For an invari-
ant Q, we write 〈Q〉 for its index, and 〈〈Q〉〉 for the set
of indices assigned to its immediate conjuncts.

Our encoding of the RSL rules from Fig. 6 is sum-
marised in Fig. 7. In contrast to non-atomic locations,
RSL uses an Init(l), but no Uninit(l) assertion for atomic
locations l; that is, it tracks only positive initialisation
information. We represent the fact that a location is

initialised by the presence of some permission to the
init field; the value of this field is irrelevant. To en-
code duplicable assertions such as Init(l), we use frac-
tional permissions. We represent Init(l) with some non-
zero permission to l.init. Since the concrete fraction
is irrelevant, we use Viper’s wildcard permissions [26],
which represent unknown positive permission amounts.
When exhaled, these amounts are chosen such that the
amount exhaled will be strictly smaller than the amount
held (verification fails if no permission is held) [16]. So
after inhaling an Init(l) assertion (that is, a wildcard
permission), it is possible to exhale two wildcard per-
missions, corresponding to two Init(l) assertions.

We represent a Rel(l,Q) assertion using an addi-
tional Viper field rel: Permission to this field represents
the Rel assertion for some invariant, while rel’s value
indicates the index of the specific invariant Q. Since Rel
is duplicable, we employ again a wildcard permission
in the SomeRel(l) macro4. The encoding of a release
write uses this macro to assert that some Rel assertion
is held, according to Fig. 6. It subsequently branches
on the value of the rel field to exhale the appropriate
invariant.

Analogously to Rel, we represent an Acq assertion
via an additional Viper field acq. However, to support
splitting, we represent the invariant in a more fine-
grained way, by recording individual conjuncts sepa-
rately. Each conjunct i of the invariant is modelled as
a predicate instance AcqConjunct(l, i), which can be
inhaled and exhaled individually. A predicate instance
represents a resource (just like a field permission), but
can be parameterised by multiple parameters (here, the
location and the invariant index). AcqConjunct is an
abstract predicate, that is, has no definition; this re-
flects that the predicate serves merely as a resource to
track and prescribe which invariants are inhaled during
a subsequent acquire read.

Representing an invariant via multiple AcqConjunct
instances handles the common case that invariants are
split along top-level conjuncts, as in Fig. 5. More com-
plex splits can be supported through additional an-
notations, as explained in Sec. 3.3. To enable split-
ting, we encode the Acq assertion for some invariant us-
ing a wildcard permission (the SomeAcq macro), anal-
ogously to Rel. However, since Acq is not duplicable
for any given invariant, we use full permissions to the
AcqConjunct predicates representing the invariant con-
juncts.

4 Viper macros can be defined for assertions or statements,
and are syntactically expanded (and their arguments substi-
tuted) on use.



Automating Deductive Verification for Weak-Memory Programs (extended version) 7

field rel: Int
field acq: Bool
predicate AcqConjunct(l: Ref, idx: Int)

function valsRead(l: Ref, i: Int): Set[Int]
requires AcqConjunct(l, i)

define SomeRel(l) acc(l.rel, wildcard)
define SomeAcq(l) acc(l.acq, wildcard) &&

l.acq == true

bbInit(l)cc  acc(l.init, wildcard)
bbRel(l,Q)cc  SomeRel(l) && l.rel == 〈Q〉
bbAcq(l,Q)cc  SomeAcq(l) &&

(foreach i in 〈〈Q〉〉:
AcqConjunct(l, i) && valsRead(l, i) == Set();

end)

[[l := allocacq(Q)]]  l := new();
inhale bbRel(l,Q)cc && bbAcq(l,Q)cc

[[[l]rel := e]]  assert SomeRel(l);
foreach i in indices do
if (i == l.rel) { exhale bbinv(i)[e/V]cc };

end
inhale bbInit(l)cc

[[x := [l]acq]]  assert bbInit(l)cc && SomeAcq(l);
x := havoc(); // unknown Int
foreach i in indices do

if (perm(AcqConjunct(l, i)) == 1 &&
!(x in valsRead(l, i)))

{
inhale bbinv(i)[x/V]cc
tmpSet := valsRead(l, i)
exhale AcqConjunct(l, i)
inhale AcqConjunct(l, i) &&
valsRead(l,i) == tmpSet union Set(x)

}
end

Fig. 7 Viper encoding of the RSL rules for release-acquire
atomics from Fig. 6. The operations in italics (e.g. foreach) are
expanded statically in our encoding into conjunctions or state-
ment sequences. The value of the acq field will be explained in
Sec. 5.

Allocation of an atomic location obtains a fresh ref-
erence and inhales the Rel and Acq() predicates for the
chosen location invariant Q.

A release write is encoded by checking that some
Rel assertion is held, and then exhaling the associated
invariant for the value written. The foreach statement
is unrolled statically; together with the if-statement, it
determines the invariant to be exhaled by comparing all
possible invariant indices to the index stored in the rel
field of the updated location. Moreover, the encoding
records that the location is initialised.

The RSL rule for acquire reads adjusts the Acq in-
variant by obliterating the assertion for the value read.
Instead of directly representing the adjusted invariant

(which would complicate our numbering scheme), we
track the set of values read as state in our encoding.
For each AcqConjunct(l, i) predicate, we record the
values that have been read from l and for which the
invariant with index i was already claimed. To avoid
mutable maps in our encoding, we complement each
AcqConjunct predicate instance with an (uninterpreted)
Viper function valsRead(l, i), returning a set of val-
ues, and update information about this function explic-
itly when a value is read.

An acquire read checks that the location is initialised
and that we have some Acq assertion for the location.
It assigns an unknown value to the lhs variable x, which
is subsequently constrained by the invariant associated
with the Acq assertion as follows: We check for each
index whether we both currently hold an AcqConjunct
predicate for that index5, and if so, have not previously
read the value x from that conjunct of our invariant.
If these checks succeed, we inhale the indexed invariant
for x, and then include x in the values read. Viper’s
heap-dependent functions are mathematical functions
of their parameters and the resources stated in their
preconditions (here, AcqConjunct(l,i)). Consequently,
exhaling and re-inhaling the function’s precondition re-
moves all prior information about the function value,
which is then constrained to be the union of its previ-
ous value (stored in variable tmpSet) and the newly-
read value x.

3.3 Rewriting Invariants

The encoding described so far supports automatically
splitting and conjoining the invariants of Acq assertions
according to the penultimate line of Fig. 6. Beyond that,
it is sometimes necessary to rewrite these invariants us-
ing general entailment reasoning according to the fi-
nal line of Fig. 6, for instance, when two programmer-
annotated assertions are equivalent, but not syntacti-
cally identical.

We support rewriting invariants by providing a ghost
statement rewrite Acq(l,Q) as Acq(l,Q′) which pro-
grammers can manually insert to express that invariant
Q should be rewritten to Q′. This statement gives rise
to a proof obligation that checks the entailment be-
tween the original invariant Q and the new invariant
Q′, for all values of V and in all states.

In RSL, rewriting invariants is a side condition of a
standard rule of consequence step (cf. Fig. 6). Such side
conditions can be encoded in Viper via a conditional
statement, where one branch checks the side condition

5 A perm expression yields the permission fraction held for a
field or predicate instance.



8 Alexander J. Summers, Peter Müller

[[rewrite Acq(l,Q) as Acq(l,Q′)]]  
assert SomeAcq(l)
var tmpBool : Bool
tmpBool := havoc()

if(tmpBool) { // check rewriting is justified

// remove all permissions from current state
exhale forall r: Ref :: r != null ==>

acc(r.init, perm(r.init))
exhale forall r: Ref :: r != null ==>

acc(r.val, perm(r.val))
exhale forall r: Ref :: r != null ==>

acc(r.rel, perm(r.rel))
exhale forall r: Ref :: r != null ==>

acc(r.acq, perm(r.acq))
// analogously for other fields and predicates
// in the generated Viper program

var v :Int
v := havoc() // perform check for arbitrary v

// inhale original invariant
foreach i in indices do
if(i in 〈〈Q〉〉) {

inhale bbinv(i)[v/V]cc
}
end

// exhale new invariant
foreach i in indices do
if(i in 〈〈Q′〉〉) {

exhale bbinv(i)[v/V]cc
}
end

assume false // kill this branch -
// the rewriting is justified

}

// update the conjuncts held
exhale (foreach i in 〈〈Q〉〉:
AcqConjunct(l, i) && valsRead(l, i) == Set() end)
inhale (foreach i in 〈〈Q′〉〉:
AcqConjunct(l, i) && valsRead(l, i) == Set() end)

Fig. 8 Viper encoding of a source-level rewrite statement. For
simplicity, we focus on the case of rewriting invariants for which
no values have been read (valsRead is empty).

and the other verifies the implementation under the as-
sumption that the side condition holds. Since the veri-
fier explores both branches, it will verify the code and
prove the side condition. The encoding in Fig. 8 uses
a non-deterministic if statement for this purpose. To
encode the side condition, that is, the entailment check,
for all values of V and all states, the then-branch re-
moves all permissions from the current state, obliterat-
ing all information that the verifier had about any heap
locations, and havoc an integer variable, representing
the arbitrary value of V. We inhale the original invari-
ant Q (using our indexing as usual), and exhale the

{A} fencerel {4A} {5A} fenceacq {A}

{4Q(e) ∗ Rel(l,Q)} [l]rlx := e {Init(l) ∗ Rel(l,Q)}

{Init(l) ∗ Acq(l,Q)} x := [l]rlx {5Q[x/V] ∗ Acq(l,V 6= x⇒ Q)}

(A1 ⇒ A2)⇔ (4A1 ⇒4A2)⇔ (5A1 ⇒5A2)

5(A1 ∗A2) ≡ (5A1) ∗ (5A2)
and analogously for 4 and other binary connectives

5A ≡ A ≡ 4A
if A references only ghost heap locations

Fig. 9 Adapted FSL rules for relaxed atomics and fences.

new invariant Q′. If the exhale succeeds then the en-
tailment holds. Since the then-branch encodes a side
condition, we kill it by adding an assume false to en-
sure that only the other branch (in which no changes
were made) will be considered for further verification.
Lastly, we perform the rewriting itself by discarding all
of the original AcqConjunct instances, and replacing
them with the new ones. Verification can then proceed
as usual.

3.4 Multiple Copies of Invariant Conjuncts

The encoding of Acq(l,Q) assertions in Fig. 7 expresses
that no value has been read for the conjuncts of invari-
ant Q (valsRead(l,i)==Set()). This is unsound if a
program inhales an Acq(l,Q) conjunct, then performs
an acquire read, and then inhales another Acq(l,Q)
conjunct, for instance, due to joining a thread. In that
case, the second inhale re-constrains valsRead(l, i)
to be the empty set, even though values have been
written. We avoid this unsoundness simply by inhal-
ing valsRead(l,i)==Set() only if the newly-acquired
conjunct was not already held. This is easy to check
using Viper’s perm expressions analogously to Fig. 8.

The encoding presented so far allows us to auto-
matically verify annotated C11 programs using release
writes and acquire reads (e.g., the program of Fig. 5)
without any custom proof strategies [28]. In particular,
we can support the higher-order Acq and Rel assertions
through defunctionalisation and enable the splitting of
invariants through a suitable representation.



Automating Deductive Verification for Weak-Memory Programs (extended version) 9

4 Relaxed Memory Accesses and Fences

In contrast to release-acquire accesses, C11’s relaxed
atomic accesses provide no synchronisation: threads may
observe reorderings of relaxed accesses and other mem-
ory operations. Correspondingly, RSL’s proof rules for
relaxed atomics provide weak guarantees, and do not
support ownership transfer. Memory fence instructions
can eliminate this problem. Intuitively, a release fence
together with a subsequent relaxed write allows a thread
to transfer away ownership of resources, similarly to a
release write. Dually, an acquire fence together with a
prior relaxed read allows a thread to obtain ownership
of resources, similarly to an acquire read. This reason-
ing is justified by the ordering guarantees of the C11
model [13].

4.1 FSL Proof Rules

FSL and FSL++ provide proof rules for fences (see
Fig. 9). They use modalities 4 (“up”) and 5 (“down”)
to represent resources that are transferred through re-
laxed accesses and fences. An assertion 4A represents
a resource A which has been prepared, via a release
fence, to be transferred by a relaxed write operation;
dually, 5A represents resources A obtained via a re-
laxed read, which may not be made use of until an
acquire fence is encountered. The proof rule for relaxed
write is identical to that for a release write (cf. Fig. 6),
except that the assertion to be transferred away must
be under the 4 modality; this can be achieved by the
rule for release fences. The rule for a relaxed read is the
same as that for acquire reads, except that the gained
assertion is under the 5 modality. The modality can
be removed by a subsequent acquire fence. As shown in
the last lines of the Figure, assertions may be rewrit-
ten under modalities, and both modalities distribute
over all other logical connectives. Finally, FSL++ al-
lows additional non-atomic heap locations to be added
to the programs as ghost locations. These are typically
employed in proofs to facilitate additional transfer of
information between the atomic invariants and threads
interacting with them. In particular, as the last line of
the Figure shows, assertions depending only on ghost
locations can be freely moved in and out of the modal-
ities.

Fig. 10 shows an example program, which is a vari-
ant of the message-passing example from Fig. 5. Com-
paring the left-hand one of the three parallel threads,
a relaxed read is used in the spin loop; after the loop,
this thread will hold the assertion 5a 17→ 42. The sub-
sequent fenceacq statement allows the modality to be

removed, allowing the non-atomic location a to be ac-
cessed. Dually, the middle thread employs a fencerel
statement to place the ownership of the non-atomic lo-
cations under the 4 modality, in preparation for the
relaxed write to l.

4.2 Encoding

The main challenge in encoding the FSL rules for fences
is how to represent the two new modalities. Since these
modalities guard assertions that cannot be currently
used and/or combined with modality-free assertions, we
model them using two additional heaps to represent the
assertions under each modality. That is, the assertions
A, 5A, and 4A are all encoded like assertion A, but
refer to a “real” heap, a “down” heap, and an “up”
heap, respectively. The program heap (along with as-
sociated permissions) is a built-in notion in Viper, and
so we cannot directly employ three heaps. Therefore,
we construct the additional “up” and “down” heaps,
representing each source location through three refer-
ences in Viper’s heap (rather than one reference in
three heaps). For this purpose, we axiomatise bijective
mappings up and down between a real program refer-
ence and its counterparts in these heaps. Assertions
4A are then represented by replacing all reference-
typed variables r in the encoded assertion A with their
counterpart up(r). We write dAeup for the transfor-
mation which performs this replacement. For exam-
ple, dacc(x.val) && x.val == 4eup is transformed to
acc(up(x).val) && up(x).val == 4. Analogously, we
write dAedown for the corresponding transformation for
the down function.

The extension of our encoding is shown in Fig. 11.
We employ a Viper domain to introduce and axioma-
tise the mathematical functions for our up and down
mappings. A Viper domain represents a mathematical
theory, consisting of uninterpreted functions and ax-
ioms over them. By axiomatising inverses for these map-
pings, we guarantee bijectivity. Bijectivity allows Viper
to conclude that (dis)equalities and other information
is preserved under these mappings. Consequently, we
do not have to explicitly encode the last two rules of
Fig. 9; they are reduced to standard assertion manip-
ulations in our encoding. An additional heap function
labels references with an integer identifying the heap
to which they belong (0 for real references, -1 and 1
for their “down” and “up” counterparts); this labelling
provides the verifiers with the (important) information
that these notional heaps are disjoint. For all reference-
typed variables and expressions in the source program,
we add the assumption that the references they store
(if non-null) belong to heap 0.



10 Alexander J. Summers, Peter Müller

Q1 ≡ (V 6= 0⇒ a
17→ 42) Q2 ≡ (V 6= 0⇒ b

17→ 7)

{true}
a := allocna(); b := allocna(); l := allocacq(Q1∗Q2); [l]rel := 0

{Acq(l,Q1) ∗ Init(l)}
while([l]rlx == 0);
fenceacq;
x := [a]na
[a]na := x+ 1
{true ∗ a 17→ 43}

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

{Uninit(a) ∗ Uninit(b) ∗ Rel(x,Q1∗Q2)}
[a]na := 42;
[b]na := 7;
fencerel(a

17→ 42 ∗ b 17→ 7);
[l]rlx := 1;
{true ∗ Init(l)}

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

{Acq(l,Q2) ∗ Init(l)}
while([l]rlx == 0);
fenceacq;
y := [b]na;
[b]na := y + 1
{true ∗ b 17→ 8}

{true ∗ a 17→ 43 ∗ b 17→ 8}

Fig. 10 A variant of the message-passing example of Fig. 5, combining relaxed memory accesses and fences to achieve ownership
transfer. The example is also a variant of Fig. 2 of the FSL paper [13], which is included in our evaluation (FencesDblMsgPass) in
Sec. 7.

Our handling of relaxed reads and writes is almost
identical to that of acquire reads and release writes in
Fig. 7; this similarity comes from the proof rules, which
only require that the modalities be inserted for the in-
variant. Our encoding for release fences requires an an-
notation in the source program to indicate which asser-
tion to prepare for release by placing it under the 4
modality.

Our encoding for acquire fences does not require any
annotations. Any assertion under the 5 modality can
(and should) be converted to its corresponding version
without the modality because 5A is strictly less-useful
than A itself. To encode this conversion, we find all per-
missions currently held in the down heap, and transfer
these permissions and the values of the corresponding
locations over to the real heap. These steps are en-
coded for each field and predicate separately; Fig. 11
shows the steps for the val field. We first define a set
rs to be precisely the set of all references r to which
some permission to down(r).val is currently held, i.e.,
perm(down(r).val) > none. For each such reference,
we inhale exactly the same amount of permission to
the corresponding r.val location, equate the heap val-
ues, and then remove the permission to the locations in
the “down” heap.

With our encoding based on multiple heaps, rea-
soning about assertions under modalities inherits all of
Viper’s native automation for permission and heap rea-
soning. We will reuse this idea for a different purpose
in the following section.

4.3 Ghost Locations

Ghost locations are handled analogously to regular lo-
cations, but the encoding needs to be adapted to reflect
the equivalence in the last line of Fig. 9. The adapted
encoding is given in Fig. 13.

Firstly, we add an uninterpreted boolean function
is_ghost on references, to identify whether or not a
location is ghost. For each reference-typed parameter
employed in the encoding of a source program, we add
assumptions defined by the macros normalRef(x)6 or
ghostRef(x); these both constrain that the reference’s
value is on the “real” heap in the sense of Sec. 4.2, and
then add the is_ghost or !is_ghost assumption, de-
pending on whether the parameter was declared ghost
in the source program.

To obtain the equivalence in the last line of Fig. 9,
we adapt our multiple-heaps encoding for ghost loca-
tions. Concretely, we replace the domain threeHeaps
from Fig. 11 with the version from Fig. 13. This ver-
sion requires the up and down mappings to act as the
identity for ghost locations (correspondingly, the result
of heap is no longer constrained to be different after
applying these mappings to a ghost reference). This im-
mediately gives us that, for assertions depending only
on ghost locations in the heap, 4A, A and 5A are
handled equivalently; they will be encoded as provably
equivalent assertions.

Finally, we add an assumption of normalRef(r) to
our existing statements for allocating references, and
add a new ghost allocation statement, for which the
analogous ghostRef(r) assumption is added. These de-
tails are summarised in Fig. 13.

5 Compare and Swap

C11 includes atomic read-modify-write operations, which
are commonly used to implement high-level synchroni-
sation primitives such as locks. FSL++ [14] provides
proof rules for compare and swap (CAS) operations.

6 For historical reasons, in our artifact examples, the
normalRef macro is actually called realRef; we renamed this
subsequently due to potential confusion with the notion of the
“real heap” employed in Sec. 4.2.



Automating Deductive Verification for Weak-Memory Programs (extended version) 11

domain threeHeaps {
function up(x: Ref) : Ref;
function up_inv(x: Ref) : Ref;
function down(x: Ref) : Ref;
function down_inv(x: Ref) : Ref;
function heap(x: Ref) : Int;

// identifies which heap a Ref is from
axiom { forall r:Ref :: up_inv(up(r)) == r &&
(heap(r) == 0 ==> heap(up(r)) == 1 }

axiom { forall r:Ref :: up(up_inv(r)) == r &&
(heap(r) == 1 ==> heap(up_inv(r)) == 0 }

axiom { forall r:Ref :: down_inv(down(r)) == r &&
(heap(r) == 0 ==> heap(down(r)) == -1 }

axiom { forall r:Ref :: down(down_inv(r)) == r &&
(heap(r) == -1 ==> heap(down_inv(r)) == 0 }

}
bb4Acc  dbbAcceup bb5Acc  dbbAccedown

[[[l]rlx := e]]  . . . encoded as for release writes
(Fig. 7) except using dinv(i)eup in place of inv(i)

[[x := [l]rlx]]  . . . encoded as for acquire reads
(Fig. 7) except using dinv(i)edown in place of inv(i)

[[fencerel(A)]]  exhale bbAcc; inhale dbbAcceup

[[fenceacq]]  var rs : Set[Ref];
rs := havoc() // unknown set of Refs
assume forall r: Ref :: r in rs <==>

perm(down(r).val) > none
inhale forall r: Ref :: r in rs ==>

acc(r.val, perm(down(r).val))
assume forall r: Ref :: r in rs ==>

r.val == down(r).val
exhale forall r: Ref :: r in rs ==>

acc(down(r).val, perm(down(r).val))
//and analogously for each other field and
//predicate (in place of val)

Fig. 11 Viper encoding of the FSL rules for relaxed atomics
and memory fences from Fig. 9. We omit triggers for the quan-
tifiers for simplicity, but see [28].

An atomic compare and swap CASτ (l, e, e′) reads and
returns the value of location l; if the value read is equal
to e, it also writes the value e′ to location l (otherwise
we say that the CAS fails). The annotation τ indicates
an atomic access mode, see Fig. 17.

5.1 FSL++ Proof Rules

FSL++ does not support general combinations of atomic
reads and CAS operations on the same location; the
way of reading must be chosen at allocation via the
annotation ρ on the allocation statement (see Fig. 1).

7 In the RSL logics, extended CAS proof rules are also sup-
ported (e.g. in the appendix of FSL++ [14]) allowing the spec-
ification of a different access mode for when a CAS operation
fails; we omit this for simplicity, and use the same access mode
for both cases. An extension would be straightforward, but this
flexibility has not yet appeared necessary for any examples.

{true} l := allocRMW(Q) {Rel(l,Q) ∗ RMWAcq(l,Q)}

x /∈ FV (P )
x /∈ FV (e) P ′ ≡

{
P if τ ∈ {rel, rel_acq}
4P otherwise

Q[e/V] |= A ∗ T
P ∗ T |= Q[e′/V] A′ ≡

{
A if τ ∈ {acq, rel_acq}
5A otherwise{

Init(l) ∗ Rel(l,Q)∗
RMWAcq(l,Q)∗

P ′

}
x := CASτ (l, e, e′)

{
Init(l) ∗ Rel(l,Q)∗
RMWAcq(l,Q)∗
(x = e ? A′ : P ′)

}

RMWAcq(l,Q) ⇔ RMWAcq(l,Q) ∗ RMWAcq(l,Q)

Fig. 12 Adapted FSL++ rules for compare and swap opera-
tions. FV yields the free variables of an assertion.

FSL++ provides an assertion RMWAcq(l,Q), which is
similar to Acq(l,Q), but is used for CAS operations
instead of acquire reads (that is, when ρ = RMW). In
contrast to the Acq assertions used for atomic reads,
RMWAcq assertions can be freely duplicated and their
invariants need not be adjusted for a successful CAS:
when using only CAS operations, each value read from
a location corresponds to a different write. A successful
CAS both obtains ownership of an assertion via its read
operation and gives up ownership of an assertion via its
write operation.

Our presentation of the relevant proof rules is shown
in Fig. 12. Allocating a location with annotation RMW
provides a Rel and a RMWAcq assertion, such that the
location can be used for release writes and CAS opera-
tions.

For the CAS operation, we present a single, general
proof rule instead of four rules for the different combi-
nations of access modes in FSL++. The rule requires
that l is initialised (since its value is read), Rel and
RMWAcq assertions, and an assertion P ′ that provides
the resources needed for a successful CAS. If the CAS
fails (that is, x 6= e), its precondition is preserved.

If the CAS succeeds, it has read value e and written
value e′. Assuming for now that the access mode τ per-
mits ownership transfer, the thread has acquiredQ[e/V]
and released Q[e′/V]. As illustrated in Fig. 14(i), these
assertions may overlap. Let T denote the assertion char-
acterizing the overlap; then assertion A denotes Q[e/V]
without the overlap, and P denotes Q[e′/V] without
the overlap. The net effect of a successful CAS is then
to acquire A and to release P , while T remains with
the location invariant across the CAS. Automating the
choice of T , A, and P is one of the main challenges of en-
coding this rule. Finally, if the access mode τ does not
permit ownership transfer (that is, fences are needed



12 Alexander J. Summers, Peter Müller

define normalRef(x) !is_ghost(x) && heap(x) == 0
define ghostRef(x) is_ghost(x) && heap(x) == 0

domain threeHeaps {
function up(x: Ref) : Ref
function down(x: Ref) : Ref
function up_inv(x: Ref) : Ref
function down_inv(x: Ref) : Ref

function temp(x: Ref) : Ref
function temp_inv(x: Ref) : Ref

function heap(x: Ref) : Int
function is_ghost(x:Ref) : Bool

axiom { forall r:Ref ::
up_inv(up(r)) == r &&
(is_ghost(r) ? up(r) == r :

heap(r)==0 ==> heap(up(r)) == 1) }
axiom { forall r:Ref ::
up(up_inv(r)) == r &&
(is_ghost(r) ? up_inv(r) == r :

heap(r)==1 ==> heap(up_inv(r)) == 0) }
axiom { forall r:Ref ::
down_inv(down(r)) == r &&
(is_ghost(r) ? down(r) == r :

heap(r)==0 ==> heap(down(r)) == -1) }
axiom { forall r:Ref ::
down(down_inv(r)) == r &&
(is_ghost(r) ? down_inv(r) == r :

heap(r)==-1 ==> heap(down_inv(r)) == 0) }

axiom { forall r:Ref ::
temp_inv(temp(r)) == r &&
(is_ghost(r) ? temp(r) == r :

heap(r)==0 ==> heap(temp(r)) == -3) }
axiom { forall r:Ref ::
temp(temp_inv(r)) == r &&
(is_ghost(r) ? temp_inv(r) == r :

heap(r)==-3 ==> heap(temp_inv(r)) == 0) }
}

[[l := allocghost()]]  
x := new(); assume ghostRef(x); // ghost location
inhale bbUninit(x)cc // ghosts are non-atomic

Fig. 13 A revision of the threeHeaps domain from Fig. 11,
to handle ghost locations. The function temp and temp_inv, as
well as the corresponding axioms will be explained in Sec. 5.

to perform the transfer), A and P are put under the
appropriate modalities.

5.2 Encoding

Our encoding of CAS operations reuses several of our
ideas and techniques presented in earlier sections. The
details of this encoding are shown in Fig. 15. We repre-
sent RMWAcq assertions analogously to our encoding of
Acq assertions (see Sec. 3), but set the acq field to false

(i)

(ii)

Fig. 14 An illustration of (i) the proof rule for CAS opera-
tions and (ii) our Viper encoding; the dashed regions denote
the relevant heaps employed in the encoding.

in order to differentiate holding one from the other8.
Since RMWAcq assertions are duplicable (cf. Fig. 12),
we employ wildcard permissions for the correspond-
ing AcqConjunct predicates; this allows the RMWAcq
assertions, along with their full invariants to be freely
duplicated, in contrast to Acq assertions (whose invari-
ants must be split when the Acq assertion is split).

The encoding of allocation is straightforward; it in-
hales the Rel and RMWAcq predicates; the latter in-
cludes the information that the new location is accessed
via compare and swaps (by setting its acq field to false.

The proof rule for CAS operations from Fig. 12 is
complex to encode. We initially check that we indeed
hold the required Init, RMWAcq and Rel assertions for
the location, according to the precondition of the rule.
In case the CAS fails, nothing else needs to be done.
Otherwise, in the case of a successful CAS operation,
the key challenge is how to select an appropriate asser-
tion T to satisfy the premises of the rule, while retaining
maximal information for future proof steps. Maximis-
ing the overlap represented by T is desirable in practice
since this reduces the resources to be transferred, which
must interact in some cases (when the access mode is
not rel_acq) with the modalities. Our Viper encoding
indirectly computes this largest-possible T as follows.

Reusing the notion of multiple heaps employed in
Sec. 4, we introduce yet another heap (“tmp”) in which
we inhale the invariant Q[e/V] for the value read; the
functions and axioms for the “tmp” heap are shown in
Fig. 13. We proceed in three steps (see Fig. 14(ii) for a
high-level illustration).

8 Instead of distinguishing the two cases via the value of the
acq field, it would also be possible to introduce another field to
represent RMWAcq assertions.



Automating Deductive Verification for Weak-Memory Programs (extended version) 13

define SomeRMWAcq(l)
acc(l.acq, wildcard) && l.acq == false

bbRMWAcq(l,Q)cc  SomeRMWAcq(l) &&
(foreach i in 〈〈Q〉〉:

acc(AcqConjunct(l, i),wildcard)
end)

[[l := allocRMW(Q)]]  
x := new();
assume normalRef(x); // not a ghost location
inhale bbRel(l,Q)cc && bbRMWAcq(l,Q)cc

[[x := CASτ (l, e, e′)]]  
assert bbInit(l)cc && SomeRMWAcq(l) && SomeRel(l);
x := havoc();
// inhale into tmp heap
if(x == bbecc) { // CAS succeeds
foreach i in indices do

if (perm(AcqConjunct(l, i)) > 0) {
inhale bbdinv(i)etmp[x/V]cc

}
end
// exhale from tmp, real/up heaps (depends on τ)
foreach i in indices do

if (i == l.rel) { // write synchronises
if (τ ∈ {rel, rel_acq}) {

exhale bbdinv(i)etmp/real[bbe′cc/V]cc
} else {

exhale bbdinv(i)etmp/up[bbe′cc/V]cc
}

}
end
// move tmp to real/down heap (depends on τ)
var rs : Set[Ref];
rs := havoc() // unknown set of Refs
assume forall r: Ref :: r in rs <==>
perm(tmp(r).val) > none;

if(τ ∈ {acq, rel_acq}) {
inhale forall r: Ref :: r in rs ==>
acc(r.val, perm(tmp(r).val));

assume forall r: Ref :: r in rs ==>
r.val == tmp(r).val;

} else {
inhale forall r: Ref :: r in rs ==>

acc(down(r).val, perm(tmp(r).val));
assume forall r: Ref :: r in rs ==>

down(r).val == tmp(r).val;
}
exhale forall r: Ref :: r in rs ==>
acc(tmp(r).val, perm(tmp(r).val));

// analogously for each other field,
// predicate (in place of val)

}

Fig. 15 Viper encoding of the RSL rules for compare and swap
operations.

Firstly, we inhale the newly-gained resources (cor-
responding to Q[e/V]) into the tmp heap.

Secondly, we attempt to exhale the assertionQ[e′/V]
for the value written, but adapt the assertions as fol-
lows: for each permission in the invariant, we take the

bbempcc  true
bbl k7→ ecc  acc(l.val, k) && acc(l.init, k) &&

l.val==bbecc && l.init
bbA1 ∗A2cc  bbA1cc&&bbA2cc
bbb⇒ Acc  bbbcc ⇒ bbAcc

bb(b ? A1 : A2)cc  (bbbcc ? bbA1cc : bbA2cc)
bbUninit(l)cc  

acc(l.val) && acc(l.init) && !l.init
bbAcq(l,Q)cc  

acc(l.acq, wildcard) && l.acq==true &&
(foreach i in 〈〈Q〉〉: AcqConjunct(l, i) &&

valsRead(l, i)==Set() end)
bbRel(l,Q)cc  acc(l.rel, wildcard) && l.rel==〈Q〉
bbInit(l)cc  acc(l.init, wildcard)
bb4Acc  dbbAcceup

bb5Acc  dbbAccedown

bbRMWAcq(l,Q)cc  
acc(l.acq, wildcard) && l.acq==false &&
(foreach i in 〈〈Q〉〉: acc(AcqConjunct(l, i), wildcard) end)

Fig. 16 Summary of our encoding of source-level assertions.
Our technique is agnostic as to the precise language of pure
expressions; we assume a suitable encoding of pure expressions
into Viper, which can typically be the identity mapping. Note
that for examples which potentially employ multiple copies of
the same conjunct in an Acq() predicate’s invariant, some addi-
tional care needs to be taken about when exactly to make the
valsRead(l, i) == Set() assumption, see Sec. 3.4.

maximum possible amount from our “tmp” heap; these
permissions correspond to T . Any remainder is taken
from the current heap (either the real or the “up” heap,
depending on τ); these correspond to P . This adapta-
tion of the assertion (which splits the taken permis-
sion amounts across the two heaps) is denoted by the
d.etmp/real and d.etmp/up mappings; if the values of heap
locations are also mentioned in the parameter asser-
tions, these heap dereferences must also be rewritten
to a dereference in the corresponding heap (e.g. x.val
== 4 might become tmp(x).val == 4). In case permis-
sion to the corresponding location is taken partly from
both heaps, the extra assumption that the two values
are the same is explicitly added by these mappings.

Finally, any permissions remaining in the “tmp”
heap after this exhale correspond to the assertion A

and are moved (in a way similar to our fenceacq en-
coding in Fig. 11) to either the real or “down” heap
(depending on τ).

This combination of techniques results in an auto-
matic support for the proof rule for CAS statements.
This completes the core of our Viper encoding, which
now handles the complete set of memory access con-
structs from Fig. 1. We summarise the encoding of the
general source language of assertions in Fig. 16.



14 Alexander J. Summers, Peter Müller

6 Soundness and Completeness

In this section, we give soundness arguments (as an
outlined proof sketch) for our encoding, and also discuss
completeness compared with a manual proof effort.

6.1 Soundness Overview

Soundness means that if the Viper encoding of a pro-
gram and its specification verifies, then there exists a
proof of the program and specification using the RSL
logics. We outline the soundness of our encoding via
three key ingredients.

Firstly (Sec. 6.3), we identify invariants on the states
of the Viper programs which are in the image of our en-
coding. They encode fairly basic properties, such as the
fact that the amounts of permission held to the val
and init fields of a non-atomic location are always the
same. We can show straightforwardly that these invari-
ants are preserved by the Viper programs generated by
our encoding.

Secondly (Sec. 6.4), for Viper states satisfying these
invariants, we define a mapping from the state to an as-
sertion of the RSL logics. Conceptually, this mapping
can be thought of as capturing where we are in the
construction of a Hoare Logic proof in the original for-
malism. This is connected to our soundness argument
by then showing that, if one compares the initial and
final states of the encoding of any source-level state-
ment, and applies our mapping to each, the assertions
represent a Hoare triple derivable in the original logics
provided that the Viper-encoded program has no verifi-
cation errors. Thus, we connect verification at the Viper
level with proof construction at the Hoare logic level.

Finally (Sec. 6.5), we explain how we can be sure
that Viper does not, e.g. deduce inconsistency at points
in a proof where this would not be justified in the orig-
inal logic. In general, we need to know that any entail-
ments between assertions in a single state which Viper
can justify automatically, reflect entailments which were
justified in the original logic.

Putting these three ingredients together, we know
that the verification of an encoded Viper program will
imply the existence of a Hoare Logic derivation in the
original logics; in other words, our technique will only
verify (encoded) properties for which a proof exists in
the RSL logics; our technique is sound.

6.2 Viper States and Semantics

The states of a Viper program are triples (H,P, σ) of
a heap H (mapping pairs of references and field names

to values), a permission map P (mapping such pairs,
as well as predicate instances to permission amounts,
which can be considered non-negative rational values;
for field locations, these cannot exceed 1), and an envi-
ronment σ, mapping variable names to values. We write
H[r, f ] and P [r, f ] for lookups in these maps; for look-
ing up e.g. predicate instances p(r) in the permission
map, we write P [p(r)].

The semantics of Viper’s core logic follows Parkin-
son and Summers [29]; in particular, the semantics of
heap-dependent expressions such as heap dereferences
x.f comes with a well-definedness condition; such heap
dereferences are allowed only in states in which non-
zero permission is held (i.e. P [x, f ] > 0). The treatment
of functions and predicates in the logic follows Summers
and Drossopoulou [37].

Verification of a Viper program amounts to: (1) Sym-
bolically tracking knowledge of changes to the Viper
state elements (heap values, permissions held, variable
values). For example, an inhale operation can add per-
missions to the permission map P . (2) Checking that
all assert and exhale statements describe provable as-
sertions (both are sources of verification failures; the
difference is that any permissions or predicates in the
assertion of an exhale statement are removed from the
current state). (3) Checking that all expressions em-
ployed in the program are well-defined: for heap deref-
erences this means checking that some permission to the
corresponding location is held; for applications of spec-
ification functions (such as valsRead in our encoding),
this means checking that their preconditions hold where
they are applied. Some assertions are defined via speci-
fications: for example, a method postcondition must be
shown to hold at the end of the method body.

6.3 Encoding Invariants

Our encoding maintains invariants on the states of Viper
programs, which hold before and after (but not nec-
essarily during) the code-fragments generated by the
encoding of a single source-level statement. In partic-
ular, our argument depends on the following invariant
on states (H,P, σ), guaranteed to hold at the start and
end of each block of Viper code representing the en-
coding of a single source-level statement (assuming we
reach the end of the block without verification errors):

For non-atomic locations l :
P [l, val] = P [l, init] ∧
(P [l, val] > 0 ∧H[l, init] = false⇒ P [l, val] = 1)

This states that we always hold the same amount of
permission to the val and init fields of an encoded



Automating Deductive Verification for Weak-Memory Programs (extended version) 15

non-atomic location, and if we hold such permissions
and the corresponding init field is false, then the only
possibility is that we hold the full permissions. This cor-
responds to the fact that the Uninit(l) assertion in the
RSL logics is not splittable, whereas once a non-atomic
location is initialised, its ownership can be shared.

In explaining our soundness argument we make use
implicitly of the fact (also assumed at the source level,
and in the RSL logics themselves) that locations are
known to be either non-atomic or atomic locations;
this is indirectly reflected at the Viper level in terms
of which permissions or predicates are held for the lo-
cations, but is only explicitly relevant for constructing
the soundness argument itself.

It is straightforward to show that the above invari-
ant is preserved by our statement encodings, i.e. if we
assume it in the Viper state prior to the translation
of a source-level statement, we can show that (barring
verification errors, or reaching an inconsistent state) it
will be still be true in the state after the Viper state-
ments generated by the source-level statement’s encod-
ing. This can be checked per statement encoded; here
we summarise the overall argument applicable to all
cases.

Consider first the first conjunct of the invariant. Al-
location of a non-atomic location provides full permis-
sion to both val and init fields. These permissions
can be subsequently modified as a result of program
statements which add or remove RSL logic assertions A,
e.g. forking and joining threads. Each of these results in
a corresponding exhale bbAcc or inhale bbAcc operation
in the encoded Viper program. The definition of bbAcc
(cf. Fig. 16) only concerns these permission amounts in
two cases: bbl k7→ ecc and bbUninit(l)cc; in both cases, the
permissions to the two fields come together in identical
amounts.

We now consider preservation of the second con-
junct of the invariant; that is, we show preservation of
(P [l, val] > 0 ∧ H[l, init] = false ⇒ P [l, val] = 1).
We use the fact discussed above: that permissions to
the two fields are only ever added or removed in sync
with each other. We also observe that no encoding of
a statement results in assigning false to any init field;
the only way of adding knowledge that an init field is
false is via the . We now consider two cases on proper-
ties of the prior Viper state (H,P, σ):
(Case P [l, val] = 0): Then either the encoding of the

statement doesn’t change this fact (the invariant
conjunct remains trivially true), or it adds non-zero
permissions to the field locations l.val and l.init.
This can only be done by an inhale of bbUninit(l)cc or
of (perhaps several times) bbl k7→ ecc for some e, k (cf.
Fig. 4). In the former case, the invariant conjunct is

true, since P [l, val] = 1 is guaranteed after inhaling
bbUninit(l)cc. In the latter case, the invariant con-
junct holds vacuously, since H[l, init] = true after
such an inhale.

(Case P [l, val] > 0): Then we have P [l, init] > 0. If
this permission is fully removed from the Viper state
as a result of the encoded statement in question, we
can subsequently argue according to the previous
case. If it is never removed, the value of H[l, init]
must remain stable across the translation of the
statement, except if that translation directly mod-
ifies it. Now, if P [l, val] = P [l, init] < 1 then,
since we assumed the invariant conjunct true in the
prior state, we must haveH[l, init] = true, and this
will remain the case, since we never assign false to
such a field. This leaves us to consider the remain-
ing case (P [l, val] = P [l, init] = 1): we are left to
consider the possibility that we modify the value of
H[l, init] directly in the Viper code corresponding
to the translated statement. This happens only in
the case of encoding a non-atomic write: [l]na := e

(cf. Fig. 4). In this case, it is guaranteed that the
final state will satisfy H[l, init] = true, and so the
invariant conjunct in question holds vacuously.

We require similar “sanity” invariants on Viper states
for the encodings of atomic locations. In particular:

For atomic locations l :
P [l, rel] > 0⇒ H[l, rel] ∈ indices ∧
∀i. P [AcqConjunct(l, i)] > 0⇒ i ∈ indices

This states that a readable rel field always stored the
index of one of the atomic invariants from the cur-
rent example being encoded, and analogously for the
index parameters of AcqConjunct predicate instances
held. Showing these invariants to be preserved is also
straightforward; we omit the details here, for brevity.

Having established these basic invariants over the
Viper states corresponding to the beginning and end of
each encoded statement, we turn to how to map what
Viper checks back to the existence of a proof in the RSL
logics.

6.4 Mapping and Hoare Triples

We next define the mapping 〈〈l〉〉H,P,σ from a reference
l in a Viper state (H,P, σ) (which is assumed to satisfy
the invariants in Sec. 6.3) to assertions from the RSL
logics; the corresponding mapping for the entire Viper
state is then the iterated separating conjunction [31]
over the assertion for each reference to which at least
some permission is held.



16 Alexander J. Summers, Peter Müller

We deal concretely with the simplified case of the
logics without the 4 and 5 modalities, and then ex-
plain how to extend the definitions.

For non-atomic locations l, the mapping is defined
as follows:

〈〈l〉〉H,P,σ =


Uninit(l) if H[l, init] = false
l
k7→ v otherwise, where v = H[l, val]

and k = P [l, val]

For atomic locations l, the mapping is more involved:

〈〈l〉〉H,P,σ = (P [l, init] = 0 ? true : Init(l))
∗ (P [l, rel] = 0 ? true : Rel(l, inv(H[l, rel])))
∗ (P [l, acq] = 0 ? true : (H[l, acq] = true ?

Acq
(∗i|P [AcqConjunct(l,i)]≥1

((
∧
j∈〈valsRead(l,i)〉H,P,σ V 6= j)⇒ inv(i))

)
:

RMWAcq(∗i|P [AcqConjunct(l,i)]≥1 inv(i))))

Here, we rewrite 〈valsRead(l, i)〉H,P,σ for the semantics
of this function application in the given state; i.e. the
set of integer values it represents.

The above mapping reconstructs appropriate Init(),
Rel(), and either Acq() or RMWAcq() assertions for the
corresponding location, according to the permissions
(and predicates) held in the state. By conjoining these
assertions per location together with separating con-
junctions (skipping those for which true is the result),
we obtain an assertion from the RSL logics correspond-
ing to the logical resources held at this particular point
in a corresponding proof in the RSL logics.

The mappings above can be generalised to the full
logics with modalities by reflecting on the heap num-
bering of the reference in question (cf. Sec. 4); where
heap(l) = 0, the above definitions apply, while for 1 or
−1 the resulting assertion must be placed under the 4
or 5 modalities, respectively.

For each source language statement, one can now
show that if the encoded Viper statements verify, the
beginning and end states of the Viper program describe
(when mapped to RSL assertions according to these def-
initions) a provable Hoare triple in the original logic.
For example, consider the encoding of a release write
statement [l]rel := e from the middle of Fig. 7, following
[[[l]rel := e]]  . Due to the initial assert statement,
this code will only verify if the current state has at
least some permission to the location’s rel field; i.e. if
P [l, rel] > 0. Based on the invariants from the previ-
ous subsection, we then know that H[l, rel] will be the
value of a valid index i in indices. Suppose Q = inv(i)
is the corresponding invariant for this index, as defined
in the original program. Correspondingly, one of the
if conditions will evaluate to true, forcing an exhale
of bbinv(i)[e/V]cc. In particular, this will also cause a

verification failure, unless the Viper state also satisfies
this assertion. In this case, the relevant permissions and
predicate instances will be removed by the exhale. Fi-
nally, bbInit(l)cc will be inhaled, corresponding to adding
Init(l) in the post-state of this operation.

Combining this analysis with our 〈〈l〉〉H,P,σ defini-
tion, we know we must have 〈〈l〉〉H,P,σ ≡ Rel(l, Q) ∗
A for some A (whose definition depends on whether
e.g. Init(l) assertions are also held for the same loca-
tion). More generally, the assertion obtained by point-
wise conjoining 〈〈l〉〉H,P,σ for all location’s l must be
equivalent to Q[e/V] ∗ Rel(l, Q) ∗ A′ for some assertion
A′, for the analysed Viper code to be free of verification
errors; the resulting Viper state will be analogous ex-
cept that the assertions corresponding to inv(i)[e/V]
will have been removed, and those corresponding to
Init(l) will have been added. If no verification errors oc-
cur, the following analogous derivation therefore exists
in the RSL logics:

{Q(e)∗Rel(l,Q)} [l]rel := e {Init(l)∗Rel(l,Q)}
{Q(e)∗Rel(l,Q) ∗A′} [l]rel := e {Init(l)∗Rel(l,Q) ∗A′}

6.5 Entailment Correspondence

In addition to the encoding of individual statements, it
is important to consider which entailments Viper can
automatically prove about the encoded assertions from
the original logics. For the assertions describing non-
atomic locations, Viper’s built-in field permissions are
used in a standard manner; the relationship between
the handling of these permissions in such a logic and a
typical concurrent separation logic presentation is well-
understood to give an isomorphism [29]. In particular,
Viper imposes the same assumptions for field permis-
sions (that no more than 1 permission can be held) as
in a standard separation logic.

For the encoding of atomic locations, the Viper rep-
resentation is largely in terms of duplicable (wildcard)
permissions, and abstract predicates. Wildcard permis-
sions, as discussed in Sec. 3, model a duplicable re-
source exactly as desired. Abstract predicates, on the
other hand, are treated as unknown resources in Viper;
these are counted in and out when inhaled and exhaled,
but no additional facts will be deduced from holding
them in a particular state. Our modelling of atomic
invariants with AcqConjunct predicates can, in some
cases, provide entailments between the encodings of dif-
ferent Acq() predicates, but these are always instances
of the general rules of the logic. However, not all en-
tailments valid in the logic are available automatically



Automating Deductive Verification for Weak-Memory Programs (extended version) 17

to the Viper verifiers according to our encoding: for
rewriting atomic invariants, we require an explicit an-
notation (cf.Sec. 3.3); in the next subsection we discuss
other potential sources of incompleteness.

6.6 Completeness

Completeness means that all programs provable in the
RSL logics can be verified via their encoding into Viper.
As part of the design of our work, we intentionally chose
not to support certain features of the RSL logics; each of
these is technically a source of incompleteness, although
in most cases our decision was based on the fact that
the expressiveness lost is not actually useful in practical
examples.

By systematically analysing each rule of the RSL
logics, we identify the following sources of incomplete-
ness of our encoding: (1) It does not allow strengthen-
ing the invariant in a Rel assertion; strengthening the
requirement on writing does not allow more programs
to be verified, and has never been useful in practice
[42]. Conceptually, it amounts to forcing a writer to
live up to a more difficult requirement than the atomic
invariant really relies on; e.g. forcing one to give up
more permissions than will ever be obtainable via sub-
sequent reads of the location. (2) For a fenceacq, our
encoding removes all assertions from under a 5 modal-
ity. As mentioned when we introduce our encoding of
this feature (cf. Sec. 4), the ability to choose not to re-
move the modality is not useful in practice; conceptu-
ally, the modality blocks the usage of resources (such as
ownership of non-atomic locations) underneath it until
they moved out from the modality at a memory fence.
Technically, an incompleteness could arise for modular
proofs if one uses the 5 modality in a function precon-
dition (effectively promising to insert an appropriate
fence in the function’s implementation) but a particular
caller has already employed a memory fence, removing
the modality. However, this modality doesn’t appear to
be used or useful across such modularity boundaries.
The fact that libraries exploiting these weak memory
primitives are written with very precise synchronisa-
tion strategies in mind means that this kind of divi-
sion of synchronisation responsibility between caller’s
and callee’s doesn’t arise. (3) For simplicity, our en-
coding doesn’t address quantifiers (although these are
supported in Viper; an extension should be straightfor-
ward). We also don’t allow the 4 and 5 modalities to
be used in atomic invariants themselves. This restric-
tion is largely inherited from FSL and FSL++[13], but
a slightly weaker technical requirement (called normal-
isability) is employed there. This difference doesn’t ap-
pear significant for examples in practice. (4) The ghost

state employed in FSL++ can be defined over a custom
permission structure (a partial commutative monoid),
which is not possible in Viper. For examples whose
proof relies on a custom monoid which is not known
to be encodable in Viper, a proof possible in the RSL
logics cannot be obtained via our techniques (Viper na-
tively supports only fractional permissions, although
some additional models such as counting permissions
can be encoded). This is the only incompleteness of our
encoding arising in practice; we will discuss an example
in Sec. 7.

7 Examples and Evaluation

We evaluated our work with a prototype front-end tool
[32, 33], and some additional experiments directly at
the Viper level [28]. Our front-end tool accepts a sim-
ple input language for C11 programs, closely modelled
on the syntax of the RSL logics. It supports all features
described in this paper, with the exception of invariant
rewriting (cf. Sec. 3.3 of the TR [39]) and ghost state
(Sec. 4.3 of the TR), which will be simple extensions.
We encoded examples which require these features, ad-
ditional theories, or custom permission structures man-
ually into Viper, to simulate what an extended version
of our prototype will be able to achieve.

Our encoding supports several extra features which
we used in our experiments but mention only briefly
here: (1) We support the FSL++ rules for ghost state:
see Sec. 4.3 of the TR. (2) Our encoding handles com-
mon spin loop patterns without requiring loop invariant
annotations. (3) We support fetch-update instructions
(e.g. atomic increments) natively, modelled as a CAS
which never fails.

Examples. We took all examples with specifica-
tions from the RSL [43] and FSL [13] papers, along
with variants in which we seeded errors, to check that
verification fails as expected (and in comparable time).
We also encoded the Rust reference-counting (ARC) li-
brary [34], which is the main example from FSL++ [14].
The proof there employs a custom permission structure
(using the custom ghost state supported in the FSL++
paper [14]), which is not yet supported by Viper; we
can only encode this exact example directly by omit-
ting the corresponding ghost state, without which its
proof fails as expected. However, following the sugges-
tion of one of the authors [42], we were able to fully
verify two variants of the example, in which some ac-
cess modes are strengthened, making the code slightly
less efficient but enabling a proof using a simpler per-
mission model. For these variants, we required count-
ing permissions [6], which we expressed with additional
background definitions (see [28] for details, and Fig. 18



18 Alexander J. Summers, Peter Müller

Program Origin Prototype Size (LOC, Time Specs Other Coq
support funcs,loops) (s) PP LI Annot. Annot.

RSLSpinLock RSL [43], Figs. 1 & 7 X 7,3,2 11.22 3 1 1 120 [43]
RSLLockNoSpin [19]; adapted from above X 6,3,1 10.84 3 0 1 84 [19]
RSLLockNoSpin_err prior file + added error X 6,3,1 9.88 3 0 1 n/a
RelAcqMsgPass RSL [43], Figs. 5 & 8 X 15,3,1 10.68 3 0 1 99 [43]
RelAcqMsgPass_err prior file + added error X 15,3,1 10.13 3 0 1 n/a
RSLCASLock RSL [43], Fig. 10 X 21,4,0 10.57 3 0 1 n/a
RSLCASLock_err prior file + added error X 21,4,0 9.79 3 0 1 n/a
CASModesTest manually written X 23,3,2 19.55 3 0 2 n/a
CASModesTest_err prior file + added error X 24,3,2 18.77 3 0 2 n/a
FencesDblMsgPass FSL [13], Fig. 2 X 27,4,2 12.15 4 0 3 n/a
FencesDblMsgPass_err prior file + added error X 27,4,2 11.75 4 0 3 n/a
FencesDblMsgPassSplit FencesDblMsgPass w. 1 atomic X 24,4,2 12.93 4 0 2 n/a
FencesDblMsgPassSplit_err prior file + added error X 24,4,2 11.61 4 0 2 n/a
RelAcqDblMsgPassSplit prior example w/o fences X 21,4,2 11.09 4 0 1 n/a
RelAcqDblMsgPassSplit_err prior file + added error X 21,4,2 10.11 4 0 1 n/a
FencesDblMsgPassAcqRewrite manually written 23,4,2 15.81 4 0 3 n/a
RSLFractions RSL [43], Fig. 9 14,3,0 11.58 4 0 1 n/a
RSLFractions_err prior file + added error 14,3,0 10.76 4 0 1 n/a
RustARCOriginal_err FSL++ [14], Figs. 1 & 2 10,4,0 30.74 4 0 2 654 [14]
RustARCStronger prior w. strengthened atomics 10,4,0 33.29 4 0 2 n/a
RelAcqRustARCStronger RustARC variant without fences 9,4,0 14.60 4 0 2 n/a
FollyRWSpinlock_err Folly library [15] 24,7,2 28.25 7 2 3 n/a
FollyRWSpinlockStronger prior w. strengthened atomics 26,7,3 22.30 7 3 3 n/a

Fig. 17 The results of our evaluation. Examples including _err are expected to generate errors; those with Stronger are variants
of the original code with less-efficient atomics and a correspondingly different proof. Under “Size”, we measure lines of code, number
of distinct functions/threads, and number of loops. Under “Specs”, “PP” stands for the necessary pairs of pre and post-conditions;
“LI” stands for loop invariants required. “Other Annot.” counts any other annotations needed. For examples that have been verified
in Coq, we report the number of manual proof steps (in addition to pre-post pairs) and provide a reference to the proof.

for the code). Note that we encode more examples than
have been mechanised in the pre-existing papers: we
speculate that not all examples were mechanised due
to the substantial work and time required to construct
the Coq-based proofs.

Finally, we tackled seven core functions of a reader-
writer-spinlock from the Facebook Folly library [15].
We were able to verify five of them directly. The other
two employ code idioms which are beyond the scope of
the RSL logics without employing sophisticated custom
ghost state: a similar situation to that of the unmodi-
fied ARC example. Again similarly, for both functions
we also wrote and verified alternative implementations
in which some atomic access modes are strengthened,
enabling a slightly less complex proof explainable using
counting permissions. The Rust and Facebook exam-
ples demonstrate a key advantage of building on top of
Viper; both require support for extra theories (counting
permissions as well as modulo and bitwise arithmetic),
and we were able to exploit Viper’s features to integrate
support for these additional complementary verification
aspects easily.
Performance. We measured the verification times on
an Intel Core i7-4770 CPU (3.40GHz, 16Gb RAM) run-
ning Windows 10 Pro and report the average of 5 runs.
A snapshot of all dependencies and experiments (in-

cluding all source examples) is provided online [32, 33].
For those examples supported by our front-end, the
times include the generation of the Viper code. As shown
in Fig. 17, verification times are reasonable (generally
around 10 seconds, and always under a minute).
Automation. Each function (and thread) must be an-
notated with an appropriate pre and post-condition, as
is standard for modular verification. In addition, some
of our examples require loop invariants and other an-
notations (e.g. on allocation statements and, for the
hand-crafted FencesDblMsgPassAcqRewrite example,
for rewriting invariants according to Sec. 3.3). The ab-
straction level and annotation overhead can be roughly
judged from e.g.Fig. 10; up to mild syntactic differences
this closely follows the input language of our tool, ex-
cept that the parallel blocks show up as explicit fork
and join statements in the input language of our tool.

Critically, the number of required annotations is
consistently very low. In particular, our annotation over-
head is between one and two orders of magnitude lower
than the overhead of existing mechanised proofs (using
the Coq formalisations for [14, 43] and a recent encod-
ing [19] of RSL into Iris [21]). Such ratios are consistent
with other recent Coq-mechanised proofs based on sep-
aration logic (e.g. [44]), which suggests that the strong
soundness guarantees provided by Coq have a high cost



Automating Deductive Verification for Weak-Memory Programs (extended version) 19

Q ≡ V ≥ 0 ∗ g 1−V∗rd7→ _ ∗ (V ≥ 1⇒ d
1−V∗rd7→ _)

ARC(d, c, g, v) ≡
d

rd7→ v ∗ g rd7→ _ ∗ RMWAcq(c,Q) ∗ Rel(c,Q) ∗ Init(c)

new(v) returns (d,c,g)
requires true
ensures ARC(d, c, g, v)

{
d := allocna();
g := allocghost();
c := allocRMW(Q);
[d]na := v;
[c]rel := 1;

}

drop(d,c,g)
requires ARC(d, c, g,_)
ensures true

{
t := fetch_and_addrel(c,−1);
if (t==1){
fenceacq;
free(d);

}
}

read(d,c,g) returns (v)
requires ARC(d, c, g,_)
ensures ARC(d, c, g, v)

{
v := [d]na;

}

clone(d,c,g)
requires ARC(d, c, g, v)
ensures ARC(d, c, g, v)∗

ARC(d, c, g, v)
{
fetch_and_addacq(c, 1);

}

Fig. 18 Rust reference counting variant with strengthened ac-
cess modes (RustARCStronger in our evaluation). Compared to
the original code [14], we modified the write in new to use a re-
lease rather than relaxed mode, and the update in clone to use
acquire rather than relaxed. As discussed in Sec. 7, the original
version of the example is proved in [14] using features which are
not yet supported by our encoding. We do, however, verify a
slightly less efficient variant of the original code (which does not
require the custom monoid employed in [14]) here; this example
requires our support for CAS operations and fences. We write
rd for a read permission, in the sense of counting permissions
[6]. In this example, g is a ghost location. We model the free
statement by exhaling the corresponding permissions.

when applying the logics. By contrast, once the speci-
fications are provided, our approach is almost entirely
automatic.

8 Conclusions and Future Work

We have presented the first encoding of modern pro-
gram logics for weak memory models into an automated
deductive program verifier. The encoding enables pro-
grams (with suitable annotations) to be verified auto-
matically by existing back-end tools. We have imple-
mented a front-end verifier and demonstrated that our
encoding can be used to verify weak-memory programs
efficiently and with low annotation overhead. As future
work, we plan to tackle other weak-memory logics such
as GPS [41]. Building practical tools that implement
such advanced formalisms will provide feedback that
inspires further improvements of the logics.

Acknowledgements. We are grateful to Viktor Vafeiadis
and Marko Doko for many explanations of the RSL

logics and helpful discussions about our encoding. We
thank Christiane Goltz for her work on the prototype
tool, and Malte Schwerhoff for implementing additional
features. We thank Marco Eilers for his assistance with
the online appendix, and Arshavir Ter-Gabrielyan for
automating our artifact assembly for various operating
systems. We also thank Andrei Dan, Lucas Brutschy,
Malte Schwerhoff and the anonymous TACAS 2018 and
STTT Special Issue reviewers for feedback on earlier
versions of this work.

References

1. Abdulla PA, Atig MF, Jonsson B, Leonardsson
C (2016) Stateless model checking for POWER.
In: CAV 2016 Proceedings Part II, pp 134–156,
DOI 10.1007/978-3-319-41540-6_8, URL https:
//doi.org/10.1007/978-3-319-41540-6_8

2. Abdulla PA, Atig MF, Bouajjani A, Ngo TP (2017)
The benefits of duality in verifying concurrent pro-
grams under TSO. CoRR abs/1701.08682, URL
http://arxiv.org/abs/1701.08682

3. Alglave J, Cousot P (2017) Ogre and Pythia:
An invariance proof method for weak consis-
tency models. In: POPL 2017, ACM, New York,
NY, USA, POPL 2017, pp 3–18, DOI 10.1145/
3009837.3009883, URL http://doi.acm.org/10.
1145/3009837.3009883

4. Barnett M, Chang BYE, DeLine R, Jacobs B, Leino
KRM (2006) Boogie: A modular reusable verifier
for object-oriented programs. In: Proceedings of
the 4th International Conference on Formal Meth-
ods for Components and Objects, Springer-Verlag,
Berlin, Heidelberg, FMCO’05, pp 364–387, DOI
10.1007/11804192_17, URL http://dx.doi.org/
10.1007/11804192_17

5. Bobot F, Filliâtre JC, Marché C, Paskevich A
(2011) Why3: Shepherd your herd of provers.
In: Boogie 2011: First International Workshop
on Intermediate Verification Languages, Wrocław,
Poland, pp 53–64, URL http://proval.lri.fr/
publications/boogie11final.pdf

6. Bornat R, Calcagno C, O’Hearn P, Parkinson
M (2005) Permission accounting in separation
logic. In: Proceedings of POPL ’05, ACM, New
York, NY, USA, pp 259–270, DOI 10.1145/
1040305.1040327, URL http://doi.acm.org/10.
1145/1040305.1040327

7. Bouajjani A, Derevenetc E, Meyer R (2013)
Checking and enforcing robustness against TSO.
In: ESOP 2013, Springer-Verlag, Berlin, Hei-
delberg, ESOP’13, pp 533–553, DOI 10.1007/

https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
http://arxiv.org/abs/1701.08682
http://doi.acm.org/10.1145/3009837.3009883
http://doi.acm.org/10.1145/3009837.3009883
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/11804192_17
http://proval.lri.fr/publications/boogie11final.pdf
http://proval.lri.fr/publications/boogie11final.pdf
http://doi.acm.org/10.1145/1040305.1040327
http://doi.acm.org/10.1145/1040305.1040327


20 Alexander J. Summers, Peter Müller

978-3-642-37036-6_29, URL http://dx.doi.org/
10.1007/978-3-642-37036-6_29

8. Boyland J (2003) Checking interference with frac-
tional permissions. In: SAS, Springer, LNCS, vol
2694, pp 55–72

9. Chlipala A (2011) Mostly-automated verification
of low-level programs in computational separa-
tion logic. In: Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language
Design and Implementation, ACM, New York,
NY, USA, PLDI ’11, pp 234–245, DOI 10.1145/
1993498.1993526, URL http://doi.acm.org/10.
1145/1993498.1993526

10. Cohen E, Dahlweid M, Hillebrand M, Leinen-
bach D, Moskal M, Santen T, Schulte W, To-
bies S (2009) VCC: A Practical System for
Verifying Concurrent C, Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp 23–42. DOI 10.1007/
978-3-642-03359-9_2, URL http://dx.doi.org/
10.1007/978-3-642-03359-9_2

11. Cuoq P, Kirchner F, Kosmatov N, Pre-
vosto V, Signoles J, Yakobowski B (2012)
Frama-C. In: SEFM, Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp 233–247, DOI
10.1007/978-3-642-33826-7_16, URL http:
//dx.doi.org/10.1007/978-3-642-33826-7_16

12. Dan A, Meshman Y, Vechev M, Yahav E (2015)
Effective abstractions for verification under re-
laxed memory models. In: VMCAI 2015, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp 449–466,
DOI 10.1007/978-3-662-46081-8_25, URL https:
//doi.org/10.1007/978-3-662-46081-8_25

13. Doko M, Vafeiadis V (2016) A program logic for
C11 memory fences. In: VMCAI, Springer, Lecture
Notes in Computer Science, vol 9583, pp 413–430

14. Doko M, Vafeiadis V (2017) Tackling real-life re-
laxed concurrency with FSL++. In: ESOP 2017,
Springer Berlin Heidelberg, pp 448–475

15. Facebook Folly (2018) Reader-writer spin-
lock implementation. Available at https:
//github.com/facebook/folly/blob/master/
folly/RWSpinLock.h

16. Heule S, Leino KRM, Müller P, Summers AJ (2013)
Abstract read permissions: Fractional permissions
without the fractions. In: VMCAI, Springer-Verlag,
Lecture Notes in Computer Science, vol 7737, pp
315–334

17. Jacobs B (2014) Verifying TSO programs. CW Re-
ports CW660, Department of Computer Science,
KU Leuven, URL https://lirias.kuleuven.be/
handle/123456789/452373

18. Jacobs B, Smans J, Piessens F (2010) A quick
tour of the VeriFast program verifier. In: APLAS,

Springer, LNCS, vol 6461, pp 304–311
19. Kaiser JO, Dang HH, Dreyer D, Lahav O,

Vafeiadis V (2017) Strong Logic for Weak Mem-
ory: Reasoning About Release-Acquire Consistency
in Iris. In: ECOOP 2017, Schloss Dagstuhl–Leibniz,
LIPIcs, vol 74, pp 17:1–17:29, DOI 10.4230/LIPIcs.
ECOOP.2017.17, URL http://drops.dagstuhl.
de/opus/volltexte/2017/7275

20. Kokologiannakis M, Lahav O, Sagonas K, Vafeiadis
V (2018) Effective stateless model checking for
C/C++ concurrency. PACMPL 2(POPL):17:1–
17:32, DOI 10.1145/3158105, URL https://doi.
org/10.1145/3158105

21. Krebbers R, Jung R, Bizjak A, Jourdan JH,
Dreyer D, Birkedal L (2017) The essence
of higher-order concurrent separation logic. In:
ESOP, Springer-Verlag New York, Inc., New
York, NY, USA, pp 696–723, DOI 10.1007/
978-3-662-54434-1_26, URL https://doi.org/
10.1007/978-3-662-54434-1_26

22. Lahav O (2019) Verification under causally con-
sistent shared memory. SIGLOG News 6(2):43–
56, DOI 10.1145/3326938.3326942, URL https:
//doi.org/10.1145/3326938.3326942

23. Leino KRM (2010) Dafny: An automatic program
verifier for functional correctness. In: Proceedings
of LPAR’10, Springer-Verlag, Berlin, Heidelberg,
pp 348–370, URL http://dl.acm.org/citation.
cfm?id=1939141.1939161

24. Leino KRM, Müller P (2009) A basis for verify-
ing multi-threaded programs. In: Castagna G (ed)
ESOP, Springer-Verlag, LNCS, vol 5502, pp 378–
393

25. Müller P, Schwerhoff M, Summers AJ (2016) Au-
tomatic verification of iterated separating conjunc-
tions using symbolic execution. In: CAV, Springer-
Verlag, LNCS, vol 9779, pp 405–425

26. Müller P, Schwerhoff M, Summers AJ (2016) Viper:
A verification infrastructure for permission-based
reasoning. In: Jobstmann B, Leino KRM (eds) VM-
CAI, Springer-Verlag, LNCS, vol 9583, pp 41–62

27. O’Hearn PW, Reynolds JC, Yang H (2001) Local
reasoning about programs that alter data struc-
tures. In: Proceedings of CSL’01, Springer-Verlag,
London, UK, UK, pp 1–19, URL http://dl.acm.
org/citation.cfm?id=647851.737404

28. Online Appendix (2019) Viper-encoded ex-
amples. Available at http://viper.ethz.ch/
onlineappendix-rsl-encoding/

29. Parkinson MJ, Summers AJ (2012) The relation-
ship between separation logic and implicit dy-
namic frames. Logical Methods in Computer Sci-
ence 8(3:01):1–54

http://dx.doi.org/10.1007/978-3-642-37036-6_29
http://dx.doi.org/10.1007/978-3-642-37036-6_29
http://doi.acm.org/10.1145/1993498.1993526
http://doi.acm.org/10.1145/1993498.1993526
http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-662-46081-8_25
https://doi.org/10.1007/978-3-662-46081-8_25
https://github.com/facebook/folly/blob/master/folly/RWSpinLock.h
https://github.com/facebook/folly/blob/master/folly/RWSpinLock.h
https://github.com/facebook/folly/blob/master/folly/RWSpinLock.h
https://lirias.kuleuven.be/handle/123456789/452373
https://lirias.kuleuven.be/handle/123456789/452373
http://drops.dagstuhl.de/opus/volltexte/2017/7275
http://drops.dagstuhl.de/opus/volltexte/2017/7275
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3326938.3326942
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://dl.acm.org/citation.cfm?id=647851.737404
http://dl.acm.org/citation.cfm?id=647851.737404
http://viper.ethz.ch/onlineappendix-rsl-encoding/
http://viper.ethz.ch/onlineappendix-rsl-encoding/


Automating Deductive Verification for Weak-Memory Programs (extended version) 21

30. Reynolds JC (1972) Definitional interpreters for
higher-order programming languages. In: ACM An-
nual Conference—Volume 2, ACM, ACM ’72, pp
717–740

31. Reynolds JC (2002) Separation logic: A logic for
shared mutable data structures. In: LICS, IEEE
Computer Society Press

32. RSL Front-end (2018) RSL to Viper
front-end; TACAS 2018 artifact version.
https://figshare.com/articles/RSL_to_
Viper_Front_end/5900233

33. RSL Front-end Zip Files (2019) RSL to Viper
front-end zip files (updated since TACAS
2018; Windows, Linux, Mac versions avail-
able). https://www.pm.inf.ethz.ch/research/
viper/prototype-rsl-encoding.html

34. Rust Library (2019) ARC (Atomic Reference
Counting). Available at https://doc.rust-lang.
org/std/sync/struct.Arc.html

35. Sergey I, Nanevski A, Banerjee A (2015) Mech-
anized verification of fine-grained concurrent pro-
grams. In: Proceedings of PLDI ’15, ACM,
New York, NY, USA, pp 77–87, DOI 10.1145/
2737924.2737964, URL http://doi.acm.org/10.
1145/2737924.2737964

36. Smans J, Jacobs B, Piessens F (2012) Implicit
dynamic frames. ACM Trans Program Lang Syst
34(1):2:1–2:58

37. Summers AJ, Drossopoulou S (2013) A formal se-
mantics for isorecursive and equirecursive state ab-
stractions. In: ECOOP, Springer, LNCS, vol 7920,
pp 129–153

38. Summers AJ, Müller P (2018) Automating deduc-
tive verification for weak-memory programs. In:
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Springer-Verlag,
LNCS, pp 190–209

39. Summers AJ, Müller P (2018) Automating deduc-
tive verification for weak-memory programs (ex-
tended version). arXiv-ref-goes-here

40. Travkin O, Wehrheim H (2016) Verification of con-
current programs on weak memory models. In:
Sampaio A, Wang F (eds) Theoretical Aspects of
Computing (ICTAC), Lecture Notes in Computer
Science, vol 9965, pp 3–24

41. Turon A, Vafeiadis V, Dreyer D (2014) GPS: nav-
igating weak memory with ghosts, protocols, and
separation. In: OOPSLA, ACM, pp 691–707

42. Vafeiadis V (December 2016) Personal communica-
tion

43. Vafeiadis V, Narayan C (2013) Relaxed separa-
tion logic: a program logic for C11 concurrency. In:
OOPSLA, ACM, pp 867–884

44. Xu F, Fu M, Feng X, Zhang X, Zhang H, Li Z (2016)
A practical verification framework for preemptive
OS kernels. In: CAV Proceedings Part II, Springer
International Publishing, Cham, pp 59–79, DOI 10.
1007/978-3-319-41540-6_4, URL http://dx.doi.
org/10.1007/978-3-319-41540-6_4

https://figshare.com/articles/RSL_to_Viper_Front_end/5900233
https://figshare.com/articles/RSL_to_Viper_Front_end/5900233
https://www.pm.inf.ethz.ch/research/viper/prototype-rsl-encoding.html
https://www.pm.inf.ethz.ch/research/viper/prototype-rsl-encoding.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
http://doi.acm.org/10.1145/2737924.2737964
http://doi.acm.org/10.1145/2737924.2737964
http://dx.doi.org/10.1007/978-3-319-41540-6_4
http://dx.doi.org/10.1007/978-3-319-41540-6_4

	Introduction
	Non-atomic Locations
	Release-Acquire Atomics
	Relaxed Memory Accesses and Fences
	Compare and Swap
	Soundness and Completeness
	Examples and Evaluation
	Conclusions and Future Work

