
Freedom Before Commitment

Simple Flexible Initialisation for Non-Null Types

Alexander J. Summers and Peter Müller

ETH Zurich, Switzerland
{Alexander.Summers,Peter.Mueller}@inf.ethz.ch

Abstract. Null pointer dereferences are the most common runtime error
in languages such as Java and C#. To alleviate this problem, Fähndrich
and Leino proposed a non-null type system, in which reference types can
be annotated with non-nullity expectations that are statically enforced.
The main challenge for the static checking of non-nullity is object initial-
isation; since fields of new objects get first initialised with null, a non-null
type system needs to determine when an object is fully initialised and,
thus, its non-null fields actually contain non-null values. Several pro-
posed solutions exist for tackling this problem, but each fail on one of
the three criteria of soundness, flexibility and simplicity. In this paper
we present a solution which satisfies all three criteria, making it suitable
for mainstream use. We provide a formalisation of the core type system
and prove soundness for a small language. We also show informally how
the core type system can be extended to support a realistic language.

1 Introduction

Null pointer dereferences remain the most common source of runtime errors in
object-oriented languages such as Java. The null value cannot easily be dispensed
with in such languages; it permits an incremental initialisation of complex data
structures (essential if such data structures are potentially cyclic), provides a
default value for all reference types (essential in a type-safe language with heap
references), and has many other common uses (such as representing “no such
object” as the result of a lookup in a collection). Nonetheless, after their initiali-
sation, the majority of variables in a program never contain null [2]. However, in
mainstream languages the non-nullness assumption remains implicit or is docu-
mented informally such that compilers cannot enforce it. Accidental violations
of the assumption (for instance, when passing null as an argument to a method
that expects a non-null reference or when accessing a field before it has been
initialised) are therefore not caught by the compiler and lead to runtime errors.

To detect runtime dereferences statically, Fähndrich and Leino proposed a
non-null type system [6], in which reference types can be annotated with non-
nullity expectations. For a class C, the type C? indicates a reference which may
possibly refer to the null value (“possibly-null C”) , while the type C! indicates a
reference which is guaranteed to refer to an object (“non-null C”). Only variables

2 Alexander J. Summers and Peter Müller

of non-null types may be dereferenced, which guarantees the absence of null-
dereference errors at runtime. This idea has been widely adopted in the research
community—various non-null type systems have been developed for Spec# (an
extension of C#) [5, 11], Eiffel [13, 3, 10], and Java [4].

The main technical challenge in designing a non-null type system is how to
handle object initialisation. The problem is that the runtime system initialises
all fields of a new object with zero-equivalent values. So even fields declared as
non-null start out being null. It is the obligation of the program, in particular, the
constructor, to initialise these fields with non-null values. Until this initialisation
is complete, it would not be sound to make use of declared non-null information
about the fields of the newly-created object. However, this problem is not lo-
calised to constructor bodies because arbitrary code can be executed from inside
a constructor. For example, when the newly-created object is passed as an argu-
ment to a method, that method must not assume the non-null declared fields to
actually contain non-null values. Extra precautions are needed if a newly-created
object can be assigned to the fields of another object; we must then consider the
possibility of its fields being indirectly accessed via other references. Both situa-
tions are important in practice; for instance when two mutually recursive objects
are created (say, a List and its sentinel Node), the constructor of the first object
might pass the newly-created object to the constructor of the second object,
where the two objects get linked to each other by mutual references.

Previous Work. Several solutions have been proposed for tackling the problem
of initialisation for a non-null type system. We consider three main requirements
that must be considered for any proposal aimed at broad use by programmers:

1. Soundness: The approach must guarantee the purpose of the non-null type
system—that null dereference errors are prevented statically.

2. Flexibility: Common programming idioms must be supported, e.g., mutual
initialisation of multiple objects, and initialisation of cyclic data structures.

3. Simplicity: The required annotations must be few and understandable by
programmers.

The original work of Fähndrich and Leino [6] introduced raw types to handle
initialisation; In addition to the non-null information, raw types have an addi-
tional annotation indicating that the referred object may not be fully initialised
and, thus, may not be reliable in terms of non-null guarantees. A newly-created
object in a constructor is naturally typed as raw, and raw references can only be
used in positions where they are explicitly declared to be permitted. In particu-
lar, the system does not permit a raw reference to be assigned to a field of any
object, even of the referenced object itself. This restriction makes the solution
inflexible; in particular, it prevents common implementations such as the mutual
initialisation of multiple objects, or cyclic data structures. Ekman and Hedin’s
system [4] implements raw types for Java and adds type inference.

Fähndrich and Xia introduced delayed types [5]. Delayed types decorate refer-
ence types with a delay time which indicates the notional point during execution

Free and Committed Types 3

after which the referenced object satisfies its non-null annotations. Delay scopes
are introduced into the program text to indicate points at which certain times
will expire. Delay times on reference types can be existentially quantified, with
bounds expressing relationships between various delay times. Because references
to many objects can share the same delay types, the system is flexible enough to
support practical examples. However, the complexity of the type and program
annotations makes the presented system unfeasible for use at the source language
level. Indeed, when implementing the system in Spec# [11], it was decided to
greatly cut down the complexity of the type system, including only a single ex-
tra “Delayed” attribute in the language, representing an unknown delay time.
The resulting implementation is however unsound: at method calls it allows any
parameters to be provided as delayed arguments, but inside the method bodies
assumes each such argument to have the same delay time. Fixing this problem
by enforcing that all delayed references have the same delay time would make
the system too inflexible to handle the mutual initialisation of multiple objects.

Eiffel’s non-null types (called “attached types”) do not appear to address the
problem of object initialisation soundly. According to the Eiffel standard [3], a
field (variable attribute) of class C may be considered properly set (essentially,
fully initialised) provided it “. . . is (recursively) properly set at the end position
of every creation procedure of C.” Because creation procedures (constructors)
can themselves contain arbitrary code, this is not sufficient for soundness. The
problematic situation can sometimes be avoided by providing default creation
procedures for all types of attached variable attributes (non-null fields)—these
get implicitly called when a field is found not to be properly initialised yet.
However, default initialisation cannot handle cases such as cyclic lists, or the
mutual initialisation of objects. The actual Eiffel implementation appears (by
experiment) to actually prevent unsoundness by enforcing a much stronger rule:
an object under construction may not be used as receiver or argument of any
call, or be assigned to any field until its initialisation is complete. This rule makes
cyclic and mutual initialisations impossible.

The recent work of Qi and Myers [14] proposes masked types to tackle object
initialisation. This system provides versions of class types in which any subset of
fields can be “masked”, indicating that the initialisation of such fields cannot be
relied upon. This permits various kinds of incremental initialisation, including
cyclic structures. However, even the simple examples found in their paper require
many annotations. So while this system seems to be the most flexible approach
yet, it is unlikely that an average programmer would find it usable to handle
the everyday problem of sound object initialisation. We give a more detailed
explanation of this view and comparison of our system with both Delayed Types
and Masked Types, in Section 4.

In summary, each of the existing solutions fails on one of the three require-
ments we consider essential for the usefulness of a non-null type system:

Unsound Inflexible Complex
Spec# implementation Raw Types Delayed Types paper
Attached Types papers Eiffel implementation Masked Types

4 Alexander J. Summers and Peter Müller

Contributions. The contribution of this paper is the design of a non-null type
system that satisfies the three requirements above. The concrete technical con-
tributions are (1) a non-null type system in which object initialisation is handled
soundly, flexibly, and with low annotation overhead, and (2) a formalisation of
the type system for a small language, and proof of preservation. To our knowledge
this is the first formal proof for a type system dealing with object initialisation
for non-null types.

We present the design of our type system informally in Sec. 2. The for-
malisation is then presented in Sec. 3. We show some detailed examples and
comparisons with related work in Sec. 4. Finally, we discuss some further related
work (Sec. 5) and conclude (Sec. 6).

2 The Design

The innovations of our type system are all concerned with object initialisation.
For the basic non-nullity, we adopt the same distinction as is made in all existing
approaches: each reference type C (in the declaration of a field, variable, method
signature, or in a cast, etc.) is replaced by two variants C? and C!, indicating
a possibly-null and a non-null type, respectively. Null pointer exceptions are
avoided by forbidding the dereferencing of a reference with possibly-null type1.
C! is a subtype of C? for any C since C! is a specialisation of C? both in terms
of sets of possible values and in terms of behavior (one can do strictly less with
a C? reference). With this subtype relation, the usual type rule for assignment
ensures that only non-null values can be assigned to variables declared with a
non-null type (called non-null variables in the following). In particular, it ensures
that the initialisation of non-null fields is monotonic: once a non-null field has
been initialised with a non-null value, it will remain initialised. Therefore, one
need only be careful that the non-null declarations cannot be relied upon before
initialisation takes place. We will explain the machinery for object initialisation
in the following and illustrate it using the example in Fig. 1 (the motivating
example from [6]).

2.1 Initialisation Expectations

We prevent a program from relying on the non-nullity information for an unini-
tialised field by tracking in the type system whether an object is expected to
be fully initialised or not. Like with raw types and delayed types, non-nullity
information may be assumed only for fields of objects that can be expected to
be initialised, and references stored in an object that is expected to be initialised
must point to objects that are also initialised (that is, the initialisation guaran-
tees are “deep”). However, our system differs from previous work in the handling

1 A dataflow analysis can be used to allow such dereferencing after checking at run-
time that the reference is in fact not null, for instance using an if-statement. Such
a dataflow analysis is important for the practicality of the type system, but it is
orthogonal to the focus of this paper and therefore ignored in the following.

Free and Committed Types 5

class List {

Node! sentinel ;

List() { this.sentinel = new Node(this); }

void insert (Object? data) {

this.sentinel.insertAfter(data);

}

}

class Node {

List! parent; Node! prev; Node! next;

Object? data;

// for sentinel construction

Node([Free] List! parent) {

this.parent = parent;

this.prev = this;

this.next = this;

}

// for data node construction

Node(Node! prev, Node! next, Object? data) {

this.parent = prev.parent ;

this.prev = prev;

this.next = next;

this.data = data;

}

void insertAfter (Object? data) {

Node newNode = new Node(this, this.next, data);

this.next.prev = newNode;

this.next = newNode;

}

}

Fig. 1. Doubly-linked list example. The List constructor illustrates mutual object ini-
tialisation; the this reference is passed to the first Node constructor and assigned to
the node’s parent field while the List object is still under initialisation. Like in Java’s
LinkedList implementation, the nodes of our list form a cyclic structure, whose initiali-
sation is illustrated by the first Node constructor. The [Free] annotation in its signature
is explained in the text.

of objects that are still under initialisation. This difference is illustrated by the
example in Fig. 2.

A non-null type system must reject the constructor of class C because its
execution leads to a null dereference exception. The constructor first initialises
field f with a reference to the (already initialised) object p. The next statement
is the one that causes the problem: it stores the this reference in a field of the
initialised object p, which violates the deep initialisation guarantee of p. This
violation is then exploited in the third statement by expecting falsely that all

6 Alexander J. Summers and Peter Müller

public class C

{

C! f, g;

public setF(C! q) { this.f = q; }

public C(C! p) { // "this" is not initialised, but p is

this.setF(p); // alias p via field of "this"

this.f.setF(this); // assign this to p.f, so p.f.g is null

this.g = p.f.g.f; // null dereference exception

}

}

Fig. 2. Example of faulty object initialisation.

objects reachable from p are initialised and, thus, their non-null fields contain
non-null values, which is not the case for this.g.

Raw types prevent this example by forbidding raw references to be stored in
any field. So if setF’s parameter q is typed as raw, the method body does not type
check. If q is not raw then the call this.f.setF(this) does not type check because
this is raw inside the constructor. However, while this solution is type-safe, it
prevents implementations such as the first Node constructor in Fig. 1, which
assigns objects that are still under initialisation to all three fields. Delayed types
prevent the faulty example essentially by requiring of the call this.f.setF(this)
that this and this.f (that is, p) have the same delay time, which is not the case
because p is initialised, but this is not. We already argued in the introduction that
this treatment is sound, but makes the system complex. The simplified version
of delayed types implemented in Spec# does not prevent the example, which
illustrates that this system is unsound! If both the receiver and the parameter of
setF are marked as delayed, the type system assumes that both have the same
delay time and permits the assignment. However, this assumption is not (and
cannot) be checked at the call site, which causes the unsoundness.

The core challenge illustrated by this example is how to allow storing an
object that is still under initialisation in a field of another object without incur-
ring the overhead of tracking their delay times. Such an assignment is safe if we
know that the field belongs to an object that is definitely considered to be still
under initialisation and unsafe otherwise. However, this definite information is
not available in raw types or in Spec#’s version of delayed types because in these
systems, raw or delayed references may point to initialised objects or objects un-
der construction (that is, raw and delayed types are supertypes of non-raw and
non-delayed types, respectively). This is what allows the faulty constructor to
pass the initialised p and the not-yet-initialised this reference to the setF method
when its parameter is declared raw or delayed.

We solve this challenge by tracking in our type system whether an object is
expected to be initialised or definitely not expected to be initialised. We say that

Free and Committed Types 7

an object is locally initialised if every one of its non-null fields contains a non-null
value; an object is deeply initialised if every object reachable from the object is
locally initialised. We can then distinguish three kinds of reference types:

1. Committed references point to objects that are guaranteed to be deeply
initialised.

2. Free references point to objects that are guaranteed not to be reachable from
any committed reference. No information is guaranteed about the values
stored in the fields of the referred-to objects. That is, the object referred to
by a free reference may or may not be initialised. The crucial point is that
it is not expected to be initialised; so it is “free” of obligations.

3. Unclassified references may point to any object. This kind is a supertype of
the corresponding committed and free kinds.

Our committed kind corresponds to non-raw and non-delayed types in previous
systems. The unclassified kind corresponds to raw types and Spec#’s delayed
types as it subsumes objects that are expected to be initialised and objects
that are not. The free kind is new; free references are allowed to have anything
assigned to their fields, which permits flexible initialisation between multiple
such objects. To make this safe we enforce that a free reference never aliases an
object reachable from a committed reference.

Note that these initialisation expectations are independent of the non-nullity
of a reference—we can have both non-null and possibly-null references of any
of the three kinds above (in the latter case, guarantees about the “referred-to
object” only apply if the reference is not null). Despite attaching both nullity
information and an initialisation expectation to reference types, the annotation
overhead of our system is quite low. Almost all references handled in a program
are committed, non-null references, such that a suitable default avoids overhead
for those references. Initialisation expectations need to be declared explicitly
only for non-trivial initialisation patterns. In our examples, we make nullity
information explicit; the default initialisation expectation for all reference types
is committed, except for the type of this inside a constructor, which is free. We
use the syntax [Free] and [Unclassified] to declare free and unclassified types,
resp. With these defaults, the List example in Fig. 1 requires a single [Free]
annotation.

2.2 Fields

Field types include non-null annotations, but we do not allow field types to
carry initialisation expectations (e.g., there are no “free fields”); this is because
our initialisation kinds make guarantees about a references at a given point in
the execution. Since the initialisation expectation of a reference changes during
execution (in particular, from free to committed when the initialisation is fin-
ished, see the next subsection), it would not be safe to store aliases with different
initialisation kinds in fields.

8 Alexander J. Summers and Peter Müller

Field Read. When reading a field x.f , we infer the nullity and initialisation
expectation of the result as follows: The result is non-null if and only if f is
declared non-null and x is committed (recall that the committed kind is the
only kind that guarantees that the referenced object is initialised). The result is
committed if and only if x is committed (since commitment provides a guarantee
about all reachable objects); otherwise the result is unclassified since the fields
of free references may alias both free and committed references.

Field Update. We now consider field updates of the form x.f := y. The nullity
checks are trivial: x must be non-null, and the nullity of y must conform to the
nullity declared for f . For the initialisation expectation, the update is allowed
if the initialisation kinds satisfy at least one of the following two cases. First, if
x is free, we may store objects with any initialisation expectation in its fields.
This is acceptable because the free kind does not make any guarantees about the
initialisation expectations of reachable objects. This case applies, for instance, to
all field updates in the Node constructors of our List example (Fig. 1) because this
is implicitly free inside a constructor. Second, if y is committed, we may assign it
to fields of any object. If x is committed, then we preserve the deep initialisation
guarantee; if x is free or unclassified, it does not make any guarantees about the
initialisation expectations of reachable objects. In particular, we cannot make
free references “more reachable” by such a field update, since they are guaranteed
unreachable from the committed y in the first place.

Example. Let’s now discuss how our system prevents the faulty example from
Fig. 2. Consider the second call to setF in C’s constructor. The receiver of this
call, this.f, is unclassified because this is not committed. Therefore, the call type
checks only if setF’s receiver is declared unclassified. The argument of the call,
this, can be typed with a free or unclassified kind. So the call type checks only if
setF’s parameter q is declared free or unclassified. In both cases, the field update
in setF’s body does not satisfy either of the two cases above (the receiver of the
update is not free and the right-hand side is not committed) and is, thus, rejected
by the type checker. This illustrates that our system prevents storing objects
that are not expected to be initialised in fields of objects that are expected to
be initialised, which prevents the unsoundness.

2.3 Constructors

While the use of free references allows our solution flexibility, the goal of object
initialisation is that objects can eventually be expected to be deeply initialised
such that one can rely on the non-null annotations of their fields. Since construc-
tors are primarily responsible for initialising objects, initialisation expectations
may change when a constructor terminates. In this subsection, we explain the
details of this change of expectations. We do not consider implicit calls to su-
pertype constructors here, but an extension is possible.

Free and Committed Types 9

Local Initialisation. As a first step, we require that all constructors guarantee
local initialisation of the created object, on their return. This is enforced stat-
ically using a straightforward definite assignment analysis, which checks that
each non-null field of an object can be statically guaranteed to be assigned to at
least once in its constructor body.

Whether or not the new object can be expected to be deeply initialised and
whether it can be referred to by committed references depends on the values
that get assigned to its fields, as we discuss in the following.

Constructor Calls with Free or Unclassified Arguments. Let us first
consider constructor calls with at least one free or unclassified argument. If a
free reference is passed as an argument a constructor, then the constructor may
initialise fields of the newly-created object using the free reference. For example,
the List constructor in Fig. 1 calls the first Node constructor and passes the free
reference this as argument. The Node constructor stores this free reference in the
parent field of the new Node object. So when the Node constructor terminates,
the new Node n is not deeply initialised; in particular, n.parent.sentinel is still
null. To consider the reference to n as committed would therefore be unsafe. The
same argument applies if an unclassified reference is passed as argument to a
constructor, since it may (via subtyping) disguise a free reference.

Considering the reference to the new object as free is safe if we can guarantee
that the object is not reachable from any committed object. This is the case
because inside the constructor the object was referred to via a free reference
and, therefore, the constructor could not store the reference in the field of a
committed object.

This rule for constructor calls illustrates that our initialisation expectations
express whether the referenced object is expected to be initialised, not whether it
is known to be initialised. When passing a free or unclassified reference to a con-
structor, we do not know statically whether the new object is deeply initialised
upon termination of the constructor or not. However, this uncertainty does not
force us to give the reference an unclassified kind. We can give a stronger guar-
antee because we know that no committed references reaches the new object,
which is therefore not expected to be initialised.

Constructor Calls with Committed Arguments. Let us now consider con-
structor calls where all arguments are committed (which subsumes the case that
the constructor does not have parameters). When such a constructor terminates,
the new object n can safely be expected to be deeply initialised and to not reach
any objects referred to by a free reference. So the creation expression yields a
committed reference. For instance, when the List constructor in Fig. 1 termi-
nates, the new List object n is deeply initialised (n and its sentinel node are
locally initialised) and neither n nor its sentinel node are referred to by a free
reference.

The intuitive justification for this rule is as follows. Consider the execution
of the constructor of a new object n. During this execution, the set of reachable

10 Alexander J. Summers and Peter Müller

objects consists of the set of objects R that are reachable from the constructor’s
arguments and the set of objects N that includes n and all objects created
during the execution of n’s constructor. For the List constructor, the set R is
empty, whereas N contains the new List object and its sentinel node. When the
constructor terminates, we know that all objects in N are locally initialised; the
values assigned to their fields are references to objects in R or N (because these
are all the reachable objects). At this point, we may regard all references to
the objects in N as committed; these objects are deeply initialised because all
objects reachable from them are in R or in N and thus locally initialised2.

Regarding the objects in N as committed would be unsafe if the caller of
the constructor could have a direct free reference to an object reachable from an
object in N ; this would violate the guarantees for free references. However, this
cannot happen for the following reason. All objects reachable from objects in N
are in R or N . Since all objects in R are reachable via a committed reference
(the argument to the constructor), the caller cannot have a direct free reference
to one of them. Since the objects in N do not exist before the constructor call,
the caller’s only direct reference to an object in N is the reference yielded by
the creation expression, which is not free.

2.4 Casts and Runtime Support

As in other non-null type systems, we allow the down-casting of an expression
from a possibly-null type to a non-null type. The associated runtime check en-
sures that the expression indeed evaluates to a non-null value. We do not however
allow down-casting a reference type’s initialisation expectation via casts (from
unclassified to free or committed). This is primarily because these would have to
be unchecked casts; in particular, the requirement that objects directly referred
to by free references are never reachable from committed references, cannot be
checked efficiently at runtime. Therefore, initialisation expectations need not
be represented at runtime. Consequently, the only runtime support our system
requires is simple non-null checks for down-casts to non-null types.

2.5 Generic Initialisation Expectations

The design presented so far can handle many examples including the common
initialisation patterns. However, there are potentially useful methods that require
a more expressive system. For example, consider an identity method, which
simply returns the reference passed to it:

Object! id(Object! o) { return o; }

2 This argument generalizes trivially to global data if the global variables (e.g., static
fields) are enforced to store committed references.

Free and Committed Types 11

This method should be callable with arguments with any initialisation expecta-
tion and yield a reference with the same initialisation expectation as the argu-
ment. This is not possible in the system introduced so far. Passing arguments
with any initialisation expectation is permitted only if we type the formal param-
eter o as unclassified. But this forces us to make the result type also unclassified
and so the result of a call to id generally does not have the same initialisation
expectation as the actual argument reference.

To avoid having to write various versions of the id method for the possible
initialisation expectations of o, we introduce a very simple form of genericity:
Types of method parameters and results may be generic w.r.t. their initialisa-
tion expectations. In our formalisation we write Objectα! id(Objectα! o) to
express the desired method signature, in which α is an expectation variable. But
notice that α is only a place-holder for one of three concrete initialisation expec-
tations; this polymorphism is far simpler than that already typical in full Java
or C#. In particular, we can type check the body of such a method by simply
type checking it once per possible value of α. Therefore, our type system need
not handle these generics explicitly, but we have to check each method body
a number of times which is exponential in the number of distinct expectation
variables in its signature. In practice this does not seem a serious issue since
expectation variables are not needed for most examples, and even when they
are, the need for several distinct variables at once seems unlikely.

The following copy method between two objects (assuming class C has some
field f) illustrates an extra tweak to this feature:

void copy(C! x, C! y) { x.f = y.f; }

This method type checks according to our rules for field assignment if x and
y either both have free types, or both have committed types. However, it does
not type check in the case where x and y are both unclassified because two
unclassified types do not actually express that both references have the same
initialisation expectation—it might be the case that one reference aliases a com-
mitted reference and the other a free reference. In fact, in general we observe that
insisting that two method arguments have the same initialisation expectation is
useful only if that initialisation expectation is either free or committed. This ob-
servation leads us to slightly tweak our design for generic expectation variables:
if such a variable occurs more than once in the parameter types (including the
receiver expectation), then we do not permit instantiating that variable as “un-
classified”. This case is neither considered when type checking the method body
nor permitted in calls. This tweak allows us to type our copy method above with
the signature void copy(Cα! x, Cα! y).

3 The Formalisation

In this section, we present a formalisation of our approach. Much of the formali-
sation is standard. However, the soundness arguments for our system are subtle,

12 Alexander J. Summers and Peter Müller

especially the treatment of constructor calls described in Sec. 2.3. Our soundness
results (in Sec. 3.4) make these arguments explicit.

3.1 Programming Language

We focus on a very simple language, which nonetheless illustrates the main
features of the problems of object initialisation and our solutions. We consider
a simple class-based language (without generics), in which we have exactly one
constructor per class. Note that we do not model calls to supertype constructors
here—a constructor is obliged to fully initialise a new object.

Definition 1 (Classes and Types). We assume a finite set of classes, ranged
over by C,D, and a pre-defined reflexive, transitive, acyclic subclassing relation
on classes, written C ≤ D.
We assume a set of method names, ranged over by m, and a set of field names,
ranged over by f, g. We assume the existence of a function fields() from classes
to sets of field names, and a function methods() from classes to sets of method
names. These functions are monotonic increasing with respect to subclassing
(i.e., applying the functions to subclasses cannot yield smaller sets).
Non-null annotations, ranged over by n, are defined by n ::= ? | !
Initialisation expectations, ranged over by k, are defined by:

k ::= 0 (free)
| 1 (committed)
| ⋄ (unclassified)

We assume a set of expectation variables, ranged over by α.
Generic initialisation expectations, ranged over by γ, are defined by γ ::= k | α.
Types, ranged over by T , are defined by T ::= Ckn.
Signature Types, ranged over by S, are defined by S ::= Cγn.
Simple Types, ranged over by t, are defined by t ::= C n.

For example, C0! is a type for a non-null free reference of class C, while C⋄? is
a type for a possibly-null unclassified reference. We employ signature types only
on method declarations—expectation variables are always instantiated before
use in our type system. Simple types are used in field declarations and in casts,
where initialisation expectations are not permitted.

Subtyping combines specialisation of expectations, non-nullity and classes
themselves (i.e., subclassing):

Definition 2 (Type Relations). Expectation specialisation is a binary rela-
tion on initialisation expectations, written k1 ≤ k2 and defined by: k1 ≤ k2 ⇔
k1 = k2 ∨ k2 = ⋄. Generic initialisation specialisation is defined similarly by:
γ1 ≤ γ2 ⇔ γ1 = γ2 ∨ γ2 = ⋄.
Non-null specialisation is a binary relation on non-null annotations, written
n1 ≤ n2 and defined by: n1 ≤ n2 ⇔ n1 = n2 ∨ n2 =?.
Subtyping is a binary relation on types, written T1 ≤ T2 and defined by:
C1

k1n1 ≤ C2
k2n2 ⇔ C1 ≤ C2 ∧ k1 ≤ k2 ∧ n1 ≤ n2.

Free and Committed Types 13

Subtyping projects down to simple types in the obvious way; we define:
C1 n1 ≤ C2 n2 ⇔ C1

1n1 ≤ C2
1n2

Subtyping is defined analogously for signature types :
C1

γ1n1 ≤ C2
γ2n2 ⇔ C1 ≤ C2 ∧ γ1 ≤ γ2 ∧ n1 ≤ n2.

We define three auxiliary predicates on types. nullable(Ckn) holds exactly when
n =?. committed(Ckn) holds exactly when k = 1. free(Ckn) holds exactly when
k = 0.

In order to define the type system and operational semantics, we require the
existence of field and method lookup functions. In particular, we need to be able
to retrieve the declared (simple) type for a field in a class, and the signatures
of methods and constructors. Method signatures include the possibility of spec-
ifying an initialisation expectation for the receiver of the method call, as well
as its arguments and return type. Constructor signatures do not have these two
features; during execution of a constructor it’s receiver is always a free refer-
ence, and after execution its initialisation expectation is determined by those of
the passed arguments (cf. Subsection 2.3). Both kinds of signatures also include
declarations of local variables used within the method body.

Definition 3 (Field and Method Lookups). Field type lookup is modelled
by a partial function fType(C, f) from pairs of class-name and field-name to sim-
ple types. It satisfies the restrictions that f ∈ fields(C) ⇔ (C, f) ∈ dom(fType)
and f ∈ fields(C) ∧ D ≤ C ⇒ fType(D, f) = fType(C, f).

A Method Signature is a four-tuple (γ, xi:Si , S, yj :Sj), whose elements are: (1) a
generic expectation annotation γ, indicating the initialisation expectation of the
receiver, (2) a sequence xi:Si of parameter names (variable names) along with
their declared Signature Types, (3) a signature type S representing the return
value of the method; S may only mention expectation variables which occur in γ
or parameter types, and (4) a sequence yj :Sj of local variable names along with
their declared Signature Types; these may only mention expectation variables
which occur in γ or parameter types. A Constructor Signature is a two-tuple
(xi:Si , yj:Sj), similarly declaring parameters and local variables.

Method signature lookup is modelled by a partial function mSig(C,m) from pairs
of class-name and method-name to method signatures. It satisfies the restriction
that m ∈ methods(C) ⇒ (C,m) ∈ dom(mSig), and the usual variance require-
ments for subclassing (covariant return types and contravariant parameter types).

Method body lookup is modelled by a partial function mBody(C,m) (with the
same domain as mSig) from pairs of class-name and method-name to statements.

Constructor signature lookup is modelled by a function cSig(C) from class-names
to constructor signatures. Constructor body lookup is modelled by a function
cBody(C) from class-names to statements.

While we allow generic initialisation expectations in method signatures, these
are always instantiated with concrete initialisation expectations at each method
call. When type checking a method body, we will type-check all possible such
instantiations of the declared method signature.

14 Alexander J. Summers and Peter Müller

Definition 4 (Generic Expectation Instances). A expectation substitution
θ is a partial function from expectation variables to expectation annotations. We
write θ(α) for its application to a particular expectation variable α, and extend
this application to signature types (written θ(S)) in the obvious way.
For any sequence Si of signature types, we write vars(Si) to denote the set of
expectation variables occurring in Si . Note that if vars(Si) ⊆ dom(θ) then θ(Si)
is a (well-defined) sequence of reference types.
An expectation substitution θ is an instantiation for a sequence of signature types
Si , written instance(θ, {Si}), if it maps at least the variables occurring in the
sequence of types, and does not map those variables occurring more than once to
⋄:

instance(θ, {Ci
γini }) ⇔ dom(θ) ⊇ vars(Ci

γini)∧(i 6= j∧γi = γj = α ⇒ θ(α) 6= ⋄)

For a sequence of signature types Si , the set of minimal instances is written
instances(Si) and defined by: instances(Si) = {θ | dom(θ) = vars(Ci

γini) ∧
instance(θ, {Si})}

Our statements include assignments, method and constructor calls and casts.
We do not include conditionals since they would only be of interest when com-
bining our type system with a dataflow analysis. Note that we do not have a
return statement; methods return the value of a pre-defined local variable res.
For simplicity, we treat field assignments, calls, object creation, and casts as
statements. Complex expression can be decomposed using local variables.

Definition 5 (Expressions and Statements). We assume a set of program
variables, ranged over by x, y, z, including a distinguished variable this. Expres-
sions, ranged over by e, are defined by the following grammar:

e ::= x | x.f | null

Statements, ranged over by s, are defined by the following grammar, with the
extra restriction that (in all cases) x may not be the special variable this:

s ::= x := e (variable assignment)
| z.f := y (field assignment)
| x := y.m(zi) (method call)
| x := new C(zi) (object creation)
| x := (t)y (cast)
| s1; s2 (sequential composition)

Note that casts employ only simple types. As discussed in Section 2.4, we do not
support casts that change the initialisation expectation of a reference.

3.2 Type System

We now turn to the definition of our type system, which includes definite assign-
ment checks. There are two kinds of checks made. Firstly, a set ∆ of definitely

Free and Committed Types 15

assigned program variables is carried in judgements, to (conservatively) track
which variables can be safely read from. In particular, non-null local variables
can only be safely read from if they are named in the set∆; this is necessary since
all local variables are initialised to null in our operational semantics, regardless
of their types. When typing expressions, we enforce this check—an expression
is only well-typed if it reads only from variables named in the current ∆. When
typing statements we use a “before” and “after” ∆ to track this information in
the type system.

Secondly, we employ a set of field names Σ, which conservatively record
which fields of the current receiver are definitely assigned during execution of
a statement. This set is relevant only for constructors; it is used to enforce the
requirement that constructors guarantee to assign all non-null fields. Since we
do not need to make any intermediate checks based on this set, it only occurs
once in each typing judgement, indicating the fields definitely assigned between
the beginning and end of execution of the statement.

Definition 6 (Static Type Assignment). A type environment Γ is a partial
function from program variables to reference types. An assigned variables set ∆
is a set of variable names (indicating which have been definitely assigned). An
assigned fields set Σ is a set of field names (indicating which fields of the receiver
have been definitely assigned).
Expression typing is defined by judgements Γ ;∆ ⊢ e : T , indicating that e has
type T under assumptions Γ , and is safe to read from variables in ∆. The judge-
ments are defined in Fig. 3.
Statement typing is defined by judgements Γ ;∆ ⊢ s | ∆′;Σ, indicating that s
is well-typed under assumptions Γ , reads ony variables in ∆ and, after execu-
tion, will guarantee that variables ∆′ and fields Σ are definitely assigned. The
judgements are defined in Fig. 4.

nullable(x) ∨ x ∈ ∆
(Tvar)

Γ ;∆ ⊢ x : Γ (x)
(Tnull)

Γ ;∆ ⊢ null : Ck?

Γ ;∆ ⊢ x : Ck1 ! fType(C, f) = D n1

k2 =

{

1 if k1 = 1
⋄ otherwise

n2 =

{

! if n1 =! and k1 = 1
? otherwise

(Tfld)
Γ ;∆ ⊢ x.f : Dk2n2

Fig. 3. Expression typing.

We can now define what we type-check for class definitions - essentially each
constructor and method definition must be well-typed with respect to each of
the valid instances of its declared signature.

Definition 7 (Well-formed program). For each class C of the program, we
check that each method m ∈ methods(C) is well-formed (⊢m C,m), and that its

16 Alexander J. Summers and Peter Müller

Γ ;∆ ⊢ e : T T ≤ Γ (x)
(TvarAss)

Γ ;∆ ⊢ x := e | ∆ ∪ {x}; ∅

Γ ;∆ ⊢ x : Ck1 ! fType(C, f) = D n Γ ;∆ ⊢ y : T T ≤ Dk2n

k1=0 ∨ k2=1 Σ =

{

{f} if x = this

∅ otherwise
(TfldAss)

Γ ;∆ ⊢ x.f := y | ∆;Σ

Γ ;∆ ⊢ y : Ck! mSig(C,m) = (γ, xi:Si , S, yj :Sj) instance(θ, {Si , S, C
γ !})

Γ ;∆ ⊢ zi : Ti Ti ≤ θ(Si) θ(S) ≤ Γ (x) k ≤ θ(γ)
(Tcall)

Γ ;∆ ⊢ x := y.m(zi) | ∆ ∪ {x}; ∅

cSig(C) = (xi:Si , yj :Sj) instance(θ, {Si}) Γ ;∆ ⊢ zi : Ti

Ti ≤ θ(Si) k =
∧

committed(Ti) Ck! ≤ Γ (x)
(Tcreate)

Γ ;∆ ⊢ x := new C(zi) | ∆ ∪ {x}; ∅

Γ ;∆ ⊢ y : Ck
n1 t = D n2 D

k
n2 ≤ Γ (x)

(Tcast)
Γ ;∆ ⊢ x := (t)y | ∆ ∪ {x}; ∅

Γ ;∆ ⊢ s1 | ∆1;Σ1 Γ ;∆1 ⊢ s2 | ∆2;Σ2
(Tseq)

Γ ;∆ ⊢ s1; s2 | ∆2;Σ1 ∪Σ2

Fig. 4. Statement typing.

constructor is also well-formed (⊢C C). These judgements are defined in Figure
5.

mBody(C,m) = s mSig(C,m) = (γ, xi:Si , S, yj :Sj)
{θl} = instances(Cγ !, Si) ¬nullable(S) ⇒ res ∈ ∆

(xi:θl(Si) , this:C
θl(γ)!, yj :θl(Sj) , res:θl(S)); {xi , this} ⊢ s | ∆;Σ

(wfMeth)
⊢m C,m

cBody(C) = s cSig(C) = (xi:Si , yj :Sj)
{θl} = instances(Si) {f | f ∈ fields(C) ∧ ¬nullable(fType(C, f))} ⊆ Σ

(xi:θl(Si) , this:C
0!, yj :θl(Sj)); {xi , this} ⊢ s | ∆;Σ

(wfCons)
⊢C C,m

Fig. 5. Well-formed methods and constructors

Free and Committed Types 17

3.3 Semantics

We adopt a reasonably standard heap model on which to define our operational
semantics. Note that the heap model does not contain any type-system-specific
information.

Definition 8 (Heaps, Values and Allocation). We assume a finite set of
addresses, ranged over by ι.
Values, ranged over by v are defined3 by v ::= ι | null.
A heap h is a pair (hv, hc) of partial functions; hv from pairs of address and
field-name to values, and hc from addresses to class names. The domains of the
functions are related by: dom(hc) = {ι | ∃f.(ι, f) ∈ dom(hv)}. As shorthand, we
will typically use h in place of hv or hc.
We write heap lookup as h(ι, f) (defined as hv(ι, f), only when (ι, f) ∈ dom(hv)).
We write h[(ι, f)7→v] for heap update (meaning standard map update of hv).
We write class lookup as cls(h, ι), meaning hc(ι) (provided that ι ∈ dom(hc)).

We model object allocation via a function alloc which takes a heap and a
class-name as parameters, and returns a pair of heap and address, satisfying the
following properties:

(h′, ι) = alloc(h,C) ⇒







ι 6∈ dom(hc)
h′

v = hv[(ι, fi) 7→ null] where fi = fields(C)
h′

c = hc[ι 7→ C]

A heap h2 is a successor heap of h1, written h1 ≤ h2, if dom(h1) ⊆ dom(h2)
and ∀ι ∈ dom(h1). cls(h2, ι) = cls(h1, ι).

We can now define the evaluation of expressions. Note that evaluation is not
guaranteed per se to produce a value, since we might dereference a null variable.
We model this by introducing an exception state (later, our main theorem will
show that for a well-typed program, this exception state is never encountered).

Definition 9 (Expression evaluation). A stack frame σ is a partial function
from program variables to values. We write σ(x) to denote the corresponding
lookup (defined only when x ∈ dom(σ)), and we write σ[x7→v] for stack update.
Extended Values, ranged over by V , are either values v or the special symbol
derefExc (denoting failure to obtain a value).
Expression evaluation maps an expression e, heap h and stack frame σ to an
extended value. It is written ⌊e⌋h,σ, and defined as follows:

⌊x⌋h,σ = σ(x)

⌊null⌋h,σ = null

⌊x.f⌋h,σ =

{

h(ι, f) if σ(x) = ι and f ∈ fields(cls(h, ι))
derefExc otherwise

We can now define the operational semantics of our language.

3 Note that we use both null as an expression in the source language, and null as a
distinguished value. However, the two are always distinguishable by context.

18 Alexander J. Summers and Peter Müller

Definition 10 (Operational Semantics). Exception States, ranged over by
ǫ, are one of three possible concrete values: ǫ ::= ok | derefExc | castExc.
Runtime Type Assignment assigns simple types to runtime values, according to
the subclassing relationship in the program. It is defined in Fig. 6. We define a
big-step operational semantics via judgements ǫ, h, σ, s h′, σ′, ǫ′, indicating
the execution of statement s starting in exception state ǫ, heap h and stack-frame
σ, and finishing with heap h′, stack-frame σ and exception state ǫ′. The rules
are defined in Fig. 7.

(RNull)
h ⊢ null : C?

cls(h, ι) ≤ C
(RAddr)

h ⊢ ι : C n

Fig. 6. Runtime type assignment.

3.4 Soundness Results

We can now turn to the formalisation of our soundness results. Firstly, we need
to formally define our initialisation and reachability concepts.

Definition 11 (Initialisation and Reachability). An address is locally ini-
tialised in a heap, written init(h, ι), if all non-null fields contain non-null values:

init(h, ι) ⇔ (∀f ∈ fields(cls(h, ι)) : ¬nullable(fType(cls(h, ι), f)) ⇒ h(ι, f) 6= null)

An address reaches another address in a heap, written reaches(h, ι1, ι2), as de-
fined recursively by the following:

reaches(h, ι1, ι2) ⇔ ι1 = ι2 ∨ ∃f, ι3 : h(ι1, f) = ι3 ∧ reaches(h, ι3, ι2)

Given an address and heap, the set of addresses reachable, written reachable(h, ι)
is defined by: reachable(h, ι) = {ι′ | reaches(h, ι, ι′)}. For convenience, we extend
this concept to values by defining reachable(h, null) = ∅.
An address is deeply initialised in a heap, written deep init(h, ι), if all reachable
addresses are locally initialised:

deep init(h, ι) ⇔ ∀ι′ ∈ reachable(h, ι) : init(h, ι′)

Now, we are in a position to specify exactly what our type system preserves
about the stack and the heap. We identify five conditions which go together to
make up a “good” configuration. The first just forces the stack to have a suitable
domain, while the second is the standard property that fields contain only objects
which agree with their declared class type. The third expresses the meaning of
our definite assignment checks for local variables, and the fourth expresses that
stack variables which have been initialised contain suitable values. Finally, we
characterise the type invariants of our system: committed references are deeply
initialised and cannot reach objects directly referred to by free references.

Free and Committed Types 19

⌊e⌋h,σ = v
(varAss)

ok, h, σ, x := e h, σ[x 7→v], ok

⌊e⌋
h,σ

= derefExc
(varAssBad)

ok, h, σ, x := e h, σ, derefExc

σ(x) = ι
(fldAss)

ok, h, σ, x.f := y h[(ι, f) 7→σ(y)], σ, ok

σ(x) = null
(fldAssBad)

ok, h, σ, x.f := y h, σ, derefExc

σ(y) = ι C = cls(h, ι) mSig(C,m) = (γ, xi:Si , S, yj :Sj)
σ1 = this 7→ι, xi 7→σ(zi) , res7→null, yj 7→null

mBody(C,m) = s ok, h, σ1, s h′, σ′, ǫ
(call)

ok, h, σ, x := y.m(zi) h
′
, σ[x 7→σ

′(res)], ǫ

σ(y) = null
(callBad)

ok, h, σ, x := y.m(zi) h, σ, derefExc

cSig(C,m) = (xi:Si , yj :Sj) (h1, ι1) = alloc(h,C)
σ1 = this7→ι1, xi 7→σ(zi) , yj 7→null cBody(C) = s

ok, h1, σ1, s h′, σ2, ǫ
(create)

ok, h, σ, x := new C(zi) h
′
, σ[x 7→ι1], ǫ

h ⊢ σ(y) : t
(cast)

ok, h, σ, x := (t)y h, σ[x 7→σ(y)], ok

h 6⊢ σ(y) : t
(castBad)

ok, h, σ, x := (t)y h, σ, castExc

ok, h, σ, s1 h1, σ1, ok ok, h1, σ1, s2 h2, σ2, ǫ
(seq)

ok, h, σ, s1; s2 h2, σ2, ǫ

ok, h, σ, s1 h1, σ1, ǫ ǫ 6= ok
(seqBad)

ok, h, σ, s1; s2 h1, σ1, ǫ

Fig. 7. Operational semantics.

Definition 12 (Good Configurations). A pair of heap and stack-frame is a
good configuration for Γ,∆, written Γ ;∆ ⊢ h, σ, if the following conditions hold:

1. dom(σ) = dom(Γ) ∧ this ∈ dom(σ)
2. ∀ι ∈ dom(h), f ∈ fields(cls(h, ι)) : (h(ι, f) 6= null ⇒ h(ι, f) ∈ dom(h) ∧

cls(h, h(ι, f)) ≤ fType(cls(h, ι), f))
3. ∀x ∈ dom(σ) : (¬nullable(Γ (x)) ∧ x ∈ ∆ ⇒ σ(x) 6= null)

20 Alexander J. Summers and Peter Müller

4. ∀x ∈ dom(σ) : (σ(x) 6= null ∧ Γ (x) = Ckn ⇒ h ⊢ σ(x) : C n)
5. ∀x, y ∈ dom(σ) : (committed(Γ (x)) ⇒ deep init(h, σ(x)) ∧ (free(Γ (y)) ⇒

¬reaches(h, σ(x), σ(y))))

Armed with this definition, we can state our desired soundness theorem:

Theorem 1 (Preservation and Safety). If Γ ;∆ ⊢ h, σ and Γ ;∆ ⊢ s | ∆′;Σ
and ok, h, σ, s h′, σ′, ǫ and ǫ 6= castExc all hold, then Γ ;∆′ ⊢ h′, σ′ ∧ ǫ = ok.

The proof of this theorem is challenging for a number of reasons. Not only is the
design of our approach centred around reachability in the heap, but we present
“good configurations” as a property local to each particular stack-frame. This
means that there is much work to do in the proof when we change stack frame,
particularly for a method or constructor return. In fact, we identified a number
of interesting properties of our formalisation (some of which were not initially
obvious) which lead to the proof. For any well-typed statement execution in our
semantics the following properties hold in addition to the properties claimed in
the theorem:

1. The domain of the stack is preserved, and the domain of the heap only grows.
2. After execution of the statement, all non-null fields in Σ of the receiver

object contain non-null values.
3. Non-null fields which were initialised before execution of the statement, are

still initialised afterwards.
4. Objects locally initialised before the execution of the statement are still

locally initialised afterwards.
5. Any objects newly-allocated during the execution of the statement are locally

initialised afterwards.
6. Any object which is not locally initialised and reachable from a stack variable

after execution,is reachable from a stack variable before execution.
7. If, after execution, an object ι is reachable from a committed stack variable,

and ι as well as the object referred to by the stack variable exist before exe-
cution, then ι is reachable from a committed stack variable before execution.

8. If, after execution, an object ι1 reaches an object ι2 referred to by a free
stack variable, and both objects exist before execution, then ι1 reaches an
object referred to by a free stack variable before execution.

9. If an object ι1 reaches another ι2 after execution, and both objects exist
before execution, then at least one of the following properties must hold
before execution: (a) ι1 reaches ι2. (b) ι2 can be reached from a committed
stack variable. (c) ι1 reaches an object referred to by a free stack variable,
and ι2 can be reached from a (possibly different) stack variable.

Property 9 deserves explanation. It essentially reflects the connecting of objects
that can possibly happen during execution. Because committed references can be
assigned to any fields, an object reachable from a committed local variable before
execution could potentially be reachable by any object after execution. The only
other kind of field assignment we allow, is the assignment of references to the
fields of free references. In this case, an object which newly reaches another

Free and Committed Types 21

must have previously reached the receiver of such a field update, that is, a
free reference. We use all of the above-mentioned properties to strengthen our
induction hypothesis when proving our main theorem; we prove the following
lemma, which includes properties 1–9 as additional conclusions:

Lemma 1 (Preservation and Safety (strengthened)). If Γ ;∆ ⊢ h, σ and
Γ ;∆ ⊢ s | ∆′;Σ and ok, h, σ, s h′, σ′, ǫ and ǫ 6= castExc all hold, then:

0. Γ ;∆′ ⊢ h′, σ′ ∧ ǫ = ok

1. σ′(this) = σ(this) ∧ dom(σ′) = dom(σ) ∧ h ≤ h′

2. ∀f ∈ Σ : (¬nullable(fType(cls(h, σ(this)), f)) ⇒ h′(σ(this), f) 6= null)
3. ∀ι ∈ dom(h) : (¬nullable(fType(cls(h, ι), f)) ∧ h(ι, f) 6= null ⇒ h′(ι, f) 6=

null)
4. ∀ι ∈ dom(h) : (init(h, ι) ⇒ init(h′, ι))
5. ∀ι ∈ dom(h′) : (ι 6∈ dom(h) ⇒ init(h′, ι))
6. ∀ι ∈ dom(h′), x ∈ dom(σ′) : (reaches(h′, σ′(x), ι) ∧ ¬init(h′, ι) ⇒ (∃y ∈

dom(σ) : reaches(h, σ(y), ι)))
7. ∀ι ∈ dom(h′), x ∈ dom(σ′) : (reaches(h′, σ′(x), ι) ∧ committed(Γ (x)) ∧

ι ∈ dom(h) ∧ σ′(x) ∈ dom(h) ⇒ (∃y ∈ dom(σ) : committed(Γ (y)) ∧
reaches(h, σ(y), ι)))

8. ∀ι ∈ dom(h′), x ∈ dom(σ′) : (reaches(h′, ι, σ′(x))∧ free(Γ (x))∧ ι ∈ dom(h)∧
σ′(x) ∈ dom(h) ⇒ (∃y ∈ dom(σ) : free(Γ (y)) ∧ reaches(h, ι, σ(y))))

9. ∀ι1 ∈ dom(h), ι2 ∈ dom(h) : (reaches(h′, ι1, ι2) ⇒ reaches(h, ι1, ι2) ∨ (∃x ∈
dom(σ) : committed(Γ (x))∧reaches(h, σ(x), ι2))∨(∃y ∈ dom(σ), z ∈ dom(σ) :
free(Γ (y)) ∧ free(Γ (z)) ∧ reaches(h, ι1, σ(y)) ∧ reaches(h, σ(z), ι2)))

Proof. At the end of this section.

We need a number of auxiliary lemmas for the main proof.

Lemma 2 (Generation Lemmas).

1. Γ ;∆ ⊢ e : T ∧ T ≤ C0n ⇒ free(T) ∧ (e = null ∨ ∃x.(e = x ∧ free(Γ (x))))
2. Γ ;∆ ⊢ e : T ∧ T ≤ C1n ⇒ committed(T) ∧ (e = null ∨ ∃x.((e = x ∨ e =

x.f) ∧ committed(Γ (x))))
3. Γ ;∆ ⊢ e : T ∧ T ≤ Ck! ⇒ ¬nullable(T) ∧ ∃x.((e = x ∨ e = x.f) ∧

committed(Γ (x)))
4. Γ ;∆ ⊢ y : T ⇒ T = Γ (y) ∧ y ∈ ∆
5. Γ ;∆ ⊢ y.f : T ⇒ y ∈ dom(Γ)

Proof. All straightforward from the definitions.

Lemma 3 (Signature Type Instantiations).

1. If S ≤ S′ and dom(θ) ⊇ vars(S, S′) then θ(S) ≤ θ(S′).
2. If mSig(D,m) = (γ, xi:Si , S, yj :Sj) and instance(θ, {Dγ !, Si}) then all of the

following are types (rather than signature types): Dθ(γ)!, θ(Si) , θ(S), θ(Sj) .
3. If instance(θ, {Si}) holds, then there exists θ′ ∈ instances(Si) such that

θ′(Si) = θ(Si) .

22 Alexander J. Summers and Peter Müller

4. If D ≤ C and we have mSig(D,m) = (γ, xi:Si , S, yj:Sj) and mSig(C,m) =
(γ′, xi:S

′

i , S
′, yl:Sl) and instance(θ, {Dγ !, Si}) then, there exists θ′ such that

θ′ ∈ instances(Cγ′

!, S′

i) and θ′(γ′) = θ(γ′) and θ′(S′

i) = θ(S′

i) and θ′(S′) =
θ(S) and θ′(Sl) = θ(Sl) .

Proof. 1. Immediate from Definition 2.
2. By the definition of instances (Definition 3) we know that all of the expecta-

tion variables in γ and Si are in the domain of θ. By the restrictions imposed
on method signatures in the same definition, the return types and local vari-
able types may not mention any more than these expectation variables.

3. The substitution θ′ can be obtained by taking the restriction (in the usual
sense of function/map domain restriction) of θ to the vars(Si).

4. By the previous parts, it is enough to show that instance(θ, {Cγ′

!, S′

i}) holds.
By the restrictions on method signatures, we know that γ ≤ γ′ and Si ≤ S′

i .
By Definition 2, we observe that each supertype in these equations (the types
on the right-hand side) cannot contain more expectation variables than the
corresponding subtype. This gives us our result.

Lemma 4 (Runtime Type Assignment Properties).

1. h ⊢ v : t1 ∧ t1 ≤ t2 ⇒ h ⊢ v : t2
2. h ⊢ v : C n ⇒ v = null ∨ cls(h, v) ≤ C
3. Γ ;∆ ⊢ h, σ ∧ Γ ;∆ ⊢ e : Ckn ⇒ ∃v.(⌊e⌋h,σ = v ∧ h ⊢ v : C n)

Proof. The first two parts require a straightforward case analysis on the defi-
nitions. The third is slightly more involved, but requires only a straightforward
induction on the structure of e, with a case-split on the initialisation expectation
on x in the case of e = x.f .

Lemma 5 (Heap Update Properties).

1. ⌊x.f⌋h,σ = v ⇒ reachable(h, v) ⊆ reachable(h, σ(x))
2. h′ = h[(ι, f) 7→ v]∧ι ∈ reachable(h, ι′) ⇒ reachable(h′, ι′) ⊆ reachable(h, v)∪

reachable(h, ι′)
3. h′ = h[(ι, f) 7→ v] ∧ ι /∈ reachable(h, ι′) ⇒ reachable(h′, ι′) = reachable(h, ι′)
4. (h′, ι′) = alloc(h,C) ⇒ ∀ι ∈ dom(h).(¬reaches(h′, ι, ι′) ∧ ¬reaches(h′, ι′, ι))

Proof. The first part is straightforward from the definitions. The next two parts
follow by induction on the derivation of reachable(h, ι′). The last follows from
Definition 8.

We can now prove our main result.

Proof (of Lemma 1). For reference, we enumerate the assumptions of our lemma
(including expansion of Definition 12):

ok, h, σ, s h′, σ′, ǫ (1)

ǫ 6= castExc (2)

Free and Committed Types 23

dom(σ) = dom(Γ) ∧ this ∈ dom(σ) (3)

∀ι ∈ dom(h), f ∈ fields(cls(h, ι)) :
(h(ι, f) 6= null ⇒ h(ι, f) ∈ dom(h) ∧ cls(h, h(ι, f)) ≤ fType(cls(h, ι), f))

(4)

∀x ∈ dom(σ) : (¬nullable(Γ (x)) ∧ x ∈ ∆ ⇒ σ(x) 6= null) (5)

∀x ∈ dom(σ) : (σ(x) 6= null ⇒ h ⊢ σ(x) : Γ (x)) (6)

∀x, y ∈ dom(σ) : (committed(Γ (x)) ⇒ deep init(h, σ(x))
∧(free(Γ (y)) ⇒ ¬reaches(h, σ(x), σ(y))))

(7)

Γ ;∆ ⊢ s | ∆′;Σ (8)

We proceed by induction on the derivation of (Eq. 1), considering cases for
the last rule applied. In each case, we have to prove all of the following:

dom(σ′) = dom(Γ) ∧ this ∈ dom(σ′) (9)

∀ι ∈ dom(h′), f ∈ fields(cls(h′, ι)) :
(h′(ι, f) 6= null ⇒ h′(ι, f) ∈ dom(h′) ∧ cls(h′, h′(ι, f)) ≤ fType(cls(h′, ι), f))

(10)

∀x ∈ dom(σ′) : (¬nullable(Γ (x)) ∧ x ∈ ∆′ ⇒ σ′(x) 6= null) (11)

∀x ∈ dom(σ′) : (σ′(x) 6= null ⇒ h′ ⊢ σ′(x) : Γ (x)) (12)

∀x, y ∈ dom(σ′) : (committed(Γ (x)) ⇒ deep init(h′, σ′(x))
∧(free(Γ (y)) ⇒ ¬reaches(h′, σ′(x), σ′(y))))

(13)

ǫ = ok (14)

σ′(this) = σ(this) ∧ dom(σ′) = dom(σ) ∧ h ≤ h′ (15)

∀f ∈ Σ : (¬nullable(fType(cls(h, σ(this)), f)) ⇒ h′(σ(this), f) 6= null) (16)

∀ι ∈ dom(h) : (¬nullable(fType(cls(h, ι), f)) ∧ h(ι, f) 6= null ⇒ h′(ι, f) 6= null)(17)

∀ι ∈ dom(h′) : (ι 6∈ dom(h) ⇒ init(h′, ι)) (18)

∀ι ∈ dom(h′), x ∈ dom(σ′) : (reaches(h′, σ′(x), ι) ∧ ι ∈ dom(h)
⇒ (∃y ∈ dom(σ) : reaches(h, σ(y), ι)))

(19)

∀ι ∈ dom(h′), x ∈ dom(σ′) : (reaches(h′, σ′(x), ι) ∧ committed(Γ (x))
∧ι ∈ dom(h) ∧ σ′(x) ∈ dom(h) ⇒

(∃y ∈ dom(σ) : committed(Γ (y)) ∧ reaches(h, σ(y), ι)))
(20)

∀ι ∈ dom(h′), x ∈ dom(σ′) : (reaches(h′, ι, σ′(x)) ∧ free(Γ (x))
∧ι ∈ dom(h) ∧ σ′(x) ∈ dom(h)

⇒ (∃y ∈ dom(σ) : free(Γ (y)) ∧ reaches(h, ι, σ(y))))
(21)

∀ι1 ∈ dom(h), ι2 ∈ dom(h) : (reaches(h′, ι1, ι2) ⇒
reaches(h, ι1, ι2)∨

(∃x ∈ dom(σ) : committed(Γ (x)) ∧ reaches(h, σ(x), ι2))∨
(∃y ∈ dom(σ), z ∈ dom(σ) : free(Γ (y)) ∧ reaches(h, ι1, σ(y)) ∧ reaches(h, σ(z), ι2)))

(22)

Note that we omit the goal ∀ι ∈ dom(h) : (init(h, ι) ⇒ init(h′, ι)) since it
follows straightforwardly from (Goal 17) above.

We now proceed with our case analysis:

24 Alexander J. Summers and Peter Müller

(varAss) : Then, from the form of the rule, we have:

ǫ = ok (23)

h = h′ (24)

σ′ = σ[x 7→ v] (25)

s = (x := e) (26)

⌊e⌋h,σ = v (27)

Note that (Goal 14) is given by (Eq. 23).
By (Eq. 26), (Eq. 8) must have been derived by rule (TVarAss), and so we
also have:

∆′ = ∆ ∪ {x} (28)

Σ = ∅ (29)

x ∈ dom(Γ) (30)

Γ ;∆ ⊢ e : T (31)

T ≤ Γ (x) (32)

By (Eq. 25), using (Eq. 30) and (Eq. 3), we know that

dom(σ′) = dom(σ) ∪ {x} = dom(σ) = dom(Γ)

Therefore, we deduce (Goal 9) and (Goal 15) (Note that from the syntax
of statements, we know that x 6= this). From (Eq. 24) we also immediately
deduce (Goal 17), (Goal 19), (Goal 18) and (Goal 10). From (Eq. 29) we
deduce (Goal 16) vacuously.
To prove (Goal 13), we need only concern ourselves with the updated vari-
able x (by (Eq. 6),(Eq. 24) and (Eq. 25)). The only interesting cases are
when either committed(Γ (x)) or free(Γ (x)) hold. In the former case, by
(Eq. 32) and Lemma 2(2) we know that either e = null or, for some y
with committed(Γ (y)) we have e = y or e = y.f . Then deep init(h′, σ′(x))
follows, using (Eq. 7) and Lemma 5(1) as needed if e 6= null. In the other
case of free(Γ (x)) holding, we know by Lemma 2(1) that e = null or e = y
with free(Γ (y)). The requirement that free references remain unreachable
from committed references follows from (Eq. 7). Similarly to the above ar-
guments, we can use Lemma 2(2) to obtain (Goal 11) (using (Eq. 28)) and
(Goal 20), and we can use Lemma 2(1) to obtain (Goal 21).
We obtain (Goal 12) by Lemma 4(3) and using (Eq. 6), (Eq. 5), (Eq. 31)
and (Eq. 27). Note that showing (Goal 22) is made trivial by (Eq. 24).

(varAssBad) : From the form of the rule, we know that ⌊e⌋h,σ = derefExc.
By Definition 9, we must have e = x.f with either σ(x) = null or σ(x) =
ι with f /∈ fields(cls(h, ι)). Then (Eq. 8) must have been derived by rule
(TVarAss). In particular, it must be the case that Γ ;∆ ⊢ x.f : T . From
Fig. 3 we see that this implies that, for some C and k we have Γ ;∆ ⊢ x : Ck!
and f ∈ fields(C). By Lemma 2(4) we have Γ (x) = Ck! and x ∈ ∆. By

Free and Committed Types 25

(Eq. 5) we obtain σ(x) 6= null. Therefore, we must have σ(x) = ι with
f /∈ fields(cls(h, ι)). But, by (Eq. 6) we can conclude that h ⊢ ι : Ck!, and
thus, cls(h, ι) ≤ C from Fig. 6. By Definition 1 we have f ∈ fields(cls(h, ι));
a contradiction.

(FldAss) : From the form of the rule, we have:

ǫ = ok (33)

s = (x.f := y) (34)

h′ = h[(ι, f) 7→ σ(y)] (35)

σ′ = σ (36)

σ(x) = ι (37)

Note that (Goal 14) is given by (Eq. 23), and (Goal 18) follows easily from
(Eq. 35) and (Eq. 4).
By (Eq. 34), we know that (Eq. 8) must have been derived by rule (TFldAss).
Therefore, we also have

Γ ;∆ ⊢ x : Ck1 ! (38)

fType(C, f) = D n (39)

Γ ;∆ ⊢ y : T (40)

T ≤ Dk2n (41)

k1 = 0 ∨ k2 = 1 (42)

Σ = {f} if x = this, ∅ otherwise (43)

By using (Eq. 3) and (Eq. 5) with (Eq. 36), we get (Goal 9) and (Goal 11).
With (Eq. 35) we then obtain (Goal 15), which also gives us (Goal 12) (by
h ≤ h′). By Lemma 4(3) (using (Eq. 40)) and Lemma 4(1) (using (Eq. 41))
we obtain

h ⊢ σ(y) : D n (44)

Using this, along with Lemma 4(2) and (Eq. 35), we obtain (Goal 10).
To show (Goal 16), the only interesting case is when both x = this and
¬nullable(fType(cls(h, σ(this)))) hold. From (Eq. 38) and Lemma 2(4) we
have

Ck1 ! = Γ (x) (45)

and using (Eq. 6) we obtain h ⊢ σ(this) : C !. By Lemma 4(2), we have

cls(h, σ(this)) ≤ C (46)

By invariance of fType, we have (with (Eq. 39)) 6= nullable(D n), i.e., n =!.
By Lemma 2(3), 6= nullable(T). Therefore, using (Eq. 44) we have σ(y) 6=
null, from which we obtain (Goal 16). By similar argument, we obtain
(Goal 17).
To obtain (Goal 19), let us suppose that for some z and ι′ we have both
reaches(h′, σ′(z), ι′) and ι′ ∈ dom(h). Note that by (Eq. 36) we have σ(z) =
σ′(z). We need to show that ∃w.(reaches(h, σ(w), ι′)). We consider two cases
(depending on whether the variable in question “saw” the field update):

26 Alexander J. Summers and Peter Müller

reaches(h, σ(z), ι) : By applying Lemma 5(2) we can deduce
reachable(h′, σ′(z)) ⊆ reachable(h, σ(z)) ∪ reachable(h, σ(y)). Therefore,
reaches(h′, σ′(z), ι′) implies that either reaches(h, σ(z), ι′) (in which case
we are done, choosing w to be z), or reaches(h, σ(y), ι′) (in which we are
done, choosing w to be y).

¬reaches(h, σ(z), ι) : By Lemma 5(3) we have
reachable(h′, σ′(z)) = reachable(h, σ(z)), and we are done, picking w to
be z.

We still need to show the following: (Goal 13),(Goal 21),(Goal 20) and
(Goal 22). We show all of these by case analysis on (Eq. 42):
(k1 = 0) : By (Eq. 45), we have free(Γ (x)).

Let w be an arbitrary variable such that committed(Γ (w)) holds. By
(Eq. 7) we know that ¬reaches(h, σ(w), σ(x))). By Lemma 5(3) we know
that reachable(h′, σ′(w)) = reachable(h, σ(y)), from which (Goal 13)
follows.
To show (Goal 21) we consider two cases (for arbitrary ι′):
(σ(x) ∈ reachable(h, ι′)) : Then we are done, since free(Γ (x)) holds.
(σ(x) /∈ reachable(h, ι′)) : Then, by Lemma 5(3), reachable(h′, ι′) =

reachable(h, ι′), from which the implication easily follows.
We can show (Goal 22) by similar argument, considering (for arbitrary
ι′) cases for whether or not reachable(h, ι′, σ(x)) holds.
To show (Goal 20), suppose that for some z and ι′ ∈ dom(h) we
have reachable(h′, σ′(z), ι′)∧ committed(Γ (z)). By (Eq. 7) we know that
¬reaches(h, σ(z), σ(x)). By Lemma 5(3) we conclude reachable(h, σ(z), ι′).

(k2 = 1) : To show (Goal 13), let z be an arbitrary variable such that
committed(Γ (z)) holds. We consider two cases:
(reaches(h, σ(z), σ(x))) : Then we conclude by Lemma 5(3) as above.
(¬reaches(h, σ(z), σ(x))) : Then by Lemma 5(2), reachable(h′, σ′(z)) ⊆

reachable(h, σ(z))∪ reachable(h, σ(y)). By (Eq. 7) and (Goal 17), it
is enough to show that ∀ι′ ∈ reachable(h, σ(y)), init(h, ι′). By Lemma
2(2) and (Eq. 40) we have committed(Γ (y)), from which the required
property follows by (Eq. 6).

To show (Goal 21) we consider two cases (for arbitrary ι′):
(σ(x) ∈ reachable(h, ι′)) : By applying Lemma 5(2), we obtain

reachable(h′, ι′) = reachable(h, ι′) ∪ reachable(h, σ(y)). However, by
(Eq. 40) and (Eq. 41) and using Lemmas 2(2) and 2(4), we have
committed(Γ (y)). Therefore, by (Eq. 7), we know that no variable
of free type is reachable from σ(y), which is enough to conclude the
result.

(σ(x) /∈ reachable(h, ι′)) : Then, by Lemma 5(3), reachable(h′, ι′) =
reachable(h, ι′), from which the implication easily follows.

The remaining (Goal 20) and (Goal 22) follow by similar arguments
to those for the k1 = 0 case.

(FldAssBad) : From the form of the rule, we have

s = x.f := y (47)

σ(x) = null (48)

Free and Committed Types 27

By (Eq. 47) we know that (Eq. 8) must have been derived by rule (TFldAss).
Therefore, we also know that

Γ ;∆ ⊢ x : Ck1 ! (49)

By Lemma 2(4), we obtain x ∈ ∆ and Γ (x) = Ck1 !. Therefore, by (Eq. 5),
we have σ(x) 6= null — a contradiction.

(Call) : From the form of the rule, we have:

s = (x := y.m(zi)) (50)

σ(y) = ι (51)

D = cls(h, ι) (52)

mSig(D,m) = (γ, xi:Si , S, yj :Sj) (53)

σ1 = this7→ι, xi 7→σ(zi) , res 7→null, yj 7→null (54)

mBody(D,m) = s′ (55)

ok, h, σ1, s
′
 h′, σ2, ǫ (56)

σ′ = σ[x7→σ2(res)] (57)

From the rule (TCall) we also obtain:

∆′ = ∆ ∪ {x} (58)

Σ = ∅ (59)

Γ ;∆ ⊢ y : Ck! (60)

Γ ;∆ ⊢ zi : Ti (61)

mSig(C,m) = (γ′, xi:S
′

i , S
′, yl:S

′

l) (62)

instance(θ, {S′

i , S
′, Cγ′

!}) (63)

Ti ≤ θ(S′

i) (64)

θ(S′) ≤ Γ (x) (65)

k ≤ θ(γ′) (66)

From Γ ;∆ ⊢ h, σ and (Eq. 51) we obtain h ⊢ ι : Γ (y) and so by Lemma 4(2)
we obtain cls(h, ι) ≤ Γ (y). By the variance restrictions on method signatures
(Definition 3), we obtain S′

i ≤ Si and γ′ ≤ γ and Sj ≤ S′

j . Using these facts
along with Lemma 3(1), we obtain:

Ti ≤ θ(Si) (67)

θ(S) ≤ Γ (x) (68)

k ≤ θ(γ) (69)

By the method checks of Definition 7, and using Lemma 3(4), we obtain
(defining Γ ′ and ∆′ to allow conveniently referring to them later on):

Γ ′ = (xi:θ(Si) , this:C
θ(γ), res:θ(S), yj :θ(Sj)) (70)

∆′ = {xi , this} (71)

Γ ′;∆′ ⊢ s′ | ∆′′;Σ (72)

committed(θ(S)) ⇒ res ∈ ∆′′ (73)

28 Alexander J. Summers and Peter Müller

We now aim to show Γ ′;∆′ ⊢ h, σ1 holds, to allow us to apply our induction
hypothesis. Inspecting Definition 12, we need to show points 1-5. Point 1
holds by definition of Γ ′ and ∆′. Using Γ ;∆ ⊢ h, σ along with (Eq. 61)
and Lemma 4(3), we obtain h ⊢ σ(zi) : Ti . By (Eq. 67) and Lemma 4(1),
we obtain h ⊢ σ(zi) : θ(Si) . This, along with the fact that (by definition)
h ⊢ ι : cls(h, ι) holds, gives us point 2. To show point 3, we need only consider
those variables v such that committed(Γ ′(v)) holds. The point follows from
the corresponding point for Γ ;∆ ⊢ h, σ, using Lemma 2(2) and (Eq. 67).
Points 4 and 5 can be similarly derived from the corresponding points for
Γ ;∆ ⊢ h, σ.

We can therefore apply our induction hypothesis, using (Eq. 56). This tells
us that all of our goals 9 to 22 hold, but with σ2 in place of σ′ (we will
not enumerate all statements here, but will hereafter write “by I.H.” for
properties which follow from the induction hypothesis). We must therefore
justify that these goals can also be deduced to hold for σ′ = σ[x 7→ σ2(res)].

Directly from the induction hypothesis, we obtain the following: (Goal 9),
(Goal 10), (Goal 14), (Goal 15), (Goal 16), (Goal 17). For (Goal 12),
we need to be sure that the return value σ2(res) satisfies h

′ ⊢ σ2(res) : Γ (x).
By I.H. we know that h′ ⊢ σ2(res) : Γ

′(res) (since we have Γ ′;∆′ ⊢ h′, σ2).
We conclude by (Eq. 68) and Lemma 4(1). By assumption, ǫ 6= castExc, and
from the I.H. we obtain (Goal 14).

(Goal 11) follows easily from the corresponding information in Γ ′;∆′ ⊢
h′, σ2 - Lemma 2(3) tells us that if Γ (x) is not nullable then Γ ′(res) also
must not be (given (Eq. 68)).

For several of the remaining goals, the following observations (which will
be referred to in the following proof) about the initialisation of σ1 are
helpful. Firstly, for any variable y (of the callee’s stack frame) such that
committed(Γ ′(y)) holds, there exists a variable u (of the caller’s stack frame)
such that committed(Γ (u)) and σ1(y) = σ(u) hold (this relies on Lemma
2(2)). Similarly, for any variable y (of the callee’s stack frame) such that
free(Γ ′(y)) holds, there exists a variable u (of the caller’s stack frame) such
that free(Γ (u)) and σ1(y) = σ(u) hold (this relies on Lemma 2(1)).

Using these observations, it is then easy to show (Goal 22) by case analysis
on the corresponding property from the I.H.. (Goal 18) follows easily from
the I.H. and (Goal 22). (Goal 19) follows from the I.H. and the observations
above.

(Goal 21) requires a more elaborate argument. Suppose that, for some
variable z we have reaches(h′, ι, σ′(z)) and free(Γ (z)) and ι ∈ dom(h) and
σ′(z) ∈ dom(h). We need to show that ∃z′.reaches(h, ι, σ(z′)) ∧ free(Γ (z′))
holds. We consider two cases:

(z 6= x) : Then σ′(z) = σ(z) holds. Using (Goal 22), we can consider three
cases:

(reaches(h, ι, σ(z))) : Then we are done, choosing z′ to be z.
(∃w.(committed(Γ (w)) ∧ reaches(h, σ1(w), σ(z)))) : Then, by our ob-

servations above, there must be a variable v such that committed(Γ (v))

Free and Committed Types 29

and σ(v) = σ1(w) both hold. This leads to a contradiction with
(Eq. 13).

(∃w, v.(free(Γ ′(w)) ∧ reaches(h, ι, σ1(w)) ∧ reaches(h, σ1(v), σ(z))) :
Then, by the observations above, there exists a variable u with
free(Γ (u)) and σ(u) = σ1(w). We are done, taking z′ = u.

(z = x) : Then σ′(z) = σ2(res) with free(Γ ′(res)). Then, using the version of
(Eq. 21) from the induction hypothesis, we have that for some variable
w, reaches(h, ι, σ1(w)) ∧ free(Γ ′(w)) holds. By the observations above,
there exists a variable u with free(Γ (u)) and σ(u) = σ1(w). We are
done, taking z′ = u.

We can show (Goal 20) and (Goal 13) by similar case analyses using
(Goal 22) (and using (Goal 18) in the latter case, also). This completes
the case.

(CallBad) : Leads to a contradiction, by analogous argument to the case for
(FldAssBad).

(Create) : From the form of the rule, we have:

s = (x := new C(zi)) (74)

σ′ = σ[x 7→ ι1] (75)

(h1, ι1) = alloc(h,C) (76)

cSig(C) = (xi:Si , yj :Sj) (77)

σ1 = this 7→ ι1, xi 7→ σ(zi) , yj 7→ null (78)

cBody(C) = s′ (79)

ok, h1, σ1, s
′
 h′, σ2, ǫ (80)

From the rule (TCreate) we also have:

cSig(C) = (xi:Si , yj :Sj) (81)

instance(σ, {Si}) (82)

Γ ;∆ ⊢ zi : Ti (83)

Ti ≤ σ(Si) (84)

k =
∧

committed(Ti) (85)

Ck! ≤ Γ (x) (86)

Σ = ∅ (87)

∆′ = ∆ ∪ {x} (88)

By Lemma 3(3) and the method checks of Definition 7, we know (defining
Γ ′ and ∆′ to allow conveniently referring to them later on):

Γ ′ = (xi:σ(Si) , this:C
0!, yj :σ(Sj)) (89)

∆′ = {xi , this} (90)

Γ ′;∆′ ⊢ s′ | ∆′′;Σ′ (91)

{f | f ∈ fields(C) ∧ ¬nullable(fType(C, f))} ⊆ Σ′ (92)

30 Alexander J. Summers and Peter Müller

We now aim to show Γ ′;∆′ ⊢ h1, σ
′, so that we can apply induction. This re-

quires us to show points 1-5 of Definition 12. Point 1 follows by construction,
while point 2 follows by similar argument to that made for the method call
case above. Point 3 follows from Γ ;∆ ⊢ h, σ, using (Eq. 84), Lemma 2(1) and
Lemma 2(2). Similarly, point 5 follows using Lemma 2(3). For point 4, we
need only concern ourselves with the newly-allocated object at ι1. However,
this object trivially satisfies the requirements with its default initialisation
(Definition 8).

We can therefore apply induction, using (Eq. 80). The following goals then
follow straightforwardly, using the I.H.: (Goal 9), (Goal 10), (Goal 11),
(Goal 14), (Goal 15), (Goal 16), (Goal 17).

(Goal 12) follows from (Eq. 75), the I.H. and (Eq. 86). (Goal 18) requires
(given the I.H.) that we can justify that init(h′, ι1) holds. We get this from
the version of (Eq. 16) in the I.H., along with (Eq. 92). (Goal 22) follows
from the I.H. and the properties of alloc (Definition 8).

Similarly to the treatment of method calls, for several of the remaining goals,
the following observations (which will be referred to in the following proof)
about the initialisation of σ1 are helpful. Firstly, for any variable y (of the
callee’s stack frame) such that committed(Γ ′(y)) holds, there exists a variable
u (of the caller’s stack frame) such that committed(Γ (u)) and σ1(y) = σ(u)
hold (this relies on Lemma 2(2)). Similarly, for any variable y (of the callee’s
stack frame) such that free(Γ ′(y)) holds, there exists a variable u (of the
caller’s stack frame) such that free(Γ (u)) and σ1(y) = σ(u) hold (this relies
on Lemma 2(1)).

For (Goal 19), we need to show that, for any variable w and address ι′′ such
that reaches(h′, σ′(w), ι′′) ∧ ι′′ ∈ dom(h) holds, we can deduce that
∃u.(reaches(h, σ(u), ι′′)). We consider two cases:

(w = x) : Using the corresponding property from the I.H., we obtain that
∃v.(reaches(h, σ1(v), ι

′′)) must hold. Since this variable was initialised to
one of the parameters zi, we have the required result.

(w 6= x) : Then σ(w) = σ′(w). We consider cases using the (already proven)
(Goal 22):

(reaches(h, σ(w), ι′′)) : Then we are done, choosing u to be w.
(∃v.(committed(Γ (v)) ∧ reaches(h, σ(v), ι′′))) : This contradicts our as-

sumption (Eq. 7).
(∃u′, v.(free(Γ (u′)) ∧ reaches(h, σ(u), σ(u′)) ∧ reaches(h, σ(v), ι′′)) :

Then we are done, picking u to be v.

We can similarly show (Goal 21) and (Goal 20) by case analyses, using
(Goal 22). The argument for (Goal 13) is also similar, but is more involved
(and is central to our treatment of constructors), and we show it in detail
here:

To show (Goal 13), assume that for some variable v we have committed(Γ (v)).
We need to show that
deep init(h′, σ′(v))∧∀w.(free(Γ (w)) ⇒ ¬reaches(h′, σ′(v), σ′(w))) holds. We
consider two cases:

Free and Committed Types 31

(v 6= x) : Then σ′(v) = σ(v) (by (Eq. 75)). To show deep init(h′, σ′(v)) we
assume (for a contradiction) that there is some address ι′′ such that
reaches(h′, σ′(v), ι′′) ∧ ¬init(h′, ι′′) holds. Then, by (Goal 18), ι′′ ∈
dom(h). We can then use (Goal 22) to give us three cases:

(reaches(h, σ(v), ι′′)) : By (Goal 17), we have ¬init(h, ι′′). This con-
tradicts our assumption (Eq. 7).

(∃u.(committed(Γ (u)) ∧ reaches(h, σ(u), ι′′))) : This also contradicts
our assumption (Eq. 7).

(∃u.(free(Γ (u)) ∧ reaches(h, σ(v), σ(u))) : This also contradicts our as-
sumption (Eq. 7).

Thus, by contradiction, we can conclude deep init(h′, σ′(v)). Now, sup-
pose for a contradiction that, for some w we have reaches(h′, σ′(v), σ′(w))∧
free(Γ (w)). We consider two cases:

(w 6= x) : Then σ′(w) = σ(w). We apply (Goal 22) to get three cases:

(reaches(h, σ(v), σ(w))) : This contradicts our assumption (Eq. 7).
(∃u.(committed(Γ (u)) ∧ reaches(h, σ(u), σ(w)))) : This also con-

tradicts our assumption (Eq. 7).
(∃u.(free(Γ (u)) ∧ reaches(h, σ(v), σ(u))) : This also contradicts our

assumption (Eq. 7).

(w = x) : Then σ′(w) = ι1. We apply the version of (Eq. 22) from our
I.H. (using (Eq. 80)) to get three cases (note that ι1 ∈ dom(h1)):

(reaches(h1, σ(v), ι1)) : This contradicts our assumptions about alloc
(Definition 8).

(∃u.(committed(Γ ′(u)) ∧ reaches(h1, σ1(u), ι1))) : This contradicts
point 3 of Γ ′;∆′ ⊢ h1, σ

′ (justified above), since free(Γ ′(this)) ∧
σ′(this) = ι1 holds.

(∃u.(free(Γ ′(u)) ∧ reaches(h, σ(v), σ1(u))) : By our observations above,
this implies that, for some u′ we have free(Γ (u′))∧σ(u′) = σ1(u).
This contradicts our assumption (Eq. 7).

(v = x) : Then by assumption, we have committed(Γ (x)). By Lemma 2(2)
and (Eq. 86), we have k = 1. By (Eq. 85), we have committed(Ti) . Sup-
pose for a contradiction that we have, for some address ι2, reaches(h

′, ι1, ι2)∧
¬init(h′, ι2). Then, by (Goal 18), we have ι2 ∈ dom(h1). We can then
apply the version of (Eq. 22) from our I.H. (using (Eq. 80)) to give three
cases:

(reaches(h1, ι1, ι2)) : By our assumptions about alloc (Definition 8) we
must have ι2 = ι1. But, we have already proved (when showing
(Goal 18)) that init(h′, ι1) holds — a contradiction.

(∃u.(committed(Γ ′(u)) ∧ reaches(h1, σ
′(u), ι2))) : This contradicts point

3 of Γ ′;∆′ ⊢ h1, σ
′ (justified above).

(∃u, u′.(free(Γ ′(u)) ∧ reaches(h1, ι1, σ1(u)) ∧ reaches(h1, σ1(u
′), ι2)) :

By definition of σ1, either u′ = this (in which case we argue as in
the first of these three cases) or u′ = xi for some i. However, since
committed(Ti) holds, by Lemma 2(2) we must have committed(Γ ′(xi)).
This therefore contradicts point 3 of Γ ′;∆′ ⊢ h1, σ

′ (justified above).

32 Alexander J. Summers and Peter Müller

This justifies (by contradiction) that deep init(h′, ι1) holds. Finally, as-
sume for a contradiction that, for some w we have
free(Γ (w))∧ reaches(h′, ι1, σ(w)). By similar case analysis using the ver-
sion of (Eq. 22) from our I.H., we obtain that σ(w) must have been
reachable from σ1, which is impossible since all initialised variables are
newly-allocated or of committed type.

(Cast) : This case is analogous to the (varAss) case, but works as if the effec-
tive type of the variable assigned from were the combination of the type of
the cast and the initialisation expectation of the variable’s declared types.
The extra runtime check provides the necessary extra information about the
value assigned.

(CastBad) : This case contradicts the assumptions of our lemma, since we must
have ǫ = castExc.

(Seq) : From the form of the rule, we have:

s = (s1; s2) (93)

ok, h, σ, s1 h1, σ1, ok (94)

ok, h1, σ1, s2 h′, σ′, ǫ (95)

From the rule (TSeq) we additionally obtain:

Σ = Σ1 ∪Σ2 (96)

Γ ;∆ ⊢ s1 | ∆1;Σ1 (97)

Γ ;∆1 ⊢ s2 | ∆2;Σ2 (98)

From our assumptions, we can immediately apply induction using (Eq. 97),
and from this I.H. we can then apply induction a second time using (Eq. 98).
This gives us two induction hypotheses with which to derive our goals.
The following goals follow directly from the I.H. for s2: (Goal 9), (Goal 12),
(Goal 13), (Goal 10), (Goal 11), (Goal 14). The following follow by direct
combination of the corresponding properties in the two I.H.s for s1 and s2:
(Goal 15), (Goal 17), (Goal 18), (Goal 19), (Goal 21), (Goal 22). This
leaves only the following to justify: (Goal 16) and (Goal 22).
To show (Goal 16), we need only combine the corresponding properties from
the two I.H.s, and then apply (Goal 17).
To show (Goal 22) requires the only substantial work of this case. To show
this, suppose that we have addresses ι1, ι2 ∈ dom(h) such that reaches(h′, ι1, ι2)
holds. We must the justify that one of the three cases enumerated in the
conclusion of (Goal 22) hold. Using our I.H. for s2, we can apply the cor-
responding version of (Eq. 22) to obtain three cases (relating the final heap
h′ with the intermediate heap h1):
(reaches(h1, ι1, ι2)) : Then we can apply the corresponding version of (Eq. 22)

to obtain three cases, each of which match the cases of (Goal 22).
(∃u.(committed(Γ (u)) ∧ reaches(h1, σ1(u), ι2))) : Then, by the version of

(Goal 20) from the I.H. for s1, there exists a variable v such that
committed(Γ (v))∧reaches(h, σ(v), ι2), matching the second case for (Goal 22).

Free and Committed Types 33

(∃u, v.(free(Γ (u)) ∧ reaches(h1, ι1, σ1(u)) ∧ reaches(h1, σ1(v), ι2)) : Then,
by the version of (Goal 21) from the I.H. for s1, there exists a variable
v with free(Γ (v)) ∧ reaches(h, ι1, σ(v)). By (Goal 19) there exists a v′′

such that reaches(h, σ(v′′), ι2) holds.
(SeqBad) : By I.H., provided that ǫ 6= castExc (from our assumptions), we

know that ǫ = ok. Therefore, we have a contradiction with the premises of
this rule.

⊓⊔

4 Comparisons

In this section we compare our type system to the two most expressive systems
in the literature, delayed types [5] and masked types [14]. For this purpose,
we re-cast the main examples from these papers in our system and discuss the
differences. Note that neither example could be handled by the techniques termed
“Inflexible” in our introduction.

4.1 Delayed Types

Fig. 8 shows the running example from the delayed types paper. We took the
liberty of slightly adapting the syntax to be closer to the notation used in the
rest of our paper (and in languages such as Java and C#).

All constructors are generic over a time t, which lies in the future (t > Now).
The receivers of the constructors are delayed with type t (by the declaration
⋄t). Note that in the List constructor, the time t is used to instantiate the Node

constructor ctor1. This expresses that the list and its sentinel node become fully
initialised at the same time, which allows them to safely refer to each other
before being fully initialised. Note that all constructors declare an initialisation
effect, which could be avoided by forcing all constructors to initialise all non-null
fields of their receiver. The delay-block in method insertAfter introduces a delay
time t and asserts that by the end of the block, all objects with delay t are fully
initialised.

Fig. 9 shows the same example in our system. In our system, the receivers
of constructors are implicitly free; we do not have to introduce a delay parame-
ter, and constructors initialise all non-null fields, meaning that we do not have
to declare initialisation effects. Moreover, our system determines automatically
when a new object may be referred to via committed references, which avoids
delay-blocks. Consequently, we need only a single annotation in the whole exam-
ple: on the parameter of the first Node constructor to indicate that the argument
object need not be committed. We can achieve this by declaring the parameter
parent as either free or unclassified. We chose the latter because it makes the
constructor signature more general.

The comparison of the two versions of the example illustrates that our sys-
tem not only reduces the amount of necessary annotations, but especially their
complexity. Our system requires neither genericity over delays nor constraints
on the time when an object becomes fully initialised.

34 Alexander J. Summers and Peter Müller

class List {
Node! sentinel ;

ctor[t,t>Now] ⋄t ()

{this.sentinel}
{

Node!⋄t tmp = alloc Node[t];

tmp.ctor1[t](this);

this.sentinel = tmp;

}

void insert (Object? data) {
this.sentinel.insertAfter(data);

}
}

class Node {
List! parent; Node! prev; Node! next;

Object? data;

// for sentinel construction

ctor1[t,t>Now] ⋄t (List!⋄t parent)

{this.parent , this.prev, this.next}
{
this.parent = parent;

this.prev = this;

this.next = this;

}
// for data node construction

ctor2[t,t>Now] ⋄t (Node! prev, Node! next, Object? data)

{this.parent, this.prev, this.next, this.data}
{
this.parent = prev.parent ;

this.prev = prev;

this.next = next;

this.data = data;

}
void insertAfter (Object? data)

{
delay t {

Node! newNode = alloc Node[t];

newNode.ctor2(this, this.next, data);

}
this.next.prev = newNode;

this.next = newNode;

}
}

Fig. 8. Doubly-linked list with delayed types.

Free and Committed Types 35

class List {
Node! sentinel ;

List () { this.sentinel = new Node(this); }

void insert (Object? data) {
this.sentinel.insertAfter(data);

}
}

class Node {
List! parent; Node! prev; Node! next;

Object? data;

// for sentinel construction

Node([Unclassified]List! parent) {
this.parent = parent;

this.prev = this;

this.next = this;

}
// for data node construction

Node(Node! prev, Node! next, Object? data) {
this.parent = prev.parent ;

this.prev = prev;

this.next = next;

this.data = data;

}
void insertAfter (Object? data) {
Node newNode = new Node(this, this.next, data);

this.next.prev = newNode;

this.next = newNode;

}
}

Fig. 9. Doubly-linked list with free/committed types.

36 Alexander J. Summers and Peter Müller

4.2 Masked Types

Fig. 10 shows the running example from the masked types paper. Our only
adaptation to the class structure is to make class Node abstract, which reflects
its use in the example and does not affect the typing. Masked types require
extensive annotations to declare which fields of an object are not yet initialised.
For instance, the constructor of class Leaf declares that the parent field may not
be initialised when the constructor terminates. Similar declarations occur in the
signature of the Binary constructor and the client code.

abstract class Node {

Node! parent;

}

class Leaf extends Node {

Leaf() effect *! -> parent! { }

}

class Binary extends Node {

Node left, right;

Binary(Node\parent!\Node.sub[l.parent] -> *[this.parent] l,

Node\parent!\Node.sub[r.parent] -> *[this.parent] r)

effect *! -> parent!, left[this.parent], right[this.parent] {

this.left = l;

this.right = r;

l.parent = this;

r.parent = this;

}

}

Leaf\parent! l = new Leaf();

Leaf\parent! r = new Leaf();

Binary\parent!\left[root.parent]\right[root.parent]

root = new Binary(l, r);

root.parent = root; // Now root has type (fully initialised) Binary.

Fig. 10. Tree with back-pointers using masked types.

Our version of the tree example is shown in Fig. 11. To be able to type
the example, we had to make two minor changes. First, the original example
initialises the parent of the new Binary object outside the constructor (last line
of Fig. 10). Since our system enforces that constructors initialise all non-null
fields, we moved the assignment to parent into both constructors. Second, the
Binary constructor in the original example assigns this to the parent field of the
arguments l and r. Our system does not permit these assignments because this is

Free and Committed Types 37

free inside the constructor and, thus, may be assigned only to fields of other free
objects. However, l and r are not free in this context. To avoid forcing the client
to assign to these fields, one could provide a wrapper method createBinary(l, r),
which calls the Binary constructor and afterwards sets the parent field of l and r.
One might consider extending our approach to allow a point in the constructor
body to be syntactically marked, indicating that initialisation is finished and the
receiver can be “converted” to a committed reference early. However, this does
not extend well to subclasses (a feature which our approach does not handle
in detail, but which can be handled with an extension) - in this case it would
not be sound to assume that initialisation was really complete, since subclass
constructors might not have been run yet. An alternative solution would be to
adopt Spec#’s non-delayed constructors [11], which force non-null fields to be
initialised before calling the base constructor. After the call to the base construc-
tor, the receiver may be assumed to be fully initialised and, thus, assigned to
fields of committed objects.

The comparison of the two versions of the example illustrates that our system
reduces the annotation overhead tremendously. By distinguishing only between
free and committed references, we avoid the overhead of declaring which fields
may be assumed to be initialised, and by requiring constructors to initialise all
non-null fields, we avoid the effect-clauses for constructors. In fact, we do not
have to add a single annotation to handle the initialisation of the cyclic structure.
However, our system does not support the deferral of initialisation until after
the constructor has terminated. If such a deferred initialisation is required, the
constructor needs to assign a dummy object to the non-null field, which gets
replaced later (similar dummy assignments are sometimes necessary for local
variables in Java and C# to pass the definite assignment checks).

In our introduction, we claimed that the annotation overhead in the Masked
Types system is much higher than with our own. In fact, there are two im-
portant points here. Firstly, and perhaps most importantly, our type system is
conceptually extremely simple to learn. There are only two annotations (plus
the default, committed), which have semantics which are intuitively simple to
understand, and the rules for type inference for expressions/assignments are very
simple. Conversely, the masked types syntax for annotations includes, amongst
other features, grammars for flexible effects annotations and sequenced masks,
incorporating syntaxes for paths in the heap, patterns, etc. The concepts and
notations a programmer must learn to understand and use this type system are
both more numerous and more advanced in nature. Furthermore, fully under-
standing the typing rules is very subtle - e.g., for eliminating field masks: “In
general, if some dependencies form a strongly connected component in which
no mask depends on a mask outside the component, they can all be removed
together”.

Secondly, while it is the case that in many simple cases, the defaults chosen
by the Masked Types system can (like those of our system) mean that most if not
all annotations can be avoided, it is in the more interesting cases (mutual/cyclic
initialisation) that the technical differences between the proposals are apparent.

38 Alexander J. Summers and Peter Müller

abstract class Node {

Node! parent;

}

class Leaf extends Node {

Leaf() { parent = this; }

}

class Binary extends Node {

Node! left, right;

Binary(Node! l, Node! r)

{

this.left = l;

this.right = r;

this.parent = this;

}

}

Leaf! l = new Leaf();

Leaf! r = new Leaf();

Binary! root = new Binary(l, r);

l.parent = root;

r.parent = root;

Fig. 11. Tree with back-pointers and free/committed types.

Free and Committed Types 39

The tree example above is the main such example in their paper (”Figure 3
shows how to safely initialize a binary tree with parent pointers”). The Masked
Types defaults do not apply to this example - all of the annotations shown are
necessary in that system. As we show explicitly above, our technique compares
very favourably in terms of annotation overhead for such a data structure. The
program code does need to be refactored slightly for use in our system because
of certain design decisions in our work (comparable implementation tweaks are
discussed for other examples in section 6.1 of the Masked Types paper), but the
result is far shorter and simpler, requiring no annotations at all to deal with
initialisation.

We believe that these differences illustrate different motivations. The Masked
Types work provides a very general and expressive solution (which can definitely
handle more-complex typing disciplines with regard to initialisation than our
proposal), which also tackles alternative problems such as object recycling, which
our paper does not. Our motivation, on the other hand, is very much to keep to
a proposal which is as simple and lightweight as possible for programmers to be
able to use for the specific problem of object initialisation.

5 Further Related Work

While we have already elaborated on the most-closely related work in our intro-
duction, we discuss here various other relevant research.

Haack and Poll present a type system for object immutability [7], which
has some similarities to our work. As they remark in Section 4 of their paper,
the initialisation problem for immutability is considerably simpler because one
does not need to handle complex interactions between immutable and mutable
references, unlike the problems of initialising mutual or cyclic data structures
with non-null types. The same is true for the Javari work of Tschantz and Ernst
[15].

Various implementations and practical works have been based on the origi-
nal proposals of Fähndrich and Leino [6]. These include Ekman and Hedin [4]
(a pluggable types implementation), Hubert et al. [9] (a machine-checked anal-
ysis for inferring non-null types) and Hubert [8] (extending this result to the
bytecode level). Male et al. [12] also present a bytecode verification for non-null
types, while Chalin and James [1] present an empirical study on the use (and
defaults) of non-null types. All of these works take essentially the original ”raw
types” approach of Fähndrich and Leino (if any) to object initialisation; that is,
they cannot handle examples involving mutual or cyclic initialisation (with the
exception of some special cases for the “this” reference in the work of Hubert et
al.)

6 Conclusions

We have presented and formalised our type-based approach to sound and flex-
ible object initialisation and non-nullity. While the formulation and proof of

40 Alexander J. Summers and Peter Müller

our soundness result are complicated, the resulting type system is very simple.
There are three aspects which make our soundness proof challenging. One is
the extensive use of reachability in our type invariants. The second is our desire
to maintain a standard operational semantics (no runtime support for object
initialisation). The third is the formulation of our proof at the level of single
local stack frames - we never look at the whole stack to express invariants such
as “committed references cannot be reached from free references”, which means
hard work when switching stack frames. These three aspects all however make
clear that the understanding required to use our system does not require the
programmer to think in terms of multiple stack frames, to have a non-standard
runtime in mind, or to be concerned with how deeply our type invariants can be
depended on in the heap.

In the proof, we had to consider properties of arbitrary objects and their
reachability relations. However, the guarantees and checks that a programmer
using the type system deals with, are all phrased in terms of the types of vari-
ables in scope at any particular program point. The programmer never needs
to consider properties like “some other reference in the heap reaches this ob-
ject”, but may rely on the type system to preserve the validity of configurations
even across method boundaries. This, along with the generally low annotation
overhead of our system, makes our solution usable by programmers.

While we have not yet implemented our system, there are indications that
the system is expressive and requires little annotation overhead:

– Firstly, we have encoded the running examples of the Delayed Types and
Masked Types papers in our system (see Section 4). The doubly-linked list
(Fig. 9) requires a single annotation, the binary tree with back-pointers (Fig.
11) does not require any annotations.

– Secondly, the annotation overhead in our system is identical to the overhead
in Spec#’s version of Delayed Types (each [Delayed] annotation in Spec#
corresponds to either a free or unclassified annotation in our system). The
largest application written with Spec#’s Delayed Types is the Spec#-verifier
(SscBoogie); it requires only six [Delayed] annotations in over 20,000 lines
of code; three constructors would have to be slightly adapted. Our system
requires an equally low overhead, but is sound.
This low overhead is achieved by making variables committed by default and
only requiring explicit annotations for free and unclassified variables. While
we make all non-null annotations explicit in our examples, we would reduce
the overhead further by using non-null (!) as the default.

We plan to implement our type system in a version of Spec#, so that we can
directly experiment with further code. Since Spec# is a superset of C#, we will
also then be able to experiment with annotating existing C# application code.

Our formalisation is based on a very small language, and we sketch here how
it can be extended to more language features:

Control and Data Flow. Adding conditionals and loops to the language
does not change the basic type system. At join points, we must intersect the
sets that track definite assignment. Control flow is much more interesting when

Free and Committed Types 41

mixed with a dataflow analysis; after an if-test for x! = null we can change the
type of local variable x to a non-null type, for the duration of the block (or
until x gets assigned to). This use of dataflow analysis is common in existing
implementations of non-null type systems, and makes the system much more
usable to the programmer by avoiding too many “obvious” casts.

Generics. We can support Java-like generics by adopting the solution from
Spec#; generic types may quantify over the class and non-nullity of a type, but
it is simpler for its initialisation expectation not to be varied with the generic
instantiation. This does not cause a loss of expressiveness; we can also support
genericity over initialisation expectations, as described in Section 2.5.

Super Calls. The most relevant language feature which our paper omits
is super() calls in constructors. This feature allows object initialisation to be
spread across the constructors of all superclasses of a new object. We can extend
our approach to handle this feature in the same way as the raw types approach
does—by introducing variants of our “free” references which indicate that (local)
initialisation has been completed at least as far as a specified superclass. Note
that we do not need to prevent dynamic method calls on free references (a
common source of initialisation errors); our type system will check that such
calls expect free receivers, which will in turn force the method implementation
not to assume that the receiver is initialised.

Concurrency. While we have proved the soundness of our system in a se-
quential setting, we are convinced that soundness carries over to concurrency.
The key idea is to enforce that each object is thread-local until it is fully ini-
tialised. That is, we maintain an invariant that any shared object (reachable
from more than one thread) is committed and, thus, fully initialised. For exam-
ple, in Java this invariant can be maintained by two rules. Firstly, only com-
mitted Thread objects can be started, that is, the Thread.start method requires
a committed receiver. This rule ensures that starting a new thread preserves
the invariant because the Thread object cannot store a free reference. Secondly,
only committed references can be stored in static fields. This rule ensures that
threads cannot pass free references from one thread to another via a static field.
Since starting a thread is a “synchronization action” in Java’s memory model,
this argument also applies to Java’s weak memory model.

Acknowledgements.We would like to thank Manuel Fähndrich for helpful dis-
cussions of delayed types and the Spec# implementation. We thank Hermann
Lehner for some useful discussions on the details of the formalisation. We par-
ticularly thank Arsenii Rudich for many discussions on the inception and details
of this work, and especially for last-minute food supplies.

References

1. Chalin, P., James, P.R.: Non-null references by default in java: Alleviating the
nullity annotation burden. In: ECOOP. pp. 227–247 (2007)

2. Chalin, P., Rioux, F.: Non-null references by default in the Java Modeling Lan-
guage. In: SAVCBS. p. 9. ACM (2005)

42 Alexander J. Summers and Peter Müller

3. ECMA-367: Eiffel analysis, design and programming language. ECMA (2006), 2006
4. Ekman, T., Hedin, G.: Pluggable checking and inferencing of non-null types for

Java. Journal of Object Technology 6(7) (2007)
5. Fähndrich, M., Xia, S.: Establishing object invariants with delayed types. In: OOP-

SLA. pp. 337–350. ACM (2007)
6. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-

oriented language. In: OOPSLA. pp. 302–312. ACM (2003)
7. Haack, C., Poll, E.: Type-based object immutability with flexible initialization.

In: Proceedings of the 23rd European Conference on ECOOP 2009 — Object-
Oriented Programming. pp. 520–545. Genoa, Springer-Verlag, Berlin, Heidelberg
(2009), http://dx.doi.org/10.1007/978-3-642-03013-0_24

8. Hubert, L.: A non-null annotation inferencer for java bytecode. In: Proceedings
of the 8th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering. pp. 36–42. PASTE ’08, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1512475.1512484

9. Hubert, L., Jensen, T.P., Pichardie, D.: Semantic foundations and inference of
non-null annotations. In: FMOODS. pp. 132–149 (2008)

10. Kogtenkov, E., Stapf, E.: Avoid a void: The eradication of null dereferencing (2009),
draft paper in honor of Tony Hoare’s 75th birthday.

11. Leino, K.R.M., Müller, P.: Using the Spec# language, methodology, and tools to
write bug-free programs. In: Advanced Lectures on Software Engineering—LASER
Summer School 2007/2008. LNCS, vol. 6029, pp. 91–139. Springer (2010)

12. Male, C., Pearce, D.J., Potanin, A., Dymnikov, C.: Java bytecode verification for
@nonnull types. In: Proceedings of the Joint European Conferences on Theory
and Practice of Software 17th international conference on Compiler construction.
pp. 229–244. CC’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008), http:
//portal.acm.org/citation.cfm?id=1788374.1788395

13. Meyer, B.: Attached types and their application to three open problems of object-
oriented programming. In: ECOOP. pp. 1–32 (2005)

14. Qi, X., Myers, A.C.: Masked types for sound object initialization. In: POPL. pp.
53–65 (2009)

15. Tschantz, M.S., Ernst, M.D.: Javari: adding reference immutability to java. SIG-
PLAN Not. 40, 211–230 (October 2005), http://doi.acm.org/10.1145/1103845.
1094828

