
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Automating Deductive Verification
for Weak-Memory Programs

(extended version)

Alexander J. Summers and Peter Müller

Department of Computer Science, ETH Zurich, Switzerland
{alexander.summers, peter.mueller}@inf.ethz.ch

Abstract. Writing correct programs for weak memory models such as
the C11 memory model is challenging because of the weak consistency
guarantees these models provide. The first program logics for the verifica-
tion of such programs have recently been proposed, but their usage has
been limited thus far to manual proofs. Automating proofs in these logics
via first-order solvers is non-trivial, due to features such as higher-order
assertions, modalities and rich permission resources.
In this paper, we provide the first encoding of a weak memory program
logic using existing deductive verification tools. Our work enables, for
the first time, the (unbounded) verification of C11 programs at the level
of abstraction provided by the program logics; the only necessary user
interaction is in the form of specifications written in the program logic.
We tackle three recent program logics: Relaxed Separation Logic and two
forms of Fenced Separation Logic, and show how these can be encoded
using the Viper verification infrastructure. In doing so, we illustrate
several novel encoding techniques which could be employed for other
logics. Our work is implemented, and has been evaluated on examples
from existing papers as well as the Facebook open-source Folly library.

1 Introduction

Reasoning about programs running on weak memory is challenging because weak
memory models admit executions that are not sequentially consistent, that is,
cannot be explained by a sequential interleaving of concurrent threads. Moreover,
weak-memory programs employ a range of operations to access memory, which
require dedicated reasoning techniques. These operations include fences as well
as read and write accesses with varying degrees of synchronisation.

Some of these challenges are addressed by the first program logics for weak-
memory programs, in particular, Relaxed Separation Logic (RSL) [37], GPS [35],
Fenced Separation Logic (FSL) [17], and FSL++ [18]. These logics apply to
interesting classes of C11 programs, but their tool support has been limited to
embeddings in Coq. Verification based on these embeddings requires substantial
user interaction, which is an obstacle to applying and evaluating these logics.

In this paper, we present a novel approach to automating deductive veri-
fication for weak memory programs. We encode large fractions of RSL, FSL,

ar
X

iv
:1

70
3.

06
36

8v
2

 [
cs

.P
L

]
 1

9
Fe

b
20

18

s ::= l := allocna() | l := allocρ(Q) | [l]σ := e | x := [l]σ
| fenceacq | fencerel(A) | x := CASτ (l, e1, e2)
where ρ ∈ {acq, RMW}, σ ::= na | τ , τ ∈ {acq, rel, rel_acq, rlx}

Fig. 1. Syntax for memory accesses. na indicates a non-atomic operation; τ indicates an
atomic access mode (as defined in C11), discussed in later sections. ρ, and assertions A
and invariants Q are program annotations, needed as input for our encoding. Expressions
e include boolean and arithmetic operations, but no heap accesses. We assume that
source programs are type-checked.

and FSL++ (collectively referred to as the RSL logics) into the intermediate
verification language Viper [27], and use the existing Viper verification backends
to reason automatically about the encoded programs. This encoding reduces
all concurrency and weak-memory features as well as logical features such as
higher-order assertions and custom modalities to a much simpler sequential logic.

Defining an encoding into Viper is much more lightweight than developing a
dedicated verifier from scratch, since we can reuse the existing automation for a
variety of advanced program reasoning features. Compared to an embedding into
an interactive theorem prover such as Coq, our approach leads to a significantly
higher degree of automation than that typically achieved through tactics. More-
over, it allows users to interact with the verifier on the abstraction level of source
code and annotations, without exposing the underlying formalism. Verification
in Coq can provide foundational guarantees, whereas in our approach, errors
in the encoding or bugs in the verifier could potentially invalidate verification
results. We mitigate the former risk by a soundness argument for our encoding
and the latter by the use of a mature verification system. We are convinced that
both approaches are necessary: foundational verification is ideal for meta-theory
development and application areas such as safety-critical systems, whereas our
approach is well-suited for prototyping and evaluating logics, and for making a
verification technique applicable by a wider user base.

The contributions of this paper are: (1) The first automated deductive verifi-
cation approach for weak-memory logics. We demonstrate the effectiveness of this
approach on examples from the literature, which are available online [3]. (2) An
encoding of large fractions of RSL, FSL, and FSL++ into Viper. Various aspects
of this encoding (such as the treatment of higher-order features and modalities,
as well as the overall proof search strategy) are generic and can be reused to
encode other advanced separation logics. (3) A prototype implementation, which
is available online [4].

Related Work. The existing weak-memory logics RSL [37], GPS [35], FSL [17],
and FSL++ [18] have been formalized in Coq and used to verify small examples.
The proofs were constructed mostly manually, whereas our approach automates
most of the proof steps. As shown in our evaluation, our approach reduces the
overhead by more than an order of magnitude. The degree of automation in
Coq could be increased through logic-specific tactics (e.g. [32,13]), whereas our

2

A ::= e | l k7→ e | A1 ∗A2 | e⇒ A | (e ? A1 : A2)
| Uninit(l) | Acq(l,Q) | Rel(l,Q) | Init(l) | 4A | 5A | RMWAcq(l,Q)

Fig. 2. Assertion syntax of the RSL logics. The top row of constructs are standard for
separation logics; those in the second row are specific to the RSL logics, and explained
throughout the paper. Invariants Q are functions from values to assertions (cf. Sec. 3).

approach benefits from Viper’s automation for the intermediate language, which
is independent of the encoded logic.

Jacobs [20] proposed a program logic for the TSO memory model that has
been encoded in VeriFast [21]. This encoding requires a substantial amount of
annotations, whereas our approach provides a higher degree of automation and
handles the more complex C11 memory model.

Weak-memory reasoning has been addressed using techniques based on model-
checking (e.g. [11,6,5]) and static analyses (e.g. [16,7]). These approaches are
fully automatic, but do not analyse code modularly, which is e.g. important for
verifying libraries independently from their clients. Deductive verification enables
compositional proofs by requiring specifications at function boundaries. Such
specifications can preserve arbitrarily-precise information about the (unbounded)
behaviour of a program’s constituent parts.

Automating logics via encodings into intermediate verification languages is a
proven approach, as witnessed by the many existing verifiers (e.g. [14,15,24,25])
which target Boogie [8] or Why3 [9]. Our work is the first that applies this
approach to logics for weak-memory concurrency. Our encoding benefits from
Viper’s native support for separation-logic-style reasoning and several advanced
features such as quantified permissions and permission introspection [27,26],
which are not available in other intermediate verification languages.

Outline. The next four sections present our encoding for the core features of the
C11 memory model: we discuss non-atomic locations in Sec. 2, release-acquire
accesses in Sec. 3, fences in Sec. 4, and compare-and-swap in Sec. 5. We discuss
soundness and completeness of our encoding in Sec. 6 and evaluate our approach
in Sec. 7. Sec. 8 concludes. Further details of our encoding and examples are
available in the appendix. A prototype implementation of our encoding (with all
examples) is available as an artifact [4].

2 Non-atomic Locations

We present our encoding for a small imperative programming language similar
to the languages supported by the RSL logics. C11 supports non-atomic mem-
ory accesses and different forms of atomic accesses. The access operations are
summarised in Fig. 1. We adopt the common simplifying assumption [37,35]
that memory locations are partitioned into those accessed only via non-atomic
accesses (non-atomic locations), and those accessed only via C11 atomics (atomic

3

` {true} l := allocna() {Uninit(l)} ` {l 17→ _ ∨ Uninit(l)} [l]na := e {l 17→ e}

` {l k7→ e} x := [l]na {x = e ∗ l k7→ e} (l k7→ e ∗ l k
′
7→ e′)⇔ (e = e′ ∗ l k+k′7→ e)

Fig. 3. Adapted RSL rules for non-atomics. Read access requires a non-zero permission.
Write access requires either write permission or that the location is uninitialised. The
underscore _ stands for an arbitrary value.

locations). Read and write statements are parameterised by a mode σ, which
is either na (non-atomic) or one of the atomic access modes τ . We focus on
non-atomic accesses in this section and discuss atomics in subsequent sections.

RSL proof rules. Non-atomic memory accesses come with no synchronisation
guarantees; programmers need to ensure that all accesses to non-atomic locations
are data-race free. The RSL logics enforce this requirement using standard
separation logic [28,31]. We show the syntax of assertions in Fig. 2, which
will be explained throughout the paper. A points-to assertion l

k7→ e denotes
a transferrable resource, providing permission to access the location l, and
expressing that l has been initialised and its current value is e. Here, k is a
fraction 0 < k ≤ 1; k = 1 denotes the full (or exclusive) permission to read and
write location l, whereas 0 < k < 1 provides (non-exclusive) read access [12].
Points-to resources can be split and recombined, but never duplicated or forged;
when transferring such a resource to another thread it is removed from the current
one, avoiding data races by construction. The RSL assertion Uninit(l) expresses
exclusive access to a location l that has been allocated, but not yet initialised;
l may be written to but not read from. The main proof rules for non-atomic
locations, adapted from RSL [37], are shown in Fig. 3.

Encoding. The Viper intermediate verification language [27] supports an asser-
tion language based on Implicit Dynamic Frames [33], a program logic related to
separation logic [29], but which separates permissions from value information.
Viper is object-based; the only memory locations are field locations e.f (in which
e is a reference, and f a field name). Permissions to access these heap locations
are described by accessibility predicates of the form acc(e.f, k), where k is a
fraction as for points-to predicates above (k defaults to 1). Assertions that do
not contain accessibility predicates are called pure. Unlike in separation logics,
heap locations may be read in pure assertions.

We model C-like memory locations l using a field val of a Viper reference
l. Consequently, a separation logic assertion l

k7→ e is represented in Viper as
acc(l.val, k) && l.val == e. We assume that memory locations have type int,
but a generalisation is trivial. Viper’s conjunction && treats permissions like a
separating conjunction, requiring the sum of the permissions in each conjunct,
and acts as logical conjunction for pure assertions (just as ∗ in separation logic).

4

field val: Int
field init: Bool

bbUninit(l)cc acc(l.val) && acc(l.init) && !l.init

bbl k7→ ecc acc(l.val, k) && acc(l.init, k) && l.val == bbecc && l.init

[[l := allocna()]] l := new(); inhale bbUninit(l)cc
[[x := [l]na]] assert l.init; x := l.val

[[[l]na := e]] l.val := bbecc; l.init := true

Fig. 4. Viper encoding of the RSL assertions and the rules for non-atomic memory
accesses from Fig. 3.

Viper provides two key statements for encoding proof rules: inhale A adds the
permissions denoted by the assertion A to the current state, and assumes pure
assertions in A. This can be used to model gaining new resources, e.g., acquiring
a lock in the source program. Dually, exhale A checks that the current state
satisfies A (otherwise a verification error occurs), and removes the permissions
that A denotes; the values of any locations to which no permission remains are
havoced (assigned arbitrary values). For example, when forking a new thread, its
precondition is exhaled to transfer the necessary resources from the forking thread.
Inhale and exhale statements can be seen as the permission-aware analogues of
the assume and assert statements of first-order verification languages [25].

The encoding of the rules for non-atomics from Fig. 3 is presented in Fig. 4.
bbAcc . . . denotes the encoding of an RSL assertion A as a Viper assertion, and
analogously [[s]] . . . for source-level statements s.

The first two lines show background declarations. The assertion encodings
follow the explanations above. Allocation is modelled by obtaining a fresh reference
(via new()) and inhaling permissions to its val and init fields; assuming !l.init

reflects that the location is not yet initialised. Viper implicitly checks the necessary
permissions for field accesses (verification fails otherwise). Hence, the translation
of a non-atomic read only needs to check that the read location is initialised
before obtaining its value. Analogously, the translation of a non-atomic write
only stores the value and records that the location is now initialised.

Note that Viper’s implicit permission checks are both necessary and sufficient
to encode the RSL rules in Fig. 3. In particular, the assertions l 17→ _ and Uninit(l)
both provide the permissions to write to location l. By including acc(l.val) in
the encoding of both assertions, we avoid the disjunction of the RSL rule.

Like the RSL logics, our approach requires programmers to annotate their
code with access modes for locations (as part of the alloc statement), and
specifications such as pre and postconditions for methods and threads. Given these
inputs, Viper constructs the proof automatically. In particular, it automatically
proves entailments, and splits and combines fractional permissions (hence, the
equivalence in Fig. 3 need not be encoded). Automation can be increased further
by inferring some of the required assertions, but this is orthogonal to the encoding
presented in this paper.

5

Q1 ≡ (V 6= 0⇒ a
17→ 42) Q2 ≡ (V 6= 0⇒ b

17→ 7)

{true}
a := allocna(); b := allocna(); l := allocacq(Q1∗Q2); [l]rel := 0

{Acq(l,Q1) ∗ Init(l)}
while([l]acq == 0);
x := [a]na
[a]na := x+ 1
{true ∗ a 17→ 43}

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
{Uninit(a) ∗ Uninit(b) ∗ Rel(l,Q1∗Q2)}

[a]na := 42
[b]na := 7
[l]rel := 1
{true ∗ Init(l)}

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
{Acq(l,Q2) ∗ Init(l)}
while([l]acq == 0);
y := [b]na
[b]na := y + 1
{true ∗ b 17→ 8}

{true ∗ a 17→ 43 ∗ b 17→ 8 ∗ Init(l)}

Fig. 5. An example illustrating “message passing” of non-atomic ownership, using
release acquire atomics (inspired by an example from [17]). Annotations are shown in
blue. This example corresponds to RelAcqDblMsgPassSplit in our evaluation (Sec. 7).

3 Release-Acquire Atomics

The simplest form of C11 atomic memory accesses are release write and acquire
read operations. They can be used to synchronise the transfer of ownership of
(and information about) other, non-atomic locations, using a message passing
idiom, illustrated by the example in Fig. 5. This program allocates two non-atomic
locations a and b, and an atomic location l (initialised to 0), which is used to
synchronise the three threads that are spawned afterwards. The middle thread
makes changes to the non-atomics a and b, and then signals completion via a
release write of 1 to l; conceptually, it gives up ownership of the non-atomic
locations via this signal. The other threads loop attempting to acquire-read a
non-zero value from l. Once they do, they each gain ownership of one non-atomic
location via the acquire read of 1 and access that location. The release write and
acquire reads of value 1 enforce ordering constraints on the non-atomic accesses,
preventing the left and right threads from racing with the middle one.

RSL proof rules. The RSL logics capture message-passing idioms by associating
a location invariant Q with each atomic location. Such an invariant is a function
from values to assertions; we represent such functions as assertions with a
distinguished variable symbol V as parameter. Location invariants prescribe the
intended ownership that a thread obtains when performing an acquire read of
value V from the location, and that must correspondingly be given up by a thread
performing a release write. The main proof rules [37] are shown in Fig. 6.

When allocating an atomic location for release/acquire accesses (first proof
rule), a location invariant Q must be chosen (as an annotation on the allocation).
The assertions Rel(l,Q) and Acq(l,Q) record the invariant to be used with
subsequent release writes and acquire reads. To perform a release write of value e
(second rule), a thread must hold the Rel(l,Q) assertion and give up the assertion
Q[e/V]. For example, the line [l]rel := 1 in Fig. 5 causes the middle thread to
give up ownership of both non-atomic locations a and b. The assertion Init(l)
represents that atomic location l is initialised; both Init(l) and Rel(l,Q) are
duplicable assertions; once obtained, they can be passed to multiple threads.

6

` {true} l := allocacq(Q) {Rel(l,Q) ∗ Acq(l,Q)}

` {Q(e) ∗ Rel(l,Q)} [l]rel := e {Init(l) ∗ Rel(l,Q)}

` {Init(l) ∗ Acq(l,Q)} x := [l]acq {Q[x/V] ∗ Acq(l, (V 6= x⇒ Q))}

Init(l) ⇔ Init(l) ∗ Init(l) Rel(l,Q) ⇔ Rel(l,Q) ∗ Rel(l,Q)

Acq(l,Q1 ∗ Q2) ⇔ Acq(l,Q1) ∗ Acq(l,Q2) Q1 |= Q2 ⇒ Acq(l,Q1) |= Acq(l,Q2)

Fig. 6. Adapted RSL rules for release-acquire atomics.

Multiple acquire reads might read the value written by a single release
write operation; RSL prevents ownership of the transferred resources from being
obtained (unsoundly) by multiple readers in two ways. First, Acq(l,Q) assertions
cannot be duplicated, only split by partitioning the invariant Q into disjoint parts.
For example, in Fig. 5, Acq(l,Q1) is given to the left thread, and Acq(l,Q2) to the
right. Second, the rule for acquire reads adjusts the invariant in the Acq assertion
such that subsequent reads of the same value will not obtain any ownership.

Encoding. A key challenge for encoding the above proof rules is that Rel and
Acq are parameterised by the invariant Q; higher-order assertions are not di-
rectly supported in Viper. However, for a given program, only finitely many
such parameterisations will be required, which allows us to apply defunctionali-
sation [30], as follows. Given an annotated program, we assign a unique index to
each syntactically-occurring invariant Q (in particular, in allocation statements,
and as parameters to Rel and Acq assertions in specifications). Furthermore, we
assign unique indices to all immediate conjuncts of these invariants. We write
indices for the set of indices used. For each i in indices, we write inv(i) for the
invariant which i indexes. For an invariant Q, we write 〈Q〉 for its index, and
〈〈Q〉〉 for the set of indices assigned to its immediate conjuncts.

Our encoding of the RSL rules from Fig. 6 is summarised in Fig. 7. To
encode duplicable assertions such as Init(l), we make use of Viper’s wildcard
permissions [27], which represent unknown positive permission amounts. When
exhaled, these amounts are chosen such that the amount exhaled will be strictly
smaller than the amount held (verification fails if no permission is held) [19]. So
after inhaling an Init(l) assertion (that is, a wildcard permission), it is possible
to exhale two wildcard permissions, corresponding to two Init(l) assertions. Note
that for atomic locations, we only use the init field’s permissions, not its value.

We represent a Rel(l,_) assertion for some invariant via a wildcard permission
to a rel field; this is represented via the SomeRel(l) macro1, and is used as the
precondition for a release write (we must hold some Rel assertion, according to
Fig. 6). The specific invariant associated with the location l is represented by
storing its index as the value of the rel field; when encoding a release write, we
branch on this value to exhale the appropriate assertion.
1 Viper macros can be defined for assertions or statements, and are syntactically
expanded (and their arguments substituted) on use.

7

field rel: Int
field acq: Bool
predicate AcqConjunct(l: Ref, idx: Int)

function valsRead(l: Ref, i: Int): Set[Int]
requires AcqConjunct(l, i)

define SomeRel(l) acc(l.rel, wildcard)
define SomeAcq(l) acc(l.acq, wildcard) && l.acq == true

bbInit(l)cc acc(l.init, wildcard)

bbRel(l,Q)cc SomeRel(l) && l.rel == 〈Q〉
bbAcq(l,Q)cc SomeAcq(l) && (foreach i in 〈〈Q〉〉:
AcqConjunct(l, i) && valsRead(l, i) == Set[Int]() end)

[[l := allocacq(Q)]] l := new(); inhale bbRel(l,Q)cc && bbAcq(l,Q)cc

[[[l]rel := e]] assert SomeRel(l);

foreach i in indices do
if (i == l.rel) { exhale inv(i)[e/V] }

end
inhale Init(l)

[[x := [l]acq]] assert Init(l) && SomeAcq(l); x := havoc(); // unknown Int

foreach i in indices do
if (perm(AcqConjunct(l, i)) == 1 && !(x in valsRead(l, i))) {
inhale inv(i)[x/V]
tmpSet := valsRead(l, i)
exhale AcqConjunct(l, i)
inhale AcqConjunct(l, i) && valsRead(l,i) == tmpSet union Set(x)

}
end

Fig. 7. Viper encoding of the RSL rules for release-acquire atomics from Fig. 6. The op-
erations in italics (e.g. foreach) are expanded statically in our encoding into conjunctions
or statement sequences. The value of the acq field will be explained in Sec. 5.

Analogously to Rel, we represent an Acq assertion for some invariant using a
wildcard permission (the SomeAcq macro), which is the precondition for executing
an acquire read. However, to support splitting, we represent the invariant in a
more fine-grained way, by recording individual conjuncts separately. Each conjunct
i of the invariant is modelled as an abstract predicate instance AcqConjunct(l, i),
which can be inhaled and exhaled individually. This encoding handles the common
case that invariants are split along top-level conjuncts, as in Fig. 5. More complex
splits can be supported through additional annotations: see App. C.

A release write is encoded by checking that some Rel assertion is held, and
then exhaling the associated invariant for the value written. Moreover, it records
that the location is initialised. The RSL rule for acquire reads adjusts the Acq
invariant by obliterating the assertion for the value read. Instead of directly
representing the adjusted invariant (which would complicate our numbering
scheme), we track the set of values read as state in our encoding. We comple-

8

{A} fencerel {4A} {5A} fenceacq {A}

{4Q(e) ∗ Rel(l,Q)} [l]rlx := e {Init(l) ∗ Rel(l,Q)}

{Init(l) ∗ Acq(l,Q)} x := [l]rlx {5Q[x/V] ∗ Acq(l,V 6= x⇒ Q)}

(A1 ⇒ A2)⇔ (4A1 ⇒4A2)⇔ (5A1 ⇒5A2)

5(A1 ∗A2) ≡ (5A1) ∗ (5A2) and analogously for 4 and other binary connectives

Fig. 8. Adapted FSL rules for relaxed atomics and fences.

ment each AcqConjunct predicate instance with an (uninterpreted) Viper function
valsRead(l, i), returning a set of indices2.

An acquire read checks that the location is initialised and that we have some
Acq assertion for the location. It assigns an unknown value to the lhs variable
x, which is subsequently constrained by the invariant associated with the Acq
assertion as follows: We check for each index whether we both currently hold
an AcqConjunct predicate for that index3, and if so, have not previously read the
value x from that conjunct of our invariant. If these checks succeed, we inhale
the indexed invariant for x, and then include x in the values read.

The encoding presented so far allows us to automatically verify annotated
C11 programs using release writes and acquire reads (e.g., the program of Fig. 5)
without any custom proof strategies [3]. In particular, we can support the higher-
order Acq and Rel assertions through defunctionalisation and enable the splitting
of invariants through a suitable representation.

4 Relaxed Memory Accesses and Fences

In contrast to release-acquire accesses, C11’s relaxed atomic accesses provide
no synchronisation: threads may observe reorderings of relaxed accesses and
other memory operations. Correspondingly, RSL’s proof rules for relaxed atomics
provide weak guarantees, and do not support ownership transfer. Memory fence
instructions can eliminate this problem. Intuitively, a release fence together with a
subsequent relaxed write allows a thread to transfer away ownership of resources,
similarly to a release write. Dually, an acquire fence together with a prior relaxed
read allows a thread to obtain ownership of resources, similarly to an acquire
read. This reasoning is justified by the ordering guarantees of the C11 model [17].

FSL proof rules. FSL and FSL++ provide proof rules for fences (see Fig. 8).
They use modalities 4 (“up”) and 5 (“down”) to represent resources that are
2 Viper’s heap-dependent functions are mathematical functions of their parameters
and the resources stated in their preconditions (here, AcqConjunct(l,i)).

3 A perm expression yields the permission fraction held for a field or predicate instance.

9

Q1 ≡ (V 6= 0⇒ a
17→ 42) Q2 ≡ (V 6= 0⇒ b

17→ 7)

{true}
a := allocna(); b := allocna(); l := allocacq(Q1∗Q2); [l]rel := 0

{Acq(l,Q1) ∗ Init(l)}
while([l]rlx == 0);
fenceacq;
x := [a]na
[a]na := x+ 1
{true ∗ a 17→ 43}

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

{Uninit(a) ∗ Uninit(b) ∗ Rel(x,Q1∗Q2)}
[a]na := 42;
[b]na := 7;
fencerel(a

17→ 42 ∗ b 17→ 7);
[l]rlx := 1;
{true ∗ Init(l)}

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

{Acq(l,Q2) ∗ Init(l)}
while([l]rlx == 0);
fenceacq;
y := [b]na;
[b]na := y + 1
{true ∗ b 17→ 8}

{true ∗ a 17→ 43 ∗ b 17→ 8}

Fig. 9. A variant of the message-passing example of Fig. 5, combining relaxed memory
accesses and fences to achieve ownership transfer. The example is also a variant of Fig. 2
of the FSL paper [17], which is included in our evaluation (FencesDblMsgPass) in Sec. 7.

transferred through relaxed accesses and fences. An assertion 4A represents a
resource A which has been prepared, via a release fence, to be transferred by a
relaxed write operation; dually, 5A represents resources A obtained via a relaxed
read, which may not be made use of until an acquire fence is encountered. The
proof rule for relaxed write is identical to that for a release write (cf. Fig. 6),
except that the assertion to be transferred away must be under the 4 modality;
this can be achieved by the rule for release fences. The rule for a relaxed read is
the same as that for acquire reads, except that the gained assertion is under the
5 modality. The modality can be removed by a subsequent acquire fence. Finally,
assertions may be rewritten under modalities, and both modalities distribute
over all other logical connectives.

Fig. 9 shows an example program, which is a variant of the message-passing
example from Fig. 5. Comparing the left-hand one of the three parallel threads,
a relaxed read is used in the spin loop; after the loop, this thread will hold the
assertion 5a 17→ 42. The subsequent fenceacq statement allows the modality to be
removed, allowing the non-atomic location a to be accessed. Dually, the middle
thread employs a fencerel statement to place the ownership of the non-atomic
locations under the 4 modality, in preparation for the relaxed write to l.

Encoding. The main challenge in encoding the FSL rules for fences is how to rep-
resent the two new modalities. Since these modalities guard assertions which can-
not be currently used or combined with modality-free assertions, we model them
using two additional heaps to represent the assertions under each modality. The
program heap (along with associated permissions) is a built-in notion in Viper, and
so we cannot directly employ three heaps. Therefore, we construct the additional
“up” and “down” heaps, by axiomatising bijective mappings up and down between a
real program reference and its counterparts in these heaps. That is, technically our
encoding represents each source location through three references in Viper’s heap
(rather than one reference in three heaps). Assertions 4A are then represented
by replacing all references r in the encoded assertion A with their counterpart
up(r). We write dAeup for the transformation which performs this replacement.

10

domain threeHeaps {
function up(x: Ref) : Ref; function upInv(x: Ref) : Ref;
function down(x: Ref) : Ref; function downInv(x: Ref) : Ref;
function heap(x: Ref) : Int; // identifies which heap a Ref is from
axiom { forall r:Ref :: upInv(up(r)) == r &&
(heap(r) == 0 ==> heap(up(r)) == 1 }

axiom { forall r:Ref :: up(upInv(r)) == r &&
(heap(r) == 1 ==> heap(upInv(r)) == 0 }

axiom { forall r:Ref :: downInv(down(r)) == r &&
(heap(r) == 0 ==> heap(down(r)) == -1 }

axiom { forall r:Ref :: down(downInv(r)) == r &&
(heap(r) == -1 ==> heap(downInv(r)) == 0 }

}

bb4Acc dbbAcceup bb5Acc dbbAccedown

[[[l]rlx := e]] . . . encoded as for release writes (Fig. 7) except

using dinv(i)eup in place of inv(i)
[[x := [l]rlx]] . . . encoded as for acquire reads (Fig. 7) except

using dinv(i)edown in place of inv(i)

[[fencerel(A)]] exhale bbAcc; inhale dbbAcceup

[[fenceacq]] var rs : Set[Ref]; rs := havoc() // unknown set of Refs

assume forall r: Ref :: r in rs <==> perm(down(r).val) > none
inhale forall r: Ref :: r in rs ==> acc(r.val, perm(down(r).val))
assume forall r: Ref :: r in rs ==> r.val == down(r).val
exhale forall r: Ref :: r in rs ==> acc(down(r).val, perm(down(r).val))
// analogously for each other field, predicate (in place of val)

Fig. 10. Viper encoding of the FSL rules for relaxed atomics and memory fences from
Fig. 8. We omit triggers for the quantifiers for simplicity, but see [3].

For example, dacc(x.val) && x.val == 4eup acc(up(x).val) && up(x).val == 4.
We write dAedown for the analogous transformation for the down function.

The extension of our encoding is shown in Fig. 10. We employ a Viper domain
to introduce and axiomatise the mathematical functions for our up and down

mappings. By axiomatising inverses for these mappings, we guarantee bijectivity.
Bijectivity allows Viper to conclude that (dis)equalities and other information
is preserved under these mappings. Consequently, we do not have to explicitly
encode the last two rules of Fig. 8; they are reduced to standard assertion
manipulations in our encoding. An additional heap function labels references
with an integer identifying the heap to which they belong (0 for real references,
-1 and 1 for their “down” and “up” counterparts); this labelling provides the
verifiers with the (important) information that these notional heaps are disjoint.

Our handling of relaxed reads and writes is almost identical to that of acquire
reads and release writes in Fig. 7; this similarity comes from the proof rules,
which only require that the modalities be inserted for the invariant. Our encoding
for release fences requires an annotation in the source program to indicate which
assertion to prepare for release by placing it under the 4 modality.

Our encoding for acquire fences does not require any annotations. Any asser-
tion under the 5 modality can (and should) be converted to its corresponding
version without the modality because 5A is strictly less-useful than A itself. To
encode this conversion, we find all permissions currently held in the down heap,

11

{true} l := allocRMW(Q) {Rel(l,Q) ∗ RMWAcq(l,Q)}

x /∈ FV (P)
x /∈ FV (e) P ′ ≡

{
P if τ ∈ {rel, rel_acq}
4P otherwise

Q[e/V] |= A ∗ T
P ∗ T |= Q[e′/V] A′ ≡

{
A if τ ∈ {acq, rel_acq}
5A otherwise{

Init(l) ∗ Rel(l,Q)∗
RMWAcq(l,Q) ∗ P ′

}
x := CASτ (l, e, e′)

{
(x = e ? A′ : P ′) ∗ Init(l) ∗
Rel(l,Q) ∗ RMWAcq(l,Q)

}
RMWAcq(l,Q) ⇔ RMWAcq(l,Q) ∗ RMWAcq(l,Q)

Fig. 11. Adapted FSL++ rules for compare and swap operations. FV yields the free
variables of an assertion.

and transfer these permissions and the values of the corresponding locations over
to the real heap. These steps are encoded for each field and predicate separately;
Fig. 10 shows the steps for the val field. We first define a set rs to be precisely
the set of all references r to which some permission to down(r).val is currently
held, i.e., perm(down(r).val) > none. For each such reference, we inhale exactly the
same amount of permission to the corresponding r.val location, equate the heap
values, and then remove the permission to the down locations.

With our encoding based on multiple heaps, reasoning about assertions under
modalities inherits all of Viper’s native automation for permission and heap
reasoning. We will reuse this idea for a different purpose in the following section.

5 Compare and Swap

C11 includes atomic read-modify-write operations, commonly used to implement
high-level synchronisation primitives such as locks. FSL++ [18] provides proof
rules for compare and swap (CAS) operations. An atomic compare and swap
CASτ (l, e, e′) reads and returns the value of location l; if the value read is equal
to e, it also writes the value e′ (otherwise we say that the CAS fails).

FSL++ proof rules. FSL++ provides an assertion RMWAcq(l,Q), which is
similar to Acq(l,Q), but is used for CAS operations instead of acquire reads. A
successful CAS both obtains ownership of an assertion via its read operation and
gives up ownership of an assertion via its write operation.

FSL++ does not support general combinations of atomic reads and CAS
operations on the same location; the way of reading must be chosen at allocation
via the annotation ρ on the allocation statement (see Fig. 1). In contrast to the
Acq assertions used for atomic reads, RMWAcq assertions can be freely duplicated
and their invariants need not be adjusted for a successful CAS: when using only
CAS operations, each value read from a location corresponds to a different write.

Our presentation of the relevant proof rules is shown in Fig. 11. Allocating a
location with annotation RMW provides a Rel and a RMWAcq assertion, such that
the location can be used for release writes and CAS operations.

12

(i) (ii)

Fig. 12. An illustration of (i) the proof rule for CAS operations and (ii) our Viper
encoding; the dashed regions denote the relevant heaps employed in the encoding.

For the CAS operation, we present a single, general proof rule instead of four
rules for the different combinations of access modes in FSL++. The rule requires
that l is initialised (since its value is read), Rel and RMWAcq assertions, and an
assertion P ′ that provides the resources needed for a successful CAS. If the CAS
fails (that is, x 6= e), its precondition is preserved.

If the CAS succeeds, it has read value e and written value e′. Assuming for
now that the access mode τ permits ownership transfer, the thread has acquired
Q[e/V] and released Q[e′/V]. As illustrated in Fig. 12(i), these assertions may
overlap. Let T denote the assertion characterizing the overlap; then assertion A
denotes Q[e/V] without the overlap, and P denotes Q[e′/V] without the overlap.
The net effect of a successful CAS is then to acquire A and to release P , while T
remains with the location invariant across the CAS. Automating the choice of
T , A, and P is one of the main challenges of encoding this rule. Finally, if the
access mode τ does not permit ownership transfer (that is, fences are needed to
perform the transfer), A and P are put under the appropriate modalities.

Encoding. Our encoding of CAS operations uses several techniques presented
in earlier sections: see App. E for details. We represent RMWAcq assertions
analogously to our encoding of Acq assertions (see Sec. 3). We use the value of
field acq (cf. Fig. 7) to distinguish holding some RMWAcq assertion from some
Acq assertion. Since RMWAcq assertions are duplicable (cf. Fig. 11), we employ
wildcard permissions for the corresponding AcqConjunct predicates.

Our encoding of the proof rule for CAS operations is somewhat involved; we
give a high-level description here, and relegate the details to App. E. We focus on
the more-interesting case of a successful CAS here. The key challenge is how to
select assertion T to satisfy the premises of the rule. Maximising this overlap is
desirable in practice since this reduces the resources to be transferred, and which
must interact in some cases with the modalities. Our Viper encoding indirectly
computes this largest-possible T as follows (see Fig. 12(ii) for an illustration).

We introduce yet another heap (“tmp”) in which we inhale the invariant
Q[e/V] for the value read. Now, we exhale the invariant Q[e′/V] for the value
written, but adapt the assertions as follows: for each permission in the invariant,
we take the maximum possible amount from our “tmp” heap; these permissions
correspond to T . Any remainder is taken from the current heap (either the real

13

or the “up” heap, depending on τ); these correspond to P . Any permissions
remaining in the “tmp” heap after this exhale correspond to the assertion A and
are moved (in a way similar to our fenceacq encoding in Fig. 10) to either the
real or “down” heap (depending on τ).

This combination of techniques results in an automatic support for the proof
rule for CAS statements. This completes the core of our Viper encoding, which
now handles the complete set of memory access constructs from Fig. 1.

6 Soundness and Completeness

We give a brief overview of the soundness argument for our encoding here, and
also discuss where it can be incomplete compared with a manual proof effort;
further details are included in App. F.

Soundness. Soundness means that if the Viper encoding of a program and its
specification verifies, then there exists a proof of the program and specification
using the RSL logics. We can show this property in two main steps. First, we show
that the states before and after each encoded statement in the Viper program
satisfy several invariants. For example, we never hold permissions to a non-atomic
reference’s val field but not its init field. Second, we reproduce a Hoare-style
proof outline in the RSL logics. For this purpose, we define a mapping from
states of the Viper program back to RSL assertions and show two properties:
(1) When we map the initial and final states of an encoded program statement to
RSL assertions, we obtain a provable Hoare triple. (2) Any automatic entailment
reasoning performed by Viper coincides with entailments sound in the RSL logics.
These two facts together imply that our technique will only verify (encoded)
properties for which a proof exists in the RSL logics; i.e. our technique is sound.

Completeness. Completeness means that all programs provable in the RSL
logics can be verified via their encoding into Viper. By systematically analysing
each rule of these logics, we identify three sources of incompleteness of our
encoding: (1) It does not allow one to strengthen the invariant in a Rel assertion;
strengthening the requirement on writing does not allow more programs to be
verified [36]. (2) For a fenceacq, our encoding removes all assertions from under
a 5 modality. As explained in Sec. 4, the ability to choose not to remove the
modality is not useful in practice. (3) The ghost state employed in FSL++ can
be defined over a custom permission structure (partial commutative monoid),
which is not possible in Viper. This is the only incompleteness of our encoding
arising in practice; we will discuss an example in Sec. 7.

7 Examples and Evaluation

We evaluated our work with a prototype front-end tool [4], and some additional
experiments directly at the Viper level [3]. Our front-end tool accepts a simple

14

Program Prototype Size (LOC, Time Specs Other Coq
support funcs,loops) (s) PP LI Annot. Annot.

RSLSpinLock X 7,3,2 10.83 3 1 1 120 [37]
RSLLockNoSpin X 6,3,1 10.33 3 0 1 84 [22]
RSLLockNoSpin_err X 6,3,1 9.74 3 0 1 n/a
RelAcqMsgPass X 15,3,1 10.46 3 0 1 99 [37]
RelAcqMsgPass_err X 15,3,1 9.57 3 0 1 n/a
RelAcqDblMsgPassSplit X 21,4,2 10.84 4 0 1 n/a
RelAcqDblMsgPassSplit_err X 21,4,2 9.86 4 0 1 n/a
CASModesTest X 23,3,2 18.05 3 0 2 n/a
CASModesTest_err X 24,3,2 17.50 3 0 2 n/a
FencesDblMsgPass X 27,4,2 12.32 4 0 3 n/a
FencesDblMsgPass_err X 27,4,2 10.73 4 0 3 n/a
FencesDblMsgPassSplit X 24,4,2 12.61 4 0 2 n/a
FencesDblMsgPassSplit_err X 24,4,2 11.53 4 0 2 n/a
FencesDblMsgPassAcqRewrite 24,4,2 15.75 4 0 3 n/a
RustARCOriginal_err 10,4,0 37.53 4 0 2 654 [18]
RustARCStronger 10,4,0 31.86 4 0 2 n/a
RelAcqRustARCStronger 9,4,0 15.75 4 0 2 n/a
FollyRWSpinlock_err 24,7,2 28.21 7 2 0 n/a
FollyRWSpinlockStronger 26,7,3 21.93 7 3 0 n/a

Fig. 13. The results of our evaluation. Examples including _err are expected to generate
errors; those with Stronger are variants of the original code with less-efficient atomics
and a correspondingly different proof. Under “Size”, we measure lines of code, number
of distinct functions/threads, and number of loops. Under “Specs”, “PP” stands for
the necessary pairs of pre and post-conditions; “LI” stands for loop invariants required.
“Other Annot.” counts any other annotations needed. For examples that have been
verified in Coq, we report the number of manual proof steps (in addition to pre-post
pairs) and provide a reference to the proof.

input language for C11 programs, closely modelled on the syntax of the RSL logics.
It supports all features described in this paper, with the exception of invariant
rewriting (cf. App. C) and ghost state (App. D), which will be simple extensions.
We encoded examples which require these features, additional theories, or custom
permission structures manually into Viper, to simulate what an extended version
of our prototype will be able to achieve.

Our encoding supports several extra features which we used in our experiments
but mention only briefly here: (1) We support the FSL++ rules for ghost state: see
App. D. (2) Our encoding handles common spin loop patterns without requiring
loop invariant annotations. (3) We support fetch-update instructions (e.g. atomic
increments) natively, modelled as a CAS which never fails.
Examples. We took examples from the RSL [37] and FSL [17] papers, along
with variants in which we seeded errors, to check that verification fails as expected
(and in comparable time). We also encoded the Rust reference-counting (ARC)
library [1], which is the main example from FSL++ [18]. The proof there employs
a custom permission structure, which is not yet supported by Viper. However,
following the suggestion of one of the authors [36], we were able to fully verify two
variants of the example, in which some access modes are strengthened, making the
code slightly less efficient but enabling a proof using a simpler permission model.
For these variants, we required counting permissions [10], which we expressed

15

with additional background definitions (see [3] for details, and App. B for the
code). Finally, we tackled seven core functions of a reader-writer-spinlock from
the Facebook Folly library [2]. We were able to verify five of them directly. The
other two employ code idioms which seem to be beyond the scope of the RSL
logics, at least without sophisticated ghost state. For both functions, we also
wrote and verified alternative implementations. The Rust and Facebook examples
demonstrate a key advantage of building on top of Viper; both require support for
extra theories (counting permissions as well as modulo and bitwise arithmetic),
which we were able to encode easily.
Performance. We measured the verification times on an Intel Core i7-4770
CPU (3.40GHz, 16Gb RAM) running Windows 10 Pro and report the average
of 5 runs. For those examples supported by our front-end, the times include
the generation of the Viper code. As shown in Fig. 13, verification times are
reasonable (generally around 10 seconds, and always under a minute).
Automation. Each function (and thread) must be annotated with an appropriate
pre and post-condition, as is standard for modular verification. In addition, some
of our examples require loop invariants and other annotations (e.g. on allocation
statements). Critically, the number of such annotations is very low. In particular,
our annotation overhead is between one and two orders of magnitude lower than
the overhead of existing mechanised proofs (using the Coq formalisations for
[37,18] and a recent encoding [22] of RSL into Iris [23]). Such ratios are consistent
with other recent Coq-mechanised proofs based on separation logic (e.g. [38]),
which suggests that the strong soundness guarantees provided by Coq have a high
cost when applying the logics. By contrast, once the specifications are provided,
our approach is almost entirely automatic.

8 Conclusions and Future Work

We have presented the first encoding of modern program logics for weak memory
models into an automated deductive program verifier. The encoding enables
programs (with suitable annotations) to be verified automatically by existing
back-end tools. We have implemented a front-end verifier and demonstrated that
our encoding can be used to verify weak-memory programs efficiently and with
low annotation overhead. As future work, we plan to tackle other weak-memory
logics such as GPS [35]. Building practical tools that implement such advanced
formalisms will provide feedback that inspires further improvements of the logics.

Data Availability Statement and Acknowledgements. The artifact ac-
companying our submission is available in the TACAS figshare repository [4] at
https://doi.org/10.6084/m9.figshare.5900233{}

We are grateful to Viktor Vafeiadis and Marko Doko for many explanations of
the RSL logics and helpful discussions about our encoding. We thank Christiane
Goltz for her work on the prototype tool, and Malte Schwerhoff for implementing
additional features. We thank Marco Eilers for his assistance with the online
appendix, and Arshavir Ter-Gabrielyan for automating our artifact assembly for

16

https://doi.org/10.6084/m9.figshare.5900233{}

various operating systems. We also thank Andrei Dan, Lucas Brutschy and Malte
Schwerhoff for feedback on earlier versions of this manuscript.

References

1. ARC (Atomic Reference Counting) Rust library. Available at https://doc.

rust-lang.org/std/sync/struct.Arc.html.
2. Facebook Folly reader-writer spinlock implementation. Available at https://github.

com/facebook/folly/blob/master/folly/RWSpinLock.h.
3. Online appendix of Viper-encoded examples. Available at http://viper.ethz.ch/

onlineappendix-rsl-encoding/.
4. RSL to Viper front-end. figshare. https://doi.org/10.6084/m9.figshare.5900233{}.
5. P. A. Abdulla, M. F. Atig, A. Bouajjani, and T. P. Ngo. The benefits of duality in

verifying concurrent programs under TSO. CoRR, abs/1701.08682, 2017.
6. P. A. Abdulla, M. F. Atig, B. Jonsson, and C. Leonardsson. Stateless model

checking for power. In CAV 2016 Proceedings Part II, pages 134–156, 2016.
7. J. Alglave and P. Cousot. Ogre and pythia: An invariance proof method for weak

consistency models. In POPL 2017, POPL 2017, pages 3–18, New York, NY, USA,
2017. ACM.

8. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In Proceedings of the
4th International Conference on Formal Methods for Components and Objects,
FMCO’05, pages 364–387, Berlin, Heidelberg, 2006. Springer-Verlag.

9. F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your
herd of provers. In Boogie 2011: First International Workshop on Intermediate
Verification Languages, pages 53–64, Wrocław, Poland, August 2011.

10. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In Proceedings of POPL ’05, pages 259–270, New York, NY, USA,
2005. ACM.

11. A. Bouajjani, E. Derevenetc, and R. Meyer. Checking and enforcing robustness
against tso. In ESOP 2013, ESOP’13, pages 533–553, Berlin, Heidelberg, 2013.
Springer-Verlag.

12. J. Boyland. Checking interference with fractional permissions. In SAS, volume
2694 of LNCS, pages 55–72. Springer, 2003.

13. A. Chlipala. Mostly-automated verification of low-level programs in computational
separation logic. In Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’11, pages 234–245, New
York, NY, USA, 2011. ACM.

14. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A Practical System for Verifying Concurrent C,
pages 23–42. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

15. P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.
Frama-C. In SEFM, pages 233–247, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

16. A. Dan, Y. Meshman, M. Vechev, and E. Yahav. Effective abstractions for veri-
fication under relaxed memory models. In VMCAI 2015, pages 449–466, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

17. M. Doko and V. Vafeiadis. A program logic for C11 memory fences. In VMCAI,
volume 9583 of Lecture Notes in Computer Science, pages 413–430. Springer, 2016.

17

https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://github.com/facebook/folly/blob/master/folly/RWSpinLock.h
https://github.com/facebook/folly/blob/master/folly/RWSpinLock.h
http://viper.ethz.ch/onlineappendix-rsl-encoding/
http://viper.ethz.ch/onlineappendix-rsl-encoding/
https://doi.org/10.6084/m9.figshare.5900233{}

18. M. Doko and V. Vafeiadis. Tackling real-life relaxed concurrency with FSL++. In
ESOP 2017, pages 448–475. Springer Berlin Heidelberg, 2017.

19. S. Heule, K. R. M. Leino, P. Müller, and A. J. Summers. Abstract read permissions:
Fractional permissions without the fractions. In VMCAI, volume 7737 of Lecture
Notes in Computer Science, pages 315–334. Springer-Verlag, 2013.

20. B. Jacobs. Verifying TSO programs. CW Reports CW660, Department of Computer
Science, KU Leuven, May 2014.

21. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier.
In APLAS, volume 6461 of LNCS, pages 304–311. Springer, 2010.

22. J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis. Strong Logic for
Weak Memory: Reasoning About Release-Acquire Consistency in Iris. In ECOOP
2017, volume 74 of LIPIcs, pages 17:1–17:29. Schloss Dagstuhl–Leibniz, 2017.

23. R. Krebbers, R. Jung, A. Bizjak, J.-H. Jourdan, D. Dreyer, and L. Birkedal. The
essence of higher-order concurrent separation logic. In ESOP, pages 696–723, New
York, NY, USA, 2017. Springer-Verlag New York, Inc.

24. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In
Proceedings of LPAR’10, pages 348–370, Berlin, Heidelberg, 2010. Springer-Verlag.

25. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
G. Castagna, editor, ESOP, volume 5502 of LNCS, pages 378–393. Springer-Verlag,
2009.

26. P. Müller, M. Schwerhoff, and A. J. Summers. Automatic verification of iterated
separating conjunctions using symbolic execution. In CAV, volume 9779 of LNCS,
pages 405–425. Springer-Verlag, 2016.

27. P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors,
VMCAI, volume 9583 of LNCS, pages 41–62. Springer-Verlag, 2016.

28. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Proceedings of CSL’01, pages 1–19, London, UK, UK,
2001. Springer-Verlag.

29. M. J. Parkinson and A. J. Summers. The relationship between separation logic and
implicit dynamic frames. Logical Methods in Computer Science, 8(3:01):1–54, 2012.

30. J. C. Reynolds. Definitional interpreters for higher-order programming languages.
In ACM Annual Conference—Volume 2, ACM ’72, pages 717–740. ACM, 1972.

31. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS. IEEE Computer Society Press, 2002.

32. I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification of fine-grained
concurrent programs. In Proceedings of PLDI ’15, pages 77–87, New York, NY,
USA, 2015. ACM.

33. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. ACM Trans.
Program. Lang. Syst., 34(1):2:1–2:58, 2012.

34. A. J. Summers and S. Drossopoulou. A formal semantics for isorecursive and
equirecursive state abstractions. In ECOOP, volume 7920 of LNCS, pages 129–153.
Springer, 2013.

35. A. Turon, V. Vafeiadis, and D. Dreyer. GPS: navigating weak memory with ghosts,
protocols, and separation. In OOPSLA, pages 691–707. ACM, 2014.

36. V. Vafeiadis. Personal communication, December 2016.
37. V. Vafeiadis and C. Narayan. Relaxed separation logic: a program logic for C11

concurrency. In OOPSLA, pages 867–884. ACM, 2013.
38. F. Xu, M. Fu, X. Feng, X. Zhang, H. Zhang, and Z. Li. A practical verification

framework for preemptive OS kernels. In CAV Proceedings Part II, pages 59–79,
Cham, 2016. Springer International Publishing.

18

A Full Source Encoding

The encoding of the general source language of assertions is given below (we
assume the encoding of pure expressions, which can typically be the identity
mapping, assuming all operators supported such as addition, equality etc. are all
supported natively by Viper).

bbempcc true
bbl k7→ ecc acc(l.val, k) && acc(l.init, k) &&

l.val==bbecc && l.init

bbA1 ∗A2cc bbA1cc&&bbA2cc
bbb⇒ Acc bbbcc ⇒ bbAcc

bb(b ? A1 : A2)cc (bbbcc ? bbA1cc : bbA2cc)
bbUninit(l)cc acc(l.val) && acc(l.init) && !l.init

bbAcq(l,Q)cc acc(l.acq, wildcard) && l.acq==true &&

(foreach i in 〈〈Q〉〉: AcqConjunct(l, i) &&

valsRead(l, i)==Set[Int]() end)
bbRel(l,Q)cc acc(l.rel, wildcard) && l.rel==〈Q〉
bbInit(l)cc acc(l.init, wildcard)

bb4Acc dbbAcceup

bb5Acc dbbAccedown

bbRMWAcq(l,Q)cc acc(l.acq, wildcard) && l.acq==false &&

(foreach i in 〈〈Q〉〉: acc(AcqConjunct(l, i), wildcard) end)

For example which potentially employ multiple copies of the same conjunct in an
Acq() predicate’s invariant, some additional care needs to be taken about when
exactly to make the valsRead(l, i) == Set[Int]() assumption; this is discussed
in App. C.1.

B Example Details

To give an impression of the input required for our encoding, we provide source
code corresponding to some of our encoded examples from the Online Appendix
[3], given in Figures 14 to 16. For supported examples (cf. Fig. 13), one can also
see the input files for our prototype tool [4].

C Rewriting Invariants

It is unusual (at least, in the examples we have investigated so far) for very many
different invariants for atomic locations to be needed; it is even less common for
there to be a need for many different invariants for the same atomic location.
Indeed, for Rel and RMWAcq assertions, since the assertions are duplicable, one
may as well always use the same invariant. For Acq assertions the situation
is more interesting; it may be desirable to split the invariant (as used e.g. in
Fig. 15) across several Acq assertions, and programmer-annotated assertions

19

Q ≡ (V = 0 ? true : (V = 1 ? J : false))

Lock(x) ≡ Init(x) ∗ RMWAcq(x,Q) ∗ Rel(x,Q)

new_lock() returns (x)

requires J
ensures Lock(x)

{

x := allocacq(Q);
[x]rel := 1;

}

unlock(x)

requires J ∗ Lock(x)
ensures Lock(x)

{

[x]rel := 1;
}

lock(x)

requires Lock(x)
ensures J ∗ Lock(x)

{

while(CASrel_acq(x, 1, 0) != 1);
}

Fig. 14. RSLLockNoSpin example (based on RSL Figure 7). Annotations in blue.

may not always syntactically match up precisely (since there might be more
readable ways of expressing an equivalent assertion). Since our indexing of Acq
invariants matches their conjuncts syntactically, additional work is required if
this syntactic match would be overly restrictive. For example, in the example
shown in Fig. 15, the initial Acq invariant is expressed more succinctly in a
way which does not provide the immediate conjuncts needed by the (left and
right) forked threads. In such cases, we support an additional rewrite statement
rewrite Acq(l,Q) as Acq(l,Q′) in the source program to explain the intended
rewriting. To check that such a statement is justified, we need to check the entail-
ment between the original and new invariants, for all values of V. Furthermore,
this entailment check cannot be made directly in the current state, since that
might already contain permissions and value information which could unsoundly
weaken the check made, or even contradict the invariants involved, resulting in
an infeasible program state from there onwards.

To avoid these issues, we perform the following steps (shown in Fig. 17). For
simplicity, we do not handle the case of rewriting invariants for which values
have already been read (we check that this is not the case, here, but an extension
is possible). Firstly, we create a non-deterministic if-branch. Inside the branch
we remove all permissions from the current state. We then havoc an integer
variable, representing the arbitrary value of V for which the subsequent check
should hold. We inhale the original invariant (using our indexing as usual), and
exhale the invariant to which it is to be rewritten. If this succeeds, we know that
the rewriting is justified; the one invariant entails the other, for all values of V.
We then kill this branch, by adding an assume false to it; subsequently, only the
other branch (in which no changes were made) will be considered for verification.

20

Q1 ≡ (V 6= 0⇒ a
17→ 42) Q2 ≡ (V 6= 0⇒ b

17→ 7)
Q3 ≡ (V 6= 0⇒ a

17→ 42 ∗ b 17→ 7)

{true}
a := allocna(); b := allocna();x := allocacq(Q3);

rewrite Acq(x,Q3) as Acq(x,Q1 ∗ Q2);
[x]rel := 0;

{Acq(x,Q1) ∗ Init(x)}
while([x]rlx == 0);
fenceacq;
z := [a]na
[a]na := z + 1
{true ∗ a 17→ 43}

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

{Uninit(a) ∗ Uninit(b) ∗ Rel(x,Q3)}
[a]na := 42;
[b]na := 7;
fencerel(a

17→ 42 ∗ b 17→ 7);
[x]rlx := 1;
{true ∗ Init(x)}

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

{Acq(x,Q2) ∗ Init(x)}
while([x]rlx == 0);
fenceacq;
w := [b]na;
[b]na := w + 1
{true ∗ b 17→ 8}

{true ∗ a 17→ 43 ∗ b 17→ 8}

Fig. 15. FencesDblMsgPassAcqRewrite examples. Annotations in blue.

Lastly, we perform the rewriting itself by discarding all of the original
AcqConjunct instances, and replacing them with the new ones. Verification can
then proceed as usual.

C.1 Multiple Copies of Invariant Conjuncts

If an example exhibits the following sequence of steps: we inhale an Acq(l,Q)
conjunct, then we perform an acquire read, and then we inhale (perhaps due
to joining a thread) another Acq(l,Q) conjunct, then the presented encoding
of this assertion is not quite correct. The problem is that we must avoid “re-
initialising” the function tracking the values read in the location; blindly assuming
valsRead(l, i) == Set[Int]() (as in Sec. A) can lead to contradictions. We solve
this problem simply by making the assumption only if the newly-acquired conjunct
was not already held. This is easy to check using Viper’s permission introspection.
Note that this comes with a new incompleteness (albeit for an extremely specific
situation): we effectively “obliterate” one point in the acquire conjunct (for the
earlier value read) in both copies of the conjunct, where technically we need only
do so for the one formerly held. We could extend our modelling to handle this
situation, but it seems unnecessary in practice.

D Ghost Locations

We extend our encoding to handle ghost locations in a simple manner. Firstly,
we add a boolean function is_ghost on references, to identify whether or not a
location is ghost. We added macros realRef(r) to add the appropriate assumptions
for a real program reference, and ghostRef(r) for ghost locations; this can be seen
as the translation of “type information”, since we assume that ghost locations
are labelled as such in the original program.

21

Q ≡ V ≥ 0 ∗ g 1−V∗rd7→ _ ∗ (V ≥ 1⇒ d
1−V∗rd7→ _)

ARC(d, c, g, v) ≡ d
rd7→ v ∗ g rd7→ _ ∗ RMWAcq(c,Q) ∗ Rel(c,Q) ∗ Init(c)

new(v) returns (d,c,g)

requires true
ensures ARC(d, c, g, v)

{

d := allocna();
g := allocghost();
c := allocRMW(Q);
[d]na := v;
[c]rel := 1;

}

drop(d,c,g)

requires ARC(d, c, g,_)
ensures true

{

t := fetch_and_addrel(c,−1);
if (t==1){

fenceacq;
free(d);

}

}

read(d,c,g) returns (v)

requires ARC(d, c, g,_)
ensures ARC(d, c, g, v)

{

v := [d]na;
}

clone(d,c,g)

requires ARC(d, c, g, v)
ensures ARC(d, c, g, v) ∗ARC(d, c, g, v)

{

fetch_and_addacq(c, 1);
}

Fig. 16. Rust reference counting variant with strengthened access modes
(RustARCStronger in our evaluation). Compared to the original code (see [18]) we
modified the write in new to use a release rather than relaxed mode, and the update in
clone to use acquire rather than relaxed. As discussed in the paper body, the original
version of the example is proved in [18] using features which are not yet supported by
our encoding. We do, however, exploit the CAS rules and rules for fences here. We write
rd for a read permission, in the sense of counting permissions [10]. The ghost location g
must be identifiable as such for the encoding, for example by considering this a type
annotation, or using a distinguished class of variables for ghost locations. We model
the free statement by exhaling the corresponding permissions.

22

[[rewrite Acq(l,Q) as Acq(l,Q′)]]
assert SomeAcq(l)
var tmpBool : Bool
tmpBool := havoc()

if(tmpBool) { // check rewriting is justified

// remove all permissions from current state
exhale forall r: Ref :: r != null ==> acc(r.init, perm(r.init))
exhale forall r: Ref :: r != null ==> acc(r.val, perm(r.val))
exhale forall r: Ref :: r != null ==> acc(r.rel, perm(r.rel))
exhale forall r: Ref :: r != null ==> acc(r.acq, perm(r.acq))

// analogously for other fields, predicates in source program

var v :Int
v := havoc() // perform check for arbitrary v

// inhale original invariant
foreach i in indices do

if(i in 〈〈Q〉〉) {
inhale inv(i)[v/V]

}
end

// exhale new invariant
foreach i in indices do

if(i in 〈〈Q′〉〉) {
exhale inv(i)[v/V]

}
end

assume false // kill this branch - we’ve checked rewriting is OK
}

// update the conjuncts held

exhale (foreach i in 〈〈Q〉〉:
AcqConjunct(l, i) && valsRead(l, i) == Set[Int]() end)

inhale (foreach i in 〈〈Q′〉〉:
AcqConjunct(l, i) && valsRead(l, i) == Set[Int]() end)

Fig. 17. Viper encoding of a source-level Rewrite statement.

For ghost locations we tweak our multiple heaps encoding to change the
assumptions about the up and down mappings to instead require them to act as
the identity (correspondingly, the result of heap is no longer constrained to be
different after applying these mappings to a ghost reference). This immediately
gives us that, for assertions depending only on ghost locations in the heap, 4A,
A and 5A will be handled equivalently; since (up to syntactic applications of
these identify mappings) they will be encoded as identical assertions.

Finally, we add an assumption of realRef(r) to our existing statements for
allocating references, and add a new ghost allocation statement, for which
the analogous ghostRef(r) assumption is added. The most-relevant details are
summarised in Fig. 18.

23

define realRef(x) !is_ghost(x) && heap(x) == 0
define ghostRef(x) is_ghost(x) && heap(x) == 0

domain parallelHeaps {
function up(x: Ref) : Ref
function down(x: Ref) : Ref
function up_inv(x: Ref) : Ref
function down_inv(x: Ref) : Ref

function temp(x: Ref) : Ref
function temp_inv(x: Ref) : Ref

function heap(x: Ref) : Int
function is_ghost(x:Ref) : Bool

axiom { forall r:Ref :: up_inv(up(r)) == r &&
(is_ghost(r) ? up(r) == r : heap(r)==0 ==> heap(up(r)) == 1) }

axiom { forall r:Ref :: {up_inv(r)} up(up_inv(r)) == r &&
(is_ghost(r) ? up_inv(r) == r : heap(r)==1 ==> heap(up_inv(r)) == 0) }

axiom { forall r:Ref :: {down(r)} down_inv(down(r)) == r &&
(is_ghost(r) ? down(r) == r : heap(r)==0 ==> heap(down(r)) == -1) }

axiom { forall r:Ref :: {down_inv(r)} down(down_inv(r)) == r &&
(is_ghost(r) ? down_inv(r) == r : heap(r)==-1 ==> heap(down_inv(r)) == 0) }

axiom { forall r:Ref :: {temp(r)} temp_inv(temp(r)) == r &&
(is_ghost(r) ? temp(r) == r : heap(r)==0 ==> heap(temp(r)) == -3) }

axiom { forall r:Ref :: {temp_inv(r)} temp(temp_inv(r)) == r &&
(is_ghost(r) ? temp_inv(r) == r : heap(r)==-3 ==> heap(temp_inv(r)) == 0) }

}

[[l := allocghost()]]
x := new(); assume ghostRef(x); // ghost location
inhale Uninit(x) // ghost locations are non-atomics

Fig. 18. Extension of our Viper encoding to handle ghost locations.

E Compare and Swap Details

The details of our encoding of the FSL++ compare and swap rules (cf. Fig. 11)
are shown in Fig. 19. We represent RMWAcq assertions similarly to Acq assertions
(cf. Fig. 7), but and a false value of the acq field to differentiate holding one
from the other. Recall that we must choose at allocation whether atomic reads
or compare and swaps will be used to gain ownership via the atomic location;
this choice is then reflected in the field value. The encoding of allocation is then
straightforward.

The handling of a CAS statement itself involves initially checking that we
indeed hold some Init, RMWAcq and Rel() assertions for the location, according
to the precondition of the rule, and then using an if-condition over the fresh
read value x to narrow us down to the case of a successful CAS. The subsequent
Viper code reflects the three steps described in Sec. 5 and Fig. 12. Firstly, we
perform the inhale of newly-gained resources (corresponding to Q[e/V]) into the
tmp heap.

Secondly, we attempt to exhale the assertion Q[e′/V], modified so that the
permissions are taken preferentially from the tmp heap, and failing this, from
the real heap or up heaps, depending on whether or not the write synchronises.

24

define SomeRMWAcq(l) acc(l.acq, wildcard) && l.acq == false

bbRMWAcq(l,Q)cc SomeRMWAcq(l) &&

(foreach i in 〈〈Q〉〉: acc(AcqConjunct(l, i),wildcard) end)

[[l := allocRMW(Q)]]
x := new(); assume realRef(x); // not a ghost location

inhale bbRel(l,Q)cc && bbRMWAcq(l,Q)cc

[[x := CASτ (l, e, e′)]]
assert Init(l) && SomeRMWAcq(l) && SomeRel(l)
x := havoc()
// inhale into tmp heap

if(x == bbecc) {

foreach i in indices do
if (perm(AcqConjunct(l, i)) > 0) {

inhale dinv(i)etmp[x/V]
}

end
// exhale from tmp & & real/up heaps (depending on τ)
foreach i in indices do
if (i == l.rel) { // write synchronises
if (τ ∈ {rel, rel_acq}) {

exhale dinv(i)etmp/real[bbe′cc/V]
} else {

exhale dinv(i)etmp/up[bbe′cc/V]
}

}
end
// ... move tmp heap to real/down heap (depending on τ)
var rs : Set[Ref]; rs := havoc() // unknown set of Refs
assume forall r: Ref :: r in rs <==> perm(tmp(r).val) > none
if(τ ∈ {acq, rel_acq}) {
inhale forall r: Ref :: r in rs ==> acc(r.val, perm(tmp(r).val))
assume forall r: Ref :: r in rs ==> r.val == tmp(r).val

} else {
inhale forall r: Ref :: r in rs ==> acc(down(r).val, perm(tmp(r).val))
assume forall r: Ref :: r in rs ==> down(r).val == tmp(r).val

}
exhale forall r: Ref :: r in rs ==> acc(tmp(r).val, perm(tmp(r).val))

// analogously for each other field, predicate (in place of val)
}

Fig. 19. Viper encoding of the RSL rules for compare and swap operations.

This modification of the assertion (which splits the permission amounts across
the two heaps, as described in Sec. 5) is denoted by the d.etmp/real and d.etmp/up

mappings; if the values of heap locations are also mentioned in the parameter
assertions, then these heap dereferences must also be rewritten to a dereference
in the corresponding heap (e.g. x.val == 4 might become tmp(x).val == 4). In
case permission to the corresponding location is taken partly from both heaps,
the extra assumption that the two values are the same can be explicitly added
by these mappings.

Finally (assuming the exhale has succeeded, otherwise a verification failure will
have been encountered), all remaining permissions in the tmp heap are transferred
to either the real or down heap, depending on whether the read synchronises.

25

F Soundness

We outline the soundness of our encoding via three key ingredients. Firstly
(Sec. F.2), we identify invariants on the states of the Viper programs which are
in the image of our encoding; these invariants hold before and after (but not
necessarily during) the code-fragments generated by the encoding of a single
source-level statement. The invariants encode fairly basic properties, such as
the fact that the amounts of permission held to the val and init fields of a
non-atomic location are always the same. We can show straightforwardly that
these invariants are preserved by the Viper programs generated by our encoding.
Throughout our arguments, we make use implicitly of the fact (also assumed at
the source level, and in the RSL logics themselves) that locations are known to
be either non-atomic or atomic locations; this is indirectly reflected at the Viper
level in terms of which permissions/predicates are held for the locations, but is
only explicitly relevant for constructing the soundness argument itself.

Secondly (Sec. F.3), for Viper states satisfying these invariants, we define a
mapping from the state to an assertion of the RSL logics. Conceptually, this
mapping can be thought of as capturing where we are in the construction of a
Hoare Logic proof in the original formalism. This is connected to our soundness
argument by then showing that, if one compares the initial and final states of
the encoding of any source-level statement, and applies our mapping to each, the
assertions represent a Hoare triple derivable in the original logics provided that the
Viper-encoded program has no verification errors. Thus, we connect verification
at the Viper level, with the construction of a proof at the Hoare logic level.

Finally (Sec. F.4), we need to be sure that Viper does not, e.g. deduce
inconsistency at points in a proof where this would not be justified in the original
logic. In general, we would like to know that any entailments between assertions
in a single state which Viper can justify automatically, reflect entailments which
were justified in the original logic.

Putting these three ingredients together, we know that the verification of an
encoded Viper program will imply the existence of a Hoare Logic derivation in
the original logics; i.e. that our encoding approach provides a sound mechanism
for implementing the logics.

F.1 Viper States and Semantics

The states of a Viper program consist of a triple (H,P, σ) of a heap H (mapping
Ref and field name pairs to values), a permission map P (mapping such pairs,
as well as predicate instances to permission amounts, which can be considered
non-negative rational values; for field locations, these cannot exceed 1), and an
environment σ, mapping variable names to values. We write H[r, f] and P [r, f]
for lookups in these maps; for looking up e.g. predicates p(r) in the permission
map, we write P [p(r)].

The semantics of the core logic is given in [29]; in particular, the semantics
of heap-dependent expressions such as heap dereferences x.f comes with a well-
definedness condition; such heap dereferences are only allowed in states in which

26

non-zero permission is held (i.e. P [x, f] > 0). The treatment of functions and
predicates in the logic follows [34].

Verification of a Viper program amounts to two things: checking that all
assert and exhale statements describe assertions valid in the corresponding state
(both are sources of verification failures; the difference is that any permission-
s/predicates in the parameter to an exhale statement are also removed by the end
of the statement), and checking that all expressions employed in the program are
well-defined: for heap dereferences, this means checking that some permission to
the corresponding location is held, while for application of specification functions
(such as valsRead in our encoding), this means checking that their preconditions
hold where they are applied. Some assertions are implicitly defined via specifica-
tions: for example, a method postcondition must be shown to hold at the end of
the method body.

F.2 Invariants

Apart from the classification of references into those representing non-atomic
and atomic locations, our argument depends on the following invariants on states
(H,P, σ), guaranteed to hold at the start and end of each block of Viper code
representing the encoding of a single source-level statement:

For non-atomic locations l :
P [l, val] = P [l, init] ∧ (P [l, val] > 0 ∧H[l, init] = false⇒ P [l, val] = 1)

It is straightforward to show that these invariants are preserved by our statement
encoding cases; for example, allocation of a non-atomic location provides full
permission to both val and init fields; these permissions can only be given away
by Init(l) and points-to assertions, whose encodings (see Sec. A) also require
identical permission amounts to both fields.

F.3 Mapping and Hoare Triples

We next define the mapping 〈〈l〉〉H,P,σ from a reference l in a Viper state (H,P, σ)
(which is assumed to satisfy the invariants in Sec. F.2) to assertions from the
RSL logics; the corresponding mapping for the entire Viper state is then the
iterated separating conjunction [31] over the assertion for each reference to which
at least some permission is held.

We deal concretely with the simplified case of the logics without the 4 and
5 modalities, and then explain how to extend the definitions.

For non-atomic locations l, the mapping is defined as follows:

〈〈l〉〉H,P,σ =
{

Uninit(l) if H[l, init] = false
l
v7→ k otherwise, where v = H[l, val] and k = P [l, val]

We allow ourselves here the technical liberty of “re-inserting” an integer value v
as a logical variable in the resulting assertion.

27

For non-atomic locations l, the mapping is more involved:

〈〈l〉〉H,P,σ = (P [l, init] = 0 ? true : Init(l))∗
(P [l, rel] = 0 ? true : Rel(inv(H[l, rel])))∗
(P [l, acq] = 0 ? true : (H[l, acq] = true ?

Acq(∗i|P [AcqConjunct(l,i)]≥1((
∧
j∈〈valsRead(l,i)〉H,P,σ V 6= j)⇒ inv(i))) :

RMWAcq(∗i|P [AcqConjunct(l,i)]≥1 inv(i))))

Here, we rewrite 〈valsRead(l, i)〉H,P,σ for the semantics of this function application
in the given state; i.e. the set of integer values it represents.

In brief, the above mapping reconstructs an appropriate Init(), Rel(), and
either Acq() or RMWAcq() assertion for the corresponding location, according to
the permissions (and predicates) held in the state.

The mappings above can be generalised to the full logics with modalities by
reflecting on the heap numbering of the reference in question (cf. Sec. 4); where
heap(l) = 0, the above definitions apply, while for 1 or −1 the resulting assertion
must be placed under the 4 or 5 modalities, respectively.

For each source language statement, one can now show that if the encoded
Viper statements verify, the beginning and end states of the Viper program
must, when the above mapping is applied, describe a provable Hoare triple in
the original logic.

F.4 Entailment Correspondence

In addition to the encoding of individual statements, it is important to consider
which entailments Viper can automatically prove about the encoded assertions
from the original logics. For the assertions describing non-atomic locations,
Viper’s built-in field permissions are used in a standard manner; the relationship
between the handling of these permissions in such a logic and a typical concurrent
separation logic presentation is well-understood to give an isomorphism [29]. In
particular, Viper imposes the same assumptions for field permissions (that no
more than 1 permission can be held) as in a standard separation logic.

For the encoding of non-atomic locations, the Viper representation is largely
in terms of duplicable (wildcard) permissions, and abstract predicates. Wildcard
permissions, as discussed in Sec. 3, model a duplicable resource exactly as desired.
Abstract predicates, on the other hand, are treated as unknown resources in
Viper; these are counted in and out when inhaled and exhaled, but no additional
facts will be deduced from holding them in a particular state. Our modelling
of atomic invariants with AcqConjunct predicates can, in some cases, provide
entailments between the encodings of different Acq() predicates, but these are
always instances of the general rules of the logic.

28

	Automating Deductive Verificationfor Weak-Memory Programs(extended version)

