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ABSTRACT

Recent advances in deductive program verification correlate with the evolution of log-
ics for modular reasoning about complex programs. Verification techniques built upon
these logics require automation to help to verify practically essential rich program prop-
erties that summarize data structures via quantification or some form of abstraction.
However, many such properties are higher-order (e. g. data structure comprehensions like
sequence-fold), precluding automation. Furthermore, some rich properties (e. g. reacha-
bility between dynamically interlinked objects) are non-compositional; that is, one cannot
compose the property of a data structure based solely on the properties of its disjoint
sub-structures. However, compositionality is a prerequisite of automated modular rea-
soning (due to the problem commonly known as framing). If compositionality holds, the
programmer can independently reason about each method in an application without
considering the implementation of other methods, e. g. library code.

The goal of this thesis is to develop compositional — i. e. automated and modular —
techniques for verifying rich program properties. We build on top of separation logic,
a prominent program logic that enables modular reasoning about heap-transforming,
concurrently executed programs. The specification language of separation logic expresses
memory safety properties, but complementary techniques for handling rich properties
are underdeveloped, especially in an automated setting. The two classes of rich proper-
ties that we consider are data structure comprehensions and heap reachability properties. An
additional goal of the thesis is to develop techniques for automated verification debugging,
aiding the programmer in authoring formal specifications and verified programs.

Our first contribution is a technique for reasoning about the class of (higher-order,
compositional) comprehensive properties. These properties summarize data structures
containing potentially unbounded (and statically unknown) object sets via a finite num-
ber of values. Our encoding reduces comprehensions to first-order logic by modeling
them as uninterpreted functions and leveraging native features of separation logic, most
notably, the iterated separating conjunction connective. We develop a first-order axiomati-
zation of these functions, automating framing and the lemmas required for SMT-based
verification of characteristic benchmark programs. Our technique supports comprehen-
sions over data structures regardless of how their objects are accessed and ordered,
e. g. general heap graphs in addition to index-based array structures.

Our second contribution is a technique for reasoning about the class of (non-compositional)
heap reachability properties. These properties express the existence or the absence of
directed paths connecting dynamically interlinked heap objects. For each method, we
specify reachability only locally within the fragment of the heap on which the method
operates. We identify relative convexity, a novel relation between the heap fragments of
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a callee and its client, which enables (first-order) reachability framing, i. e. propagating
reachability properties from the heap fragment of a callee to the larger heap fragment of
its client, enabling precise, modular reasoning. Our technique supports practically im-
portant data structures, namely, acyclic graphs with a bounded outdegree and (poten-
tially cyclic) graphs with at most one path (modulo cycles) between each pair of nodes.

Our third contribution is a technique for generating counterexample heap reachabil-
ity models for verification debugging. We propose a general procedure for extracting
heap models from partial SMT models. We then extend this procedure to extract (state-
dependent) local heap reachability relations. To refer to relevant program states in a
heap model, we employ lightweight instrumentation of the source program. Our tech-
nique is agnostic to the verifier implementation, supporting symbolic execution and
verification condition generation with only minor adaptations. Our algorithm extracts
first-class heap reachability relations needed for specifying complex heap configura-
tions, e. g. acyclic or disjoint structures. We automatically visualize the output heap
reachability models and demonstrate the practicality of our technique in two scenarios:
debugging a failed verification and inspecting a verified heap-transforming program.



ZUSAMMENFASSUNG

Die jüngsten Fortschritte in der deduktiven Programmverifikation korrelieren mit der
Evolution von Logiken für modulare Argumentation über komplexe Programme. Die
auf diesen Logiken basierenden Verifikationsmethoden benötigen Automatisierung, um
zu helfen, praktisch relevante reiche Programmeigenschaften zu verifizieren, die Daten-
strukturen durch Quantifizierung oder gewisse Abstraktionen zusammenfassen. Aller-
dings sind viele solche Eigenschaften höherer Stufe (z.B. Datenstruktur-Comprehensions
wie Sequence-Fold), was Automatisierung erschwert. Des Weiteren sind manche solche
reiche Eigenschaften (z.B. Erreichbarkeit zwischen dynamisch miteinander verknüpf-
ten Objekten) nicht-kompositionell; das heißt, man kann die Eigenschaft der Datenstruk-
tur nicht lediglich auf Basis der Eigenschaften ihrer disjunkten Substrukturen bilden.
Jedoch ist Kompositionalität eine Voraussetzung der automatisierten modularen Argu-
mentation (aufgrund des Problems allgemein bekannt als Framing). Gilt Kompositiona-
lität, kann der/die Programmierer/-in unabhängig über jede Methode in der Applika-
tion schlussfolgern, ohne die Implementierung anderer Methoden zu berücksichtigen,
z.B. Library-Code.

Das Ziel dieser Dissertation ist, neue Techniken für Verifikation reicher Programm-
Eigenschaften zu entwickeln, die kompositionell sind, das heißt automatisiert und modu-
lar. Wir bauen auf der Separationslogik auf, einer bekannten Programmlogik, die modu-
lare Argumentation über Heap-transformierende, gleichzeitig ausgeführte Programme
ermöglicht. Die Spezifikationssprache der Separationslogik drückt Speichersicherheits-
eigenschaften aus, doch ergänzende Techniken für Umgang mit reichen Eigenschaften
sind unterentwickelt, insbesondere im Kontext von Automatisierung. Die zwei Klassen
der reichen Eigenschaften, die wir betrachten, sind Datenstruktur-Comprehensions und
Heap-Erreichbarkeitseigenschaften. Ein zusätzliches Ziel der Dissertation ist, Techniken für
automatisiertes Verifikations-Debugging zu entwickeln, die Programmierer beim Verfassen
von formalen Spezifikationen und verifizierten Programmen unterstützen.

Unser erster Beitrag ist eine Technik für Argumentation über die Klasse der (kom-
positionellen) zusammenfassenden Eigenschaften höherer Stufe. Diese Eigenschaften
fassen Datenstrukturen, die potentiell unbegrenzte (und statisch unbekannte) Objekt-
mengen enthalten, durch eine begrenzte Anzahl von Werten zusammen. Unsere Codie-
rung reduziert Comprehensions auf die Prädikatenlogik erster Stufe, indem sie diese
als uninterpretierte Funktionen modelliert und native Funktionen der Separationslogik
wirksam einsetzt, insbesondere die Verknüpfung der iterativen trennenden Konjunktion.
Wir entwickeln eine Axiomatisierung erster Stufe für diese Funktionen und automa-
tisieren somit Framing und Lemmata, die für die SMT-basierte Verifikation der typi-
schen Benchmark-Programmen erforderlich sind. Unsere Technik unterstützt Compre-

ix



hensions von Datenstrukturen unabhängig davon, wie ihre Objekte geordnet sind und
abgerufen werden, z.B. allgemeine Heap-Graphen zusätzlich zu indexbasierten Array-
Strukturen.

Unser zweiter Beitrag ist eine Technik für Argumentation über die Klasse der (nicht-
kompositionellen) Heap-Erreichbarkeitseigenschaften. Diese Eigenschaften drücken An-
oder Abwesenheit der gerichteten Wegen aus, die dynamisch miteinander verknüpfte
Heap-Objekte verbinden. Für jede Methode spezifizieren wir Erreichbarkeit nur lokal in-
nerhalb des Heap-Fragments, auf dem die Methode operiert. Wir identifizieren das Kon-
zept der relativen Konvexität, eine neuartige Beziehung zwischen den Heap-Fragmenten
der aufgerufenen Methode und ihrem Client, welche Erreichbarkeits-Framing (erster
Stufe) ermöglicht, das heißt, Erreichbarkeitseigenschaften vom Heap-Fragment der auf-
gerufenen Methode zum größeren Heap-Fragment ihres Clients zu propagieren, was
präzise, modulare Argumentation ermöglicht. Unsere Technik unterstützt besonders
wichtige Datenstrukturen, und zwar azyklische Graphen mit einem begrenzten Aus-
gangsgrad und (potenziell zyklische) Graphen mit höchstens einem Weg (modulo Zy-
klen) zwischen jeder Knotenpaar.

Unser dritter Beitrag ist eine Technik für Erzeugung von Heap-Erreichbarkeitsmodellen
als Gegenbeispiele für Verifikations-Debugging. Wir schlagen ein allgemeines Verfah-
ren für das Extrahieren der Heap-Modelle aus dem SMT-Teilmodell vor. Wir erweitern
anschließend das Verfahren, um (zustandsabhängige) lokale Heap-Erreichbarkeitsbeziehungen
zu extrahieren. Um auf relevante Programmzustände in einem Heap-Modell Bezug zu
nehmen, verwenden wir eine einfache Instrumentierung des Quellprogramms. Unsere
Technik ist nicht abhängig von der Implementierung des Verifiers und unterstützt Ve-
rifikation sowohl durch symbolische Ausführung als auch durch Überprüfung von Ve-
rifikationsbedingungen mit nur geringen Anpassungen. Unser Algorithmus extrahiert
Heap-Erreichbarkeitsbeziehungen, die für die Spezifizierung von komplexen Heap-Kon-
figurationen, z.B. azyklischen oder disjunkten Strukturen, benötigt werden. Wir visua-
lisieren automatisch die Ausgabemodelle der Heap-Erreichbarkeit und zeigen die Prak-
tikabilität unserer Technik in zwei Szenarien: Debuggen der fehlgeschlagenen Verifika-
tion und Inspektion des verifizierten Heap-transformierenden Programms.
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1 INTRODUCTION

Formal verification of realistic heap-transforming programs requires techniques that are
modular. One common target for modular verification is library code designed to be
reused by multiple clients and applications. However, library developers typically do
not know in advance what applications might rely on their code — let alone the imple-
mentation details of those applications — but their code should nonetheless be correct
and secure in all cases. Modular verification solves this problem by proving that meth-
ods comply with their modular specifications regardless of the invocation context, as long
as this context satisfies the formally specified requirements.

The specification language determines the extent to which one can verify safety- and
security-critical software, e. g. concurrent data structure libraries. Therefore, a key aspect
of the specification language is its expressiveness, i. e. the facts and logic that the program-
mers can refer to in specifications. Separation logic [22, 26] is a prominent specification
language for specifying heap configurations, e. g. disjointness or object sharing; typi-
cally, these specifications express crash freedom of heap-transforming programs, e. g. the
absence of null pointer dereferences and stack safety. Separation logic supports concur-
rent program specifications and is designed for modular verification as the programmer
can specify and verify even concurrent methods independently from one another.

Practical verification techniques should provide automation. Programmers rely on au-
tomated modular verification tools that support code-level specifications [19, 49, 57]. Ver-
ification experts capable of authoring logical proofs also benefit from automation due to
the potentially prohibitive overhead of writing formal proofs, compared to devising in-
formal correctness arguments and testing. In particular, refactoring a manually verified
program may require re-proving it from scratch. While proof assistants, e. g. Coq [29]
and Isabelle/HOL [25] mechanize proof authoring, they still expose the programmer
to low-level logical details, shifting their focus away from the essence of programming,
and are thus not commonly applicable.

Separation logic-based techniques are often automated by encoding proof obligations
as first-order formulas and discharging them via SMT solver [61, 71, 91]. Once a method
is verified not to crash, the next question is whether its computation always yields in-
tended results. Programmers thus specify more sophisticated properties that the meth-
ods must also respect. For example, one can specify that Array.sort(a), indeed, results
in the array being sorted: ∀𝑖, 𝑗 • 0 ≤ 𝑖 < 𝑗 < len(a) ⇒ a[𝑖].val ≤ a[𝑗].val, where a
is an array of object references, len(a) is the length of the array, and val is an integer
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2 INTRODuCTION

field.1 Sortedness is a first-order property that a prover can check automatically as it
relates array values simply via universal quantification.

Compositional program properties are properties of disjoint heap structures that natu-
rally support modular verification. In modular verification, a client can adapt to the
effect of a method call via framing [24, 37], i. e. composing the properties ensured by
the callee and the properties of the remainder heap fragment, called the frame. Verifiers
can frame compositional properties automatically through first-order reasoning. For ex-
ample, the concatenation of the two disjoint, ascendingly sorted arrays a and b is also
ascendingly sorted iff the maximal value in a is less than or equal to the minimal value in
b. Since minimal and maximal array values are also compositional properties, sortedness
is compositional, and the verifier can check this property modularly.

Rich program properties summarize heap structures in an abstract way. For instance,
array sortedness is such a property, as it summarizes the relations between adjacent
array values across the entire array. Unlike sortedness, some rich properties are non-
compositional; framing non-compositional properties requires higher-order reasoning,
which impedes automation. Heap reachability is a notable non-compositional program
property that defines the existence (or absence) of heap paths connecting certain objects.
For example, specifying structures that are acyclic, e. g. binary-decision diagrams [3, 10]
and version control histories [73], requires heap reachability. Framing reachability prop-
erties is generally undecidable due to their higher-order nature. Nevertheless, composi-
tional verification of reachability is possible in a restricted setting [76].

1.1 RESEARCH GOALS AND SCOpE

The main goal of this thesis is to advance modular deductive verification by enabling
automated, compositional reasoning about rich program properties. For this purpose,
we developed principles, axiomatizations, and logical encodings and evaluated them by
verifying benchmarks from literature.

This thesis is dedicated to static verification techniques, i. e. those that do not rely on
concrete executions but analyze programs only symbolically. In some cases, it is possible
to combine static and dynamic information to achieve better results [28, 86]. However, a
trend in modern verification infrastructures is to rely upon an intermediate verification lan-
guage (IVL), a simple, non-executable language designed for expressing a spectrum of
verification problems [46, 67, 91]. Verification frontends encode formally specified source
programs from common languages, e. g. Java, into the IVL [49, 57, 98, 107, 126]. Verifica-
tion backends apply generic techniques, e. g. symbolic execution [92] or verification con-
dition generation [46, 68], to verify the IVL encodings. This infrastructure design sepa-

1 This specification of sort is still incomplete and is satisfied even by an (incorrect) implementation that
assigns all the array elements to e. g. zero; to ensure that sort only swaps the values, one could specify that
the resulting array has the same number of 0s, 1s, -1s, etc. — i. e. sort only permutes the values.
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rates two orthogonal concerns: Frontend developers address only language-specific ver-
ification challenges and naturally benefit from improvements of the backends; Backend
developers target only one, simple language, focusing on language-agnostic verification
techniques. Static techniques support this trend as they are applicable to IVLs.

The logical foundation of the techniques developed in this thesis is separation logic, a
prominent framework for reasoning about effectful programs. Most existing techniques
based on separation logic leverage its abstract predicates to specify both memory layouts
and value properties of heap structures. To define potentially unbounded structures,
e. g. lists and trees, separation logic supports recursive abstract predicates. However, re-
cursive predicates cannot define more general structures, e. g. random-access arrays and
graphs of shared objects. In this thesis, we consider an alternative technique called iter-
ated separating conjunction (ISC) [24, 90] that specifies memory footprints of methods and
data structures without restricting order of access and sharing.

ISC offers a set-theoretical view of the framing problem. In this view, rich properties of
sets of objects can be expressed via state-dependent functions. Therefore, framing amounts
to establishing the relationship between a function over a disjoint union of two object sets
and the same function over the individual sets, i. e.:

𝑓 (𝐴 ⊎ 𝐵) = 𝑓 (𝐴) ⊕ 𝑓 (𝐵)

where 𝑓 (𝑋) expresses some property of the set 𝑋 of heap objects, ⊎ is the disjoint union,
and ⊕ is an operator that combines the properties of the two subsets 𝐴 and 𝐵 into the
property of the entire set 𝐴 ⊎ 𝐵. The operator ⊕ enables modular reasoning about the
property 𝑓 . The complexity of ⊕, e. g. whether it is a first-order formula, determines the
automation potential for modularly reasoning about the property 𝑓 .

1.1.1 Problem statement

Automated modular deductive verification of heap-transforming programs is a research
area with numerous techniques developed in the past two decades. Supporting modular
reasoning is essential for a deductive verification technique as non-modular techniques
typically do not scale well to real software. However, many important aspects of soft-
ware correctness and reliability, including rich program properties discussed above, are
currently not available in an automated setting. Thus, we identified the following gaps
in the state of the art that are in the scope of this thesis:

1.1.1.1 Modular specification of unbounded structures. Most separation logic-based tech-
niques specify data structures via recursive abstract predicates. In automated reasoning,
recursive predicates often impede automation because they require the programmer to
manually augment the program with ghost operations that fold and unfold predicate
definitions, navigating through different abstract representations of a data structure. In
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specifications, recursive predicates can define only a limited class of heap structures and
decompositions thereof; it is not possible to specify practically via recursive predicates
essential structures e. g. arrays or graphs of shared objects. How could one modularly
specify and automatically verify arbitrary heap-allocated structures?

The key to a solution, namely, the iterated separating conjunction connective, was pro-
posed already in a classical work on separation logic [24]. Theoretically, ISC-based spec-
ifications allow the programmer to disentangle memory layouts and functional proper-
ties of arbitrary heap structures. However, since ISC is a form of unbounded quantifica-
tion, automated reasoning with ISC is complicated. To our knowledge, most separation
logic-based verifiers do not support this connective. Fortunately, there are notable ex-
ceptions: Viper [90] and, to some extent, GRASShopper [78]. These projects show that
ISC is useful not only in pen-and-paper proofs but also in an automated setting.

What is missing for practically realizing the generalization of recursive predicates
via ISC is a suitable extension of the specification language. Since ISC provide a set-
theoretical view over unbounded heap structures, one typically cannot exhaustively
specify the properties of each individual object as methods can operate on unbounded
object sets. A natural way to express properties of unbounded sets is via universal quan-
tification. However, first-order quantifiers summarize only Boolean functions but not
more advanced algebraic properties; even an intuitively simple property, e. g. the count
of marked graph nodes, let alone more advanced ones, e. g. scalar vector products, can-
not be expressed via universal quantification. Existing approaches partially tackle this
problem, but either in a non-modular or non-automated setting.

In this thesis, we address the challenge of modular specification of unbounded heap
structures by proposing set comprehensions, a novel class of compositional program prop-
erties that complement ISC. Set comprehensions generalize the concept of first-order
quantification by summarizing potentially unbounded (and statically unknown) object
sets via commutative, associative operators, e. g. addition, multiplication, and minimiza-
tion. We develop a lightweight encoding of set comprehensions into separation logic
and an efficient first-order axiomatization for automating relevant lemmas about com-
prehensions. We evaluate the technique based on examples from literature, including
the benchmarks from closely-related prior work.

1.1.1.2 Composability of heap reachability. Another class of practically essential pro-
gram properties is heap reachability. Recursive predicate-based specifications specified
reachability indirectly by imposing a (partial) ordering of objects; e. g. a method main-
taining a recursive list predicate can rely on the acyclicity of this list. Conversely, in our
ISC-based view, memory layouts are specified in terms of potentially unordered object
sets, requiring a direct approach to specifying reachability.

The general heap reachability relation cannot be simply added to the specification
language because this relation carries inherently non-local information, i. e. it is non-
compositional. To modularly verify reachability properties, one needs to reason about
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entire heap paths, not just their origins and destinations, as heap paths are generally not
limited to method footprints defined through ISC. However, this is practically not fea-
sible due to the potentially unbounded length of general heap paths. This challenge is
of theoretical interest as it occurs not only in program verification but also in the gen-
eral theory of flow networks. Existing modular approaches establish composability of
heap reachability only for restricted classes of heap structures. Compared to recursive
predicates, these techniques achieve better automation (as they do not require ghost
operations), but the spectrum of supported heap structures is effectively the same.

In this thesis, we address the challenge of establishing composability of reachability
in general graphs by proposing a novel relation of local heap reachability and developing
a less restrictive setting of relatively convex footprints. We develop a lightweight encoding
of local reachability relations into separation logic and an efficient first-order axioma-
tization for automating relevant reachability lemmas. We evaluate the technique based
on examples from literature, including the benchmarks from closely-related prior work.

1.1.1.3 Verification debugging. Even with automated tools, deductive verification is still
challenging as errors can occur in the implementation of the program, or its specifica-
tion, or both at the same time. Thus, developing verified software is typically an iterative
process, involving multiple stages of refinement before the end goal is reached. Each in-
termediate stage in this process consists of a verification failure (which the programmer
must interpret and diagnose), a solution design (e. g. a hypothesis that the implemen-
tation is buggy or that the specification is inadequate), and a refinement (i. e. actually
modifying the code and re-running the verifier).

We focus on the problem of diagnosing verification failures based on counterexam-
ples. In case of a verification failure, SMT solvers powering state-of-the-art verifiers pro-
vide counterexample models that assign values to variables and provide interpretations
to functions. However, interpreting raw counterexample models is challenging. First, the
programmer might not be familiar with the internal aspects of the encoding, which are
fully exposed in a raw model, e. g. permission masks or field-value functions used for encod-
ing access permissions. Thus, interpreting counterexample models requires information
about the logical encoding. For this reason, existing SMT-based verification debuggers
are tailored to only one backend technology.

Second, raw SMT models are partial and imprecise in presence of undecidable logics,
e. g. because the solver could not instantiate some quantifiers or find complete interpre-
tations for challenging functions. Therefore, it is challenging to extract information from
partial models that is relevant — that which helps programmers to understand verifica-
tion failure causes. Existing SMT-based verification debuggers typically avoid undecid-
able logics [76, 78] or rely on code execution for filtering out spurious models [63, 102].
The former approach fundamentally limits expressiveness of the supported logic. The
latter approach is not applicable to non-executable, intermediate verification languages.
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In this thesis, we address the above challenges by proposing a novel procedure for ex-
tracting heap configurations from counterexample SMT models. Our procedure is agnostic
to specific backend implementations (supporting both symbolic execution and verifica-
tion condition generation) and is extensible, i. e. one can augment the produced models
with information from a separation logic extension. We demonstrate the latter aspect by
extending our models with arbitrary heap reachability relations. We evaluate our tech-
nique based on two scenarios: debugging inadequate specifications and learning typical
behaviours of a verified algorithm implementation.

1.1.2 Problem domain

The experimental platform of this thesis is based on Viper [91], a state-of-the-art infras-
tructure for automated reasoning in separation logic. At the core of the infrastructure is
the Viper intermediate verification language. Formally specified programs written in a
source language are translated into Viper through frontend verifiers, most notably, Ver-
Cors for concurrent Java [72] and C [84], Viper-RSL for C11 [106], Nagini for (statically
typed) Python [98], Prusti for Rust [107], and Gobra for Go [126]. These translations
are then statically verified through the verification backends. Next, we summarize the
reasons why Viper is an interesting research platform used for demonstrating the tech-
niques of this thesis:

• Viper’s logic natively supports ISC-based specifications and state-dependent func-
tions. We discussed the main advantages of ISC-based specifications above. In ad-
dition to method footprints, ISC can also specify function footprints. Thus, state-
dependent functions can directly axiomatize stateful aspects of separation logic
extensions without requiring modification of the verification backends.

• Viper supports both symbolic execution [92] and verification condition genera-
tion [68]. To our knowledge, Viper is the only deductive verification infrastructure
that supports both of these backend technologies. The availability of two alter-
native backends is essential in practice: For undecidable logics, the backends are
incomparable in terms of completeness and hence complementary.

• Viper is simple yet expressive. This makes the language convenient for humans,
e. g. researchers developing novel verification techniques and students learning
about formal verification. In particular, we present the subset of Viper considered
in this thesis in Sec. 1.2.
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𝑝𝑟𝑜𝑔𝑟𝑎𝑚 (𝑎𝑥𝑖𝑜𝑚 | 𝑓 𝑖𝑒𝑙𝑑 | 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 | 𝑚𝑒𝑡ℎ𝑜𝑑)∗

𝑎𝑥𝑖𝑜𝑚 axiom 𝑖𝑑𝑛𝑡? { 𝐹𝑂𝐿 }

𝑖𝑑𝑛𝑡 Alpha-numeric identifiers, e. g. x1, y2
𝐹𝑂𝐿 First-order logical formulas over built-in theories and uninterpreted function symbols
𝑓 𝑖𝑒𝑙𝑑 field 𝑖𝑑𝑛𝑡: 𝑡𝑦𝑝𝑒
𝑡𝑦𝑝𝑒 Bool | Int | Ref | Seq[𝑡𝑦𝑝𝑒] | Set[𝑡𝑦𝑝𝑒] | Map[𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒]
𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 function 𝑖𝑑𝑛𝑡 (𝑝𝑎𝑟𝑎𝑚𝑠?): 𝑡𝑦𝑝𝑒 (requires 𝑒𝑥𝑝)∗ (ensures 𝑝𝑢𝑟𝑒𝐸𝑥𝑝)∗ { 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 }?

𝑝𝑎𝑟𝑎𝑚𝑠 𝑖𝑑𝑛𝑡: 𝑡𝑦𝑝𝑒 (, 𝑖𝑑𝑛𝑡: 𝑡𝑦𝑝𝑒)∗

𝑒𝑥𝑝 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 | 𝑎𝑐𝑐𝐸𝑥𝑝 | 𝑒𝑥𝑝 && 𝑒𝑥𝑝 | 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 ⟹ 𝑒𝑥𝑝
𝑝𝑢𝑟𝑒𝐸𝑥𝑝 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 | 𝑖𝑑𝑛𝑡 | 𝑓 𝑢𝑛𝐴𝑝𝑝 | 𝑝𝑢𝑟𝑒𝐸𝑥𝑝.𝑖𝑑𝑛𝑡 | 𝑝𝑢𝑟𝑒𝐸𝑥𝑝[𝑝𝑢𝑟𝑒𝐸𝑥𝑝] | 𝐹𝑂𝐿(𝑝𝑢𝑟𝑒𝐸𝑥𝑝) | 𝑜𝑙𝑑𝐸𝑥𝑝
𝑙𝑖𝑡𝑒𝑟𝑎𝑙 null | true | false | result | Integer | SetLiteral | SeqLiteral | MapLiteral
𝑓 𝑢𝑛𝐴𝑝𝑝 𝑖𝑑𝑛𝑡 (𝑎𝑟𝑔𝑠)
𝑎𝑟𝑔𝑠 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 (, 𝑝𝑢𝑟𝑒𝐸𝑥𝑝)∗

𝑜𝑙𝑑𝐸𝑥𝑝 old [𝑖𝑑𝑛𝑡]? ( 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 )

𝑎𝑐𝑐𝐸𝑥𝑝 𝑎𝑐𝑐 | 𝐼𝑆𝐶 | 𝑎𝑐𝑐𝐸𝑥𝑝 && 𝑎𝑐𝑐𝐸𝑥𝑝 | 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 ⟹ 𝑎𝑐𝑐𝐸𝑥𝑝
𝑎𝑐𝑐 acc (𝑝𝑢𝑟𝑒𝐸𝑥𝑝.𝑖𝑑𝑛𝑡 (, (read | write))?)
𝐼𝑆𝐶 forall 𝑝𝑎𝑟𝑎𝑚𝑠 • 𝑎𝑐𝑐𝐸𝑥𝑝
𝑚𝑒𝑡ℎ𝑜𝑑 method 𝑖𝑑𝑛𝑡 (𝑝𝑎𝑟𝑎𝑚𝑠?) (returns (𝑝𝑎𝑟𝑎𝑚𝑠))? (requires 𝑒𝑥𝑝)∗ (ensures 𝑒𝑥𝑝)∗ { 𝑠𝑡𝑚𝑡 }?

𝑠𝑡𝑚𝑡 𝑑𝑒𝑐𝑙 | 𝑎𝑠𝑠𝑖𝑔𝑛 | 𝑏𝑟𝑎𝑛𝑐ℎ | 𝑙𝑜𝑜𝑝 | 𝑐𝑎𝑙𝑙 | 𝑠𝑝𝑒𝑐 | label 𝑖𝑑𝑛𝑡 | 𝑠𝑡𝑚𝑡;𝑠𝑡𝑚𝑡
𝑑𝑒𝑐𝑙 var 𝑖𝑑𝑛𝑡: 𝑡𝑦𝑝𝑒 (:= 𝑝𝑢𝑟𝑒𝐸𝑥𝑝)?

𝑎𝑠𝑠𝑖𝑔𝑛 𝑡𝑎𝑟𝑔𝑒𝑡 (, 𝑡𝑎𝑟𝑔𝑒𝑡)𝑁 := 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 (, 𝑝𝑢𝑟𝑒𝐸𝑥𝑝)𝑁 𝑁 ≥ 0
𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑑𝑛𝑡 | 𝑝𝑢𝑟𝑒𝐸𝑥𝑝.𝑖𝑑𝑛𝑡
𝑏𝑟𝑎𝑛𝑐ℎ if ( 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 ) { 𝑠𝑡𝑚𝑡 } (elseif ( 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 ) { 𝑠𝑡𝑚𝑡 })∗ (else { 𝑠𝑡𝑚𝑡 })?

𝑙𝑜𝑜𝑝 while ( 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 ) (invariant 𝑒𝑥𝑝)∗ { 𝑠𝑡𝑚𝑡 }

𝑐𝑎𝑙𝑙 (𝑡𝑎𝑟𝑔𝑒𝑡 (, 𝑡𝑎𝑟𝑔𝑒𝑡)∗ :=)? 𝑖𝑑𝑛𝑡 (𝑎𝑟𝑔𝑠?)
𝑠𝑝𝑒𝑐 assume 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 | assert 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 | inhale 𝑒𝑥𝑝 | exhale 𝑒𝑥𝑝

Figure 1.1: Core language grammar.

This grammar corresponds to the core language, i. e. a subset of the Viper language used in this thesis. For
simplicity, we omit some features of Viper, e. g. user-defined uninterpreted types. Refer to Sec. 1.2.1 for an
overview of the core language features.
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The reasoning techniques of this thesis are designed for a flavor of separation logic
called implicit dynamic frames [66]. Conceptually, this logic separates specifications of ac-
cess permissions for memory locations from specifications of the values stored in these
locations. For instance, separation logic’s points-to predicate 𝑥.𝑓 ↦ 𝑣 is specified in im-
plicit dynamic frames as a conjunction of the access permission and the field content:
acc(𝑥.𝑓 )∗𝑥.𝑓 = 𝑣. Parkinson and Summers [64] study the relationship between classical
separation logic and implicit dynamic frames for this purpose, a variation of separation
logic [64].

1.2 CORE LANGuAGE

Our goal is to design a specification language that enables the programmer to specify
rich properties. For this purpose, we start with a core language and then extend it with
rich specification features. The core language combines a specification language with im-
perative constructs, reflecting the common subset of operations typically supported in
modern imperative languages with similar semantics, e. g. assignments, loops, branches,
and procedure calls.

For the core language, we choose a subset of the Viper intermediate language. Al-
though Viper is a relatively small language, it still has more than we need. For example,
Viper supports abstract separation-logic predicates that are not needed in our setting;
instead, we assume that all methods operating over unbounded object sets are specified
via ISC. Thus, we start with a subset of Viper and then extend it with novel specification
ingredients.

1.2.1 Core language overview

The core language grammar is presented in Fig. 1.1. A program consists of four kinds of
members: axioms, fields, functions, and methods.2

TypES AND BuILT-IN THEORIES. The type system supports primitive types and compos-
ite types. The former are the following interpreted types: Booleans Bool (consisting of
true and false), (unbounded) integers Int (e. g. -1, 0, 42), and references to heap objects
Ref (including the special null value for uninitialized Ref-type variables). Boolean val-
ues can be combined via the propositional connectives, e. g. ¬, ∧, ∨, and first-order
quantifiers ∀ and ∃. Integer values support the less-than and the greater-than relations
(e. g. 𝑎 < 𝑏 ⇔ 𝑏 > 𝑎) and can be combined via the following binary operators: +, -, *, /
(integer division result), % (integer division remainder). Values of all primitive types can be
compared for equality (=) and disequality (≠).

2 Although Viper also supports import directives, user-defined types, and macro definitions (for both ex-
pressions and statements), we omit those from the grammar for brevity.
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The composite type Seq[T] represents finite sequences of elements of type T. The sup-
ported sequence operators are sequence length (e. g. |xs|), sequence lookup (e. g. xs[i] for
some i in range 0… |xs|-1) concatenation ++ (e. g. xs ++ ys), sequence member (e. g. x in xs),
take-prefix and drop-prefix (e. g. resp. xs[..i] and xs[i..]). Conversely, Set[T] repre-
sents unordered, finite sets of elements of type T, for which the list of supported opera-
tors is: set cardinality (e. g. |A|), set member (e. g. a in A), set union (e. g. A union B), set
intersection (e. g. A intersection B), and set exclusion (e. g. A setminus B). Sets can be
compared via the (non-strict) subset relation (e. g. A subset B). Finally, Map[T, S] rep-
resents finite maps from the domain set of values of type T (e. g. domain(M)) to the range
set of values of type S (e. g. range(M)); another supported map operator is map lookup
(e. g. M[t] for some t in set domain(M)).

Literals of composite types are written as Seq(𝑥1,… , 𝑥𝑛), Set(𝑥1,… , 𝑥𝑛), and Map(𝑥1:=𝑣1,
… , 𝑥𝑛:= 𝑣𝑛). Type parameters of the empty sequence Seq(), the empty set Set(), and
the empty map Map() are inferred from the context. Like primitive types, values of com-
posite types can be compared for equality (=) and disequality (≠). Unlike built-in types
that are interpreted, composite types are uninterpreted and inherently incomplete; their
semantics is merely approximated in first-order logic. In particular, this is the reason why
the core language provides Seq[T]which could theoretically be modeled as Map[Int,T].

AxIOMS. Axioms consist of a name and a body (a first-order formula). Note that axioms
cannot refer to object fields or program variables.

𝐹𝑂𝐿 denotes closed first-order formulas over uninterpreted function symbols and the
built-in theories: Booleans, integers, references, as well as type-parametric sequences,
sets, and maps, where the type parameters can be instantiated recursively.

Quantifiers in our language are additionally annotated with triggering patterns that
syntactically restrict the situations in which an SMT solver can instantiate them with
ground terms. We will discuss triggering patterns in more detail in Sec. 2.1.2.

ExpRESSIONS. Pure expressions (denoted 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 in Fig. 1.1) can be used in both the
specifications as well as the implementation of the program. These expressions may
depend on the heap (e. g. x.f) and the store memory (e. g. x + 1, where x is a local
program variable).

In contrast, 𝑎𝑐𝑐𝐸𝑥𝑝 refers to separation-logic expressions that can be used only in
specifications; these expressions specify access permissions, held by the current thread,
to potentially shared heap locations. An example separation-logic expression is 𝑥 ≠
𝑦 ⇒ acc(𝑥.f) && acc(𝑦.f) which specifies permissions to two disjoint heap locations,
namely, the field 𝑓 of the objects 𝑥 and 𝑦, but only if these two objects are indeed disjoint
(otherwise, no permissions are specified).

ACCESS pERMISSIONS. The keyword acc denotes access permissions to a single mem-
ory location, taking either two or three arguments. The first two arguments are the re-
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ceiver expression (referring to a non-null object) and a field name, resp. The optional third
argument is a permission amount.3 For example, acc(𝑥.𝑓 , write) and acc(𝑦.𝑔, read)
express write and read access permissions to the memory locations for fields 𝑓 and 𝑔 of
objects 𝑥 and 𝑦, resp.4

To specify permissions to an arbitrary set of objects, the programmer can use iterated
separating conjunction [26, 90] (denoted 𝐼𝑆𝐶 in the grammar). For example, forall𝑟:Ref•
𝑟 ∈ 𝐺 ⇒ acc(𝑟.𝑓 ) denotes write access to all fields 𝑓 of all objects in 𝐺.

FuNCTIONS. A function is either an executable procedure that cannot modify the heap
memory or, if the body is omitted, an uninterpreted function symbol. Function appli-
cations (denoted 𝑓 𝑢𝑛𝐴𝑝𝑝 in Fig. 1.1) yield pure values and can be used inside complex
expressions. The programmer may apply functions inside specifications as functions
cannot modify the state. Functions can be applied also from within statements, in which
case they represent side-effect-free procedure calls.

Consider the following heap-dependent function:
field val: Int
function cmp(x: Ref, y: Ref): Int
requires acc(x.val) && acc(y.val)

{ (x.val < y.val) ? 1 : (y.val < x.val ? -1 : 0) }

For example, one can use cmp inside a method’s postcondition, e. g. ∀𝑥 ∈ 𝐺 ∧ 𝑦 ∈
𝐺 • 𝑥 ≠ 𝑦 ⟹ cmp(𝑥, 𝑦) ≠ 0. This expression uses cmp and says that all pairs of different
objects in a set 𝐺 must have different values in their val field. Note that evaluating this
expression is possible only in a state in which there are sufficient permissions to access
all required information, i. e. forall𝑥:Ref • 𝑥 ∈ 𝐺 ⟹ acc(𝑥.val).

Functions with bodies are verification targets; to verify such a function, one must
prove, under the assumption of its precondition, that any successful evaluation of the
function’s body results in a state that satisfies its postcondition.5 Body-less functions
that are specified via requires or ensures are assumed to have some implementation
(an expression) that respects their specification.

The keyword result can be used in a function postcondition (i. e. inside an ensures
clause) in order to refer to the function’s hypothetical value. In the following example,
the postcondition of the body-less function size ensures that its result is non-negative:
function size(A: Set[Ref]): Int
ensures 0 ≤ result

3 If omitted, the permission amount of acc defaults to write in method specifications and read in function
specifications, as function may never write to object fields.

4 The former is an equivalent for 𝑥.𝑓↦_ in classical separation logic [26].
5 In this thesis, we focus on verifying partial correctness as opposed to total correctness which additionally

requires formally proving termination of all statements in the program.
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A body-less function is treated as a special kind of axiom as it potentially introduces
new, unjustified information via its postcondition. In particular, the definition of size
could be replaced with the following axiomatization (assuming size is uninterpreted):
axiom { ∀A:Set[Ref] • 0 ≤ size(A) }

A function can be rewritten via a first-order axiomatization only if all of its preconditions
are pure, i. e. the evaluation of the function cannot depend on the program state. For
example, such a rewriting does not exist for a function that checks if an array is sorted:
function is_sorted(a: Array): Bool
requires forall i: Int • 0 ≤ i < len(a) ⟹ acc(a[i].val)
ensures ∀i, j • 0 ≤ i < j < len(a) ⟹ a[i] ≤ a[j]

METHODS. A method is a procedure that can modify heap memory. Method calls (de-
noted 𝑐𝑎𝑙𝑙 in Fig. 1.1) may return a tuple of pure output values.

Methods with bodies are verification targets; to verify such a method, one must prove,
under the assumption of its precondition, that any (halting) execution of the method’s
body results in a state that satisfies its postcondition.6

Different statements inside method bodies must either occupy different lines or be
separated with a semicolon. Methods without bodies are assumed to have some imple-
mentation, i. e. a statement that respects their specification.

The client of a method call may assume that the call eventually returns. Verifying its
own termination is thus the responsibility of the callee.

MuLTI-STATE CONSTRAINTS. The keyword label is used for labeling a program state in
a method body in order to refer to it via an old-expression in consecutive parts of the
control flow. For example, consider the following code snippet:
label 𝑙1
x.f := true
exhale old[𝑙1](x.f) ⟹ acc(x.f)

Here, we remove the access permissions (held in the last state) to x.f if this field used to
be set to true in the state marked 𝑙1. If the label in an old-expression is omitted, then it
refers to the state of the method’s precondition. Note that old affects only the evaluation
of heap values while local store values are not affected by it.

The programmer can use old-expressions inside method postconditions (i. e. inside
an ensures clause) in order to refer to the state of the method’s precondition (inside a
requires clause). In the following example, the method sqrt reassigns the value stored
in field val of the object cell with the integer square root of its original value:
method sqrt(cell: Ref)

6 Reasoning about non-terminating programs and programs that throw exceptions is beyond the scope of
this thesis.
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requires acc(cell.val)
ensures cell.val * cell.val = old(cell.val)

SyNTACTIC SIMpLIFICATIONS. Our language provides syntactic sugar. In particular, we
extend our standard grammar of Fig. 1.1 with the following cases:

• Parallel assignments, e. g. a, b, c := x, y, z.

• Grouped type annotations, e. g. var a, b: Int.

• Implicit types, e. g. x’s type is inferred from the signature of P in forall x • P(x).

• Conjunctions: && is interpreted as the separating conjunction (∗) if it occurs in be-
tween two impure expressions (𝑎𝑐𝑐𝐸𝑥𝑝); otherwise, && is interpreted as the first-
order conjunction (∧).

• Specification blocks: each line break within a specification clause7 is treated as a
top-level &&.

• Implications, e. g. 𝑥 ⇒ 𝑦 ≡ ¬𝑥 ∨ 𝑦.

• Ternary expressions, e. g. 𝑧 = ((𝑥 < 𝑦) ? 𝑥∶ 𝑦) ≡ (𝑥 < 𝑦 ⇒ 𝑧 = 𝑥)∧ (¬(𝑥 < 𝑦) ⇒
𝑧 = 𝑦).

• Ligatures, e. g. a ∉ A ≡ ¬(a in A); A B ≡ A setminus B , etc.

• Disjoint unions, e. g. C = (A ⊎ B) ≡ C = A union B∧∀𝑥 ∈ 𝐴 • 𝑥 ∉ 𝐵.

1.2.2 Language rules

Our language supports exactly one class of objects that can be allocated on the heap.
Thus, each object has all the fields declared in the program; accessing a particular field
requires the current thread to hold at least read permissions to the corresponding mem-
ory location.

wELL-FORMEDNESS OF FuNCTIONS. Functions must explicitly require access permissions
to the parts of the heap memory that they depend on. If a function’s precondition is a
pure expression (𝑝𝑢𝑟𝑒𝐸𝑥𝑝 in Fig. 1.1), we call it a first-order function; otherwise (if the pre-
condition requires some access permissions), we call it a state-dependent function. Since
all functions are side effect-free, only read permissions can be specified in a function’s
precondition, and the precondition must be self-framing (i. e. it must specify sufficient

7 The specification clauses are: requires, ensures, invariant, assume, assert, inhale, and exhale.
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permissions to allow for evaluating its pure conjuncts). Conversely, function postcondi-
tions must be pure expressions: A function is assumed to return all of its access permis-
sions back to the client.

Function applications in statements must represent terminating computations. Func-
tion applications in specifications must be represented by some interpretation. Since
function bodies and postconditions can be recursive, the interpretation of a function is
defined via its least fixpoint. For more details about verifying termination of functions
in our setting, refer to Streun’s Bachelor’s thesis [111].

A function is said to be well-formed if the following conditions hold: (1) the precondi-
tion (if present) is self-framing, (2) the postcondition and the body (if present) are pure
expressions which can be evaluated in the state of the precondition. For example, the fol-
lowing functions are not well-formed, and any program containing any of these should
be rejected by the consistency checker:
function nonSelfFraming(x: Ref, y: Ref): Bool
// Missing permissions to access y.val; not self-framing.
requires acc(x.val) && x.val = y.val

function postNotPure(x: Ref): Bool
requires acc(x.val)
// Permissions should not appear in the postcondition
ensures acc(x.val) && result

function illegalBodyExpression(x: Ref): Int
requires acc(x.val)

{ // Division by zero
x.val / 0 }

wELL-FORMEDNESS OF METHODS. Reasoning in separation logic has the advantage that
one can modularly verify properties of a method, and reuse this verification for all call-
ing contexts (and concurrently-running threads).

A method is said to be well-formed if the following conditions hold: (1) the precondi-
tion, the postcondition, and all invariants of the loops in the method’s body are self-
framing, i. e. they specify sufficient permissions to allow for evaluating their pure con-
juncts; (2) all the callee methods in the implementation are well-formed;8 (3) all the
functions applied in the specification and the implementation are well-formed.

Verifying a (well-formed) method amounts to constructing a correctness argument
about all of its possible execution traces, e. g. any type-correct instantiation of the param-
eters cannot lead to a crash. Note that we focus on partial correctness, so the correctness
arguments apply under the assumption that all the methods eventually halt. The pro-
grammer (or a frontend verifier) may encode termination checks into the core language.

8 Except for bodies of the callees as they may not be available in a modular setting. We assume that callees
without bodies have some well-formed implementation.
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MODuLAR SpECIFICATIONS. A method’s modular specifications consist of its precondi-
tion (written in the requires clause) and postcondition (written in the ensures clause).9
The precondition prunes some of the traces that otherwise would need to be considered
in verification. The responsibility of reasoning about these pruned traces is shifted to
the client. Conversely, the postcondition is our main verification target. Hence, a (par-
tial) correctness argument is one that shows that all traces permitted by the precondition
in the initial state of the method call satisfy the postcondition in the final state of the call.

LOOp INvARIANTS. To automate the verification, we focus on first-order separation logic
because there exists a number of reasoning engines for this logic that are effective and
predictable [61, 78, 91]. However, first-order provers cannot automatically construct in-
ductive proofs that are required e. g. for programs with unbounded loops. To enable
verification of such programs, the programmer can specify each loop with a loop invari-
ant (written in the invariant clause).

A loop invariant specifies the properties of execution traces in four program points:
(1) before the very first loop iteration, (2) in the initial state of an arbitrary iteration,
(3) in the final state of an arbitrary iteration, and (4) after all the iterations. (1) and (3)
are assertions (i. e. verification targets) while (2) and (4) are assumptions. Conceptually,
a loop invariant provides an induction hypothesis for verifying a number of consecutive
executions of the loop body. Loop invariants are modular in the sense that only the
access permissions mentioned in the invariant of the loop are available in its body.

LOCAL SpECIFICATIONS. In addition to loop invariants, pre-, and postconditions, the pro-
grammer may write local specifications (𝑠𝑝𝑒𝑐 in Fig. 1.1) in a method’s body.

The programmer can prune execution traces by specifying local properties of the sur-
viving traces via assume statements (for pure conditions) or via inhale statements (for
access permissions possibly conjoined with pure conditions). Unlike method precondi-
tions, assume and inhale do not shift any responsibility and are entirely invisible to the
client. A verifier does not have to check whether all possible execution traces actually
reach a state in which the assumption holds; hence, assumptions may lead to unsound
verification results. However, assume and inhale can be very useful e. g. in verification
debugging, or in cases when the soundness of an assumption is justified on a meta level.

Conversely, the programmer can check whether all execution traces reaching a given
program point have certain properties via assert statements (for pure conditions) or via
exhale statements (for access permissions possibly conjoined with pure conditions). Un-
like method postconditions, assert and exhale do not affect a method’s modular spec-
ifications and are entirely invisible to its clients. These statements can be used e. g. to
query the verifier and observe what facts can be automatically established (or what per-
missions are held) in a given program state.

9 W.l.o.g. we assume here that each method has exactly one pre- and postcondition.
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MEMORy MANAGEMENT. Memory management can be modeled via methods. For exam-
ple, allocating a new object with fields val and next is modeled via a call to new:
method new(v: Int, n: Ref) returns (r: Ref)
ensures acc(r.val, write) && acc(r.next, write)
ensures r.val = v∧ r.next = n

Thus, the client can create a new object by writing, e. g. var x := new(-1, null). Note
that this simple approach does not take into account the possibility that a memory allo-
cation operation may fail.

1.3 COMpREHENSIONS

In Chap. 2, we study automated verification of higher-order compositional properties,
called set comprehensions, in an ISC-based setting. Set comprehensions can express com-
prehensive program properties that summarize stateful aspects of potentially unbounded
commutative semigroups, i. e. object sets equipped with an associative, commutative bi-
nary operator. Examples of comprehensive properties include minimal array value, square
matrix trace, and sum of marked object values in a graph. Framing of set comprehensions is
straightforward as they are by-definition compositional properties. The main problems
are thus (1) to decouple data structure representations and memory specifications and
(2) to efficiently axiomatize set comprehensions, enabling automated verification.

The state of the art for automated verification of comprehensions is Spec# [32, 59].
This technique supports sequence-based comprehensions which are a special case of set
comprehensions. To the best of our knowledge, there is no work to date that integrates
comprehensions into an automated separation logic-based setting.

AppROACH. To express comprehensive specifications, we introduce a novel class of ex-
pressions called set comprehensions, denoted 𝖈𝖔𝖒𝖕, that summarize potentially unbounded
object sets within the current method’s footprint. Conceptually, set comprehensions gen-
eralize first-order universal quantifiers. Intuitively, the quantifier ∀𝑥. 𝑃(𝑥) summarizes
the value of 𝑃(𝑥1)∧…∧𝑃(𝑥𝑁) for some 𝑥𝑖, while the set comprehension 𝖈𝖔𝖒𝖕[⊕]𝑄(𝑥)
summarizes the value of 𝑄(𝑥1)⊕…⊕𝑄(𝑥𝑁), for the same elements 𝑥𝑖, but (1) ⊕ may be
instantiated with any commutative, associative binary operator, e. g. +, and (2) 𝑄 may
have any type, e. g. Int. The semantics of set comprehensions is bound to the current
method’s footprint in the state in which they are evaluated. To define comprehensive
properties of substructures, the programmer can specify the exact set of objects that a
comprehension summarizes by customizing its filtering condition. The value of a set com-
prehension is defined in terms of comprehensions over any two disjoint subsets of the
original objects, which enables precise framing in presence of arbitrary method calls.

To uniformly support different heap-allocated structures, we require that data struc-
ture elements are accessed only through its lifted representation. The lifted representation
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provides an abstract view over objects by mapping identifiers to memory locations. For
example, a graph object is identified directly via its reference while an array element
is identified via the array’s name and an integer index. The availability of lifted repre-
sentations allows for a uniform style of ISC-based memory specifications in all methods
and state-dependent functions of our technique. In particular, the lifted representation’s
domain yields the set of all identifiers of currently accessible objects.

To encode comprehensions into ISC-based separation logic, we decouple a compre-
hension’s stateful and stateless aspects. The former are encoded via a state-dependent
function called snapshot that yields a mathematical map from object identifiers (leading
to accessible objects) to the corresponding body term values. The latter are encoded as
uninterpreted functions over snapshot maps. We axiomatize these functions only par-
tially, as a complete first-order axiomatization of comprehensions cannot exist. Our ax-
ioms are enable modular reasoning about comprehensions in presence of arbitrary field
updates and method calls and automate practically essential lemmas.

CONTRIBuTION 1. We propose a novel technique for automated verification of modular
comprehensive specifications of heap-transforming programs. Our technique encodes
comprehensions into separation logic, extending its specification language and provid-
ing compatibility with a spectrum of other separation logic-based techniques and tools.

1.4 REACHABILITy

In Chap. 3, we address the grand challenge of this thesis, namely, establishing com-
posability of heap reachability. As we argue above, reachability is generally not a com-
positional property; establishing composability thus requires a tradeoff in terms of the
generality of the setting.

The problem occurs is presence of a method call. If the postcondition of the callee
ensures that there exists a heap path, then the client can rely on this information. Con-
versely, if the postcondition of the callee ensures that there does not exist a heap path,
then the client cannot rely on this information as heap paths might traverse objects be-
yond footprint boundaries. Thus, an alternative formulation of the same problem is to
split original heap paths at footprint boundaries, partitioned each original path into
some number of sub-paths the existence of which can be checked modularly.

Foundational work on reasoning about reachability solves the framing problem but
only for the simplest of operations, e. g. updates of individual heap edges [17, 97]. Op-
erations modifying unbounded heap fragments, e. g. method calls, remain unsupported.

There are two existing approaches in the state of the art for compositional reasoning
about reachability. The first approach restricts classes of supported heap structures and
possible decompositions, reducing the framing problem to propositional logic in order
to achieve automation [76, 78]. Consequently, these techniques support structures with
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only deterministic paths, i. e. if there exists a path 𝑥…𝑦, where 𝑥 and 𝑦 refer to some objects,
then this path is unique. For example, structures with deterministic heap paths include
various forms of linked lists and trees but do not include DAGs with unbounded sharing.

The second approach is to embrace higher-order reasoning, trading off automation [116].
Another higher-order technique that may be automated in future supports only opera-
tions that preserve their reachability properties [100], i. e. one cannot propagate new reach-
ability information established by a callee to its client’s context.

AppROACH. To enable reachability specifications in a modular setting, we introduce a
novel relation called local reachability that expresses the existence of heap paths only
within given heap fragments. Conceptually, local reachability generalizes classical heap
reachability, which expresses the existence of global heap paths, but constraining global
heap paths is typically undesirable and is generally not possible in a concurrent set-
ting. Conversely, the semantics of the local reachability relation is bound to the current
method’s footprint in the state in which they are evaluated.

To encode local reachability into ISC-based separation logic, we follow the same ap-
proach as with comprehensions, decoupling reachability’s stateful and stateless aspects.
The former are encoded via a version of the snapshot function that yields edge sets of a
mathematical graph representing the heap edges in a fixed state. The latter are encoded
as an uninterpreted function over snapshots. We axiomatize this function only partially,
as a complete first-order axiomatization of local reachability cannot exist; however, our
axioms are sound, systematically derived, and tuned based on real-world benchmarks.

To enable precise, modular reasoning about local reachability, we develop the notion
of relatively convex footprint decompositions. If a footprint of a method call is convex rela-
tively to its client’s footprint, then framing of local reachability information becomes a
first-order problem and can be automated. On the one hand, nested footprints are often
relative convex in practice, but one can check this automatically via first-order condi-
tions. On the other hand, relative convexity is permissive enough to support highly-
general heap structures, even those with cycles or non-unique paths, and decomposi-
tions thereof.

CONTRIBuTION 2. We propose a novel technique for automated verification of modu-
lar reachability specifications of heap-transforming programs. Our technique encodes
reachability into separation logic, extending its specification language and providing
compatibility with a spectrum of other separation logic-based techniques and tools.

This chapter is based on the following publication:

[112] Arshavir Ter-Gabrielyan, Alexander J Summers, and Peter Müller. “Mod-
ular verification of heap reachability properties in separation logic.” In: Pro-
ceedings of the ACM on Programming Languages 3.OOPSLA (2019)
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1.5 vERIFICATION DEBuGGING

In Chap. 4, we develop a counterexample-based verification debugging technique for
our setting. In case an SMT solver reports that a verification condition is invalid, the fail-
ure is typically accompanied by a counterexample model containing variable assignments
and function interpretations that contradict the assumptions. In presence of undecid-
able logics, SMT solvers provide partial models that are imprecise, e. g. due to incomplete
instantiations of the quantified formulas. Our hypothesis is that, despite their inherent
incompleteness, counterexample models of undecidable proof obligations are helpful
for understanding verification failure causes.

In our automated verification paradigm, the internal encoding of the verification tech-
nique is not exposed to the programmer. Therefore, the programmer cannot easily inter-
pret raw counterexample models. Thus, there are three main problems of counterexample-
based verification debugging: (1) to systematize extraction of state-dependent informa-
tion from counterexample models in a way that is verification backend-agnostic, i. e. sup-
porting both symbolic execution and verification condition generation; (2) to soundly
resolve potentially aliasing objects; and (3) to find the right approach for delivering coun-
terexample information to the programmer.

State of the art verification debuggers that rely on counterexample SMT models target
either symbolic execution [56, 109] or verification condition generation [62, 63, 102], but
not both of these complementary verification technologies. Propositional techniques for
reachability verification [76, 78] provide counterexample heap models by leveraging
SMT models that, in their setting, are guaranteed to be sound and complete. These heap
models display only concrete heap edges but do not display unreachability relations that
are needed to express e. g. acyclicity.

AppROACH. To generate heap models that help the programmer diagnosing verifica-
tion failures, we start with partial counterexample models generated by the SMT solver.
For systematizing the extraction of heap information, we fix the expected model shape
using the notions that are (1) available in an ISC-based setting and (2) meaningful to pro-
grammers who might not be separation logic experts. In particular, our models contain
objects (as heap nodes) and field values (as heap edges) in all states, as well as method
footprints and non-reference constants.

We extract state-dependent information by employing heap markers, i. e. quasi-backend-
agnostic model values that parameterize interpretations of stateful functions, e. g. those
defining field values. We model only those objects that are reachable from local pro-
gram variables. For transitively-reachable objects, we run a saturation-based procedure.
To resolve aliasing, especially among transitively-reachable objects, we employ a custom
protocol for managing equivalence classes.

Our approach naturally supports ISC-based separation logic extensions, such as set
comprehensions and heap reachability (although we demonstrate this only for the lat-
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ter case). To support local reachability relations, we extend our models with new kind
of data representing known local reachability relations. While collecting this data is
straightforward (which is an advantage of our technique), we dramatically simplify our
heap reachability models by filtering out redundant information that is present in the
original SMT model, e. g. paths that follow concrete heap edges.

CONTRIBuTION 3. We propose the first backend-agnostic algorithm for extracting heap
reachability models from counterexample SMT models. Visualizations of the produced
heap models supports verification debugging and are helpful even to programmers not
familiar with separation logic. We demonstrate extensibility of our algorithm by aug-
menting concrete heap models with general heap reachability relations.

We implemented and integrated our algorithm into Viper IDE.

[125] Arshavir Ter-Gabrielyan. Lizard: The Visual Debugger for Viper. 2021. URL:
https://github.com/viperproject/lizard

1.6 FuRTHER CONTRIBuTIONS DuRING THE THESIS wORk

The author has made the following contributions that are not part of this thesis.

vIpER IDE is an interactive verification IDE for the Viper language. The core infrastruc-
ture of this project includes a language server that also powers the IDEs of two Viper
frontends, namely, for Rust and Go. Additionally, Viper IDE supports the visual verifi-
cation debugger discussed in Chap. 4.

[121] Linard Arquint, Alessio Aurecchia, Ruben Kälin, Valentin Racine, and
Arshavir Ter-Gabrielyan. Viper IDE. Aug. 2021. URL: https://github.com/
viperproject/viper-ide

AxIOM TESTING is an automatic technique for identifying problematic patterns in SMT
axiomatizations with quantifiers. This project has led to the following publication:

[122] Alexandra Bugariu, Arshavir Ter-Gabrielyan, and Peter Müller. “Identi-
fying Overly Restrictive Matching Patterns in SMT-based Program Verifiers.”
In: Formal Methods (FM). To appear. 2021

https://github.com/viperproject/lizard
https://github.com/viperproject/viper-ide
https://github.com/viperproject/viper-ide




2 COMPREHENSIONS

In this chapter, we discuss reasoning about comprehensive properties of heap-transforming
programs. Intuitively, these properties summarize data structures containing poten-
tially unbounded (and statically unknown) sets of nodes via a finite number of values.
For example, a universal quantifier in first-order logic can be used to specify compre-
hensive properties of a data structure, e. g. ∀𝑥 ∈ xs • 𝑃(𝑥). This formula says that the
Boolean function 𝑃 holds for all nodes of some structure denoted xs.1 This way, a first-
order quantifier can combine the values of a Boolean function of individual nodes into
a single value that characterizes the data structure as a whole.

ExAMpLES. Consider the binary max-heap [4] data structure instance BH, and its heap
property: The key stored in a node n of BH is greater than or equal to the keys of all of
n’s descendants. This is a comprehensive property that can be expressed as n.key =
max 𝑥.key
𝑥∈des(BH, n)

, or (equivalently) via the following quantified formula: ∀𝑥 ∈ des(BH, n) •

𝑥.key ≤ n.key; here, des(BH, n) is the subset of BH including all the descendants of n.
Verifying the binary max-heap data structure requires proving that the heap property
is preserved by all of its operations, e. g. insertion of a new node and deletion of the
minimal node. However, automating such proofs is challenging because SMT solvers are
inherently incomplete for reasoning with first-order quantification.

Furthermore, many verification problems require higher-order comprehensive proper-
ties that remain entirely unsupported by modern SMT solvers. For example, the specifi-
cation of the DIJKSTRA shortest-path finding algorithm [2] includes the property that the
resulting path’s distance, i. e. the sum of distances between consecutive nodes along
the path from the source node s to the target node t, is less than or equal to the dis-
tance of any of the possible paths s… t; i. e. the resulting path is indeed the shortest:
∑ dist(𝑝, 𝑞)
(𝑝, 𝑞)∈result

≤ ∑ dist(𝑝, 𝑞)
(𝑝, 𝑞)∈path

. Here, result is the sequence of (predecessor, successor)

node pairs computed by DIJKSTRA, path is some other path from s to t (also represented
as a sequence of node pairs) connecting the source and destination nodes, and dist(𝑝, 𝑞)
is the distance between nodes 𝑝 and 𝑞. This comprehensive property cannot be expressed
in first-order logic because it involves summation over (potentially) unbounded sets.

DEFINITION. We define comprehensions as (potentially, higher-order), scalar-valued func-
tions over one first-order predicate (defining the set of considered nodes) and one first-

1 In slight notation abuse, we use the same symbol to denote a data structure and the set of its nodes.
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order function (defining the values of particular nodes). For example, ∑
𝑥∈xs

𝑓 (𝑥) is a com-

prehension. While reasoning about programs, we will refer to their comprehensive prop-
erties, i. e. logical assertions that syntactically contain comprehensions, and their compre-
hensive specifications, i. e. Hoare-style specifications, such as structural invariants, writ-
ten in terms of comprehensive properties. Comprehensive properties can be used to
summarize unbounded sets of nodes using a finite set of values. For example, 0 ≤

( ∑
𝑥∈xs

𝑓 (𝑥)) + ( ∑
𝑥∈xs

𝑔(𝑥)) < 3 is a comprehensive property over two comprehensions.

Next, we will identify the fundamental challenges in the context of reasoning about
comprehensive properties of programs.

AuTOMATED REASONING. We are interested in automated verification of comprehensive
properties. Comprehensive properties often can have multiple alternative representa-
tions. For example, consider Property (1): 42 = ∑1

𝑥∈xs∧𝑓 (𝑥)>0
. This property says that there

are exactly 42 nodes in xs for which the value of 𝑓 is positive. Alternatively, one could
write Property (2): 42 = ∑

𝑥∈xs
𝑓 (𝑥)>0 ? 1 ∶ 0, which is mathematically equivalent to (1).

Verification of comprehensive properties involves proving entailments such as (1) ⊧ (2)
that may contain different representation of related comprehensive properties. Since
our logic with comprehensions extends first-order logic, the problem of automatically
proving such entailments is generally undecidable.

How can one automatically convert various possible representations of the relevant
comprehensive properties? While this problem occurs even in stateless, purely func-
tional settings, the next problem is specific to heap-transforming programs.

STATEFuL pROGRAMS. Further, we are interested in the verification of imperative, heap-
transforming programs. The inherent complexity of these programs comes from the fact
that they manipulate stateful data structures. In particular, reasoning about comprehen-
sive specifications of stateful structures presents an additional challenge. Consider some
operational semantics of the programming language (i. e. based on the known imple-
mentation of all the operations in our program), a fixed program state, and a set of com-
prehensive properties known in this state. The challenge is to infer what comprehensive
properties hold in the subsequent states of the program.

To illustrate the problem, consider the operation addAtEnd(xs,y) that attaches a node
referenced by y to an (acyclic) singly-linked list starting in xs, defined via the reference
field next. One comprehensive property of acyclic lists is that the number of nodes that
have a successor is one less than the total number of nodes in the list because only the tail
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node of the list does not have a successor. We are interested in using the specification of
addAtEnd to verify that it preserves the above-mentioned invariant of our list, i. e.:

⎧{{
⎨{{⎩

len(xs)−1 = ∑1
𝑥∈xs∧𝑥.next≠null

∧ y.next = null⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Precondition

⎫}}
⎬}}⎭

xs:= addAtEnd(xs,y)

⎧{{
⎨{{⎩

len(xs)−1 = ∑1
𝑥∈xs∧𝑥.next≠null

∧ len(xs) = old(len(xs))+1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Postcondition

⎫}}
⎬}}⎭

Here len denotes the list’s length. We use the notation from Hoare logic [22]: Provided
the precondition of this Hoare triple holds, the successful execution of the statement
xs:=addAtEnd(xs,y) shall result in a new program state satisfying the postcondition.

Given the knowledge about all the comprehensive properties that hold in a given
program state and the semantics of the operation invoked in this state, how can one
automatically derive the comprehensive properties of the resulting state? Each heap
structure can be characterized via an infinite number of different comprehensive prop-
erties.2 Therefore, the general problem can be practically reduced to checking that the
desired comprehensive properties in one program state follows from the known com-
prehensive properties in another state.

MODuLAR REASONING. Another related challenge is framing of comprehensive proper-
ties. In a modular setting, a procedure’s client needs information about the frame of the
call, i. e. the parts of the heap that are not affected by it. Only properties that depend
exclusively on the frame are guaranteed to be preserved by the call. Revisiting the ex-
ample above, consider (in addition to xs) another heap-allocated list, say zs. Assuming
the two lists do not overlap (xs ⟂ zs and y ∉ zs), the call to addAtEnd(xs,y) does not
change the comprehensive properties of zs; e. g. the following Hoare triple holds (for
some 𝑁):

⎧{
⎨{⎩

𝑁 = ∑1
𝑧∈zs∧𝑥.next≠null⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Frame

⎫}
⎬}⎭

xs:= addAtEnd(xs,y)
⎧{
⎨{⎩

𝑁 = ∑1
𝑧∈zs∧𝑥.next≠null⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Frame

⎫}
⎬}⎭

Given an operation’s modular specification, how can one automatically derive the
comprehensive properties that are framed, i. e. preserved by this operation’s invocation?

OuTLINE OF THE CHApTER. This chapter addresses the problem of automating deductive
reasoning about comprehensive properties of heap-transforming programs, i. e. proper-
ties that can be specified via comprehensions and first-order connectives. We discuss the
background of the problem of reasoning about higher-order comprehensions, as well as
the related work, in Sec. 2.1. We present our set-based technique for automated modular
specification and verification of comprehensions in Sec. 2.2. We proceed with a study of

2 For example, consider the property 3 < ∑𝑥∈xs 𝑥 < 𝑐 of a structure xs, for some constant 𝑐. There are
infinitely many possible values for 𝑐, each leading to a unique comprehensive property.
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two challenging cases in Sec. 2.3. We then describe the logical encoding of our technique
in Sec. 2.4. The experimental evaluation is in Sec. 2.5. Finally, we conclude the chapter
with a discussion of Sec. 2.6.

2.1 BACkGROuND

For the past forty years, automated verification of comprehensive properties of heap-
transforming programs has been an ongoing research topic. Various approaches to this
challenge have been supported by the results in automatic theorem proving and SMT solvers
over the same course. In theorem proving, the established consensus is that a prob-
lem can be efficiently automated iff it can be simulated in first-order logic (with decid-
able theories) with sufficient precision. It is easy to check this claim for those problems
that are decidable: For example, consider the spectrum of fully automatic verification
techniques presented in Itzhaky’s thesis [75]. In contrast, for the undecidable problems,
e. g. reasoning with unbounded quantification that is essential for encoding comprehen-
sions in first-order logic, it is much harder to define, let alone formalize in a useful way,
the notions of efficient automation and sufficient precision.

Nevertheless, there exist many successful techniques that tackle such undecidable
problems, including those in the context of formally verifying a program. These tech-
niques typically operate in two steps. The first step involves identifying a suitable first-
order simulation of the original problem: One replaces the original higher-order functions
with uninterpreted function symbols constrained by a first-order axiomatization to re-
spect the essential properties of the original functions. For example, one could apply this
technique to encode the (undecidable) theories of sets, sequences, maps, and multisets,
as is common in modern automated verifiers, e. g. Dafny [57], F⋆ [71], and Viper [91].

The second step involves applying the first-order axiomatization to check the verifi-
cation conditions the validity of which indicates that the program indeed adheres to its
formal specification. One way to automate the checking is to employ a first-order prover,
e. g. Vampire [70]. Such tools are efficient in finding refutational proofs, even if these
proofs involve extensive quantified reasoning. However, first-order provers provide lim-
ited support for theories, e. g. arithmetic, which is essential in the context of program ver-
ification. Therefore, automated verifiers typically check verification conditions via satis-
fiability modulo theories (SMT) solvers that natively support common theories. To handle
quantified formulas, SMT solvers employ (inherently incomplete) quantifier instantiation
strategies. Although incomplete, the outcomes of these strategies are predictable, making
them well-suited for program verification.3

3 A practically useful verification tool should be responsive, e. g. yield its best response within seconds, to
allow the programmer to iteratively refine the specification and the implementation.
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2.1.1 Verification as an SMT problem

The key idea behind using SMT solvers in formal verification is that a verification condi-
tion, 𝐶, follows from an axiomatization, 𝐴, iff the query formula 𝐴∧¬𝐶 is unsatisfiable.
A first-order formula is said to be satisfiable if there exists an interpretation of all of its
functions under which this formula is true (note that free and existentially quantified
variables are interpreted as Skolem functions). If the query 𝐴∧¬𝐶 is unsatisfiable, then
𝐶 is said to be a valid assertion under the assumption of 𝐴; otherwise, the assertion 𝐶 is
invalid at least for one interpretation of the query, called a counterexample to 𝐶 under the
assumption of 𝐴. For example, consider the following definitions of 𝐴 and 𝐶:

𝐴 ∶= 𝑔(1) = 1 ∧ ∀𝑥 • 𝑓 (𝑥) = 𝑔(𝑥) 𝐶 ∶= ∀𝑦 • 𝑓 (𝑦) = 𝑦

Here 𝑓 and 𝑔 are two unary functions. Then the query 𝐴∧¬𝐶 is equivalent to
(𝑔(1) = 1 ∧ ∀𝑥 • 𝑓 (𝑥) = 𝑔(𝑥))∧(∃𝑦 • 𝑓 (𝑦) ≠ 𝑦), which is a satisfiable formula because
there exist interpretations of 𝑓 and 𝑔 that turn it to true, for instance, if both these func-
tions are defined simply as the constant 1, in which case we can pick e. g. 0 for the ex-
istentially quantified variable, satisfying the query. Therefore, 𝐶 is not a valid assertion
under 𝐴, and 𝑓 (…) = 𝑔(…) = 1 ∧ 𝑦 = 0 is the counterexample.

Interestingly, establishing satisfiability and unsatisfiability of first-order formulas are
different problems that generally cannot be reduced to one another. In our example
above, 𝐴 might still entail 𝐶 for some other interpretation of 𝑓 and 𝑔; for instance, this
would be the case if both these functions are defined as the identity function. In par-
ticular, this shows that the negation of an invalid assertion is not necessarily a valid
assertion, either.

2.1.2 Reasoning with unbounded quantification

Naturally, our SMT queries are expected to contain quantification (since axioms typically
express properties of functions for arbitrary argument values), which is a major source
of undecidability in a first-order setting. Hence, the challenge is to identify the set of
concrete instantiations of the quantifiers of the query 𝐴 ∧ ¬𝐶 that would be sufficient
for establishing whether it is satisfiable, yet small enough to avoid infinite instantiation
chains and combinatorial explosions.

In his thesis, Nelson introduced E-matching [11], what has become the most promi-
nent quantifier instantiation technique for program verification with undecidable theo-
ries [44].4 The idea behind E-matching is to annotate all quantifiers with syntactic pat-
terns that wrap each quantified variable into some terms of (exclusively uninterpreted)
function symbols; when the solver reaches a term that matches a pattern, it instantiates

4 Reasoning about decidable theories requires a bounded number of quantifier instantiations, and the corre-
sponding decidability problem can be efficiently solved via other techniques, e. g. MBQI [51] or enumerative
instantiation [103].
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the corresponding quantifier, using the matched ground term as the value for the respec-
tive quantified variable. For example, consider the assertion 𝐶 ∶= 𝑅(𝑃(42)) ∧ ¬𝑄(42)
and the axiomatization 𝐴 about three symbols, 𝑃, 𝑄, and 𝑅:

𝐴 ∶= 𝐴1 ∧𝐴2

𝐴1 ∶= ∀𝑥 • { 𝑃(𝑥) } 𝑃(𝑥) ⟹ 𝑅(𝑄(𝑥))
𝐴2 ∶= ∀𝑦 • { 𝑅(𝑦) } 𝑅(𝑦) = 𝑦

Here, the quantifiers’ patterns are written between curly braces. To check whether 𝐶
holds under 𝐴 (i. e. whether 𝐴∧¬𝐶 is unsatisfiable), E-matching will start by identifying
the possible instantiations triggered by the pre-existing ground terms of 𝐴∧¬𝐶:

Ground term Triggered instantiation Resulting term
𝑃(42) 𝐴1 with 42 for 𝑥 𝑃(42) ⟹ 𝑅(𝑄(42))
𝑅(𝑃(42)) 𝐴2 with 𝑃(42) for 𝑦 𝑅(𝑃(42)) = 𝑃(42)
𝑄(42) Does not trigger anything.

The implication obtained from the first instantiation above yields a new ground term,
𝑅(𝑄(42)), which will trigger one more instantiation:

𝑅(𝑄(42)) 𝐴2 with 𝑄(42) for 𝑦, resulting in 𝑅(𝑄(42)) = 𝑄(42)

Note that the newly obtained terms, e. g. 𝑅(𝑄(42)), cannot trigger new instantiations
as identical instances of these terms have already appeared before. Therefore, all avail-
able triggering terms have been used up, and E-matching saturates. The information
obtained so far includes the negation of the assertion 𝐶, ¬𝑅(𝑃(42)) ∨ 𝑄(42), as well
as the formulas obtained through E-matching, in particular, 𝑃(42) ⇒ 𝑅(𝑄(42)) and
𝑅(𝑄(42)) = 𝑄(42). Now it is easy to check (by solving a propositional satisfiability
problem) that all these quantifier-free formulas are satisfiable; in fact, that is the case for
all interpretations of the three functions 𝑃, 𝑄, and 𝑅. This means that the original asser-
tion, 𝐶, is invalid, wheres, in this case, the negated assertion ¬𝐶 is valid, under the as-
sumption of 𝐴. Note that modern implementations used in state-of-the-art SMT solvers,
e. g. Z3 [47] and CVC4 [60], apply E-matching lazily to maintain smaller sets of ground
terms for as long as possible.

2.1.3 Obtaining the first-order axiomatization

Given an appropriate first-order axiomatization that simulates the essential properties
of comprehensions, one could automatically and efficiently check programs against their
comprehensive specifications using existing techniques, such as E-matching-powered
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SMT solving discussed above. Obtaining this axiomatization is an orthogonal concern.
Both of these challenges have been attacked from three main directions.

2.1.3.1 Program refinement. The first line of work concentrates on program refinement.
Perfect Developer [32] has been one of the first languages and tools that enabled verify-
ing comprehensive specifications of object-oriented programs. The programmer is free
to define their own operations that can be iteratively applied to the elements of built-in
collections, including lists, sets, and multisets; the resulting comprehension can be used
both in the implementation and the specification of a program. The tool uses a custom
theorem prover that attempts to statically check whether the specifications are satisfied
by all possible inputs. While Perfect Developer has pioneered the methodology of for-
mal refinement of object-oriented programs, the technique emphasizes the need for the
programmer to refine both the implementation and the specification in order to mitigate
its incompleteness.

2.1.3.2 Automatic first-order reduction of higher-order logic. The second line of work,
initiated by Meng and Paulson, considers the general problem of automatically reducing
proof obligations written in a higher-order logic, e. g. Isablelle/HOL [25], into first-order
logic that is amenable to automation via SMT solvers. In particular, the focus of their
work is on translating types [38] which are the foundation of Isabelle’s formalism.

Since comprehensions are higher-order functions, one could attempt to use such general-
purpose translators to obtain a first-order encoding for comprehensions that would
soundly simulate their semantics. While in theory this approach can be viewed as a
fully automatic way to solve the problem, its main limitation is the lack of predictability.
An automatically generated first-order axiomatization would typically be sub-optimal
for any specific domain, both in terms of its completeness and performance. Moreover,
the programmer that experienced an incompleteness would have to resort to manual
theorem proving techniques.

2.1.3.3 First-order simulation of undecidable theories. In contrast, Nelson, the author of
E-matching, has initiated another line of work that is focused on developing specific first-
order axiomatizations for automating reasoning about theories essential for program
verification. Since many of these theories are undecidable, full theoretical completeness
cannot be achieved in a general setting, e. g. with arbitrary comprehensions and data
structures. However, as we discuss next, it is possible to obtain an axiomatization that
performs well with modern SMT solvers and is complete under additional assumptions
that do not limit the practicality of the overall verification technique, at least on a large
set of characteristic benchmarks.
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2.1.4 Comprehensions in Spec#

In the context of comprehensions, Leino and Monahan follow Nelson’s approach by
extending the Spec# program verifier [59] for automatically verifying programs with
comprehensions [43]. We will next present this work in more detail.

2.1.4.1 Encoding into Boogie. To verify a Spec# program, the tool translates it into an
intermediate verification language called Boogie [46], for which there already exists an au-
tomated SMT-based verifier. Consider a simple example that illustrates one aspect of
this translation. Boogie does not natively support arrays, so the Spec# notation a[𝑖] for
accessing the 𝑖-th element of the array a is translated as follows (the ↠ arrow maps
the Spec# notation to Boogie):

a[𝑖] ↠ 𝐴𝑟𝑟𝑎𝑦𝐺𝑒𝑡($𝐻𝑒𝑎𝑝[a, $𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠], 𝑖) (2.1)

Here $𝐻𝑒𝑎𝑝 is the map encoding the program heap into Boogie; in our example, it takes
an array identifier and a field name (the only two available fields for the array type are
$𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 and Length) and returns a mathematical sequence of array elements (denoted
Elements). The uninterpreted function symbol 𝐴𝑟𝑟𝑎𝑦𝐺𝑒𝑡 is then axiomatized to express
some of its properties, e. g. injectivity. Using these axioms, Boogie can discharge its ver-
ification conditions to an SMT solver to verify specifications that depend on (a limited
version of) the array theory.

Leino and Monahan have introduced the first notation for talking about comprehen-
sions in a first-order setting. In particular, they propose a syntax and an intuitive defini-
tion of comprehension expressions. For example, the comprehension expression
sum {int 𝑘 in (0 ∶ a.Length), 𝑘%(𝑀−1) = 0; a[𝑘]} corresponds to the sum of each𝑀-th
element (𝑥%𝑦 denotes the remainder of integer division 𝑥/𝑦). Using the common pen-
and-paper notation, this comprehension instance can be written as:

∑ a[𝑘]
0≤𝑘<a.Length∧ 𝑘%(𝑀−1)=0

(2.2)

GENERAL pRINCIpLES. Generally, a comprehension instance supported in this technique
has the form Q 𝑇(𝑘, ⃗𝑎)

𝐿≤𝑘<𝐻∧𝐹(𝑘, ⃗𝑎)
, where Q can be instantiated with one of the supported com-

prehensions: sum, count, product, min, or max. Here 𝐿 and 𝐻 are the lower and the
upper bounds of the range of the index, 𝑘; 𝐹(𝑘, ⃗𝑎) is the filter that may depend on 𝑘 as
well as a number of other subterms, denoted ⃗𝑎; and 𝑇(𝑘, ⃗𝑎), called the body term of the
comprehension, defines the value corresponding to particular indices 𝑘.
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The key idea in this work is to axiomatize comprehension templates defining an en-
tire class of comprehension instances, rather than supplying axioms for each individual
instance. Generally, a template is a triple of the form:

(Q, 𝐹(𝑘, ⃗𝑎), 𝑇(𝑘, ⃗𝑎)) (2.3)

Using the template (2.3), the Spec# technique defines a class of comprehension in-
stances in two steps. First, it generates a comprehension function representing the possible
values of all comprehension instances from this class. Second, it instantiates a generic ax-
iomatization schema with a concrete filter 𝐹 and a concrete body 𝑇, generating one static
axiomatization that defines a partial semantics of the comprehension function; we post-
pone the discussion of the axiomatization schema until Sec. 2.1.4.2. The comprehension
function has the following signature:

function Q#𝑛(L:int, H:int, ⃗𝑎) returns (int); (2.4)

The numerical identifier 𝑛 is an integer freshly picked for this particular comprehension
function; the first two arguments, L and H, represent the lower (inclusive) and the upper
(exclusive) bounds of the range of the internal index variable denoted 𝑘 in (2.3); the
symbol ⃗𝑎 represents all other arguments of this comprehension’s filter and body (the
translation would unpack this into a list of concrete arguments).

Finally, the technique uses the following translation of comprehension expressions
via comprehension functions:

Q{int 𝑘 in (L:H), 𝐹(𝑘, ⃗𝑎); 𝑇(𝑘, ⃗𝑎)} ↠ Q#𝑛(L, H, ⃗𝑎) (2.5)

ExAMpLE. To find appropriate definitions for𝐹 and𝑇 in the comprehension template (2.3),
the technique processes the comprehensive specifications written by the programmer,
choosing the least specific terms that syntactically wrap the index, 𝑘. Then, the technique
adds as many arguments to the signature of the comprehension function as there are
holes in the selected term. For example, using the translation rule (2.1), the comprehen-
sion instance (2.2) belongs to the following template:

(sum, 𝑘%𝑎0 = 𝑎1, 𝐴𝑟𝑟𝑎𝑦𝐺𝑒𝑡(𝑎2, 𝑘)) (2.6)

Here 𝑎𝑖 denotes an occurrence of an arbitrary (appropriately typed) term. Using this
template, the technique would generate the following comprehension function:

function sum#0(L:int, H:int, 𝑎0:int, 𝑎1:int, 𝑎2:Elements) returns (int); (2.7)

Here 𝑎0, 𝑎1, and 𝑎2 represent the values of some terms that fit into the holes of our tem-
plate (2.6); in this case, the first two holes are of type int and belong to the filter while
the third hole is of type Elements and belongs to the comprehension body.
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The resulting comprehension function is then used for translating all comprehension
expressions that match the same filter, e. g.:

sum{int 𝑘 in (L:H), 𝑘%(𝑀−1) = 0; a[𝑘]} ↠ sum#0(L,H,𝑀−1,0,𝐻𝑒𝑎𝑝[a, $𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠])
(2.8)

The main advantage of this encoding is that the programmer is free to use arbitrary
filters and body terms in their comprehensions. In particular, this enables nested and
multidimensional comprehensions, which are explored by the same authors in a follow-
up paper [52]. However, an important limitation is that mathematically equivalent com-
prehension expressions might have different templates, in which case they will be trans-
lated using different comprehension functions and axiomatized using disjoint sets of
axioms, resulting in incompleteness. For example, the following two comprehensions
represent the same value, although this fact cannot be automatically verified because
they have different templates:

sum{int 𝑘 in (0 ∶ a.Length), L≤ 𝑘 <H; a[𝑘]} ↠ sum#1(…)

sum{int 𝑘 in (L:H), true; a[𝑘]} ↠ sum#2(…)

2.1.4.2 Axiomatization. The Spec# technique for verifying comprehensive specifications
generates a set of first-order axioms about each comprehension function, such as sum#0
in (2.8). These axioms are generated according to the axiom schemas that are identified
through manual inspection and generalize the properties that are required in character-
istic proof outlines.

AvOIDING MATCHING LOOpS. To maintain a manageable search space for the SMT solver,
the technique limits the number of instantiations of axiom quantifiers. This is achieved
by using synonym functions, i. e. pairs of uninterpreted function symbols representing
each comprehension function. The two functions have identical semantics: They are
axiomatized to be equal over all possible arguments. While only the original symbol,
e. g. sum#0, is exclusively used in (the translation of) the actual specifications and the
triggering patterns of the quantifiers, the synonym, e. g. s#0, is exclusively used in the
bodies of the quantified axioms. This avoids the possibility of matching loops i. e. infinite
instantiation chains caused by quantifiers that continuously yield new triggering terms.

AxIOM SCHEMAS. In the following, we consider a single comprehension function, e. g. sum#1,
and assume that the triggering patterns of all the quantified formulas respect the prin-
ciple described above, i. e. there is one axiom that defines the semantics of the synonym
function. To simplify the notation in all other axioms, we use just the function symbol
s to refer to the comprehension function. For this comprehension function, the Spec#
technique emits seven first-order axioms, as explained next.
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Note that in all axiom schemas below, ⃗𝑎 and ⃗𝑏 are tuples containing the possibly
captured values, as we explained in Sec. 2.1.4.1. Each of these axioms has the shape
∀… • LHS ⇒ RHS where LHS is the information required in order to obtain the new
information from RHS.

The first four axioms are helpful in induction proofs in which the body term of a com-
prehension is independently computed for marginal values of the index. This typically
happens in presence of programs with loops that use comprehensions to specify the
loop invariant.

∀𝑙𝑜, ℎ𝑖, ⃗𝑎 • 𝑙𝑜 < ℎ𝑖 ∧ 𝐹(𝑙𝑜, ⃗𝑎) ⟹ s(𝑙𝑜, ℎ𝑖, ⃗𝑎) = 𝑇(𝑙𝑜, ⃗𝑎) + s(𝑙𝑜+1, ℎ𝑖, ⃗𝑎)
∀𝑙𝑜, ℎ𝑖, ⃗𝑎 • 𝑙𝑜 < ℎ𝑖 ∧ ¬𝐹(𝑙𝑜, ⃗𝑎) ⟹ s(𝑙𝑜, ℎ𝑖, ⃗𝑎) = s(𝑙𝑜+1, ℎ𝑖, ⃗𝑎)
∀𝑙𝑜, ℎ𝑖, ⃗𝑎 • 𝑙𝑜 < ℎ𝑖 ∧ 𝐹(ℎ𝑖−1, ⃗𝑎) ⟹ s(𝑙𝑜, ℎ𝑖, ⃗𝑎) = s(𝑙𝑜, ℎ𝑖−1, ⃗𝑎) + 𝑇(ℎ𝑖−1, ⃗𝑎)
∀𝑙𝑜, ℎ𝑖, ⃗𝑎 • 𝑙𝑜 < ℎ𝑖 ∧ ¬𝐹(ℎ𝑖−1, ⃗𝑎) ⟹ s(𝑙𝑜, ℎ𝑖, ⃗𝑎) = s(𝑙𝑜, ℎ𝑖−1, ⃗𝑎)

(Induct)

The fifth axiom enables splitting the comprehension range (𝑙𝑜 ∶ ℎ𝑖) at an arbitrary
index, 𝑚𝑖𝑑. It permits deriving facts about the comprehension over a larger range based
on known comprehensions over its adjacent subranges, and vice versa.

∀𝑙𝑜,𝑚𝑖𝑑, ℎ𝑖, ⃗𝑎 • 𝑙𝑜 ≤ 𝑚𝑖𝑑 ≤ ℎ𝑖 ⟹ s(𝑙𝑜, 𝑚𝑖𝑑, ⃗𝑎)+s(𝑚𝑖𝑑, ℎ𝑖, ⃗𝑎) = s(𝑙𝑜, ℎ𝑖, ⃗𝑎) (Split-Range)

The sixth axiom allows one to derive equality between comprehension instances over
the same range but with different instantiations of the holes in the filter and the body.
For example, this axiom is useful for reasoning about array comprehensions across a
heap-transforming operation; in this scenario, Spec# would encode the heap differently
in the pre- and the post-states of the operation (see (2.1)), resulting in two different in-
stantiations of the same comprehension template (2.6).

∀𝑙𝑜, ℎ𝑖, ⃗𝑎, ⃗𝑏 • (∀𝑘 • 𝑙𝑜 ≤ 𝑘 < ℎ𝑖 ⇒ 𝐹(𝑘, ⃗𝑎) = 𝐹(𝑘, ⃗𝑏) ∧ (𝐹(𝑘, ⃗𝑎) ⇒ 𝑇(𝑘, ⃗𝑎) = 𝑇(𝑘, ⃗𝑏)))

⟹ s(𝑙𝑜, ℎ𝑖, ⃗𝑎) = s(𝑙𝑜, ℎ𝑖, ⃗𝑏)
(Same-Terms)

The seventh axiom is an evolution of (Same-Terms), adding the distributivity property
of addition over the min and the max comprehensions. In particular, this axiom is de-
signed for proving that min{int 𝑘 in (L:H); a[𝑘] + 𝐷} evaluates to the same value
as min{int 𝑘 in (L:H); a[𝑘]} + 𝐷 for any integer constant 𝐷. Note that the values of
the min and the max comprehensions over the empty range, called the comprehension’s
unit, are generally problematic because, e. g. for the min comprehension, all integers must
be less than or equal to the unit, so the unit itself cannot be an integer. Since Spec# uses
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public static int minSegmentSum(int[] a)
ensures result == min{int 𝑘 in (0:a.Length); min{int 𝑗 in (0:𝑘);

sum{int 𝑖 in (𝑗:𝑘); a[𝑖] }}}
{
int x = 0; int y = 0;
for (int n = 0; n < n.Length; n++)
invariant n <= a.Length;
invariant x == min{int 𝑘 in (0:n); min{int 𝑗 in (0:𝑘);

sum{int 𝑖 in (𝑗:𝑘); a[𝑖] }}};
invariant y == min{int 𝑗 in (0:n); sum{int 𝑖 in (𝑗:n); a[𝑖] }};

{
y += a[n];
if (0 < y) { y = 0; }
else if (y < x) { x = y; }

}
return x; }

Figure 2.1: Example program and its comprehensive specifications written in Spec#.

finite integer arithmetic, the technique sets the units of min and max to be MAX_INT and
MIN_INT, resp.; this approach cannot work in a setting with unbounded integers.

∀𝑙𝑜, ℎ𝑖, 𝐷, ⃗𝑎, ⃗𝑏 • (∀𝑘 • 𝑙𝑜 ≤ 𝑘 < ℎ𝑖 ⇒ 𝐹(𝑘, ⃗𝑎) = 𝐹(𝑘, ⃗𝑏) ∧ (𝐹(𝑘, ⃗𝑎) ⇒ 𝑇(𝑘, ⃗𝑎) + 𝐷 = 𝑇(𝑘, ⃗𝑏)))∧

(∃𝑘 • 𝑙𝑜 ≤ 𝑘 < ℎ𝑖 ∧ 𝐹(𝑘, ⃗𝑎) = 𝐹(𝑘, ⃗𝑏) ∧ (𝐹(𝑘, ⃗𝑎) ∧ 𝑇(𝑘, ⃗𝑎) + 𝐷 = 𝑇(𝑘, ⃗𝑏)))

⟹ s(𝑙𝑜, ℎ𝑖, ⃗𝑎) + 𝐷 = s(𝑙𝑜, ℎ𝑖, ⃗𝑏)
(Distrib)

The last axiom (Distrib) exposes a number of issues that were described in [52]. In
particular, the quantified variable 𝐷 does not occur as an argument of any uninterpreted
function symbols, making it impossible for an E-matching-based SMT solver to trigger
this axiom.

2.1.4.3 Running example. To illustrate some more complex comprehensive specifica-
tions supported by Spec#, consider the minSegmentSum program that computes the sum
of the minimal array segment (Fig. 2.1).5 For example, given the array a = [3,−2, 1,−2],
the procedure returns −3, as this is the sum of a’s minimal segment, [−2, 1, −2].

LIMITATIONS. One important limitation of the axiomatization schema in Spec# is that
it relies on integer comprehension indices; in particular, this technique cannot support
structures without a predefined total ordering over their nodes.

5 minSegmentSum is one of the benchmarks of the original Spec# comprehensions paper [43].
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Second, the program logic of Spec# does not support concurrency as the encoding is
inherently non-modular. Thus, the technique is not applicable in our setting with poten-
tially concurrent programs.

Third, some of the axiomatized properties, e. g. (Distrib) cannot be used by modern
SMT solvers like Z3 [47] that use the E-matching quantifier instantiation technique.
Overcoming this issue is an open problem.

Finally, it is unknown which other potentially useful properties are missing in Spec#’s
partial axiomatization. Generally, any inductive lemma that does not follow from the
eight axioms above can be viewed as a missing property.

2.1.5 Open problems

In the remainder of this chapter, we will describe a technique that attacks two open
problems that are not solved in the state-of-the-art comprehensions technique of Spec#.

MODuLAR REASONING. We aim for automated verification of comprehensive specifica-
tions in a modular setting; to that end, we are interested in integrating into the framework
of separation logic as it supports reasoning about concurrency and facilitates reusability
of verified procedures. Conversely, Spec# comprehensions are not modular.

ARBITRARy NODESETS. Rather than exclusively targeting arrays and sequences, we aim
to support comprehensions for arbitrary structures even those without a specific node
ordering. Conversely, Spec# comprehensions do not support e. g. trees and DAGs.
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2.2 SET COMpREHENSIONS

The comprehensions reasoning technique of Spec# discussed in Sec. 2.1.4 focuses on
comprehensions over structures with totally ordered elements. In this section, we present
a novel technique that addresses the more general problem of reasoning about set compre-
hensions, i. e. higher-order functions that summarize the values in arbitrary (unordered)
sets of nodes.6 While our comprehensions summarize values of node sets, these val-
ues do not have to be unique and generally form multisets. For example, ∑

𝑥∈xs
𝑥.val is

a set comprehension that summarizes the set of nodes of xs, e. g. {ρ0, ρ1}, where ρ0
and ρ1 are some disjoint memory locations, while the values stored in these locations
(e. g. ρ0.val = 42 and ρ1.val = 42) may form a multiset, e. g. ⦃42 ↣ 2⦄.7

MOTIvATION. The motivation for the generalization discussed in this section is three-
fold. First, set comprehensions are suitable for specifying a broader spectrum of data
structures, e. g. those without a total ordering over their nodes. Second, set comprehen-
sions enable conceptually simpler decompositions of heap structures that typically lead
to more concise proofs. Third, set comprehensions naturally integrate into separation
logic, enabling verification of concurrent programs. We will demonstrate the first two
advantages using the motivating example of Fig. 2.2; the third advantage will be ex-
plained later in Sec. 2.2.4.

OuTLINE. This section is organized as follows. We first discuss the motivation for our
technique (Sec. 2.2.1). We then formally define set comprehensions (Sec. 2.2.2) and ex-
tend the specification language (Sec. 2.2.3). We explain the embedding of set comprehen-
sions into separation logic (Sec. 2.2.4). Finally, we present our first-order axiomatization
of set comprehensions (Sec. 2.2.5).

2.2.1 Motivating example

The comprehensions technique of Spec# enjoyed a conceptually simple encoding into
first-order logic, but specifying arbitrary heap structures using this technique becomes
challenging for the programmer. The specification is straightforward for array-manipulating —
and, more generally, tensor-manipulating programs. However, to use the Spec# axioms
with structures that do not enforce a total ordering, the programmer needs to specify
and maintain additional sequences that represent (ordered) subsets of the nodes.

In the following, we will demonstrate the difference between the sequence-based and
the set-based views on comprehensions, both of which are supported in our technique.
We start with a high-level overview (Sec. 2.2.1.1), then introduce our specification (Sec. 2.2.1.2)

6 The initial design of this technique was developed by Hörmann [99] in his BSc. thesis.
7 We denote multiset literals via ⦃…⦄; each element is a pair 𝑥 ↣ 𝑁 mapping 𝑥 to its cardinality 𝑁.
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field val: Int; field left: Ref; field right: Ref

method shortestPath(𝔤: Set[Ref], node: Ref, target: Ref)
returns (reachable: Bool, path: Seq[Ref], cost: Int)
requires DAG(𝔤, read) && node ∈ 𝔤 ∧ target ∈ 𝔤
ensures DAG(𝔤, read)

∀𝑥 • 𝑥 ∈ path ⟹ 𝑥 ∈ 𝔤
∀𝑖, 𝑗 • 0 ≤ 𝑖 < 𝑗 < |path| ⟹ path[𝑖] ≠ path[𝑗]
¬reachable ⟹ path = Seq()
reachable ⟹ 0 < |path|∧ node = path[0]∧ path[|path|-1] = target

/*(6)*/ reachable ⟹ cost = 𝖘𝖚𝖒𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ path⦄
/*(7)*/ reachable ⟹ abs(cost) ≤ 𝖘𝖚𝖒𝑛 ⦃ abs(𝑛.val) ‖ 𝑛 ∈ 𝔤 ⦄

{
if (node = target) {
reachable, path, cost := true, Seq(node), node.val // A

} else {
var reach_a, reach_b := false, false
var path_a, path_b: Seq[Ref]
var cost_a, cost_b: Int
var 𝔤1 := 𝔤 setminus Set(node)

label 𝑙0
if (node.left ≠ null) {
reach_a, path_a, cost_a := shortestPath(𝔤1, node.left, target) }

label 𝑙1
if (node.right ≠ null) {
reach_b, path_b, cost_b := shortestPath(𝔤1, node.right, target) }

label 𝑙2
// Return the aggregated results
if (¬reach_a∧¬reach_b) {
reachable, path := false, Seq()

} else {
reachable := true
if (reach_a∧¬reach_b ∨ reach_a∧ reach_b∧ cost_a ≤ cost_b) {
path := Seq(node) ++ path_a // B
cost := node.val + cost_a // C

} elseif (¬reach_a∧ reach_b ∨ reach_a∧ reach_b∧ cost_b < cost_a)
path := Seq(node) ++ path_b
cost := node.val + cost_b

} } } }

Figure 2.2: Refining the specifications of complex data structures using set comprehensions.

The macro DAG(𝔤, read) specifies access permissions to the fields val, left, and right of all
objects within an acyclic heap fragment 𝔤 (see encoding details in Sec. 2.4.4). The postcondition
marked /*(6)*/ demonstrates the sequence-based view of a comprehensive property, specifying
that the returned cost is equal to the sum of values stored in the path sequence. Conversely,
/*(7)*/ demonstrates the set-based view, specifying that the absolute value of the shortest path’s
cost must be less than or equal to the sum of absolute values of all the nodes’ costs in the entire
DAG represented by 𝔤; e. g. if there are no negative costs, this condition implies that the cost of
the shortest path cannot exceed the total cost of the DAG. Our set comprehensions technique is
the first to automatically verify this benchmark.
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and verification (Sec. 2.2.1.3) techniques, and then discuss preliminary observations
(Sec. 2.2.1.4).

2.2.1.1 high-level overview. The method shortestPath (Fig. 2.2) demonstrates the ap-
plicability of sequence-based comprehensions in the specification of a shortest-path find-
ing algorithm operating over a DAG structure. The returned sequence path carries the
main computation result; one could summarize the elements of this sequence (e. g. the
overall cost of the shortest path) using a Spec#-style comprehension. However, it is
harder to specify a custom comprehensive property, e. g. that (the absolute value of)
the returned path’s cost is less that or equal to (the absolute value of) the total cost of all
the nodes in the entire DAG. To specify this property via Spec#-style comprehensions,
the method would have to return an additional sequence containing all the reachable
nodes (exactly once); such a sequence would need to be maintained via additional code
which is specific to the custom property.

2.2.1.2 Specification. We propose a new kind of specifications, called set comprehen-
sions, that enable directly specifying properties of arbitrary sets of nodes (within the
method’s footprint). We demonstrate these specifications based on the method short-
estPath Fig. 2.2.

NOTATION. The expression 𝖘𝖚𝖒𝑛:T ⦃ body(𝑛) ‖ filter(𝑛)⦄ can be read as the sum of
body terms (body(𝑛)) for all 𝑛 that satisfy the filter (filter(𝑛)), where body is a function
T → Int and filter is a function T → Bool. The part inside curly brackets is called the
structure of the comprehension. We omit the type specification :T when it can be inferred
from the structure.

For example, given a sequence xs, the expression 𝖘𝖚𝖒𝑛:Int ⦃ 1 ‖ 0 ≤ 𝑛 < |xs|⦄ is
equal to the length of xs, while for a node set G and an integer field val, the expression
𝖘𝖚𝖒𝑛:Ref ⦃ abs(𝑛.val) ‖ 𝑛 ∈ G⦄ is the sum of the absolute values in G.

Comprehensions specify properties of heap structures in particular states. To refer to
the evaluation of a comprehension in a state σ, we use the subscript notation,
e. g. 𝖘𝖚𝖒σ 𝑛:Ref ⦃ abs(𝑛.val) ‖ 𝑛 ∈ G⦄. To mark particular states in the program, we
use state labels of the form label 𝑙𝑛 where 𝑛 is the integer identifier of that state. For
convenience, we refer to the labeled states via their identifiers (rather than names). For
example, the following code snippet demonstrates the usage of labeled states for speci-
fying that an operation oper preserves a local comprehensive invariant:
label 𝑙1; oper(); assert 𝖘𝖚𝖒𝑛 ⦃ abs(𝑛.val) ‖ 𝑛 ∈ G⦄ = 𝖘𝖚𝖒1 𝑛 ⦃ abs(𝑛.val) ‖ 𝑛 ∈ G⦄
Here, oper() is an operation that can modify the heap, and the state-dependent expres-
sion 𝖘𝖚𝖒1 𝑛⦃abs(𝑛.val)‖ 𝑛 ∈ G⦄ is rewritten into old[𝑙1](𝖘𝖚𝖒𝑛⦃abs(𝑛.val)‖ 𝑛 ∈ G⦄).
Note that a comprehension without a subscript refers to the properties in the current
state, and the subscript 0 always refers to the initial state of the current method, i. e. the
state of its precondition.
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SpECIFyING shortestPath. Recall that this method traverses a data structure in order
to find, if it exists, the least costly heap path between two nodes (Fig. 2.2). The method
takes as inputs a (ghost) set 𝔤 containing the nodes of the data structure, as well as
two references, node and target, which determine the start and the intended end of
the path. The precondition requires (via DAG(𝔤, read)) read permissions to the three
relevant fields (left, right, and val) of each of the nodes in 𝔤, and that node and target
are in 𝔤.

The outputs are a Boolean reachable, indicating the existence of a path from node to
target, an auxiliary sequence path of nodes along the shortest path, and the computed
cost of the shortest path; if such a path does not exist, path is set to the empty sequence
and cost is left unspecified. The postcondition ensures: (1) the read permissions to the
relevant fields of all nodes in 𝔤 are not leaked; (2) the identified path may consist only of
the nodes of the original structure represented by 𝔤; (3) the path is acyclic; (4) if target
is unreachable from node then path is the empty sequence; the last three postconditions
specify the property of an existent path, namely (5) a path consists of at least one node,
with node and target as the first and the last sequence elements; (6) the cost of the path
is equal to the sum of the values stored in the field val of all nodes of the path; and
(7) the absolute value of the computed cost does not exceed the sum of absolute values
stored in the field val of all nodes in the current data structure represented by 𝔤.

2.2.1.3 Verification. We proceed by introducing our proof outline notation. We will
then demonstrate reasoning with set comprehensions by verifying the comprehensive part
of shortestPath’s specifications, namely, bits (6) and (7).

pROOF OuTLINE NOTATION. We present the correctness arguments as proof outlines in
the style of calculational proofs, i. e. derivation sequences of either values or conditions
that we aim to justify. For each outline, we explain the assumptions under which it holds
(e. g. induction hypothesis, loop guard, or branch condition) in its preceding paragraphs,
and we justify each step of the outline in the subsequent paragraphs. Consider the fol-
lowing example outline:

Justification Formula
𝑥 = 𝑓 (42) follows from (123) 𝑥 = 𝑓 (42) =
Arithmetic 𝑓 (40 + 2) =
Linearity of 𝑓 ; Def. 𝑦 𝑓 (40) + 𝑓 (2) = 𝑦 + 𝑧

(Outline-Name)

Each step of the outline occupies one row; we refer to the relevant facts justifying this
step in the left column, while the derived formula is in the right column. Several minor
steps may be inlined, occupying a single row, in which case the justification in the left
column applies to all of the minor steps on this row. Our proof outlines often identify
new types of reasoning steps that were not necessarily introduced before the outline;
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we use unique symbols for each such step in the left column and explain these in the
paragraphs after the outline. The end of a proof is marked with

Why are proof outlines useful for presenting an automated verification technique? Al-
though an SMT-based verifier does not necessarily construct proof outlines, automatic
verification is predicated on the ability of the underlying SMT solver to (1) derive rel-
evant lemmas from the supported theories and (2) instantiate first-order quantifiers.
These are the two essential types of reasoning steps in our proof outlines. Hence, proof
outlines provide intuition for understanding the essence of a verification problem.

OuTLINE 1: THEN-BRANCH. Entering the first branch of shortestPath under the condi-
tion node = target, we obtain the singleton Seq(node) for path and node.val for cost,
which is sufficient to satisfy postcondition (6) via the following derivation:

𝖘𝖚𝖒𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ path⦄ =
shortestPath-A 𝖘𝖚𝖒𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ Seq(node)⦄ =
†; shortestPath-A node.val = cost

(Outline-1)

In the first step, we substitute pathwith its known value in the current branch, Seq(node).
In the second step (marked with †) we use the knowledge of the properties of a singleton
comprehension, namely, that the sum over the value of a single node, indeed, yields the
node’s value. In the last step, we substitute the value node.val with the variable cost;
this equality follows from the assignment of shortestPath-A in the current branch.

We continue exploring this branch, using the following derivation to justify postcon-
dition (7):

Outline-1 abs(cost) = abs(node.val) ≤
Arith. abs(node.val) + 𝖘𝖚𝖒𝑛 ⦃ abs(𝑛.val) ‖ 𝑛 ∈ 𝔤 Set(node)⦄ =

𝖘𝖚𝖒𝑛 ⦃ abs(𝑛.val) ‖ 𝑛 ∈ 𝔤 ⦄
(Outline-2)

In the first step, we substitute cost with its value, node.val. The second step consists of
two parts: We consider a comprehension over the filter 𝔤 Set(node) and then apply the
following arithmetic lemma: The sum of non-negative numbers is non-negative; the incentive
for this particular filter becomes clearer while reading the proof outline bottom-up: We
aim to verify the lower bound of a comprehension over 𝔤 in which only node is modified.
In the step , we select a singleton decomposition of the comprehension filter.
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OuTLINE 2: ELSE-BRANCH. Entering the second branch of shortestPath under the con-
dition node ≠ target, we must consider the following three possible scenarios based on
the intermediate results returned by the two recursive calls. First, if target is unreach-
able from both node.left and node.right (¬path_a∧¬path_b), then reachable is set
to false, trivially satisfying postconditions (6) and (7) in Fig. 2.2.

Otherwise, we learn that target is reachable from the current node, i. e. reach_a ∨
reach_b holds. The second and the third scenarios correspond to the two innermost
branches of Fig. 2.2. The condition of the second scenario is that path_b either does not
reach target at all (¬reach_b) or it has a higher cost (reach_b ∧ cost_a ≤ cost_b); in
this case, we take path_a as the next node of path.

Since the third scenario is analogous to the second one, w.l.o.g. we present in the
following a proof outline only for the second scenario. Note that the two innermost
branches are exclusive, i. e. one could replace elseif...with else. The following deriva-
tion justifies postcondition (6), which is the first comprehensive property in question:

𝖘𝖚𝖒2 𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ path⦄ =
shortestPath-B 𝖘𝖚𝖒2 𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ Seq(node)++path_a⦄ =

node.val + 𝖘𝖚𝖒2 𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ path_a⦄ =
node.val + 𝖘𝖚𝖒1 𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ path_a⦄ =

Rec. 1 node.val + cost_a =
shortestPath-C cost

(Outline-3)

Here 𝖘𝖚𝖒1 and 𝖘𝖚𝖒2 denote the sum comprehension evaluated in the states 𝑙1 and 𝑙2,
resp. In the first step, we substitute pathwith its value, Seq(node)++path_a (shortestPath-
B). In the step marked with , we select a singleton decomposition of the comprehension
filter. The the step applies separation-logic framing, deriving the equality between the
remaining comprehension in 𝑙2 and 𝑙1 (recall that NODES(𝔤, read) specifies only read
permissions). The last two steps apply the postcondition of the first recursive call and
substitutes the value of cost according to shortestPath-C.
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We proceed with the derivation for the second comprehensive property in question,
namely, postcondition (7) of shortestPath:

abs(cost) =
shortestPath-C abs(node.val + cost_a) ≤
Arith. abs(node.val) + abs(cost_a) =
Rec. 1 abs(node.val) + 𝖘𝖚𝖒1 𝑛 ⦃ abs(𝑛.val) ‖ 𝑛 ∈ 𝔤 Set(node)⦄ =

abs(node.val) + 𝖘𝖚𝖒2 𝑛 ⦃ abs(𝑛.val) ‖ 𝑛 ∈ 𝔤 Set(node)⦄ =
𝖘𝖚𝖒2 𝑛 ⦃ abs(𝑛.val) ‖ 𝑛 ∈ 𝔤 ⦄

(Outline-4)

In the first step of the above derivation, we substitute cost with its value (assigned
on shortestPath-C). Second, we apply the triangle inequality: abs(𝑎+𝑏) ≤ abs(𝑎)+abs(𝑏).
Next, we apply the postcondition of the first recursive call, substituting abs(cost_a)
with its upper bound in terms of the comprehension. We then apply separation-logic
framing ( ), deriving the equality of the comprehension in states 1 and 2. The last step
( ) expresses the comprehension over our decomposition via the comprehension over
the original set 𝔤.

2.2.1.4 Discussion. The example of Fig. 2.2 demonstrates how set comprehensions en-
rich our specification language: While the penultimate postcondition can be specified in
either sequence-based or set-based view, postcondition (7) expresses a comprehensive
property of a DAG structure that cannot be phrased using sequence comprehensions.

Set comprehensions enable conceptually simple structural decompositions. In the sequence-
based view, each operation fractured the array range into a generally unknown number of
segments, e. g. a call to a procedure that swaps two elements indexed 𝑖 and 𝑗 of the array
a results in up to five array segments in Spec# (Sec. 2.1.4): [0, 𝑖), [𝑖, 𝑖), [𝑖+1, 𝑗), [𝑗, 𝑗),
and [𝑗+1, len(a)). In contrast, the specifications of shortestPath (Fig. 2.2) present an
alternative view in which each operation partitions its client’s footprint into exactly two
heap fragments, i. e. the operation’s footprint and its frame.

There are two main challenges of modular reasoning with set comprehensions. First,
one needs to embed set comprehensions into a modular framework, e. g. separation
logic. Second, one needs to automate the reasoning steps. Notice that the above proof
outlines involved a number of recurring steps that were not yet explained; these were
marked with †, , and . We will discuss each of these steps and their corresponding
axiomatization in Sec. 2.2.5.
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2.2.2 Formalization

2.2.2.1 Preliminaries. We begin by defining node fields F ∶ I → T. Here, I are literal
field names (cf. 𝑖𝑑𝑛𝑡 in Fig. 1.1), e. g. "val" or "next", and T are the field types (cf. 𝑡𝑦𝑝𝑒
in Fig. 1.1), e. g. Int in field val: Int. We assume that each program has a finite num-
ber of explicitly declared fields (i. e. the set I and the function F are always available).

Next, we define program states Σ as sets σ = {σ𝑓 ∣ 𝑓 ∈ I} where σ𝑓 ∶ Ref → F(𝑓 ) is the
projection of the state σ over the field named 𝑓 . For each field 𝑓 in the program, the state σ
defines the mapping from heap node references to values of the field’s type.

Set comprehensions are members of the class 𝖈𝖔𝖒𝖕 of higher-order (scalar-valued)
partial functions of the program state and one other functional argument (called the
binary step operator ⊕). Intuitively, the step operator takes two values of some type, say
S, and yields a result that is also of type S. We expect each step operator to respect the
following properties:

⊕ ∶ S → S → S

∀𝑥, 𝑦 • 𝑥⊕𝑦 = 𝑦⊕𝑥
∀𝑥, 𝑦, 𝑧 • (𝑥⊕𝑦)⊕ 𝑧 = 𝑥⊕(𝑦⊕ 𝑧)

(2.9)

Thus, S = (S, ⊕) is a commutative semigroup. Some semigroups have a special unit ele-
ment (denoted 𝟙) that respects the following property:

𝟙 ∶ S, ∀𝑥 ∶ S • 𝟙⊕𝑥 = 𝑥 (2.10)

If 𝟙 is a unit of a semigroup (S, ⊕), then (S, ⊕, 𝟙) is a monoid. A monoid’s unit is unique.

2.2.2.2 Main definitions. Rather than directly formalizing set comprehensions as par-
tial functions, we define them in two stages, exclusively using total functions. The first
stage introduces the notion of comprehension kinds, which are (total) higher-order func-
tions. The second stage leverages this notion to define comprehension instances, i. e. scalar-
typed expressions that define comprehensive properties.

COMpREHENSION kINDS. Fixing a commutative semigroup S = (S, ⊕) as well as the
name 𝑛 and type T of an iterated variable defines a particular comprehension kind, denoted
𝖈𝖔𝖒𝖕[S]𝑛:T:

‶ 𝖈𝖔𝖒𝖕[S]𝑛:T″ ∶ (Σ → T → 𝐹 → S)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Body

→ Set[T]⏟
Filter

→ S (2.11)

The 1st functional argument of the comprehension is the body; this is a state-dependent
expression over the (iterated) free variable 𝑛, mentioning the fields from the set 𝐹. Effec-
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tively, the body maps program states, values of type T, and field names from some set
𝐹 ⊆ I to values of type S, which is the same as the entire comprehension’s result type.

The 2nd argument is the filter set; intuitively, the filter determines for which instanti-
ations of 𝑛 should the body term be evaluated. Note that we represent the filter as a set
of accepted values of type T rather than a T → Bool function to simplify the notation for
updated filters, that are used in the following.

For example, comprehensions of kind 𝖈𝖔𝖒𝖕[(Int, * , 1)]𝑛:Ref map references to in-
tegers, combine these integers via *, and have 1 as their unit. Instantiating the body term
with 𝑛.val and the filter with xs (a set of nodes of a structure with the same name), we
obtain a comprehension that represents the product of all values stored in the nodes of
xs: 𝖈𝖔𝖒𝖕[(Int, * , 1)]𝑛:Ref ⦃ 𝑛.val ‖ xs ⦄. Note that (Int, * , 1) is a monoid.

To improve readability, we will write e. g. 𝖈𝖔𝖒𝖕[*,1]… for 𝖈𝖔𝖒𝖕[(Int, * , 1)]…
since the semigroup’s type is clear from the context.

COMpREHENSION INSTANCES. A comprehension instance8 is an expression obtained by in-
stantiating a particular comprehension kind (2.11) with a body and a filter (Fig. 2.3).
Before a comprehension instance can be evaluated, we must check that, in the current
state (in which we evaluate the body), there are sufficient permissions to evaluate the
comprehension body for all instantiations of the iterated variable permitted by the fil-
ter.9 For example, the evaluation of 𝖈𝖔𝖒𝖕σ 𝑛:Ref⦃𝑛.val‖ 𝑛 ∈ 𝔤 ⦄ from Fig. 2.2 requires
read permissions to field val of all nodes in 𝔤. After checking permissions, we may treat
the comprehension body as a total function as it is defined for all possible instantiations.

It is important to understand why filters are necessary. If S is a commutative monoid
with unit𝟙, then we could rewrite any comprehension of the form 𝖈𝖔𝖒𝖕[⊕,𝟙]𝑛:T⦃e(𝑛)‖ f⦄
using the universe set for the filter: 𝖈𝖔𝖒𝖕[⊕,𝟙]𝑛:T⦃𝑛 ∈ f ? e(𝑛) ∶ 𝟙 ‖ T⦄. However, such
a rewriting does not exist for comprehensions over general commutative semigroups,
e. g. (Int, 𝓂𝒾𝓃), since the neutral element of 𝓂𝒾𝓃 is the non-integer +∞.

2.2.2.3 Evaluating set comprehensions. We will now define the evaluation of a set com-
prehension. Let 𝖈𝖔𝖒𝖕σ[S]𝑛:T ⦃ e𝐹σ(𝑛) ‖ f⦄ be a comprehension over the term e𝐹σ(𝑛),
where 𝑛 is a free variable, f is the filter, and σ is the program state; we omit the type
specification of 𝑛 when it is clear from the context. Let S be a semigroup over the do-
main S with ⊕ as its step operator. The consistency assumption implies that ⊕ and e𝐹σ(𝑛)
are of type S (as well as the unit 𝟙, if S is a monoid).

8 We will use the terms comprehension instance and comprehension interchangeably.
9 For simplicity, we consider only heap-independent filters in our formalization; a heap-dependent filter can be

obtained as a result of a function application, in which case additional permission checking is performed.
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]𝑛
Iter. var.
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⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
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⦃ Body
⏞e𝐹σ(𝑛) ‖ f

Filter⦄
⏟⏟⏟⏟⏟⏟⏟

Structure⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Instance

Figure 2.3: Anatomy of a set comprehension.

In a program state σ, the comprehension instance is the full instantiation of all the parameters of a
comprehension: the commutative semigroup S (sometimes written as its operator and, in case of
a monoid, unit), the name and the type of the iterated variable 𝑛, the body e𝐹(𝑛), and the filter set f;
this is the necessary and sufficient information for evaluating the comprehension’s value. Fixing
all but the filter defines a comprehension family; the evaluation of a comprehension (2.12), as well
as most of the axioms in our technique, are written in terms of one family. The comprehension’s
underlying multiset structure is defined by fixing its body and filter; this structure is the argu-
ment of the comprehension kind (2.11), e. g. 𝖈𝖔𝖒𝖕[+ , 0] 𝑥:Ref represents all instances of the 𝖘𝖚𝖒
comprehension, iterating over references, with + and 0 as its step operator and unit, resp.

The evaluation of this comprehension is defined as a fixpoint, if it exists, of the follow-
ing recursive equation:

𝖈𝖔𝖒𝖕σ[S]𝑛 ⦃ e𝐹σ(𝑛) ‖ f⦄ =

⎧{{{
⎨{{{⎩

S ≡ (S, ⊕, 𝟙) ? 𝟙 ∶ undefined, f = ∅
e𝐹σ(𝑥), f = Set(𝑥)
𝖈𝖔𝖒𝖕σ[S]𝑛 ⦃ e𝐹σ(𝑛) ‖ f1 ⦄
⊕ 𝖈𝖔𝖒𝖕σ[S]𝑛 ⦃ e𝐹σ(𝑛) ‖ f2 ⦄, f = f1 ⊎ f2

where f1, f2 ≠ ∅
(2.12)

The formula (2.12) provides three rules for evaluating a set comprehension. First, if the
empty set is the filter (and S is a monoid), then the evaluation of the comprehension
is equal to its unit. Second, if the filter is a singleton containing just the element 𝑥, then
the evaluation of the comprehension is equal to the evaluation of its term with 𝑥 for 𝑛,
in the state σ. Third, for a decomposition of the original filter f into two disjoint, non-
empty sub-filters f1 and f2, the evaluation of the original comprehension is equal to the
⊕-combination of the evaluations of two other comprehensions which are similar to the
original one but for their respective sub-filters.

Set comprehensions specify data structures regardless of their processing order. For ex-
ample, a method mul that uses two threads for concurrently multiplying the matrix A
by the constant factor 𝑘 may partition A either row-wise or column-wise. However, the
thread specifications are identical in both cases; e. g. their postcondition can be set to
𝖈𝖔𝖒𝖕[+,0]𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ nodes(X)⦄ = 𝑘 * 𝖈𝖔𝖒𝖕0[+,0]𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ nodes(X)⦄,
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where X is this thread’s sub-matrix (or just A, for mul’s postcondition); nodes(X) is a set
of nodes of X, and the subscript 0 in 𝖈𝖔𝖒𝖕0 … refers to mul’s initial state.

Coincidently, the formula (2.12) does not prescribe a single decomposition for the filter
set. The variables 𝑥, f1, and f2 in the conditions of the 2nd and the 3rd cases are (implic-
itly) existentially quantified; hence, any (proper) two-way decomposition of the filter set f
allows us to reduce the problem of evaluating the corresponding comprehension to the
evaluation of at most two comprehensions with potentially smaller sub-filters.

The equation (2.12) has a fixpoint iff the filter f is a non-empty set or S is a monoid.
Therefore, the evaluation of monoid-based comprehensions is a total function of filters.
Conversely, the evaluation of comprehensions based on general semigroups is a partial
function that is defined at least on all non-empty filters. Note that the fixpoint must be
unique due to associativity and commutativity of the step operator (2.9).

2.2.3 Extending the specification language

We extend the grammar of our specification language (Fig. 1.1) to support set compre-
hensions. The augmented grammar is presented in Fig. 2.4. Set comprehensions extend
pure expressions. 𝑜𝑝𝑒𝑟 denotes the step operator of the comprehension’s semigroup and
𝑢𝑛𝑖𝑡 denotes the unit (in case of a monoid). Note that the prior can be instantiated ei-
ther with one of the built-in binary operators or with a (binary) uninterpreted function
symbol, denoted 𝑐𝑢𝑠𝑡𝑜𝑚𝑂𝑝𝑒𝑟. Analogously, the latter can be instantiated either with a
built-in literal, denoted 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 or with a (nullary) symbol, denoted 𝑐𝑢𝑠𝑡𝑜𝑚𝑈𝑛𝑖𝑡.

The technique checks that the provided operator is commutative and associative (2.9).
If the unit is provided, the technique also checks the properties of (2.10). For example, a
comprehension instance of the form 𝖈𝖔𝖒𝖕[*,0] 𝑛:Int… would not pass the check since
any non-zero integer, say 𝑥, would violate the property 𝑥*0 = 𝑥.

We omit from the grammar the Bool-typed binary operators, e. g. =, ≠, ∧, and ∨,
as well as the units true and false, since they result in comprehensions that can be
expressed using first-order quantification.

A comprehension’s body and filter are both pure expressions. The former may men-
tion the iterated variable and may capture by value any other variables available in the
current scope. For example, the following is a valid comprehensive specification for a
method called foo:
method foo(𝔤: Set[Ref], x: Int)
requires 𝖈𝖔𝖒𝖕[+,0] 𝑛:Ref ⦃ 𝑛.val = x ? 1 ∶ 0 ‖ 𝔤 ⦄
ensures 𝖈𝖔𝖒𝖕[+,0] 𝑛:Ref ⦃ 𝑛.val = x ? 1 ∶ 0 ‖ 𝑛 ∈ 𝔤 ⦄

Note that the filter can be either a set-typed or a Boolean-typed expression. In the former
case, the type of the set is expected to be Set[T] where T is the type of the iterated
variable (Fig. 2.3). In the latter case, the filter is a Boolean expression over the iterated
variable. In particular, the precondition and the postcondition of the method foo above
are equivalent.
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𝑝𝑢𝑟𝑒𝐸𝑥𝑝 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 | 𝑖𝑑𝑛𝑡 | 𝑓 𝑢𝑛𝐴𝑝𝑝 | 𝑝𝑢𝑟𝑒𝐸𝑥𝑝.𝑖𝑑𝑛𝑡 | 𝑝𝑢𝑟𝑒𝐸𝑥𝑝[𝑝𝑢𝑟𝑒𝐸𝑥𝑝] | 𝐹𝑂𝐿(𝑝𝑢𝑟𝑒𝐸𝑥𝑝)
| 𝑜𝑙𝑑𝐸𝑥𝑝 | 𝑠𝑒𝑡𝐶𝑜𝑚𝑝

𝑙𝑖𝑡𝑒𝑟𝑎𝑙 null | true | false | result | Integer | SetLiteral | SeqLiteral | MapLiteral
𝑖𝑑𝑛𝑡 Alpha-numeric identifiers, e. g. x1, y2
𝑓 𝑢𝑛𝐴𝑝𝑝 𝑖𝑑𝑛𝑡 (𝑎𝑟𝑔𝑠)
𝑎𝑟𝑔𝑠 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 (, 𝑝𝑢𝑟𝑒𝐸𝑥𝑝)∗

𝐹𝑂𝐿 First-order logical formulas over (built-in theories
and uninterpreted function symbols)

𝑜𝑙𝑑𝐸𝑥𝑝 old [𝑖𝑑𝑛𝑡]? ( 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 )

𝑠𝑒𝑡𝐶𝑜𝑚𝑝 𝖈𝖔𝖒𝖕[𝑜𝑝𝑒𝑟(,𝑢𝑛𝑖𝑡)?] 𝑖𝑑𝑛𝑡(: 𝑡𝑦𝑝𝑒)? ⦃ 𝑝𝑢𝑟𝑒𝐸𝑥𝑝 ‖ 𝑝𝑢𝑟𝑒𝐸𝑥𝑝⦄
𝑜𝑝𝑒𝑟 + | * | union | intersection | 𝓂𝒾𝓃 | 𝓂𝒶𝓍 | 𝑐𝑢𝑠𝑡𝑜𝑚𝑂𝑝𝑒𝑟
𝑢𝑛𝑖𝑡 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 | 𝑐𝑢𝑠𝑡𝑜𝑚𝑈𝑛𝑖𝑡
𝑡𝑦𝑝𝑒 Bool | Int | Ref | Seq[𝑡𝑦𝑝𝑒] | Set[𝑡𝑦𝑝𝑒] | Map[𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒]

Figure 2.4: Augmenting the grammar with set-comprehensive expressions.

MuLTIDIMENSIONAL COMpREHENSIONS. To simplify the encoding in our technique, we
permit only one iterated variable per comprehension instance. However, the program-
mer can overcome this limitation, either by nesting comprehension instances or by iterat-
ing over tuples. For example, the following expression represents the sum of all elements
of a (non-empty) 2-dimensional matrix m:

𝖈𝖔𝖒𝖕[+,0] 𝑖:Int⦃𝖈𝖔𝖒𝖕[+,0] 𝑗:Int ⦃ m[𝑖][𝑗] ‖ 0 ≤ 𝑗 < len(m[0])⦄‖ 0 ≤ 𝑖 < len(m)⦄
The same value can be represented via just one comprehension instance that iterates
over pairs of integers:

𝖈𝖔𝖒𝖕[+,0] 𝑘:Pair[Int,Int]⦃m[𝑘1][𝑘2] ‖ 0 ≤ 𝑘1 < len(m)∧0 ≤ 𝑘2 < len(m[0])⦄
Here, Pair is a (user-defined) algebraic data type and 𝑘 is an instance of that type; 𝑘1 and
𝑘2 are the deconstructors that yield the 1st and the 2nd component of 𝑘, resp. The pro-
grammer may choose any of the two specification styles demonstrated above. However,
automatically converting between these notations is beyond the scope of this thesis.

NAMED COMpREHENSIONS. We introduce the following notation for comprehensions
over some frequently used semigroups (Fig. 2.3):

• 𝖘𝖚𝖒 is equivalent to 𝖈𝖔𝖒𝖕[+,0]
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• 𝖕𝖗𝖔𝖉 is equivalent to 𝖈𝖔𝖒𝖕[*,1]

• 𝖒𝖎𝖓 is equivalent to 𝖈𝖔𝖒𝖕[𝓂𝒾𝓃]

• 𝖒𝖆𝖝 is equivalent to 𝖈𝖔𝖒𝖕[𝓂𝒶𝓍]

2.2.4 Encoding set comprehensions into separation logic

The main idea behind our encoding is to use a state-independent function that takes
(1) the encoded representation of the body and (2) the filter set, yielding the comprehen-
sion’s value. Recall that the body is a heap-dependent term; in a given state, we represent
this term via a (stateless) mathematical object called snapshot.

For example, consider the array xs = [ρ0, ρ1, ρ2] of nodes ρ𝑖 storing 3, 4, and 5, resp.
in their val fields and true, true, false in their marked fields. The snapshot of the com-
prehension 𝖈𝖔𝖒𝖕[+,0] 𝑖:Int ⦃ xs[𝑖].marked ? xs[𝑖].val : 0 ‖ 0 ≤ 𝑖 < |xs|⦄ is the map
from array indices to the corresponding values of the body term: 0 → 3, 1 → 4, 2 → 0.

In our encoding, we represent snapshots via instances of type Map[T,S], where T is
the type of index values, e. g. the integer array indices in the above example, and S is the
type of the comprehension.

2.2.4.1 Representing comprehensions via first-order functions. Consider the general
form of a comprehension: 𝖈𝖔𝖒𝖕σ[S]𝑛:T ⦃ e𝐹σ(𝑛) ‖ f⦄; this notation was explained
in Fig. 2.3. Assume that this is a consistent comprehension of type S (we will explain
consistency checking in Sec. 2.2.4.7). We are searching for a viable first-order simulation
of this higher-order comprehension. To that end, we follow the standard approach of
modeling the (higher-order) comprehension via an uninterpreted function symbol and
encoding its functional arguments via values of composite types, e. g. sets and maps.

To encode the above-mentioned kind, we introduce the comprehension function as a
(hatted) uninterpreted function symbol, 𝖈𝖔𝖒𝖕⋀

, representing our comprehension’s value:

𝖈𝖔𝖒𝖕⋀∶ Map[T, S] → Set[T] → S (2.13)

The signature of 𝖈𝖔𝖒𝖕⋀

resembles that in the definition of set comprehensions (2.11), ex-
cept we left the program state unspecified and the functional argument is replaced with
a first-class map. This design achieves two goals: On the one hand, we can decouple
the state-dependent part of the encoding (represented by the first argument) from the
state-independent encoding of the filter (Sec. 2.2.4.4); on the other hand, using an explic-
itly encoded map in the first argument of 𝖈𝖔𝖒𝖕⋀

(as opposed to a functional argument)
allows us to write first-order axioms about this function symbol (Sec. 2.2.5).

2.2.4.2 Weakest filter. The first argument of 𝖈𝖔𝖒𝖕⋀

can be viewed as the comprehension
structure (Fig. 2.3) with the weakest possible filter (i. e. the largest possible filter, if one
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T Ref S

Filter Body Semigroup

𝑡1

SS𝑡2

𝑡3

𝑡4

SS𝑡5

𝑠1

𝑠3

𝑠4

⊕

⊕ 𝑠1,3,4

field 𝑓

field 𝑔

𝑟i

field 𝑓

field 𝑔

𝑟ii

Figure 2.5: Model of a comprehensive computation.

Symbols represent values of the respective domains, as indicated at the top. Boxes represent
heap objects. Arrows represent information flow. 𝑡-values are unique indices and 𝑟-values are
unique node references; 𝑠-values may or may not be unique. Consider the comprehension in-
stance 𝖈𝖔𝖒𝖕[Semigroup] 𝑡:T ⦃ Body ‖ Filter⦄ where the semigroup is (S, ⊕), the body is e𝐹σ(𝑡)
for some σ. The filter determines which T-values instantiate the body (𝑡1, 𝑡3, 𝑡4 in our model).
The body is an expression that depends on the fields from the set 𝐹 (𝐹 = {𝑓 , 𝑔}) of multiple heap
nodes, as the body may traverse the heap to some limited depth (in our model, e𝐹σ(𝑡1) and e𝐹σ(𝑡4)
depend on 𝑟i and 𝑟ii, resp., while e𝐹σ(𝑡3) depends on both 𝑟i and 𝑟ii). However, an instantiation
of the body yields a single value of type S (𝑡1 → 𝑠1, 𝑡3 → 𝑠3, 𝑡4 → 𝑠4). These values (𝑠1, 𝑠3, 𝑠4) are
folded via a ⊕-combination into the resulting value (𝑠1,3,4).

represents the filter as a set). Intuitively, a comprehension’s structure is a mapping from
indices to values representing the properties of the individual nodes. In this view, the
filter is a means of selecting subsets of the available nodes the properties of which are to
be summarized. Thus, the weakest filter is precisely the set of indices (i. e. instantiations
of the iterated variable) that lead to the available nodes (i. e. those the fields of which
are accessible in the current state).

In separation logic, one can refer to only those memory locations that belong to the
current footprint. Therefore, the weakest filter does not yield all the nodes on the heap,
but only those that belong to the footprint. Concretely, the weakest filter permits only
those instantiations of the iterated variable 𝑛 of the comprehension body expression
e𝐹σ(𝑛) that result in expressions that can be evaluated in the current state σ.

RuNNING ExAMpLE. Consider the family of comprehensions 𝖈𝖔𝖒𝖕[+,0] 𝑖:Int⦃xs[𝑖].val‖ f⦄,
summing the values in nodes of the array xs = [ρ0, ρ1, ρ2]. First, we are interested in
evaluating a comprehension of this family in a state (say, σ1) with access permissions to
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the entire array xs. Hence, the weakest filter is {0, 1, 2} as any array index from this set
yields an instantiation of the body term xs[𝑖].val that can be evaluated in this state.

Second, we are interested in evaluating a comprehension of the same family in a differ-
ent state (say, σ2) in which we have access permissions only to the subarray xs[1..] =
[ρ1, ρ2]; this can happen in the specifications of e. g. a recursive procedure operating on
a limited range of an array. Hence, the weakest filter is {1, 2} because, although index 0
represents some node in the original array xs, we do not have permissions to access the
val field of this node that is requires for evaluating the comprehension’s body term.

puRpOSE OF THE wEAkEST FILTER. Denoting the weakest filter through 𝑁𝔤 , we conclude
that the 1st argument of 𝖈𝖔𝖒𝖕⋀

must have the following shape:

ℝ(e𝐹σ) = { (𝑛 ∶ T, 𝑣 ∶ S) ∣ 𝑣 = e𝐹σ(𝑛) ∧ 𝑛 ∈ 𝑁𝔤 } (2.14)

Here, 𝔤 is the current footprint, i. e. the set of nodes to the fields 𝑓 ∈ 𝐹 of which there
are some access permissions. The map ℝ(e𝐹σ) represents the multiset structure of the
comprehension body e in the state σ (𝐹 is the set of fields through which e can access
the heap memory). Since𝑁𝔤 is the weakest filter, it contains precisely the indices through
which one can access the nodes of our data structure within the current footprint.

Valid instantiations of the second argument of 𝖈𝖔𝖒𝖕⋀

(2.13) must be subsets of 𝑁𝔤 ; we
will discuss the corresponding checks in Sec. 2.2.4.7. Recall that we allow the program-
mer to write arbitrary Boolean expressions (possibly referring to the iterated variable)
for specifying comprehension filters. For example, 𝖈𝖔𝖒𝖕[𝓂𝒾𝓃] 𝑖:Int⦃xs[𝑖].val‖ true⦄
refers to the minimal value stored in the nodes of the currently accessible part(s) of the
array xs; i. e. the filtering condition true is rewritten by our technique into 𝑁𝔤 .

Revisiting our running example, assume that the nodes of xs store the values 5, 6, 7,
resp. in σ1 and the values 10, 6, 7, resp. in σ2. Recall that in σ1 there are permissions
to access the entire array, and in σ2 there are permissions to access only the subarray
xs[1..]. Then, in σ1 we have ℝ(xs[𝑖].val) = {(0, 5), (1, 6), (2, 7)}, while in σ2 we
have ℝ(xs[𝑖].val) = {(1, 6), (2, 7)}. This is precisely the information needed to evalu-
ate e. g. 𝖈𝖔𝖒𝖕[+,0] 𝑖:Int ⦃ xs[𝑖].val ‖ f⦄ in σ1 and σ2, for any valid filter f, e. g. {0, 2}
for σ1 and {1, 2} for σ2.

ENCODING wEAkEST FILTERS. To express 𝑁𝔤 via the information available to the prover,
we introduce the notion of the lifted representation of a heap structures. The lifted rep-
resentation is a function lift ∶ Set[Ref] → Map[T, Ref] of the current footprint, 𝔤,
that yields a map from T-indices of our data structure to the actual nodes. We can now
represent 𝑁𝔤 as the domain of lift:

𝑁𝔤 = domain(lift(𝔤)) (2.15)
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In our running example, 𝔤σ1
= {ρ0, ρ1, ρ2} and 𝔤σ2

= {ρ1, ρ2}. Hence, lift(𝔤σ1
)

maps the indices of the original array (xs) to their corresponding memory locations:
0 → ρ0, 1 → ρ1, 2 → ρ2, while lift(𝔤σ2

) maps a subset of those indices: 1 → ρ1, 2 → ρ2.

DISCuSSION. The concept of weakest filters ensures that the semantics of set compre-
hensions is restricted to the current footprint, say 𝔤. As we will show in the following,
this enables embedding set comprehensions into separation logic. However, the foot-
prints in our setting can change, e. g. due to memory allocation operations. Our technique
handles changing footprints by relating comprehensive information about different heap
decompositions10 using a number of first-order rules that will be discussed in Sec. 2.2.5.

To illustrate the relation between comprehensions in two states with different foot-
prints, notice that the two comprehensions of our running example above are indeed
related as they summarize the properties of nested subarrays (xs in σ1 and xs[1..] in
σ2). Therefore, the knowledge about one of these comprehensions provides information
about the other, e. g. 𝖈𝖔𝖒𝖕σ1

[+,0] 𝑖:Int ⦃ xs[𝑖].val ‖ {0, 1, 2}⦄ = xs[0].val +
𝖈𝖔𝖒𝖕σ2

[+,0] 𝑖:Int⦃xs[𝑖].val‖ {1, 2}⦄ follows from (2.12) due to {0, 1, 2} = {0}⊎{1, 2}.

2.2.4.3 Lifted data structure representation. Recall that the node set 𝔤 is the most-abstract
representation of the current footprint. In contrast, lift(𝔤) lifts this representation to
a slightly more concrete realm. While all heap structures, including arrays and graphs,
have a conceptually equivalent node-based representation (namely, their footprint), the
index-based representation of an array maps integers to nodes, while in graphs nodes
are typically managed via direct references. Hence, the first case requires a version of
lift that yields an injective Int → Ref mapping, while in the second case we simply
use the identity function Ref → Ref (as each node is accessed directly via its reference).

The lifted representation incorporates the information about how particular nodes are
accessed via their indices. However, this is still an abstract view over a data structure:
lift does not depend on the values stored in the fields of the nodes. The following three
axioms formalize the semantics of lift:

∀𝔤:Set[Ref], 𝑛:T • indexOf(𝔤, lift(𝔤)[𝑛]) = 𝑛
∀𝔤:Set[Ref], 𝑛:T • 𝑛 ∈ domain(lift(𝔤)) ⟺ lift(𝔤)[𝑛] ∈ 𝔤
∀𝔤:Set[Ref] • range(lift(𝔤)) = 𝔤

(2.16)

The first axiom uses an auxiliary function, indexOf, ensuring that for a fixed 𝔤 the map-
ping lift(𝔤) is injective. The second and the third axioms constrain the domain and the
range of the mapping, resp. The former says that a node index 𝑛 falls into the domain of
the mapping iff it is mapped to a node in 𝔤; the latter — that the nodes of a structure ac-
cessible via the mapping comprise this structure’s footprint; in other words, each node
is accessible via some index.

10 Heap decompositions are typically isomorphic to filter decompositions.
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2.2.4.4 Mapping data structures to their mathematical snapshots. The first step in our
technique is to map a (stateful) data structure (or its part that the current method op-
erates on) in a given program state to a mathematical, stateless object. Concretely, we
are looking for a function that provides maps in the form of (2.14) that we could feed
in as the 1st argument of our 𝖈𝖔𝖒𝖕⋀

function from (2.13). For this purpose, we employ
a state-dependent function, snap (Fig. 2.6), that takes as an argument the current foot-
print 𝔤 (and a λ-argument, as will be explained below) and yields the map ℝ (2.14),
representing a fixed state of a heap structure.

function lift(𝔤: Set[Ref]): Map[T, Ref] // axiomatized via (2.16)

function snap𝐹σ(𝔤: Set[Ref], λ𝑥 ⋅ e𝐹σ(𝑥)): Map[T, S]
requires ACCESS_NODES𝐹σ(𝔤)
ensures domain(result) = domain(lift(𝔤))

∀𝑛∶ T • 𝑛 ∈ domain(lift(𝔤)) ⟹ result[𝑛] = e𝐹σ(𝑛)

Figure 2.6: Mapping data structures to their mathematical snapshots.

The precondition of snap requires, for each node 𝑛 ∈ 𝔤, the access permissions to read
the fields from the set 𝐹. For example, given a comprehension 𝖘𝖚𝖒𝑛:Ref⦃n.val * n.val‖ 𝑛 ∈
𝔤 ⦄, where 𝔤 is the current method’s footprint and val is an integer field, we would in-
stantiate the type parameters T and S with Ref and Int, resp., and 𝐹 = {val}. Hence, the
precondition of snap would be translated to forall 𝑛 • 𝑛 ∈ 𝔤 ⟹ acc(𝑛.val, read).

The postcondition of snap encodes the resulting value of this function, which is of
the type Map[T,S], where S is the type of the comprehension body, e𝐹σ(𝑛). The keyword
result represents the map snap(𝔤, λ𝑥⋅e𝐹σ(𝑥)). The first line of the postcondition specifies
that the domain of this map is equal to the domain of the lifted representation, i. e. the
indices. The second one specifies the values to which these indices are mapped.

The λ-argument of snap binds the comprehension’s body s.t. it is available in snap’s
postcondition. Internally, our technique defunctionalizes all the λ-arguments, generat-
ing separate versions of snap for each comprehension family (cf. Fig. 2.3).

ExAMpLE We demonstrate the encoding of snap for the comprehensions 𝖈𝖔𝖒𝖕𝑥⦃𝑥.val‖ 𝔤 ⦄
and 𝖈𝖔𝖒𝖕𝑥 ⦃ 𝑥.val+c ‖ 𝔤 ⦄, where 𝔤 is the current footprint, val is an integer field, and
c is a local variable. For these comprehensions, our technique generates two concrete
versions of snap with fresh names, e. g.:
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function snap_1σ(𝔤: Set[Ref]): Map[Ref, Int]
requires ACCESS_NODESvalσ (𝔤)
ensures domain(result) = domain(lift(𝔤))

∀𝑥∶ T • 𝑥 ∈ domain(lift(𝔤)) ⟹ result[𝑥] = 𝑥.val

function snap_2σ(𝔤: Set[Ref], c: Int): Map[Ref, Int]
requires ACCESS_NODESvalσ (𝔤)
ensures domain(result) = domain(lift(𝔤))

∀𝑥∶ T • 𝑥 ∈ domain(lift(𝔤)) ⟹ result[𝑥] = 𝑥.val+c

In this example, the iterated variable’s type is Ref, so the condition 𝑥 ∈ domain(lift(𝔤))
can be written simply as 𝑥 ∈ 𝔤 (since in this case lift is the identity function).

2.2.4.5 Selecting relevant fragments of data structures. To evaluate a set comprehen-
sion instance, the programmer has to define its filter (2.12), corresponding to the sec-
ond argument of 𝖈𝖔𝖒𝖕⋀

(2.13). The filter is a set of possible values for instantiating the
comprehension’s iterated variable. Comprehensions are typically used for specifying
the properties of the entire footprint, i. e. the fragment of a data structure that the cur-
rent method operates on. In such scenarios, the filter should be set to the weakest filter,
domain(lift(𝔤)), where 𝔤 is the current footprint. Recall that comprehension filters are
subsets of the weakest filter, as explained in Sec. 2.2.4.1.

function filt𝐹σ(𝔤: Set[Ref], λ𝑥 ⋅ 𝑃𝐹
σ(𝑥)): Set[T]

requires ACCESS_NODES𝐹σ(𝔤)
ensures result ⊆ domain(lift(𝔤))

∀𝑛∶ T • 𝑛 ∈ domain(lift(𝔤)) ⟹ (𝑛 ∈ result ⟺ 𝑃𝐹
σ(𝑛))

Figure 2.7: Selecting a data structure’s fragment via a state-dependent filtering condition.

The programmer may decide to strengthen the filters in their comprehensive specifi-
cations, e. g. to independently specify the properties of multiple disjoint data structures
or to specify exact fragments of a given data structure. For example, the filter of the com-
prehension 𝖈𝖔𝖒𝖕[+,0] 𝑥:Ref ⦃ 𝑥.cost ‖ 𝑥 ∈ 𝔤 ∧ 𝑥.cost > 0⦄ is the set of references
to nodes (in the current footprint 𝔤) whose cost is positive. This example shows that
practically filters may depend on the program state.

To encode custom filters, one could employ a state-dependent function called filt (Fig. 2.7).
For example, the filter for the above comprehension can be expressed as filt(𝔤, λ𝑥 ⋅
𝑥.cost > 0). The signature of filt is similar to that of snap, except that the former
yields a set of values of type T — the possible instantiations of a comprehension’s iterated
variable. The precondition of filt requires permissions to access precisely the nodes of
the current footprint, 𝔤. The postcondition specifies two bits. First, filt yields a subset
of the weakest filter. Second, this subset consists of the elements that satisfy the predi-
cate 𝑃𝐹

σ, i. e. the filtering condition. Note that we generate a separate version of the filt
function for each instantiation of the λ-argument occurring in the specifications.
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ExAMpLE. We demonstrate the concrete encoding of filt for the above comprehension,
𝖈𝖔𝖒𝖕[+,0] 𝑥:Ref ⦃ 𝑥.cost ‖ 𝑥 ∈ 𝔤 ∧ 𝑥.cost > 0⦄, where 𝔤 is the current footprint and
cost is an integer field (the encoding picks a fresh name for filt_1):

function filt_1σ(𝔤: Set[Ref]): Set[T]
requires ACCESS_NODES𝐹σ(𝔤)
ensures result ⊆ domain(lift(𝔤))

∀𝑥∶ T • 𝑥 ∈ domain(lift(𝔤)) ⟹ (𝑥 ∈ result ⟺ 𝑥.cost > 0)

Similar to the case of snap, the condition 𝑥 ∈ domain(lift(𝔤)) here can be written sim-
ply as 𝑥 ∈ 𝔤 if the iterated variable’s type is Ref. Note that, due to the LHS in filt’s
postcondition, the expression 𝑥 ∈ filt(𝔤) is specified only for 𝑥 ∈ 𝔤. Hence, the condi-
tion 𝑥 ∈ 𝐺𝑅𝐴𝑃𝐻 from our comprehension’s filter does not need to be included in the
translation.

2.2.4.6 Encoding comprehensive specifications. The snap function introduces a layer of
abstraction that helps separating two orthogonal concerns in our reasoning technique,
namely, the inherent properties of the heap vs. the mathematical properties of compre-
hensions. However, this separation should not be exposed to the programmer. In partic-
ular, the language in which the programmer specifies the comprehensive properties of
their programs should match their intuition. The baseline for an intuitive specification
language is the mathematical notation introduced in Fig. 2.3. Internally, our technique
translates this (higher-order) notation into one that is compatible with (first-order) sep-
aration logic with the following syntactic rewriting rule:

𝖈𝖔𝖒𝖕σ[S]𝑛:T ⦃ e𝐹σ(𝑛) ‖ 𝑃𝐹
σ(𝑛)⦄ ↠ 𝖈𝖔𝖒𝖕⋀(snap𝐹σ (𝔤, λ𝑥 ⋅ e𝐹σ(𝑥)) ,

filt𝐹σ (𝔤, λ𝑥 ⋅ 𝑃𝐹
σ(𝑥)) )

(2.17)

Recall the signature of 𝖈𝖔𝖒𝖕⋀

that was defined in (2.13); we generate separate versions of
𝖈𝖔𝖒𝖕⋀

for each comprehension semigroup (i. e. S in 𝖈𝖔𝖒𝖕[S]). This function takes two
arguments; The 1st argument of this function is a map representing the current structure
of the heap (yielded by snap). The 2nd argument is a filter (yielded by filt). The node
set 𝔤 is the current method’s footprint.11

Using the terminology of Fig. 2.3, our technique generates a separate version of snap
for each comprehension body. Similarly, the technique generates a separate version of
the (state-dependent) function filt for each filtering condition 𝑃𝐹

σ(𝑛).

11 We assume that the set representation of the current footprint (𝔤) is always available in our encoding. This
requirement could be dropped in a setting that supports permission introspection, a specification language
feature providing permission amounts to particular fields held in a given state. For example, Viper supports
permission introspection via the keyword perm, e. g. 𝔤 = {𝑛:Ref | perm(𝑛.val) > 0} for a single field val.
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If all the comprehensive specifications are in terms of monoids, one can always rewrite
them using exclusively the weakest filters. Under this assumption the rule (2.17) can be
simplified as follows:

𝖈𝖔𝖒𝖕σ[⊕,𝟙]𝑛:T⦃e𝐹σ(𝑛)‖ 𝑃𝐹
σ(𝑛)⦄↠𝖈𝖔𝖒𝖕⋀(snap𝐹σ (𝔤, λ𝑥 ⋅ 𝑃𝐹

σ(𝑥) ? e𝐹σ(𝑥) ∶ 𝟙) , 𝔤) (2.18)

2.2.4.7 Consistency checking. Our technique checks that all comprehension specifica-
tions in the program are well-formed. Comprehensive specifications are well-formed iff
each of the comprehension instances is consistent. Consider the comprehension instance
𝖈𝖔𝖒𝖕σ[S]𝑛:T⦃e𝐹σ(𝑛)‖ filter𝐹σ ⦄ of type S and its corresponding lifted representation,
denoted lift(𝔤), where 𝔤 is the footprint in the state σ and 𝐹 is a (possibly, empty) field
set. This instance is well-formed iff all of the following conditions are satisfied:

1. Semigroup. If S = (S, ⊕), then ⊕ satisfies (2.9). Otherwise, if S = (S, ⊕, 𝟙), then
⊕ satisfies (2.9) and 𝟙 satisfies (2.10).

2. Filter. If filter is of type Set[T], then filter𝐹σ ⊆ domain(lift(𝔤)). Otherwise, if
filter𝐹σ ≡ 𝑃𝐹

σ(𝑛) for some Boolean expression 𝑃, then the function filt(𝔤, λ𝑥 ⋅
𝑃𝐹
σ(𝑥)) is well-formed.12

3. Body. e𝐹σ(𝑥) is of type S and the function snap(𝔤, λ𝑥 ⋅ e𝐹σ(𝑥)) is well-formed.12

Some remarks about the consistency checks are in order. First, the field set 𝐹 is (as
least) the union of the fields mentioned in the comprehension’s body and its filter. Hence,
it is possible to instantiate 𝐹 with the entire field set of the current program, i. e. 𝔤 = 𝔤I

σ
(cf. Sec. 2.2.2). Second, to type check a comprehension instance, one needs to check that
the type of its semigroup matches the type of its body and that the type of its filter
is either Boolean or Set[T] where T is the type of its iterated variable. Third, the λ-
arguments of snap and filt may or may not depend on the iterated variable. For in-
stance, 𝖈𝖔𝖒𝖕[+,0]𝑛:Ref ⦃ 1 ‖ true⦄ is a consistent comprehension representing the
number of nodes in the current footprint.

2.2.5 Axiomatizing set comprehensions

Equipped with the function snap, we are now ready to present our axiomatization of set
comprehensions of the form 𝖈𝖔𝖒𝖕[S], which we encode via the uninterpreted function
symbol 𝖈𝖔𝖒𝖕⋀

(2.13). We cannot axiomatize all properties of set comprehensions using
first-order formulas, e. g. those that require inductive reasoning.13 Nevertheless, it is
possible to identify a small set of properties of set comprehensions that are sufficient for

12 We defined well-formedness requirements in Sec. 1.2.2.
13 One could axiomatize a limited number of inductive properties, e. g. distributivity of multiplication over

summation: d* ∑
𝑥∈xs

𝑥.val = ∑
𝑥∈xs

d* 𝑥.val. Yet, there are infinitely many different inductive properties, and

it is not feasible to axiomatize all of them in first-order logic.
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(a) Singleton — (b) Subset —

Figure 2.8: Program heap (de)compositions as toy brick constructions.

Direct field updates and method calls are the two supported classes of heap-transforming oper-
ations. While the former modify singleton nodes at a time, they may indirectly affect the com-
prehensive properties of larger heap fragments to which they belong. In contrast, method calls
affect arbitrary subsets of the set of currently accessible nodes. To illustrate singleton vs. sub-
set compositions and decompositions, we use the constructions of toy bricks (a) and (b), resp.,
where the reddish bricks symbolize the footprint of the operation and the blueish ones — the
remaining part of the heap, a.k.a. the frame.

the automatic modular verification of a number of benchmark examples. In particular,
the benchmarks that we will use to demonstrate our technique require the consideration
of various heap decompositions that are characteristic of a broad class of real-world
heap-transforming programs.

We proceed as follows. First, we present an axiom for evaluating comprehensions
over empty and singleton filters (Sec. 2.2.5.1). Second, we present an axiom for deriving
equalities between comprehensions with a common filter (Sec. 2.2.5.2). Our third axiom
supports singleton decompositions that occur in presence of individual field updates
(Sec. 2.2.5.3). Conversely, our fourth axiom supports subset decompositions that occur in
presence of individual method calls (Sec. 2.2.5.4). We then discuss the incompleteness of
our axiomatization (Sec. 2.2.5.5) and demonstrate it in two example scenarios: a simple
example (Sec. 2.2.5.6) and a more involved one (Sec. 2.2.5.7).

2.2.5.1 Handling the non-recursive cases. We start by considering the special cases in
which the filter is an empty or a singleton set:

∀𝑅∶ Map[T, S] • 𝖈𝖔𝖒𝖕⋀(𝑅,∅) = 𝟙 if 𝖈𝖔𝖒𝖕⋀

encodes 𝖈𝖔𝖒𝖕[⊕,𝟙]
∀𝑅∶ Map[T, S], 𝑎∶T • 𝑎 ∈ domain(𝑅) ⟹ 𝖈𝖔𝖒𝖕⋀(𝑅, Set(𝑎)) = 𝑅[𝑎]

(2.19)

These two axioms directly corresponds to the 1st and the 2nd cases of (2.12). The first
axiom is defined only for comprehensions over monoids. Most proof outlines can be or-
ganized in a way that avoids reasoning about comprehensions over empty filters. Con-
versely, the second axiom connects the value stored in the map 𝑅 at 𝑎 with the compre-
hension’s value; this axiom is a crucial reasoning ingredient (marked ).
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2.2.5.2 Equal comprehensions over two structures. A common reasoning step is to
derive the equality between two set comprehensions based over heap structures that
agree on a subset of their nodes. This pattern is particularly important for supporting
separation logic framing as the frame of an operation can be represented in either of
the states (i. e. before or after invoking the operation) while the comprehensive prop-
erties of the frame in these two states are the same. For example, recall that we ap-
plied separation-logic framing (marked with ) in our pen-and-paper proof outlines
for shortestPath (Sec. 2.2.1). To automate this step, we introduce an axiom called same-
terms:

∀𝑅, 𝑄∶ Map[T, S], 𝐹∶ Set[T] • ∅ ⊂ 𝐹 ⊆ domain(𝑅), domain(𝑄) ∧
(∀𝑛∶ T • 𝑛 ∈ 𝐹 ⇒ 𝑅[𝑛] = 𝑄[𝑛]) ⟹
𝖈𝖔𝖒𝖕⋀(𝑅,𝐹) = 𝖈𝖔𝖒𝖕⋀(𝑄,𝐹)

(2.20)

The LHS of the outer implication of this axiom checks that 𝐹 is a valid filter for either
of the maps, 𝑅 and 𝑄, and says that these two maps must assign the same S-values to
all (filtered) T-values; in other words, the two comprehensions must agree on the value
of their terms over the filter 𝐹. Under this condition, we obtain the RHS that simply ex-
presses the equality of the two comprehensions. This axiom is analogous to its namesake
axiom (Same-Terms) proposed by Leino and Monahan [52] for Spec# comprehensions.
However, since our encoding of set comprehensions relies upon first-class filter sets,
(2.20) must quantify over filters (𝐹) in addition to the snapshots of the two structures (𝑅,
𝑄).

Another important use case for same-terms proving the equality between comprehen-
sions with the same filter over nested snapshots, i. e. if the domain of one snapshot is a
subset of the domain of the other and the two snapshots agree over that subset. For ex-
ample, it is often necessary to prove 𝖈𝖔𝖒𝖕⋀(snap(𝐴), 𝐴) = 𝖈𝖔𝖒𝖕⋀(snap(𝐵), 𝐴) where
𝐴 ⊆ 𝐵 and there is a bijection between references and indices (which is not always the
case, as depicted in Fig. 2.5, but is the case e. g. in arrays), In this case, the two maps
must agree over the entire filter 𝐴, satisfying the LHS of (2.20).

Note that the empty set is excluded from the possible values of 𝐹 in (2.20). This is be-
cause a comprehension over an empty filter is generally undefined; cf. (2.12). Conversely,
𝐹 may be 𝑅 or 𝑄’s weakest filter (2.15) as long as it is valid for comprehensions over both
maps, i. e. identical to or the subset of the domain of these maps.

2.2.5.3 Stepping through induction proofs. The second common pattern concerns the
derivation of comprehensive properties of a structure based on its singleton decomposi-
tion, i. e. the concrete properties of one node of this structure and the comprehensive
properties of all the remaining nodes. For example, recall the steps marked with in
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the pen-and-paper proof outlines for shortestPath. Our technique automates this step
using the axiom called step:

∀𝑅∶ Map[T, S], 𝐹∶ Set[T], 𝑛∶ T • Set(𝑛) ⊂ 𝐹 ⊆ domain(𝑅) ⟹
𝖈𝖔𝖒𝖕⋀(𝑅,𝐹) = 𝑅[𝑛] ⊕ 𝖈𝖔𝖒𝖕⋀(𝑅,𝐹 Set(𝑛))

(2.21)

The LHS says that 𝑛 belongs to the (valid) filter 𝐹, which contains also some other el-
ements. The RHS equates the comprehension over filter 𝐹 and a ⊕-combination of the
mapped value of 𝑛 and the comprehension over the remainder filter, 𝐹 Set(𝑛) (which
must be non-empty due to the LHS). There are four analogues of this axiom in the
Spec# technique (Induct). For our set comprehensions, we require only one axiom to
cover all possible singleton decompositions. Note that this axiom specifies only the case
𝑛 ∈ 𝐹; the case of 𝑛 ∉ 𝐹 does not require a separate axiom since it trivially follows that
𝐹 = 𝐹 Set(𝑛), and hence 𝖈𝖔𝖒𝖕⋀(𝑅,𝐹) = 𝖈𝖔𝖒𝖕⋀(𝑅,𝐹 Set(𝑛)).

2.2.5.4 Supporting modular reasoning. It is important for a separation-logic based tech-
nique to support modular reasoning, i. e. the ability to derive the comprehensive proper-
ties of the entire client’s footprint based on those of the frame and the footprint of the
callee. Method calls split the client’s heap into two potentially unbounded subheaps, in-
troducing a conceptually different kind of decompositions (marked ) that cannot be
reduced to a bounded number of singleton decompositions and are hence not covered
by (2.21). Therefore, we add one more axiom, called split-term, to our set comprehension
reasoning technique, enabling arbitrary two-way decompositions:

∀𝑅∶ Map[T, S], 𝐹1, 𝐹2∶ Set[T] • ∅ ⊂ 𝐹1, 𝐹2 ⊂ domain(𝑅) ⟹
𝖈𝖔𝖒𝖕⋀(𝑅,𝐹1 ⊎ 𝐹2) = 𝖈𝖔𝖒𝖕⋀(𝑅,𝐹1) ⊕ 𝖈𝖔𝖒𝖕⋀(𝑅,𝐹2)

(2.22)

The LHS checks that both 𝐹1 and 𝐹2 are valid filters of the comprehension over the
map 𝑅. The RHS equates the comprehension over the composition 𝐹1 ⊎ 𝐹2 and the ⊕-
combination of the comprehensions over the two respective subfilters. This axiom is
analogous to the split-range axiom from the Spec# technique (Split-Range). However, an
important advantage of set-based comprehensions is that the components 𝐹1 and 𝐹2 of
the decomposition 𝐹1 ⊎ 𝐹2 do not have to represent adjacent parts of the original heap
structure, whereas a split of an integer range always reduces it to two comprehensions
over adjacent sub-ranges.

2.2.5.5 Incompleteness of axioms. Axiomatizing the properties of set comprehensions
in first-order logic cannot be complete. The evaluation of a comprehension is defined
via the recursive formula (2.12) with a potentially unbounded number of steps. There-
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fore, deriving first-order properties from this definition (e. g. (2.20), (2.21), and (2.22))
requires induction, which is itself beyond first-order logic.

While inherently incomplete, our axioms are designed to automate the reasoning
steps that frequently occur while verifying comprehensive properties of heap-transforming
programs. On the one hand, our axioms support the two common operations that are
used in such programs, namely, individual field updates and subprocedure calls. On
the other hand, our axiomatization generalizes the state of the art, i. e. the axioms of
Spec# (that are also inherently incomplete).

In practice, incompleteness of our technique also stems from the SMT solver’s limited
support for quantifier instantiation, as this problem is generally undecidable. However,
our experiments show that the axiomatization presented above still provides good au-
tomation on a diverse set of characteristic benchmarks, as we will explain in Sec. 2.5.

2.2.5.6 Applying singleton decompositions. Consider the simple program flipOnewith
an alternative, set-based specification (Fig. 2.9). The goal of this example is to demon-
strate that set comprehensions require conceptually simpler structure decompositions
than Spec#-style comprehensions. In particular, we sketch the following proof outline
to verify the assertion in flipOne:14

𝖒𝖎𝖓𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ 𝔤 ⦄ =
(2.17) 𝖒𝖎𝖓

⋀

(snap(𝔤), 𝔤) =
(2.19) ∶ (2.21) 𝔤 = Set(x) ? snap(𝔤)[x] ∶ 𝓂𝒾𝓃(x.val, 𝖒𝖎𝖓

⋀

(snap(𝔤), 𝔤 Set(x)) ) =
snap ∶ (2.20) 𝔤 = Set(x) ? x.val ∶ 𝓂𝒾𝓃(x.val, 𝖒𝖎𝖓

⋀

(old(snap(𝔤)), 𝔤 Set(x)) ) =
Assign. 𝔤 = Set(x) ? -m ∶ 𝓂𝒾𝓃( − m, 𝖒𝖎𝖓

⋀

(old(snap(𝔤)), 𝔤 Set(x))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐶

) =

Outline-6 − m
(Outline-5)

In the first step of the derivation above, we rewrite the comprehension instance using the
internal ingredients of our technique. We then consider a singleton decomposition, based
on the node x that has been modified and the unchanged heap fragment, 𝔤 Set(x).
We denote singleton decompositions via ; see 2.8a. The abbreviation snap(𝔤) denotes
snap{val}(𝔤, λ𝑥 ⋅ 𝑥.val). If x is the only node in the footprint 𝔤, then snap(𝔤) at x
(i. e. x.val) is the minimal value. Otherwise, we apply separation-logic framing , for
the nodes from this unchanged fragment, to learn that the individual values of 𝑛.val
have not changed after the field update operation. We then substitute x.val with the
RHS of the assignment: −m.

14 𝓂𝒾𝓃 denotes the binary operator defined as 𝓂𝒾𝓃(𝑥, 𝑦) ≡ 𝑥 ≤ 𝑦 ? 𝑥 ∶ 𝑦. 𝖒𝖎𝖓 denotes 𝖈𝖔𝖒𝖕[𝓂𝒾𝓃,+∞], and
𝖒𝖎𝖓
⋀

is its corresponding comprehension function (2.13).
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field val: Int
method flipOne(𝔤:Set[Ref], x:Ref, m:Int)
requires forall 𝑛 • 𝑛 ∈ 𝔤 ⇒ acc(n.val)
requires x ∈ 𝔤
requires 0 ≤ m = 𝖒𝖎𝖓𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ 𝔤 ⦄

{
x.val := -1 * m
assert 𝖒𝖎𝖓𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ 𝔤 ⦄ = −m

}

Figure 2.9: Simple heap-transforming program with comprehensive specifications.

To prove that the resulting expression is equal to −m, consider the following lemma:

Arith. −m ≤ 0 ≤ m =
Precond. old(𝖒𝖎𝖓𝑛 ⦃ 𝑛.val ‖ 𝔤 ⦄) =
(2.17) old(𝖒𝖎𝖓

⋀

(snap(𝔤), 𝔤)) =
Distrib. old 𝖒𝖎𝖓

⋀

(old(snap(𝔤)), 𝔤) =
(2.21) 𝓂𝒾𝓃(old(x.val), 𝐶) ≤
Arith. 𝐶

(Outline-6)

On the one hand, the precondition of flipOne requires that m is non-negative; hence,
−m must be a non-positive. On the other hand, the same precondition also specifies that
m is the value of the 𝖒𝖎𝖓 comprehension over the entire footprint 𝔤 in the pre-state of
the method flipOne. Applying distributivity of old, we obtain a comprehension with a
new term, old(𝑛.val), over the entire 𝔤. We then consider a singleton decomposition
of 𝔤, again, based on the updated node x (the decomposition exists since we assumed
𝔤 ≠ Set(x)). The remainder comprehension, denoted 𝐶, has the filter 𝔤 Set(x); this
is the instance that we have obtained at the end of our original derivation (Outline-5).
Finally, we apply the definition of 𝓂𝒾𝓃 , obtaining 𝐶 as the upper bound for −m.

2.2.5.7 Applying complex decompositions. We have observed so far that the singleton
decomposition pattern supported in our set comprehension technique enables concise
proofs for programs that manipulate individual heap nodes. Yet, modular reasoning
in separation logic relies also on the ability of our technique to reason about compre-
hensive properties of arbitrary nested subheaps, e. g. converting between the comprehen-
sive properties of the footprints of a callee method and its client. We will now address
this problem, demonstrating that our axiomatization of set comprehensions is general
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field left, right: Ref

define count(𝔤, 𝑓 ) 𝖈𝖔𝖒𝖕[+,0] 𝑛 ⦃ 𝑛.𝑓 = null ? 1 ∶ 0 ‖ 𝑛 ∈ 𝔤 ⦄
method merge(𝔤: Set[Ref], l, r: Ref, ldag, rdag: Set[Ref])
returns (link: Ref)
requires DAG(𝔤) && l ∈ ldag∧ r ∈ rdag

𝔤 = ldag⊎ rdag∧ CLOSED𝔤(ldag)
ensures DAG(𝔤) && link ∈ ldag

old(l.right) = null ⟹ l = link∧ l.right = r
count(𝔤, right) = old(count(𝔤, right))− 1

{
if (l.right ≠ null) {
var nldag: Set[Ref] := subIn(𝔤, ldag, l.right)
var g1: Set[Ref] := nldag union rdag
link := merge(l.right, r, g1, nldag, rdag)

} else {
l.right := r
link := l

} }

Figure 2.10: Example recursive program and its modular comprehensive specifications.

Method merge attaches the DAG rooted in r to a node of the DAG rooted in l, and returns that
node. The macros DAG(𝔤) and CLOSED𝔤(ldag) will be defined in Chap. 3; intuitively, the former
specifies acyclicity while the latter — that each heap edge exiting ldag ⊂ 𝔤 (if it exists) cannot
point to its compliment, rdag ⊂ 𝔤.

enough for supporting such scenarios. Therefore, we proceed by considering the recur-
sive method merge (Fig. 2.10) specified in terms of set comprehensions.

We are interested in verifying the last bit in the postcondition of merge, expressing a
comprehensive property of the DAG structure that this method operates on. Concretely,
this postcondition says that, as a result of invoking this method, the number of nodes in
its footprint, 𝔤, whose right field stores the value of null decreases by one. Intuitively,
the property should hold as the method creates exactly one new heap edge and does
not destroy any (Fig. 2.11 shows a typical run of merge). To verify this comprehensive
property, we consider the two branches in the body of merge, starting from the then-
branch and then proceeding to the else-branch.

vERIFyING THE THEN-BRANCH. We begin by assuming the branch condition l.right ≠
null. There are three operations in this branch. First, we declare a subheap nldag, repre-
senting the new left-DAG via a state-dependent function subIn. subIn(𝔤, ldag, l.right)
yields a subset of the left-DAG, ldag, reachable from the node l.right by following ref-
erence fields of nodes within 𝔤.15 Second, we declare a new footprint, g1, as the union

15 We will discuss the notion of local reachability in Chap. 3. In particular, the logical encoding of subIn is
presented in Sec. 3.3.3.
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frame nldag rdag

l l.right link r

Figure 2.11: Example scenario of running merge.

The input structures are two DAGs rooted in l and r. Small circles correspond to heap objects;
solid arrows represent fields initialized in the pre-state that are unchanged; the dashed arrow
represents the new heap edge (created in the post-state by initializing a field). The frame of the
recursive call is surrounded with blue; the footprint is surrounded with red.

of the new left-DAG nldag and the right-DAG rdag; note that (1) g1 is a subset of the
current footprint, g, as both components of the union are subsets of g, and (2) these com-
ponents are disjoint, as nldag is a subset of ldag which is specified in the precondition
to be disjoint with rdag. Third, we use the new footprint g1 to invoke the callee instance
of merge.

We proceed with the derivation for the value of count(𝔤, right):16

count(𝔤, right) =
Syntax 𝖈𝖔𝖒𝖕[+,0]𝑛 ⦃ 𝑛.𝑓 = null ? 1 ∶ 0 ‖ 𝑛 ∈ 𝔤 ⦄ =
(2.17) 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤) =
(2.22) 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤 𝔤1) + 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤1) =
(2.20) 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤 𝔤1) + 𝖈𝖔𝖒𝖕⋀(snap(𝔤1), 𝔤1) =
Recurse. 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤 𝔤1) + old(𝖈𝖔𝖒𝖕⋀(snap(𝔤1), 𝔤1)) − 1 =
(2.20) 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤 𝔤1) + old(𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤1)) − 1 =
(2.20) old( 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤 𝔤1)) + old(𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤1)) − 1 =
(2.22) old( 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤)) − 1 =
(2.17) old( 𝖈𝖔𝖒𝖕[+,0]𝑛 ⦃ 𝑛.𝑓 = null ? 1 ∶ 0 ‖ 𝑛 ∈ 𝔤 ⦄) − 1 =
Syntax old(count(𝔤, right)) − 1

(Outline-7)

In the first step of the derivation, we rewrite the macro definition count according to the
definition from Fig. 2.10, obtaining the comprehension instance in its canonical form. We
then apply our encoding, which results in a (state-independent) function, 𝖈𝖔𝖒𝖕⋀

over

16 The lower bounds in (2.22) and (2.20) are satisfied because neither 𝔤1 nor 𝔤 𝔤1 are empty since they include
l.right and l, resp. The upper bounds hold due to the specification of snap.
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two arguments: a state-dependent map, snap(𝔤), and the current footprint, 𝔤, as the
filter. Here snap(𝔤) denotes snap{left, right}(𝔤, λ𝑥 ⋅ 𝑥.𝑓 = null ? 1 ∶ 0).

Recall that the symbol denotes arbitrary two-way decompositions; see 2.8a. The third
step involves such a decomposition, splitting the entire footprint 𝔤 into two disjoint parts
based on the callee’s footprint, 𝔤1, and its frame, 𝔤 𝔤1. We justify this step by instan-
tiating our split-term axiom (2.22). Next, we apply the callee’s postcondition, deriving
the value of 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤1) in terms of the pre-state of the call. The equivalence of
𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤1) and 𝖈𝖔𝖒𝖕⋀(snap(𝔤1), 𝔤1) follows from our same-terms axiom (2.20)
because the maps snap(𝔤) and snap(𝔤1) agree over the domain 𝔤1 (since 𝔤1 ⊂ 𝔤).

We now apply our same-terms (2.20) again to derive that the comprehension over the
frame has been preserved after the call. We then apply split-term (2.22) for the second
time, composing a single comprehension in the pre-state over a larger filter, 𝔤, based on
the two comprehensions over its disjoint subheaps. Finally, we conclude the derivation
by rewriting the resulting comprehension via its canonical form, and then via the macro
definition introduced by the programmer.

vERIFyING THE ELSE-BRANCH. Proceeding to the else-branch of merge, we can justify
the postcondition with quite a similar derivation sequence. The main difference here
is that we apply our step axiom (2.21) while considering a singleton decomposition of
the client’s footprint 𝔤 based on the only node l modified in this branch. The following
outline concludes our proof of the last postcondition in Fig. 2.10[merge]:17

count(𝔤, right) =
Syntax 𝖈𝖔𝖒𝖕[+,0]𝑛 ⦃ 𝑛.𝑓 = null ? 1 ∶ 0 ‖ 𝑛 ∈ 𝔤 ⦄ =
(2.17) 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤) =
(2.21) 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤 Set(l)) + snap(𝔤)[l] =
Else-branch 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤 Set(l)) + 0 =
(2.20) old( 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤 Set(l))) =
Assign. old( 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤)) − old(snap(𝔤)[l]) =
(2.21) old( 𝖈𝖔𝖒𝖕⋀(snap(𝔤), 𝔤)) − 1 =
(2.17) old( 𝖈𝖔𝖒𝖕[+,0]𝑛 ⦃ 𝑛.𝑓 = null ? 1 ∶ 0 ‖ 𝑛 ∈ 𝔤 ⦄) − 1 =
Syntax old(count(𝔤, right)) − 1

(Outline-8)

As before, snap(𝔤) denotes snap{left, right}(𝔤, λ𝑥 ⋅ 𝑥.𝑓 = null ? 1 ∶ 0). In the final state,
the evaluation of our comprehension over the singleton set Set(l) yields the value 0;
snap(𝔤) holds the information that in this branch l.right has been assigned to a non-
null value, namely, r. Conversely, the comprehension over Set(l) yields 1 in the old

17 The premises of (2.21) and (2.20) are satisfied because Set(l) ⊂ 𝔤 as the footprint also includes e. g. r.
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state. As in the previous case, we apply our same-terms axiom (2.20) to prove that the
comprehension over the frame, 𝔤 Set(l), is preserved across the state change.

2.3 CASE STuDy

We have demonstrated in Sec. 2.2.518 that our technique is suitable for modular reason-
ing. In this section, we consider another dimension of complexity that arises in practice.
Concretely, we revisit the running examples of prior work and explain how they can
be specified and verified in our technique. We start by considering minSubArraySum, a
classic algorithm for computing the sum of a minimal sub-array of an array; this case
will demonstrate how our technique can handle nested comprehensions that are often use-
ful in optimization problems (Sec. 2.3.1). We then consider coincidenceCount, a classic
algorithm for computing the number of coinciding values in two arrays; this case demon-
strates comprehensive specifications of a method that simultaneously operates on two
disjoint data structures (Sec. 2.3.2).

2.3.1 Reasoning with nested comprehensions

2.3.1.1 Overview. The method minSubArraySum (Fig. 2.12) operates on a heap-allocated
array whose footprint is specified via the node set 𝔤. The precondition of minSubArray-
Sum requires that the array is non-empty. The postcondition ensures that the resulting
value (stored in the output parameter x) is equal to either the sum of the minimal (non-
empty) subarray or 0, if there are no better solutions.

We first provide intuition for the algorithm and its specifications and then demon-
strate the complete proof outlines.

ALGORITHM. To understand how the algorithm works, consider the scenario presented
in Fig. 2.13. In this scenario, the input array is [1,−2,−3, 3,−5,−1, 9, 2]. The algorithm
starts with n, y, x all set to 0. Each loop iteration updates the three variables as follows.
First, y gets the best19 of 0 and y0+array[n0]. Second, x gets the best of y and x0. Third,
n is incremented. After each iteration, y stores the locally best solution and x stores the
globally best solution over the processed array range.

SpECIFICATIONS. It is essential to understand why the specifications of Fig. 2.12 cannot
be easily simplified. Verifying the ultimate postcondition relies on the verification of the
two comprehensive properties in the loop invariant. The property marked /*X*/ relies
on the verification of /*Y*/ as x depends on y in the loop body; conversely, y does not

18 In particular, Sec. 2.2.5.4 presents the axioms for reasoning about arbitrary two-way decompositions.
19 Here, the best refers to the least as we are considering a minimization problem.
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field val: Int
define array lift(𝔤)
define size(array) |domain(array)|
define sum(𝑖, 𝑗) 𝖘𝖚𝖒𝑘 ⦃ array[𝑘].val ‖ 𝑖 ≤ 𝑘 < 𝑗 ⦄
method minSubArraySum(𝔤: Set[Ref]) returns (x: Int)
requires ACCESS_NODES(𝔤, read)

size(array) > 0
ensures ACCESS_NODES(𝔤, read)

x = 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓 𝑗 ⦃𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, 𝑗) ‖ 0 ≤ 𝑖 < 𝑗 ⦄ ‖ 1 ≤ 𝑗 < size(array)+1⦄)
{
var n, y := 0, 0; x := 0
while (n < size(array))
invariant ACCESS_NODES(𝔤, read)

0 ≤ n ≤ size(array)
n = 0 ⟹ y = 0∧ x = 0

/* Y */ n > 0 ⟹ y = 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, n) ‖ 0 ≤ 𝑖 < n⦄)
/* X */ n > 0 ⟹ x = 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓 𝑗 ⦃𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, 𝑗) ‖ 0 ≤ 𝑖 < 𝑗 ⦄ ‖ 1 ≤ 𝑗 < n+1⦄)

{
var x0, y0, n0 := x, y, n // for the proof outlines
y := y + array[n].val
if (0 ≤ y) y := 0
elseif (y < x) x := y
n := n+1

} }

Figure 2.12: Implementation of minSubArraySum and its comprehensive specification.

The algorithm finds the cumulative value of the minimal sub-array of the input array. Each iter-
ation updates y and then x; the former stores locally-optimal solutions (the sum of the minimal
sub-array ending in n), and the latter stores the globally-optimal solution so far (the sum of the
minimal sub-array ending before n). The special case in which all the array elements are posi-
tive (for which the best solution corresponds to the empty sub-array) is covered by 𝓂𝒾𝓃(0,…)
in the invariant. The maximal value of 𝑖 in Y is n-1 because n is the next node to be processed.
The maximal value of 𝑗 in X is n as it determines the current sub-array’s excluded upper bound.

Iteration Array value Local Best Global Best Comment
n = 0 array[n] = 1 y = 0 x = 0
n = 1 array[n] = -2 y = -2 x = -2
n = 2 array[n] = -3 y = -5 x = -5
n = 3 array[n] = 3 y = -2 x = -5 x ← 𝓂𝒾𝓃(x0, y)
n = 4 array[n] = -5 y = -7 x = -7
n = 5 array[n] = -1 y = -8 x = -8
n = 6 array[n] = 9 y = 0 x = -8 y ← 𝓂𝒾𝓃(0, y0+array[n])
n = 7 array[n] = -2 y = -2 x = -8

Figure 2.13: Typical run of minSubArraySum.
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depend on x, so the property /*Y*/ can be verified independently. Note that (for n > 0)
this property must be of the form y = 𝓂𝒾𝓃(0, y0+array[n0]) as the algorithm may choose
0 over any (previously computed) local best; the 6th iteration in Fig. 2.13 shows such a
situation.

We express property /*Y*/ via comprehensions (for n > 0 and some α):

y = 𝓂𝒾𝓃(0, min
α≤𝑖<n

sum(𝑖, n))

Since α defines the lower bound of 𝑖, i. e. the leftmost array index, we conclude that
α = 0. Note that α must be less than n as otherwise the min-comprehension range would
be empty (recall that min over ∅ is undefined).

We now express the dependent property /*X*/ (for n > 0 and some β):

x = 𝓂𝒾𝓃(0, min
β≤𝑗<n+1

min
0≤𝑖<𝑗

sum(𝑖, 𝑗))

We will now justify that the above expression, indeed, represents x after each loop it-
eration. If n = 1, then we have just processed the first array element, so x must be the
best of 0 and array[0]. We get 𝑗 ∈ [β, 2) and 𝑖 ∈ [0, 𝑗), i. e. the maximal value for 𝑗 is
1 which gives the only possible value for 𝑖 = 0. (The minimal value for 𝑗 is also β = 1;
otherwise, we would get an empty range in the inner min-comprehension.) Hence, the
above expression for x yields the best of two: 0 and sum(0, 1) = array[0], as expected.

We proceed under the alternative assumption, n > 1. On the one hand, substituting
n with n0+1 (due to the increment in the loop body) and β = 1 (we established this
constant at n = 1), we can rewrite x using (2.21) as follows:

x = 𝓂𝒾𝓃(0, 𝓂𝒾𝓃( min
1≤𝑗<n0+1

min
0≤𝑖<𝑗

sum(𝑖, 𝑗), min
0≤𝑖<n0+1

sum(𝑖, n0+1 )))

On the other hand, we have x = 𝓂𝒾𝓃(x0, y) where y = min
0≤𝑖<n0+1

sum(𝑖, n0+1 ) — from the

above argument — and x0 = 𝓂𝒾𝓃(0, min
1≤𝑗<n0+1

min
0≤𝑖<𝑗

sum(𝑖, 𝑗)) — the hypothesis. Equating

the two expressions for x and rewriting e. g. 𝓂𝒾𝓃(𝑎, 𝓂𝒾𝓃(𝑏, 𝑐)) as 𝓂𝒾𝓃(𝑎, 𝑏, 𝑐), we get the
ultimate correctness condition:

x
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝓂𝒾𝓃(0, min

1≤𝑗<n0+1
min
0≤𝑖<𝑗

sum(𝑖, 𝑗), min
0≤𝑖<n0+1

sum(𝑖, n0+1 ))

= 𝓂𝒾𝓃(0, min
1≤𝑗<n0+1

min
0≤𝑖<𝑗

sum(𝑖, 𝑗)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

x0

, min
0≤𝑖<n0+1

sum(𝑖, n0+1 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
y

)

This condition is trivially valid.
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Note that one could refine the specifications of minSubArraySum, hiding the explicit
𝓂𝒾𝓃(0, …) cases. The idea is to use alternative invariants for /*Y*/ and /*X*/ that include
empty ranges for the 𝖘𝖚𝖒-comprehension:

y = 𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, n) ‖ 0 ≤ 𝑖 ≤ n⦄
x = 𝖒𝖎𝖓 𝑗 ⦃𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, 𝑗) ‖ 0 ≤ 𝑖 ≤ 𝑗 ⦄ ‖ 1 ≤ 𝑗 < n+1⦄

In the above formulas, the ranges of sum can be empty. In the first expression, sum(𝑖, n) =
0 if 𝑖 = n. In the second expression, sum(𝑖, 𝑗) = 0 if 𝑖 = 𝑗. Arguably, this more concise
specification version is harder to understand than the more verbose version of Fig. 2.12.

2.3.1.2 Encoding the nested comprehensions. Our technique automatically encodes com-
prehensions into separation logic. We will now demonstrate how this encoding can han-
dle nested comprehensions. The encoding of a comprehension consists of three essen-
tial functions: lift that maps the node-based representation of a heap structure to an
index-based representation (cf. Fig. 2.5), snap that encodes the evaluation of the compre-
hension body for all permitted indices, and filt that generates subsets of indices based
on the conditions specified by the programmer.

The example of Fig. 2.12 features three comprehension families (cf. Fig. 2.3). As these
comprehensions ultimately specify the same array structure, all three require only the
standard lift function axiomatized via (2.16); we abbreviate lift(𝔤) as array for read-
ability. The filt function is also shared: All three comprehensions use filters that are
defined as bounded sets of integer values: filt(lo, hi) ∶= {𝑘 ∣ lo ≤ 𝑘 < hi}. Here lo
and hi are a semi-open interval’s (included) lower and (excluded) upper bounds.

In contrast, the three comprehensions require different versions of the snap function;
indeed, nested comprehensions cannot share their body terms. Fig. 2.14 presents the
encoding of the three snapshot functions. Applying these functions (as well as filt),
we obtain the following encodings, as per (2.17):

sum(𝑖, 𝑗) ≡ 𝖘𝖚𝖒𝑘 ⦃ array[𝑘].val ‖ 𝑖 ≤ 𝑘 < 𝑗 ⦄ ↠ 𝖘𝖚𝖒⋀(snap1(𝔤), filt(𝑖, 𝑗))
(2.23)

𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, 𝑗) ‖ 0 ≤ 𝑖 < 𝑗 ⦄ ↠ 𝖒𝖎𝖓
⋀

(snap2(𝔤, 𝑗), filt(0, 𝑗))
(2.24)

𝖒𝖎𝖓 𝑗 ⦃𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, 𝑗) ‖ 0 ≤ 𝑖 < 𝑗 ⦄ ‖ 1 ≤ 𝑗 < n+1⦄ ↠ 𝖒𝖎𝖓
⋀

(snap3(𝔤), filt(1, n+1))
(2.25)

2.3.1.3 Verification of the Y invariant. The first step is to verify the invariant denoted
Y in minSubArraySum. This invariant expresses the fact that y is a local optimum, i. e. it
stores the sum of the minimal postfix of the sub-array processed so far, or 0, if all those
sums happen to be positive. While we present the proof only for the case of n > 0, the
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function snap1(𝔤: Set[Ref]): Map[Int, Int]
requires ACCESS_NODES(𝔤)

range(array) = 𝔤
ensures domain(result) = filt(0, size(array))

∀𝑘 ∈ domain(result) • result[𝑘] = array[𝑘].val

function snap2(𝔤: Set[Ref], 𝑗: Int): Map[Int, Int]
requires ACCESS_NODES(𝔤)

range(array) = 𝔤
ensures domain(result) = filt(0, size(array))

∀𝑖 ∈ domain(result) • result[𝑖] = 𝖘𝖚𝖒⋀(snap1(𝔤), filt(𝑖, 𝑗))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
sum(𝑖,𝑗)

function snap3(𝔤: Set[Ref]): Map[Int, Int]
requires ACCESS_NODES(𝔤)

range(array) = 𝔤
ensures domain(result) = filt(1, size(array)+1)

∀𝑗 ∈ domain(result) • result[𝑗] = 𝖒𝖎𝖓
⋀

(snap2(𝔤, 𝑗), filt(0, 𝑗))

Figure 2.14: Snapshot functions encoding nested comprehension bodies from Fig. 2.12.

case of n = 0 is identical, except that all the variables are initialized with 0. Note that the
computation of y does not depend on the computation of x; hence, we can ignore the
latter variable for now. We proceed with the following proof outline written in terms of
the penultimate state of the loop body, i. e. right before incrementing n:
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Update y y = 𝓂𝒾𝓃 (0, y0 + array[n0].val) =
(2.19) 𝓂𝒾𝓃 (0, y0 + sum(n0, n0+1 )) =
Spec. snap2 𝓂𝒾𝓃 (0, y0 + snap2(𝔤,n0+1) [n0]) =
Def. R 𝓂𝒾𝓃 (0, y0 + R[n0]) =
Ind. hyp. Y 𝓂𝒾𝓃 (0, 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, n) ‖ 0 ≤ 𝑖 < n⦄) + R[n0]) =
(2.24) 𝓂𝒾𝓃 (0, 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓

⋀

(snap2(𝔤,n0), filt(0,n0))) + R[n0]) =

Def. R0, F0 𝓂𝒾𝓃 (0, 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓
⋀

(R0, F0)) + R[n0]) =

Symm. 𝓂𝒾𝓃 𝓂𝒾𝓃 (0, 𝓂𝒾𝓃 (𝖒𝖎𝖓
⋀

(R0, F0), 0) + R[n0]) =

Distrib. 𝓂𝒾𝓃 𝓂𝒾𝓃 (0, 𝓂𝒾𝓃 (𝖒𝖎𝖓
⋀

(R0, F0) + R[n0], R[n0])) =

Distrib.𝖒𝖎𝖓 𝓂𝒾𝓃 (0, 𝓂𝒾𝓃 (𝖒𝖎𝖓
⋀

(R, F0), R[n0])) =

(2.21) 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓
⋀

(R, F)) =

Def. R, F 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓
⋀

(snap2(𝔤,n0+1) , filt(0,n0+1) )) =
(2.24) 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, n0+1) ‖ 0 ≤ 𝑖 < n0+1⦄) =
Incr. counter 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, n) ‖ 0 ≤ 𝑖 < n⦄)

(Outline-9)

Here, the subscripted symbols y0 and n0 denote the values of the respective variables at
the beginning of the current iteration; e. g. the value y0 is known from the loop invariant.
The symbols F0 ≡ filt(0,n0) and F ≡ filt(0,n0+1) denote the filters of the (nested)
𝖒𝖎𝖓 comprehension at the beginning and at the end of the current iteration, resp. Simi-
larly, R0 ≡ snap2(𝔤,n0) and R ≡ snap2(𝔤,n0+1) are the snapshots, encoding the (nested)
𝖒𝖎𝖓’s body at the current iteration’s beginning and its end, resp.

The very first step follows from the operational semantics of the assignments to y
in Fig. 2.12. The second step replaces the value stored in the array under n0 with the
singleton sum comprehension. We then use the information from the postcondition
of snap2, replacing sum(n0, n) with the corresponding value stored at index n0 in the
snapshot R; this lookup can be justified as n0 ∈ domain(R) follows from the loop invari-
ant 0 ≤ n0 < size(array) (recall that domain(R) = filt(0, size(array))).

We proceed by applying the induction hypothesis of Y, substituting y0 with its value in
terms of the 𝖒𝖎𝖓 comprehension; we then translate this comprehension into separation
logic, as per (2.17).

The following steps require knowledge from the theory of𝖒𝖎𝖓: (1) symmetry (e. g.𝓂𝒾𝓃(𝑎, 𝑏) =
𝓂𝒾𝓃(𝑏, 𝑎)); (2) distributivity of addition over 𝓂𝒾𝓃 (e. g. 𝓂𝒾𝓃(𝑎, 𝑏) + 𝑐 = 𝓂𝒾𝓃(𝑎 + 𝑐, 𝑏 + 𝑐)),
and (3) distributivity of addition over the 𝖒𝖎𝖓 comprehension (e. g. 𝖒𝖎𝖓 𝑖 ⦃ 𝑎𝑖 ‖ f⦄ + 𝑐 =
𝖒𝖎𝖓 𝑖 ⦃ 𝑎𝑖 + 𝑐 ‖ f⦄). While the first two of these properties are linear integer arithmetic
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(which is handled by SMT solvers completely), our technique’s translation of the last
property contains the uninterpreted function 𝖒𝖎𝖓

⋀

that must be axiomatized. The miss-
ing distributivity property is conceptually the same as (Distrib) used by Spec#; however,
the latter is problematic, as explained at the end of Sec. 2.1.4.2. We assume for now that
this property is available to the prover; we will then demonstrate the existence of a viable
encoding in Sec. 2.4.6.

We conclude the proof by considering a singleton composition (F = F0 ⊎ Set(n0)).
Finally, we translate the resulting comprehension back to the specification language and
take into account the increment of the loop counter n, obtaining the target value for y at
the end of the iteration.

2.3.1.4 Verification of the X invariant. We are now prepared to verify the ultimate invari-
ant of minSubArraySum, denoted X in the code. As before: (1) we assume n > 0 (the case
n = 0 is straightforward); (2) y0 and n0 as well as x0 denote the values of the respective
variables at the beginning of the current iteration; (3) we proceed with a proof outline
written in terms of the loop body’s penultimate state, i. e. right before incrementing n:

Update x x = 𝓂𝒾𝓃 (x0, y) =
Invariant Y 𝓂𝒾𝓃 (x0, 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, n0+1 ) ‖ 0 ≤ 𝑖 < n0+1 ⦄)) =

Ind. hyp. X 𝓂𝒾𝓃(𝓂𝒾𝓃 (0, 𝖒𝖎𝖓 𝑗 ⦃𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, 𝑗) ‖ 0 ≤ 𝑖 < 𝑗 ⦄ ‖ 1 ≤ 𝑗 < n0+1 ⦄) ,
𝓂𝒾𝓃 (0, 𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, n0+1 ) ‖ 0 ≤ 𝑖 < n0+1 ⦄) ) =

(2.25), (2.24) 𝓂𝒾𝓃(𝓂𝒾𝓃 (0, 𝖒𝖎𝖓
⋀

(snap3(𝔤), filt(1, n0+1 ))) ,

𝓂𝒾𝓃 (0, 𝖒𝖎𝖓
⋀

(snap2(𝔤,n0+1), filt(0,n0+1)))) =

Def. Q, E0, R, F 𝓂𝒾𝓃 (𝓂𝒾𝓃 (0, 𝖒𝖎𝖓
⋀

(Q, E0)) , 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓
⋀

(R, F))) =

Assoc. 𝓂𝒾𝓃 𝓂𝒾𝓃 (0, 𝓂𝒾𝓃 (𝖒𝖎𝖓
⋀

(Q, E0) , 𝖒𝖎𝖓
⋀

(R, F))) =

Spec. snap3 𝓂𝒾𝓃 (0, 𝓂𝒾𝓃 (𝖒𝖎𝖓
⋀

(Q, E0) , Q[n0+1])) =

(2.21) 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓
⋀

(Q, E)) =

Def. Q, E 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓
⋀

(snap3(𝔤), filt(1, n0+2 ))) =
(2.25) 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓 𝑗 ⦃𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, 𝑗) ‖ 0 ≤ 𝑖 < 𝑗 ⦄ ‖ 1 ≤ 𝑗 < n0+2 ⦄) =
Incr. counter 𝓂𝒾𝓃 (0, 𝖒𝖎𝖓 𝑗 ⦃𝖒𝖎𝖓 𝑖 ⦃ sum(𝑖, 𝑗) ‖ 0 ≤ 𝑖 < 𝑗 ⦄ ‖ 1 ≤ 𝑗 < n+1⦄)

(Outline-10)

Here, E0 ≡ filt(1, n0+1 ) and E ≡ filt(1, n0+2 ) denote the filters of the (outermost) com-
prehension at the beginning and at the end of the current iteration, resp.; Q ≡ snap3(𝔤)
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encodes this comprehension’s body (which is the same in both states because snap3(𝔤)
does not depend on n).

The very first step follows from the operational semantics of the assignments to x
in Fig. 2.12. In the second step, we apply the knowledge of the invariant Y (verified
in Sec. 2.3.1.3). The third step applies the induction hypothesis of X, substituting x0 with
its value in terms of comprehensions; we then translate these comprehensions to sepa-
ration logic, applying (2.24) and (2.25). We then rewrite the snapshots and filters using
single-letter abbreviations and apply associativity of 𝓂𝒾𝓃 : 𝓂𝒾𝓃(𝓂𝒾𝓃(0, 𝑎), 𝓂𝒾𝓃(0, 𝑏)) =
𝓂𝒾𝓃(0, 𝓂𝒾𝓃(𝑎, 𝑏)).

Next, we replace 𝖒𝖎𝖓 (R, F) with the map lookup Q[n0+1]. To justify this step, one
can instantiate the quantifier in the postcondition of snap3 with n0+1 for 𝑗. Since (from
the 2nd line of our loop invariant) n0 < size(array) and (from the first postcondition
of snap3) domain(Q) = filt(1, size(array)+1), the condition n0+1 ∈ domain(Q) is sat-
isfied; hence, we learn Q[n0+1] = 𝖒𝖎𝖓

⋀

(snap2(𝔤, n0+1 ), filt(0, n0+1 )). Recalling that
R ≡ snap2(𝔤,n0+1) and F ≡ filt(0,n0+1) , we justify the claim.

We conclude the proof by considering a singleton composition (E = E0 ⊎ Set(n0+1 )).
Finally, we substitute Q and E their definitions and translate the resulting comprehen-
sion back to the specification language and take into account the increment of the loop
counter n, obtaining the target value for x at the end of the iteration. The postcondition
of minSubArraySum follows from instantiating X with the ultimate value of n, namely
size(array)-1.

2.3.1.5 Discussion. The case of minSubArraySum demonstrates how our technique han-
dles the interaction of nested comprehensions in a single method’s specification. Nest-
ing is one of the two approaches for writing multidimensional comprehensions in our
technique; the other approach involves tupled iterated variables (Sec. 2.3.2).

The encoding of nested comprehensions’ bodies relies on the possibility of snap to
capture values from its evaluation context, e. g. the iterated variables of the outer com-
prehensions. In the example of Fig. 2.12, capturing occurs in the inner 𝖒𝖎𝖓’s body: the
iterated variable 𝑗 of the outer comprehension is captured in the invariant X and the vari-
able n is captured in the invariant Y. Note that capturing in the filters of comprehensions
(which does not happen in this case) would not affect the encoding.

All three comprehension families share a single (state-independent) version of the
filt function. We leave open the problem of automatically detecting and caching the
versions of filt and snap that can be reused for encoding multiple comprehension
families. However, generating these independently would not require any conceptual
changes in the proof.

This case also demonstrates the difference in working with monoid-based compre-
hensions, e. g. 𝖘𝖚𝖒 vs. general semigroup-based comprehensions for which a unit is
not available. In the former case, the filtering conditions can be specified more liberally
because these comprehensions are defined over empty filters. Conversely, preventing
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empty filters is essential for e. g. 𝖒𝖎𝖓. This is reflected in our specifications of Fig. 2.12. In
particular, our invariant for minSubArraySum is slightly different from that of the Spec#
benchmark (cf. Fig. 2.1) as the latter relies on finite integers for which there exists a max-
imal one, whereas our type system supports unbounded (mathematical) integers.

We verified this benchmark in Viper. However, some manual assertions were needed
for triggering the decompositions described above. Refer to Sec. 2.5 for more details.

2.3.2 Multi-structural comprehensions

2.3.2.1 Generalized representation. In order to encode multiple (disjoint) substructures
that a single method can operate on, we use an extended form of our lift function
that takes two arguments: the overall footprint and its subset, i. e. the set of nodes of a
particular substructure. Our goal is to enable accessing nodes of either of the disjoint
substructures via their (independent) indices. To that end, we axiomatize our extended
lift function as follows:20

∀𝔤, 𝔥:Set[Ref], 𝑛:Int • 𝔥 ⊆ 𝔤 ∧ 𝑛 ∈ domain(lift(𝔤, 𝔥)) ⟹ 𝑛 = indexOf(𝔤, 𝔥, lift(𝔤, 𝔥)[𝑛])
∀𝔤, 𝔥:Set[Ref], 𝑛:Int • 𝔥 ⊆ 𝔤 ⟹ (0 ≤ 𝑛 < |domain(lift(𝔤, 𝔥))| ⇔ 𝑛 ∈ domain(lift(𝔤, 𝔥)))
∀𝔤, 𝔥:Set[Ref] • 𝔥 ⊆ 𝔤 ⟹ range(lift(𝔤, 𝔥)) = 𝔥

(2.26)

The first axiom uses an auxiliary function indexOf, ensuring that for fixed 𝔤 and 𝔥 the
mapping lift(𝔤,𝔥) is injective. The second and the third axioms constrain the domain
and the range of the mapping, resp. The domain of the extended lifted representation
is defined in terms of a range of non-negative integers; intuitively, this corresponds to
conventional array indices. The range of a substructure’s extended lifted representation
is equal to this substructure’s footprint; intuitively, this is because each substructure
node must be accessible via some index.

The extended lifted representation presented above is suitable for specifying multiple
disjoint substructures. The axioms of (2.26) generalize those presented earlier (cf. (2.16));
in particular, if a method with footprint 𝔤 operates on just one substructure, then its
lifted representation can be obtained via the extended function simply as lift(𝔤,𝔤).
We present the axioms of (2.26) only for integer indices (as this is the domain used in our
case study); the further generalization to an arbitrary index domain is straightforward.

2.3.2.2 Overview. The method coincidenceCount Fig. 2.15 operates on two disjoint
heap-allocated sorted sets A and B. The precondition requires that the method’s footprint
(specified via the node set 𝔤) consists of the disjoint union of A and B and that the two
structures are indeed sorted. The latter properties are specified (via a first-order quanti-

20 These are static axioms that do not depend a particular example.
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fier of sorted) over the (extended) lifted representations of A and B, denoted xs and ys,
resp. The postcondition ensures that the output parameter res contains all the coinci-
dences in xs and ys. For example, if xs is {1, 3, 7, 9} and ys is {3, 4, 5, 6, 7}, then the result
stored in res by the time the method terminates will contain the value of 2 as there are
two coincidences, namely 3 and 7.

field val: Int
define xs lift(𝔤, A)
define ys lift(𝔤, B)
define size(zs) |domain(zs)|
define sorted(zs) ∀𝑖, 𝑗 ∈ domain(zs) • 𝑖 < 𝑗 ⟹ zs[𝑖].val < zs[𝑗].val
method coincidenceCount(𝔤: Set[Ref], A: Set[Ref], B: Set[Ref]) returns (res: Int)
requires ACCESS_NODES(𝔤, read)

𝔤 = A⊎ B
sorted(xs)∧ sorted(ys)

ensures ACCESS_NODES(𝔤, read)
res = 𝖘𝖚𝖒𝑝 ⦃ (xs[𝑝1].val = ys[𝑝2].val) ? 1 ∶ 0 ‖ 0 ≤ 𝑝1< size(xs) ∧ 0 ≤ 𝑝2< size(ys)⦄

{
var m, n := 0, 0; res := 0
while (m < size(xs)∧ n < size(ys))
invariant ACCESS_NODES(𝔤, read)

sorted(xs)∧ sorted(ys)
0 ≤ m ≤ size(xs)∧ 0 ≤ n ≤ size(ys)
m ≠ size(xs) ⟹ ∀𝑖 • 0 ≤ 𝑖 < m ⟹ xs[𝑖] < ys[n]
n ≠ size(ys) ⟹ ∀𝑗 • 0 ≤ 𝑗 < n ⟹ ys[𝑗] < xs[m]
res = 𝖘𝖚𝖒𝑝 ⦃ (xs[𝑝1].val = ys[𝑝2].val) ? 1 ∶ 0 ‖ 0 ≤ 𝑝1< m∧ 0 ≤ 𝑝2< n⦄

{
if (xs[m].val < ys[n].val) m := m+1
elseif (xs[m].val > ys[n].val) n := n+1
else { res := res+1; m := m+1; n := n+1 }

} }

Figure 2.15: Implementation of coincidenceCount and its comprehensive specification.

The algorithm computes the number of coinciding values in two sorted sets (of possibly different
sizes), denoted xs and ys. Each iteration compares the mth value of xs with the nth value of ys;
if these values are not equal, the index of the least of the two is incremented; otherwise, both
indices, as well as the coincidence counter res, are incremented. The comprehensive property
of the loop invariant expresses that all the coincidences are indeed counted.

2.3.2.3 Encoding comprehensions with tupled iterated variables. To support the com-
prehension from Fig. 2.15, we augment the rules of our encoding technique to support
tupled iterated variables. The main challenge is to identify a viable encoding design that
can be applied automatically, without breaking any convenient abstractions.
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function snap4(𝔤: Set[Ref], lift1, lift2: Map[Int,Ref]): Map[Pair[Int,Int], Int]
requires ACCESS_NODES(𝔤)

𝔤 = range(lift1) ⊎ range(lift2)
ensures domain(result) = domain(lift1) × domain(lift2)

∀𝑝 ∈ domain(result) • result[𝑝] = ((lift1[𝑝1].val = lift2[𝑝2].val) ? 1 ∶ 0)

function filt4(𝔤, lift1,lift2:Map[Int,Ref], 𝑎, 𝑏, 𝑐, 𝑑:Int):Set[Pair[Int,Int]]
requires // ACCESS_NODES(𝔤) -- filtering condition is state-independent

𝔤 = range(lift1) ⊎ range(lift2)
ensures result ⊆ domain(lift1) × domain(lift2)

∀𝑝 ∈ domain(lift1) × domain(lift2) • (𝑝 ∈ result ⟺ 𝑎 ≤ 𝑝1 < 𝑏 ∧ 𝑐 ≤ 𝑝2 < 𝑑)

Figure 2.16: Encoding the snapshot and filter for a two-dimensional comprehension.

Recall that the main ingredients that our technique used for encoding comprehen-
sions into separation logic are the lifted representation (for accessing heap-allocated
nodes via indices) snapshots (for a comprehension’s body) and filtering functions (for
the filtering condition). The current generalization extends all three of these ingredi-
ents.21 The extension of lift has been presented in Sec. 2.3.2.1; intuitively, if 𝔥 is a subset
of the current footprint, denoted 𝔤, then the extended lifted representation lift(𝔤,𝔥)
is the mapping from indices of 𝔥 to the actual nodes.

The corresponding extended encoding of snapshots and filters, called snap4 and filt4,
are presented in Fig. 2.16. For convenience, the snapshots are parameterized with ex-
tended lifted representations (denoted lift1 and lift2); in our example of coinci-
denceCount, these can be instantiated with xs and ys, resp. The precondition of snap4
requires that 𝔤 is the footprint that consists of two disjoint parts, range(lift1) and
range(lift2); i. e. 𝔤 consists of the nodes of both our substructures. The same precondi-
tions are generally shared by filt4 as well, although in Fig. 2.15 the filtering condition
is state-independent, so filt4 does not practically require any access permissions.

In the postconditions of snap4 and filt4, the main novelty is that for the snapshot’s
domain we use a Cartesian product of all the extended lifted representation domains.
Recall that the domain of the snapshot is the set of permitted instantiations of a com-
prehension’s iterated variable. Since in this case our indices are tuples (pairs of integers),
the permitted instantiations of an iterated variable, say 𝑝 ≡ (𝑝1, 𝑝2), are those in which
both its components correspond to some nodes of the respective substructures. Thus, 𝑝
belongs to the snapshot domain iff 𝑝1 and 𝑝2 belong to the respective extended lifted
representation domains; hence the Cartesian product.

21 However, we closely follow the design principles established in Sec. 2.2.4.
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Applying these functions, we obtain the following encoding of our two-dimensional
comprehension, i. e. a concrete variant of the general translation rule of (2.17):

𝖘𝖚𝖒𝑝 ⦃ (xs[𝑝1].val = ys[𝑝2].val) ? 1 ∶ 0 ‖ 0 ≤ 𝑝1< m∧ 0 ≤ 𝑝2< n⦄
↠ 𝖘𝖚𝖒⋀(snap4(𝔤, xs, ys), filt4(𝔤, xs, ys, 0, m, 0, n))

(2.27)

2.3.2.4 Verifying the first two branches. To verify the loop invariant of coincidence-
Count, we must check that it is preserved in each of the three branches of the loop body.
The first two possibilities are symmetric with respect to m and n; we therefore omit the
proof outline for the second branch. We assume the branch condition xs[m].val < ys[n].val
and proceed with the following derivation written in terms of the initial state of the loop
body, i. e. before the increments:

Then-Branch res = res0 =
Ind. hyp. 𝖘𝖚𝖒𝑝 ⦃ (xs[𝑝1].val = ys[𝑝2].val) ? 1 ∶ 0 ‖ 0 ≤ 𝑝1< m0 ∧ 0 ≤ 𝑝2< n0 ⦄ =
Def. Q, F0 𝖘𝖚𝖒⋀(snap4(𝔤, xs, ys), filt4(𝔤, xs, ys, 0, m0, 0, n0)) =
(2.27) 𝖘𝖚𝖒⋀(Q, F0) =
Arith. 𝖘𝖚𝖒⋀(Q, F0) + 0 =
Monoton. 𝖘𝖚𝖒⋀(Q, F0) + 𝖘𝖚𝖒⋀(Q, F F0) =
(2.22) 𝖘𝖚𝖒⋀(Q, F) =
Def. Q, F 𝖘𝖚𝖒⋀(snap4(𝔤, xs, ys), filt4(𝔤, xs, ys, 0, m0+1 , 0, n0)) =
(2.27) 𝖘𝖚𝖒𝑝 ⦃ (xs[𝑝1].val = ys[𝑝2].val) ? 1 ∶ 0 ‖ 0 ≤ 𝑝1< m∧ 0 ≤ 𝑝2< n⦄

(Outline-11)

Here, Q ≡ snap4(𝔤, xs, ys) denotes the snapshot (note that it is independent of any
of the variables modified in the loop); F0 ≡ filt4(𝔤, xs, ys, 0, m0, 0, n0) and F ≡
filt4(𝔤, xs, ys, 0, m0+1 , 0, n0) are the filters at the beginning and at the end of the cur-
rent iteration, resp. (see Fig. 2.17), and res0 is the value of res at the beginning of this
iteration. In this branch, the variable res remains unchanged; hence the very first step
in the above derivation.

In the second step, we apply the induction hypothesis for the loop invariant, substituting
res0 with its value in terms of our 𝖘𝖚𝖒 comprehension. We then translate the compre-
hension into separation logic via our rule of (2.27). We proceed by adding a zero-term
and replacing it with a sum over the filter F F0; the fact that this comprehension equals
zero follows from monotonicity of 𝖘𝖚𝖒 (e. g. (∀𝑖 ∈ 𝐹 • 𝑎𝑖 = 0) ⟹ 𝖘𝖚𝖒 𝑖⦃𝑎𝑖 ‖ 𝐹 ⦄ = 0).22

Concretely, we have n0 < size(ys) (from the loop guard), so the implication from the
5th line of the loop invariant of Fig. 2.15 yields ∀𝑗 • 0 ≤ 𝑗 < n0 ⇒ ys[𝑗] < xs[m0]. Recall

22 We assume for now that this property is available to the prover and postpone the corresponding axiomati-
zation until Sec. 2.4.6.
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that instantiating the comprehension’s iterated variable 𝑝 (i. e. evaluating a lookup in
its snapshot Q) with any (permitted) pair (𝑖, 𝑗) yields (xs[𝑖] = ys[𝑗] ? 1 ∶ 0). This expres-
sion evaluates to 0 for all pairs of the filter F F0 = {(𝑖, 𝑗) ∣ 𝑖 = m0 ∧ 0 ≤ 𝑗 < n0}. Hence,
we apply monotonicity of 𝖘𝖚𝖒 and learn 𝖘𝖚𝖒⋀(Q, F F0) = 0.

We conclude the derivation by considering a composition of two disjoint filters, F0
and F F0. Finally, we translate the resulting comprehension back to the specification
language and take into account the increment of m, obtaining the target value for res in
this branch.

2.3.2.5 Verifying the else-branch. We proceed by considering the else-branch in which
we write the following derivation, as before, in terms of the initial state of the loop body:

Else-Branch res = res0+1 =
Ind. hyp. 𝖘𝖚𝖒𝑝 ⦃ (xs[𝑝1].val = ys[𝑝2].val) ? 1 ∶ 0 ‖ 0 ≤ 𝑝1< m0 ∧ 0 ≤ 𝑝2< n0 ⦄+ 1 =
(2.27) 𝖘𝖚𝖒⋀(snap4(𝔤, xs, ys), filt4(𝔤, xs, ys, 0, m0, 0, n0)) + 1 =
Def. Q, E00 𝖘𝖚𝖒⋀(Q, E00) + 1 =
Else-Branch 𝖘𝖚𝖒⋀(Q, E00) + (xs[m].val = ys[n].val) ? 1 ∶ 0 =
snap4 𝖘𝖚𝖒⋀(Q, E00) + Q[(m, n)] =
(2.19) 𝖘𝖚𝖒⋀(Q, E00) + 𝖘𝖚𝖒⋀(Q, E11) =
Arith. 𝖘𝖚𝖒⋀(Q, E00) + 0+ 𝖘𝖚𝖒⋀(Q, E11) =
Monoton. 𝖘𝖚𝖒⋀(Q, E00) + 𝖘𝖚𝖒⋀(Q, E10) + 𝖘𝖚𝖒⋀(Q, E11) =
(2.22) 𝖘𝖚𝖒⋀(Q, E00) + 𝖘𝖚𝖒⋀(Q, E10 ⊎ E11) =
Arith. 𝖘𝖚𝖒⋀(Q, E00) + 0+ 𝖘𝖚𝖒⋀(Q, E10 ⊎ E11) =
Monoton. 𝖘𝖚𝖒⋀(Q, E00) + 𝖘𝖚𝖒⋀(Q, E01) + 𝖘𝖚𝖒⋀(Q, E10 ⊎ E11) =
(2.22) 𝖘𝖚𝖒⋀(Q, E00) + 𝖘𝖚𝖒⋀(Q, E01 ⊎ E10 ⊎ E11) =
Def. E01, E10, E11 𝖘𝖚𝖒⋀(Q, E00) + 𝖘𝖚𝖒⋀(Q, E E00) =
(2.22) 𝖘𝖚𝖒⋀(Q, E) =
Def. Q, E 𝖘𝖚𝖒⋀(snap4(𝔤, xs, ys), filt4(𝔤, xs, ys, 0, m0+1 , 0, n0+1 )) =
(2.27) 𝖘𝖚𝖒𝑝 ⦃ (xs[𝑝1].val = ys[𝑝2].val) ? 1 ∶ 0 ‖ 0 ≤ 𝑝1< m∧ 0 ≤ 𝑝2< n⦄

(Outline-12)

Here, E00 ≡ filt4(𝔤, xs, ys, 0, m0, 0, n0) and E ≡ filt4(𝔤, xs, ys, 0, m0+1 , 0, n0+1 )
are the filters of the comprehensions at the beginning and at the end of the current
iteration, resp. The set difference between these filters is comprised of disjoint parts:
E01 ≡ filt4(𝔤, xs, ys, 0, m0 n0, n0+1 ), E10 ≡ filt4(𝔤, xs, ys, m0, m0+1 0, n0), and the
singleton filter E11 ≡ filt4(𝔤, xs, ys, m0, m0+1 n0, n0+1 ). We illustrate this four-way de-
composition in Fig. 2.17.
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Figure 2.17: Three possible decompositions of a two-dimensional index domain of Fig. 2.15.

Rectangles represent partitions of the space of (m, n)-indices, i. e. the decompositions used in the
proofs. The part that will be covered on this iteration is yellow (the south-eastern cell represents
the indices that are actually being analyzed in the algorithm); the part already processed is green;
the remainder is gray. Arrows denote the direction of propagation of the algorithm and correspond
to the three branches in the loop of coincidenceCount.

The very first step accounts for the increment of res in the else-branch of coinci-
denceCount. We then apply the induction hypothesis, substituting the value of res at the
beginning of the current iteration with its assumed value in terms of the 𝖘𝖚𝖒 compre-
hension. We then apply the knowledge that the branch conditions did not hold (since
this is the else-branch), learning xs[m].val = ys[n].val; hence, we justify the substitu-
tion of +1 with the ternary expression, following the pattern in the comprehension’s
body. We then replace the ternary expression with the map lookup Q[(m, n)] (formally,
by instantiating the quantifier in the postcondition of snap4(𝔤, xs, ys) with (m, n) for 𝑝),
which is justified since (m, n) ∈ domain(xs)×domain(ys) follows from the 3rd line of the
loop invariant (Fig. 2.12). We now instantiate (2.19), replacing the map lookup Q[(m, n)]
with a comprehension over the singleton filter containing (m, n), denoted E11.

Next, we add a zero-term and substitute it with the comprehension over E10; the fact
that this comprehension evaluates to zero follows from the 4th and 5th lines of the loop
invariant Fig. 2.15 and monotonicity of 𝖘𝖚𝖒 (which we have assumed to be available
to the prover). We then replace the sum of two comprehensions over the disjoint filters
E10 and E11 with their composition, i. e. a single comprehension over the united filter
E10 ⊎E11. We repeat the same pattern for the filter E11, obtaining the comprehension over
the composite filter E01 ⊎ E10 ⊎ E11. This filter is exactly the difference between E and
E00, leading to the ultimate composition, namely, 𝖘𝖚𝖒(Q, E). Finally, we translate the
resulting comprehension back to the specification language and take into account the
increments of m and n, obtaining the target value for res.

2.3.2.6 Deriving the postcondition. The last step in the proof is to use the verified loop
invariant of Fig. 2.15 to justify the ultimate postcondition of the method. The required
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derivation is similar to Outline-12 in that it involves another four-way decomposition of
the target filter (which in this case is D ≡ filt4(𝔤, xs, ys, 0, size(xs), 0, size(ys))). The
four disjoint subfilters of D are: D00 ≡ filt4(𝔤,xs, ys, 0, m, 0, n), D01 ≡ filt4(𝔤,xs, ys, 0, m, n, size(ys)),
D10 ≡ filt4(𝔤,xs, ys, m, size(xs), 0, n), and D11 ≡ filt4(𝔤,xs, ys, m, size(xs), n, size(ys));
these subfilters represent the four corners of the rectangular filter D in the two-dimensional
space of comprehension indices; Fig. 2.17 illustrates this decomposition (with all D-symbols
replaced by E).

Intuitively, the reason we consider the decomposition D = D00 ⊎ D01 ⊎ D10 ⊎ D11 is that,
after the loop terminates, only one of the two indices m, n must reach the end of its range,
while the other may or may not. Hence, we consider both cases under which D01 or D10
might be non-empty filters, leading to the general four-way decomposition. However,
even if either of these is a non-empty filter, they do not influence the overall sum of
coincidences, which can be proven via the monotonicity lemma of Outline-11. Therefore,
the sum computed after the loop is indeed equal to the sum in the postcondition.

2.3.2.7 Discussion. This case shows that reasoning about multidimensional compre-
hensions may require complex two-way decompositions even if the implementation op-
erates on individual nodes. This complexity stems from the fact that our decompositions
are over the space of indices rather than the nodes of heap structures. In particular, we
considered the coincidenceCount algorithm that is efficient, i. e. it traverses only a small
part of the entire index space while leveraging monotonicity of the data structure to
avoid missed coincidences. Conversely, the specification plainly summarizes the prop-
erty of the entire two-dimensional space, which makes it intuitive yet harder to verify.

We demonstrated that the design principles of our technique can be generalized to
support the case of multidimensional comprehensions through tupled iterated vari-
ables. This approach is different from the one used in Spec#, the latter encoding multi-
dimensional comprehensions only as nested comprehensions. Our technique supports
nesting as well, as we demonstrated in Sec. 2.3.1. However, the alternative of encoding
multidimensional comprehensions via tupled indices opens new directions for e. g. per-
formance optimization as well as domain-specific applications, e. g. a specification lan-
guage dedicated for tensor-transforming algorithms, in which case tupled indices and
the rectangular decompositions that they require (e. g. Fig. 2.17) would be a natural fit.

Our generalized design enables a conceptually simple encoding and has the follow-
ing advantages: (1) a single snapshot function suffices per comprehension family, (2) the
snapshot’ postcondition syntactically matches the comprehension’s body, and the filtering
function’s postcondition syntactically matches the comprehension’s filter, (3) the design
agrees with the rest of our comprehension reasoning technique presented so far.

We verified this benchmark in Viper. However, some manual assertions were needed
for triggering the decompositions described above. Refer to Sec. 2.5 for more details.
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Figure 2.18: Overview of the tool stack.

Programmer submits a program in our
source language and its comprehensive
specifications. Three layers define the ver-
ifier: Frontend encodes comprehensions
into separation logic; Backend checks the
proof obligations via SMT and reports
raw verification results. For each assertion
(e. g. invariant or postcondition check),
Backend reports either success or a po-
tential violation, possibly with a coun-
terexample. Frontend decodes these re-
sults, mapping locations of failed asser-
tions and counterexamples to those in
terms of the source program.

2.4 LOGICAL ENCODING

We will now demonstrate how to encode our technique into separation logic. We de-
signed our technique for automation; thus, we begin with a high-level implementation
overview of a possible frontend verifier (Sec. 2.4.1). We proceed by introducing the com-
prehension function (Sec. 2.4.2) and explain how it is encoded for various commutative
semigroups (Sec. 2.4.3). We then present the encoding of snapshots (Sec. 2.4.4) and fil-
ters (Sec. 2.4.5). Next, we encode the first-order axiomatization of the comprehension
function (Sec. 2.4.6). We then discuss our quantifier instantiation strategy (Sec. 2.4.7).
Finally, we conclude this section with the encoding of consistency checks (Sec. 2.4.8).

2.4.1 Implementation overview

Our implementation consists of three layers (Fig. 2.18). Layer I: A lightweight frontend
verifier that is responsible for defunctionalizing bound and program-specific parame-
ters (e. g. rewriting the field set 𝐹 and the λ-arguments of snap and filt), as well as
lifting verification results in terms of the underlying tools back to the source language.
Layer II: the static axiomatization, functions, macro definitions, and the translation of all
the methods of the source program into the Viper language Fig. 1.1. Layer III: A backend
separation-logic verifier that we treat as a black box. Our premier focus in this section
is on the implementation aspects that are specific to comprehensions, corresponding to
Layers II–III of the tool stack.

AxIOMATIzATION AppROACH. The example proof outlines in Sec. 2.2.5 demonstrate that a
relatively small number of axioms is sufficient for verifying diverse program properties
that can be expressed in terms of set comprehensions. We will now show that axioms can
be encoded into separation logic and applied automatically. The key idea is to augment
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the proof obligations generated by a separation-logic verifier with the first-order axioms
that define the semantics of the function symbols such as 𝖈𝖔𝖒𝖕⋀

.
To make our axioms applicable in an arbitrary context, we employ universal quantifica-

tion. While universal quantifiers enable the desired level of generality of our axiomatiza-
tion, they are challenging to automate; generally, the problem of quantifier instantiation
in undecidable. Nevertheless, modern SMT solvers demonstrate that quantifier instan-
tiation can be efficient and predictable in problems that require a limited number of
instantiations, most notably, program verification [40, 57, 59, 71, 84, 98, 107].

In our experiments, we use the most prominent quantifier instantiation technique for
program verification — E-matching. Intuitively, E-matching requires each quantifier to
be annotated with matching patterns that restrict the syntactic shape of ground terms
with which the SMT solver can instantiate the quantified variables (cf. Sec. 2.1.2). It is
thus important to select these patterns wisely, s.t. multiple axioms can efficiently interact,
while preventing diverging proofs.

2.4.2 Comprehension function

We encode the comprehension function (2.13) as an uninterpreted, ternary function
𝖈𝖔𝖒𝖕⋀

over three arguments: the semigroup identifier t, the snapshot R, and the filter F:

1 function 𝖈𝖔𝖒𝖕⋀

(t: Int, R: Map[T, S], F: Set[T]): S

2.4.3 Encoding of semigroups

Using semigroup identifiers allows us to share the same generic axiomatization for dif-
ferent comprehension kinds. For example, our technique translates the comprehension
instances of the form 𝖈𝖔𝖒𝖕[𝓂𝒾𝓃]… and 𝖈𝖔𝖒𝖕[+,0]… as 𝖈𝖔𝖒𝖕⋀(__min__, …) and
𝖈𝖔𝖒𝖕⋀(__sum__, …), resp., where the semigroup identifiers are defined as follows:

2 define __sum__ 000 /* 𝖈𝖔𝖒𝖕[+,0] */
3 define __product__ 001 /* 𝖈𝖔𝖒𝖕[*,1] */
4 define __min__ 002 /* 𝖈𝖔𝖒𝖕[𝓂𝒾𝓃] */
5 define __max__ 003 /* 𝖈𝖔𝖒𝖕[𝓂𝒶𝓍] */

6axiom { __unit__(__sum__) == 0 }
7axiom { __unit__(__product__) == 1 }

This list can be extended by specifying other (named) commutative semigroups. For
example, to encode the comprehensions of the form 𝖈𝖔𝖒𝖕[union,Set()]…, one can
add the following definition:
define __union__ 004 // 𝖈𝖔𝖒𝖕[union,Set()]

This permits translating the above comprehensions as 𝖈𝖔𝖒𝖕⋀(__union__, …).
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For each semigroup, we encode its binary step operator ⊕ via a ternary uninterpreted
function __oper__; the 1st argument is the semigroup’s identifier, while the 2nd and the
3rd arguments correspond to the two operands of ⊕. If a semigroup additionally has a
unit, i. e. it is a monoid, the unit is defined for the semigroup’s identifier as the value of
an uninterpreted function called __unit__:

8 function __unit__(t: Int): S
9 function __oper__(t: Int, left_arg: S, right_arg: S): S

We proceed with the axiomatization of semigroups. Recall from Fig. 2.3 that a com-
prehension kind is defined by a semigroup S and an iterated variable (a typed declara-
tion). In our encoding, the latter instantiates the type parameter T (i. e. the index type)
of our type-parametric axiomatization. All the other aspects of a comprehension kind
follow from the semigroup. In particular, the type of the semigroup’s step operator, ⊕,
instantiates the second type parameter, S. Next, we axiomatize the semigroup.23

10 function $SemigroupName(R: Map[T, S], F: Set[T]): S

11 axiom $SemigroupNameComp { forall R:Map[T,S], F:Set[T] :: { $SemigroupName(R, F) }
12 $SemigroupName(R, F) == 𝖈𝖔𝖒𝖕⋀

($SemigroupId, R, F) }

13 axiom $SemigroupNameOper { forall x: S, y: S :: { __oper__($SemigroupId, x, y) }
14 $SemigroupOperDef(__oper__($SemigroupId, x, y), x, y) }

To simplify the notation, we introduce named comprehension functions for each semigroup;
e. g. Sum(…) denotes 𝖈𝖔𝖒𝖕⋀(__sum__, …). To refer to a semigroups’s name, we use the
meta-variable $SemigroupName. The corresponding identifiers (unique integer values)
are denoted as $SemigroupId. The meta-variable $SemigroupOperDef is rewritten with
the name of a macro definition that constrains the $SemigroupName semigroups’s opera-
tor. For example, while translating the 𝖘𝖚𝖒⋀comprehension, $SemigroupOperDef yields
the string "SUM_OPER_DEF", matching the corresponding definition from the list below.

15 define SUM_OPER_DEF(res, left, right) (res == left + right)

16 define PRODUCT_OPER_DEF(res, left, right) (res == left * right)

17 define MIN_OPER_DEF(res, left, right) (
18 (res == left || res == right) && (res <= left && res <= right)

19 define MAX_OPER_DEF(res, left, right) (
20 (res == left || res == right) && (res >= left && res >= right)

23 The code fragments highlighted in turquoise are rewritten via the frontend translation (cf. Fig. 2.18).
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If the programmer uses comprehensions with custom semigroups, then the encoding
generates analogous macro definitions for each of them.

To get a concrete version of ⊕, one has to instantiate the first argument of __oper__
with the appropriate comprehension kind identifier. To illustrate this stage of the transla-
tion, consider a comprehension of the form 𝖈𝖔𝖒𝖕[+,0]… . First, the frontend generates
the named comprehension (lines 10 to 12 with "Sum" and "__sum__" for $SemigroupName
and $SemigroupId, resp.):
function sum(R: Map[T, S], F: Set[T]): S

axiom SumComp { forall R:Map[T,S], F:Set[T] :: { Sum(R, F) }
Sum(R, F) == 𝖈𝖔𝖒𝖕⋀

(__sum__, R, F)}

Second, the frontend generates the axiom that defines the + operator (lines 13 to 14
with "SUM_OPER_DEF" for $SemigroupOperDef). After expanding the macro (line 15), we
obtain the following axiom:
axiom SumStep { forall x: Int, y: Int :: { __oper__(__sum__, x, y) }
__oper__(__sum__, x, y) == x + y }

Abstracting the binary operations via an uninterpreted function helps in two ways. On
the one hand, the programmer may use either uninterpreted (e. g. union) or interpreted
(e. g. +) symbols as binary operators. Interpreted symbols cannot be used in quantifier
patterns for instantiating universal quantifiers via E-matching; for example, if 𝑥 and 𝑦
are ground terms, then the expression 𝑥+𝑦 will not result in any new quantifier instan-
tiations, while e. g. __oper__(__sum__,𝑥,𝑦) is, indeed, a valid triggering term. On the
other hand, many crucial properties are shared among all comprehension kinds, so us-
ing the universal __oper__ function allows us to keep our generic axiomatization concise
as each generic axiom that needs to refer to the comprehension’s binary operator can use
the same universal function symbol.

2.4.4 Encoding of snapshots

The second argument of 𝖈𝖔𝖒𝖕⋀

, R, is the snapshot, a map from values of type T to values of
type S. T is the type of the comprehension’s iterated variable, e. g. T in 𝖈𝖔𝖒𝖕[S]𝑛:T…,
while S is the type of the comprehension instance and also the type of S’s step operator.

Conceptually, snapshots (Sec. 2.2.4.4) represent the structure of the method footprints
in fixed program states. What they do not represent is the actual folding of this structure
into a single value; snapshots are thus independent of semigroups (as long as the types
are respected). Therefore, the encoding of all comprehension instances with the same
body (cf. Fig. 2.3) share a single version of the snap function, which is encoded according
to the following template:
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21 function snap_$T_$e_$S𝐹(𝔤: Set[Ref], *captures_of_e): Map[T, S]
22 requires ACCESS_NODES𝐹(𝔤)
23 ensures domain(result) == domain(lift(𝔤))
24 ensures forall u:T :: { τ(e𝐹(u)) } { result[u] }
25 u in domain(lift(𝔤)) ==> result[u] == e𝐹(u)

The name of a concrete version of the snap function is comprised of the prefix snap, fol-
lowed by the name of the T-type, the $-encoding of the expression e, and the name of the
S-type. For example, 𝖈𝖔𝖒𝖕[+,0] 𝑖:Int⦃xs[𝑖].val ‖ …⦄ is a comprehension that repre-
sents the sum of the val fields of nodes of the sequence xs: Seq[Ref]. Both types T and S
are instantiated with Int, while the $-encoding of the string "xs[𝑖].val" is "xs_i_val".
Conceptually, the local variable xs is captured by value in the comprehension’s body;
in this case, our translation rewrites *captures_of_e with xs: Seq[Ref], making the
value of xs available in snap’s postcondition. Hence, the corresponding version of the
snap function will have the following signature:
function snap_Int_xs_i_val_Int(𝔤: Set[Ref], xs: Seq[Ref]): Map[Int, Int]

The precondition of snap requires access to the fields from the set 𝐹 of objects in 𝔤. This
footprint is encoded via the macro definition ACCESS_NODES𝐹(𝔤) defined as follows:

26 define ACCESS_NODES𝐹(𝔤, p=read) (
27 !(null in 𝔤) && ∗

f∈𝐹
(forall n:Ref :: n in 𝔤 ==> acc(n.𝑓 , p)))

The big star is rewritten as a chain of separating conjunctions for all fields 𝑓 ∈ 𝐹. If
the second macro argument (i. e. the permission amount) is skipped, it is assumed to
have the default value of read. We assume that the above macro definition is also used
for specifying the footprints of all the methods with comprehensive specifications. Hence,
the footprint of snapmatches the current method’s footprint, except it requires only read
permissions to each node’s field, while methods may have full, write access.

The postcondition of snapdefines the mapping from indices (of type T) to state-dependent
values (of type S). The latter are equal to the evaluation of the comprehension body, e𝐹,
in the same context in which snap has been applied. e𝐹 is a (state-dependent via the
fields from 𝐹) expression of type S over a (named) free variable of type T. The name is
declared as part of the current comprehension instance, as per Fig. 2.3. e𝐹(𝑥) denotes
an instantiation of the free variable with 𝑥. Finally, the expression e𝐹 can mention other
free variables which are bound in the current context; these are made available in the
postcondition of snap by rewriting *captures_of_e in the translation.

Note the following two details of our encoding of snap’s postconditions. First, the
equality result[u] == e𝐹(u) holds for all u of the index domain, which (due to the
first postcondition) is also the domain of the resulting map. Second, the meta clause
τ(e𝐹(u)) is rewritten by the translation as a list of (most-specific) triggering patterns
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from the expression e𝐹(u). For example, τ(u.val+ (u.next != null ? u.next.id : 0))
yields two patterns: u.val and u.next.

ENCODING OF lift. We employ the function lift in the postcondition of snap to refer
to the domain of indices, i. e. the set of possible instantiations of the iterated variable. Gen-
erally, the semantics of lift depend on the data structure’s nature. However, we focus
on direct-access heap data structures (e. g. arrays and graphs) in which the stored re-
sources can be deterministically accessed via unique keys. In such structures, the index
domain must be injective into the heap. Therefore, we axiomatize lift as follows:

28 function indexOf(g: Set[Ref], x: Ref): T
29 function lift(g: Set[Ref]): Map[T, Ref]

30 axiom LiftRange { forall g:Set[Ref] :: { lift(g) } range(lift(g)) == g }

31 axiom LiftInjectivity { forall g:Set[Ref], i: T :: { lift(g)[i] }
32 indexOf(g, lift(g)[i]) == i }

33 axiom LiftDomain { forall g:Set[Ref], i:T :: {lift(g)[i]} {i in domain(lift(g))}
34 i in domain(lift(g)) <==> lift(g)[i] in g }

These axioms directly correspond to (2.16).

2.4.5 Encoding of filters

The last argument of 𝖈𝖔𝖒𝖕⋀

, F, is the filter, i. e. the set of intended instantiations of the
comprehension’s iterated variable. Generally, the filter must be a subset of the permit-
ted instantiations defined by the weakest filter, domain(lift(𝔤)). The programmer can
specify all monoid-based comprehensive properties using just the weakest filter. How-
ever, general comprehensions cannot be encoded this way and may require custom fil-
ters (Sec. 2.2.4.5). Even for monoids, custom filters allow for an overall more flexible
specification language because the programmer may choose whether to constrain a com-
prehension via the filter or the body.

Since custom filters can be state-dependent expressions, the encoding should map
their values to a state-independent structure — intuitively, a set of data structure indices —
that can be featured in our first-order axiomatization. Conceptually, this idea is similar
to that of our mapping in the specification of snap (although filters require somewhat
less information). Hence, our encoding of custom filters is based on a state-dependent
function called filt. Concretely, we encode a separate version of the filt function for
each filtering condition (cf. Fig. 2.3) according to the following template:
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35 define DISJOINT(A, B) (forall n :: { n in A, n in B } n in A ==> !(n in B))

36 define DISUNION(C, A, B) ((C == A union B) && DISJOINT(A, B)) // C = A⊎ B

37 function filt_$T_𝑃𝐹(𝔤: Set[Ref], *captures_of_𝑃): Set[T]
38 requires ACCESS_NODES𝐹(𝔤)
39 ensures result subset domain(lift(𝔤))
40 ensures forall u:T :: { τ(e𝐹(u)) } { result[u] }
41 u in domain(lift(𝔤)) ==> (u in result <==> 𝑃𝐹(u))
42 ensures forall 𝔤𝑎: Set[Ref], 𝔤𝑏: Set[Ref] ::
43 { 𝔤𝑎 union 𝔤𝑏, filt_$T_𝑃𝐹(𝔤𝑎) } { 𝔤𝑎 union 𝔤𝑏, filt_$T_𝑃𝐹(𝔤𝑏) }
44 𝔤𝑎 != Set() && 𝔤𝑏 != Set() &&
45 DISUNION(𝔤, 𝔤𝑎, 𝔤𝑏) ==> DISUNION(result, filt_$T_𝑃𝐹(𝔤𝑎), filt_$T_𝑃𝐹(𝔤𝑏))

The translation of the above template into concrete filt functions is analogous to the
translation of snap. The first postcondition ensures that the custom filter is a subset of the
weakest filter, i. e. the index domain. The second one specifies that each value of the in-
dex domain belongs to result iff it satisfies the (potentially) state-dependent condition
𝑃𝐹. Note that the latter may capture by value some local variables from the context of
the comprehension instance; as with the snap template, our translation of filt rewrites
*captures_of_𝑃 into a list of function arguments to make those variables available in
the postcondition of filt.

Custom filters encoded via the filt function are an additional challenge for compo-
sitional reasoning. We first illustrate this point and then explain how the last postcondi-
tion of filt plugs the gap.

Consider an operation that modifies the fragment 𝔥 of a heap structure with foot-
print 𝔤. Let the operation’s pre-state be specified via a comprehension with some cus-
tom filtering condition. The filter is thus encoded as filt(𝔥) (i. e. it cannot be simplified
to just 𝔥). In the post-state of the operation, we aim to compose the comprehension
over the original filter filt(𝔤) using the two comprehensions over the filters filt(𝔥)
and filt(𝔤 𝔥). To that end, we need to apply our split-term axiom (2.22). Instanti-
ating this axiom requires proving the following lemma about disjointness of subfilters:
filt(𝔤) = filt(𝔤 𝔥) ⊎ filt(𝔥). However, this property is not available.

The last postcondition of filt specifies the property that we call compositionality of
filters. In principle, this property does follow from the second postcondition of filt, but
the required inductive derivation cannot be automatically established by a first-order
SMT solver. Hence, we add it as an explicit formula to our encoding. Note that composi-
tionality of the weakest filter, i. e. of the form domain(lift(𝔤)), follows directly from the
properties of lift.
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2.4.6 First-order axiomatization

Our axiomatization of the 𝖈𝖔𝖒𝖕⋀

function consists of three parts. First, we relate this func-
tion’s values to snapshot values and encode a synonym function 𝖈𝖒𝖕⋀ that has the same
first-order semantics as 𝖈𝖔𝖒𝖕⋀

but helps controlling the instantiations of our axioms.
Second, we encode the main axioms of our technique: same-terms (2.20), step (2.21), and
split-term (2.22). Finally, we encode the properties of individual comprehension kinds.24

2.4.6.1 Preliminaries. We employ a new function symbol, 𝖈𝖒𝖕⋀. This function has the
same signature and semantics as 𝖈𝖔𝖒𝖕⋀

but has the advantage of not matching any of our
axioms’ patterns. Our patterns use exclusively 𝖈𝖔𝖒𝖕⋀

, while the axiom bodies replace it
with 𝖈𝖒𝖕⋀ (unless the term in the body is identical to one of the patterns). Hence, the
terms obtained while instantiating our axioms cannot cause any further instantiations.
We will explain this mechanism in more detail in Sec. 2.4.7.

46 function 𝖈𝖒𝖕⋀(t: Int, R: Map[T, S], F: Set[T]): S

47 axiom CompSynonym {
48 forall t: Int, R: Map[T, S], F: Set[T] :: { 𝖈𝖔𝖒𝖕⋀

(t, R, F) }
49 𝖈𝖒𝖕⋀(t, R, F) == 𝖈𝖔𝖒𝖕⋀

(t, R, F) }

We proceed with the axioms that specify the semantics of 𝖈𝖔𝖒𝖕⋀

.

50 axiom Singleton {
51 forall t: Int, R: Map[T, S], a: T :: { 𝖈𝖔𝖒𝖕⋀

(t, R, Set(a)) }
52 a in domain(R) ==> 𝖈𝖔𝖒𝖕⋀

(t, R, Set(a)) == R[a] }

This axiom expresses the value of a comprehension over a singleton set containing the el-
ement a with the map lookup of R at a. Conceptually, R is the comprehension’s snapshot,
while the only instantiation of the iterated variable permitted by the filter is a. This axiom
encodes the second formula of (2.19). Note that the first formula of (2.19) is defined only
for monoid-based comprehensions; we will explain our encoding of monoid-specific
properties below.

2.4.6.2 Compositionality axioms. We proceed with the encoding of the main axioms.

24 An axiomatization of set comprehensions cannot be complete. To devise our axioms, we explored the prop-
erties that are needed for verifying a diverse set of heap-transforming programs (see Sec. 2.2.5), axiomatiz-
ing them in a generic way. For example, our axioms support arbitrary two-way filter decompositions but
not 𝑁-way decompositions that are theoretically possible but have not occurred in our experiments.
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53 axiom SameTerm {
54 forall t: Int, R1: Map[T, S], R2: Map[T, S], F: Set[T] ::
55 { 𝖈𝖔𝖒𝖕⋀

(t, R1, F), 𝖈𝖔𝖒𝖕⋀

(t, R2, F) }
56 { F subset domain(R1), 𝖈𝖔𝖒𝖕⋀

(t, R2, F) }
57 F != Set() && F subset domain(R1) && F subset domain(R2) &&
58 (forall a: T :: { R1[a] } { R2[a] } a in F ==> R1[a] == R2[a])
59 ==> 𝖈𝖒𝖕⋀(t, R1, F) == 𝖈𝖒𝖕⋀(t, R2, F) }

This axiom encodes (2.20): The nested quantifier checks that the two snapshots R1 and
R2 agree at least on all elements in the filter F, implying that the comprehensions over
this filter are equal for these two snapshots.

60 axiom DropOne {
61 forall t: Int, R: Map[T, S], a: T, F: Set[T] :: {comp(t, R, F setminus Set(a))}
62 F != Set(a) && F subset domain(R) &&
63 a in F ==> comp(t, R, F) ==
64 __oper__(t, 𝖈𝖒𝖕⋀(t, R, F setminus Set(a)), R[a]) }

65 axiom TakeOne {
66 forall t: Int, R: Map[T, S], a: T, F: Set[T] :: { 𝖈𝖔𝖒𝖕⋀

(t, R, Set(a) union F) }
67 F != Set() && F subset domain(R) && a in domain(R) &&
68 !(a in F) ==> 𝖈𝖔𝖒𝖕⋀

(t, R, Set(a) union F) ==
69 __oper__(t, 𝖈𝖒𝖕⋀(t, R, F), R[a]) }

These two axioms encode (2.21). Unlike the original axiom, the LHS of the implication
in the encoding of TakeOne is negated; hence, the sets Set(a) and F are guaranteed to
be disjoint, and the equality on the RHS relates the comprehension over their union
and over the comprehension over F. The two alternative formulations allow for more
possibilities to instantiate the axiom, as can be seen from their corresponding patterns.

70 axiom DropMultiple {
71 forall t: Int, R: Map[T, S], A: Set[T], F: Set[T] :: {comp(t, R, F setminus A)}
72 A != F && A != Set() && F subset domain(R) &&
73 A subset F ==> comp(t, R, F) ==
74 __oper__(t, 𝖈𝖒𝖕⋀(t, R, F setminus A), 𝖈𝖒𝖕⋀(t, R, A)) }

75 axiom TakeMultiple {
76 forall t: Int, R: Map[T, S], F1: Set[T], F2: Set[T] :: {𝖈𝖔𝖒𝖕⋀

(t,R,F1 union F2)}
77 F1 != Set() && F2 != Set() && F1 subset domain(R) && F2 subset domain(R) &&
78 F1 intersection F2 == Set() ==> 𝖈𝖔𝖒𝖕⋀

(t, R, F1 union F2) ==
79 __oper__(t, 𝖈𝖒𝖕⋀(t, R, F1), 𝖈𝖒𝖕⋀(t, R, F2)) }
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These two axioms encode (2.22). TakeMultiple expresses that, given two disjoint filters
F1 and F2, the comprehension over their union can be represented via the two compre-
hensions over these individual filters. Similar to singleton decomposition axioms, we
introduce the additional axiom DropMultiple above to enhance our axiom instantiation
strategy.

2.4.6.3 Encoding special properties. Some comprehension kinds have special properties,
i. e. properties that stem from the nature of their semigroup that are essential in verifi-
cation. These properties either do not follow from the previously discussed parts of the
axiomatization or require inductive derivations that generally cannot be automatically
established by an SMT solver.

Automatically extracting special properties from a limited number of first-order ax-
ioms is an instance of the general problem of entailment automation (Sec. 2). We identify
and explicitly encode some of the most commonly useful special comprehensive proper-
ties, making them available to the verifier. This part of our axiomatization is inherently
incomplete; however, it is easily extensible without affecting the rest of the technique25

in case other special properties will be proven useful in the future.

EMpTy FILTERS. One class of special properties is the value of a comprehension over the
empty filter. This value can be represented in our type system only if the comprehen-
sion’s step operator (2.9) forms a commutative monoid with 𝟙 as its unit (2.10).26 Thus, we
axiomatize the value of monoid-based comprehension instances over an empty filter:

80 IF $IsMonoid THEN
81 axiom Empty$SemigroupNameFilter {
82 forall R: Set[T, S] :: { $SemigroupName(R, Set()) }
83 $SemigroupName(R, Set()) == $Unit }
84 FI

The meta flag $IsMonoid indicates whether the translated semigroup is a monoid, in
which case the axiom is emitted. While expanding the axiom, $SemigroupName is trans-
lated into the monoid’s name, e. g. "Product"in case of the (Int,* ,1) monoid; $Unit is
translated into its unit, e. g. 1 in 𝖈𝖔𝖒𝖕[*,1].

MONOTONICITy. Another important class of properties is monotonicity of semigroups
over integers. For example, if all the values stored in a data structure are greater than or
equal to zero, then the sum (or the product) of all those values is also non-negative.

25 Provided there are no matching loops in quantifier instantiations. We will explain the problem of matching
loops in Sec. 2.4.7.

26 We do not require that the operator has a unit to support a wider class of comprehensions, e. g. 𝖒𝖎𝖓.
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85 axiom Int$SemigroupNamePositive {
86 forall R: Map[T, Int], F: Set[T] :: { $SemigroupName(R, F) }
87 (F != Set()) && (F subset domain(R)) &&
88 (forall a: T :: {a in F} a in F ==> R[a] > 0) ==> $SemigroupName(R, F) > 0 }

89 axiom Int$SemigroupNameNonNegative {
90 forall R: Map[T, Int], F: Set[T] :: { $SemigroupName(R, F) }
91 (F != Set()) && (F subset domain(R)) &&
92 (forall a: T :: {a in F} a in F ==> R[a] >= 0) ==> $SemigroupName(R, F) >= 0 }

93 axiom Int$SemigroupNameNegative {
94 forall R: Map[T, Int], F: Set[T] :: { $SemigroupName(R, F) }
95 (F != Set()) && (F subset domain(R))
96 (forall a: T :: {a in F} a in F ==> R[a] < 0) ==> $SemigroupName(R, F) < 0 }

97 axiom Int$SemigroupNameNonPositive {
98 forall R: Map[T, Int], F: Set[T] :: { $SemigroupName(R, F) }
99 (F != Set()) && (F subset domain(R)) &&

100 (forall a: T :: {a in F} a in F ==> R[a] <= 0) ==> $SemigroupName(R, F) <= 0 }

The first two axioms (Positive and NonNegative) are generated for all our built-in semi-
groups (based on +, *, 𝓂𝒾𝓃 , 𝓂𝒶𝓍). The latter two axioms (Negative and NonPositive)
are generated only for +, 𝓂𝒾𝓃 , and 𝓂𝒶𝓍 ; e. g. these are needed for verifying coincidence-
Count (Sec. 2.3.2). A special axiom for * axiomatizes that the product of multiple integer
values is equal to zero iff one of the values is zero.

101 axiom IntProductZero {
102 (forall R: Map[T, Int], F: Set[T] :: { Product(R, F) }
103 F subset domain(R) &&
104 Product(R, F) == 0 ==> exists a: T :: { R[a] } a in F && R[a] == 0)
105 && (forall R: Map[T, Int], F: Set[T], a: T :: { Product(R, F), R[a] }
106 F subset domain(R) && a in F && R[a] == 0 ==> Product(R, F) == 0) }

DISTRIBuTIvITy. We conclude this section by encoding the last series of special proper-
ties, namely, distributivity. Recall that addition distributes over𝓂𝒾𝓃 and𝓂𝒶𝓍 , e. g.𝓂𝒾𝓃(𝑎, 𝑏)+
𝑑 = 𝓂𝒾𝓃(𝑎 + 𝑑, 𝑏 + 𝑑). If a binary operator ⊗ distributes over ⊕, then the distributivity
can be propagated to an arbitrary number of nested applications of ⊕, e. g.:
𝓂𝒾𝓃 (…𝓂𝒾𝓃 (𝑎0, 𝑎1) ,… , 𝑎𝑁)+ 𝑑 = 𝓂𝒾𝓃 (…𝓂𝒾𝓃 (𝑎0+𝑑, 𝑎1+𝑑) ,… 𝑎𝑁+𝑑). Here, {𝑎𝑖} and
{𝑎𝑖 + 𝑑} are two distributions of values and 𝑑 is the distance between them. Generally,
𝖈𝖔𝖒𝖕[⊕]𝑛 ⦃ e(𝑛) ‖ f⦄⊗𝑑 = 𝖈𝖔𝖒𝖕[⊕]𝑛 ⦃ e(𝑛)⊗𝑑 ‖ f⦄. We showed the practical
usefulness of distributivity of addition over 𝓂𝒾𝓃 in Sec. 2.3.1. Overall, we generate three
distributivity axioms for the following cases: + over 𝓂𝒾𝓃 , + over 𝓂𝒶𝓍 , and * over +.
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107 function pick(F: Set[T]): Int
108 axiom PickIndex { forall F: Set[T] :: { pick(F) } F != Set() ==> pick(F) in F }

109 axiom Int$SemigroupNameDistributivity {
110 forall R1:Map[T,Int], R2:Map[T,Int], F:Set[T] ::
111 { $SemigroupName(R1, F), $SemigroupName(R2, F) }
112 R1 != R2 && F != Set() && F subset domain(R1) && F subset domain(R2) &&
113 ( forall a:T, b:T :: { R1[a], R2[a], R1[b], R2[b] }
114 a in F && b in F ==> R1[a] ⊗ R2[b] == R1[b] ⊗ R2[a] ) ==>
115 $SemigroupName(R1,F) ⊗ R2[pick(F)] == $SemigroupName(R2,F) ⊗ R1[pick(F)]

Here, x⊗y is translated to __oper__($DistribMap($SemigroupId), x, y)where $DistribMap
is a meta-function on semigroup identifiers that maps "__min__", "__max__", "__sum__"
to "__sum__", "__sum__", "__product__", resp.

Our encoding of distributivity addresses the issues of a similar axiom (Distrib) from Spec#.
The main problem is to enable instantiating the formula despite the fact that the distance
cannot be added to the outermost pattern as we intend to use the formula even if this
distance is written as an integer literal (i. e. not a suitable triggering term). Moreover,
two distributions of integer values may have a well-defined distance that is not an in-
teger. For example, consider summation over {2, 4, 6} and {3, 6, 9}; the distance from the
prior distribution to the latter one is 3

2 , which is not an integer and therefore cannot be
directly represented in our lightweight type system (defined in Fig. 1.1).

We solve these problems by rephrasing the distributivity axiom. First, the inner quan-
tifier expresses that the difference between R1 and R2 is constant at any two indices a
and b. To illustrate, consider an instantiation of + for ⊗ and assume that 𝑑 is the dis-
tance between R1 and R2 over the subdomain defined by the filter, F. Then, the condition
R1[a]+ R2[b] = R1[b]+ R2[a] is equivalent to R2[a]- R1[a] = R2[b]- R1[b] = 𝑑.

Second, if the inner quantifier holds, then we learn the RHS. In terms of the above ex-
ample, we obtain the condition𝖒𝖎𝖓

⋀

(R1,F) + R2[pick(F)] =𝖒𝖎𝖓
⋀

(R2,F) + R1[pick(F)],
so 𝑑 = R2[pick(F)]-R1[pick(F)] (we choose 𝖒𝖎𝖓

⋀

for this example as + distributes over
its step operator, 𝓂𝒾𝓃). The value pick(F) represents some index from F (which exists
since F is non-empty) at which both R1 and R2 must be defined (due the outer implica-
tion’s premise).27 Generally, this formula provides the essential information, connecting
the values of the two comprehensions over the common filter, F, via the values that in-
directly specify the distance.

2.4.7 Preventing infinite instantiation chains

Our axioms constrain the values of multiple comprehension instances, e. g. relating the
comprehensive properties of the footprints of a callee and its client. Such relational prop-

27 Alternatively, pick(F) can be viewed as the Skolem function for the quantifier ∃𝑝 • 𝑝 ∈ F.
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erties are inherently recursive. The recursive nature of our axioms (and the fact that they
are universally quantified formulas) means that each instantiation can mention multiple
different terms of the same syntactic shape. For example, consider a simplified version
of our axiom step (2.21):

∀𝑅, 𝐹, 𝑛 • 𝑛 ∈ 𝐹 ⟹ 𝖈𝖔𝖒𝖕⋀(𝑅,𝐹) = 𝑅[𝑛] ⊕ 𝖈𝖔𝖒𝖕⋀(𝑅,𝐹 Set(𝑛))

The naïve encoding of this formula could be written as follows:
forall t: Int, R: Map[T, S], F: Set[T], a: T ::
{ 𝖈𝖔𝖒𝖕⋀

(t, R, F), R[a] }
a in F ==> 𝖈𝖔𝖒𝖕⋀

(t, R, F) == __oper__(t, 𝖈𝖔𝖒𝖕⋀

(t, R, F setminus Set(a)), R[a])

Suppose the automatic proof search involving this axiom reaches a hypothesis about
the values of the following two expressions: 𝖈𝖔𝖒𝖕⋀

(t0, R0, F0) and R0[a0], for some
t0, R0, F0, and a0; consequently, these terms (and all of their sub-terms) are added to the
E-graph, an internal data structure that helps the SMT solver to keep track of equivalence
classes of terms.

Notice that 𝖈𝖔𝖒𝖕⋀

(t, R, F) and R0[a0] together form a viable trigger for the universal
quantifier above because they syntactically wrap all quantified variables into uninter-
preted functions and do not mention any interpreted functions. Hence, the solver will
instantiate our quantifier with t0, R0, F, a0 for t, R, F, a, resp., learning the following
formula:
a0 in F0 ==> 𝖈𝖔𝖒𝖕⋀

(t0, R0, F0) == __oper__(t0, 𝖈𝖔𝖒𝖕⋀

(t0, R0, F0 setminus Set(a0)), R0[a0])

In particular, this instantiation yields the term 𝖈𝖔𝖒𝖕⋀

(t0, R0, F0 setminus Set(a0))
that is also added to the E-graph; using a combination of this term with the priorly
added term R[a], the solver will trigger a new instantiation of our quantifier with t0, R0,
F0 setminus Set(a0), a0 for t, R, F, a0, resp., learning a conceptually new formula:
a0 in F0 setminus Set(a0) ==> 𝖈𝖔𝖒𝖕⋀

(t0, R0, F0 setminus Set(a0)) ==
__oper__(t0, 𝖈𝖔𝖒𝖕⋀

(t0, R0, F0 setminus Set(a0) setminus Set(a0)), R0[a0])

Analogously, the solver is free to perform further instantiations using the trigger-
ing terms of the form F0 setminus Set(a0)… setminus Set(a0). Each of these terms
can be combined with e. g. R[a] to produce a new term of the same shape. The proof
search resulting from these instantiations diverges. The possibility of infinite instanti-
ation chains in E-matching is called a matching loop [33]. Matching loops may occur
whenever there is an infinite sequence of syntactically distinct triggering terms; e. g. the
fact that F0 setminus Set(a0) setminus Set(a0) is equal to F0setminus Set(a0) alone
does not prevent a matching loop, as we explain next.

Our technique does not assume that the SMT solver natively supports theories such
as the theory of sets and maps; modern SMT-based verifiers tend to use a partial axiom-
atization of these theories involving multiple universally quantified formulas that them-
selves are designed to be used with E-matching. In particular, establishing the equality
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between the terms F0 setminus Set(a0) and F0 setminus Set(a0) setminus Set(a0)
would require instantiating the universally quantified axioms defining the semantics of
setminus. Since our technique does not rely on a particular order of quantifier instan-
tiation, the solver is free to explore the proof space depth-first, possibly leading to an
infinite chain of instantiations of the above quantifier, i. e. a matching loop.

While it is generally possible to influence the order of quantifier instantiations in E-
matching, e. g. by specifying each quantifier’s weight, we opt for a more conservative
approach. Concretely, we restrict the set of possible triggering terms by using a syn-
onym function [52], 𝖈𝖒𝖕⋀; this function has the same signature as 𝖈𝖔𝖒𝖕⋀

, and both are
axiomatized to be pointwise-equal via the following axiom:
function 𝖈𝖒𝖕⋀(t: Int, R: Map[T, S], F: Set[T]): S

axiom CompSynonym {
forall t: Int, R: Map[T, Int], F: Set[T] :: { 𝖈𝖔𝖒𝖕⋀

(t, R, F) }
𝖈𝖒𝖕⋀(t, R, F) == 𝖈𝖔𝖒𝖕⋀

(t, R, F) }

Here, 𝖈𝖒𝖕⋀ is a fresh function that cannot be used by the programmer. Our encoding
uses 𝖈𝖔𝖒𝖕⋀

in the patterns of all quantified axioms; the quantifier bodies use only 𝖈𝖒𝖕⋀

(except for the cases in which the term in the body already appears in the pattern).
With the help of the synonym function, we obtain an encoding in which each trigger-

ing term may trigger only one instantiation of each axiom. While this approach reduces
the theoretical completeness of our technique, our experiments show that this strategy
is nonetheless sufficient for verifying a diverse set of benchmark programs.

2.4.8 Consistency checking

Our technique ensures that the encoding of each comprehension instance is applied
soundly by following the consistency checking approach described in Sec. 2.2.4.7. To
illustrate how the checks are encoded, consider a comprehension instance of the form
𝖈𝖔𝖒𝖕[S]𝑛:T ⦃ e𝐹(𝑛) ‖ filter⦄ in a state in which 𝔤 is the footprint.

2.4.8.1 Checking the semigroup. We aim to check the following properties.28 If the pro-
grammer wrote a comprehension of the form 𝖈𝖔𝖒𝖕[⊕]… , we check that ⊕ forms a
semigroup, i. e. that this is a binary operator with the signature S → S → S for some type
S, and that it is commutative and associative (2.9). If the programmer instead wrote
𝖈𝖔𝖒𝖕[⊕,𝟙]… , we additionally check that 𝟙 is of the same type, S, and is, indeed, the
neutral element of the semigroup (2.10). These checks are emitted during the translation
as a proof obligation inside a special method called $SemigroupName_obligations.

28 Recall that our technique permits the programmer to specify custom semigroups; thus, consistency cannot
be established once for all possible semigroups.
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116 method $SemigroupName_obligations() {
117 var x: T; var y: T; var z: T // fresh variables
118 assert ⊕(x, y) == ⊕(y, x)
119 assert ⊕(⊕(x, y), z) == ⊕(x, ⊕(y, z))
120 IF $IsMonoid THEN
121 assert ⊕(𝟙, x) == x
122 FI }

Recall that x⊗y is translated to __oper__($SemigroupId, x, y). The meta flag $IsMonoid
is set iff the programmer has provided some value for the unit.

If the emitted assertions hold, then the programmer-specified operator (and, option-
ally, a value for the unit) indeed form a semigroup (or monoid). Otherwise, the error is
mapped to a readable message by the frontend (Fig. 2.18) and displayed to the user. In
particular, the mapping distinguishes the following cases:

• missing declaration errors → semigroup is undefined

• wrong number of arguments → wrong arity

• assertion failure, line 118 → operator commutativity check failed

• assertion failure, line 119 → operator associativity check failed

• assertion failure, line 121 → unit neutrality check failed

• type error → the type of the binary operator does not match the type of its unit

2.4.8.2 Checking the filter. We first check that filter is an expression of type Set[T]
or Bool. If filter is of type Set[T], then it is translated to filterCheck(𝔤, filter),
where filterCheck is the identity function with a precondition.

123 function filterCheck(𝔤: Set[Ref], filter: Set[T]): Set[T]
124 IF T ≡ Ref THEN
125 requires filter subset 𝔤
126 ELSE
127 requires filter subset domain(lift(𝔤))
128 FI
129 { filter }

If filter is of type Bool, we ensure that the filtering condition is type-correct by check-
ing that the filt function (Sec. 2.4.5) is well-formed.
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2.4.8.3 Checking the body. The type of the comprehension body must match the type
of the binary operator. Since we have already checked the semigroup, checking that the
unit is also of the same type (in case of a monoid) is not needed. Afterwards, type check-
ing the body amounts to checking that the snap function (Sec. 2.4.4) is well-formed.

2.4.8.4 On finiteness. Our encoding is sound only for reasoning about comprehensions
over finite structures. The reason for this limitation is that we aim to encode comprehen-
sions in a way that is compatible with a type system in which every value is finite. In
particular, the universe set for unbounded types cannot be represented in our type sys-
tem, e. g. because the cardinality of this set would have to be of type Int which does not
include the value of +∞. Hence, under our assumption that each method’s footprint is
represented as a value of type Set[Ref], all footprints must be finite, too.29

We established that our setting precludes infinite structures. We will now show that
adding our comprehension axiomatization does not violate finiteness. For example, if
our axioms were to specify that some set must contain all Refs or all Ints, that would
render our technique unsound. To prove finiteness of a comprehension instance of the
form 𝖈𝖔𝖒𝖕[S]𝑛 ⦃ e𝐹σ(𝑛) ‖ f⦄, assume that f is a finite set and each instantiation of the
body with a value from f yields a finite value. Let ⊕ be the step operator of S.

Lemma: Any finite ⊕-combination of finite values represents a finite value.
The number of recursive steps in the complete evaluation (2.12) of our instance is

bounded by the cardinality of f, which is by assumption finite. Each step involves at most
one application of ⊕. Therefore, the evaluation of our comprehension instance is a finite
⊕-combination of various instantiations of the body term (which are by assumption
finite). Hence, the evaluation of this comprehension instance represents a finite value.

As a corollary, we apply the above argument for each comprehension instance (via a
depth-first strategy, in case there are nested comprehension instances), showing that all
comprehension instances, under our assumptions, represent finite values. Hence (since
our type system does not permit for infinite sets) all the comprehension instances must
be finite, and no additional checks are required.

2.5 EvALuATION

We evaluated our technique on a variety of challenging example programs taken from
the literature, illustrating the specification and the verification aspects for different types
of data structures, including the running examples of closely-related work.

29 In contrast, our logic does support methods with infinite footprints; e. g. consider a method the footprint
of which is defined via forall r:Ref :: acc(r.val), for some field val.
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2.5.1 Experimental setup

We encoded each example manually into the Viper verification language [91]; we have
introduces our chosen subset of Viper in Sec. 1.2. Although manual, our encoding of
each example was performed methodically, simulating the translation that a frontend
verification tool could perform. Each example consists of a common set of background
definitions and axioms, along with a translation of the code of the example. The back-
ground definitions common to our examples are organized in separately-included li-

Table 2.1: Experimental results.

The 1st column is the benchmark name, 2nd: benchmark variant, 3rd: data structure class (Graph
= direct access to nodes; Array = nodes accessed via integer indices), 4th: number of compre-
hension kinds in specification, 𝑡a and 𝑡p: Carbon verification time with Boogie’s “type encoding
A” and “type encoding P”, resp. 𝑡s: Silicon verification time (t.o. = 1,000 s timeout; * = fail due to
incompleteness). Benchmark source is indicated in the last column.

Example Variant Structure #Comps 𝑡a 𝑡p 𝑡s Notes

ARRAYSUM Spec 1 Array 1 0.8 1.1 1.2 From Spec#
(Fig. 2.20) Spec 2 0.9 0.9 1.4 — ” —

Fail 1 0.8 0.9 1.1 — ” —
Fail 2 0.9 0.9 1.3 — ” —

FACTORIAL Success - 1 0.8 1.0 0.8 From Spec#
(Fig. 2.21) Fail 1 0.8 1.1 0.9 (numerical comprehension)

Fail 2 0.8 0.8 0.8 — ” —
MINSUBARRAYSUM Success Array 3 3.5 8.2 17.1 From Spec#
(Fig. 2.12) Fail 1 3.4 5.5 68.7 (by Joseph B. Kadane [12])

Fail 2 3.9 4.2 53.0 — ” —
COINCIDENCE-COUNT Success Array 2 3.5 4.0 *77.4 From Spec#
(Fig. 2.15) Fail 1 3.7 3.2 - (by Dijkstra and Feijen [14])

Fail 2 3.1 3.3 - — ” —
FLIP One node Graph 1 0.8 0.9 4.0 Singleton decompositions
(Fig. 2.9) Two nodes 0.9 1.0 6.8 — ” —

Three nodes 0.9 1.1 19.7 — ” —
Smoke test 1.3 1.2 6.7 — ” —

MERGE Success Graph 1 2.2 2.3 t.o. With reachability (Chap. 3)
(Fig. 2.10) Fail 1 1.6 1.8 t.o. — ” —

Fail 2 1.5 1.6 t.o. — ” —
SHORTEST-PATH Success Graph 2 16.0 96.8 185.3 Modulo reachability
(Fig. 2.2) Fail 1 6.3 13.5 2.1 — ” —

Fail 2 8.3 66.3 137.5 — ” —
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brary files, and we make heavy use of Viper’s macros to improve the readability of our
encoded examples.

Our examples are verified using Viper’s standard Boogie-based [46] verifier (Car-
bon [68]), using two configurations for both available type encodings30 (argument-based
as well as predicate-based). We also attempted to verify each example using Viper’s sym-
bolic execution engine (Silicon [92]), although our encoding is generally less complete
with this backend. Internally, both Boogie and Silicon use the Z3 SMT solver [47] for
checking verification conditions. We indicate each backend’s run times for each exam-
ple in Tab. 2.1. The experiments were performed on a laptop running macOS, with a
2.6 GHz Intel Core i7 CPU, with Z3 [version 4.8.6 - 64 bit].

2.5.2 Experiments

In this chapter, we have presented a modular technique for specifying and verifying
comprehensions. To evaluate the technique, we selected (1) the benchmarks from closest-
related existing work and (2) a number of benchmarks that feature the most challenging
aspects of reasoning about comprehensive properties of heap structures.

2.5.2.1 Overview. Tab. 2.1 gives an overview of our experiments. The first four exam-
ples correspond to the benchmarks of the Spec# comprehensions technique [52]. AR-
RAYSUM is a simple algorithm for computing the sum of array values for which we con-
sidered two alternative specifications. FACTORIAL is a recursive algorithm specified via a
numerical comprehension that summarizes the properties of a set of integers rather than
data structure nodes. MINSUBARRAYSUM and COINCIDENCE-COUNT are the most challeng-
ing benchmarks from prior work Sec. 2.1.4.

The other examples involve graph structures that cannot be verified in Spec# but are
supported in our technique. FLIP demonstrates that the relevant data structure decom-
positions required for reasoning about field updates are indeed triggered automatically
based on the nodes that are modified in the current footprint. MERGE and SHORTEST-PATH
demonstrate that our technique is indeed modular, which requires cooperation between
our comprehensive specifications and separation-logic framing.

2.5.2.2 Details. Each example program from Tab. 2.1 is represented by a series of bench-
marks, including correctly specified and verified variants as well as those in which a bug
has been planted either into the specification or the implementation (marked “Fail 1”
and “Fail 2”, resp. in the second column). The figures indicated in the three penultimate
columns 𝑡a, 𝑡p, 𝑡s are wall clock times for the verifier’s response (in seconds), while using
either of the two type encoding strategies in Boogie or the Silicon verification backend,
resp. Note that Silicon reports encountered verification results in real time; hence, we

30 A brief preview of Boogie’s type encoding features is given in [123] (e. g. in Fig. 3). For full details about
the Boogie type system and its SMT encoding, refer to [58].
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indicate the time until the final response in case of multiple failures in one benchmark.

ARRAYSUM. This method computes the sum of values stored in the nodes of an array
(Fig. 2.20). The main interest of this example is in the two alternative comprehensive
specifications: It is sufficient to keep only one of the two loop invariants (either /*I1*/,
in blue, or /*I2*/, in purple font).31 The former invariant (Spec 1 in Tab. 2.1) summa-
rizes the part of the array that is processed by the loop so far; to verify this invariant, the
required filter decomposition is of the form filt(0, n+1) = filt(0, n)⊎{n}. Conversely,
the latter invariant (Spec 2 in Tab. 2.1) expresses that the intermediate sum stored in res
plus the sum of the remaining part of the array equals the sum over the entire array; veri-
fying this invariant requires a different decomposition, namely, filt(n, size(array)) =
{n} ⊎ filt(n+1, size(array)), which we added as a manual assertion at the beginning
of the loop body.

To test some failing scenarios, we planted two bugs (into the version of ARRAYSUM
specified with /*I1*/). Fail 1: we removed the increment of the loop counter n in Fig. 2.20.
Fail 2: we planted an off-by-one error in the loop invariant’s comprehension, changing
it to res = 𝖘𝖚𝖒 𝑖 ⦃ array[𝑖].val ‖ 0 ≤ 𝑖 < n-1⦄ (the strict inequality should say 𝑖 < n).

field val: Int
define array lift(𝔤,𝔤)
define size(a) |domain(a)|

method arraySum(𝔤: Set[Ref]) returns (res: Int)
requires ACCESS_NODES(𝔤, read)
ensures ACCESS_NODES(𝔤, read) && res = 𝖘𝖚𝖒 𝑖 ⦃ array[𝑖].val ‖ 0 ≤ 𝑖 < size(array)⦄

{
var n: Int := 0; res := 0
while (n < size(array))
invariant ACCESS_NODES(𝔤, read) && 0 ≤ n ≤ size(array)
/* I1 */ res = 𝖘𝖚𝖒 𝑖 ⦃ array[𝑖].val ‖ 0 ≤ 𝑖 < n⦄
/* I2 */ res + 𝖘𝖚𝖒 𝑖 ⦃ array[𝑖].val ‖ n ≤ 𝑖 < size(array)⦄ =

𝖘𝖚𝖒 𝑖 ⦃ array[𝑖].val ‖ 0 ≤ 𝑖 < size(array)⦄
{
res := res + array[n].val
n := n+1

} }

Figure 2.20: Implementation of ARRAYSUM and its two alternative specifications.

FACTORIAL. This method recursively computes the factorial of an integer number (Fig. 2.21).
This example shows how our technique can be retrofitted to support numerical compre-
hensions, i. e. those do not depend on the heap but summarize some (potentially un-

31 These alternative specifications were proposed in [43].
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bounded) sets of integer values. Directly applying our technique is not possible here
since the method is pure and does not have a footprint. However, one can still use our
axioms to verify this example. To that end, the comprehension’s filter is translated as
usual, i. e. we get a set of integers of the form {𝑛 | 1 ≤ 𝑛 ≤ x}.32 We replace the snapshot
in our translation of the 𝖕𝖗𝖔𝖉𝑛⦃𝑛 ‖ 1 ≤ 𝑛 ≤ x⦄ comprehension with a map of the form
{𝑛 → 𝑛 | 1 ≤ 𝑛 ≤ x} (from filtered integers to corresponding values of the body term).
The rest of the translation is standard.

method factorial(x: Int) returns (res: Int)
requires 0 ≤ x
ensures res = 𝖕𝖗𝖔𝖉𝑛 ⦃ 𝑛 ‖ 1 ≤ 𝑛 ≤ x⦄

{
if (x ≤ 2) { res := 1 }
else { res := x * factorial(x-1) }

}

Figure 2.21: Implementation of FACTORIAL and its comprehensive specifications.

In order to verify factorial, one needs to add the following assertions to the two
corresponding branches: filt(x) = {1} and filt(x) = filt(x-1) ⊎ {x}. The former as-
sertion is due to an incompleteness in Viper’s axiomatization of sets. The latter assertion
triggers the decomposition required to complete the proof.33

To test some failing scenarios, we planted two bugs into FACTORIAL. Fail 1: we changed
the branch condition in Fig. 2.21 to x ≤ 1. Fail 2: we planted an off-by-one error in the
comprehension, changing it to 𝖕𝖗𝖔𝖉𝑛⦃𝑛 ‖ 1 ≤ 𝑛 < x⦄ (note the strict inequality 𝑛 < x).

MINSUBARRAYSUM. This method is the optimal implementation for computing the sum
of a minimal sub-array of the input array. The algorithm’s invariant maintains the lo-
cal minimum in y and the global minimum (up until the current iteration) in x. To ex-
press the minimization criteria in the invariant, we use nested comprehensions over the
(dependent) lower bound and the (independent) upper bound of the sub-array (the
lower bound cannot be greater than the upper). Hence, the benchmark demonstrates
the support of nested, dependent comprehensions in our technique. Note that the veri-
fication required one manual assertion to trigger our distributivity axiom34; see the end
of Sec. 2.4.6 for a discussion of distributivity. More details on this example were pre-
sented in Sec. 2.3.1.

32 Unlike our standard set comprehensions (Sec. 2.4.8.4), numerical set comprehensions require cardinality
checking; e. g. if the filtering condition is an expression 𝑄(𝑛), then f = {𝑛 | 𝑄(𝑛)} must be a finite set.
Automatically checking set finiteness is an open problem.

33 Note that our technique cannot automatically trigger this decomposition as there is no access to any parts
of the heap. Automatically triggering filter decompositions for numerical comprehensions is future work.

34 The assertion is assert n𝑜 > 0 ⇒ min(R, F𝑜) = min(R𝑜, F𝑜)+array[n𝑜]; see Sec. 2.3.1.
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To test some failing scenarios, we planted two bugs into MINSUBARRAYSUM. Fail 1: we
replaced the range of the outermost 𝖒𝖎𝖓-comprehension’s filter from 1… n+1 to 0… n
(both in the loop invariant and the postcondition). Fail 2: we replaced the second branch
condition of Fig. 2.12 from y < x to x < y.

This example demonstrates that our encoding works best with Viper’s verification
condition generator, especially with Boogie type encoding A. In contrast, symbolic exe-
cution performed significantly slower, especially in detecting the failures (Tab. 2.1). Op-
timizing our encoding for symbolic execution is future work.

COINCIDENCE-COUNT. This method is the optimal implementation for computing the num-
ber of coinciding values in two sorted sets (i. e. disjoint, sorted arrays of unique ele-
ments). The method maintains a comprehensive invariant that requires multiple indepen-
dent iterated variables. Instead of using nested comprehensions, our technique encodes
independent iterated variables as tuples. This leads to a simpler proof due to fewer lev-
els of indirection (compared to an encoding of nested comprehensions). More details on
this example were presented in Sec. 2.3.2. The manual assertions required to complete
the proof directly corresponds to the three decompositions depicted in Fig. 2.17.

To test some failing scenarios, we planted two bugs into COINCIDENCE-COUNT. Fail 1: we
decreased by one the upper bounds for both iterated variables of the 𝖘𝖚𝖒-comprehension.
Fail 2: we dropped n:=n+1 in the last branch of Fig. 2.15.

While verification condition generation performed well on this example, symbolic exe-
cution reported a verification error after ca. 80 seconds (Tab. 2.1). Note that the two back-
ends of Viper rely upon different (inherently incomplete) set axiomatizations, which
may be the cause of the problem. However, we did not investigate the real cause; the
first step would involve tuning our encoding for symbolic execution to make verification
debugging practically feasible. We will discuss verification debugging in Chap. 4.

FLIP. This series of synthetic methods demonstrates the interplay of separation-logic
framing with comprehensive specifications in presence of field update operations. The
first three methods feature updates to one, two, and three (non-aliasing) nodes, resp.
Each field update is accompanied with a singleton decomposition, i. e. it is asserted that
the current structure’s footprint (which may contain any number of nodes in addition to
the ones being modified) can be represented via a disjoint union of the currently modi-
fied node and the set of all other nodes of this footprint. These assertions are generated
systematically using the translation rule for field updates.

The last benchmark in the series is a smoke test, i. e. we add assert false as the very
last statement of the body of each of the three methods (including the one presented
in Fig. 2.9) and measure the time it takes the verifier to report failure.

We observed that the performance of symbolic execution drops rapidly with each
additional field update operation (Tab. 2.1). Such degradation might be caused by a
suboptimal quantifier instantiation strategy in the encoding of separation logic framing;
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investigating the real cause is future work. In contrast, there was no noticeable perfor-
mance penalty for verification condition generation.

MERGE. The benchmark demonstrates reasoning about comprehensions in presence of
complex heap transformations, i. e. those over subgraphs (cf. the recursive call in the then-
branch) and over individual nodes (cf. the field update in the else-branch). We omitted the
reachability part of the specification of MERGE; this program is also the running example
of our technique of Chap. 3 in which we focus precisely on the problem of modularly
verifying reachability properties, in particular, acyclicity. The decompositions needed
for completing the proof are filt(𝔤) = filt(𝔤 𝔥) ⊎ filt(𝔥), where 𝔥 ⊂ 𝔤 is the callee
footprint in the then-branch, and filt(𝔤) = filt(𝔤 {l})⊎filt({l}), where l is the node
modified in the else-branch. More details on this example were presented in Sec. 2.2.5.

To test some failing scenarios, we planted two bugs into MERGE. Fail 1: we replaced -1
with +1 in the postcondition of Fig. 2.10. Fail 2: we inverted the branch condition.

We could not verify via example with symbolic execution as the verifier timed out
after 1,000 seconds on all runs. This is expected as our reachability verification tech-
nique Chap. 3 is currently not optimized for Viper’s symbolic execution backend.

SHORTEST-PATH. This method implements a depth-first search strategy for finding the
shortest35 path in a DAG. Refer to Sec. 2.2.1.1 for a detailed overview of this program.

To verify the comprehensive specifications, we assumed the acyclicity of the heap
structure; this allowed us to verify the rest of the specifications via symbolic execu-
tion which practically cannot handle proof obligations with reachability.36 Recall that
the 𝔥 ⊂ 𝔤 is the callee footprint and node is the currently processed node; path_a and
path_b are the shortest paths to the target node from node.left and node.right, resp.
The decompositions required for completing the proof are 𝔤 = 𝔥 ⊎ {node} for the set-
based comprehension (𝖘𝖚𝖒𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ 𝔤 ⦄) and filt(path) = filt(path_a) ⊎
{node} and filt(path) = filt(path_b)⊎{node} for the sequence-based comprehension
(𝖘𝖚𝖒𝑛 ⦃ abs(𝑛.val) ‖ 𝑛 ∈ path⦄).

To test some failures, we planted two bugs into SHORTEST-PATH. Fail 1: we replaced
the postcondition reachable ⇒ abs(cost) ≤ 𝖘𝖚𝖒𝑛 ⦃ abs(𝑛.val) ‖ 𝑛 ∈ 𝔤 ⦄ with
reachable ⇒ cost ≤ 𝖘𝖚𝖒𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ 𝔤 ⦄. A counterexample to this specifica-
tion is a DAG 𝔤 with three nodes 𝑎 = node, 𝑏 = target, and 𝑐, storing the values e. g. 1,
1,-10 , resp. and two heap edges 𝑎.left = 𝑏 and 𝑎.right = 𝑐. Then path = [𝑎, 𝑏] and
cost = 𝑎.val + 𝑏.val = 2 which is greater than -8 = 𝖘𝖚𝖒𝑛 ⦃ 𝑛.val ‖ 𝑛 ∈ 𝔤 ⦄. Fail 2:
we replaced ≤ with > in the first branch condition of Fig. 2.2.

Viper’s verification condition-based backend performed significantly better on this
example, especially with Boogie type encoding A. Symbolic execution also produced ex-

35 Shortest in terms of the cost, as explained next.
36 However, we independently verified the acyclicity invariant using verification condition generation, which

in this case is straightforward as the method shortestPath only traverses but does not modify the heap.
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pected results eventually, although much slower in scenarios labeled Success and Fail 2
(Tab. 2.1); however, we leave as future work understanding why symbolic execution per-
formed the fastest in Fail 1.

2.5.3 Results

Our experiments show that comprehensive specifications enabled by our technique are
amenable to modular, SMT-based verification for a broad class of heap-transforming pro-
grams. Our technique is a lightweight extension of separation logic; hence, it is easy to
extend basic specifications (e. g. memory safety) with comprehensive specifications of
functional correctness. Our technique automates the verification of comprehensive prop-
erties; devising suitable program invariants and specifications is conceptually still chal-
lenging as the correct specification of highly-optimized algorithms is sometimes more
difficult to devise than the actual implementation (cf. Fig. 2.12).

ALGEBRAIC pROpERTIES OF COMpREHENSIONS. Our set-based comprehension reasoning
technique is agnostic to the ordering of nodes in a data structure. In those cases in which
the ordering matters, it can be encoded using an extra layer of abstraction, which we call
the lifted representation of a data structure. MINSUBARRAYSUM and COINCIDENCE COUNT
demonstrate that our set-based view is general enough to support multidimensional
comprehensions in combination with the lifted representation of arrays.

The fact that set-based comprehensions do not rely on the order of heap nodes enables
straightforward applications of this technique to problems about graph structures with
arbitrary in- and outdegrees. In particular, we used this technique to modularly spec-
ify SHORTEST-PATH and MERGE. These methods operate on heap-allocated directed acyclic
graphs and cannot be easily specified in a sequential view of the Spec# technique.

INTERACTIvE vERIFICATION SESSIONS. Both time till success and time till failure are essen-
tial characteristics of a verification technique because programmers typically develop
the implementation and the specification of each method iteratively, refining the code
step-by-step, which may involve deliberate (temporary) violations or accidental bugs
that must be detected and reported as quickly as possible. The experiments show that
our technique’s time till failure is on par with verification times for correctly specified
versions of the corresponding benchmarks.

SyMBOLIC ExECuTION. Our encoding performed much slower (and less stable) while
verifying the examples via symbolic execution. To optimize the encoding, one could in-
vestigate whether the problem is related to matching loops of quantifier instantiations.
While our technique precludes obvious matching loops caused by our own axioms,
e. g. by carefully selecting the triggering patterns and employing synonym functions
(Sec. 2.4.7), matching loops may still occur due to the interplay of comprehension ax-
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ioms, the set axiomatization, and the encoding of separation logic used internally by
the verifier. Investigating matching loops is possible e. g. via the Z3 Axiom Profiler [108].

2.6 DISCuSSION

In this section, we summarize the strengths (Sec. 2.6.1) and limitations (Sec. 2.6.2) of
our technique for compositional reasoning about comprehensive properties of heap-
transforming programs, and conclude the chapter (Sec. 2.6.3).

2.6.1 Strengths

MODuLARITy. Our reasoning technique for reachability properties is modular. For each
method, the programmer specifies only local comprehensive properties, within the method’s
footprint. Our technique enables precise (first-order) framing of comprehensions, i. e. com-
prehensive properties of the callee footprint are automatically extended to the (larger)
client footprint.

GENERALITy Our technique provides a general framework for reasoning about foldings
of heap-dependent sub-expressions via commutative, associative binary operators. As a
prerequisite, we require the programmer to confine accessing the heap via direct node
references (which is common for graph structures) or via a suitable lifted representa-
tion. The lifted representation enables accessing heap nodes via some injective identi-
fiers (e. g. array name, array index pairs). Programmers working on the level of an in-
termediate verification language typically use these abstractions already. For example,
disjoint array partitions are typically encoded into Viper using an injective loc function
that maps its two arguments (an array and an integer index) to a node reference; this
abstraction is a special case of our lift function (which is more general in that e. g. it is
suitable for encoding families of potentially-overlapping arrays).

SEpARATION LOGIC. Our technique integrates into first-order separation logic, enabling
reasoning about comprehensions and other properties in a uniform way, verifying con-
current programs, and automating our technique via existing separation logic verifiers.

We will discuss generalizations of our techniques in more detail in Sec. 5.1.

2.6.2 Limitations

ENTAILMENTS. In addition to relating the properties of multiple program states, the
verification of stateful programs often requires proving non-trivial entailments about
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the properties of individual states. Conceptually, these are reasoning steps that transform
the existing information about comprehensive properties from one representation to
another. For example, if it is known that each node of an array stores a positive value,
then we must be able to learn that the minimal and the maximal values, as well as the
sum and the product of all the array elements, are all positive, too. Despite their intuitive
simplicity, these entailments generally require induction, which precludes a first-order
SMT solver from establishing them automatically.

There are two main avenues for entailments automation in our setting that are pre-
sented in this chapter. First, deductive verification requires the programmer to supply
sufficiently precise loop invariants (and postconditions of recursive methods) that serve
as induction hypotheses for some of the entailment proofs. Second, we identify and effi-
ciently axiomatize some classes of inductive properties that are frequently needed for
entailment automation, namely, monotonicity and distributivity. Based on our case stud-
ies, these properties are sufficient. We leave a thorough taxonomy of essential inductive
lemmas about comprehensions as future work.

DECOMpOSITIONS It is hard to identify the best possible data structure decomposition,
i. e. the one that would lead to a successful proof, from multiple alternatives. An obvious
solution is to consider all possibilities, maximizing the completeness of the technique.
However, this is practically infeasible as there are generally unboundedly many decom-
positions; ultimately, reasoning about the value of each individual node of the structure
would break the level of abstraction that comprehensions grant. The next alternative is
to define a family of characteristic decompositions that each operation can trigger. In case
of a single-node update, i. e. an operation of the form loc(a,k).val:=… for some array
a and index k s.t. 0 ≤ 𝑘 < len(a), it is intuitively clear that a useful decomposition
to consider splits the array range into three segments, namely, [0…𝑘), the singleton
[𝑘 … 𝑘+1), and [𝑘+1… len(a)). Although this three-way decomposition is very basic,
it may still lead to a combinatorial explosion of the number of considered sub-ranges,
e. g. in a scenario in which a method subsequently updates multiple potentially different
nodes of the same array — each such operation would split one of the (currently, atomic)
sub-ranges into up to three smaller sub-ranges, etc.

To mitigate the problem, we exploit the set-based nature of our technique. For in-
stance, rather than splitting the integer range into three sub-ranges (in the above exam-
ple) each operation triggers a two-way decomposition based on its footprint. Hence, in a
method whose footprint is the node set 𝔤, the field update x.val := v triggers a decom-
position of the shape 𝔤 = (𝔤 {x}) ⊎ {x}, while a method call whose footprint is 𝔥 ⊂ 𝔤
triggers a decomposition of the shape 𝔤 = (𝔤 𝔥)⊎𝔥. However, node-based decomposi-
tions are generally not sufficient for reasoning about the most general abstractions that
our technique supports. For example, the two-dimensional comprehension that repre-
sents the sum of all elements of a matrix. Matrix decompositions are naturally defined
based on lower and upper bounds for the selected rows and columns, which in our tech-
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nique would translate into filtering functions that define sets of permitted index pairs
(𝑖, 𝑗). To that end, we consider multidimensional filter decompositions, like Fig. 2.17. Auto-
matically triggering the relevant multidimensional decomposition is future work.

NuMERICAL COMpREHENSIONS. Our set comprehensions are defined to express rich prop-
erties of heap structures which are guaranteed to have finite footprints. We nonetheless
demonstrate that our technique can be retrofitted to support numerical comprehensions,
i. e. the product of all integers between some values 𝑖 and 𝑗 (cf. FACTORIAL in Sec. 2.5).
However, numerical comprehensions impose an additional challenge as they are gener-
ally not guaranteed to be finite. In future, we plan to extend our technique to support
numerical comprehensions, perhaps following Dafny’s template-based approach [57]
that requires supported comprehensions to follow a known template for which auto-
matic finiteness checking is possible.

ISC-BASED SETTING. We assumed a setting in which all method footprints are explicitly
specified via nodesets. On the one hand, we argue that this general footprint represen-
tation supports diverse classes of heap structures, e. g. arrays and graphs. On the other
hand, one could potentially lift this requirement if the nodeset-based footprint repre-
sentations could be encoded or inferred rather that specified. Theoretically, this should
be possible in a logic that supports permission introspection, which is the case e. g. in
Viper [91]. However, investigating such a setting is future work.

We will discuss further generalizations of our technique in Sec. 5.1.

2.6.3 Conclusion

In this chapter, we have developed a compositional technique for reasoning about set
comprehensions in separation logic. Our solution solves the open problem of modular
reasoning about comprehensive properties of arbitrary heap structures. In particular,
our technique lifts the requirement from the state of the art that the data structures
must be ordered. Another novelty of our work is that we support two classes of com-
prehensions: those based on commutative monoids and (more general) commutative
semigroups that may not have a unit. We allow the programmer to define custom bi-
nary operators and use them in comprehensions.



3 REACHABILITY

In this chapter, we discuss reasoning about reachability properties of heap-transforming
programs.1 A concrete discussion about reachability requires fixing some imperative pro-
gramming language. We defined the programming language for our setting in Sec. 1.2.1;
recall that our language is strongly, statically typed; otherwise, an expression e. g. 𝑥.f = 𝑦
for two object references 𝑥 and 𝑦 cannot be unequivocally interpreted as a heap edge of
the form (𝑥, 𝑦), and reachability has no meaning.

The intuitive meaning of reachability corresponds to the existence or the absence of
directed paths of reference fields that connect nodes, i. e. (dynamically allocated) heap ob-
jects. For example, the successful execution of the assignment operation m.left.right := n,
where m and n are roots of disjoint and priorly disconnected binary trees, will create a
heap path of the form m… n. This path consists of two heap edges: (m, m.left) through
the reference field left and (m.left, n) through the reference field right (Fig. 3.1).

In complex structures, multiple paths may exist between the same (ordered) pair of
nodes. For instance, if instead of trees in the example above we considered two possi-
bly overlapping DAGs (directed acyclic graphs) rooted in m and n, then the conditions,
e. g. m.right.left = n and m.left.right = n could both hold in the same state. To
indicate that through the discussed reference fields there exists some path connecting
an (ordered) pair of nodes m and n, we will use the predicate notation R𝐹(m, n), where
𝐹 = {left, right} is the field set; we drop this parameter when it is clear from context.

𝑚

𝑛

(a)

𝑚

𝑛

(b)

Figure 3.1: Illustration of the possible effects of a field assignment operation.

The heap configuration in presence of a field assignment operation m.left.right := n. The
newly created heap edge is dashed. (a) m and n are roots of disjoint trees; the assignment created
a new path m… n that did not exist before. (b) m and n are roots of possibly overlapping DAGs; the
assignment created an alternative path m… n.

1 This chapter is based on the paper “Modular verification of heap reachability properties in separation
logic” [112].
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MOTIvATING ExAMpLE. Programmers employ the notion of reachability to informally
describe heap structures and understand algorithms that operate on them. We will now
show that reachability also naturally enables formal specification of programs.

Consider the method merge that merges two DAG structures rooted in l and r into a
single DAG rooted in l (Fig. 3.2a).2 The method takes the references l and r to the roots
of the corresponding DAGs and returns the reference link to the (only) updated node.
Fig. 3.2b illustrates a typical heap transformation while running merge; solid arrows
depict preexisting heap edges and the dashed arrow — the newly created one.

field left:Ref field right:Ref
method merge(l:Ref, r:Ref) returns (link:Ref)
requires Structures rooted in l and r are disjoint.

Structures rooted in l and r are acyclic.
ensures Structure rooted in l is acyclic.

l reaches link, which reaches r.
{
if (l.right != null) {
link := merge(l.right, r)

} else {
l.right := r; link := l

} }

(a) Annotated implementation

l

l.right

𝑠
link

r

(b) Example scenario

Figure 3.2: Specifying reachability properties of complex data structures.

The first precondition of merge requires that the two structures reachable from l and
r are disjoint in the heap. This is a reachability property that can be expressed in first-order
logic with reachability predicates as follows:

∀𝑛:Ref • ¬R(l, 𝑛) ∨ ¬R(r, 𝑛)

This formula says that each node must not be reachable from at least one of the two, l or
r; i. e. the corresponding structures are disjoint.

The second precondition of merge requires that the two structures reachable from l
and r are acyclic. Acyclicity is also a reachability property; for a heap structure rooted in
r, one can express acyclicity as follows:

∀𝑥, 𝑦:Ref • 𝑥 ≠ 𝑦 ∧ R(r, 𝑥) ∧ R(r, 𝑦) ⟹ ¬R(𝑥, 𝑦) ∨ ¬R(𝑦, 𝑥)
∀𝑥:Ref • R(r, 𝑥) ⟹ 𝑥.left ≠ 𝑥 ∧ 𝑥.right ≠ 𝑥

2 We previously considered this example as a benchmark in Chap. 2.
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The 1st formula above says that two distinct nodes of the structure rooted in r cannot be
mutually reachable from one another; i. e. this structure is acyclic. The 2nd formula says
that the nodes of the same structure cannot have self-edges; i. e. l.right ≠ l in Fig. 3.2a.3

The first postcondition of merge ensures the acyclicity of the merged structure (which is
rooted in l; cf. Fig. 3.2b). The second postcondition ensures that the newly created heap
paths pass through link; i. e. there exists a heap path of the form l… link… r. This
fact can also be simply expressed via reachability predicates: R(l, link) ∧ R(link, r). A
possible refinement of this postcondition could specify that these paths follow only the
right fields: R{right}(l, link) ∧ R{right}(link, r) if this detail is important to the client.
Thus, the programmer can choose the right level of abstraction for their specifications.

Specifying (1) disjoint heap partitions, (2) acyclicity, or (3) the existence (and absence)
of heap paths connecting referenced nodes in unbounded structures is generally not
possible without reachability predicates. In particular, recursive predicates from separation
logic [24, 26] can define acyclic and disjoint heap structures but preclude sharing (cf. 𝑠 in
Fig. 3.2b). The goal of this chapter is to overcome this limitation by enriching separation
logic with reachability predicates.

OuTLINE. First, we explain the fundamental problems of reachability reasoning (Sec. 3.1).
Second, we demonstrate the strengths and limitations of existing solutions (Sec. 3.2).
Third, we introduce the notion of local reachability (Sec. 3.3). We then present our solu-
tion for reasoning in presence of individual field updates in acyclic graphs (Sec. 3.4)
and method calls (Sec. 3.5). We then extend of our technique to potentially cyclic 0–
1-path graphs (Sec. 3.6). Next, we describe the logical encoding (Sec. 3.7), evaluate our
technique (Sec. 3.8), and discuss the metatheory (Sec. 3.9). Finally, we summarize the
results (Sec. 3.10).

3.1 THE pROBLEM

Reasoning with reachability information sets two main problems. (1) Automation: gen-
eral graph reachability is not supported by SMT solvers that are typically used in au-
tomated program verification; hence, automated reasoning about heap reachability is
challenging. (2) Modularity: reachability properties of the entire heap are potentially af-
fected by any operation, which complicates framing. In this section, we first introduce
the components of reachability information (Sec. 3.1.1). We then illustrate how the two
problems above complicate verification (Sec. 3.1.2). Finally, we explain the depth of the
general problem of modular reasoning about heap paths (Sec. 3.1.3).

3 We consider a reflexive reachability relation; hence R(𝑥, 𝑥) holds for any 𝑥.



106 REACHABILITy

Operation

R′0

R′

Frame

R0

R

Precondition

Postcondition

⊧

⊧

Figure 3.3: Flow of reachability information around a heap operation.

The original source of information (Precondition in the pre-state of our Operation, in the orange
box) and the ultimate target (Postcondition in the post-state) are two assertions in our specifica-
tion language. In the pre-state, reachability information R0 is inferred from the precondition based
on available reachability inference rules; this allows satisfying the precondition and framing the in-
formation that is not relevant to the operation. In the post-state, reachability information from
the postcondition and from the frame form new reachability information that is then used to
verify the operation’s client. Lime boxes depict the specification of our operation; purple boxes
depict modular reachability information; ⊧ depict the direction of logical entailments.

3.1.1 Components of reachability information

Lossless reasoning about the reachability relation involves combining multiple sources
of information and targeting multiple proof obligations. We illustrate these in the in-
formation flow diagram of Fig. 3.3. The lime boxes represent the heap configurations
before and after invoking a heap-transforming Operation (the central, orange box). The
purple boxes represent information about the reachability relation: R0 and R summa-
rize the facts about reachability before and after the invocation, while R′0 and R′ are the
operation’s precondition and the postcondition, resp. Finally, the part of reachability
information that is both unused and unchanged by the operation comprises its Frame.

Next, we will discuss the application of reachability information for reasoning about
heap-transforming programs. First, we explain the two orthogonal problems: that of
entailment automation (Sec. 3.1.1.1) and reachability specification (Sec. 3.1.1.2). We then
illustrate the problems with a concrete example (Sec. 3.1.1.3).

3.1.1.1 Automating entailments. The first step is to verify entailments concerning the reach-
ability relation (⊧ in Fig. 3.3). In particular, reachability information must be enclosed,
e. g. the knowledge that 𝑥 reaches 𝑧 and that 𝑧 reaches 𝑦 implies that 𝑥 reaches 𝑦, due to
transitivity of paths. In an automatic setting, applying the transitivity rule is problem-
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atic because the number of possible applications may be infinite while the number of
necessary applications may be statically unknown.4

Another problem is that the reachability relation R𝐹 summarizes different kinds of in-
formation. For example, the condition 𝑎.next = 𝑏 implies that the reachability predi-
cate R𝐹(𝑎, 𝑏) must hold (where 𝐹 can be any field set that includes next). Naturally, the
reachability relation can also help inferring less abstract properties; e. g. the condition
¬R𝐹(𝑏, 𝑎) ∧ ∀𝑛 • R𝐹(𝑏, 𝑛) ⟹ R𝐹(𝑎, 𝑛) where 𝐹 = {left, right} implies 𝑎 ≠ 𝑏 (non-
aliasing) and 𝑎.left = 𝑏∨𝑎.right = 𝑏 (existence of a heap edge). However, not all valid
conversions of reachability information can be performed automatically as proving the
corresponding entailments is generally undecidable.

3.1.1.2 Reachability specification. The second step is to infer the reachability relation in
the current state, e. g. the post-state of Operation; see the purple boxes in Fig. 3.3. General
heap operations, such as method calls and field updates, modify some heap properties
while preserving others. The preserved heap properties of an operation are called its
frame. For example, the frame of the operation x.left := null includes the entire rela-
tion R{right} as all the paths expressed by this relation pass exclusively through the field
right and are not affected by the changes of left.

The precondition and the postcondition of Operation are denoted as R′0 and R′, resp.
These conditions determine the effect that Operation has on the global heap. There is a
degree of freedom in splitting pre-state reachability information, R0, into the frame and
R′0 and joining the frame and R′ into post-state reachability information, R. On the one
hand, the frame could be completely eliminated by conjoining it to the operation’s speci-
fication, but that would render the specification unusable in a modular setting in which
operations can be invoked many times in different contexts. On the other hand, deriv-
ing precise reachability specifications is a fundamental problem. In their general form,
precise specifications are not unknown for arbitrary heap operations and problematic
even for basic operations such as field updates, as will be explained in Sec. 3.2.1.

3.1.1.3 Example. Let us illustrate how the components of reachability information from Fig. 3.3
can be used in reasoning. Consider the creation of a new heap edge (𝑢, 𝑣) in a heap con-
figuration with (some number of) singly-linked lists. This operation changes the reach-
ability relation according to the following rule:

∀𝑥, 𝑦 • R(𝑥, 𝑦) = R0(𝑥, 𝑦) ∨ (R0(𝑥, 𝑢) ∧ R0(𝑣, 𝑦))

This formula says that a path 𝑥…𝑦 exists in the current state iff it either already existed
in the operation’s pre-state (denoted 0) or the new edge has connected up a new path.
In a setting in which singly-linked lists are the only possible heap structures, the above

4 It is unknown what is unknown; e. g., automatically checking that the predicate R(𝑥, 𝑦) can be validated (or
refuted) in a given program state is generally undecidable, just like our original verification problem.
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formula can be used as a precise reachability specification for edge creation. This operation’s
frame is trivial because the above formula carries complete information about preserved
heap paths. Alternatively, one could specify the frame as, e. g.:

∀𝑥, 𝑦, • ¬ (R0(𝑥, 𝑢) ∧ R0(𝑣, 𝑦)) ⟹ (R(𝑥, 𝑦) = R0(𝑥, 𝑦))

This formula says that the paths 𝑥…𝑦 that do not pass (in the pre-state) through the new
edge are preserved, i. e. they coincide in both states. With this frame, a weaker specifica-
tion of the edge creation operation is sufficient, i. e. only the newly created paths should
be specified: ∀𝑥, 𝑦, • R0(𝑥, 𝑢) ∧ R0(𝑣, 𝑦) ⟹ R(𝑥, 𝑦). Note that together the refined spec-
ification and the frame define the new reachability relation (in terms of the old relation)
for all pairs 𝑥 and 𝑦, allowing for lossless reasoning about our operation. It is important to
identify, for each operation, a natural split of reachability information in the operation’s
specification and that of its frame.

3.1.2 Modular reachability specifications

Modular reasoning about reachability adds another dimension of complexity. In a modu-
lar setting, verification of each method may depend only on the information in its spec-
ification and must be independent of the global environment, e. g. static variables and
concurrent threads. However, it is hard to manage reachability information modularly.

3.1.2.1 Modularizing reachability properties. Some reachability properties cannot be di-
rectly specified in a modular setting. For example, consider the method findAndReplace,5
that operates on a segment [𝑎… 𝑏] along the next fields of a singly-linked list. Intuitively,
this method should maintain the following acyclicity invariant:

∀𝑥 • R(𝑎, 𝑥) ∧ R(𝑥, 𝑏) ∧ 𝑥.next ≠ null ⟹ ¬R(𝑥.next, 𝑥) (3.1)

This formula says that if 𝑥 belongs to the segment [𝑎… 𝑏] and has a successor node
𝑥.next, then this successor cannot lead back to 𝑥 via a path of the form 𝑥.next…𝑥.

The above property is problematic because it cannot be modularly verified. The example
heap configuration of Fig. 3.4 shows a scenario in which the segment that findAndReplace
operates on consists of the two nodes 𝑎 and 𝑏, and the latter reaches an external node, 𝑐.

While modularly verifying findAndReplace, one cannot rely on the information out-
side the local segment [𝑎… 𝑏]. However, the above acyclicity property relies on the R
relation that is not bounded by the local heap fragment. In particular, even if the condi-
tion (3.1) holds before findAndReplace (Thread in Fig. 3.4) is invoked, acyclicity might
be violated due to the concurrent context of this thread (Context in Fig. 3.4). Therefore,

5 The implementation of findAndReplace is not relevant for the discussion.
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Context

Thread

𝑐

𝑎 𝑏

Figure 3.4: Creation of a non-local heap cycle.

The list segment 𝑎…𝑏 comprises the local part of the
heap that the current method (and Thread) operate
on. 𝑐 is a reachable non-local node (in Context). After
the current method is invoked, the context creates a
new (dashed) heap edge (𝑐, 𝑎) that completes a heap
cycle and thus violates acyclicity in the global heap.

there does not exist an implementation of findAndReplace, operating exclusively within
[𝑎… 𝑏], that ensures the invariant (3.1); i. e. it is a non-local property.

LOCALIzED REACHABILITy. To support modularity, one could relax the non-local prop-
erties in a method’s specification, constraining the heap configuration only within the
bounds that this method operates on. Naturally, each method specification should have a
pragmatic purpose, e. g. the acyclicity in the example above helps proving that findAndReplace
eventually terminates. However, a weaker invariant, i. e. no heap cycles exist within
our local heap segment, would suffice; other heap fragments, including those reachable
from the local segment, may contain cycles without causing a problem. For instance,
𝑎 → 𝑏 → 𝑐 → 𝑎 in Fig. 3.4 may be permitted as 𝑐 is not part of the current segment, while
e. g. 𝑎 → 𝑏 → 𝑎 must not be permitted.

Therefore, the problem of modular reasoning with reachability properties requires
a suitable specification technique that would allow expressing the existence (and the ab-
sence) of heap paths within certain locality, e. g. a particular heap fragment.

LOCAL vS. MODuLAR. There is a subtle difference between local vs. modular specifications.
While local specifications are always modular, global (i. e. non-local) information can
sometimes comprise modular specifications, too.

We define a method’s local specifications as those constraining exclusively the heap frag-
ment that this method operates on. For example, the property 𝑥.next ≠ 𝑦 of a method
that operates on the two nodes x and y is a local specification. Conversely, the R relation
carries global reachability information; e. g. if ¬R(𝑥, 𝑦) holds for some nodes 𝑥 and 𝑦, then
the path 𝑥…𝑦 does not exist in the entire heap, not just within the local heap fragment.

Generally, a method cannot rely on global reachability information. For example, if
𝑥.next = 𝑧, where 𝑧 is a non-local node, i. e. our method does not have permissions to
access the fields of 𝑧, then our method cannot rely on the fact ¬R(𝑥, 𝑦) in its modular
specification as other threads might create a path e. g. 𝑥…𝑧…𝑦 at any point in time.6

In this thesis, we focus on local reasoning, i. e. reasoning with exclusively local speci-
fications. Not only do local specifications enable modular reasoning, they can be inte-
grated into separation logic, supporting verification of concurrent programs.7 Interest-

6 A special case in which one can rely on global unreachability is memory allocation. A freshly allocated
node does not have any outgoing heap paths as none of its reference fields have been initialized yet.

7 In the following, we use the terms local reasoning and modular reasoning interchangeably.
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ingly, modular reasoning about global reachability is possible in a restricted setting that
we will discuss in Sec. 3.2.3.

3.1.2.2 Framing heap paths. We have established that reasoning about global heap
reachability is not possible in our setting. Yet, modular verification requires framing [22]:
a mechanism for adapting between two kinds of information, namely, the properties
specified for the heap fragments that the callee and its client operate on. It is challenging
to precisely frame information about heap paths, as we explain next.8

To illustrate, we revisit our motivating example of Fig. 3.2a. Recall that the method
merge operates recursively on a heap structure comprised of two disjoint DAGs rooted
in l and r, resp. An invocation of merge checks whether the l node is the rightmost.

ESTABLISHING NEw REACHABILITy INFORMATION. If there does not exist a right successor
to l, i. e. it is indeed the rightmost node, then the heap is modified by creating a single
new edge that attaches l to r, merging the two DAGs. Note that this operation creates
a (potentially) unbounded number of new heap paths because all heap nodes reaching l
are now (transitively) connected to all nodes reachable from r.

The problem of reachability framing is to propagate the reachability information, es-
tablished by the current invocation, back to its client.

pROpAGATING REACHABILITy INFORMATION. If there exists a right successor to l, then a
recursive call is performed. Notice that the callee, i. e. a new invocation of our method
merge, will operate on a different heap fragment than the client: Since the callee param-
eters are l.right and r for l and r, resp., and the nodes reachable from l.right are a
proper subset of the nodes of the DAG rooted in l, some nodes of the original DAG will
be unreachable for the callee (cf. Fig. 3.2b). We call these the frame nodes.

To verify this branch, one must satisfy two proof obligations: the precondition of the
callee (cf. R0 → R′0 step in Fig. 3.3) and the (ultimate) postcondition of the client (cf. R′ → R
step in Fig. 3.3). Since merge is specified via reachability (and the set of frame nodes is
non-empty), both of these proof obligations require framing of reachability information.

In the former case, framing involves the propagation of reachability information from
a larger heap fragment (of the client’s DAGs) to a smaller (nested) heap fragment (of the
callee’s DAGs). Preventing the loss of reachability information in this case is challenging.
For example, if the client operates only on the four nodes l, l.right, 𝑠, and r while the
callee operates on the subset with l.right, 𝑠, and r (cf. Fig. 3.2b), then propagating the
fact that there exists a path of the form l.right…𝑠 is challenging because this requires
the knowledge that our path does not depend on the node l which is not available to the
callee. Thus, the modular specifications of a callee method cannot depend on the exis-
tence of heap paths that traverse the nodes that are not available in these specifications.

8 We will introduce the general concept of reachaility framing in Sec. 3.5.
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In the latter case, framing involves the propagation of reachability information from
a smaller heap fragment (of the callee’s DAGs) to larger heap fragment (of the client’s
DAGs). However, it is again challenging to prevent the loss of reachability informa-
tion. For example, propagating the fact that there does not exist a path9 of the form r…𝑠
(Fig. 3.2b) is challenging because this requires the knowledge that none of the frame nodes
(e. g. l), which are available to the client, connect up our path (e. g. via r… l…𝑠).

To summarize, framing involves decomposing reachability information available to the
client (cf. R0 → (Frame, R′0) in Fig. 3.3) and recomposing reachability information, in a
potentially different state, from the two disjoint heap fragments of the callee and the
frame (cf. (Frame, R′) → R). In the former case, it is challenging to preserve facts about
existing paths, some of which might be lost due to the decomposition. In the latter case,
it is challenging to preserve facts about non-existing paths, as some unconnected nodes
might become connected in the composition.

3.1.3 Splitting and joining heap paths

We will now explain why framing reachability information is fundamentally challeng-
ing. Conceptually, framing involves decomposing and recomposing local reachability
information, which can be viewed as splitting and joining heap paths, resp.

To characterize possible ways to split and join heap paths in the presence of a method
call, we use the notion of cutpoints [36]. A cutpoint is a heap edge that crosses the bound-
ary of the local heap fragment. If the cutpoint starts in the frame and ends in the local
heap fragment, we call it an entry point (e. g. (𝑐, 𝑎) in Fig. 3.4). If the cutpoint starts in
the local heap fragment and ends in the frame, we call it an exit point (e. g. (𝑏, 𝑐)). In
separation logic, one can specify a method’s exit points (as these are defined by local
node fields) but not the entry points (which are not defined locally).

uNBOuNDED CuTpOINTS. Cutpoints define the possible splits and joins of heap paths
because each path crossing the boundary of a heap fragment must traverse at least one
cutpoint. Generally, a heap fragment may have an unbounded number of cutpoints. More-
over, an unbounded number of cutpoints may be traversed by a single heap path. The
example of Fig. 3.5 illustrates this; e. g. the path 𝑥…𝑧1 …𝑦 does not involve any cut-
points, while e. g. 𝑥…𝑧2 …𝑦 traverses four cutpoints (alternating between exits and en-
tries). Thus, the number of possible path splits is generally also unbounded.

In the presence of a method call, precise framing of reachability information requires
that (1) in the state before the call, each local path, i. e. one that traverses only local heap
edges, is split into some number of sub-paths based on the corresponding cutpoints that
this path traverses, and (2) in the state after the call, the resulting sub-paths are joined,
again, based on the cutpoints. However, since the number of splits (and joins) is un-

9 This is needed to prove e. g. that the client still operates on an acyclic structure after the callee terminates.
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𝑥 𝑧2

𝑧1

𝑦

frame (𝔣) footprint (𝔥)

Figure 3.5: Example heap paths and their complex interaction with disjoint heap fragments.

The two heap fragments, denoted 𝔣 and 𝔥, are the frame and the local heap fragment of a method
call, resp. Their disjoint union 𝔣⊎𝔥 comprises the local heap fragment of the client of this call. The
nodes 𝑥 and 𝑦 of the frame are connected up via two distinct, alternative heap paths: 𝑥…𝑧1 …𝑦,
that is entirely inside the frame and 𝑥…𝑧2 …𝑦, that crosses the boundaries of this heap frag-
ment —multiple times. Statically inferring the existence or the absence of such paths, e. g. in the
program state after the method call, is challenging because (1) there is generally an unbounded
number of alternative paths that may connect up these nodes and (2) each possible path may
cross the boundary between the two heap fragments an unbounded number of times; hence, it
is generally impossible to precisely attribute the existence of a path such as 𝑥…𝑦 to the reacha-
bility information that is statically known in a modular setting.

bounded, the general problem of reachability framing is undecidable and thus cannot be
solved automatically.

3.2 ExISTING wORk

In this section, we give an overview of existing reachability reasoning techniques. Al-
though the semantics of reachability is defined via transitive closure (of the heap adja-
cency relation), direct reasoning about reachability as transitive closure (a higher-order
relation) is beyond the scope of this thesis. Instead, we mainly focus on techniques that
can be efficiently automated (i. e. those based on first-order reasoning); we additionally
discuss some higher-order techniques with relevant ideas. We then evaluate the exist-
ing work based on the following factors: automation, expressiveness of the specification
language, modularity of reasoning, and the spectrum of supported data structures.

The discussion of existing work is structured as follows. First, we give an overview
of the theory of first-order reachability reasoning in the context of graph database op-
erations (Sec. 3.2.1). Second, we review a technique for transitive closure simulation that
pioneered entailment proof automation for reachability properties (Sec. 3.2.2). The rest
of the section is dedicated to modular techniques. The first modular reachability tech-
nique we discuss is based on propositional reduction (Sec. 3.2.3). The second technique
combines reachability predicates and separation logic (Sec. 3.2.4). Next, we proceed with
an overview of two other flavors of separation logic which blend reachability with local
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insert(𝑎, 𝑏)

𝑓0

𝑓 = 𝑓0 + (𝑎, 𝑏)

𝑇𝐶[𝑓0]

𝑇𝐶[𝑓 ]

(a)

delete(𝑎, 𝑏)

𝑓0

𝑓 = 𝑓0 − (𝑎, 𝑏)

𝑇𝐶[𝑓0]

𝑇𝐶[𝑓 ]

(b)

Figure 3.6: Dynamic query update diagram for incremental and decremental graph updates.

The operations (in the orange boxes) (a) insert the edge and (b) delete the edge (𝑎, 𝑏); old states
are subscripted; the green boxes represent graph configurations with 𝑓 edges and the purple
boxes represent queries about the states to which they belong, where 𝑇𝐶[𝑓 ] denotes the transitive
closure relation. The response to the queries can be dynamically updated by first-order formulas
over the original query. Dynamically updating queries is typically fundamentally simpler than
recomputing them from scratch.

reasoning but are not tailored for automation (Sec. 3.2.5, Sec. 3.2.6). We position our work
in the space of the state of the art (Sec. 3.2.7). Tab. 3.1 summarizes the existing work.

3.2.1 Dynamic complexity theory

First-order reasoning about graph reachability properties has been originally studied
in the context of database theory. Consider a database that stores the set of nodes 𝑉 of
a mathematical graph (𝑉, 𝐸), where 𝐸 is the edge relation. For the database query lan-
guage, we choose first-order logic with transitive closure of the edge relation 𝐸. Statically
computing the responses to the queries is typically inefficient; e. g. the asymptotic run-
time complexity of the query ∃𝑚, 𝑛 ∈ 𝑉 • 𝐸(𝑚, 𝑛)∧𝐸(𝑛,𝑚) that checks if double edges
exist is O(|𝑉|2) as we quantify over pairs of nodes.

However, this query can be computed dynamically, resulting in constant amortized
complexity. A possible dynamic approach requires (1) maintaining an auxiliary relation
𝐷 of mutually linked node pairs (i. e. those that satisfy 𝐸(𝑚, 𝑛)∧𝐸(𝑛,𝑚)) and (2) updating
this relation after each insert query. For example, inserting an edge (𝑎, 𝑏), where 𝑎 ≠ 𝑏, to
the (augmented) graph (𝑉, 𝐸,𝐷)will result in (𝑉 ∪ {𝑎, 𝑏}, 𝐸 ∪ {(𝑎, 𝑏)}, (𝑏, 𝑎) ∈ 𝐸 ? 𝐷 ∪ {(𝑎, 𝑏)} ∶ 𝐷).
The simplicity of the update formula above for our mutually-linked relation 𝐷 is not sur-
prizing since 𝐷 can be defined via a first-order formula over 𝐸.

3.2.1.1 Dynamic reachability. The idea of dynamically maintaining an auxiliary rela-
tion proved to be useful also in the context of the reachability relation. Although reacha-
bility cannot be defined in first-order logic, the effect that some operations have on this
relation can be expressed using first-order formulas. Concretely, Dong and Su [17] have
proposed using first-order reachability update formulas for reducing the dynamic com-
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plexity of database queries, e. g. about the existence of graph cycles, pre- and post-
dominators. [17] Beyond graph databases, these formulas can also be used for automat-
ing reasoning about heap-transforming programs, as demonstrated by several techniques
that adopted them [45, 69, 78].

However, these update formulas are still problematic. First, they do not cover the case
of a general graph but assume that it belongs to one of the supported classes, e. g. it is
acyclic. Second, the structure of these reachability update formulas is complicated, in
particular, involving quantifier alternation, e. g. ∀𝑥1.∃𝑦1.∀𝑥2.∃𝑦2 …. Satisfiability of such
formulas is known to be undecidable and hard to automate: Universal quantifiers can
lead to infinite instantiations and existential quantifiers require witnesses that gener-
ally cannot be inferred automatically. Due to these problems, state-of-the-art automatic
program verifiers tend to use simplified reachability update formulas that are within
a decidable logic. This approach limits the class of supported data structures to various
forms of link-lists and trees. Consequently, graphs in which alternative paths may occur
remain unsupported [30].

3.2.1.2 Descriptive complexity. Recent work in descriptive complexity theory may lead
to further generalization of first-order reachability reasoning. Patnaik and Immerman
[18] have introduced a dynamic complexity class DynFO of graph queries that can be
maintained by first-order formulas. They conjectured that the graph reachability query
is in DynFO. Quarter century later, Datta et al. [97] have shown that this is indeed the
case. Therefore, even if the pairwise reachability relation cannot be updated directly,
there exists an auxiliary relation that carries more information about the graph, enabling
first-order update formulas of the reachability query. For example, in the case of acyclic
graphs, a binary relation is sufficient for capturing relevant reachability information;
hence, there exist first-order update formulas for DAGs.

In contrast, maintaining reachability information in another important class called
the 0–1 path graphs, i. e. graphs with unique paths modulo cycles between each node pair,
requires an auxiliary, quaternary relation, say, 𝑄. Concretely, a quadruple (𝑥, 𝑦, 𝑢, 𝑣) be-
longs to 𝑄 iff there exists a path 𝑥…𝑦 that traverses the edge (𝑢, 𝑣). After creating a new
edge or deleting an edge, the auxiliary relation can be updated using first-order formu-
las. These update formulas exploit the fact that, given 𝑄(𝑥, 𝑦, 𝑢, 𝑣), removing the edge
(𝑢, 𝑣) from our graph must destroy the path 𝑥…𝑦 as the graph is 0–1 path [17]. Given
our relation 𝑄, one can obtain classical two-point reachability as follows:

∀𝑥, 𝑦, 𝑢, 𝑣 • 𝑄(𝑥, 𝑦, 𝑢, 𝑣) ⟹ R(𝑥, 𝑦)
∀𝑥, 𝑦 • R(𝑥, 𝑦) ⟹ ∃𝑢, 𝑣 • 𝑄(𝑥, 𝑦, 𝑢, 𝑣)

We will discuss reachability in 0–1 path graphs in more detail in Sec. 3.6.
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3.2.1.3 Limitations of DynFO. Note that the DynFO complexity class is defined in the
context of only two graph operations, namely edge insertion and edge deletion, as illus-
trated in Fig. 3.6. These operations are sufficient for modeling e. g. reference field up-
dates. It remains open whether (and under what conditions) reachability update formu-
las can be defined in first-order logic for more complex operations that commonly occur
in imperative programs, e. g. operations over unbounded number of nodes and edges. An
alternative view of this problem is to understand the interplay of the reachability rela-
tions in different (potentially overlapping) graphs.

3.2.2 Reachability Simulation

In addition to the problem of updating the reachability relation after heap operations, an
automatic reasoning technique must be capable of converting reachability information
that can be expressed in various forms (⊧ in Fig. 3.3). On the one hand, arbitrary conver-
sions of reachability information cannot be performed fully automatically as proving the
corresponding implications is generally undecidable (see Sec. 3.1.1). On the other hand,
there exist some useful automatic conversions. For example, if we have established the
existence of two paths of the form 𝑥…𝑧 and 𝑧…𝑦, then we could automatically derive
the existence of a path 𝑥…𝑦 due to path transitivity:

∀𝑥, 𝑦, 𝑧 • R(𝑥, 𝑧) ∧ R(𝑧, 𝑦) ⟹ R(𝑥, 𝑦)

3.2.2.1 Simulating transitive closures. Lev-Ami et al. [53] have proposed a technique for
systematically adding (first-order) axioms that can enable a theorem prover to convert
reachability information. First, they consider 𝑀 uninterpreted relations 𝑓 𝑘, where 𝑘 ∈
[0,𝑀−1] and 𝑀 equals the number of symbolic states in the program. For each such
relation, they introduce a dual uninterpreted relation, denoted 𝑓 𝑘𝑡𝑐, called the simulated
transitive closure relation. In particular, a simulated relation 𝑓 𝑘𝑡𝑐 is different from the
actual transitive closure of 𝑓 𝑘 in that the former partially models the latter. Now each
program state 𝑘 can be characterized via the pair (𝑓 𝑘, 𝑓 𝑘𝑡𝑐), corresponding to (E𝑘, R𝑘) in
our notation.

Next, they propose a sound, yet incomplete set of axiom templates, i. e. axioms with
second-order quantification over (first-order) unary and binary relations. The former
can be interpreted as node sets {𝐴𝑖}, and the latter — as heap edge relations {𝑓 𝑘}. Hence,
axiom templates are higher-order formulas that can be used to derive partial first-order
constraints over the relations 𝑓 𝑘 and their respective (simulated) transitive closures, de-
noted 𝑓 𝑘𝑡𝑐. Recall that each 𝑓 𝑘𝑡𝑐 was introduced as an uninterpreted function symbol and can-
not express the complete semantics of the transitive closure of 𝑓 𝑘.

Since the axiom templates are sound, any type-correct instantiation of the axiom tem-
plates is permitted. The authors prove that there does not exist a complete, recursively-
enumerable axiomatization of transitive closure. Despite the theoretical incompleteness,
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the techniques is tested to succeed in many practically important scenarios, including
the verification of reachability properties in typical heap-transforming programs. The
main problem is thus to establish which concrete instantiations of the available axiom
templates are indeed sufficient for deriving each given reachability property.

3.2.2.2 Axiom templates. To pick the instantiations, the technique employs heuristics
that iteratively instantiate the axiom templates with concrete relations based on the user-
defined specifications. These instantiations yield first-order axioms that are then aug-
mented with the verification conditions and discharged via an SMT solver. If the solver
cannot verify the assertion, the heuristics continue with more complex instantiations.
For unary relations, the technique uses TVLA-style reachability predicates, including
reference-typed variables from the given program (defining singleton node sets) and
unary reachability predicates (e. g. 𝑟𝑥,𝑛) defining the set of nodes reachable from 𝑥 via 𝑛
edges, where 𝑥 can be iteratively instantiated with concrete nodes.

One useful reachability axiom template is 𝑁𝑜𝐸𝑥𝑖𝑡:

(∀𝑢, 𝑣 • 𝐴(𝑢) ∧ ¬𝐴(𝑣) ⇒ ¬𝑓 (𝑢, 𝑣)) ⇒ ∀𝑢, 𝑣•𝐴(𝑢)∧¬𝐴(𝑣) ⇒ ¬𝑓𝑡𝑐(𝑢, 𝑣) 𝑁𝑜𝐸𝑥𝑖𝑡[𝐴, 𝑓 ]

This axiom template works as follows. We start by choosing a first-order predicate 𝐴 and
a binary relation 𝑓 to obtain the concrete instantiation (𝑁𝑜𝐸𝑥𝑖𝑡[𝐴, 𝑓 ]). Then, the obtained
formula will partially constrain the uninterpreted function symbol 𝑓𝑡𝑐 that models the
reflexive, transitive closure of 𝑓 . This concrete axiom obtained from (𝑁𝑜𝐸𝑥𝑖𝑡[𝐴, 𝑓 ]) says
that, if no 𝑓 -edge connects an inner node of the set defined via 𝐴 with a node outside of
that set, then the outside nodes cannot be reached from the inner nodes via 𝑓𝑡𝑐-paths.

3.2.2.3 Example. To illustrate the technique, consider a simple procedure listConcat
that concatenates two (acyclic) singly-linked lists (Fig. 3.7).10 The specification language
in the transitive closure simulation technique is first-order logic with one auxiliary reach-
ability relation per state. Each reachability relation is defined as the reflexive, transitive
closure of the current state’s heap edge relation. listConcat modifies the heap only
once (last.next := y;). Hence, we need only two edge relations to specify this exam-
ple, namely 𝑛 and 𝑛′, denoting the edge relations in the pre- and post-states, resp.:

∀𝑥, 𝑦 • 𝑛(𝑥, 𝑦) ..⟺ old(𝑥.next) = 𝑦
∀𝑥, 𝑦 • 𝑛′(𝑥, 𝑦) ..⟺ 𝑥.next = 𝑦

The precondition of listConcat requires that the edge relation 𝑛 defines an acyclic
singly-linked list (or a disconnected set thereof), denoted alseg(𝑛), that x is a non-null
reference, and that each heap node 𝑣 is reachable from either x (𝑟x,𝑛(𝑣)) or y (𝑟y,𝑛(𝑣))

10 This example is derived from the second example of [53] by removing the specifications related to the
memory model (as they are superseded by the type system) and slightly strengthening the precondition
(to avoid dealing with the case of x = null).



3.2 ExISTING wORk 117

method listConcat(x: Ref, y: Ref)
requires alseg(𝑛) ∧ x ≠ null

∀𝑣 • ¬𝑟x,𝑛(𝑣) ∨ ¬𝑟y,𝑛(𝑣)
∀𝑣 • 𝑟x,𝑛(𝑣) ∨ 𝑟y,𝑛(𝑣)

ensures alseg(𝑛′)
∀𝑣 • 𝑟x,𝑛′(𝑣) ⇔ (𝑟x,𝑛(𝑣) ∨ 𝑟y,𝑛(𝑣))
∀𝑢, 𝑣 • 𝑛′(𝑢, 𝑣) ⇔ 𝑛(𝑢, 𝑣) ∨ (𝑢 = last∧ 𝑣 = y)

{
var last: Ref := x
while (last.next ≠ null) invariant last ≠ null∧ 𝑟𝑥,𝑛(last)
{ last := last.next }
last.next := y;

}

Figure 3.7: Example procedure specified with simulated transitive closure relation.

The procedure listConcat traverses the heap via the next field starting from the head of the first
list, x, reaches the last node, and connects it to the head of the second list, y. The edge relations
𝑛 and 𝑛′ represent heap edges in the states before and after the last assignment operation, resp.
The macro alseg(𝑛) specifies 𝑛 to be acyclic, functional, and unshared.

exclusively. Note that this is not a modular technique, and so the precondition effectively
restricts the configuration of the entire heap.

The postcondition ensures that (1) the new edge relation, 𝑛′, still represents a set of
acyclic lists, (2) any node 𝑣 is reachable from x via the new edge relation, 𝑛′, iff it has
been reachable from either x or y via the old relation, 𝑛, and (3) the relations 𝑛′ and 𝑛
are identical except for the one newly created edge, (last, y), which is present only in 𝑛′.
Finally, the loop invariant preserves reachability from x to the node referred to by last
while traversing the heap via the next field.

The purpose of the unary reachability predicates (e. g. 𝑟x,𝑛 and 𝑟y,𝑛) is to help the
heuristics in picking reasonable instantiations of the axiom templates. The unary reach-
ability predicates are axiomatized as follows:

∀𝑥, 𝑦 • 𝑟𝑥,𝑛(𝑦) ..⟺ 𝑛𝑡𝑐(𝑥, 𝑦)
∀𝑥, 𝑦 • 𝑟𝑥,𝑛′(𝑦) ..⟺ 𝑛′

𝑡𝑐(𝑥, 𝑦)

Here 𝑛𝑡𝑐, and 𝑛′
𝑡𝑐 denote the (simulated) reflexive, transitive closures of the binary rela-

tions 𝑛, 𝑛′, resp. For our example of Fig. 3.7, the technique generates six instantiations of
axiom templates, using the following predicates: y, last, 𝑟x,𝑛, 𝑟y,𝑛 (unary relations) and
𝑛, 𝑛′ (binary relations).11 These instantiations yield concrete reachability axioms. The
SMT solver is then able to use the generated first-order partial reachability axiomatiza-
tion to verify the postcondition of listConcat.

11 The technique selects subsets of the available relations to produce instantiations of axiom templates and
e. g. x is another candidate that is not used in this case.
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3.2.2.4 Limitations. The transitive closure simulation technique interacts with an SMT
solver, attempting to find concrete instantiations of the template reachability axioms
that are sufficient for proving a given reachability property. This approach works in a
scenario in which the specified reachability properties of our program are respected by
its implementation. However, this knowledge is generally not available; ideally, the tool
should help the programmer in both certifying a correct implementation as well as find-
ing bugs. Unfortunately, it is not possible to distinguish whether proving a reachability
property requires more instantiations of the axiom templates or if the program, indeed,
violates its specification.

3.2.3 Effectively propositional reduction

Effectively propositional reduction (EPR) is a technique and a tool for reasoning about reach-
ability properties of programs that manipulate linked data structures [69]. The input
program and its specification are translated into the EPR logic, a decidable fragment of
first-order logic the assertions of which are automatically checked by an SMT solver. If
an assertion is invalid, the tool produces a counterexample, i. e. a heap configuration
that violates the assertion.

3.2.3.1 Key ideas. There are three main ideas in the EPR technique. First, in a restricted
setting, the reachability update formulas for bounded heap updates, i. e. creation and dele-
tion of a finite number of heap edges, can be expressed in propositional logic. Concretely,
EPR restricts supported heap structures to functional graphs in which nodes have unique
reference fields.

Second, each method is equipped with a footprint that must be explicitly specified by
the programmer. To express footprints of an unbounded size, the specification language
includes a reachability-based notion of heap segments, i. e. sets of nodes in an acyclic list
segment. Thus, each footprint must be expressed as a union of a bounded number of
heap segments. In the setting of EPR, heap segments are definable using only three
parameters, e. g. [𝑎, 𝑏]𝑓 denotes the segment via 𝑓 -fields from 𝑎 till 𝑏 inclusive.

Third, EPR introduces a rule for reachability framing, i. e. adapting the reachability rela-
tion to the effects of a method call. The reachability framing rule of EPR is also express-
ible in propositional logic due to efficient cutpoint management (cf. Sec. 3.1.3). Since
there cannot exist alternative paths connecting the same pair of nodes, the entry point
of each node into the callee footprint is uniquely defined. To refer to these entry points,
EPR axiomatizes an idempotent entry point function.

3.2.3.2 Example. We illustrate the EPR technique with the example of Fig. 3.8. The
recursive method find of the Union-Find data structure [9] is specified in a modular
way. In particular, EPR requires the method footprints to be specified via a dedicated
mod clause. The argument of mod is a set of heap nodes defined as a union of a bounded
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number of acyclic list segments. Each method may create or remove heap edges only if
they start and end in nodes from mod.

In contrast to separation logic, this implies that the footprint and the frame of a method
call can overlap. For instance, if mod of a callee consists of the segment [𝑎, 𝑏] of a (strictly
longer) list [𝑎, 𝑐], then both mod and the frame of the call, i. e. [𝑏, 𝑐], would include the
node 𝑏. While this design simplifies cutpoint management, it is not compatible with
many existing program logics which assume disjointness of the footprint and its frame.

Returning to the specification of find Fig. 3.8. The precondition requires that x is
not null. The mod clause specifies that find may change only the heap edges of the list
segment starting in x and ending in some node referred to by the ghost variable 𝑟. The
postcondition ensures that (1) the out parameter, root, is indeed equal to 𝑟, and (2) there
exists a path 𝑢…𝑣 via some number of f fields (denoted 𝑢⟨f∗⟩𝑣), where 𝑢, 𝑣 ∈ mod,
iff either 𝑢 = 𝑣 or 𝑣 is the root. The latter property specifies that our version of find
performs the path compression optimization.

method find(x: Ref)
returns (root: Ref)
requires x ≠ null
mod [x, 𝑟]f
ensures root = 𝑟 ∧ ∀𝑢, 𝑣 ∈ mod • 𝑢⟨f∗⟩𝑣 ⟺ 𝑢 = 𝑣 ∨ 𝑣 = 𝑟

{
var i = x.f
if (i ≠ null) {
i = find(i)
x.f = i

} else { i = x }
return i

}

Figure 3.8: Example method specified according to the EPR technique.

The method find traverses the heap via the f field starting from x until the last root node is
reached (which is the result of find) while performing path compression, i. e. connecting each
node along the path directly to the root. The notation [𝑎, 𝑏]f denotes a list segment from the
node 𝑎 to the node 𝑏 via f-edges (𝑎 must reach 𝑏); it is used in the mod to specify the method’s
footprint. The mod clause is evaluated in the state of the precondition; 𝑟𝑥 allows to refer in mod to the
node that root refers to in the postcondition. The ternary relation 𝑢⟨f∗⟩𝑣 denotes the existence
of a heap path from 𝑢 to 𝑣 via f-edges, i. e. R{f}(𝑢, 𝑣) using our standard notation; note that EPR
supports only transitive closure over functions, e. g. 𝑢⟨(f|e)∗⟩𝑣 is not a valid predicate in EPR as
the disjunctive relation f|e is not a function for two distinct fields f, e.

The most interesting step in reasoning about find is the recursive call. Note that this
call (find(i)) takes place under the conditions i = x.f and i ≠ null; hence, the mod set
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for the recursive call is equal to [x.f, 𝑟]. Since the technique works under the assumption
of acyclic graphs,12 the size of mod must strictly decrease at each recursion level.

After a recursive call returns, the reachability information from the callee’s postcon-
dition (specified for nodes of the callee’s mod-set) must be extended to the larger mod-set
of the client. The EPR technique employs elaborate, yet effectively decidable reachability
adaptation formulas to solve this problem.

3.2.3.3 Memory management. EPR realizes explicit memory management with the help
of a global predicate called 𝑓 𝑟𝑒𝑒. The value 𝑓 𝑟𝑒𝑒(x) indicates whether the node x is, in-
deed, free, i. e. it was never allocated via the new command or was freed via the free com-
mand; the specifications of these memory management commands are shown in Fig. 3.9.

retval = new()
requires 𝑓 𝑟𝑒𝑒(𝑠)
mod ∅
ensures retval = 𝑠 ∧ ¬𝑓 𝑟𝑒𝑒(𝑠)

free(y)
requires y ≠ null∧¬𝑓 𝑟𝑒𝑒(y)
mod ∅
ensures 𝑓 𝑟𝑒𝑒(y)

Figure 3.9: Specification of memory management operations in EPR.

3.2.3.4 Limitations. EPR requires each method’s postcondition (the ensures clause) to
be complete, i. e. specify the new reachability relation for all pairs of nodes within the
mod clause. This practically restricts the class of supported programs: The effect of an
arbitrary program on the reachability relation may or may not be precisely specifiable
in the restricted logic of EPR.

Under the complete postcondition assumption, EPR supports reachability framing
and propagates the local effect of a method call to the context of the client. Generally,
reachability framing from a smaller context to a bigger one cannot be expressed in a
restricted, decidable logic. However, reachability framing in EPR can be expressed in
propositional logic because in this technique the number of exit points from the footprint
is bounded.

In the EPR logic, transitive closure is eliminated by simulating each reachability rela-
tion with an uninterpreted, partially axiomatized relation. To support decidable reason-
ing about reachability, EPR assumes that it is a total order, i. e. that it is reflexive, transi-
tive, acyclic, and linear. Note that the last two properties only apply to reachability in
acyclic list segments. EPR can be extended to cyclic singly-linked lists by maintaining
auxiliary information about cycle-inducing heap edges. However, the linearity property
is crucial and the carefully designed technique of EPR cannot support non-functional
graphs for multiple reasons, e. g. also because each frame node is assumed to have a
unique entry point into the footprint.

12 The authors hint that the technique can be extended to reasoning with potentially-cyclic lists.
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3.2.4 GRASShopper

GRASShopper [78] is a technique and a tool for verifying heap-transforming programs
by translating separation-logic proof obligations into GRASS, the logic of graph reach-
ability with stratified sets. GRASS is a decidable fragment of first-order logic, and its
assertions can be automatically checked by an SMT solver. If an assertion is invalid, the
tool produces a counterexample, i. e. a heap configuration that violates the assertion.

GRASShopper additionally supports more expressive yet undecidable specifications,
in particular, those with unbounded quantification. The technique is robust under in-
complete specifications and undecidable proof obligations. Unlike e. g. the EPR tech-
nique from Sec. 3.2.3, GRASShopper does not rely on complete reachability specifica-
tions, rather using reachability predicates in the definitions of separation-logic predi-
cates.

3.2.4.1 Key ideas. The reachability technique of GRASShopper is based on two key
ideas. First, the technique focuses on a restricted class of functional graphs, e. g. those
with at most one outgoing heap edge per node. Hence, the entry point of a frame node
𝑥 into the footprint (if it exists) is a function of 𝑥, denoted 𝑒𝑝. To limit the discussion to
total functions (which are natively supported by SMT solvers), 𝑒𝑝 is augmented s.t. if a
frame node 𝑦 does not reach any of the footprint nodes, then its entry point is defined
as 𝑦. Finally, if 𝑧 is a footprint node, then its entry point into this footprint is 𝑧, i. e. the
entry point function is idempotent: ∀𝑥 • 𝑒𝑝(𝑒𝑝(𝑥)) = 𝑒𝑝(𝑥). The fact that entry points for
all nodes can be encoded as functions dramatically simplifies the problem of cutpoint
management (see Sec. 3.1.3).

Second, GRASShopper extends the classical frame rule from separation logic, which
is insufficient for reachability properties (as discussed in Sec. 3.1.3). In addition to the
information about which heap edges are unchanged, the extended frame rule provides
the information about unchanged reachability facts. However, these facts are expressed
using the generalized dominator relation, called Btwn, as opposed to the classical two-point
reachability relation. For instance, Btwn(f,x,z,y) holds iff there exists an f-path x… y
and z is between, i. e. it occurs on all paths from x to y.

Based on the 𝑒𝑝 function and the Btwn relation, the technique encodes reachability
framing formulas in a way that is sound, complete, and concise.

3.2.4.2 Specification language. The classical two-point reachability predicate called
Reach(f,x,y) is desugared to Btwn(f,x,y,y). Reach(f,x,y) is equivalent to R{f}(x, y) in
our standard notation, except that in the former case y can be null. Hence, the predicate
Reach(f,x,null) says that x is the head of an acyclic list.

The Btwn relation is useful for constructing separation-logic predicates. For example,
the following code defines a predicate for an acyclic singly-linked list segment x… y:
struct Node { var next: Node; }
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predicate lseg(x: Node, y: Node) {
acc({ z: Node :: Btwn(next, x, z, y) ∧ z ≠ y }) ∗ Reach(next, x, null) }

acc(𝑆) grants access permissions to all nodes in the node set 𝑆. The node sets can be de-
fined via the Btwn and the Reach relations and unbounded quantification. Due to the con-
dition z ≠ y, an entire list starting in x can be expressed as lseg(x,null). Excluding the
end of a list segment also simplifies list decompositions, e. g. lseg(x,y)∗lseg(y,null)
(where y ≠ null) is equivalent to original assertion lseg(x,null). If y is not reachable
from x, then lseg(x,y) specifies an empty set of permissions.

GRASShopper distinguishes first-order conjunction, ∧, and separating conjunction, ∗.13

If𝑃 and𝑄 are separation-logic assertions, then𝑃∗𝑄 expresses that these assertions apply
to disjoint parts of the heap, while 𝑃∧𝑄 does not restrict the overlapping. For example,
lseg(a,b)∗lseg(c,d) says that the list segments a… b and c… d are disjoint in the heap.
If 𝑃 or 𝑄 is a pure (first-order) predicate, then 𝑃 ∗ 𝑄 is equivalent to 𝑃 ∧ 𝑄.

3.2.4.3 Example. We illustrate GRASShopper with the example of Fig. 3.10. The recur-
sive method find of the Union-Find data structure [9] is specified in a modular way
(cf. Fig. 3.8). In particular, the footprint of find consists of the ghost set X plus one ex-
tra node, root. Since lseg(x,root) and acc(X) appear by the same side of a separating
conjunction (in the precondition), these assertions overlap. Hence, X can be viewed as
the footprint of the predicate lseg(x,root). Using X, we can simply express in the postcon-
dition of find that this method does not leak (or allocate) memory. Indeed, all original
permissions will be returned to the client after the call, even though (due to path com-
pression) we might no longer have a single list structure on the heap.

3.2.4.4 Memory management. To keep track of all currently allocated memory loca-
tions, GRASShopper internally uses a global variable called Alloc. That is, Alloc stores
the set of allocated nodes in each program state. GRASShopper uses Alloc to maintain
the invariant that footprints consist only of allocated nodes.

GRASShopper computes the frame of a call at call site as opposed to the client’s con-
text. Internally, the callee’s footprint is specified via two implicit ghost variables, called
FP and FP_Caller, representing the current footprints of the callee and its client, resp.
For instance, FP_Caller in find (Fig. 3.10) is equal to (𝑙𝑠𝑒𝑔∪X)⊎{root}, where 𝑙𝑠𝑒𝑔 is the
footprint of the predicate lseg(f,x,root). In presence of memory allocation and deal-
location (or a method call) the values of FP and FP_Caller are automatically updated,
and the values of these variables in the final state of the call are returned to the client.

3.2.4.5 Framing. GRASShopper’s reachability framing rule consists of two parts, (3.2)
and (3.3), which we explain next; only the former in needed for fields of non-reference
types. Consider the pre-state of a method call in which the callee’s footprint FP equals

13 The tool uses && and &*& for ∧ and ∗, but we adopt the latter notation in the interests of consistency.
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procedure find(x: Node, ghost root: Node, implicit ghost X: Set<Node>)
returns (res: Node)
requires lseg(x, root) ∧ acc(X) ∗ root.f ↦ null
ensures acc(X) ∗ root.f ↦ null ∗ res = root

{
var n := x.f;
if (n ≠ null) {
res := find(n, root);
x.f := res;

} else {
res := x;

} }

Figure 3.10: Example method specified in GRASShopper.

The method find traverses the heap via the f field starting from x until the last node, root,
is reached (which is the result of find) while performing path compression, i. e. connecting
each node along the path directly to root. root.f ↦ null is the points-to predicate that means
acc(root) ∗ root.f = null. lseg(x,y) defines an acyclic list segment starting in x.

𝔥 and the set of all allocated nodes Alloc equals 𝐴. Let 𝑓 and 𝑓 ′ be a field in its pre- and
post-states, resp. Then, the separation-logic frame rule can be expressed as follows:

𝐹𝑟𝑎𝑚𝑒𝑆𝐿(𝐴, 𝔥, 𝑓 , 𝑓 ′) ..⟺ ∀𝑛 ∈ 𝐴 𝔥 • 𝑥.𝑓 = 𝑥.𝑓 ′ (3.2)

This formula says that the value of the field 𝑓 of any node in the frame is preserved.
The formula (3.2) alone is insufficient for preserving reachability properties (cf. Sec. 3.1.3).

Hence, GRASShopper employs the following additional rule of reachability framing:

𝐹𝑟𝑎𝑚𝑒(𝐴, 𝔥, 𝑓 , 𝑓 ′) ..⟺ (∀𝑥, 𝑦, 𝑧 ∈ 𝐴 𝔥 • Btwn (𝑓 , 𝑥, 𝑦, 𝑒𝑝(𝔥, 𝑓 , 𝑥)) ⟹

(Btwn(𝑓 , 𝑥, 𝑧, 𝑦) ⇔ Btwn(𝑓 ′, 𝑥, 𝑧, 𝑦)) )
∧∀𝑥, 𝑦, 𝑧 ∈ 𝐴 • 𝑥 ∉ 𝔥 ∧ 𝑥 = 𝑒𝑝(𝔥, 𝑓 , 𝑥) ⟹

(Btwn(𝑓 , 𝑥, 𝑧, 𝑦) ⇔ Btwn(𝑓 ′, 𝑥, 𝑧, 𝑦))

(3.3)

The formula (3.3) provides two precise conditions under which triplets (𝑥, 𝑧, 𝑦) of the
Btwn relation are preserved as a result of the call that transforms the reference field 𝑓
into 𝑓 ′. The first condition, Btwn(𝑥, 𝑦, 𝑒𝑝(𝔥, 𝑓 , 𝑥)), implies that 𝑦 dominates 𝑡 on the path
𝑥… 𝑡. Hence, the path 𝑥…𝑦 is preserved. The second condition, 𝑥 ∉ 𝔥 ∧ 𝑥 = 𝑒𝑝(𝔥, 𝑓 , 𝑥),
implies that 𝑥 is a frame node that does not reach the footprint at all. Hence, all heap
paths starting in 𝑥 are preserved.

3.2.4.6 Limitations. The main limitation of GRASShopper is that each supported reach-
ability relation is tied to a single reference field. This design enables a simple reachability
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framing formulation that falls into a decidable fragment of first-order logic. Similar to
the EPR technique discussed in Sec. 3.2.3, GRASShopper encodes entry points via an
idempotent, total, uninterpreted function. The axiomatization of reachability framing
in GRASShopper relies on the fact that 𝑒𝑝 is a function, i. e. each node can have only one
entry point into each footprint. Hence, one cannot easily generalize this design to sup-
port reachability over multiple reference fields, e. g. to support reasoning about general
DAG structures.

3.2.5 Ramification techniques

Ramification techniques generalize classical separation logic to support reasoning about
operations that have non-local effect [116]. The classical frame rule preserves only com-
positional properties of a heap fragment, i. e. those that depend only on the nodes inside
this fragment. Under the compositionality assumption, modular reasoning is fundamen-
tally simplified. In particular, a method call cannot change properties of its frame; thus
all that is left to be done after the call is to compose the (preserved) properties of the
frame and in the (updated) properties of the callee footprint into the property of the
client footprint. Reachability is an example of a non-compositional property that vio-
lates this assumption because it talks about the existence of arbitrary heap paths, not
necessarily those within the footprint or the frame.

𝐺1 ⊢ 𝐿1 ∗ 𝐹 {𝐿1} 𝑐 {𝐿2} 𝐿2 ∗ 𝐹 ⊢ 𝐺2
{𝐺1} 𝑐 {𝐺2}

Free(𝐹) ∩ Mod(𝑐) = ∅ (Frame)

To tackle the problem of framing non-local properties, ramification introduces a gen-
eralized, more expressive version of the Frame rule from classical separation logic [22].
This new rule lifts the requirement that the footprint is disjoint with the remainder heap
fragment called the ramification frame. For example, Wang et al. [116] replace Frame with
a generalized Localize rule with two novelties. First, they give up the quantifier-free form
of the postconditions of the Hoare triples in the rule. Second, they add universal quan-
tification to the third premise. To phrase the constraints set upon the ramification frame,
𝑅, the rule uses the magic wand [26] connective defined through (𝑃 ⊢ 𝑄 −∗ 𝑅) ..⟺
(𝑃 ∗𝑄 ⊢ 𝑅); note that the third premise of Frame can be written as 𝐹 ⊢ 𝐿2 −∗ 𝐺2, closely
resembling the structure in Localize, although sparing the universal quantifier. In both
rules, the side condition ensures that free variables of the frame 𝐹 (or the ramification
frame 𝑅) cannot be modified by the operation 𝑐.

𝐺1 ⊢ 𝐿1 ∗ 𝑅 {𝐿1} 𝑐 {∃𝑥 ⋅ 𝐿2} 𝑅 ⊢ ∀𝑥 ⋅ (𝐿2 −∗ 𝐺2)
{𝐺1} 𝑐 {∃𝑥 ⋅ 𝐺2}

Free(𝑅) ∩ Mod(𝑐) = ∅ (Localize)

The simplicity of the original frame rule allows for efficient frame inference, enabling
modular reasoning techniques that can be automated. In contrast, ramification frames
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were designed for expressivity, not automation. As a result, they are much harder to infer.
However, ramification techniques are typically implemented as extensions to separation-
logic reasoning frameworks for interactive proof assistants, e. g. Coq and VST [29] or
Isabelle [25].

Both the classical frame rule as well as Localize can be efficiently combined with the
concept of iterated separating conjunction (ISC). ISC is a generalization of the separat-
ing star conjunction that allows simultaneously specifying access permissions to an un-
bounded set of nodes. Even though ISC were already included in classical separation
logic [26], the presence of ISC introduces additional challenges to automation.14 With-
out ISC, footprints in a fixed state may only access bounded sets of nodes (and other
resources). In contrast, ISC enable access to unbounded node sets that naturally repre-
sent footprints of arbitrary operations.

Reachability can be encoded in ramification via the idea of local paths. For example,
in [116], local paths are an essential construct used in data structure specifications. In
their definition, a local path 𝑥 ⇝𝛾 𝑦 expresses that 𝑥 reaches 𝑦 in a graph 𝛾 that repre-
sents some heap fragment in a fixed state. Rather than axiomatizing graphs via a theory
of sets, ramification techniques [116] built atop type theory that has better support in
proof assistants. As discussed in Sec. 3.1.2, reasoning in separation logic requires the
consideration of local paths because, generally, modular method specifications cannot
precisely express global reachability properties.

Since ramification techniques do not provide any guidance for choosing ramification
frames, the problem of managing cutpoints is open. Refer to Sec. 3.1.3 for a detailed dis-
cussion of the cutpoint management problem.

3.2.6 Flows

Flows is a framework for verification of flow interfaces: graph invariants about a rich spec-
trum of properties including reachability properties [100, 118]. Procedures can operate
on subgraphs that correspond to their footprint. If the callee complies with its local
flow interface, a view on the client’s graph can be reconstructed. Reasoning about flows
requires fixpoint computations that are generally hard to automate. An important limi-
tation of Flows is that the framework does not permit propagating side effects of a local
operation to the client’s context. We first provide a quick introduction to the generic
Flows framework, then illustrate how it can be applied to reachability reasoning, and
then discuss limitations in more detail.

3.2.6.1 Concepts of the Flows framework. Consider a graph 𝐺 = (𝑁, 𝑒) — e. g. repre-
senting a fragment of the program heap — where 𝑁 is a node set and 𝑒 is the set of
edge functions specifying the connections between nodes. A flow graph 𝐻 = (𝑁, 𝑒, flow)

14 Fortunately, an automatic separation logic reasoning technique with ISC has been recently proposed
by Müller, Schwerhoff, and Summers [90] and has enabled the key contributions of this thesis.
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is the augmentation of our graph 𝐺 with a family of flow functions, specifying a mea-
sure called flow for each node of the graph. The flow of a node may depend on both
local properties of this node (e. g. the value of its fields) as well as global properties of
the entire graph. To incorporate the global properties of a graph into the flow of a given
node, the Flows framework employs the following recursive equations:

∀𝑛 ∈ 𝑁 • flow(𝑛) = inf(𝑛) + ∑
𝑚∈𝑁

flow(𝑚) ▷ 𝑒(𝑚, 𝑛) (FlowEqn)

Here inf(𝑛) is the in-flow in node 𝑛, 𝑒(𝑚, 𝑛) is the edge function operating along the
(potential) edge from 𝑚 to 𝑛, and 𝑥 ▷ 𝑒(𝑚, 𝑛) denotes the application of the function
𝑒(𝑚, 𝑛) over 𝑥.

Intuitively, the flow equations (FlowEqn) describe, for each node 𝑛 of our graph, how
their flow is influenced by the flow coming from their predecessors. Note that the flow is
propagated only along direct edges, i. e. from a predecessor to its successors; hence, the
value of flow(𝑛) is defined as a fixpoint of the system of equations (FlowEqn). We omit
the discussions about the conditions under which such fixpoints exist and assume that
there exists a unique fixpoint for flow.The relevant formal proofs are presented in [118].

Carefully instantiating the domain of the Flows framework can enable expressing rich
properties of heap graphs. The fixpoint computation described above propagates global
graph properties to local nodes, supporting specifications on different abstraction levels.
Since Flows build atop separation logic, procedure footprints can be specified in terms
of node sets using iterated separating conjunction (ISC).

This approach supports modular verification of program invariants: A client needs
only abstract information about the callee (its flow interface) to be able to reason about
a call. Conversely, the concrete details (i. e. the actual flow graph) that do not affect the
invariant are irrelevant for the client and thus can be hidden. Flow interfaces consist of
two components, namely, the family of in-flow functions inf (introduced in (FlowEqn))
and the family of out-flow function outf, which are defined as follows:

∀𝑛 ∈ Ref 𝑁 • outf(𝑛) = ∑
𝑚∈𝑁

flow(𝑚) ▷ 𝑒(𝑚, 𝑛)

Note that outf maps each node outside of our flow graph 𝐻 to its out-flow. Using the
notions of in-flow and out-flow, the Flows framework defines interfaces as the pair
(inf, outf), providing a way to abstract concrete flow graphs via their flow interfaces.
In particular, verifying the callee typically requires full information presented in its flow
graph, but its public invariant can be written more abstractly in terms of the correspond-
ing flow interface that is suitable for modular reasoning on the client’s side.

3.2.6.2 Encoding reachability in Flows. We now demonstrate how the Flows frame-
work can express reachability. First, we need to find an appropriate instantiation of the
flow domain, restricting possible values of the flow function. Formally, the flow domain



3.2 ExISTING wORk 127

is an augmentation of a commutative, cancellative (total) monoid (𝑀,+, 0) (where 𝑀 is
the domain of flow values) with a collection of edge functions 𝐸 ⊆ 𝑀 → 𝑀. The cancella-
tivity property (required in the meta-theory of Flows) can be used for deriving e. g. 𝑎 = 𝑏
from 𝑎 + 𝑐 = 𝑏 + 𝑐, if the latter equality is well-defined in (𝑀,+, 0).

We aim to express reachability from some node 𝑟 ∈ 𝑁 to an arbitrary node 𝑛.15 The
key idea is to instantiate the Flows framework s.t. information from 𝑟 is propagated to all
nodes that are eventually reached by following heap paths starting in 𝑟. Then, a non-unit
flow value (flow(𝑛) ≠ 0) would indicate that 𝑛 is reachable from 𝑟.

We proceed by considering the following formal instantiation of the Flows framework.
First, we select the domain of flow values to be multisets of sets of nodes, i. e. flow(𝑛)
contains the sets of nodes representing each simple path from 𝑟 to 𝑛. Hence, we have:

𝐹𝑙𝑜𝑤𝐷𝑜𝑚𝑎𝑖𝑛 ∶ (ℕ𝟚Ref , ∪, ∅, 𝐸) 𝐻 = (𝑁, 𝑒, flow) 𝐸 ∶= {λ𝑛 | 𝑛 ∈ 𝑁}

Here the first component of the flow domain is the set of all multisets of node sets. For
example, a multiset of paths 𝑟 …𝑛 in the graph of Fig. 3.11, denotedμ, must be of the form
{𝑝1 ↣ 𝑐1, 𝑝2 ↣ 𝑐2, 𝑝3 ↣ 𝑐3}, where 𝑝1 = {𝑟, 𝑎, 𝑏, 𝑛}, 𝑝2 = {𝑟, 𝑐, 𝑏, 𝑛}, and 𝑝3 = {𝑟, 𝑐, 𝑑, 𝑛}
and 𝑐𝑖 are the counters of their corresponding elements 𝑝𝑖 in our multiset. Then, μ ∈
ℕ𝟚Ref is a valid flow value.16

Second, we initialize the flow functions with ∅ in all nodes of 𝑁 except 𝑟; the latter
should have a different initial flow value which can then be propagated to all reachable
nodes via the fixpoint computation of (FlowEqn). For this initial value of flow(𝑟) we will
use the singleton multiset {∅ ↣ 1}:

∀𝑛 ∈ Ref • inf(𝑛) = (λ𝑛. 𝑛 = 𝑟 ? {∅ ↣ 1} ∶ ∅) (In-Flow)

To propagate the initial flow, we define the edge function 𝑒(𝑛, 𝑥) ∶= λ𝑛; here 𝑛 ∈ 𝑁 is
the predecessor and 𝑥 ∈ Ref is the successor and λ𝑛 is defined as follows:

∀𝑛 ∈ Ref • λ𝑛(𝑆) ∶= {𝑝 ↣ (𝑛 ∈ 𝑝 ? 𝑆(𝑝 {𝑛}) ∶ 0)} (Edge-Functions)

Note that the edge functions depend only on the predecessor and not on the successor
node; intuitively, this corresponds to the fact that heap nodes cannot control the set of
other nodes that reference them. The parameter 𝑆 in λ𝑛(𝑆) corresponds to the (multiset)
flow value of the predecessor of 𝑛; hence, 𝑆(𝑝 {𝑛}) yields the count of 𝑝 {𝑛} in the
multiset 𝑆 (recall that node sets e. g. 𝑝 represent heap paths, so 𝑝 {𝑛} is effectively the
intermediate path from 𝑟 before we reached 𝑛).

15 This instantiation of the Flows framework is inspired by the inverse reachability example presented in [110].
16 Our instantiation leads to the following concrete signatures: 𝑁 ⊆ Ref, 𝑒 ∶ 𝑁 × Ref → 𝐸, flow ∶ 𝑁 → 𝟚Ref.
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Figure 3.11: Example heap configuration with multiple paths connecting 𝑟 to 𝑛.

COMpuTING THE FIxpOINT. We proceed by computing the flow value of our starting
node, 𝑟. Instantiating (FlowEqn) with 𝑟 for𝑛, we obtain the general expression for flow(𝑟):

flow(𝑟) = inf(𝑟) ∪ ⋃
𝑥∈𝑁

flow(𝑥) ▷ 𝑒(𝑥, 𝑟) = {∅ ↣ 1} ∪ {{𝑟} ↣ 0} = {∅ ↣ 1}

Only the in-flow affects the overall flow of 𝑟 (cf. (In-Flow)). None of the other nodes
add any flow to 𝑟 because the edge function 𝑒(𝑥, 𝑟) yields an empty multiset if 𝑥 ∉ {𝑟}
(cf. (Edge-Functions)). Analogously, we proceed by computing all other flow functions
in a breadth-first manner.

flow(𝑐) = inf(𝑐) ∪ ⋃
𝑥∈𝑁

flow(𝑥) ▷ 𝑒(𝑥, 𝑐) = {{𝑟} ↣ 1}

flow(𝑎) = inf(𝑎) ∪ ⋃
𝑥∈𝑁

flow(𝑥) ▷ 𝑒(𝑥, 𝑎) = {{𝑟} ↣ 1}

flow(𝑏) = inf(𝑏) ∪ ⋃
𝑥∈𝑁

flow(𝑥) ▷ 𝑒(𝑥, 𝑏) = {{𝑟, 𝑎} ↣ 1, {𝑟, 𝑐} ↣ 1}

flow(𝑑) = inf(𝑑) ∪ ⋃
𝑥∈𝑁

flow(𝑥) ▷ 𝑒(𝑥, 𝑑) = {{𝑟, 𝑐} ↣ 1}

flow(𝑛) = inf(𝑛) ∪ ⋃
𝑥∈𝑁

flow(𝑥) ▷ 𝑒(𝑥, 𝑛) = {{𝑟, 𝑎, 𝑏} ↣ 1, {𝑟, 𝑐, 𝑏} ↣ 1, {𝑟, 𝑐, 𝑑} ↣ 1}

In the five cases above, the in-flows are set to ∅. For node 𝑐, the only predecessor is 𝑟;
hence, the big union yields flow(𝑟) ▷ 𝑒(𝑟, 𝑐) = λ𝑟 (flow(𝑟)) = λ𝑟 ({∅ ↣ 1}) = {{𝑟} ↣ 1}.
Analogously, we compute the flow in all other nodes, including 𝑛.

Finally, we can now define the reachability predicate R in terms of flows:

R(𝑟, 𝑛) ..⟺ |flow(𝑛)| > 0

Beyond point-wise reachability, one can also express some other properties using the
same flow domain. For example, we could specify the distance between 𝑟 and 𝑛 (denoted
dist(r,n)) as the length of the shortest path connecting these nodes:

dist(𝑟, 𝑛) ..⟺ min
𝑝∈flow(𝑛)

|𝑝|
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Note that the min comprehension above operates on a potentially unbounded set as the
number of alternative paths of the form 𝑟 …𝑛 is typically not unknown statically; refer
to Chap. 2 for the discussion of verification of unbounded comprehensions.

3.2.6.3 Limitations of Flows. The Flows framework supports local reasoning about
global graph properties in separation logic. However, the possible changes to the proper-
ties in question (e. g. the creation or the destruction of heap paths) cannot be propagated
to the client because that would violate the flow interface that defines the current reason-
ing context. Therefore, a Flows-based reasoning technique is limited to the verification
of program invariants. In such a setting, the problem of cutpoint management is dramat-
ically simplified as the cutpoints of an operation’s footprint must be specified as part of
its flow interface, rendering them immutable for the duration of the call.

Automated reasoning presents Flows with another challenge. In general, the fixpoint
computation for the equations (FlowEqn) is a higher-order operation that is not natively
supported by automatic theorem provers. Although it might be possible to mitigate the
problem of automatically reasoning about fixpoints, this is not simpler than solving the
original problem of reasoning about the reachability relation since reachability itself can
be defined via fixpoints.

Finally, applying the Flows framework in practice requires selecting an appropriate
instantiation of the flow domain. This by itself is a non-trivial problem. Recall that our
example instantiation from Sec. 3.2.6.2 allowed us to express reachability only from a
given node 𝑟. Specifying general two-point reachability would require a more complex
flow domain that would propagate more information throughout the graph. Ultimately,
any graph property could be expressed in some sufficiently sophisticated flow domain.
However, overly detailed flow domains would break the essential abstractions granted
by reachability in the first place.

3.2.7 This work

We present a specification and verification technique that allows one to reason about
heap reachability properties modularly. The technique is integrated into separation logic
and, thus, benefits immediately from the plurality of techniques and tools in this area.
The key challenge of this integration is to specify reachability locally, within the foot-
print of a method. We solved this challenge by specifying reachability relatively to a
given heap fragment and introducing a novel form of reachability framing to extend
reachability properties in the footprint of a callee method to the larger footprint of the
client. Even though reasoning about general reachability properties is difficult to au-
tomate, the proof obligations required by our technique are amenable to SMT solvers,
which we will demonstrate in our experiments of Sec. 3.8. This section discusses the po-
sition of our work on the spectrum of existing techniques and concludes with an outlook
into the possible future extensions.
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3.2.7.1 Positioning our technique. Most work on separation logic focuses on data struc-
tures with limited sharing, with some notable exceptions. Iterated separating conjunc-
tion has been used to verify the Schorr-Waite graph marking algorithm [23], but without
any tool support or automation. Recent work on Flows [100] (Sec. 3.2.6) allows one to
prove the preservation of a rich variety of graph invariants including reachability proper-
ties, but requires fixpoint computations that are hard to automate. Methods can operate

Table 3.1: Summary of existing reachability verification techniques.

The techniques are grouped as follows. Top group includes foundational work in reasoning
about transitive closures; Second group includes automated tools for modular verification of
heap reachability properties; Third group includes higher-order separation logics with reacha-
bility support. Auto = Automation; Modl = Modular reasoning; SepL = separation logic.

Technique Discussion Citation Auto Modl SepL Structures

Dynamic TC Sec. 3.2.1 Dong and Su [17] ✓ DAG, ZOPG
TC Simulation Sec. 3.2.2 Lev-Ami et al. [53] ✓ List
EPR Sec. 3.2.3 Itzhaky et al. [69] ✓ ✓ List
GRASShopper Sec. 3.2.4 Piskac, Wies, and Zufferey [78] ✓ ✓ ✓ Tree, List
Ramification Sec. 3.2.5 Wang et al. [116] ✓ ✓ Graph
Flows Sec. 3.2.6 Krishna, Summers, and Wies [118] ✓ ✓ Graph
Our Work Sec. 3.3 Ter-Gabrielyan et al. [112] ✓ ✓ ✓ DAG, ZOPG

Table 3.2: Supported data structure categories.

A comparison of data structure categories supported by our technique vs. closest prior work.
“Itz.” denotes EPR (Sec. 3.2.3); “Gr.” denotes GRASShopper (Sec. 3.2.4); “Nv.” indicates if, to
our knowledge, our work enables automated modular verification of reachability properties for
the first time. * — conceptually supported but not evaluated (see Sec. 3.8).

Data structure Class Itz. Gr. Nv. Author

General DAGs (e. g. Git hostory) DAG ✓ Chacon and Straub [74]
Binary Decision Diagrams DAG ✓* Lee [3] and Akers Jr. [10]
Trees ZOPG/DAG ✓ –
Acyclic list segments ZOPG/DAG ✓ ✓ –
Union-Find ZOPG/DAG ✓ ✓ Tarjan [9]
Arbitrary linked-list structures ZOPG ✓* –
Trees encoded via Java’s LinkedList ZOPG ✓* Sun, Oracle
Priority inheritance protocol ZOPG ✓* Sha, Rajkumar, and Lehoczky [15]
Hierarchical rings ZOPG ✓ Fredman et al. [13]
Traveling salesman optimization ZOPG ✓* Croes [1] and Lin [5]
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on a subgraph; under the condition that interfaces [100] of these subgraphs are preserved,
a view on the client’s graph can be reconstructed. They make no convexity restriction,
but the interface preservation conditions rule out the possibility of method calls adding
or removing paths between nodes in subgraph boundaries. By contrast, our technique
explicitly enables such side-effectful methods, and the reconstruction of appropriate
changes in the client’s footprint. For instance, we will present an example method merge
(Fig. 3.13) in which new reachability relations are first established (by creating an edge
from link to the root of rdag) and then propagated (by the enclosing method calls) to the
larger context (the entirety of the client’s footprint).

To support reasoning about reachability in presence of filed updates, we adapted the
precise transitive-closure update formulas from Dong and Su [17] to program heaps and
separation logic, rather than mathematical graphs. Their work also inspired our DEP re-
lation that we will use for cyclic structures; however, our version of the DEP relation is
compatible with the reflexive reachability relation and is used only in the internal encod-
ing, whereas theirs is exposed to programmers. Reachability has been integrated into
an automatic separation logic setting before; e. g. in GRASShopper [78] (Sec. 3.2.4), but
only in a limited way that supports lists and trees but not heap structures with sharing.

Our work was inspired by Itzhaky et al. [69, 76] (Sec. 3.2.3). Their verification tech-
nique allows one to modularly prove reachability properties in various forms of list data
structures. A focus of their work is to obtain decidable proof obligations. We sacrificed
decidability in favor of supporting arbitrary acyclic graphs (with bounded outdegree)
as well as 0–1-path graphs; our experiments show that we nevertheless achieve good
automation. In contrast to Itzhaky et al., we integrated our work into separation logic,
which allows us to verify concurrent programs and to reason about reachability and
other properties in a uniform way. Moreover, we do not restrict method footprints in
the number of entry and exit points or the number of strongly connected components
in them. Tab. 3.2 summarizes the expressiveness of our technique and compares it with
closely-related work.

3.3 LOCAL REACHABILITy

In this section, we introduce our automated reachability reasoning technique;17 the foun-
dation of this technique is a novel specification language for local reachability properties.
This language is an extension of the core language described in Sec. 1.2.

We illustrate the technique using the same algorithm, merge, that served as our mo-
tivating example (Fig. 3.2). Recall that merge operates on two (disjoint) DAG structures

17 Our technique automatically checks that a program implementation adheres to its modular specifications
with reachability; specification inference (in particular, inference of loop invariants) is beyond the scope of
this thesis, but the abstract view of the heap provided by reachability is helpful, e. g. in abstract interpreta-
tion and shape analysis [20].
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method merge(l: Node, r: Node,
𝔤: Graph, ldag: Graph, rdag: Graph)

returns link: Node
requires 𝔤 = ldag⊎ rdag∧ l ∈ ldag∧ r ∈ rdag

∀𝑥, 𝑦 ∈ 𝔤 • ¬E(𝔤, 𝑥, 𝑦) ∨ ¬P(𝔤, 𝑦, 𝑥)
∀𝑛 • 𝑛 ∈ ldag ⇔ P(𝔤, l, 𝑛)
∀𝑛 • 𝑛 ∈ rdag ⇔ P(𝔤, r, 𝑛)

ensures link ∈ ldag
∀𝑥, 𝑦 ∈ 𝔤 • ¬E(𝔤, 𝑥, 𝑦) ∨ ¬P(𝔤, 𝑦, 𝑥)
∀𝑥, 𝑦 • E(𝔤, 𝑥, 𝑦) ⟺ E0(𝔤, 𝑥, 𝑦) ∨ 𝑥 = link∧ 𝑦 = r
∀𝑥, 𝑦 • P(𝔤, 𝑥, 𝑦) ⟺ P0(𝔤, 𝑥, 𝑦) ∨ P0(𝔤, 𝑥, link) ∧ P0(𝔤, r, 𝑦)

{
if (l.right != null) {
var nldag := sub(𝔤, ldag, l.right)
link := merge(l.right, r, nldag ⊎ rdag, nldag, rdag)

} else {
l.right := r
link := l

} }

// ghost parameters
// updated node

// define new ghost parameter

// acyclic invariant

// acyclic invariant

Figure 3.12: Example program and its reachability specification.

Method merge attaches the DAG rooted in r to a node of the DAG rooted in l, and returns that
node. We use the edge predicate E and the path predicate P to specify reachability, within a set
of objects 𝔤. The footprint 𝔤 is closed due to the equivalences in the last two preconditions.

with nodes of type Node18 and reference fields left and right. Method merge in Fig. 3.12
takes as arguments references l and r to two nodes of the corresponding DAGs and at-
taches r as descendant of l. It returns link, a node of the first DAG, to which r was at-
tached. The postcondition ensures that exactly one connection was created (via an edge
from link to the root of the second DAG, r), and that heap paths exist in the post-state
either if they existed in the pre-state or were connected up by the new edge (link, r).
We explain the specification of merge in full detail in the remainder of this section.

3.3.1 Footprints

The footprint of any method operating on linked heap structures, e. g. lists and DAGs,
contains a statically unknown number of memory locations. To provide a convenient
way to refer to a method’s footprint, we equip each method with a distinct ghost param-
eter 𝔤: Graph to denote its footprint. For simplicity, instead of specifying the footprint
as a set of object-field pairs, we let Graph denote sets of non-null objects and keep the
fields implicit when they are clear from the context. The set stored in 𝔤 is updated when-

18 Instances of type Node are non-null references, which is ensured in the generated proof obligations.
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ever the footprint changes, e. g. due to allocation. In order to be able to refer to the final
footprint of a method execution in its postcondition, we make 𝔤 an in-out parameter.
For simplicity, we assume in the following that the footprint of a method remains un-
changed, s.t. the value of 𝔤 is constant; an extension is straightforward.

We equip each method with implicit pre- and postconditions to require and ensure
permissions to all locations in the footprint:
requires ∀𝑛 ∈ 𝔤 • acc(𝑛.left) ∗ acc(𝑛.right}
ensures ∀𝑛 ∈ 𝔤 • acc(𝑛.left) ∗ acc(𝑛.right}

Here, acc(𝑥.𝑓 ) denotes an access permission to the memory location for field 𝑓 of object
𝑥 (like 𝑥.𝑓↦_ in classical separation logic [26]), ∗ denotes separating conjunction, and
the universal quantifier is an iterated separating conjunction (ISC) [26, 90], which (here)
denotes permissions to all field locations of objects in the footprint 𝔤. In contrast to using
recursive definitions to specify unbounded heap structures (e. g. separation logic predi-
cates [24, 34]), ISC permits arbitrary sharing within the set 𝔤 (many field values may alias
the same node) and does not prescribe a traversal order within the data structure. We
assume for simplicity that a method specification expresses all required and returned
permissions via these implicit contracts with respect to 𝔤, but it is easy to also support
other permission specifications, e. g. points-to predicates and recursive predicates.

In our example of Fig. 3.12, we use two additional ghost parameters ldag and rdag to
allow our specification to simply denote the sets of objects constituting the first and sec-
ond DAG, resp. The first precondition expresses that the method footprint is the disjoint
union of these two DAGs.

3.3.2 Reachability predicates

Reasoning in separation logic has the advantage that one can modularly verify proper-
ties of a method, and reuse this verification for all calling contexts (and concurrently-
running threads). Enforcing that properties verified for the method depend only on its
footprint, guarantees that they hold independently of the context; we refer to these as
the local properties of the footprint. However, classical reachability in the heap is not a
local property of this form. Hence, combining reachability and separation logic requires
us to refine the notion of reachability to one that is local, as we explain next.

Our technique provides two predicates to express reachability properties in specifi-
cations. We generalize classical reachability by adding an extra footprint parameter, 𝔤
to make the property local. The edge predicate E𝐹(𝔤, 𝑥, 𝑦) expresses that object 𝑥 is in the
set 𝔤 and has a field from the set of fields 𝐹 storing a non-null object 𝑦 (which need not
be in 𝔤). The path predicate P denotes, for a fixed 𝔤 and 𝐹, the reflexive, transitive closure
of E, that is, P𝐹(𝔤, 𝑥, 𝑦) expresses that either 𝑥 = 𝑦, or there is a path of field references
from 𝑥 to 𝑦 s.t. all objects on the path (except possibly 𝑦) are in 𝔤 and all fields are in
𝐹; in particular P may denote reachability via multiple fields. We omit the parameter 𝐹
when the set of fields is clear from the context; for instance, in our example, 𝐹 consists
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frame nldag rdag

l l.right link r

Figure 3.13: Example scenario of running merge.

The input structures are two DAGs rooted in l and r. Small circles correspond to heap objects;
solid arrows represent fields initialized in the pre-state that are unchanged; the dashed arrow
represents the new heap edge (created in the post-state by initializing a field). The frame of the
recursive call is surrounded with blue; the footprint is surrounded with red.

of the (only) reference-typed fields left and right. We say that a path 𝑥…𝑦 is 𝔤-local
if P(𝔤, 𝑥, 𝑦) holds. Both our edge and path predicates are defined over a mathematical ab-
straction of the current heap graph (cf. Sec. 3.3.5), and are pure in the separation logic
sense, allowing us to freely repeat them in specifications.

Our edge and path predicates enable rich reachability specifications within a method’s
footprint. The preconditions of merge express that the method footprint is acyclic and
closed under the edge relation (due to the second and the last two preconditions), and
that ldag and rdag contain exactly the objects reachable from l and r, resp. In general,
method specifications are checked to only employ edge and path predicates whose first
parameter is the method’s footprint or a subset thereof.

Method postconditions typically express how reachability changes within this foot-
print. In our example, the first postcondition specifies that the result link is part of the
first DAG and its right-field was initially null. The old-expression allows postconditions
to refer to pre-state values; we write E0(…) to abbreviate old(E(…)), and analogously for
P. We can freely mix reachability specifications with specifications in terms of the pro-
gram heap (e. g. the link.right expression). The other postconditions illustrate how we
can specify the new edge and path relations in terms of their originals, summarizing the
method’s effect. In particular, the last postcondition expresses that an object 𝑥 reaches
an object 𝑦 in the post-state iff it reached 𝑦 already in the pre-state, or if 𝑥 reaches link
in the first DAG and 𝑦 is in the second DAG. Our method specification leaves link un-
derspecified, whereas the implementation chooses the rightmost node in the first DAG.
We could easily provide a less abstract specification by using path predicates over (only)
the right-field.
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3.3.3 Footprint selectors

Method calls in our technique, such as the recursive call in method merge, need to sup-
ply values for their ghost parameters; each method must have at least the ghost pa-
rameter 𝔤 that specifies its footprint. To provide such values, we use footprint selectors,
i. e. functions defining new Graphs. For instance in merge, we use the predefined func-
tion sub(𝔤:Graph,𝔥:Graph,root:Node) that yields the subset of 𝔥 reachable from root
via 𝔤-local paths. The properties known for the resulting set are summarized by the
following heap-dependent function [91] declaration:19

function sub(𝔤: Graph, 𝔥: Graph, root: Node): Graph
requires root ∈ 𝔥 ∧ 𝔥 ⊆ 𝔤
ensures CLOSED𝔥(result) ∧ ∀𝑛 • 𝑛 ∈ result ⇔ 𝑛 ∈ 𝔥 ∧ P(𝔤, root, 𝑛)

where result refers to the value of the function application; CLOSED𝔥(𝔯) denotes that an
edge that exits 𝔯 must not end in 𝔥:

CLOSED𝔥(𝔯) ..⟺ ∀𝑥 ∈ 𝔯, 𝑦 • E(𝔯, 𝑥, 𝑦) ⟹ 𝑦 ∉ 𝔥 𝔯 (3.4)

Note that CLOSED𝔥(𝔯) is permissive enough to allow selecting new footprints for method
calls even if the current footprint is open, i. e. if there exist edges that exit the current
footprint. To specify that a subheap is closed in the global heap, we would use a stronger
condition:

CLOSED(𝔤) ..⟺ ∀𝑥 ∈ 𝔤, 𝑦 ∉ 𝔤 • ¬E(𝔤, 𝑥, 𝑦) (3.5)

In addition to sub, our technique can be used with other footprint selectors, and foot-
prints may be under-constrained. The function some defines the weakest (deterministic)
footprint selector:
function some(𝔤: Graph, schema: Int): Graph
ensures result ⊆ 𝔤

where the first argument, 𝔤, is the footprint of the current method and the second argu-
ment, schema, specifies which of the possible subsets of 𝔤 should be yielded; it is used for
differentiating multiple applications of some. For example, in the following code snippet,
the verifier will consider both branches:
var i, j: Int
if (some(𝔤, i) == some(𝔤, j)) { /* Case 1: identical footprints */ }
else { /* Case 2: possibly different footprints */ }

because neither the equality nor the disequality of i and j is known. A frontend tool
could provide a ghost statement 𝔥:= fresh(𝔤) that applies some to the current footprint
𝔤, and an implicit fresh integer schema, returning the freshly selected sub-footprints, 𝔥.

19 Similar to methods, functions in our language have implicit footprints specified via ISC over all elements
in their ghost parameter 𝔤. However, functions are guaranteed to be side-effect free. Hence, we do not
distinguish between P and P0 in the postcondition of sub (similar for E and E0).
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All new footprints can be selected via the function some, possibly with additional
arguments and in combination with additional constraints on the shape of the resulting
sub-footprint, e. g. the ones in the postcondition of sub. The latter must be independently
verified to guarantee soundness of the verification of the entire method. Concretely, one
must prove that a sub-footprint is well-defined, i. e. it must represent a subset of 𝔤.

In practice, it is sometimes convenient to specify sub-footprints compositionally20; e. g.,
one can define a sub-footprint containing two disjoint sub-trees, rooted in 𝑟1 and 𝑟2, resp.,
as sub(𝔤,𝔤,𝑟1)⊎sub(𝔤,𝔤,𝑟2). However, the frontend tool must check that each individ-
ual component in the composition is independently well-defined. Other supported set
operations that may be used for composing sub-footprints are union, setminus, intersection,
as well as Set(x) that yields a singleton set containing the node x.

3.3.3.1 Soundness proof sketch. We show that our footprint selector function sub is
well-formed by assuming its specification and proving result ⊆ 𝔤. First, the quantified
postcondition implies ∀𝑛 • 𝑛 ∈ result ⇒ 𝑛 ∈ 𝔥, which is the definition of result ⊆ 𝔥.
Second, due to 𝔥 ⊆ 𝔤 from the precondition and the transitivity of ⊆, we conclude
result ⊆ 𝔤. Note that the property root ∈ result follows from the same postcondition:
Instantiating the quantifier with root for 𝑛, we get root ∈ result ⇔ root ∈ 𝔥 ∧
P(𝔤, root, root). The last bit in this formula is trivially true, due to the definition of P.
Since root ∈ 𝔥 from the precondition, we conclude root ∈ result.

We now show that the postcondition of sub(𝔤, 𝔥, root) is satisfiable. Consider the
following (precondition-satisfying) model: the universe of nodes Node ← {α, root},
𝔤 = 𝔥 ← {α, root}, result = sub(𝔤, 𝔤, root) ← {root}, and α.right = root (let
all other fields be assigned to null). The 1st postcondition conjunct yields ∀𝑥 ∈ 𝔤, 𝑦 •
E(result, 𝑥, 𝑦) ⇒ 𝑦 ∉ 𝔤 result; this quantifier is satisfied in our model as there are
no heap edges originating in result. The 2nd postcondition conjunct yields ∀𝑛 • 𝑛 ∈
result ⇔ 𝑛 ∈ 𝔥∧P(𝔤, root, 𝑛); both α and root satisfy this quantifier (α belongs neither
to result nor to 𝔥; root belongs to both sets and is trivially reachable from itself).

3.3.4 Local reasoning

In this section, we introduce the core ingredients of our verification technique for com-
bining reachability information with separation logic style reasoning. Reasoning about
a method starts with assuming its precondition. The precondition provides permissions
to access the objects (i. e. nodes) in its footprint and the reachability constraints that guar-
antee the existence or the absence of heap paths connecting some objects from the foot-
print. As the program performs modifications to some parts of the heap, our goal is to
determine a precise way of checking any (local) reachability query (e. g. in the method’s

20 An example with a compositional sub-footprint will be given towards the end of this chapter, in Fig. 3.22.
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postcondition) after these changes. Hence, it is important to identify the paths that were
unchanged and those that were created or destroyed by each operation.

Heap modifications are performed either directly by field updates or indirectly through
method calls; we postpone the discussion of the latter case until Sec. 3.5. In the former
case of direct field updates, the reachability properties known to hold before the update
need to be adjusted to reflect the change of heap references. For a field update, the local
reachability properties before and after the update can be expressed within the same
(enclosing method’s) footprint.

In this section, we explain how our reachability reasoning technique is integrated with
separation logic (Sec. 3.3.5) and present our technique for direct field updates (Sec. 3.4).
We require the current method’s footprint to satisfy the special conditions under which
a precise update formula can exist for the reachability relation; in particular, cyclic and
non-functional structures require special treatment.

3.3.5 Encoding of edge and path predicates

Our specification technique supports reachability via the edge predicate E and the path
predicate P. In order to verify such specifications, we encode them into a flavor of sepa-
ration logic and use an existing verification tool to construct proofs in that logic. We use
Implicit Dynamic Frames [66] for this purpose, a variation of separation logic [64] that
separates specifications of access permissions for memory locations from specifications
of the values stored in these locations. For instance, separation logic’s points-to predicate
𝑥.𝑓 ↦ 𝑣 is specified in implicit dynamic frames as a conjunction of the access permission
and the field content: acc(𝑥.𝑓 )∗𝑥.𝑓 = 𝑣. This separation of permissions and value prop-
erties allows us to conveniently express additional value properties, e. g. sortedness, in
addition to reachability properties, without having to define a new graph-abstraction
that exposes the values of interest.

Our edge predicates could be defined directly, e. g. as (𝑥.𝑓1 = 𝑣 ∨ 𝑥.𝑓2 = 𝑣) for two
fields 𝑓1 and 𝑓2; conceptually, E is a first-order abstraction over this property, which may,
in particular, be used in the syntactic triggering patterns [33, 47, 54, 94] that the SMT
solver requires to control quantifier instantiations (and which cannot include logical
operations such as ∨ above).

Unlike the edge predicate E, directly defining the path predicate P would compromise
automation. A definition would involve transitive closure, which is notoriously difficult
to handle for SMT solvers. Therefore, we take a different approach here. We leave the
path predicate undefined and axiomatize its essential properties, for instance, how it is
affected by heap updates. We specify these axioms over mathematical graphs and not di-
rectly over the heap-dependent edge and path predicates. Therefore, our encoding first
abstracts the heap within a footprint to a set of edges (ordered pairs of nodes) and then
expresses reachability over those. This abstraction is defined by a predefined function
called rsnap. For simplicity, we define rsnap using the notation of our source language,
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but it is only used internally by our encoding. In particular, the function implicitly de-
pends on the heap and requires permissions to all objects in its footprint 𝔤:
function rsnap𝐹(𝔤: Graph): Set[Edge]
ensures ∀𝑥, 𝑦 • 𝑥 ∈ 𝔤 ∧ 𝑦 ≠ null∧ (𝑥.𝑓1 = 𝑦 ∨…∨ 𝑥.𝑓𝑛 = 𝑦) ⟺ (𝑥, 𝑦) ∈ result

Here, the return type Set[Edge] is the type of sets of pairs of nodes, and 𝐹 = {𝑓1,… , 𝑓𝑛};
we omit this parameter when it is clear from the context. The postcondition can be
thought of as an axiom over an uninterpreted function that defines its semantics. Note
that rsnap also collapses edges between two objects for different field names (duplicate
edges are not needed to keep track of reachability).

This abstraction function lets us define the edge predicate in a straightforward way:

E𝐹(𝔤, 𝑥, 𝑦) ..⟺ (𝑥, 𝑦) ∈ rsnap𝐹(𝔤) (3.6)

To avoid the issues with transitive closure mentioned above, we do not define the path
predicate directly, but axiomatize the properties we need for verification. In fact, we
define the path relation in terms of a function �̂� over graphs and then axiomatize the
latter, state-independent function:

P𝐹(𝔤, 𝑥, 𝑦) ..⟺ �̂�(rsnap𝐹(𝔤), 𝑥, 𝑦) (3.7)

For this axiomatization, we carefully control the quantifier instantiation performed by
SMT solvers to avoid diverging proof search. For instance, we include the axiom below,
but let the solver instantiate it only to a fixed depth of unrolling �̂� [52]. We provide the
full axiomatization in Sec. 3.7.2.

�̂�(𝐺, 𝑥, 𝑦) ..⟺ 𝑥 = 𝑦 ∨ ∃𝑧 • (𝑥, 𝑧) ∈ 𝐺 ∧ �̂�(𝐺, 𝑧, 𝑦) (3.8)

3.4 REASONING ABOuT FIELD upDATES

A field update x.f := v may affect reachability properties in the heap and, thus, both
edge and path predicates. Since our encoding contains a precise definition of the edge
predicate in terms of the underlying heap (via (3.6) and the definition of rsnap), the
verifier can determine which edge predicates hold after a field update.

However, determining the effect of a single field update on the path relation is more in-
tricate as its partial axiomatization is not sufficient to determine which predicates hold
after a field assignment (e. g. because this reasoning step would require induction proofs,
which SMT solvers cannot find automatically). We solve this problem by adapting an
existing approach: for acyclic graphs (which we focus on in this section; we will discuss
cyclic structures in Sec. 3.6), one can provide first-order update formulas that express pre-
cisely how adding or deleting a single edge affects reachability [17, 53]. For example,
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𝑥 𝑢 𝑣 𝑦

Figure 3.14: Reachability update problem in presence of alternative paths.

Direct heap edges are depicted by straight arrows, while (possibly, zero-length) heap paths are
depicted by wavy arrows. The upper path 𝑥…𝑦 depends on the edge (𝑢, 𝑣); removing this edge
would destroy the path, but 𝑥 may still reach 𝑦 after deleting (𝑢, 𝑣), here, via the lower path.
Alternative paths may occur in our setting because we permit multiple reference fields per object.

the following update formula characterizes the effect of adding an edge between nodes
𝑎 and 𝑏 (e. g. by initializing a field of 𝑎):

∀𝑥, 𝑦 • P𝐹(𝔤, 𝑥, 𝑦) ⟺ P𝐹0(𝔤, 𝑥, 𝑦) ∨ P𝐹0(𝔤, 𝑥, 𝑎) ∧ P𝐹0(𝔤, 𝑏, 𝑦) (3.9)

where P and P0 denote the path predicate in the states before and after the update.
The update formula for removing an edge is more complex. Since we allow for an

arbitrary outdegree of nodes (via multiple reference fields), it is possible for there to exist
multiple paths between two different nodes (Fig. 3.14). When adding an edge between
two nodes, the new P relation can be updated relatively simply, e. g. via (3.9); no paths
have been lost, and only paths connected by this new edge are created. On removal of
an edge, no paths are created, but, for node pairs previously connected by a path using
this edge, it is unclear whether or not they belong to the new P relation, due to the
possibility of alternative paths. This entails a more-complex update formula for the edge-
removal case (due to Dong and Su [17]). A general field update entails removing and
then adding an edge, as we demonstrate for our merge example in Fig. 3.18.

Our verification technique rewrites each field update x.𝑓 := v with a method call to
an internal update method with the same footprint 𝔤 as for the current method. The
postconditions of update make the reachability update formulas available to the SMT
solver. This way, we assume the update formulas for each field set 𝐹 that is used in the
current method specification and that contains the updated field 𝑓 (reachability for other
field sets is not affected by the update). We will discuss the logical encoding of reference
field updates in full generality in Sec. 3.7.3.

The else-branch in the example from Fig. 3.12 modifies the heap through a single field
update. The second postcondition describes the effect on the edge relation; it follows
directly from the definition of the edge predicate. The third postcondition, about the
path relation, is exactly the update formula (3.9), with link and r for 𝑎 and 𝑏, resp.
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3.5 REASONING ABOuT METHOD CALLS

In this section, we focus on modular aspects of reachability reasoning, i. e., supporting
method calls. Similar to the case of direct field updates discussed in Sec. 3.3.4, a method
call requires that the reachability properties known to hold before the call are adjusted.
However, for method calls the situation is more complex: To determine the reachability
properties after a call (the reachability framing problem), one needs to combine reacha-
bility properties before the call that are known to be outside of the call’s footprint (hence,
unaffected by the call) with reachability properties guaranteed by the callee method
(as expressed in the callee’s postcondition). These two sets of properties are expressed
within the footprints of the client and the callee, respectively. If these footprints are not
equal, then the reachability properties guaranteed by the callee need to be re-interpreted
in the client’s footprint.

In this section, we will present our techniques for tackling these challenges. We begin
by introducing relative convexity, a novel relation between nested heap fragments that is
strong enough to enable efficient re-interpretation of their reachability properties, e. g.,
reachability framing, but permissive enough to embrace a broad spectrum of challeng-
ing data structures (Sec. 3.5.1). Under the condition that the footprints of the callee and
the client are relatively convex (which is the only requirement we impose in this section),
it becomes possible to support modular reasoning about reachability in a technique that
can be efficiently automated (Sec. 3.5.2). Despite the fact that the frame of the call may be
non-convex — even if the corresponding footprints are relatively convex — we present a
more subtle argument that our reachability framing technique is overall mathematically
sound and complete (Sec. 3.5.1).

3.5.1 Method calls and relatively-convex footprints

Update formulas allow us to precisely capture the effect of adding or removing individ-
ual edges, which is sufficient to reason about field updates. However, reasoning mod-
ularly about method calls requires us to determine the effect of multiple heap updates.
According to the callee’s specification, we can partition the footprint 𝔤 of the client into
the footprint 𝔥 of the callee and the remainder 𝔣 (𝔤 = 𝔣 ⊎ 𝔥). This remainder is the frame
of the call and cannot be modified by the callee method. The postcondition of a callee
method provides a specification of reachability information within its footprint 𝔥. The
challenge is to determine the effect of the call on reachability within the (generally larger)
footprint 𝔤 of its client. For the edge relation, this extrapolation is straightforward:

∀𝑥 ∈ 𝔣 ⊎ 𝔥, 𝑦 • E(𝔣 ⊎ 𝔥, 𝑥, 𝑦) ⟺ E(𝔣, 𝑥, 𝑦) ∨ E(𝔥, 𝑥, 𝑦) (3.10)

In separation logic, a method may modify any heap edges that originate in its footprint;
hence, the predicate E(𝔥, 𝑥, 𝑦) implies that 𝑥 is in the footprint 𝔥 and E(𝔣, 𝑥, 𝑦) implies
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call(𝔥)

P0(𝔥)

P(𝔥)

P0(𝔣) = P(𝔣)

P0(𝔤)
(3.12)

P(𝔤)

(3.12)

𝔥 ≺ 𝔤 (3.14)

𝔥 ≺ 𝔤 (3.15)

(3.18)

(3.11)

Figure 3.15: Flow of reachability information in the presence of a method call.

Reachability information in the client’s footprint 𝔤 = 𝔣 ⊎ 𝔥 is split into reachability information
within 𝔥 and 𝔣 before the call, the effect of the call on 𝔥 is accounted for, and then the information
is recombined to paths in 𝔤. The numbers in parentheses indicate ingredients of our technique
explained in this section.

that 𝑥 is in the frame 𝔣. We refer to edges that cross the boundary of the footprint as
cutpoints:21 if 𝑥 ∈ 𝔥, 𝑦 ∉ 𝔥, then (𝑥, 𝑦) is an exit point of the footprint, and if 𝑥 ∉ 𝔥, 𝑦 ∈ 𝔥,
then (𝑥, 𝑦) is an entry point into the footprint.

Unfortunately, a simple rule such as (3.10) does not exist for relating paths in 𝔣 ⊎ 𝔥 to
those in 𝔣 and 𝔥. A path can span fields from both heap partitions, and, in general, could
cross the boundary between the two unboundedly many times. It is known that, in full
generality, a first-order reachability framing formula for our path predicate cannot exist
(see e. g. [76]). The key insight behind our technique for handling method calls is that
this intractable situation becomes tractable if the footprint of the callee is relatively convex
in the composed heap.

Definition 1 (Relatively Convex Footprints). In a given program state and for a given set of
reference fields 𝐹, footprint 𝔥 defines a relatively convex sub-footprint of footprint 𝔤 (written
𝔥 ≺ 𝔤) iff 𝔤 = 𝔣 ⊎ 𝔥 for some footprint 𝔣, and no paths within 𝔤 leave 𝔥 and then return:

∀𝑥, 𝑦 ∈ 𝔥, 𝑢 ∈ 𝔣 • ¬P𝐹(𝔤, 𝑥, 𝑢) ∨ ¬P𝐹(𝔤, 𝑢, 𝑦)

We show, in the remainder of this section, how we exploit this property to enable pre-
cise, first-order, and modular reasoning about reachability in presence of method calls.
In particular, we are able to make tractable the problem of framing reachability informa-
tion when a method footprint 𝔥 is relatively convex in its client’s footprint 𝔤. This require-
ment is checked by our technique at the call site, but is typically naturally the case. For

21 We introduced cutpoints in Sec. 3.1.3.
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example, any method operating on a recursively-defined data type, its sub-structures
or portions thereof (such as linked list segments), a strongly connected component of a
potentially-cyclic structure, or combinations of these will have a relatively convex foot-
print. DAG traversals also have relatively convex footprints. For instance, the recursive
call to merge in our running example of Fig. 3.12 and the corresponding illustration in
Fig. 3.13 demonstrate a method call with a relatively convex footprint. Note that both
acyclicity and relative convexity are defined relatively to a field set 𝐹. Therefore, even
operations on data structures with back-pointers (such as parent-pointers in a tree) typi-
cally have relatively convex footprints as long as the path predicates are defined in terms
of only forward-references or only back-pointers.

3.5.1.1 Method call overview A high-level overview of our solution is illustrated in
Fig. 3.15. We use P0 to represent the paths before the call, and P for those afterwards.
According to standard separation logic reasoning, method calls are allowed only if the
callee’s footprint 𝔥 is a subset of the client’s (𝔤 = 𝔣 ⊎ 𝔥, for some frame 𝔣). Under the
additional requirement that 𝔥 ≺ 𝔤, the technique we present in this section shows
how to decompose reachability information before the call (i. e. expressed in terms of
P0(𝔤,…)) into paths in the callee’s footprint (P0(𝔥,…)) and paths in the frame (P0(𝔣,…)).
The callee’s specification is responsible for relating P(𝔥,…) information to P0(𝔥,…) infor-
mation, i. e. specifying how reachability changes within the callee’s footprint. Conversely,
reachability purely in the frame 𝔣 cannot be changed by a call, since it does not have the
permissions to do so. Indeed, based on consideration of the permissions not passed to the
method call, we know that the following formula holds (which we call separation-logic
framing):

∀𝑥 ∈ 𝔣, 𝑦 • P(𝔣, 𝑥, 𝑦) ⟺ P0(𝔣, 𝑥, 𝑦) (3.11)

Our technique then provides means of reconstructing reachability in the client’s foot-
print (P(𝔤,…)) from the information we have after the call in terms of P(𝔥,…) and P(𝔣,…).

3.5.1.2 Path partitioning The first key step of our solution is path partitioning. We exploit
relative convexity of the callee’s footprint to define formulas for soundly and precisely
relating reachability in a client’s footprint to reachability in the callee and its frame, and
vice versa. Fig. 3.16 illustrates the possibilities for a path in the client’s footprint 𝔤 to
interact with a relatively convex footprint 𝔥. We proceed by analyzing Fig. 3.16 by cases,
deriving formulas one of which must hold in each possible case.

Crucially, our relative convexity assumption 𝔥 ≺ 𝔤 guarantees that no paths 𝑥…𝑦 in
𝔤 = 𝔣 ⊎ 𝔥 enter or leave 𝔥 more than once. We summarize the five cases for paths from
𝑥 to 𝑦 based on the distribution of these nodes between the footprint, 𝔥, and the frame
of the call, 𝔣: (i) 𝑥, 𝑦 ∈ 𝔥 as is the whole path, (ii) 𝑥 ∈ 𝔣, 𝑦 ∈ 𝔥; the path crosses the
boundary once, (iii) 𝑥 ∈ 𝔥, 𝑦 ∈ 𝔣 again crossing once, (iv) 𝑥, 𝑦 ∈ 𝔣 with a path entering
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frame (𝔣)footprint (𝔥)
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Figure 3.16: Path partitioning in presence of a relatively convex footprint.

No paths originating and ending inside a relatively convex footprint may go though nodes of its
frame. Therefore, the paths that originate in the frame may enter and exit the footprint at most
once. This gives five possibilities for a path to interact with a relatively convex footprint.

and leaving 𝔥 once, and (v) 𝑥, 𝑦 ∈ 𝔣 with a path entirely in 𝔣. Note that these cases are
exhaustive for a path between 𝑥, 𝑦 ∈ 𝔤, due to our convexity restriction.

These five cases translate to the following formulas, allowing us to relate reachability
in 𝔣 ⊎ 𝔥 and reachability in the two subheaps 𝔣 and 𝔥 individually, which we call path
partitioning formulas:

(i) ∀𝑥 ∈ 𝔥, 𝑦 ∈ 𝔥 • P(𝔣 ⊎ 𝔥, 𝑥, 𝑦) ⟺ P(𝔥, 𝑥, 𝑦)
(ii) ∀𝑥 ∈ 𝔣, 𝑦 ∈ 𝔥 • P(𝔣 ⊎ 𝔥, 𝑥, 𝑦) ⟺ ∃𝑎 ∈ 𝔥 • P(𝔣, 𝑥, 𝑎) ∧ P(𝔥, 𝑎, 𝑦)

(iii) ∀𝑥 ∈ 𝔥, 𝑦 ∈ 𝔣 • P(𝔣 ⊎ 𝔥, 𝑥, 𝑦) ⟺ ∃𝑏 ∈ 𝔣 • P(𝔥, 𝑥, 𝑏) ∧ P(𝔣, 𝑏, 𝑦)
(iv)–(v) ∀𝑥 ∈ 𝔣, 𝑦 ∈ 𝔣 • P(𝔣 ⊎ 𝔥, 𝑥, 𝑦) ⟺ P(𝔣, 𝑥, 𝑦) ∨

∃𝑎 ∈ 𝔥, 𝑏 ∈ 𝔣 • P(𝔣, 𝑥, 𝑎) ∧ P(𝔥, 𝑎, 𝑏) ∧ P(𝔣, 𝑏, 𝑦)

(3.12)

These formulas can be used left-to-right or right-to-left. In the former case, we obtain
a canonical means of decomposing information about paths in a composed footprint of
the client into information about paths in the callee’s footprint and paths in the frame.
In the latter case, we obtain means of reassembling reachability information in the com-
posed footprint from that in the constituent parts. In practice, we add separate assume
statements for both directions of each formula, so that we can clearly specify to the un-
derlying SMT solver when to instantiate the formula in which direction.

It is due to our relative convexity assumption that there exist simple first-order path
partitioning formulas (3.12). Without this assumption, the number of cutpoints of 𝔥
could be arbitrary, and localization of reachability information would require consid-
ering an unbounded set of cases (or higher-order reasoning), preventing automatic ver-
ification.

For simplicity, formulas (3.12) cover only the cases 𝑥, 𝑦 ∈ 𝔤: however, paths that are
local to a particular footprint may leave that footprint by a single edge (and so case (i)
above, for example, does not provide information about such paths in 𝔥). The following
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𝑢

𝑦 𝑥
footprint

Figure 3.17: Violation of relative convexity due to the effect of an operation.

The footprint (surrounded with red) is relatively convex before a method call, satisfying (3.14).
The heap edge created by the call is represented by a dashed arrow. The new edge (𝑥, 𝑢) is an
exit point of the footprint into the frame; since its end node 𝑢 reaches the footprint via some path
𝑢…𝑦, adding (𝑥, 𝑢) violates the relative convexity property of the footprint (3.15).

formulas reduce the case 𝑦 ∉ 𝔤 to the cases already covered by introducing a node 𝑢 ∈ 𝔤
with an edge to 𝑦:

∀𝑥 ∈ 𝔥, 𝑦 ∉ 𝔥 • P(𝔥, 𝑥, 𝑦) ⟺ ∃𝑢 ∈ 𝔥 • P(𝔥, 𝑥, 𝑢) ∧ E(𝔥, 𝑢, 𝑦)
∀𝑥 ∈ 𝔣, 𝑦 ∉ 𝔣 • P(𝔣, 𝑥, 𝑦) ⟺ ∃𝑢 ∈ 𝔣 • P(𝔣, 𝑥, 𝑢) ∧ E(𝔣, 𝑢, 𝑦)

(3.13)

3.5.1.3 Checking relative convexity of footprints. In terms of reasoning about calls, we
emit assume statements for our path partitioning formulas both before and after a method
call (to decompose paths into those matching the callee’s footprint and frame before the
call, and to reconstruct information from these sources back to the client’s footprint, af-
terwards; cf. Fig. 3.15). In both cases, before assuming our path-partitioning formulas,
we first check that the footprint is relatively convex (since this property justifies their
soundness); as we show in Fig. 3.17, a method’s footprint could be relatively convex
before the call but non-convex in the client’s footprint afterwards. The two checks em-
ployed by our technique must be expressed in slightly different terms. Before the call
(and without yet emitting our path-partitioning formulas) the 𝔤-local reachability infor-
mation is available, and we directly use the formula from Def. 1:

∀𝑥, 𝑦 ∈ 𝔥, 𝑢 ∈ 𝔣 • ¬P(𝔤, 𝑥, 𝑢) ∨ ¬P(𝔤, 𝑢, 𝑦) (3.14)

However, after the call we obtain the 𝔥-local reachability from the postcondition of
the callee, while the 𝔣-local reachability is preserved. We cannot use 𝔤-local reachabil-
ity in the post-state of the call; the aim of our path-partitioning formulas is to deduce
information in this form, and these are only justified after making the convexity check.
Therefore, after the method call, we use the following alternative formulation:

∀𝑥, 𝑦 ∈ 𝔥, 𝑢 ∈ 𝔣 • ¬P(𝔥, 𝑥, 𝑢) ∨ ¬P(𝔣, 𝑢, 𝑦) (3.15)

3.5.1.4 Relating reachability information before and after a method call. Based solely
on our assumption of relatively convex footprints, we now have a rich set of formulas
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available for precisely relating reachability information before and after a method call.
To illustrate how our formulas can be used in practice, we consider one of the verification
conditions needed for verifying the postcondition in Fig. 3.12 after the recursive call to
merge. Concretely, we consider the following Hoare triple:

{ l.right ≠ null∧ P0(𝔤, r, 𝑛) } link := merge(l.right, r, 𝔥,…) { P(𝔤, l, 𝑛) }

Here, 𝔤 and 𝔥 are the footprints of the client and the callee, resp., l and r are the roots
of the left and right DAGs, resp. (Fig. 3.13), and 𝑛 is some node reachable from r in
the pre-state; we omit the rest of the arguments of merge for brevity. The condition
l.right ≠ null comes from the if statement in Fig. 3.12 and holds before (and after) the
recursive call; we enter this branch iff we have not yet found the link node and must
keep recursively traversing the current structure. We proceed with a proof sketch for
the postcondition of this Hoare triple. Other checks needed to verify the Hoare triple
include relative convexity checks (3.14) and (3.15), and the precondition check before
the recursive call; these require similar reasoning steps and are omitted for brevity.

The postcondition P(𝔤, l, 𝑛) expresses the existence of a path l…𝑛. We justify this
postcondition by showing the existence of a (single-edge) frame-local path l… l.right
and an 𝔥-local path l.right…𝑛 (where 𝔥 is the footprint of the call). The former sub-
path starts in l ∉ 𝔥 and ends in l.right ∈ 𝔥 (since 𝔥 = nldag ⊎ rdag, where nldag
was constructed via sub), and the latter sub-path starts in l.right ∈ 𝔥 and ends in
𝑛 ∈ 𝔥 (𝑛 ∈ rdag follows from the precondition P0(𝔤, r, 𝑛) of the Hoare triple and the
last precondition of merge, while rdag ⊆ 𝔥 because 𝔥 = nldag ⊎ rdag). The distribu-
tion of the starting and ending nodes of these sub-paths enables an instantiation of
(ii) from (3.12) with l, l.right, 𝑛 for 𝑥, 𝑎, 𝑦, resp., reducing the overall proof goal to
the two predicates P(𝔣, l, l.right) and P(𝔥, l.right, 𝑛). First, since l.right ≠ null, the
former predicate can be justified by (3.8) and the postcondition of rsnap. Second, we
instantiate the last postcondition of merge with l.right, 𝑛 for 𝑥, 𝑦, resp. in order to re-
duce the latter predicate to P0(𝔥, l.right, link) and P0(𝔥, r, 𝑛). Note that, since the path
l.right… link starts in the root of nldag, the former predicate is implied by the last
postcondition of merge. We can justify the latter predicate, P0(𝔥, r, 𝑛), with an instantia-
tion of (i) from (3.12) with r, 𝑛 for 𝑥, 𝑦, resp., since (as we argued above) r, 𝑛 ∈ 𝔥.



method merge(l: Node, r: Node,
𝔤:Graph, ldag:Graph, rdag:Graph)

returns link: Node
requires ...
ensures ...

{
if (l.right != null) {
var nldag := sub(𝔤, ldag, l.right)
link := merge(l.right, r,
nldag⊎rdag, nldag, rdag)

} else {
l.right := r
link := l

}
}

method merge(l: Ref, r: Ref,
𝔤: Set[Ref], ldag: Set[Ref], rdag: Set[Ref])

returns link: Ref
requires ...
ensures ...

{
if (l.right != null) {
var nldag: Set[Ref] := sub(𝔤, ldag, l.right)
var 𝔥: Set[Ref] := nldag union rdag
DeduceRelationshipBetweenSubHeaps(𝔥, 𝔤)
var 𝔣: Set[Ref] := 𝔤 setminus 𝔥
assert ISCONVEX𝐹(𝔥, 𝔤, 𝔣)
EnableFocusOnConvexSubHeap𝐹(𝔥, 𝔤, 𝔣)
EnableFocusOnFrameBefore𝐹(𝔥, 𝔤, 𝔣)
label l1
link := merge(l.right, r,
nldag union rdag, nldag, rdag)

label l2
assert ISCONVEX𝐹(𝔥, 𝔤, 𝔣)
EnableFocusOnConvexSubHeap𝐹(𝔥, 𝔤, 𝔣)
EnableFocusOnFrameAfter𝐹(𝔤, 𝔣)
ApplyConvexTCFraming𝐹(l1, l2, 𝔥, 𝔤, 𝔣)

} else {
update{left,right}right (𝔤, l, r)
link := l }

}

para
mete

rs

con
tra

cts

call

field update

// Convert (3.4)⇄(3.5)

// (3.13), case i of (3.12)
// (3.13), (3.18)
// Pre-state of the call

// Post-state of the call

// (3.13), case i of (3.12)
// (3.4), (3.5)
// (3.10), (3.11), cases ii–iv of (3.12)

// Sec. 3.4

Figure 3.18: Encoding merge into Viper.

Types are translated directly. The specifications (Sec. 3.3.1) are omitted for brevity. The reference field update is translated via unlinkDAG, linkDAG (Sec. 3.4). The method
call is augmented with local assumptions in the form of macros (lines starting with capital letters), constraining the states l1, l2. The macros with infix Convex also check
relative convexity of corresponding footprints (Sec. 3.5.1). DeduceRelationshipBetweenSubHeaps adds terms for triggering set-based properties based on reachability
predicates. The complete encoding is part of the publicly available artifact [114].
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3.5.2 Frame-localized reachability

The ingredients presented thus far form the core of our solution for handling method
calls, but are not yet sufficient to preserve reachability information in all cases, as we ex-
plain next. In some cases, we need to be able to localize reachability information in the
frame of the call (cf. the left branch in Fig. 3.15). But precise frame-local reachability infor-
mation cannot be obtained the same way as footprint-local reachability because, unlike
method footprints, our technique permits the frame to be non-convex in the client’s foot-
print. For example, consider a call to a method that operates on an acyclic list segment;
the footprint of this call must be convex, while the frame would generally be non-convex
in the entire list. Since the issue is subtle, we illustrate how information can be lost with
a concrete example, and then show how to plug the gap.

3.5.2.1 The problematic scenario. The program in Fig. 3.19 consists of two methods:
the client, joinAndModify, and the callee, disconnectAll. This program22 concerns a
particular shape of DAG structure, which we call a hammock between two nodes. We say
that a (closed) DAG 𝔥 is a hammock between two (distinct) nodes 𝑠 and 𝑡 iff it consists of
all nodes reachable from its node 𝑠 (called the source) that reach its distinct node 𝑡 (called
the sink):

HAMMOCK𝔤(𝔥, s, t) ..⟺ 𝑠 ∈ 𝔥 ∧ 𝑡 ∈ 𝔥 ∧ CLOSED(𝔥) ∧ ACYCLIC𝔤(𝔥) ∧ 𝑠 ≠ 𝑡 ∧
∀𝑛 ∈ 𝔥 • P(𝔤, 𝑠, 𝑛) ∧ P(𝔤, 𝑛, 𝑡)

(3.16)

ACYCLIC𝔤(𝔥) ..⟺ 𝔥 ⊆ 𝔤 ∧∀𝑥, 𝑦 ∈ 𝔥 • ¬E(𝔤, 𝑥, 𝑦) ∨ ¬P(𝔤, 𝑦, 𝑥) (3.17)

We start reasoning about joinAndModify in state 0, with the footprint being comprised
of two (disjoint) hammocks, 𝔣 and 𝔥, where 𝑠1 and 𝑠2 are their sources and 𝑡1 and 𝑡2 are
their sinks, resp. The first two operations are field updates, resulting in state 1. They join
the two hammocks into one by creating exactly two edges: (𝑠1, 𝑠2) and (𝑡2, 𝑡1). Hence,
there must exist at least two distinct paths from 𝑠1 to 𝑡1 in state 1: one path through the
nested hammock, 𝔥, and one inside 𝔣. Note that this makes the subheap 𝔣 non-convex in
𝔤, even though 𝔥 is still relatively convex in 𝔤. The last operation in joinAndModify is a
method call with a (relatively convex) footprint, 𝔥, which results in state 2. The callee
method, disconnectAll, destroys all heap paths inside its footprint (first conjunct of the
postcondition), while preserving all of its exit points (second conjunct of the postcon-
dition). We omit the callee’s implementation because the problem that we are about to
explain occurs exclusively at the call site.

22 The essential property in Fig. 3.19 is that the client method creates heap edges inside the footprint of the
callee (and not just in the frame of the call), whereas the callee destroys some of the paths in its footprint.
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method joinAndModify(𝔤: Graph,
𝔣: Graph, 𝑠1: Node, 𝑡1: Node,
𝔥: Graph, 𝑠2: Node, 𝑡2: Node)

requires 𝔤 = 𝔣 ⊎ 𝔥 ∧
HAMMOCK𝔤(𝔣, s1, t1) ∧ HAMMOCK𝔤(𝔥, s2, t2)
∧ 𝑠1.left = null∧ 𝑡2.right = null

ensures P(𝔤, 𝑠1, 𝑡1)
{ /* state 0 */ 𝑠1.left := 𝑠2; 𝑡2.right := 𝑡1
/* state 1 */ disconnectAll(𝔥)
/* state 2 */ }

method disconnectAll(𝔤: Graph)
ensures (∀𝑥, 𝑦 ∈ 𝔤 • P(𝔤, 𝑥, 𝑦) ⇔ 𝑥 = 𝑦)∧

∀𝑥 ∈ 𝔤, 𝑦 ∉ 𝔤 • E(𝔤, 𝑥, 𝑦) ⇔ E0(𝔤, 𝑥, 𝑦)

The method disconnectAll destroys all non-trivial
paths inside 𝔥 (exemplifying a possible destructive
update to the heap structure).

Figure 3.19: Example of a non-convex frame situation.

The method joinAndModify first attaches the hammock 𝔥 to the hammock 𝔣, creating a larger
hammock, and then calls the method disconnectAll, creating a frame that is non-convex in 𝔤.
Verification of the postcondition is challenging, as it requires localizing reachability in the frame,
𝔣, of the call to disconnectAll. Fig. 3.21 illustrates a typical run of joinAndModify.

The postcondition of joinAndModify says that there still exists a 𝔤-local path 𝑠1 …𝑡1
in state 2. Intuitively, this claim should hold, as these two nodes were, before the call
to disconnectAll, reachable via at least one 𝔣-local path that could not have been de-
stroyed as a result of the method call (because 𝔣 is the frame of that call). However, our
path-partitioning formulas (3.12) do not capture that such a frame-local path definitely
existed; we learn from cases (iv)–(v) of (3.12) only the disjunction describing that at least
one of the two paths from 𝑠1 to 𝑡1, labeled “iv” and “v” in Fig. 3.16, must have existed
before the call, but we do not know which. Since the call is known to destroy the paths
corresponding to one disjunct, we cannot deduce P2(𝔤, 𝑠1, 𝑡1) after the call unless we can
precisely derive frame-local reachability.

3.5.2.2 Localizing reachability in the frame of a relatively convex footprint. Fig. 3.20
demonstrates the general problem of localizing reachability information in the frame of
a method call. Consider a method call with a relatively convex footprint 𝔥 and the frame
𝔣; the client’s footprint 𝔤 is their disjoint union 𝔤 = 𝔣 ⊎ 𝔥. Our path partitioning formu-
las (3.12) allow us to precisely define 𝔥-local reachability based solely on 𝔤-local reach-
ability. As demonstrated by our joinAndModify example of Fig. 3.19, we additionally
need a complementary formula that would precisely define 𝔣-local reachability (again,
based solely on 𝔤-local reachability). In other words, we are looking for a first-order for-
mula over the relation P (with the first parameter fixed to 𝔤) that, for a given pair of
nodes 𝑥, 𝑦 ∈ 𝔣, precisely defines the existence of an 𝔣-local path 𝑥…𝑦. Fortunately, such
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𝜎
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𝜏

frame (𝔣)footprint (𝔥)

Figure 3.20: Localization of alternative paths in a non-convex frame.

Paths starting and ending in the frame of a relatively convex footprint may either be local to
the frame or go through the footprint. Relative convexity of the footprint guarantees that there
must be at most one entry and one exit point per path. Note that 𝑥 and 𝜎 , as well as 𝜏 and 𝑦 may
possibly alias each other, but 𝑥 ≠ 𝑦 and 𝜎 ≠ 𝜏 are guaranteed.

an in-frame reachability localization formula exists if 𝔣 is a frame of a relatively convex footprint
𝔥 (even if 𝔣 itself is non-convex in 𝔤):

∀𝑥, 𝑦 ∈ 𝔣 • (∀𝑧 ∈ 𝔥 • ¬P(𝔤, 𝑥, 𝑧) ∨ ¬P(𝔤, 𝑧, 𝑦)) ⟹ (P(𝔣, 𝑥, 𝑦) ⇔ P(𝔤, 𝑥, 𝑦))
∀𝑥, 𝑦 ∈ 𝔣 • (∃𝑧 ∈ 𝔥 • P(𝔤, 𝑥, 𝑧) ∧ P(𝔤, 𝑧, 𝑦)) ⟹ (P(𝔣, 𝑥, 𝑦) ⇔ ∃𝜎, 𝜏 ∈ 𝔣 •

P(𝔤, 𝑥, 𝜎) ∧ E(𝔤, 𝜎, 𝜏) ∧ P(𝔤, 𝜏, 𝑦)∧
(∃𝑧1 ∈ 𝔥. P(𝔤, 𝜎, 𝑧1)) ∧ ¬(∃𝑧2 ∈ 𝔥. P(𝔤, 𝜏, 𝑧2)))

(3.18)

We explain and justify (3.18) using the diagram of Fig. 3.20. Generally, since 𝔤 = 𝔣 ⊎𝔥,
we can case split on whether there exists a path 𝑥…𝑦 that goes through 𝔥, allowing us to
obtain the required 𝔣-local reachability formula. The first formula above covers the case
in which such a path does not exist; thus, the following must hold: ∀𝑧 ∈ 𝔥. ¬P(𝔤, 𝑥, 𝑧) ∨
¬P(𝔤, 𝑧, 𝑦) (which trivially holds for all 𝑥, 𝑦 ∈ 𝔣 in the special case when 𝔣 is convex in 𝔤).
The second formula above says that, if there exists a path through 𝔥 (the upper kind of
path in Fig. 3.20), it must pass through some node 𝑧 ∈ 𝔥; hence, the following condition
must hold: ∃𝑧 ∈ 𝔥. P(𝔤, 𝑥, 𝑧) ∧ P(𝔤, 𝑧, 𝑦). Under this condition, we must define the exis-
tence of an 𝔣-local path that also connects 𝑥…𝑦. The key idea that we exploit to justify
the second formula in (3.18) is to use our relative convexity assumption to justify a three-
way split of the (hypothetical) 𝔣-local path 𝑥…𝑦 into three segments: a path P(𝔣, 𝑥, 𝜎), an
edge E(𝔣, 𝜎, 𝜏), and a path P(𝔣, 𝜏, 𝑦) (the lower kind of path in Fig. 3.20). Furthermore,
we choose (𝜎, 𝜏) such that 𝜎 is the last node that reaches 𝔥 (∃𝑧1 ∈ 𝔥. P(𝔤, 𝜎, 𝑧1)) and 𝜏 is
the first node that does not reach 𝔥 (¬∃𝑧2 ∈ 𝔥. P(𝔤, 𝜏, 𝑧2)). Under our assumptions about 𝑥
and 𝑦, this requirement can always be satisfied because the footprint of the callee, 𝔥, is
reachable from (at least) the node 𝑥 and is unreachable from (at least) the node 𝑦.
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𝑠2 𝑡2

𝑠1 𝑠1.right
𝑡1

frame (𝔣)

footprint (𝔥)

Figure 3.21: Example scenario of running the method joinAndModify.

In state 0, only the solid edges exist. In state 1, the client has created two new edges: (𝑠1, 𝑠2) and
(𝑡2, 𝑡1). In state 2, the callee has destroyed all solid-red edges, but there still exists a path 𝑠1 …𝑡1
via solid-blue edges. However, we cannot deduce the existence of this path using just the path
partitioning formulas alone due to the disjunction in case (iv)–(v) of (3.12) that does not allow
us to distinguish whether all paths between 𝑠1 and 𝑡1 were passing through the footprint in
state 1. Therefore, recovering this bit after the call to disconnectAll requires precise localization
of reachability information in the frame (3.18).

We summarize the conditions under which the predicates defining the three-way split
of our hypothetical path 𝑥… (𝜎, 𝜏)…𝑦 can be rewritten with 𝔤 instead of 𝔣, without
losing precision:

• The footprint of the call, 𝔥, is convex in the client’s footprint, 𝔤.

• Both nodes 𝑥 and 𝑦 are in the frame of the call, 𝔣.

• We picked 𝜎 that reaches 𝔥 and 𝜏 that does not reach 𝔥 s.t. (𝜎, 𝜏) is on the path
𝑥…𝑦.

For the first predicate, we need to argue by contradiction: suppose that P(𝔤, 𝑥, 𝜎) were
the case, but P(𝔣, 𝑥, 𝜎) were not (the opposite implication is direct, since 𝔣 ⊆ 𝔤). Then,
the path from 𝑥 to 𝜎 must visit the callee’s footprint, 𝔥. However, by construction, 𝜎 is
known to have a path to some node in the callee’s footprint, and this violates the as-
sumption that this footprint is relatively convex. Hence, we get P(𝔣, 𝑥, 𝜎) = P(𝔤, 𝑥, 𝜎).
The second predicate is easiest: a single edge between two nodes in the frame (𝔣) can
only depend on the frame itself; therefore, we get E(𝔣, 𝜎, 𝜏) = E(𝔤, 𝜎, 𝜏). The third pred-
icate expresses the existence of a path 𝜏 …𝑦; since we have picked 𝜏 s.t. it does not reach
the footprint, such a path exists in this case exactly when it exists in the frame, giving
P(𝔣, 𝜏, 𝑦) = P(𝔤, 𝜏, 𝑦). Thus, our construction of 𝜎 and 𝜏, along with our relative convex-
ity property for method footprints, allows us to justify the formulation in (3.18). These
formulas now provide the missing ingredient for our technique that complements our
path-partitioning formulas of (3.12).

3.5.2.3 Revisiting the problematic scenario. We return to our joinAndModify method,
and show that we can now verify the last conjunct of its postcondition. Previously, we
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were unable to verify P2(𝔤, 𝑠1, 𝑡1) after the call to disconnectAll, while intuitively, a 𝔤-
local path 𝑠1 …𝑡1 exists in state 2, because the method call could not have destroyed the
existing frame-local path 𝑠1 …𝑡1 that existed in state 1 (Fig. 3.21). Thus, if we could deduce
P1(𝔣, 𝑠1, 𝑡1) (before the call to disconnectAll), we would obtain our proof goal. This is
now possible using the second equation from (3.18): instantiating 𝑠1 for 𝑥 and 𝑡1 for 𝑦, we
deduce the hypothesis of the implication, since before the call to disconnectAll we can
deduce that paths from 𝑠1 to 𝑡1 exist passing through the footprint. To deduce P1(𝔣, 𝑠1, 𝑡1)
from our formula, we need to obtain the following property (recall that 𝔤 = 𝔣 ⊎ 𝔥):

∃𝜎, 𝜏 ∈ 𝔣. P(𝔤, 𝑠1, 𝜎)∧E(𝔤, 𝜎, 𝜏)∧P(𝔤, 𝜏, 𝑡1)∧(∃𝑧1 ∈ 𝔥.P(𝔤, 𝜎, 𝑧1))∧¬(∃𝑧2 ∈ 𝔥.P(𝔤, 𝜏, 𝑧2))

The existentially-quantified pair (𝜎, 𝜏) can be witnessed by (𝑠1, 𝑠1.right). From this, and
our hammock properties (3.16), all conditions above follow directly, allowing us to de-
duce our intermediate proof goals, P1,2(𝔣, 𝑠1, 𝑡1), and use the last case of (3.12) to deduce
the ultimate proof goal, P2(𝔤, 𝑠1, 𝑡1).

Together with (3.18), the ingredients of our technique presented in Fig. 3.15 empower
completely general, precise reasoning about reachability in the presence of method calls
with relatively convex footprints. Note that, in examples where stronger properties are
known about a method’s footprint, our formulas from (3.18) reduce to much simpler
criteria. In particular, if a method operates on a closed data structure (no paths leave
the footprint), we can always apply the first of our formulas; the full expressiveness of
our conditions is required only in the presence of potential paths crossing the callee’s
footprint (e. g. Fig. 3.21). Our technique is complete, provided that callee postconditions
specify sufficient information about reachability within their footprint. However, even
in examples where this information is incomplete, our technique is applicable and pro-
vides useful information at the call site, for instance, by deducing which frame-local
paths will be preserved across a method call. It is the restriction to method calls with rel-
atively convex footprints which enables us to express appropriate formulas to preserve
this information; without this restriction, we would not be able to precisely define the
existence of frame-local paths exclusively via coarser reachability information. Finally,
we note on the efficiency of formulas (3.18): in our encoding (demonstrated in Fig. 3.18
and validated in Sec. 3.8), we supply appropriate triggers for the universal quantifiers
and Skolemize the existential quantifiers.

This completes our treatment of acyclic graphs and method calls; the latter is the most
complex part of our technique, and applies equally to the cyclic case, which we tackle
in the next section.
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3.6 REACHABILITy IN CyCLIC STRuCTuRES

In the previous section, we presented our technique for enabling modular reasoning
about heap reachability in combination with first-order separation logic. The presented
technique operates under two key restrictions: (1) that method footprints are always
relatively convex in their client’s footprint and (2) that all footprints used contain acyclic
graphs. These are two independent criteria, which our technique checks where necessary.
Restriction (1) alone enables our handling of method calls. In this section, we show that
we can adapt our technique to a particular setting in which restriction (2) is dropped:
that of general 0–1-path graphs. A graph is called a 0–1-path graph (hereafter, ZOPG) if
there exists at most one (non-trivial) path (modulo cycles) between all pairs of nodes in
the graph; for instance, {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎), (𝑐, 𝑑)} is a ZOPG, but {(𝑎, 𝑏), (𝑏, 𝑎), (𝑎, 𝑐), (𝑐, 𝑎)}
is not since there are two distinct (non-trivial) paths from 𝑎 to itself [17]. Although this
notion does not permit arbitrary cyclic graphs, the technique presented in this section
allows us to adapt our work to reason about reachability in the presence of potentially-
cyclic lists in the heap or more-complex data structures consisting of these, including,
for example: trees where the children of each node are stored in a cyclic list (e. g. using
Java LinkedList), generalized tree-like structures in which some nodes consist of rings,
and the ring representation of heap-ordered trees [13]. Therefore, the ZOPG class is
an important generalization of (potentially-cyclic) singly-linked lists, which is the class
handled in the closest prior work [76].

Extending our technique to ZOPGs requires a new way of handling direct field up-
dates (Sec. 3.6.1); our handling in Sec. 3.5 depended on acyclicity, and a way to retain that
certain graphs in the program are ZOPGs; modifying a ZOPG by adding an edge could
violate the ZOPG invariant (Sec. 3.6.2). Note that our requirement of relatively convex
footprints (Def. 1) is again crucial, enabling an efficient solution of the latter problem.

3.6.1 Field updates in ZOPGs

To support direct field updates, we adapt prior work [17] that shows how to precisely
update a more-refined reachability relation called DEP for ZOPGs. There are few changes
in our adaptation: our DEP relation is compatible with the reflexive reachability relation
(P), whereas Dong and Su work with irreflexive reachability, and we parameterize our
DEP relation with two extra parameters, 𝐹 and 𝔤, supporting separation-logic reasoning,
as we did for P in Sec. 3.3.2. The predicate DEP𝐹(𝔤, 𝑥, 𝑦, 𝑢, 𝑣) expresses the existence of a
(non-trivial) path of field references from 𝑥 to 𝑦 such that all objects on the path (except
possibly 𝑦) are in 𝔤, all fields are in 𝐹, and the path depends on the edge (𝑢, 𝑣). Intuitively,
this means that removing (𝑢, 𝑣) from the graph will destroy the path 𝑥…𝑦 (which is
the unique path from 𝑥 to 𝑦 in a ZOPG). We will omit the parameter 𝐹 when it is clear
from the context. Note that DEP(𝔤, 𝑥, 𝑦, 𝑢, 𝑣) ⇒ 𝑢 ≠ 𝑣 since an edge (𝑣, 𝑣) cannot be a



3.6 REACHABILITy IN CyCLIC STRuCTuRES 153

dependency of any path: deleting such an edge would not affect reachability. Note also
that DEP(𝔤, 𝑥, 𝑦, 𝑢, 𝑣) ⇒ 𝑥 ≠ 𝑦 since a trivial path 𝑥…𝑥 does not depend on any edges.

Although precisely updating the classical reachability relation P in potentially-cyclic
graphs after destructive heap operations is beyond first-order logic (and cannot be ef-
ficiently automated), the information about the DEP relation can be updated precisely
and efficiently after such destructive operations [17]. For example, if the edge (s, t) is
deleted by executing the statement s.adj := null in a method with footprint 𝔤, then
the new relation, DEP, can be simply expressed via the old relation DEP0 as follows:

∀𝑥, 𝑦, 𝑢, 𝑣 • DEP𝐹(𝔤, 𝑥, 𝑦, 𝑢, 𝑣) ⟺ DEP𝐹0(𝔤, 𝑥, 𝑦, 𝑢, 𝑣) ∧ ¬DEP𝐹0(𝔤, 𝑥, 𝑦, s, t) (3.19)

For fixed 𝐹 and 𝔤, the intuition for (3.19) is this: (𝑥, 𝑦, 𝑢, 𝑣) is in the new relation iff it was
in the old relation and the deleted edge (s, t) was not a dependency of the path 𝑥…𝑦
before the update.

Precisely updating DEP after an operation that only creates an edge (e. g. by executing
the statement s.adj := t) is also possible, provided one additionally checks that the
newly-created edge does not violate the ZOPG invariant; we describe how this check is
enforced in Sec. 3.6.2. As before, a general field update entails removing and then adding
an edge (see Sec. 3.7.3). Our treatment of the DEP relation is similar to the treatment of the
P relation described in Sec. 3.4: since the mathematical definitions of these relations are
beyond first-order logic, we provide the verifier with a partial axiomatization (see [113,
App. C]). We rewrite each field update with a call to an internal updateZOPG method
with the same footprint 𝔤 as for the current method; the postconditions of updateZOPG
make the DEP update formulas (e. g. (3.19)) available to the SMT solver.

A technical difference between our reachability relation P and the DEP relation is that
the latter carries richer information (in particular, knowledge of every edge on which
each path depends). Conversely, it seems unlikely that having to enumerate all edge facts
in a graph would be suitable for a method specification; the abstraction provided by P
is typically desirable. Thus, we do not provide DEP as a primitive in our specifications,
and instead provide a means of converting between information in one relation and the
other, while losing as little information as possible. Our conversion rules are based on
the following main axiom:

∀𝔥, 𝑥, 𝑦 • P𝐹(𝔥, 𝑥, 𝑦) ∧ 𝑥 ≠ 𝑦 ⟺ ∃𝑢, 𝑣 • DEP𝐹(𝔥, 𝑥, 𝑦, 𝑢, 𝑣) (3.20)

Unlike the update formulas that are emitted for concrete method footprints, our conver-
sion axioms (e. g. (3.20)) quantify over the footprint (𝔥); as before, we carefully select the
triggers for these axioms to guide the SMT solver’s quantifier instantiation procedure.

In general, formula (3.20) does not capture full information in principle expressible
with the DEP relation; intuitively, this is because a single path 𝑥…𝑦 (described by the
LHS) may depend on multiple edges, all of which match the RHS existential quantifier.
To partially mitigate this fact, we augment our axiomatization with a number of addi-
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tional properties. For instance, one can easily prove the following formula (an axiom in
our technique) about ZOPGs, providing (for fixed 𝐹 and 𝔤) some quadruples which do
not belong to the DEP relation:

∀𝔥, 𝑢, 𝑣, 𝑤 • ¬DEP𝐹(𝔥, 𝑣, 𝑤, 𝑢, 𝑣) (3.21)

Note that if 𝑣 = 𝑤, ¬DEP(𝔥, 𝑣, 𝑣, 𝑢, 𝑣) holds because a trivial path 𝑣…𝑣 does not depend
on any edges. Assume 𝑣 ≠ 𝑤. There can be at most one (cycle-free) path from 𝑣 to 𝑤
in a ZOPG. If there are no paths from 𝑣 to 𝑤, then we get ¬DEP(𝔥, 𝑣, 𝑤, 𝑢, 𝑣) from (3.20).
Otherwise, the edge (𝑢, 𝑣) is not part of the (cycle-free) path 𝑣…𝑤 and cannot be one of
its dependencies.

Our ZOPG axiomatization is based on a set of formulas like (3.21) that, together with (3.20),
help reasoning about the DEP relation (we provide the full axiomatization in [113, App. C]).
Equipped with this conversion between relations P and DEP, precise reachability infor-
mation is preserved in all cases that we have observed. This is interesting because the
DEP relation carries more information than the transitive relation P, so (for fixed 𝐹 and
𝔤) not all quadruples (𝑥, 𝑦, 𝑢, 𝑣) in DEP can be extracted precisely from P, even if all pairs
(𝑥, 𝑦) in P are known. Intuitively, these missing quadruples appear not to be needed in
practice because the overall proof goals are phrased in terms of just P (and not DEP).

We illustrate how reachability information is preserved throughout the transforma-
tions between P and DEP with a concrete example. Consider the following Hoare triple
that describes a heap update in a ZOPG with footprint 𝔤 and a single reference field
next:

⎧{
⎨{⎩

x, y ∈ 𝔤 ∧ x.next = y∧
∀𝑛,𝑚 ∈ 𝔤 • P0(𝔤, 𝑛,𝑚)

⎫}
⎬}⎭

x.next := null { ∀𝑚 ∈ 𝔤 • P(𝔤, y, 𝑚) }

We can justify the postcondition assertion as follows. Consider an arbitrary node 𝑚 ∈ 𝔤.
If 𝑚 = y, then we trivially get P(𝔤, y, y). Otherwise, we assume 𝑚 ≠ y, and the remaining
proof obligation is P(𝔤, y, 𝑚); to justify this, we need to exploit information from the pre-
state. Since by (3.20), we can reduce the current proof obligation to DEP(𝔤, y, 𝑚, y, y.next),
we can instantiate the DEP update formula (3.19), obtaining two pre-state conditions:
DEP0(𝔤, y, 𝑚, y, y.next) and ¬DEP0(𝔤, y, 𝑚, x, y). The former is justified by the precondi-
tion quantifier (providing P0(𝔤, y, 𝑚)) and the main conversion axiom (3.20), whereas
the latter can be obtained directly from the additional conversion axiom (3.21).

This example, as well as our evaluation (Sec. 3.8), show that necessary reachability
information can be fully recovered after the following steps: first, conversion from P to
DEP, second, application of update formulas for the DEP relation, and third, conversion
from DEP to P. We plan to investigate as future work the extent to which this approach
is always precise for preserving reachability information of this kind.
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3.6.2 Preservation of the ZOPG invariant

To justify the handling of field updates from the previous subsection, we require knowl-
edge that the graph being updated is a ZOPG. Since this fact can be violated by changes
to the heap, an important question is how we can know if the ZOPG invariant holds. It
can be expressed in first-order logic with the combination of edge and path predicates
as follows:

ZOPG(𝔥) ..⟺ (∀𝑥1, 𝑥2, 𝑎, 𝑏 ∈ 𝔥, 𝑦 • (𝑥1 ≠ 𝑥2 ∨ 𝑎 ≠ 𝑏) ∧ P(𝔥, 𝑥1, 𝑥2) ∧ P(𝔥, 𝑥2, 𝑥1) ∧
E(𝔥, 𝑥1, 𝑎) ∧ ¬P(𝔥, 𝑎, 𝑥1) ∧
E(𝔥, 𝑥2, 𝑏) ∧ ¬P(𝔥, 𝑏, 𝑥2) ⟹ ¬P(𝔥, 𝑎, 𝑦) ∨ ¬P(𝔥, 𝑏, 𝑦)) ∧

∀𝑥, 𝑎, 𝑏 ∈ 𝔥 • 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑥 ∧ E(𝔥, 𝑥, 𝑎) ∧ P(𝔥, 𝑎, 𝑥) ∧
E(𝔥, 𝑥, 𝑏) ∧ P(𝔥, 𝑏, 𝑥) ⟹ 𝑎 = 𝑏

(3.22)

The first conjunct of the formula expresses a situation in which two (potentially aliasing)
nodes 𝑥1 and 𝑥2 are on the same strongly-connected component (SCC), and two edges
(starting in 𝑥1 and 𝑥2) that are different—at least by source or target—end in nodes 𝑎
and 𝑏, resp., outside of the SCC (𝑎 and 𝑏 may alias unless 𝑥1 = 𝑥2). In such a case, it is
forbidden that any node 𝑦 is reachable from both 𝑎 and 𝑏 (this would form two different
paths from the SCC to 𝑦). The second conjunct restricts the structure of SCCs themselves:
no two different edges may start in 𝑥 and stay within the same SCC.

Intuitively, formula (3.22) is hard to automate because it uses a non-trivial combina-
tion of edge and reachability predicates. Establishing ZOPG(𝔥) would require, for exam-
ple, the information about all path splits in 𝔥, i. e. all nodes 𝑥 ∈ 𝔥 s.t. ∃𝑎, 𝑏 ∈ 𝔥 • 𝑎 ≠
𝑏∧E(𝔥, 𝑥, 𝑎)∧E(𝔥, 𝑥, 𝑏). Such details ultimately require specifications to enumerate edges
in the graph, which is impractical, and breaks the abstraction that reachability specifi-
cations grant. Even if the full information about the edge relation were present, estab-
lishing ZOPG(𝔥) would require an induction proof that is beyond the power of modern
SMT solvers. Instead of checking this invariant from scratch, we design a mechanism
for checking that the ZOPG invariant is preserved across changes to the heap.

3.6.2.1 Extending the specification language for potentially-cyclic footprints. As a first
step, we introduce an additional annotation in our specification language, so that we
can label certain method footprints as ZOPGs. In addition to general graphs (whose
structure is only constrained by other specifications), such as 𝔥: Graph, we allow the
footprints of some methods to be more specifically marked as ZOPGs, using the syn-
tax 𝔤: Zopg. For method footprints declared this way, we will explain the additional
proof obligations necessary to check that we maintain the ZOPG invariant. In particular,
a method with footprint 𝔤: Zopg can be translated to a method with footprint 𝔤: Graph
with additional ZOPG proof obligations.
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method testZopgObligations(𝔤: Zopg, 𝑅: Graph, 𝑟: Node, 𝑢: Node)
requires {𝑢} ⊎ 𝑅 ⊆ 𝔤 ∧ CLOSED({𝑢}) ∧ RING𝔤(𝑅) ∧ 𝑟 ∈ 𝑅 ∧

∀𝑥 ∈ 𝔤, 𝑦 • P(𝔤, 𝑥, 𝑦) ∧ P(𝔤, 𝑥, 𝑢) ⟹ ¬P(𝔤, 𝑟, 𝑦)
{

var 𝔥: Zopg := {𝑢} ⊎ 𝑅
ringInsert(𝔥, 𝑅, 𝑟, 𝑢)

}

method ringInsert(𝔤: Zopg, 𝑅: Graph, 𝑟: Node, 𝑢: Node)
requires 𝔤 = {𝑢} ⊎ 𝑅 ∧ CLOSED({𝑢}) ∧ RING𝔤(𝑅) ∧ 𝑟 ∈ 𝑅
ensures RING𝔤(𝔤) ∧ (∀𝑛 ∉ 𝔤 • P(𝔤, 𝑢, 𝑛) ⇔ P0(𝔤, 𝑟, 𝑛)) ∧

∀𝑥 ∈ 𝔤, 𝑦 • 𝑥 ≠ 𝑢 ∧ 𝑦 ≠ 𝑢 ⟹ (P(𝔤, 𝑥, 𝑦) ⇔ P0(𝔤, 𝑥, 𝑦))
{

u.next := r.next
r.next := u

}

// (Pre)

RING𝔤(𝔥) ..⟺ FUNCTIONAL(𝔥) ∧ UNSHARED(𝔥) ∧ SCC𝔤(𝔥)
SCC𝔤(𝔥) ..⟺ ∀𝑥, 𝑦 ∈ 𝔥 • P(𝔤, 𝑥, 𝑦)

FUNCTIONAL(𝔥) ..⟺ ∀𝑎, 𝑏, 𝑐 ∈ 𝔥 • E(𝔥, 𝑎, 𝑏) ∧ E(𝔥, 𝑎, 𝑐) ⟹ 𝑏 = 𝑐
UNSHARED(𝔥) ..⟺ ∀𝑎, 𝑏, 𝑐 ∈ 𝔥 • E(𝔥, 𝑎, 𝑐) ∧ E(𝔥, 𝑏, 𝑐) ⟹ 𝑎 = 𝑏

(3.23)

Figure 3.22: Example client with a ZOPG footprint.

The example demonstrates modular reasoning about reachability properties in presence of heap
cycles. The client method testZopgObligations has no postconditions, for simplicity. In order to
verify the client, we must nonetheless prove that the ZOPG invariant is maintained after the call
to ringInsert. The definition of RING is given in (3.23). Note the different meaning of footprint
parameters written in subscripts vs. those written in parentheses (e. g. 𝔤 and 𝔥, resp., in the
definition of SCC𝔤(𝔥)): the former are used as arguments for the E and P predicates, whereas the
latter are used for restricting the domain of quantification.

We illustrate the generation of ZOPG proof obligations based on the example in Fig. 3.22.
The client, testZopgObligations, operates on a ZOPG 𝔤 that includes two disjoint parts:
a ring 𝑅 and a (closed) singleton graph consisting of just one node, 𝑢. The extra node 𝑟
denotes an arbitrary node of the ring. The only operation performed by the client is a call
to ringInsert. To verify that 𝔤 remains a ZOPG by the end of testZopgObligations, we
need to check that the callee does not create alternative paths—not just in its footprint,
𝔥 (which is guaranteed to remain a ZOPG, as the methods with footprints marked by
Zopg are locally checked to preserve this property), but also in the larger subheap, 𝔤.
The callee ringInsert, operates on a ZOPG that equals the union of two disjoint parts:
a closed singleton graph 𝑢 and a ring 𝑅 (these two parts must be mutually-unreachable
in the pre-state). The callee attaches 𝑢 to the ring 𝑅, resulting in a larger ring, 𝑢⊎𝑅. The
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𝑟

𝑢 frame (𝔣)

footprint (𝔥)

Figure 3.23: Typical scenario of running testZopgObligations.

An example heap configuration before the call in depicted via the solid edges, where 𝑟 is an
arbitrary node of the ring, and 𝑢 is added to the ring after the call to ringInsert. The diagram
demonstrates a data structure with nodes that can have two reference fields (for simplicity, the
implementation of ringInsert shows a single field, next). The second conjunct in the client’s
precondition says that no (non-trivial) paths may originate from 𝑢 (there may be paths ending
in 𝑢). The footprint may have both entry and exit points, but (as required by the last conjunct in
the client’s precondition) each connected component of the frame may have at most one entry or
exit point into the footprint; otherwise, the ZOPG invariant would be violated by the call.

callee’s postcondition says that (in the post-state) its entire footprint is a ring (thus, all
pairs of footprint nodes are mutually reachable), and precisely defines its local reachabil-
ity. Local paths that end outside of the callee’s footprint (i. e. outgoing paths) are defined
by the last two conjuncts: the former says that all exit points reachable from the ring in
the pre-state are exactly the exit points reachable from 𝑢 in the post-state, whereas the
latter preserves all outgoing paths of the initial ring, i. e. all exit points of the footprint
in the pre-state where {𝑢} was closed. Fig. 3.23 illustrates the client’s footprint in a state
after ringInsert has executed.

3.6.2.2 Maintaining the ZOPG invariant after a field update. The knowledge that a
subheap was a ZOPG in the pre-state of an operation helps checking that that subheap
is still a ZOPG in the post-state, as we show next. We translate a general field update
u.next := v in a method with the footprint 𝔤: Zopg to u.next := null; u.next := v,
where (assuming v is not null) the first update deletes an edge and the second one creates
a new edge. Deleting edges does not alter the graph class of 𝔤. However, a newly added
edge may create an alternative path between some nodes of the graph. Concretely, new
paths will be created between all pairs of nodes (𝑥, 𝑦) s.t. there exist two paths: 𝑥… u and
v…𝑦. Therefore, we get the following soundness criterion (emitted as a proof obligation
before the second update) for a field update in a ZOPG:

u ≠ v ⟹ ∀𝑥 ∈ 𝔤, 𝑦 • P(𝔤, 𝑥, u) ∧ P(𝔤, v, 𝑦) ⟹ ¬P(𝔤, 𝑥, 𝑦) (3.24)

Note that 𝑦 may be outside of the current method’s footprint because a 𝔤-local path may
leave 𝔤 (iff its last edge leaves that subheap). The formula (3.24) is much simpler than,
e. g. (3.22) because it is (a) an incremental condition (we used the knowledge that the
subheap was a ZOPG before the update; otherwise, we would need to consider alterna-
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Figure 3.24: Enumeration of heap configurations violating the ZOPG invariant.

There are four possible heap configurations that violate the ZOPG invariant after a method call
with a relatively convex ZOPG footprint (in red) and a ZOPG frame (in blue). Violation of this
invariant means the existence of at least two distinct, alternative paths, say 𝑥…𝑦. (α) Both alter-
native paths start in the frame and end in the footprint, entering the footprint via distinct entry
points: 𝑎 ≠ 𝑏. (β) Both alternative paths start in the footprint and end in the frame, exiting into
the frame via distinct exit points: 𝑎 ≠ 𝑏. (γ) Both paths start and end in the frame; the path above
passes through the footprint while the path below stays entirely inside the frame. (δ) Both paths
start and end in the frame, both passing through the footprint; however, they enter the footprint
via distinct entry points and exit into the frame again via distinct exit points: 𝑎 ≠ 𝑏 ∧ 𝑐 ≠ 𝑑.

tive paths other than those introduced by the new creation) and (b) the operation is a
field update (hence, only one edge has been added to the graph). Keeping track of graph
classes in the presence of method calls is more involved, but the idea (a) is again helpful
for tackling this problem.

3.6.2.3 Maintaining the ZOPG invariant after a method call. A method call may vio-
late the ZOPG invariant at call site even if the footprint of the call remains a ZOPG (a
condition which is checked locally for the callee). The condition that a method call does
not violate the ZOPG invariant at call site is generally as hard to check as the formula
(3.22) itself. Fortunately, this condition can be drastically simplified if the footprints or
the callee and the client are relatively convex.

We proceed as follows. First, we enumerate the ways in which a method call that pre-
serves the ZOPG invariant on its own footprint, could potentially violate that invariant
for its client’s footprint. In particular, this must be by the creation of at least one new
path. A call to a method with a convex footprint may result in one of the four bad heap
configurations (violating the ZOPG invariant) depicted in Fig. 3.24. Second, we conjoin
the negated formulas (3.25), (3.26), (3.27), (3.28) characterizing these four bad configu-
rations, comprising an efficient criterion for preserving the ZOPG invariant. Checking
this criterion can be easily automated: unlike formula (3.22), our criterion requires no
information about the edge relation whatsoever. Our technique encodes this criterion
as a proof obligation for the client. Finally, we sketch a proof of completeness for the
four cases in Fig. 3.24.
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The bad configuration in Fig. 3.24 (α) corresponds to a scenario in which the method
call has created an alternative path from 𝑥 to 𝑦, where the former node does not belong
to the callee’s footprint. We can describe this configuration via the following formula:

∃𝑥 ∈ 𝔣, 𝑎, 𝑏 ∈ 𝔥, 𝑦 ∉ 𝔣 • 𝑎 ≠ 𝑏 ∧ P0(𝔣, 𝑥, 𝑎) ∧ P0(𝔣, 𝑥, 𝑏)
∧ P(𝔥, 𝑎, 𝑦) ∧ ¬P0(𝔥, 𝑎, 𝑦) ∧ P(𝔥, 𝑏, 𝑦)

(3.25)

The symbols P0 and P denote the reachability relation before and after the method call;
𝔥 is the callee’s footprint; 𝔣 is the frame of the call. We evaluate the first two reachability
predicates in the old state because frame-local reachability is not affected by the call. The
information about the last three predicates comes from the postcondition of the callee23.
We assume w.l.o.g. that 𝑎…𝑦 has been newly created by the call (whereas 𝑏…𝑦 may have
existed before the call). Both paths could not have existed before the call, as that would
contradict our assumption that 𝔤 was a ZOPG.

Returning to our example of Fig. 3.22, we observe that the precondition of testZop-
gObligations is strong enough to prevent the bad configuration (α) after the call to
ringInsert; we prove this by contradiction. Assume that, while preserving its local
ZOPG invariant, the call results in the bad configuration (α) for some 𝑥 ∈ 𝔣, 𝑎, 𝑏 ∈
𝔥, 𝑦 ∉ 𝔣; thus, we learn the conjuncts (say, #1 to #6) from the body of (3.25). Note that 𝑎
and 𝑏 must be distinct (due to #1) and cannot both be in 𝑅 (due to #4 and #6; otherwise,
there would be alternative paths, violating the ZOPG invariant of the callee’s footprint
in the post-state). We draw the contradiction by instantiating the last conjunct, (Pre), of
the precondition of testZopgObligations: ∀𝑥 ∈ 𝔤, 𝑦. P(𝔤, 𝑥, 𝑦)∧ P(𝔤, 𝑥, 𝑢) ⇒ ¬P(𝔤, 𝑟, 𝑦).
With our path partitioning formulas (3.12), #2 and #3 imply P0(𝔤, 𝑥, 𝑎) and P0(𝔤, 𝑥, 𝑏),
resp. Together, #4 and #5 express that 𝑎…𝑦 is a newly created path; hence either 𝑎 = 𝑢 or
𝑦 = 𝑢 (see Fig. 3.23). If 𝑎 = 𝑢, 𝑦 ≠ 𝑢, then 𝑏 ∈ 𝑅; we draw the contradiction by instan-
tiating (Pre) with 𝑥, 𝑏 for 𝑥, 𝑦. Otherwise, 𝑎 ≠ 𝑢, 𝑦 = 𝑢 = 𝑏, then 𝑎 ∈ 𝑅; we draw the
contradiction by instantiating (Pre) with 𝑥, 𝑎 for 𝑥, 𝑦.

Similarly, we can describe the bad configuration in Fig. 3.24 (β) using the following
formula:

∃𝑥 ∈ 𝔥, 𝑎, 𝑏 ∈ 𝔣, 𝑦 ∉ 𝔥 • 𝑎 ≠ 𝑏 ∧ P0(𝔣, 𝑎, 𝑦) ∧ P0(𝔣, 𝑎, 𝑦)
∧ P(𝔥, 𝑥, 𝑎) ∧ ¬P0(𝔥, 𝑥, 𝑎) ∧ P(𝔥, 𝑥, 𝑏)

(3.26)

In this configuration, the source of the alternative paths falls into the callee footprint,
and their end into the frame; this results in alternative paths 𝑥…𝑎…𝑦 and 𝑥…𝑏…𝑦. In
our example of Fig. 3.22, the new outgoing paths that ringInsert creates originate in
𝑢; all other outgoing paths also existed before the call (due to the last postcondition). In
order to avoid the bad configuration (β), testZopgObligations requires that no paths
may originate in the attached node 𝑢. Thus, any new outgoing path must pass through 𝑅

23 It is also possible to get the information about the old reachability relation from a modified version of (3.25)
where ¬P0(𝔥, 𝑎, 𝑦) is dropped and all other path predicates are evaluated in the pre-state.
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before it reaches the callee’s footprint. Since ringInsert preserves the paths that start in
𝑅 and end in the frame (due to its last postcondition), and we assumed that the callee’s
footprint is a ZOPG before and after the call, the last three conjuncts in (3.26) cannot be
satisfied. Hence, our specification is strong enough to prevent (β).

The scenario depicted in Fig. 3.24 (γ) illustrates that any new path 𝑎…𝑏 created by the
method call, combined with suitable frame paths, may violate the ZOPG invariant:

∃𝑥, 𝑏 ∈ 𝔣, 𝑎 ∈ 𝔥, 𝑦 ∉ 𝔥 • P0(𝔣, 𝑥, 𝑦) ∧ P0(𝔣, 𝑥, 𝑎) ∧ P0(𝔣, 𝑏, 𝑦) ∧ P(𝔥, 𝑎, 𝑏) ∧ ¬P0(𝔥, 𝑎, 𝑏).
(3.27)

In order to avoid the bad configuration (γ), we must ensure that an arbitrary frame node
𝑥 that reaches the footprint node 𝑎 does not reach any of the frame nodes (e. g. 𝑦) that
will be reachable from 𝑎 after the call. In our example of Fig. 3.22, the precondition of
testZopgObligations is strong enough to prevent (γ) after the call to ringInsert. The
nodes 𝑥 and 𝑦 in the last conjunct of this precondition can be thought of as those in
(3.27) and Fig. 3.24 (γ); the condition rules out the possibility that the effect of the call
will connect up such alternative path.

The most subtle bad configuration is Fig. 3.24 (δ), where both alternative paths 𝑥…𝑦
go via the footprint of the method call. This heap configuration can be expressed via the
following formula:

∃𝑥, 𝑐, 𝑑 ∈ 𝔣, 𝑎, 𝑏 ∈ 𝔥, 𝑦 ∉ 𝔥 • 𝑎 ≠ 𝑏 ∧ 𝑐 ≠ 𝑑 ∧ P0(𝔣, 𝑥, 𝑎) ∧ P0(𝔣, 𝑥, 𝑏) ∧ P0(𝔣, 𝑐, 𝑦) ∧ P0(𝔣, 𝑑, 𝑦)
∧ P(𝔥, 𝑎, 𝑐) ∧ ¬P0(𝔥, 𝑎, 𝑐) ∧ P(𝔥, 𝑏, 𝑑).

(3.28)

This configuration can be realized when 𝑎 and 𝑏 are mutually unreachable in both states
(otherwise, the configuration is covered by (α) and (β)). This configuration cannot occur
in the post-state of our example because after the method call 𝑢 is attached to the ring.

3.6.2.4 Completeness proof sketch. To derive the four cases in Fig. 3.24, consider a
ZOPG subheap 𝔤 comprised of the ZOPG frame 𝔣 and the (relatively convex) ZOPG
footprint 𝔥 of a method call. Assume that the method call creates at least one new path
s.t. the ZOPG invariant of its footprint is maintained while the ZOPG invariant of the
(larger) client’s footprint is violated. Consider as well two nodes 𝑥 and 𝑦 that are con-
nected (in the state after the call) by multiple (at least two) 𝔤-local paths 𝑥…𝑦. We assume
that 𝑥 and 𝑦 are both in 𝔤; if 𝑦 is outside 𝔤, we first apply (3.13), providing some node
𝑢 ∈ 𝔤 s.t. P(𝔤, 𝑥, 𝑢)∧ E(𝔤, 𝑢, 𝑦); we then continue the argument for 𝑥…𝑢 instead of 𝑥…𝑦.

Multiple paths 𝑥…𝑦 may not be entirely inside just one of the two subheaps 𝔣 or 𝔥
because that would violate our assumption that these are ZOPG subheaps. Therefore,
at least one of these paths must cross the border between 𝔣 and 𝔥. We proceed with a case
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analysis based on the distribution of the nodes 𝑥 and 𝑦 between (disjoint) subheaps 𝔥
and 𝔣:

• The case 𝑥, 𝑦 ∈ 𝔥 cannot be realized because a path starting in 𝑥 may leave 𝔥
just once and may never come back to reach 𝑦 (otherwise our convexity assumption
would be violated).

• If 𝑥 ∈ 𝔥, 𝑦 ∈ 𝔣, then again, the paths starting in 𝑥 may leave 𝔥 just once and may
never come back due to 𝔥 ≺ 𝔤. Since two different paths starting in 𝑥 may not
merge in 𝔥 (otherwise, alternative paths will exist within 𝔥, contradicting our as-
sumption that it is a ZOPG), such paths must reach two different frame nodes 𝑎, 𝑏 ∈ 𝔣,
creating alternative paths of the form 𝑥…𝑎…𝑦 and 𝑥…𝑏…𝑦, as covered by case
(β) of Fig. 3.24.

• If 𝑥 ∈ 𝔣, 𝑦 ∈ 𝔥, then no path that starts in the frame node 𝑥 can enter the footprint
more than once due to 𝔥 ≺ 𝔤. Next, since in this case these paths must end in
𝑦, they cannot leave the (relatively convex) footprint 𝔥 at all. Finally, these paths
may not merge until at least one of them enters 𝔥 (otherwise, alternative paths will
exist within 𝔣, contradicting our assumption that it is a ZOPG). This gives us two
different footprint nodes 𝑎, 𝑏 ∈ 𝔥, creating alternative paths of the form 𝑥…𝑎…𝑦 and
𝑥…𝑏…𝑦, as covered by case (α) of Fig. 3.24.

• In the most subtle case of 𝑥, 𝑦 ∈ 𝔣, each pair of alternative paths of the form 𝑥…𝑦
is s.t. either just one or each of the two alternative paths enters and exits the footprint
exactly once, as covered by cases (γ) and (δ) of Fig. 3.24, resp.

The simplicity of our formulas (3.25), (3.26), (3.27), (3.28) is due to the fact that, in our
technique, footprints of method calls must be relatively convex, limiting the number
of bad configurations to just four. The bad configurations that we have identified are
helpful for deriving weakest preconditions for method calls that operate on ZOPGs,
like in our testZopgObligations example. In combination with local heap updates (for
which (3.24) is the efficient ZOPG preservation criterion), we have explained how our
technique is generalized for modular reasoning about ZOPGs.

3.7 LOGICAL ENCODING

In this section, we demonstrate how to encode our technique into separation logic. We
designed our technique for automation; thus, we begin with a high-level implementa-
tion overview of a possible frontend verifier (Sec. 3.7.1). We factor our encoding into
three components. The first component consists of a static preamble, i. e. the axioms
that are emitted for any input program, as well as the encoding of rsnap and our heap
selector functions (Sec. 3.7.2). The second and the third components are the encodings
of field update operations (Sec. 3.7.3) and method calls (Sec. 3.7.4), resp.
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Figure 3.25: Overview of the tool stack.

Programmer submits a program in our
source language and its reachability-
powered specifications. Three layers
define the verifier: Frontend encodes reach-
ability specifications into separation logic;
Backend checks the proof obligations
via SMT and reports raw verification
results. For each assertion (e. g. invariant
or postcondition check), Backend reports
either success or a potential violation,
possibly with a counterexample. Frontend
decodes these results, mapping locations
of failed assertions and counterexamples
to those in terms of the source program.

3.7.1 Implementation overview

The implementation consists of three layers (Fig. 3.25). Layer I: A lightweight frontend
verifier that is responsible for defunctionalizing program-specific parameters (e. g. rewrit-
ing the field set 𝐹), as well as lifting verification results in terms of the underlying tools
back to the source language. Additionally, the frontend is responsible for keeping track
of the Zopg type annotations from Sec. 3.6. Layer II is the most essential part of the im-
plementation; it consists of a static axiomatization, functions, and macros, as well as the
encoding of field update operations (instantiated for concrete values of 𝐹) and the trans-
lation of all methods from the source program. Layer III: A backend separation-logic
verifier that we treat as a black box. Our premier focus in this section is on the encoding
technique, corresponding to Layers II–III of the tool stack. The prototype encoding for
a variety of benchmarks is publicly available [114].

Our encoding requires a logic with two main features. (1) There should be a means for
treating method footprints and frames as first-class node sets, e. g. iterated separating
conjunctions (ISC) [90]. (2) The logic should support heap-dependent functions [91]. The
former enable generic, set-based memory specifications that are crucial for reasoning
about structures that can have unbounded sharing and branching, as well as cycles. The
latter serves two purposes in our technique: First, we rely on heap-dependent snapshot
functions that provide us with the mathematical edge relation (cf. Sec. 3.3.5); we use
this explicit edge relation to axiomatize the heap graph for a fixed state and a fixed
footprint. This allows us to disentangle reachability-related axioms from other axioms
emitted by the verifier. Second, we rely on (heap-dependent) footprint selectors to relate
the footprints of a callee to the footprint of its client (cf. Sec. 3.3.3); this design allows
the user to extend the existing selectors and actually verify that the new ghost functions
are well-formed by implementing them as a heap-dependent fixpoint expression.
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We demonstrate our encoding into Viper, a state-of-the art verification language and
verification infrastructure that satisfies the above requirements.

3.7.2 Encoding of the static preamble

We present the static part of our encoding, consisting of function declarations and ax-
ioms that are independent of a particular source program. Assume that the types Graph
and Edgeset are rewritten as Set[Ref] and Set[Edge], resp., where Ref is a type of ref-
erences to heap objects and Edge is a tuple of two Refs. The encoding of the Zopg domain
is presented in [113, App. C].24

3.7.2.1 Partial reachability axiomatization. We encode the reachability relation as an
uninterpreted Boolean function �̂� over an edge set EG and two references from and to
corresponding to the origin and the destination of a heap path from… to:

1 function �̂�(EG: Set[Edge], from: Ref, to: Ref): Bool

For a fixed value of EG, the intended semantics of �̂� is the reflexive, transitive closure of
the relation 𝑓 ≡ Edge(⋅, ⋅) ∈ EG. Since there does not exist a finite, complete set of first-
order axioms that defines this semantics, we use a partial axiomatization that includes
the most practically essential properties of �̂� that we identified based on the scenarios
that we aim to support. Note that a complimentary line of work explores the possibility
of continuously generating axioms for gradually increasing completeness of supported
reachability properties [80].

To justify soundness of our partial reachability axioms, we derive our concrete axioms
from the canonical axiom templates of the transitive closure simulation technique [53]. We
discussed the axiom templates in Sec. 3.2.2.

Heap traversals present the first scenario that we intend to support. For example:
var start: Ref := node
while (node != null) { node := node.next }

Assuming the loop terminates, we should be able to prove that there exists a path start… node.
Hence, we add an axiom called PathStep:

2 axiom PathStep { forall EG: Set[Edge], u: Ref, v: Ref ::
3 �̂�𝐹(EG, u, v) <==> (u == v || (exists w :: Edge(u, w) in EG && �̂�(EG, w, v))) }

24 The implementation of our support for 0–1-path graphs is in part based on the contributions of Sivan-
rupan’s Bachelor’s thesis [104].
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This axiom can be obtained from the axiom template 𝑇1[𝑓 ]:

∀𝑢, 𝑣 • 𝑓𝑡𝑐(𝑢, 𝑣) ⟺ 𝑢 = 𝑣 ∨ ∃𝑤 • 𝑓 (𝑢, 𝑤) ∧ 𝑓𝑡𝑐(𝑤, 𝑣) 𝑇1[𝑓 ]

We instantiate Edge(⋅, ⋅) ∈ EG for 𝑓 and �̂�(EG, ⋅, ⋅) for 𝑓𝑡𝑐 and get PathStep.
Another important scenario arises due to transitivity of the reachability relation. For

example, if we establish the existence of two consecutive heap paths, 𝑢…𝑤 and 𝑤…𝑣,
then we should be able to prove that the path 𝑢…𝑣 exists as well (cf. Fig. 3.13). To support
this case, we add an axiom called PathJump:

4 axiom PathJump { forall EG: Set[Edge], u: Ref, w: Ref v: Ref ::
5 �̂�(EG, u, w) && �̂�(EG, w, v) ==> �̂�(EG, u, v) }

This axiom follows from the template 𝑇1[𝑓 ] and the induction principle 𝐼𝑁𝐷[𝑍, 𝑃, 𝑓 ] be-
low. The fact that the transitivity property of reachability is a consequence of the tem-
plates has been claimed by Lev-Ami et al. [53], but the original paper does not seem
to present a concrete instantiation that proves the claim, which we will do next. The
induction principle for the relation 𝑓 and its reflexive, transitive closure 𝑓𝑡𝑐 is given as:

(∀𝑤 • 𝑍(𝑤) ⇒ 𝑃(𝑤))∧ (∀𝑤, 𝑣 • 𝑃(𝑤) ∧ 𝑓 (𝑤, 𝑣) ⇒ 𝑃(𝑣))
⟹ ∀𝑣,𝑤 • 𝑍(𝑤) ∧ 𝑓𝑡𝑐(𝑤, 𝑣) ⇒ 𝑃(𝑣)

𝐼𝑁𝐷[𝑍, 𝑃, 𝑓 ]

“The intuitive meaning of the induction principle is that if every
…[node satisfying 𝑍 also] satisfies 𝑃, and 𝑃 is preserved when fol-
lowing 𝑓 -edges, then every …[node] 𝑓𝑡𝑐-reachable from a …[node
satisfying 𝑍] satisfies 𝑃.a Lev-Ami et al. [53]

a Ellipsis and brackets indicate omissions and paraphrasing, resp. of the original text.”Let 𝑢 be the inductive parameter. Consider the following instantiations for the three
parameter relations in 𝐼𝑁𝐷[𝑍, 𝑃, 𝑓 ]: 𝑍(𝑣) ≡ 𝑃(𝑣) ≡ 𝑓𝑡𝑐(𝑢, 𝑣) ≡ �̂�(EG, 𝑢, 𝑣) and 𝑓 ≡
Edge(⋅, ⋅) ∈ EG. The first conjunct of the LHS of ⟹ is trivially satisfied. Consider
the seconds conjunct: ∀𝑢,𝑤, 𝑣 • 𝑓𝑡𝑐(𝑢, 𝑤) ∧ 𝑓 (𝑤, 𝑣) ⇒ 𝑓𝑡𝑐(𝑢, 𝑣). This part of the premise
directly follows from the ⟸ direction of the axiom template (𝑇2[𝑓 ]):

∀𝑢, 𝑣 • 𝑓𝑡𝑐(𝑢, 𝑣) ⟺ 𝑢 = 𝑣 ∨ ∃𝑤 • 𝑓𝑡𝑐(𝑢, 𝑤) ∧ 𝑓 (𝑤, 𝑣) 𝑇2[𝑓 ]

This formula is symmetric to 𝑇1[𝑓 ], with the difference that here the single-edge step is
taken at the very end of the path rather than the beginning. 𝑇2[𝑓 ] follows from 𝑇1[𝑓 ]
and 𝐼𝑁𝐷[𝑍, 𝑃, 𝑓 ] [53]. Hence, we obtain the RHS:

∀𝑣,𝑤 • 𝑓𝑡𝑐(𝑢, 𝑤) ∧ 𝑓𝑡𝑐(𝑤, 𝑣) ⇒ 𝑓𝑡𝑐(𝑢, 𝑣)
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Since 𝑢 is arbitrary, the formula above matches our proof objective.

3.7.2.2 Automatically instantiating quantifiers. An important aspect of the implemen-
tation of our partial reachability axioms is controlling the instantiations of these axioms.
In our prototype implementation, we annotate the quantifiers with syntactic triggers
that specify the class of terms for which the SMT solver is permitted to produce an in-
stantiation. Triggers are used together with a quantifier instantiation mechanism called
E-matching [33, 47, 54, 94]. For example, to instantiate PathJump, we require two terms
from the LHS of its body, which is specified via the trigger: {�̂�(EG,u,w),�̂�(EG,w,v)}.
The trigger (written in curly brackets) must mention (at least once) all quantified vari-
ables of its quantifier as arguments of some uninterpreted functions, such as �̂�. Spec-
ifying this trigger (and not, for example, {�̂�(EG,u,v),�̂�(EG,w,v)}) directs the solver’s
proof search: Intuitively, whenever there exist two smaller paths, u…w and w…v, we
instantiate PathJump to assemble a larger path, u…v.

Formalizing the principles behind writing good triggers for quantified axiomatiza-
tions is an open problem. However, the general idea (and the main guiding principle
used in our encoding) is to enable the solver to traverse the space of possible quantifier
instantiations efficiently yet reaching useful proof goals. The main issue is to prevent
the proof search from diverging in presence of quantifiers, e. g. due to the possibility of
infinite chains of instantiations called matching loops [108]. Even though we do not prove
that the solver can never diverge while processing our axioms, the experimental results
presented in Sec. 3.8 demonstrate that our axiomatization is useful for verifying real-
world programs with reachability-powered specifications. Note that the triggers cannot
affect soundness of an axiom.

3.7.2.3 The snapshot function. The snapshot function was introduced in Sec. 3.3.5. The
purpose of this heap-dependent function is to map a footprint (i. e. set of node refer-
ences) in a fixed program state to an edge set, providing the first argument for �̂�:

6 function rsnap𝐹(𝔤: Set[Ref]): Set[Edge]
7 requires ACCESS_NODES𝐹(𝔤)
8 ensures forall x, y :: x in 𝔤 && y != null && hedge𝐹(x,y) <==> Edge(x,y) in result

Here hedge𝐹 is the heap edge relation defined by the frontend verifier, for𝐹 = {𝑓1,… , 𝑓𝑁}, as
define hedge𝐹(x, y) (x.𝑓1== y ||…|| x.𝑓𝑁== y). The rsnap function plays a special
role in our encoding as it is the only connection between (the constraints set by our static
axiomatization of) the mathematical function �̂� and (the facts known about) the actual
program states via the field values of the nodes in 𝔤. Note that rsnap does not have a
body as it is not implemented; hence, this function is treated by the verifier as part of
the axiomatic encoding. As an abbreviation for �̂�(rsnap𝐹(𝔤),x, y), we keep the macro
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notation P𝐹(𝔤,x, y) used throughout this chapter; the frontend (Fig. 3.25) desugars all
macros, in particular, rewriting the macro variable 𝐹, as explained above.

The precondition of rsnap requires access to the (Ref-type) fields from the set 𝐹 of
objects in 𝔤. This footprint is encoded via the macro ACCESS_NODES𝐹(𝔤):

9 define ACCESS_NODES𝐹(𝔤, p=read) (
10 !(null in 𝔤) && ∗

f∈𝐹
(forall n:Ref :: n in 𝔤 ==> acc(n.𝑓 , p)))

The big star is rewritten as a chain of separating conjunctions for all fields 𝑓 ∈ 𝐹. If
the second macro argument (i. e. the permission amount) is skipped, it is assumed to
have the default value of read. We assume that the above macro definition is also used
for specifying the footprints of all the methods with comprehensive specifications. Hence,
the footprint of snapmatches the current method’s footprint, except it requires only read
permissions to each node’s field, while methods may have full, write access.

3.7.2.4 Footprint selector functions. Footprint selector functions were introduced in Sec. 3.3.3.
Their purpose is to provide new footprints for method calls, based on the current method’s
footprint. Intuitively, we want to be able to define these new footprints by selecting sub-
sets of all the nodes accessible in a given program state. While reachability provides a
natural way of selecting such subsets, e. g. by specifying all the nodes reachable from a
given root node (like in sub from Sec. 3.3.3), generally, any predicate 𝜋(𝑛) over a node 𝑛
can be used as a footprint selector, e. g. 𝔤1 = {𝑛 ∣ 𝑛 ∈ 𝔤 ∧ 𝜋(𝑛)}, where 𝔤1 and 𝔤 are the
footprints of the callee and the client, resp. Since our host logic may not natively support
set comprehensions, we provide the following function:

11 function sub𝜋(𝔤: Set[Ref]): Set[Ref]
12 requires ACCESS_NODES𝐹(𝔤)
13 ensures forall n :: n in result <==> n in 𝔤 && 𝜋(n)

The symbol 𝜋 is syntactically rewritten by the frontend (Fig. 3.25). Note that sub𝜋 (and
𝜋) are heap-dependent [91] functions as the constraints set upon new footprints may
depend on the current heap configuration, e. g. via our local reachability predicates.

Our technique does not require for footprint selectors to specify node sets completely;
the only required constraint is that the new footprint must be a subset of the current one,
as per the specification of the most-generic footprint selector, some (cf. Sec. 3.3.3):

14 function some(𝔤: Set[Ref]): Set[Ref]
15 requires ACCESS_NODES𝐹(𝔤)
16 ensures result subset 𝔤
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Using the functions sub𝜋 and some, one could extend the set of supported footprint
selectors, as discussed in Sec. 3.3.3. We conclude this part by demonstrating the en-
coding our footprint selector sub𝐹 previously shown in Fig. 3.13 for the special case
𝐹 = {left, right}:

17 define CLOSED𝐹𝔤 (𝔥) // (3.4)
18 forall x, y :: x in 𝔥 && Edge(x,y) in rsnap𝐹(𝔥) ==> !(y in 𝔤 setminus 𝔥)

19 function sub𝐹(𝔤: Set[Ref], 𝔥: Set[Ref], root: Ref): Set[Ref]
20 requires ACCESS_NODES𝐹(𝔤)
21 requires root in 𝔥 && 𝔥 subset 𝔤
22 ensures CLOSED𝐹𝔥 (result)
23 ensures forall n :: n in result <==> n in 𝔥 && �̂�(rsnap𝐹(𝔤),root,n)

As before, the parameter𝐹 is rewritten by the frontend (Fig. 3.25). Note that Edge(x,y) in
rsnap𝐹(result) corresponds to the condition that there exists a heap edge (along one
of the fields from 𝐹) connecting x to y in the current configuration of the heap fragment
specified by result; the solver can prove that, for a fixed 𝐹, heap edges exist in a larger
heap fragment (e. g. 𝔤) iff they exist in any of its nested heap fragments (e. g. result).

3.7.3 Encoding of field updates

We are now ready to present the encoding of field updates in our technique. Our goal is
to rewrite operations of the form from.f := to in a way that will introduce appropriate
reachability update formulas to the verifier (cf. Sec. 3.4). We denote the footprint of the
method enclosing this field update as 𝔤; we assume that the method’s implementation
and specification mention only reference fields from the set 𝐹; in particular, f ∈ 𝐹.

General field updates may result in a deletion of an old heap edge followed by the in-
sertion of a new heap edge. Hence, we encode a field update as a sequential composition
of two (conceptually simpler) operations, where the first operation (possibly) deletes a
single heap edge and the second one (possibly) adds a new heap edge. The possible
models of the resulting heap transition are presented in Fig. 3.26.

3.7.3.1 Field updates in DAGs and ZOPGs. Precise, first-order reachability update for-
mulas for the singleton edge removal and the singleton edge insertion are not known for
general graphs (see discussion in Sec. 3.2.1). However, such update formulas are known
for two broad classes of graphs, namely acyclic graphs and 0–1-path graphs (introduced
in Sec. 3.6). To ensure that the update formulas are applied soundly, all operations, in-
cluding field updates, must maintain the corresponding structural invariants (i. e. ei-
ther acyclicity or the absence of alternative heap paths modulo cycles) for the current
method’s footprint.
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Figure 3.26: Enumeration of heap transitions caused by a field update operation.

The ten possible heap transitions caused by a field assignment operation from.𝑓 :=to. As before,
newly added heap edges are dashed, while deleted heap edges are crossed out; old(from.𝑓 )
denotes the value of the 𝑓 field of from in the pre-state of the assignment. The models without
aliasing are shown on the top row; the models with aliasing are on the bottom row. Consider
the top row. The first two models represent the trivial transitions in which the new heap config-
uration is identical to the old one; the following conditions define their corresponding models:
(a) from.𝑓 =to=null; (b) from.𝑓 =to≠null. The remaining transitions are non-trivial (from.𝑓 ≠
to); the following conditions define their corresponding models: (c) from.𝑓 = null∧ to ≠ null
(d) from.𝑓 ≠ null∧ to = null; (e) from.𝑓 ≠ null∧ to ≠ null.
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Figure 3.27: Heap configurations that violate graph invariants required for field updates.

The bad heap configurations in presence of a field update operation. The left column corre-
sponds to the DAG case and the right column corresponds to the ZOPG case. The rows show
violation of the respective invariants in the pre-state and the post-state, resp. (a), (b) Violation
of the acyclicity invariant can be most-efficiently checked in the intermediate state in which the
node from must be unreachable from both to and old(from.𝑓 ). (b), (c) Again, violation of the
ZOPG invariant can be most-efficiently checked in the intermediate state, except the condition
is that neither to nor old(from.𝑓 ) can be reached from the node from in this state.
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The choice to represent general field updates via a pair of operations enables an effi-
cient way to check that these operations maintain their respective structural invariants.
In general, we need to check that, in the case of DAG, adding a new heap edge (from, to)
to 𝔤 does not complete a cycle of heap references:

∀𝑥 ∈ 𝔤, 𝑦 • 𝑥 ≠ 𝑦 ∧ P(𝔤, 𝑥, from) ∧ P(𝔤, to, 𝑦) ⟹ ¬P(𝔤, 𝑦, 𝑥) (3.29)

In the case of ZOPG, we need to check that adding such a heap edge does not create an
alternative path (modulo cycles):

∀𝑥 ∈ 𝔤, 𝑦 • 𝑥 ≠ 𝑦 ∧ P(𝔤, 𝑥, from) ∧ P(𝔤, to, 𝑦) ⟹ ¬P(𝔤, 𝑥, 𝑦) (3.30)

In practice, checking quantified assertions, such as the ones above, is computationally
expensive in SMT because each universally quantified formula may cause a large num-
ber of new quantifier instantiations. It is possible to eliminate the quantifiers by pre-
instantiating them with fresh variables, but this approach is still inefficient as the un-
derlying SMT solver would have to verify the resulting conditions for all possible (hy-
pothetical) aliasing combinations, the number of which grows exponentially with the
number of references. Fortunately, we can use a much simpler (quantifier-free) asser-
tion to check these structural invariants. This can be done by rephrasing the assertions
in terms of the intermediate state, i. e., after deleting the old edge and before inserting the
new edge (Fig. 3.27). The resulting encoding for field updates with efficient structural
invariant checks is shown in Fig. 3.28.

It is interesting to observe that, while inserting the new edge (from, to) can violate the
acyclicity invariant (or the ZOPG invariant), removing the old edge (from, to𝑜) cannot
result in a more complex structure. However, we still use two assertions to check each
of these invariants in Fig. 3.28. Note that the first assertion indirectly checks that the
old edge did not belong to an SCC (or did not support an alternative path) in the pre-
state of our field update; this condition already follows from our assumption that, in the
pre-state, the structure was a DAG (ZOPG). Indeed, if we ensure that all operations in
the current method maintain the required structural invariant, then the same invariants
must hold in the pre-state of each field update. The reason why we need both checks is
more subtle, as we explain next.

3.7.3.2 Relating reachability via update formulas. We focus on the problem of enabling
precise conversion of reachability information in the program states before and after a
field update. To this end, we use update formulas, as introduced in Sec. 3.4. Given a
graph transforming operation, a reachability update formula for this operation repre-
sents reachability information about the new graph in terms of reachability information
about the old graph, i. e.:

∀𝑥, 𝑦 • R(𝑥, 𝑦) ⟺ 𝑄[R0, 𝑥, 𝑦] (3.31)
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24 define update𝐹f (𝔤: Graph, from: Node, to: Node) {
25 if (to != from.f) { /* pre-state */
26 var to𝑜 := from.𝑓
27 if (from.f != null) {
28 unlink𝐹f (𝔤, from)
29 match 𝔤 {
30 case DAG: assert to𝑜 != from ==> !P𝐹(𝔤, to𝑜, from)
31 case ZOPG: assert to𝑜 != from ==> !P𝐹(𝔤, from, to𝑜) }
32 } /* intermediate state */
33 if (to != null) {
34 match 𝔤 {
35 case DAG: assert to != from ==> !P𝐹(𝔤, to, from)
36 case ZOPG: assert to != from ==> !P𝐹(𝔤, from, to) }
37 link𝐹f (𝔤, from, to)
38 }}} /* post-state */

39 method unlink𝐹f (𝔤:Graph, node:Node)

40 requires MEMORY_SPECS𝐹f (𝔤, node) &&
41 node.f != null
42 ensures MEMORY_SPECS𝐹f (𝔤, node) &&
43 node.f == null &&

44 ( ⋀
e∈𝐹, e≠f

old(node.e) ≠ old(node.f))

45 ? UNLINKF
𝔤 (𝔤, node, old(node.f))

46 : rsnap𝐹(𝔤) == old(rsnap𝐹(𝔤))

47method link𝐹f (𝔤:Graph,from:Node,to:Node)
48requires MEMORY_SPECS𝐹f (𝔤, from) &&
49from.f == null && to != null
50ensures MEMORY_SPECS𝐹f (𝔤, from) &&
51from.f == to &&

52( ⋀
e∈𝐹, e≠f

old(from.e) ≠ to)

53? LINKF
𝔤 (𝔤, from, to)

54: rsnap𝐹(𝔤) == old(rsnap𝐹(𝔤))

55 define MEMORY_SPECS𝐹f (𝔤, node) (
56 !(null in 𝔤) && node in 𝔤 && acc(node.𝑓 , write)
57 && (forall n :: n in 𝔤 && n != node ==> acc(n.𝑓 , read))
58 && ∗

e∈𝐹, e≠f
(forall n :: n in 𝔤 ==> acc(n.𝑒, read)))

Figure 3.28: Reachability-aware encoding of field updates into separation logic.

The macro update𝐹f (𝔤,from,to) encodes a field update operation from.𝑓 :=to of a method with
footprint 𝔤 over the set of reference fields 𝐹. 𝔤 denotes the type annotation of 𝔤. The first if
handles the trivial case, and the nested ifs handle the remaining special cases; see the enumera-
tion of possible models in Fig. 3.26. unlink𝐹f and link𝐹f encode the deletion and the creation of a
single heap edge, resp., providing (via the postconditions) the update formulas for our relations
E and P. to𝑜 is the value of from.𝑓 in the pre-state. The assertions check that an update will not
result in a bad heap configuration (cf. Fig. 3.27). Lines 23,28: Since the structure is assumed to
be acyclic in the terminal (pre- and post-) states, the DAG invariant of our field update is checked
more efficiently in the intermediate state; checking this invariant in the terminal states would re-
quire asserting the quantified formula (3.29), which we spare. Lines 24,29: Similarly, we check
the Zopg invariant (avoiding alternative paths) in the intermediate state, sparring the quantified
formula (3.30); this is possible due to our assumption that the structure is already a ZOPG in
the terminal states. We illustrate MEMORY_SPECS(𝔤, node) in Fig. 3.29.
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where R0 and R are the reachability relations of the old and the new graphs, resp. and 𝑄
is some first-order Boolean formula over R0 with two free variables, namely 𝑥 and 𝑦. This
template shows, e. g., that an update formula cannot define R recursively. In the follow-
ing, we first demonstrate the insufficiency of standard update formulas for preserving
all reachability information, and then explain that this limitation can be overcome by
adding additional complementary update formulas of the shape:

∀𝑥, 𝑦 • R0(𝑥, 𝑦) ⟺ 𝑄†[R, 𝑥, 𝑦] (3.32)

where 𝑄† is the complement of 𝑄, i. e. some first-order Boolean formula over R with two
free variables, namely 𝑥 and 𝑦.

DIRECTED upDATE FORMuLAS. Update formulas in the form of (3.31) generally enable
only one direction for converting reachability information: While we can express any
element of the R(⋅, ⋅) relation — given full information about R0(⋅, ⋅) — we might not be
able to use such an update formula to convert reachability information in the opposite
direction. Conceptually, update formulas provide the best possible conversion in appli-
cations in which the next operation is not known upfront; e. g. a stream of database up-
date queries. However, converting reachability information about the new heap into the
reachability information about the old heap is a perfectly natural reasoning step when
all operations of the current method are known upfront, e. g. in program verification
and static analysis, in particular, for computing weakest preconditions.

ExAMpLE. Consider a Hoare triple that demonstrates loss of reachability information
in presence of a field update operation that removes a single heap edge (u, v):

⎧{
⎨{⎩

u.next = v∧
R0(u, n)

⎫}
⎬}⎭

u.next := null
⎧{
⎨{⎩

u.next = null∧
R(v, n) ∧ ¬R(u, n)

⎫}
⎬}⎭

Here, n be some node reachable from v in the new state.
Our goal is to check the validity of the precondition. For simplicity, we assume that

the entire graph is acyclic and that next is the only reference field. In this scenario, the
precise update formula is give by:

∀𝑥, 𝑦 • R(𝑥, 𝑦) ⟺ R0(𝑥, 𝑦) ∧ (¬R0(𝑥, u) ∨ ¬R0(v, 𝑦))

While this formula connects the reachability information in the two states, it does not
provide the weakest precondition for the above operation and postcondition; e. g. one
cannot use it to justify the above precondition.

In particular, instantiating the update formula with u and n for 𝑥 and 𝑦, resp. yields
R(u, n) ⟺ R0(u, n) ∧ (¬R0(u, u) ∨ ¬R0(v, n)). Simplifying this formula using reflexiv-
ity of R and applying the knowledge that ¬R(u, n) holds (from the postcondition), we
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learn: ¬R0(u, n)∨R0(v, n). This formula does not follow from the precondition of the above
Hoare tripe. Hence, the (precise) reachability update formula alone is insufficient, show-
ing that reachability information can be lost while reasoning backwards.

The loss of information via update formulas can be sometimes mitigated by using the
information about the edge relation. For example, instantiating the update formula above
with v and n for 𝑥 and 𝑦 implies R0(v, n) which can be used in combination with the
precondition u.next = v (implying R0(u, v)) to validate R0(r, v). However, conversion of
the information about the edge relation into reachability information generally requires
transitive closure and cannot be fully automated; therefore, we cannot rely on the edge
relation to recover the missing bits of the reachability relation.

SOLuTION. To overcome the loss of reachability information in presence of field update
operations, we emit two update formulas for each edge deletion or insertion. Consider
again the Hoare triple above; in this scenario, the operation u.next := null reduces the
size of the edge set by one edge, namely, (u.next, v). Let Δ = {(u.next, v)}; we abbreviate
the corresponding transition of the edge relation as E0 → E0 Δ, where E0 Δ = E. For
this transition, the precise update formula is given in the postcondition of our Hoare
triple.25 Intuitively, this update formula provides canonical means of expressing R via
elements of R0. Next, we consider the reverse transition: E → E0, where E0 = E⊎Δ. Because
this reverse transition is an incremental update of the edge relation, the precise update
formula is given by:

∀𝑥, 𝑦 • R0(𝑥, 𝑦) ⟺ R(𝑥, 𝑦) ∨ (R(𝑥, u) ∧ R(v, 𝑦))

Hence, we obtain the canonical means of expressing R0 via elements of R.
Returning to the Hoare triple above, we can now simply instantiate our complemen-

tary update formula with u and n for 𝑥 and 𝑦, resp. to learn R0(u, n) ⟺ R(u, n) ∨
(R(u, u) ∧ R(v, n)). Due to the postcondition of the Hoare triple, we have ¬R(u, n) ∧
R(v, n); due to reflexivity, R(u, u) holds. We learn R0(u, n), validating the Hoare triple.

In the example above, we demonstrate how a combination of a standard (3.31) and
a complementary (3.32) update formulas can be used to enable precise, bidirectional
conversion of reachability information across an edge removal operation. Naturally, an
edge insertion E0 → E0 ⊎ Δ and its standard update formula induce a complementary
update formula as well, for which the reverse transition E → E Δ is a decremental update
of the edge relation. Therefore, compared to an edge deleting, the update formula and
its complement for an edge insertion are simply swapped and equal to 𝑄† and 𝑄, resp.

Since we encode general field updates via a sequence of two operations (Fig. 3.28),
namely, an edge deletion and an edge insertion, we combine the standard and the com-

25 Recall that we present our argument for the special case of acyclic list segments.
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Figure 3.29: Example field update and the required access permissions.

The red frame represents the current footprint, 𝔤, containing six nodes with fields 𝑓 and 𝑒 (null-
valued fields not depicted). The field update node.𝑓 := target rotates the corresponding edge
𝑓 → 𝑓 ′. Write permissions are highlighted in red. Read permissions are highlighted in orange.

plement update formulas in the postconditions of both of these operations, enabling
precise, bidirectional conversion of reachability information across the entire field update.
Note that, in the context of local heap reachability (Sec. 3.3.4), we replace the relations R0
and R in (3.31) with the local reachability relations P𝐹0(𝔤, ⋅, ⋅) and P𝐹(𝔤, ⋅, ⋅), resp., where 𝔤
is the current method’s footprint and 𝐹 is the set of reference fields used by this method.
In the case of DAGs, we use a local-reachability adaptation of the standard update for-
mulas for acyclic graphs [17]. In the case of ZOPG, the update formulas are written in
terms of the auxiliary relations DEP0 and DEP (as explained in Sec. 3.6.1), but our idea of
complementary update formulas works exactly the same.

3.7.3.3 Encoding update formulas into separation logic. We return to the discussion of
our encoding for update formulas presented in Fig. 3.28. Recall that we encode a gen-
eral field update as a sequential composition of two operations, unlink and link. Both
of these operations have the same memory footprint. Write access is needed exclusively
for the updated node’s reference field (𝑓 ) in order to permit the required modification;
note the first acc in MEMORY_SPECS. Additionally, all other reference fields, within the cur-
rent footprint, also require read access in order to reason about local reachability along
all available fields in 𝐹.26 The last two conjuncts of MEMORY_SPECS cover the correspond-
ing access permissions. Fig. 3.29 illustrates the access permissions required for a field
update.

The actual reachability update formulas, denoted by UNLINKF
𝔤 and LINKF

𝔤 , are as-
sumed (in the postconditions of unlink and link, resp.) only for operations resulting

26 Recall that evaluating the expression e. g. P𝐹(𝔤, 𝑥, 𝑦) requires at least read-level access permissions to the
fields from 𝐹 of all nodes in 𝔤, intuitively, because any of these fields may support the heap path 𝑥…𝑦.
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in non-trivial transitions, i. e. if the local reachability relations in the pre-state and the
post-state are not identical. For example, an assignment operation a.𝑓 := b may result
in a trivial transition even if a, b, and old(a.𝑓 ) are all non-aliasing, non-null references
because the mathematical edges (a, a.𝑓 ) and (a, b) can be supported by reference fields
distinct from 𝑓 (say, 𝑒1 and 𝑒2 in 𝐹 = {𝑓 , 𝑒1, 𝑒2}), so that the heap edges newly deleted and
newly inserted by our assignment operation would not affect the reachability relation.
For the case of a trivial transition, we merely assume the equality between snapshot
functions evaluated in the pre-state and the post-state, from which follows the equality
of the local path predicates, namely, �̂�𝐹

1(𝔤, 𝑥, 𝑦) = �̂�𝐹
2(𝔤, 𝑥, 𝑦), for arbitrary 𝑥 ∈ 𝔤 and 𝑦.

Finally, we present the encoding of the update formulas that we assume for the case of a
non-trivial transition in Fig. 3.30 for the DAG case and in Fig. 3.31 for the case of ZOPG.
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LINKF
DAG(𝔤, α, β) ..⟺ G_PLUS_DELTA(old(rsnapF(𝔤)), rsnapF(𝔤), α, β)∧

TC_G_MINUS_DELTA(old(rsnapF(𝔤)), rsnapF(𝔤), α, β)∧
TC_G_PLUS_DELTA(old(rsnapF(𝔤)), rsnapF(𝔤), α, β),

UNLINKF
DAG(𝔤, α, β) ..⟺ G_MINUS_DELTA(rsnapF(𝔤), old(rsnapF(𝔤)), α, β)∧

TC_G_MINUS_DELTA(rsnapF(𝔤), old(rsnapF(𝔤)), α, β)∧
TC_G_PLUS_DELTA(rsnapF(𝔤), old(rsnapF(𝔤)), α, β),

G_PLUS_DELTA(𝑔, 𝐺, α, β) ..⟺∀𝑥, 𝑦 • (𝑥, 𝑦) ∈ 𝐺 == (𝑥, 𝑦) ∈ 𝑔 ∨ 𝑥 = α ∧ 𝑦 = β,
G_MINUS_DELTA(𝑔, 𝐺, α, β) ..⟺∀𝑥, 𝑦 • (𝑥, 𝑦) ∈ 𝑔 == (𝑥, 𝑦) ∈ 𝐺 ∧ (𝑥 ≠ α ∨ 𝑦 ≠ β),

TC_G_PLUS_DELTA(𝑔, 𝐺, α, β) ..⟺∀𝑥, 𝑦 • �̂�(𝐺, 𝑥, 𝑦) == �̂�(𝑔, 𝑥, 𝑦) ∨ �̂�(𝑔, 𝑥, α) ∧ �̂�(𝑔, β, 𝑦),
TC_G_MINUS_DELTA(𝑔, 𝐺, α, β) ..⟺(∀𝑥, 𝑦 • ¬�̂�(𝐺, 𝑥, α) ∨ ¬�̂�(𝐺, β, 𝑦) ⟹ �̂�(𝑔, 𝑥, 𝑦) == �̂�(𝐺, 𝑥, 𝑦))

∧ ∀𝑥, 𝑦 • �̂�(𝐺, 𝑥, α) ∧ �̂�(𝐺, β, 𝑦) ⟹
�̂�(𝑔, 𝑥, 𝑦) == case𝑖(𝐺, 𝑥, α, β, 𝑦)∨

case𝑖𝑖(𝐺, 𝑥, α, β, 𝑦)∨
case𝑖𝑖𝑖(𝐺, 𝑥, α, β, 𝑦),

case𝑖(𝐺, 𝑥, α, β, 𝑦) ..⟺∃𝑢 • 𝑢 ≠ α ∧ 𝑢 ≠ β ∧ �̂�(𝐺, α, 𝑢) ∧ �̂�(𝐺, 𝑢, β),
case𝑖𝑖(𝐺, 𝑥, α, β, 𝑦) ..⟺∃𝑢 • �̂�(𝐺, 𝑥, 𝑢) ∧ �̂�(𝐺, 𝑢, 𝑦) ∧

(¬�̂�(𝐺, 𝑢, α) ∧ ¬�̂�(𝐺, α, 𝑢) ∨ ¬�̂�(𝐺, 𝑢, β) ∧ ¬�̂�(𝐺, β, 𝑢)),
case𝑖𝑖𝑖(𝐺, 𝑥, α, β, 𝑦) ..⟺∃𝑢, 𝑣 • (𝑢 ≠ α ∨ 𝑣 ≠ β) ∧ �̂�(𝐺, 𝑢, 𝑣) ∧

�̂�(𝐺, 𝑥, 𝑢) ∧ �̂�(𝐺, 𝑢, α) ∧ �̂�(𝐺, β, 𝑣) ∧ �̂�(𝐺, 𝑣, 𝑦).

Figure 3.30: Encoding of update formulas for DAGs.

The ultimate formula combines an update formula for an incremental and a decremental updates of a directed
acyclic graph. In all subformulas, 𝐺 = 𝑔 ⊎ {(α, β)} holds. The purpose of TC_G_PLUS_DELTA is to express the
larger binary relation �̂�(𝐺, ⋅, ⋅) in terms of the smaller binary relation �̂�(𝑔, ⋅, ⋅). This formula is straightforward:
A path 𝑥…𝑦 exists in the larger relation iff it already existed in the smaller relation or it is connected up by
the edge (α, β). The purpose of TC_G_MINUS_DELTA is to express the smaller binary relation �̂�(𝑔, ⋅, ⋅) in terms of
the larger binary relation �̂�(𝐺, ⋅, ⋅). This formula has two complementary conjuncts. The first conjunct covers
the situation in which the path 𝑥…𝑦 cannot traverse the edge (α, β); in this case, the smaller relation simply
coincides with the larger one. The second conjunct covers the remaining three possibilities in which the path
𝑥…𝑦 exists in the smaller relation. In the 𝑖-case, there exists a (distinct) node 𝑢 that connects up a path of the
form 𝑥…α…𝑢…β…𝑦. In the 𝑖𝑖-case, the node 𝑢 is disconnected from both α and β, ensuring that the detour
path 𝑥…𝑢…𝑦 could not have been dependent on the edge (α, β) and is thus preserved. In the 𝑖𝑖𝑖-case, there
exists a detour path of the form 𝑥… (𝑢, 𝑣)…𝑦 which cannot have been affected by removing the edge (α, β)
because 𝑢 precedes α or β succeeds 𝑣 in our DAG. The completeness of this formula is due to [17].
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LINKF
ZOPG(𝔤, α, β) ..⟺ G_PLUS_DELTA(old(rsnapF(𝔤)), rsnapF(𝔤), α, β)∧

DEP_G_MINUS_DELTA(old(rsnapF(𝔤)), rsnapF(𝔤), α, β)∧
DEP_G_PLUS_DELTA(old(rsnapF(𝔤)), rsnapF(𝔤), α, β),

UNLINKF
ZOPG(𝔤, α, β) ..⟺ G_MINUS_DELTA(rsnapF(𝔤), old(rsnapF(𝔤)), α, β)∧

DEP_G_MINUS_DELTA(rsnapF(𝔤), old(rsnapF(𝔤)), α, β)∧
DEP_G_PLUS_DELTA(rsnapF(𝔤), old(rsnapF(𝔤)), α, β),

G_PLUS_DELTA(𝑔, 𝐺, α, β) ..⟺∀𝑥, 𝑦 • (𝑥, 𝑦) ∈ 𝐺 == (𝑥, 𝑦) ∈ 𝑔 ∨ 𝑥 = α ∧ 𝑦 = β,
G_MINUS_DELTA(𝑔, 𝐺, α, β) ..⟺∀𝑥, 𝑦 • (𝑥, 𝑦) ∈ 𝑔 == (𝑥, 𝑦) ∈ 𝐺 ∧ (𝑥 ≠ α ∨ 𝑦 ≠ β),

DEP_G_MINUS_DELTA(𝑔, 𝐺, α, β) ..⟺∀𝑥, 𝑦, 𝑢, 𝑣 • 𝐷𝐸𝑃
⋀

(𝑔, 𝑥, 𝑦, 𝑢, 𝑣) == 𝐷𝐸𝑃
⋀

(𝐺, 𝑥, 𝑦, 𝑢, 𝑣) ∧
¬𝐷𝐸𝑃
⋀

(𝐺, 𝑥, 𝑦, α, β),
DEP_G_PLUS_DELTA(𝑔, 𝐺, α, β) ..⟺α ≠ β ∧∀𝑥, 𝑦, 𝑢, 𝑣 • 𝑢 ≠ 𝑣 ∧ 𝑥 ≠ 𝑦 ⟹

(𝐷𝐸𝑃
⋀

(𝐺, 𝑥, 𝑦, 𝑢, 𝑣) == 𝐷𝐸𝑃
⋀

(𝑔, 𝑥, 𝑦, 𝑢, 𝑣) ∨
(𝑥 = 𝑢 = α ∧ 𝑦 = 𝑣 = β) ∨
(∃𝑤, 𝑧 • Ψ(𝑔, α, β, 𝑥, 𝑦, 𝑢, 𝑣, 𝑤, 𝑧)) ∨
(∃𝑢′, 𝑣′ • Ψ(𝑔, α, β, 𝑥, 𝑦, 𝑢′, 𝑣′, 𝑢, 𝑣)) ∨

𝑢 = α ∧ 𝑣 = β ∧ ∃𝑢′, 𝑣′, 𝑤, 𝑧 • Ψ(𝑔, α, β, 𝑥, 𝑦, 𝑢′, 𝑣′, 𝑤, 𝑧)),

Ψ(𝑔, α, β, 𝑥, 𝑦,𝑈,𝑉,𝑤, 𝑧) ..⟺(∀𝑢″, 𝑣″ • ¬𝐷𝐸𝑃
⋀

(𝑔, 𝑥, 𝑦, 𝑢″, 𝑣″))∧
(𝐷𝐸𝑃
⋀

(𝑔, 𝑥, α, 𝑢, 𝑣) ∧ 𝑥 ≠ α ∨ 𝑥 = 𝑢 = α ∧ 𝑣 = β)
(𝐷𝐸𝑃
⋀

(𝑔, β, 𝑦, 𝑤, 𝑧) ∧ 𝑦 ≠ β ∨ α = 𝑤 ∧ β = 𝑧 = 𝑦).

Figure 3.31: Encoding of update formulas for ZOPGs.

The ultimate formula combines an update formula for a decremental and an incremental updates of a 0–1-path
graph. In all subformulas, 𝐺 = 𝑔 ⊎ {(α, β)} holds. The purpose of DEP_G_MINUS_DELTA is to express the smaller
quaternary relation 𝐷𝐸𝑃

⋀

(𝑔, ⋅, ⋅, ⋅, ⋅) in terms of the larger quaternary relation 𝐷𝐸𝑃
⋀

(𝐺, ⋅, ⋅, ⋅, ⋅). This formula is
straightforward: A quadruple (𝑥, 𝑦, 𝑢, 𝑣) belongs to the smaller relation iff this quadruple belong to the larger
relation and the path 𝑥…𝑦 does not depend on the missing edge (α, β). The purpose of DEP_G_PLUS_DELTA is to
express the larger quaternary relation 𝐷𝐸𝑃

⋀

(𝐺, ⋅, ⋅, ⋅, ⋅) in terms of the smaller quaternary relation 𝐷𝐸𝑃
⋀

(𝑔, ⋅, ⋅, ⋅, ⋅).
There are five possible cases in which a quadruple (𝑥, 𝑦, 𝑢, 𝑣) belongs to the larger relation. In the first case, this
quadruple exists even in the smaller relation, so it is definitely preserved in the larger one. The second case is
that (𝑥, 𝑦) is exactly the edge that we added to 𝑔 to obtain 𝐺; since the path 𝑥…𝑦 could not have existed in 𝑔 (due
to the ZOPG invariant), it trivially depends on the new edge, so our quadruple, indeed, belongs to the larger
relation. The last three cases employ an additional formula, Ψ. Intuitively, this formula expresses that adding
the edge (α, β) to a graph with the edge relation 𝑔 would connect up a new path of the form 𝑥…α…β…𝑦.
The last four arguments of Ψ define the two dependency edges of the subpaths 𝑥…α and β…𝑦, resp. Hence,
the third and the fourth cases of DEP_G_PLUS_DELTA represent situations in which (𝑢, 𝑣) is a dependency edge
of one of the subpaths (hence, it must also be a dependency edge of a larger path in a ZOPG, but only if the
other subpath has a dependency edge, too). Finally, the fifth case represents the situation in which (𝑢, 𝑣) is
exactly (α, β); thus, our quadruple belongs to the larger relation if there exist two dependency edges for both
our subpaths, 𝑥…α and β…𝑦. The completeness of this formula is due to [17].
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3.7.4 Encoding of method calls

We are now ready to present the encoding of method calls in our technique. Our goal
now is to rewrite operations of the form *outs := m(𝔥, *ins), where *ins and *outs
denote tuples of input and output parameters, resp. of the method m, and 𝔥 is the foot-
print of the call. The purpose of our method call rewriting is similar to that of our encod-
ing of field updates: It introduces appropriate formulas to the verifier, enabling modular
reasoning about the call and automating entailment proofs in its pre-state and post-state.
Fig. 3.3 explains the relationship between reachability framing and entailment proofs.
As before, we denote through 𝔤 the enclosing method’s footprint and assume that the
method’s implementation and specification mentions only reference fields from the set
𝐹; in particular, f ∈ 𝐹. The frontend replaces the original method call with an application
call𝐹m(𝔤,𝔥,*ins,*outs) of the macro call defined as follows (the macro parameters m
and 𝐹 are expanded by the frontend):

59 define call𝐹m (𝔤, 𝔥, *ins, *outs) {
60 var 𝔣: Set[Ref] := 𝔤 setminus 𝔥
61 assert ISCONVEX𝐹(𝔥, 𝔤, 𝔣)
62 EnableFocusOnConvexSubHeap𝐹(𝔥, 𝔤, 𝔣)
63 EnableFocusOnFrameBefore𝐹(𝔥, 𝔤, 𝔣)
64 label l1
65 *outs := m(𝔥, *ins)
66 label l2
67 assert ISCONVEX𝐹(𝔥, 𝔤, 𝔣)
68 EnableFocusOnConvexSubHeap𝐹(𝔥, 𝔤, 𝔣)
69 EnableFocusOnFrameAfter𝐹(l1, l2, 𝔣, 𝔥)
70 ApplyConvexTCFraming𝐹(l1, l2, 𝔥, 𝔤, 𝔣)
71 }

// Check via (3.14)

// Check via (3.15)

// (3.13), case i of (3.12)
// (3.13), (3.18)
// Pre-state of the call

// Post-state of the call

// (3.13), case i of (3.12)
// (3.4), (3.5)
// (3.10), (3.11), cases ii–iv of (3.12)

3.7.4.1 Overview. Recall from Sec. 3.5 that the main problem in modular reasoning with
reachability is reachability framing, i. e. the ability to automatically frame reachability
properties unchanged by the call and extrapolate the properties of disjoint heap frag-
ments (the frame and the callee’s footprint) over their union (the caller’s footprint). Our
technique solves this problem by employing two groups of formulas: (1) for localization
of paths that are entirely inside the relatively convex footprint or its compliment, i. e. the
frame (cases i and v in Fig. 3.16) and (2) for splitting and joining heap paths that span
the boundary between those two heap fragments (cases ii, iii, iv in Fig. 3.16). Soundly
emitting these formulas requires the checking relative convexity conditions according
to Def. 1.

3.7.4.2 Relative convexity checks. The checks are performed for both states, before and
after the call, as heap operations can potentially violate relative convexity (see Fig. 3.17).
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As discussed in the end of Sec. 3.5.1, we must use different formulas for checking relative
convexity in the state before the call, when we have available only 𝔤-local reachability
information (3.14), and in the state after the call, when we have only 𝔣-local and 𝔥-local
reachability information (3.15). We encode these assertions as follows:

72 define ISCONVEX𝐹(𝔥, 𝔤, 𝔣) (CONVEX_BEFORE𝐹(𝔥,𝔤) || CONVEX_AFTER𝐹(𝔥, 𝔣))
73 define CONVEX_ADD𝐹(𝔥, 𝔤, 𝔣) (CONVEX_BEFORE𝐹(𝔥, 𝔤) && CONVEX_AFTER𝐹(𝔥, 𝔣))

74 define CONVEX_BEFORE𝐹(𝔥, 𝔤) (𝔥 subset 𝔤 && forall x, y, z ::
75 x in 𝔥 && y in 𝔥 && !(z in 𝔥) && z in 𝔤 ==> !(P𝐹(𝔤, x, z) && P𝐹(𝔤, z, y)))

76 define CONVEX_AFTER𝐹(𝔥, 𝔣) (DISJOINT(𝔥, 𝔣) && forall x, y, z ::
77 x in 𝔥 && y in 𝔥 && z in 𝔣 ==> !(P𝐹(𝔥, x, z) && P𝐹(𝔣, z, y)))

78 define DISJOINT(𝔥1, 𝔥2) (forall n :: n in 𝔥1 ==> !(n in 𝔥2))

The encoding uses ISCONVEX𝐹(𝔥,𝔤) to check that 𝔥 is relatively convex in 𝔤 — the SMT
solver automatically identifies which of the two (mathematically equivalent) representa-
tions can be satisfied, CONVEX_BEFIRE or CONVEX_AFTER; CONVEX_ADD𝐹(𝔥,𝔤) can be used
in the encoding to add the relative convexity constraint over 𝔥 and 𝔤.

3.7.4.3 Path localization. Next, we add the formulas for converting between 𝔥-local
and 𝔤-local reachability information (for 𝔥 ≺ 𝔤):

79 define EnableFocusOnConvexSubHeap𝐹(𝔥, 𝔤, 𝔣) {
80 assume forall x, y :: x in 𝔥 && y in 𝔥 && P𝐹(𝔤, x, y) ==> P𝐹(𝔥, x, y)
81 assume forall x, y :: x in 𝔥 && P𝐹(𝔥, x, y) ==> P𝐹(𝔤, x, y)
82 assume CLOSED𝐹𝔤 (𝔥) ==> forall x, y :: x in 𝔥 && !(y in 𝔥) ==> !P𝐹(𝔤, x, y)
83 }

The first two assumptions follow from to case i of (3.12) and (3.13), enabling local-
ization of 𝔥-local paths that may leave 𝔥 by at most one node. The relative convexity
condition allows expressing the existence of a path x… y, where both x and y are in 𝔥,
via any of the two predicates: P(𝔥, x, y) or P(𝔤, x, y). If the condition y ∈ 𝔥 is dropped,
then the existence of an 𝔥-local path still implies the existence of a 𝔤-local one, but not
vice versa because an 𝔥-local path may exit its local heap fragment only by a single node;
we will treat the case of paths that span the boundaries of heap fragments in the next
part of this section.

The third assumption covers the special case in which 𝔥 is a relatively closed subheap
of 𝔤 (see line 17), and so all heap paths originating in 𝔥 must not cross its boundary. This
formula follows from (𝑁𝑜𝐸𝑥𝑖𝑡[𝐴, 𝑓 ]) with ⋅ ∈ 𝔥 for 𝐴 and Edge(⋅, ⋅) ∈ rsnap𝐹(𝔤) for 𝑓 .
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Note that the second and the third assumptions can be used together for constraining
both 𝔥-local and 𝔤-local paths in a configuration in which 𝔥 is relatively closed.

We now encode the complimentary set of formulas for converting between 𝔣-local
paths and 𝔤-local paths. These formulas are more complex due to the fact that 𝔣 is not
necessarily relatively convex in 𝔤, as we explained in Sec. 3.5.2. In particular, we use two
different macro definitions for constraining 𝔣-local paths in the pre- and the post-states
of the call:

84 define EnableFocusOnFrameBefore𝐹(𝔥, 𝔤, 𝔣) {
85 assume forall x,y :: x in 𝔣 && y in 𝔣 &&
86 (forall z :: z in 𝔥 ==> !(P𝐹(𝔤, x, z) && P𝐹(𝔤, z, y))
87 ==> (P𝐹(𝔣, x, y) <==> P𝐹(𝔤, x, y))
88 assume forall x,y :: x in 𝔣 && y in 𝔣 &&
89 (exists z :: z in 𝔥 && P𝐹(𝔤, x, z) && P𝐹(𝔤, z, y))
90 ==> (P𝐹(𝔣, x, y) <==> exists σ, τ ::
91 σ in 𝔣 && (exists z: Ref :: z in 𝔥 ==> P𝐹(𝔤, σ, z)) &&
92 τ in 𝔣 && (forall z: Ref :: z in 𝔥 ==> !P𝐹(𝔤, τ, z)) &&
93 P𝐹(𝔤, x, σ) && E(𝔤, σ, τ) && P𝐹(𝔤, τ, y)) }

94 define EnableFocusOnFrameAfter𝐹(l1, l2, 𝔤, 𝔣) {
95 assume old[l1](rsnap𝐹(𝔣)) == old[l2](rsnap𝐹(𝔣))
96 assume forall x,y :: x in 𝔣 && P𝐹(𝔣, x, y) ==> P𝐹1(𝔤, x, y) && P𝐹2(𝔤, x, y)
97 assume CLOSED𝐹𝔤 (𝔣) ==> forall x,y :: x in 𝔣 && !(y in 𝔣) ==> !P𝐹1(𝔤, x, y) && !P𝐹2(𝔤, x, y)
98 }

The two assumptions on lines 85 to 93 enable the SMT solver to convert 𝔤-local reach-
ability information into 𝔣-local information. The first assumption is simpler: if x does
not reach 𝔥 or y is not reachable from 𝔥 (line 86), then the path x… y simply coincides
in 𝔣 and 𝔤. Conversely, if the stated condition does not hold (line 89), the existence of
an 𝔣-local path can be expressed via a three-way split of the hypothetical path x… y into
x…(σ, τ)… y, where σ and τ are two frame nodes, reaching and not reaching 𝔥, resp.,
such that there exists an edge connecting the former to the latter. This fact corresponds
to (3.18) and is encoded as the second assumption.

It is sufficient to constrain the frame-local reachability information in the pre-state of
the call because, in the post-state, the properties of the frame (in particular, the existence
or the absence of frame-local paths) are unchanged. Hence, the assumption on line 95
simply states that the evaluation of the rsnap function is the same in both states, enabling
separation-logic framing (3.11). The two assumptions on lines 96 to 97 are similar to
those on lines 81 to 82, except with 𝔣 for 𝔥, but they constrain both states at the same
time. Intuitively, since all properties of the frame are unchanged, the properties of a
bigger heap fragment that they imply must also remain unchanged.

Note that our encoding has some mathematical redundancy; in particular, since the
existence of a 𝔣-local path, say, 𝑥…𝑦 always implies the existence of a 𝔤-local path 𝑥…𝑦
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(lines 96 to 97), we could avoid using double implications in our assumptions on lines 85
to 93, leaving only the <== direction in the encoding that corresponds to converting 𝔤-
local reachability information back to 𝔣-local information. However, the three-way split
of our 𝔣-local path is useful independently of the mere knowledge that this path exists be-
cause it introduces candidate witnesses that can be used for recovering this information
in future states. A concrete example of a situation in which this problem arises is given
in Fig. 3.19.

3.7.4.4 Splitting and joining the paths. Under the condition 𝔥 = 𝔤 framing is trivial;
we do not add any quantified formulas for this case to avoid matching loops [108] in
the encoding. Otherwise, we add the three formulas (lines 101 to 103) corresponding to
cases ii, iii, and iv of Fig. 3.16, resp.; note that cases i and v do not require splitting or
joining paths and were already covered in lines 79 to 98.

99 define ApplyConvexTCFraming𝐹(l1, l2, 𝔥, 𝔤, 𝔣) {
100 if (𝔥 != 𝔤) {
101 assume OutInPaths𝐹(l1, l2, 𝔥, 𝔤, 𝔣)
102 assume InOutPaths𝐹(l1, l2, 𝔥, 𝔤, 𝔣)
103 assume OutOutPaths𝐹(l1, l2, 𝔥, 𝔤, 𝔣)
104 } }

Our formulas for splitting and joining heap paths are two-state constraints. For exam-
ple, it is possible to join an 𝔣-local path 𝑥…𝑎 (where 𝑥 ∈ 𝔣 and 𝑎 ∈ 𝔥) with an 𝔥-local
path 𝑎…𝑦 in the post-state of the call (see “ii” in Fig. 3.16); since the former sub-path is
identical in both states, the existence of the path 𝑥…𝑦 can be expressed as the two-state
formula P1(𝔣, 𝑥, 𝑎) ∧ P2(𝔥, 𝑎, 𝑦), where the subscripts 1 and 2 indicate the pre-state (l1)
and the post-state (l2) of the call, resp. Since 𝔣-local paths remain unchanged, we al-
ways encode them in the pre-state. Accordingly, our encoding adds constraints over the
pre-state of the call using only P1(𝔣, ⋅, ⋅), P1(𝔥, ⋅, ⋅), P1(𝔤, ⋅, ⋅) and constraints over the post-
state P1(𝔣, ⋅, ⋅), P2(𝔥, ⋅, ⋅), P2(𝔤, ⋅, ⋅). For readability, we make the 𝐹 parameter implicit in
P and use α and β to denote entry and exit points of the footprint 𝔥 — these are freshly
declared Skolem functions with their parameters in the subscripts.

105 define OutInPaths𝐹(l1, l2, 𝔥, 𝔤, 𝔣) (
106 (forall x,y :: x in 𝔣 && !(y in 𝔣) && P1(𝔤, x, y) ==> // Split in pre-state
107 α1

x,y in 𝔥 && P1(𝔣, x, α1
x,y) && P1(𝔥, α1

x,y, y))
108 && (forall x,y :: x in 𝔣 && !(y in 𝔣) && P2(𝔤, x, y) ==> // Split in post-state
109 α2

x,y in 𝔥 && P1(𝔣, x, α2
x,y) && P2(𝔥, α2

x,y, y))
110 && (forall x,a,y :: x in 𝔣 && a in 𝔥 && !(y in 𝔣) && // Join in pre-state
111 P1(𝔣, x, a) && P1(𝔥, a, y) ==> P1(𝔤, x, y))
112 && (forall x,a,y :: x in 𝔣 && a in 𝔥 && !(y in 𝔣) && // Join in post-state
113 P1(𝔣, x, a) && P2(𝔥, a, y) ==> P2(𝔤, x, y)))
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The formula on lines 106 to 113 corresponds to case “ii” of (3.12). The only difference
is that we incorporate the information from (3.13) in order to support the case of paths
exiting the entire heap fragment of 𝔤 (note the conditions y ∉ 𝔥 on the LHS of the
implications that we use in the encoding instead of y ∈ 𝔣 in the original formula). In
our encoding, we explicitly Skolemize the existential quantifier and rewrite the double
implication via two implications to guarantee full control over the direction of instanti-
ations.

114 define InOutPaths𝐹(l1, l2, 𝔥, 𝔤, 𝔣) (
115 (forall x,y :: x in 𝔥 && !(y in 𝔥) && P1(𝔤, x, y) ==> // Split in pre-state
116 β3

x,y in 𝔣 && P1(𝔥, x, β3
x,y) && P1(𝔣, β3

x,y, y))
117 && (forall x,y :: x in 𝔥 && !(y in 𝔥) && P2(𝔤, x, y) ==> // Split in post-state
118 β4

x,y in 𝔣 && P2(𝔥, x, β4
x,y) && P1(𝔣, β4

x,y, y))
119 && (forall x,b,y :: x in 𝔥 && b in 𝔣 && !(y in 𝔥) && // Join in pre-state
120 P1(𝔥, x, b) && P1(𝔣, b, y) ==> P1(𝔤, x, y))
121 && (forall x,b,y :: x in 𝔥 && b in 𝔣 && !(y in 𝔥) && // Join in post-state
122 P2(𝔥, x, b) && P1(𝔣, b, y) ==> P2(𝔤, x, y)))

Similarly, lines 115 to 122 correspond to case “iii” of (3.12) augmented with the infor-
mation from (3.13). The above comments apply.

123 define OutOutPaths𝐹(l1, l2, 𝔥, 𝔤, 𝔣) (
124 (forall x,y :: x in 𝔣 && !(y in 𝔥) && P1(𝔤, x, y) ==> P1(𝔣, x, y) ||
125 (α5

x,y in 𝔥 && β5
x,y in 𝔣 && P1(𝔣, x, α5

x,y) && P1(𝔥, α5
x,y, β5

x,y) && P1(𝔣, β5
x,y, y)))

126 && (forall x,y :: x in 𝔣 && !(y in 𝔥) && P2(𝔤, x, y) ==> P1(𝔣, x, y) ||
127 (α6

x,y in 𝔥 && β6
x,y in 𝔣 && P1(𝔣, x, α6

x,y) && P2(𝔥, α6
x,y, β6

x,y) && P1(𝔣, β6
x,y, y)))

128 && (forall x,a,b,y :: x in 𝔣 && a in 𝔥 && b in 𝔣 && !(y in 𝔥) &&
129 P1(𝔣, x, a) && P1(𝔥, a, b) && P1(𝔣, b, y) ==> P1(𝔤, x, y))
130 && (forall x,a,b,y :: x in 𝔣 && a in 𝔥 && b in 𝔣 && !(y in 𝔥) &&
131 P1(𝔣, x, a) && P2(𝔥, a, b) && P1(𝔣, b, y) ==> P2(𝔤, x, y)))

Finally, lines 124 to 131 correspond to the information from case “iv” of (3.12) induced
by the second disjunct; again, we augment the original formula with the information
from (3.13) and the above comments apply. While the left-to-right direction of the im-
plication is encoded directly, the right-to-left direction provides two implications, one of
which was already covered in our encoding on lines 96 to 97; hence, we omit from the
encoding the second copy of formula ∀𝑥 ∈ 𝔣, 𝑦 ∉ 𝔥. P1(𝔣, 𝑥, 𝑦) ⇒ P1(𝔤, 𝑥, 𝑦)∧P2(𝔤, 𝑥, 𝑦).
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3.8 EvALuATION

We have evaluated our technique on a variety of challenging example programs taken
from the literature, illustrating our technique for different classes of graphs and data
structures (including the running examples of closely-related work).

3.8.1 Experimental setup

We encoded each example by-hand into the Viper verification language [91]: an interme-
diate verification language designed for expressing heap-based verification problems,
and with native support for separation logic reasoning. Although manual, our encoding
of each example was performed methodically, simulating the translation that a frontend
verification tool could perform. Each example consists of a common set of background
definitions and axioms, along with a translation of the code of the example, statement
by statement, according to the technique presented in Sec. 3.5 and Sec. 3.6. For instance,
a source-level method call is encoded with additional assume and assert statements be-

Table 3.3: Experimental results.

We indicate example features via ✓ where and denote examples with greater-than-one outde-
gree and with sharing, resp.; ≺ means convex framing.

Example Variant Class ≺ Time [s] Notes

Merge (Fig. 3.12) Tree DAG ✓ ✓ 16.1 Path-partitioning
DAG DAG ✓ ✓ ✓ 14.5 Unbounded cutpoints
Fail 1 DAG ✓ ✓ ✓ 13.2 Bug in code
Fail 2 DAG ✓ ✓ ✓ 33.9 Bug in spec.

Left-Child- Tree, add sibl. DAG ✓ ✓ 10.5 Encodes n-ary tree as binary
Right-Sibling Tree, add child DAG ✓ ✓ 15.0 — ” —

DAG, add sibl. DAG ✓ ✓ ✓ 10.1 Unbounded cutpoints
DAG, add child DAG ✓ ✓ ✓ 17.1 — ” —

Harris List Original DAG ✓ 14.5 From [100]
Acyclic List Reverse DAG 7.9 From [53]

Append DAG 6.9 — ” —
Ring-Insert: Sorted ZOPG ✓ ✓ 87.2 Functional spec.
Impl. Anywhere ZOPG ✓ ✓ 10.1 — ” —
Ring-Insert: Closed {𝑢} ZOPG ✓ ✓ ✓ 11.5 Non-convex frame
Client (Fig. 3.22) Open {𝑢} ZOPG ✓ ✓ ✓ 10.8 ZOPG obligations

Fail 1 ZOPG ✓ ✓ ✓ 12.4 Failure due to (β)
Fail 2 ZOPG ✓ ✓ ✓ 10.7 Failure due to (α), (γ)
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fore and after the call which enable reachability framing on relatively convex method
footprints, as defined in Sec. 3.5.2.

The background definitions common to our examples are organized in separately-
included library files, and we make heavy use of Viper’s macros to improve the readabil-
ity of our encoded examples. Our examples are verified with Viper’s standard Boogie-
based [46] verifier, which uses the Z3 SMT solver [47] for checking verification condi-
tions. We indicate Viper’s run time for each example in Tab. 3.3. The experiments were
performed on a laptop running macOS, with a 2.8 GHz Intel Core i7 CPU, with Z3 ver-
sion 4.8.5 - 64 bit. The Viper files used in our experiments are available online [114].

An important practical issue arising in the successful use of SMT-based verification
tools is controlling the instantiation of quantifiers; our technique employs a large num-
ber of quantified formulas, and we have carefully selected appropriate triggering pat-
terns [33, 47, 54, 94] for these, guided by the intended situations in which these formu-
las are relevant; for the rich reachability properties expressed by our technique, such
triggers are essential for performance. Since our source-level specifications can also con-
tain quantified formulas, we require these to be annotated with appropriate triggers (for
simple cases, Viper can also infer appropriate choices if omitted).

3.8.2 Experiments

Tab. 3.3 gives an overview of our experiments. The “Merge” example is our first run-
ning example of Fig. 3.12, in variants with both tree and DAG structures for the underly-
ing graphs (obtaining the DAG variant simply requires dropping the tree requirements
throughout; no other changes are necessary). “Left-Child-Right-Sibling” is a technique
for encoding trees with arbitrary multiplicities using only two fields (representing a list
of children at each node), as employed in binomial heaps [50], and recently proposed
as a verification challenge [101]. We again show a DAG variant (directly obtained by re-
moving tree requirements), and verify adding sibling and child structures. As with the
running example, these are non-functional graphs with (in the DAG case) sharing and
requiring our convex framing to frame reachability across sub-calls; to our knowledge,
they are beyond reach for all existing automated graph-verification techniques.

The “Fail” variants of Merge are buggy, with the bug being (1) negation of the branch
condition in the body of merge and (2) missing merge’s last precondition. We have ob-
served that the failure time does not diverge from the time of a successful verification
attempt. This is important in practice if a program’s implementation and specification
are developed iteratively, with multiple invocations of the verifier.

Lev-Ami et al. verify reachability for linked-list reverse and append methods [53]; the
recent Flows framework [100] uses the Harris List as running example. In both cases,
we prove the same invariants and reachability specifications, simply encoded in our
language. In the latter case, we use two reachability relations based on different edges.
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“Ring-Insert” is a series of six 0–1-path graph examples. We wrote two variants of
the Ring-Insert method. “Sorted” is an implementation that traverses a sorted ring and
inserts a newly allocated node into the right place. We can prove both reachability (the
ring remains a ring) and sortedness; our connection to separation-logic reasoning makes
layering additional functional specifications of this kind straightforward. “Anywhere” is
the version discussed in Sec. 3.6, where the insertion happens at an arbitrary point in
the ring. We also verified two types of clients of Ring-Insert. “Closed {𝑢}” is the example
of Fig. 3.22, where the attached node does not have outgoing paths, whereas “Open
{𝑢}” permits the attached node to be both reachable from the frame and have outgoing
paths. The latter requires a more subtle precondition to satisfy the 0–1-path preservation
criteria. In the final two cases, we show that our technique allows us to automatically
identify the type of bad configurations that may violate the 0–1-path invariant in cases
where the heap is under-constraint before a method call Sec. 3.6.2.

3.8.3 Results

Our experiments show that reachability properties are amenable to SMT-based verifica-
tion for a broad class of heap-transforming programs. In particular, we have observed
that our technique is well-suited for this task despite heavy usage of quantified formulas.
While developing the specifications, we have experienced that our technique helps the
programmer to better understand the subtle effects of heap operations on data structure
invariants. Even with good tool support, writing consistent preconditions and postcon-
ditions requires particular craftsmanship, especially for recursive methods, like merge.
Additionally, SMT-based verification with quantifiers requires the programmer to an-
notate the specifications with triggers.

3.9 METATHEORy

In this section, we first sketch an argument that our overall verification technique is
sound (Sec. 3.9.1) and then expand the foundation of relatively convex framing (Sec. 3.9.2).

3.9.1 Soundness

Our technique encodes separation logic with local reachability relations (SL2R2) into the host
logic, i. e. a first-order separation logic equipped with iterated separating conjunction
and heap-dependent functions, e. g. Viper. We assume that the host logic is sound and
its assertions are automatically translated (by our technique) into first-order proof obli-
gations that are subsequently discharged by an automatic prover, e. g. an SMT solver.
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Our technique is sound if a successful verification of the encoding of a program and
its local reachability specifications into the host logic implies that there exists a proof of
correctness of the specified program using SL2R2. To establish soundness, the follow-
ing three conditions must hold. First, the prerequisites of the technique are met (as will
be defined below). Second, we can establish a (Hoare-style) SL2R2 proof outline that re-
lies on a mapping from encoded program states to SL2R2 assertions (e. g. exists_path
(rsnap(𝔤),x, y) → P(𝔤, x, y)). For each encoded statement s, we map its pre- and post-
states to the corresponding SL2R2 assertions 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡 and check that the Hoare triple
{𝑝𝑟𝑒} s {𝑝𝑜𝑠𝑡} is indeed provable in SL2R2. Third, all lemmas automatically established
by the prover coincide with SL2R2 lemmas. These three requirements imply soundness
of our technique, i. e. the encoding of a specified program will verify only if there exists
an SL2R2 proof that justifies it.

Our technique has the following three soundness prerequisites:

• Each footprint selector is well-defined (Sec. 3.3.3.1).

• Each new footprint is relatively convex in its client’s footprint, both before and after
the call (Sec. 3.5.1.3).

• All heap-transforming operations in methods with DAG and 0–1-path footprints
preserve their corresponding footprint invariant (Sec. 3.6.2).

The first prerequisite is automatically met if the programmer uses (a combination of) one
of the standard footprint selector functions, as described in Sec. 3.3.3. The programmer
must manually prove that each custom footprint selector function is well-defined. The
latter two prerequisites are automatically checked by our technique; in case a check fails,
the technique reports an error. A future frontend could parse such errors and report the
corresponding readable message to the programmer; in particular, counterexample SMT
models can be useful for understanding such failures, as we will discuss in Chap. 4.

3.9.2 Relatively Convex Subgraphs

Relative convexity of procedure footprints is the key assumption that enabled efficient
and precise reachability framing via simple, first-order formulas (3.12) because in our
setting path partitioning is based solely on the origins and the destinations of paths.
In this partitioning schema, only the callee footprint is required to be relatively convex
while the frame of the call may be non-convex, complicating reachability information
localization in the frame. Information about the existence of frame-local paths is a pre-
requisite of a precise reasoning technique, as we explained in Sec. 3.5.2. Our technique
seamlessly solves this problem with a generalized formula (3.18) that provides precise
frame-local reachability information with the help of edge witnesses (i. e. (𝜎, 𝜏) edges
from Fig. 3.20). However, the solution that we demonstrated so far is not unique. There-
fore, we proceed with the observations and propositions that motivated our design.
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SETTING. We revisit the configuration of Fig. 3.16, with two procedures, a callee and
its client with 𝔥 and 𝔤 as their footprints, resp. Let these footprints be relatively convex
(𝔥 ≺ 𝔤, see Def. 1) in some program state (e. g. before or after the call). Let 𝔣 be the frame
of the call (𝔣 = 𝔤 𝔥). Due to relative convexity, following a 𝔤-local path that originates
in and exits 𝔥, one cannot enter 𝔥 again; hence, all 𝔤-local paths are distributed in five
cases based on the distribution of their origins and destinations in 𝔥 and 𝔣.

pROBLEM. To support reachability framing, our goal is to convert 𝔤-local reachability
information into a combination of 𝔥-local and 𝔣-local information, and vice versa. We
explained in Sec. 3.5 that the simple path partitioning schema powered by relative con-
vexity enables such conversion for all cases except the case of paths that start and end in
the frame. In this last case, an additional complication arises: Unlike the callee footprint,
the frame of the call is not necessarily relatively convex in the client footprint, and paths
that start and end in 𝔣 are not guaranteed to be 𝔣-local, as following such paths one can
exit the frame and then enter it again, although, no more than once.

We first summarize the key observations and then formalize our claim in Th. 1. While
partitioning the client’s footprint into two relatively convex partitions (i. e. the footprint
and the frame of a call) is not always possible, it is always possible to further partition
the (generally, non-convex) frame into two relatively convex sub-frames. Moreover, one
sub-frame (𝔣𝑖𝑛) can include all entry points (footprint nodes directly pointed to from
the frame) whereas the other (𝔣𝑜𝑢𝑡) can include all exit points (footprint nodes directly
pointing to the frame). The resulting three-way partitioning schema of the form 𝔤 =
𝔣𝑖𝑛⊎𝔥⊎𝔣𝑜𝑢𝑡, where 𝔣𝑖𝑛, 𝔥, 𝔣𝑜𝑢𝑡 ≺ 𝔤, enables precise conversion of 𝔤-local reachability into
𝔣-local reachability (where 𝔣 = 𝔣𝑖𝑛 ⊎ 𝔣𝑜𝑢𝑡 is the frame partition from our standard path
partitioning formulas (3.12)):

∀𝑥, 𝑦 ∈ 𝔣𝑖𝑛 • P(𝔣, 𝑥, 𝑦) ⟺ P(𝔤, 𝑥, 𝑦)
∀𝑥, 𝑦 ∈ 𝔣𝑜𝑢𝑡 • P(𝔣, 𝑥, 𝑦) ⟺ P(𝔤, 𝑥, 𝑦)

∀𝑥 ∈ 𝔣𝑜𝑢𝑡, 𝑦 ∈ 𝔣𝑖𝑛 • ¬P(𝔣, 𝑥, 𝑦)
∀𝑥 ∈ 𝔣𝑖𝑛, 𝑦 ∈ 𝔣𝑜𝑢𝑡 • P(𝔣, 𝑥, 𝑦) ⟺ ∃𝜎 ∈ 𝔣𝑖𝑛, 𝜏 ∈ 𝔣𝑜𝑢𝑡 • P(𝔤, 𝑥, 𝜎) ∧ E(𝔤, 𝜎, 𝜏) ∧ P(𝔤, 𝜏, 𝑦)

(3.33)
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(a) Abstract path diagram.
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𝔥

(b) Example with alternative partitioning schemes.

Figure 3.32: Relatively convex three-way partitioning.

The partition 𝔥 (surrounded with red) is a relatively convex partition (of some larger heap frag-
ment 𝔤). (a): The compliment partition (surrounded with blue) can be split into two new rela-
tively convex partitions of 𝔤 — 𝔣𝑖𝑛 and 𝔣𝑜𝑢𝑡 — via an 𝑠–𝑡-cut, e. g. where the former is the set of
all nodes from the compliment reaching 𝔥 and the latter is the set of all other nodes from the
compliment reachable from 𝔥. (b) There can be many possible 𝑠–𝑡-cuts that split the compliment
into relatively convex partitions (e. g. 1, 2, 3 on the diagram). The three partitions are not nec-
essarily acyclic, although, due to relative convexity, heap cycles cannot span the boundaries of
these partitions.

We will now justify our claim that selecting a pair of relatively convex footprints 𝔥, 𝔤
defines a triplet of relatively convex partitions.

Theorem 1 (Relatively Convex Three-Way Partitioning). Let 𝔤 be a heap fragment in some
program state and 𝔥 be its relatively convex partition (𝔥 ≺ 𝔤, see Def. 1). Then the compliment
𝔤 𝔥 can be split into two relatively convex partitions, 𝔣𝑖𝑛 and 𝔣𝑜𝑢𝑡, i. e.:

∀𝔥 ≺ 𝔤 • ∃𝔣𝑖𝑛, 𝔣𝑜𝑢𝑡 ≺ 𝔤 • 𝔤 = 𝔣𝑖𝑛 ⊎ 𝔥 ⊎ 𝔣𝑜𝑢𝑡

Proof. We analyze nodes 𝑛 ∈ 𝔣𝑖𝑛 ⊎ 𝔣𝑜𝑢𝑡 based on their reachability to and from 𝔥, namely,
the values of the following predicates:

P(𝔤, 𝑛, 𝔥) ..⟺ ∃𝑧1 ∈ 𝔥 • P(𝔤, 𝑛, 𝑧1)

P(𝔤, 𝔥, 𝑛) ..⟺ ∃𝑧2 ∈ 𝔥 • P(𝔤, 𝑧2, 𝑛)

First, both P(𝔤, 𝔥, 𝑛) and P(𝔤, 𝑛, 𝔥) cannot hold at the same time as that would violate
our assumption that 𝔥 is relatively convex in 𝔤. Second, if ¬P(𝔤, 𝔥, 𝑛) and ¬P(𝔤, 𝑛, 𝔥),
then 𝑛 can be included in any one of the sub-frames, e. g. in 𝔣𝑜𝑢𝑡, ensuring their relative
convexity (such nodes do not affect the rest of the discussion). Finally, we include all
nodes reaching 𝔥 into 𝔣𝑖𝑛 and all other nodes into 𝔣𝑜𝑢𝑡; since in our setting we assume no
additional information about 𝔤-local paths, the condition P(𝔤, 𝑛, 𝔥) is a precise criterion.
Hence, we construct the following relatively convex partitions for 𝔤 𝔥:

𝔣𝑖𝑛 = {𝑛 ∈ 𝔤 𝔥 ∣ ∃𝑎 ∈ 𝔥 • P(𝔤, 𝑛, 𝑎)}
𝔣𝑜𝑢𝑡 = (𝔤 𝔥) 𝔣𝑖𝑛
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It is easy to check that these partitions are relatively convex in 𝔤. 𝔣𝑜𝑢𝑡 ≺ 𝔤: Paths that orig-
inate in this partition reach neither 𝔥 (by definition of 𝔣𝑜𝑢𝑡) nor 𝔣𝑖𝑛 (as that would imply
that they transitively reach 𝔥, violating the same definition). 𝔣𝑖𝑛 ≺ 𝔤: Paths originating
in 𝔣𝑖𝑛 that reach 𝔣𝑜𝑢𝑡 cannot reach 𝔣𝑖𝑛 again due to our last argument; since all nodes in
𝔣𝑖𝑛 reach 𝔥 (by definition), paths originating in 𝔣𝑖𝑛 that reach 𝔥 cannot reach 𝔣𝑖𝑛 again as,
due to our assumption that 𝔥 is relatively convex, there cannot exist paths that originate
in and exit 𝔥 that reach 𝔥 again.

Based on Th. 1, we can derive a static frame partitioning schema (𝔣 = 𝔣𝑖𝑛 ⊎ 𝔣𝑜𝑢𝑡), i. e. a
partitioning that can be defined once for all nodes in a relatively convex decomposition
of 𝔥 ≺ 𝔤, as opposed to dynamic frame partitioning,27 such as the kind used in our
automatic technique of Sec. 3.5.2. In both schemes, the sub-frames are defined for a
fixed footprint pair 𝔥, 𝔤 (with the condition 𝔥 ≺ 𝔤), but the dynamic partitioning schema
additionally fixes a pair of frame nodes, 𝑠 and 𝑡, for which the paths 𝑠… 𝑡 are distributed
among the footprint of the call and the two sub-frames (Fig. 3.32). We choose to split the
path into 𝑠… (𝜎, 𝜏)… 𝑡 where 𝜎 is the last node reaching 𝔥 on the frame-local path from
𝑠 to 𝑡; as we argued in Sec. 3.5.2, this increases the chances that a witness for the edge
(𝜎, 𝜏) will naturally occur, e. g. in the form (𝑛, 𝑛.𝑓 ) for some field 𝑓 and frame node 𝑛, as
in our example of Fig. 3.19. However, any 𝑠–𝑡-cut modulo cycles (i. e. a split of the frame’s
acyclic part that separates 𝑠 and 𝑡) could be used instead. Note that we do not assume
that the heap can be represented by finite graphs; the existence of 𝑠–𝑡-cuts for infinite
graphs follows from the Menger-Erdős’s theorem [48].

3.10 DISCuSSION

In this section, we summarize the strengths (Sec. 3.10.1) and limitations (Sec. 3.10.2) of
our technique for compositional reasoning about heap reachability properties,28 and
conclude the chapter (Sec. 3.10.3).

3.10.1 Strengths

MODuLARITy. Our reasoning technique for reachability properties is modular. For each
method, the programmer specifies reachability only locally, within the method’s foot-
print. Our technique enables precise (first-order) framing of reachability information,
i. e. reachability properties of the callee footprint are automatically extended to the (larger)
client footprint, as long as these footprints are relative convexity.

27 Our technique does not require specifying the sub-frames.
28 We have presented a detailed comparison of our work vs. the state of the art in Sec. 3.2.7.
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GENERALITy. Our technique supports practically important heap structures, significantly
generalizing over the structures supported in prior work. In particular, we support ar-
bitrary acyclic structures with a bounded outdegree, e. g. binary decision diagrams and
version control histories, but also (potentially cyclic) 0–1-path graphs which generalize
linked-lists and trees.

SEpARATION LOGIC. Our technique integrates into first-order separation logic, enabling
reasoning about reachability and other properties in a uniform way, verifying concur-
rent programs, and automating our technique via existing separation logic verifiers.

3.10.2 Limitations

uNBOuNDED quANTIFICATION. The generality of our axiomatization is due to unbounded
first-order quantification. However, instantiating quantifiers with appropriate ground
terms is an undecidable problem. This makes our technique inherently incomplete. We
mitigated this incompleteness by formulating our axioms in a generic way. This required
trading off some efficiency as there may be spurious axiom instantiations.

In our experience, the incompleteness caused by quantifier instantiation mostly con-
cerns entailment proofs, e. g. converting between reachability information defined in
terms of concrete heap edges and reachability predicates, and — to a lesser extent —
field update formulas. In practice, automating a proof might require adding manual as-
sertions or slightly refining the program’s specification to expose useful ground terms
to the solver. Conversely, our encoding for reachability framing did not cause any au-
tomation problems; this is expected as splitting heap paths before a method call intro-
duces explicit cutpoints (via Skolemization) that the solver can then use as existential
witnesses for joining heap paths after the call.

SyMBOLIC ExECuTION. Our encoding performs poorly with Viper’s symbolic execution
engine, practically limiting the current version of the technique to Viper’s verification
condition generator. We discussed the usefulness of supporting two alternative back-
ends in Sec. 1.1.2. A preliminary investigation showed that extremely wide symbolic
execution trees occur while symbolically evaluating reachability update formulas. A
thorough analysis and remedy are future work.

COMBINING DAGS AND zOpGS. To support field updates, our technique maintains one
of the two structural invariants of the current method’s footprint: either acyclicity or
uniqueness of paths. As an effect of an operation, acyclic structures must not be changed
into 0–1-path graphs, and vice versa. Supported data structure decompositions are thus
limited to those in which both the callee and the client share their structural invariant.
A generalization is future work.
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DECOMpOSITIONS OF CyCLIC STRuCTuRES. Our technique requires that a callee’s footprint
is convex relatively to its client’s footprint. This requirement is typically naturally satis-
fied for most data structure decompositions. However, our technique does not support
some two-way decompositions of cyclic structures that could occur in practice. For exam-
ple, if the client with the footprint 𝔤 operates on three-node ring structure 𝑎 → 𝑏 → 𝑐 → 𝑎,
then it cannot invoke a callee with the footprint 𝔥 = {𝑎, 𝑏} as this would violate relative
convexity (since there exists a path of the form 𝑏 ∈ 𝔥 … 𝑐 ∈ (𝔤 𝔥) … 𝑎 ∈ 𝔥).

BOuNDED OuTDEGREE. Our technique is designed for heap graphs with bounded outde-
gree, i. e. nodes may have only a bounded number of reference fields. This assumption
allows us to avoid some existential quantifiers in the encoding, simplifying the logical
complexity of our technique (which is important for automation). However, this limita-
tion can be mitigated, e. g. by employing the left-child-right-sibling representation [13]
that encodes graphs with arbitrary outdegree via graphs with an outdegree of 2.

ISC-BASED SETTING. We assumed a setting in which all method footprints are explicitly
specified via nodesets. One could potentially lift this requirement if the nodeset-based
footprint representations could be encoded or inferred rather that specified. Theoretically,
this should be possible in a logic that supports permission introspection, which is the case
e. g. in Viper [91]. However, investigating such a setting is future work.

We will discuss generalizations of our techniques in more detail in Sec. 5.1.

3.10.3 Conclusion

In this chapter, we have developed a compositional technique for reasoning about reach-
ability properties in separation logic. Our solution is based on the novel notions of local
reachability and relatively convex heap fragments. Relative convexity enables precise,
first-order reachability framing by restricting only the possible decompositions — but
not the shapes — of supported linked heap structures.

The compositional techniques of Chap. 2 and Chap. 3 complement each other. The
former supports comprehensive specifications that allow the programmer to summa-
rize data structure values in an abstract but expressive way. The latter supports local
reachability properties that are essential for defining data structure shapes.



4 VERIFICATION DEBUGGING

In this chapter, we address the problem of verification debugging for heap-transforming
programs and their separation-logic specifications. Generally, verification debugging in-
volves techniques and tools that aid the programmer in understanding the reasons why
certain verification attempts are unsuccessful. In particular, verification failures may be
caused by bugs in the implementation of a program, e. g. due to off-by-one errors or typos
in variable names. Inadequate specifications are another source of failure, e. g. a loop in-
variant that lacks information may be too weak to entail the overall proof goal, while
an overly strong invariant cannot be established at loop entry. Note that these failure
causes are not necessarily exclusive, e. g. in case of a buggy program with inadequate
specification.

DEBuGGING IN pRESENCE OF uNDECIDABILITy. Understanding the scope of a verification
failure is especially complicated for programs with rich specifications, e. g. those ex-
pressed with set comprehensions (Chap. 2) or local reachability predicates (Chap. 3).
Richer specifications express more program properties that are harder to automatically
verify as this requires discharging proof obligations that are undecidable. Even the best
automatic theorem provers used by modern program verifiers (e. g. Z3 [47]) are funda-
mentally incomplete while reasoning with undecidable logics. Therefore, automatically
verifying a program against its rich specifications may result in spurious verification fail-
ures.1 It is crucial for the programmer to be able to understand whether a particular
failure is spurious as this may determine the best solution strategy.

DEBuGGING wITH COuNTERExAMpLES. To understand why an execution of a program fails,
the programmer typically analyzes the test inputs that fail. Conceptually, a test input is
a counterexample to the hypothesis that the program is correct. In deductive verifica-
tion, a failure is not immediately accompanied by a concrete counterexample. Yet, the
programmer needs to be able to synthesize such counterexamples, e. g. to decide which
parts of the specification are inadequate and how they should be fixed.

SMT MODELS. An important advantage of SMT-automated verification is that the solver
provides counterexample models that can help understanding the contradiction that caused
the verification to fail. Recall that SMT-based verifiers encode the problem of verifying
an assertion, say 𝑄, about a program under some assumptions, say 𝑃, as the formula

1 In practice, spurious failures may occur even with decidable proof obligations due to the verifier’s limited
resources (e. g. out-of-time or out-of-memory events).

191
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𝐹 ≡ 𝑃∧¬𝑄 (called query). If 𝐹 is unsatisfiable, then 𝑄 is valid under 𝑃. Otherwise, 𝑄 may
be violated, i. e. we have a verification failure; in this case, there exists a model of 𝐹 that
can be interpreted as a counterexample.

To illustrate, let 𝑃 ≡ (x.next = y∧ y ≠ null) and 𝑄 ≡ (x.next ≠ y.next); then
𝐹 ≡ (x.next = y∧ y ≠ null∧ x.next = y.next). This formula is satisfiable, e. g. for the
following model:
null ↦ v0, x ↦ v1, y ↦ v2, next ↦ { v1 ↦ v2, v2 ↦ v2, else ↦ unspecified}

Here, v0–v2 are some (non-aliasing) values. For simplicity, we assume that there is only
one program state, and next is a (total) function of one argument (hence the redundant
else case). It is easy to see that this model encodes the counterexample to 𝐹 that can be
summarizes as x.next = y = y.next.

Generally, the assumptions 𝑃 may include global axioms (e. g. the fact that the length
of an empty list equals zero) as well as assumptions along a particular execution path.

AppROxIMATE SMT MODELS. In presence of rich program specifications (that lead to
undecidable proof obligations), SMT models are generally approximate. A common ap-
proach to encoding such specifications is to employ uninterpreted functions with quan-
tified axioms that specify some of their essential properties. Ideally, SMT models should
have concrete interpretations for all such functions, but (due to the undecidability) the
interpretations are typically partial, i. e. the function values are not specified for some
inputs, or even unsound, i. e. the solver did not instantiate some of the axioms that theo-
retically contradict the model.

It is sometimes possible to filter out spurious models via a validation procedure, e. g. the Z3
SMT solver [47] supports the model_validate option. In a possible validation approach,
one could incorporate information from the model into the original query and re-run
the solver. Since concrete model values yield ground terms that potentially trigger new
quantifier instantiations, the solver may conclude that the new query is unsatisfiable,
implying that the model certainly does not represent a counterexample to the original
proof obligation. However, model validation is generally also undecidable.

There are two possible approaches to verification debugging with approximate mod-
els. First, one could filter out the information that is not guaranteed to be sound, like
the partial SMT models, or even generate counterexamples to verification failures inde-
pendently of the SMT solver. This approach has the advantage that the programmer gets
reliable information about which counterexamples would actually cause a runtime fail-
ure. Second, one could use exactly the information that the partial SMT model provides
to explain why this particular solver failed the verification. This approach is especially
useful for debugging verification failures caused by the solver’s incompleteness.

REFINEMENT. After understanding the cause of a verification failure, the next step for
the programmer is to design and implement the fix. Fixing a program’s verification fail-
ure consists of refining (or simply correcting) the program’s specification and implemen-
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method swap(𝔤: Set[Ref], x: Ref, y: Ref)
requires NODES(𝔤) && x ∈ 𝔤 ∧ y ∈ 𝔤
ensures NODES(𝔤)

x.next = old(x.next) // l3
{
var tmp := x.next // l0
x.next := y.next // l1
y.next := tmp // l2

}

Client

Local 

x

y

tmp l0/l1/l2

x = ρ15

nextl0
nextl1
nextl2
nextl3

y = ρ18

nextl0
nextl1
nextl2
nextl3

tmpl0/l1/l2 = ρ31

ρ32

(a) (b)

Figure 4.1: Motivating example of visual verification debugging.

(a) Method swap swaps the next-field values of x and y, two nodes in the footprint 𝔤. Postcondi-
tion marked //l3 has a typo; it should say x.next = old(y.next). (b) Counterexample diagram
that helps understanding the issue. Local is the local store and Client depicts the footprint.2 State-
ful variables (tmp) and fields (next) are subscripted with their respective state labels (l0–l3 in
comments). Solid black arrows are heap edges and dotted arrows are local (non-null) references.

tation. While we acknowledge this problem, our focus is on aiding the programmer’s
understanding (by providing helpful counterexamples), rather than actually fixing ver-
ification failures.

SETTING. Further, we focus on verification debugging of heap-transforming programs
specified in the style of our techniques of Chap. 2 and Chap. 3. Hence, our setting is
again based on separation logic with potentially unbounded method footprints that are
explicitly specified as sets of non-null references.

MOTIvATING ExAMpLE. To motivate our visual debugging approach, consider the exam-
ple of Fig. 4.1. The method swap has a typo in its specification (Fig. 4.1a). The counterex-
ample diagram (Fig. 4.1b) helps the programmer to understand that the implementa-
tion transforms the heap correctly, while the issue is in swap’s postcondition (//l3). To
fully understand the problem, the programmer could use the visual diagram in two
ways. First, they could check how the failed postcondition reflects on the visual diagram:
x.next in l3 refers to ρ32, while old(x.next) refers to a different node, ρ31. Second, they
could simulate the algorithmic steps: the triplet (x.next, y.next, tmp) is (ρ31, ρ32, ρ31) in
l0; it then changes to (ρ32, ρ32, ρ31) in l1; finally, we get (ρ32, ρ31, ρ31) in l2, i. e. indeed,
the algorithm swaps x.next and y.next while the postcondition is inadequate.



194 vERIFICATION DEBuGGING

The purpose of this chapter is to establish a technique that could automatically pro-
duce counterexample heap diagrams (like Fig. 4.1b) from raw SMT models, aiding the pro-
grammer in debugging verification failures. Automation is an essential prerequisite of
a practically applicable verification debugging technique because manual inspection
of raw SMT models is cumbersome and prone to errors; e. g. even for the simple case
of Fig. 4.1a, the raw SMT model contains over 500 assignments.

pROBLEM STATEMENT. First, our technique should be agnostic to particular verifier im-
plementations. Second, our technique should be scalable, e. g. debugging should not sig-
nificantly increase verification time. The technique should succeed in producing coun-
terexamples even for highly complex input programs. Third, our technique should vi-
sualize the counterexamples with minimal user input. The output should be intelligible
yet informative evidence for the verification failure causes. Fourth, our technique should
be extensible, i. e. adding new specification features should be a systematic process.

OuTLINE. In the remainder of the chapter, we first present and compare the most rele-
vant existing verification debugging techniques (Sec. 4.1). We then present an approach
to manually constructing counterexample heap models to verification failures that occur
in our setting (Sec. 4.2); this includes our running example (Sec. 4.2.1).

The following four sections present our algorithm that automates those ideas. We in-
troduce our instrumentation for the source program (Sec. 4.3); we then present the gen-
eral algorithm for automatically producing counterexample heap models (Sec. 4.4) and
the extended algorithm for debugging reachability-powered specifications (Sec. 4.5).

We then describe the implementation of our technique (Sec. 4.6) and present a case
study (Sec. 4.7). We conclude the chapter with a discussion (Sec. 4.8).

4.1 ExISTING wORk

Two major lines of work target the problem of verification debugging. First, we will
discuss the line concerning dynamic verification debuggers (Sec. 4.1.1). We will then discuss
the alternative line — and the main focus of this chapter — techniques concerning static
verification debuggers (Sec. 4.1.2). We summarize the state of the art in Tab. 4.1.

4.1.1 Dynamic verification debugging

A verification failure that is not spurious implies that there exists a set of program inputs
exposing the problem, either by crashing the program or by reaching a program state in
which the specified conditions are violated. If the specification can be implemented as

2 We assume for now that a method’s footprint is the same in all states (e. g. there is no allocation); we will
discuss how to overcome this practical limitation in Sec. 4.8.2.



4.1 ExISTING wORk 195

runtime assertions, then violating these assertions will also crash the program, making
crashes (e. g. unhandled exceptions) the one and only problem indicator.

This idea has led to dynamic verification techniques that leverage information about
failed assertions to generate test cases. If the original specifications and their executable
implementation can be trusted, then a crashing test provides concrete evidence for a bug
in the source program. Conversely, if a test does not crash, then the verification error is
spurious, e. g. it may be caused by an incompleteness or a bug in the verifier itself.

4.1.1.1 Spec# debugger. Müller and Ruskiewicz [63] propose a verification debugging
technique (and a tool integrated into the Spec# system) that leverages counterexample
SMT models to generate runnable test cases that can be analyzed by the programmer
via a traditional debugger like GDB. The tool takes a (formally specified) Spec# program
and the counterexample SMT model as input; it then produces an executable program
that reproduces the semantics of the original in the states from the counterexample. The
programmer then runs the output program in a traditional debugger, exploring a con-
crete execution via the common debug actions, e. g. single-step and step-over.

The executable program simulates Spec#’s modular verification semantics, e. g. a method
call is replaced with a program stub that transforms the call’s post-state as per the coun-
terexample. Specifications of the original program that are relevant to the failure are
translated into runtime checks. If a runtime check passes while the corresponding specifi-
cation caused a verification failure, then the failure is spurious. Otherwise, the program-
mer can step through the executable program in the debugger, spotting implementation
errors or unexpected state changes (which imply that the original specification is incom-
plete, or simply wrong).

Some specifications generally cannot be executed, e. g. the modifies clause of the method
IntList.Sort that sorts a list of integers is encoded in Spec# via unbounded quantifi-
cation since the set of all the list elements is potentially unbounded. To translate such
specifications, the technique identifies finite sets of relevant objects based on the coun-
terexample model and effectively pre-instantiates the universal quantifiers. The runtime
checks are then generated only for the (executable) ground terms.

LIMITATIONS. This work provides programmers, who might not be verification experts,
with a familiar interface for debugging verification failures in Spec#. The main limita-
tion of this technique is that the specifications must be executable s.t. one can simulate
them in a runnable program; hence, we cannot simply reuse the Spec# technique for an
intermediate verification language, e. g. Viper.

4.1.1.2 StaDy (Frama-C). Petiot et al. [102] propose a technique for automatically classi-
fying verification failures and generating counterexamples to formally specified C pro-
grams. The corresponding tool is integrated into the Frama-C platform [82]. If a verifi-
cation fails, the technique first checks whether this is a non-compliance failure, i. e. the
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implementation violates the specifications. For this purpose, the input programs is aug-
mented with runtime checks corresponding to the program specifications. If a runtime
check fails, then the technique extracts a concrete counterexample from the execution
trace and reports it to the programmer.

Otherwise, each function of the original (specified) program is translated into a new
executable program in which the specifications are rewritten via runtime checks. In this
program, each callee is rewritten with a mock implementation that respects the callee’s
modular specification: A runtime check is added to check the precondition, and the
values computed by the callee (which are listed in the assigns clause) are assigned to
potentially non-deterministic values that satisfy the postcondition.

The resulting program is submitted to the PathCrawler test case generator [35] that
yields counterexamples in the form of test input data.3 To increase precision, the tech-
nique first runs the above procedure on individual specifications, which may result in
detecting a single contract weakness. In case this strategy does not succeed, the technique
proceeds with its best effort by repeating the procedure with all present specifications
at once, which may result in detecting a global contract weakness. In case the procedure
fails, the tool reports either prover incapacity (e. g. if all generated tests passed) or un-
known (e. g. in case of a timeout). The programmer may annotate their functions with
the typically clause that helps reducing the test generation input domain; e. g. a func-
tion that computes the factorial of n could be specified with typically n ≤ 10.

LIMITATIONS. The focus of this work is on precise classification of verification failure
causes. The technique does not require the programmer to have formal verification-
specific expertise. The technique might not scale to larger software as the potentially
high number of concrete executions of an input program impedes test coverage. Since
the technique translates specifications to runtime checks, it is limited to executable speci-
fication languages and cannot be simply reused for intermediate verification languages.

4.1.2 Static verification debugging

Complementary to the dynamic techniques discussed above, static verification debugging
techniques do not rely on execution of test cases. Static techniques apply not only to
executable specification languages but also intermediate verification languages, e. g. Boo-
gie [46], Viper [91], or WhyML [67], which are typically not intended to be executed. In
the remainder of this section, we thus explore the extent to which one can leverage static
information for understanding of verification failures.

In SMT-based verification, static debug information can come from two (potentially
overlapping) sources: the verifier (e. g. information about types or inferred specifica-
tions) and the solver (e. g. an SMT model that represents a counterexample to an as-

3 PathCrawler is based on concolic execution and is built on top of the Colibri solver, supporting e. g. un-
bounded integer arithmetic and floating point theory.
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sertion). The former source can be easily interpreted by the programmer, which allows
directly displaying e. g. type errors. However, in case of a verification error, the feedback
from the solver represents a counterexample model in terms of the encoded verification
problem. Recall that the internal encoding of the verification technique is not exposed
to the programmer in the paradigm of automated deductive verification. Therefore, the
programmer cannot easily interpret raw counterexample models.

Verification debuggers are tools that automatically decode SMT-level counterexample
models into information in terms of the program semantics. This decoding is typically
complicated by the many transformations that a verifier performs before the ultimate
proof obligations are discharged. We proceed with an overview of existing verification
debugging projects.

4.1.2.1 Boogie verification debugger. The Boogie verification debugger (BVD) [62] aims
at supporting the programmer’s understanding of verification failures by mapping SMT
models to the source language level. BVD’s user interface displays program variables
and their corresponding values in a table format, next to a menu in which the program-
mer can select a program state. Each table row displays the entry name and its value in
both states: the current and the previous. Object fields are represented as (drop-down)
list hierarchies; in case of reference-type fields, the programmer can explore the list to
the desired depth, or until the null value is reached. Analogously, sets and function
applications are also represented as drop-down lists, with entry names containing set
elements and function argument instantiations, resp.

The debugging capabilities of BVD can be reused by a frontend verifier that trans-
lates source programs into the Boogie intermediate verification language [46]. The de-
bugger maps the information from the SMT models obtained by the Boogie verifier to a
counterexample in terms of the intermediate language, which is then translated to the
source level by a language-specific plugin. The list of language plugins includes one for
Dafny [57] and one for the VCC verifier [49] (the authors claim that implementing new
plugins is not difficult). Both of these debuggers are integrated into the Visual Studio
IDE, combining BVD with other useful features, e. g. dynamic test case generation, the
axiom profiler [108], and procedures for diagnosing verification timeouts [85].

LIMITATIONS. While BVD provides a convenient interface for browsing verification coun-
terexamples (which are practically too large to grasp as a whole), it does not try to pin-
point the cause of the problem. In particular, understanding bugs in a complex heap-
transforming program requires manually constructing heap models: Navigating through
the tree hierarchies does not directly present e. g. shared nodes or heap cycles.

4.1.2.2 Static debugging for WhyML. Hauzar, Marché, and Moy [87] present a verifica-
tion debugger integrated into the SPARK 2014 system, featuring a verification condition
generator and an SMT-based verifier (called GNATprove [81]) for a subset of Ada 2012.
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Similar to BVD, this technique maps SMT models to the source language by looking up
the values of model terms that match the tokens relevant at the source level, i. e. vari-
able names. To explain verification failures, the debugger interleaves the program text
with comments that represent an error trace with the values of program variables lead-
ing to a contradiction. The tool supports record and array types but does not support
heap structures (which are not available in SPARK 2014); hence, pointer aliasing, fram-
ing, and heap reachability are out of scope of this work. Dailler et al. [96] generalize this
technique, enabling verification debugging for several WhyML-based systems, e. g. the
Java verifier Krakatoa [42] and the C verifier Frama-C/Jessie [89].

LIMITATIONS. This work demonstrates the benefit of developing language-agnostic ver-
ification debuggers that can be adapted to many different projects, avoiding the need
to reimplement similar ideas for each language. However, the limitations of this tech-
nique arise from its two main assumptions. First, information about the relevant parts
of a counterexample is assumed to be available at the program logic level (by labeling
relevant terms in WhyML); it is unclear if one can obtain this information automatically.
Second, the technique is tailored to verification condition generation, and one cannot
simply apply it to verifiers based on symbolic execution.

4.1.2.3 Verification condition visualizer. The Verification Condition Visualizer [77] is
a technique for visualizing verification conditions arising from array-transforming pro-
grams. The corresponding tool, called Auto-VCV, targets the SPARK language [27], a
subset of Ada 95. The visualization procedure works in four steps. First, the procedure
identifies the arrays that are referenced in the verification conditions. Second, it extracts
the constraints over the index variables and array bounds. Third, the procedure orders
the array elements and subsegments that correspond to the previously extracted indices.
Fourth, the procedure derives the disjoint and the partially overlapping array fragments
and symbolically calculates the gaps and overlaps among them.

The resulting information is then visualized as two schematic array diagrams. The
top diagram summarizes the hypothesis of the verification condition, while the bottom
diagram summarizes its conclusion (if there are multiple verification conditions, the
tool first merges all the hypotheses and, separately, all the conclusions, and then renders
the two array diagrams). In addition to the actual array segments, the diagrams depict
functions (e. g. all elements in the segment [0, 𝑥) are less than or equal to the element
under 𝑥; depicted via a curly brace over the range leading to a ≤ -labeled arrow to 𝑥)
and operations (e. g. the elements under 𝑥 and 𝑥+1 are swapped; depicted via a double
arrow between the corresponding array elements).

LIMITATIONS. The main novelty of the technique is that it symbolically represents un-
bounded array structures. However, it is unclear if one can easily generalize the proce-
dure to support more complex structures, e. g. multidimentional arrays, or graphs.



4.1 ExISTING wORk 199

4.1.2.4 Effectively propositional reduction. Effectively propositional reduction (EPR) is a
technique and a tool for reasoning about the existence and absence of paths in linked
heap structures [69, 76]. The input program and its specification are translated into the
EPR logic, a decidable fragment of first-order logic the assertions of which are automat-
ically checked by an SMT solver. If an assertion is invalid, the tool produces a visual
counterexample, i. e. a heap configuration that violates the assertion. We have discussed
this work in more detail in Sec. 3.2.3.

LIMITATIONS. This technique is dedicated to reasoning about heap reachability proper-
ties in a sequential setting. While decidability of proof obligations guarantees automa-
tion, it comes at a cost: The class of supported heap structures is limited to various forms
of linked lists. To our knowledge, the EPR tool does not have IDE support.

4.1.2.5 GRASShopper. GRASShopper [78] is a technique and a tool for verifying heap-
transforming programs by translating separation-logic proof obligations into GRASS,
the logic of graph reachability with stratified sets. GRASS is a decidable fragment of
first-order logic, and its assertions can be automatically checked by an SMT solver. If
an assertion is invalid, the tool produces a visual counterexample, i. e. a concrete heap
configuration that violates the assertion. Unlike EPR, potentially undecidable specifi-
cations, e. g. unbounded first-order quantification, are also supported in GRASShopper;
however, if the solver fails to validate such obligations, GRASShopper might not be able
to provide a counterexample. We have discussed this work in more detail in Sec. 3.2.4.

LIMITATIONS. GRASShopper’s visual counterexamples effectively aid the programmer
in understanding verification failures. However, the debug information is limited to con-
crete heap edges and field values, which might be insufficient for understanding spu-
rious failures in presence of complex specifications often leading to undecidable proof
obligations. The Emacs mode for GRASShopper provides some tool integration, e. g. on-
the-fly checking and highlighting of error locations from failed verifications.

4.1.2.6 VeriFast symbolic debugger. VeriFast [61] is a symbolic execution-based ver-
ification engine for C and Java. The project includes an IDE that integrates standard
features, e. g. code editing and verification status reporting, with some verification de-
bugging features [56]. The programmer can explore the symbolic execution trace with
the path conditions accumulated so far, and the symbolic state. Information about the
symbolic state consists of the local store variables with their symbolic values in the
current state (e. g. n=n0 where n is a local variable and n0 is an unspecified constant)
and a list of disjoint heap chunks, i. e. a symbolic representation of the currently held
resources, (e. g. a singleton chunk n0->next, where next is a reference field, and an ab-
stract chunk list(n0->next), where list(x) is a separation-logic predicate defining an
acyclic singly-linked list starting in x).
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LIMITATIONS. While the VeriFast symbolic debugger provides useful information for
verification experts, it assumes that the programmer understands both separation logic
and symbolic execution. Additionally, the debugger does not seem to incorporate any
information from the SMT models and does not display counterexamples.

4.1.2.7 Visual symbolic execution debugger. The Visual Symbolic Execution Debugger
(VSDB) [55] is the first-generation visual verification debugger for the KeY verification
tool [39]. VSDB targets the Java Card subset of Java; the tool is integrated into the Eclipse
IDE [31]. Similar to the VeriFast IDE, VSDB enables the programmer to explore symbolic
execution traces. One novelty in VSDB is that the tool visualizes symbolic traces as a tree
graph, demonstrating more aspects of the symbolic execution, e. g. the degree of branch-
ing. Another novelty is that VSDB also visualizes the symbolic state, rendering (symbolic)
heap configurations as diagrams. The user can specify the number of symbolic execu-
tion steps (e. g. unrolling a loop traversing a singly-linked list to five iterations), while
the tools enumerates the possible heap models (e. g. an acyclic list segment of length
five: 𝑎→𝑏→𝑐→𝑑→𝑒, a ring structure with only three nodes: 𝑎→𝑏→𝑐→𝑎→𝑏→…, or a lasso:
𝑎→𝑏→𝑐→𝑑→𝑏→…, etc.)

LIMITATIONS. VSDB was one of the first tools to visualize symbolic heap configurations
that are fully helpful to programmers without verification expertise. However, the tool
does not incorporate counterexample information from SMT models. Therefore, the pro-
grammer can only manually explore the symbolic execution tree and identify the sym-
bolic states relevant to a verification failure, manually filtering the possible heap config-
urations to find those that showcase the problem.

4.1.2.8 Symbolic execution debugger. Symbolic Execution Debugger (SED) [109] is the
second-generation visual verification debugger for the KeY verification tool [39]. SED
targets sequential Java programs specified via JML [19]; the tool is part of the KeY IDE
and is powered by Eclipse [31]. Similar to VSDB, this tool also visualizes the symbolic
execution information in two parts, namely, the symbolic execution tree and the sym-
bolic heap configurations. The former part is generalized to depict the execution tree
modularly: The sub-trees corresponding to the symbolic execution of each statement
are graphically framed and can be independently collapsed to improve readability. For
example, each method call is depicted as a subtree with the invocation statement as its
root (the point of checking the precondition), while all the return statements and ex-
ception handlers as its leaves (the points of checking the postcondition), conveniently
matching the method’s modular specifications. The heap visualization is analogous to
that of VSDB. For example, the programmer can fix the path conditions and visually
inspect the various possible configurations of aliasing heap nodes.



4.1 ExISTING wORk 201

LIMITATIONS. SED is a powerful tool for inspecting symbolic execution traces of heap-
transforming Java programs within the KeY verification tool set. SED helps understand-
ing the code and why proofs succeed. However, its visualizations of the symbolic heap
do not pinpoint a single problematic configuration that causes a proof to fail. In partic-
ular, SED does not show counterexamples to the failed proofs.

4.1.2.9 Viper IDE. Viper IDE [88] is a platform that integrates the Viper tool stack [91]
into Visual Studio Code. In addition to the standard IDE features, Viper IDE supports in-
teractive verification sessions that work with either of the verification backends available
in Viper: the symbolic execution engine called Silicon [92] and the verification condition
generator called Carbon [68].

Kälin [88] proposed the first automatic visual debugger that integrates into Viper IDE
and leverages its symbolic execution backend. This debugger supports two modes: sim-
ple and advanced. In simple mode, the main window of the IDE is split into three
columns. The first column contains the source code of a Viper program, interleaved
with state markers, i. e. contrasting text decorators enumerating all symbolic states of the
program. The second and third columns display information about two program states,
e. g. the state of the verification failure and its predecessor state. These two vertical pan-
els have the same structure, as described next. Similar to VSDB (Sec. 4.1.2.7), Viper IDE
displays the heap configuration of the symbolic states graphically. However, the pro-
grammer does not need to traverse multiple possible configurations to find interesting
cases, as Viper IDE is capable of rendering both concrete (e. g. an object referenced by
x with a non-null field next) and abstract heap chunks (e. g. separation-logic predicates
like list(x)) uniformly. Other displayed information about states includes the path
conditions and the partial symbolic execution tree.

The advanced mode offers two major differences. First, the programmer may now si-
multaneously inspect and compare any two symbolic states, not necessarily subsequent
ones. This enables many new debugging scenarios, e. g. comparing the symbolic states
before and after two elements of a singly-linked list were swapped. Second, in case of
a verification failure, the debugger in advanced mode incorporates information from
the SMT model into the state diagram. This allows for displaying only the problematic
scenario to the programmer, e. g. indicating which references are aliasing, which heap
objects are disjoint, and whether the objects store the same values in their fields.

LIMITATIONS. This project laid the groundwork for Viper IDE and demonstrated the
synergy of several verification debugging features combined in a coherent workflow.
However, the visualization approach used for rendering the symbolic state supports
only a special subset of the Viper language. The debugger heavily relies on symbolic
execution traces and cannot be used with Viper’s verification condition generator.
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Although the support of two alternative verification backends is a key feature of Viper,
there has not been a verification debugger to date that worked with Viper’s verification
condition generator, Carbon.

4.1.2.10 Viper to Alloy. Aurecchia [95] developed an alternative debugger for Viper IDE
that avoids the need to interpret SMT models for constructing counterexamples to ver-
ification failures by modeling the symbolic state in Alloy [65]. The motivation for this
approach is twofold. First, SMT models are incomplete in presence of quantified formu-
las which frequently occur in practice. Hence, one needs to enumerate a potentially large
space of possible model instances, some of which are equivalent (e. g. due to symmetry).
Alloy applies symmetry breaking rules to generates conceptually different models. If a
verification failure is caused by the solver’s incompleteness, then the SMT model leads
to spurious, confusing counterexamples. In contrast, Alloy produces the exact set of pos-
sible model instances (within bounds). Second, it is easy to extend the Alloy model of
symbolic states to support new relations, or even to allow the programmer to submit
their own custom queries, narrowing the space of possible concrete models.

LIMITATIONS. The Alloy-powered Viper debugger facilitates verification debugging and
inspection of Viper programs by automatically visualizing essential concrete heap con-
figurations. However, this approach has a number of limitations. First, Alloy models
typically over-approximate the actual SMT constraints. This imprecision may lead to
spurious models. Second, Alloy’s support for integer reasoning is extremely limited; nu-
meric counterexamples are thus highly imprecise. Third, the approach does not directly
help understanding why the solver failed to validate an assertion as the technique does
not model the solver’s incompleteness, e. g. limited quantifier instantiation. However,
a more urgent question is often why the tool rejects a specification (and not e. g. which
heap configurations could satisfy or violate them).

4.1.2.11 Visual Ssmbolic execution models. Stoll [105] proposed another approach called
Visual Symbolic Execution Models (VSEM) for debugging verification failures in Viper.
The main idea in this project is to embrace incomplete SMT models from failed sym-
bolic executions, translating them to the verifier’s abstraction level. Unlike the original
Viper debugger, VSEM supports a broader subset of the Viper language. In particular,
it is capable of displaying quantified heap chucks that occur in presence of iterated sepa-
rating conjunctions (ISC) [90].4 The corresponding tool produces diagrams that depict
counterexample heap layouts in terms of heap chunks.

LIMITATIONS. While this project demonstrated the usefulness of partial SMT models in
verification debugging, the produced output diagrams are low-level and cannot be fully

4 ISC is useful for specifying the memory footprint of an unbounded heap structure, e. g. arrays and graphs.
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understood by non-experts. Another problem with this approach is that a backwards
SMT translation is tailored to a particular verifier implementation.

4.2 MANuAL COuNTERExAMpLE ExTRACTION

In this section, we present a novel approach to verification debugging that tries to over-
come the key limitations of prior work. Like in the previous chapters, we demonstrate
our technique in the context of (a subset of) Viper [91]. However, the key ideas of our
technique are not specific to Viper. We proceed by defining the guiding principles for
our technique.

vERIFIER-AGNOSTIC DEBuGGING. To our knowledge, all existing verification debuggers
target either symbolic execution or verification condition generation, but not both. The
support of both kinds of verification backends is a hallmark of the Viper ecosystem.
Each backend has its pros and cons — both fundamental restrictions and implementa-
tion aspects — but, often, the ability to switch between them allows overcoming their
(individual) limitations. Thus, the programmer should ideally get the same level of sup-
port for debugging verification failures with each backend.

Table 4.1: Summary of existing verification debugging techniques.

The techniques are grouped as follows. 1st — includes dynamic verification debugging tech-
niques. 2nd — static VCG-debuggers. 3rd — concrete counterexample heap configurations. 4th —
static SE-dubuggers. 5th — Viper debuggers. Gr = group; SE = Symbolic Execution (𝑑𝑦𝑛 = dynamic
SE); VCG = Verification Condition Generation; Vis = Visual debuggers; IDE = Tool stack integration.

Gr Technique Discussion Citation SE VCG Vis IDE

1 Spec# Sec. 4.1.1.1 Müller and Ruskiewicz [63] ✓ ✓
StaDy (Frama-C) Sec. 4.1.1.2 Petiot et al. [102] 𝑑𝑦𝑛 ✓

2 BVD (Boogie) Sec. 4.1.2.1 Le Goues, Leino, and Moskal [62] ✓ ✓
SPARK / WhyML Sec. 4.1.2.2 Hoang et al. [81] ✓
Auto-VCV Sec. 4.1.2.3 Jami and Ireland [77] ✓ ✓

3 EPR Sec. 4.1.2.4 Itzhaky et al. [76] ✓ ✓
GRASShopper Sec. 4.1.2.5 Piskac, Wies, and Zufferey [78] ✓ ✓

4 VeriFast IDE Sec. 4.1.2.6 Jacobs, Smans, and Piessens [56] ✓ ✓
VSDB (KeY) Sec. 4.1.2.7 Hähnle et al. [55] ✓ ✓ ✓
SED (KeY) Sec. 4.1.2.8 Hentschel, Bubel, and Hähnle [109] ✓ ✓ ✓

5 Viper IDE Sec. 4.1.2.9 Kälin [88] ✓ ✓ ✓
Viper-to-Alloy Sec. 4.1.2.10 Aurecchia [95] ✓ ✓ ✓
Visual SE Models Sec. 4.1.2.11 Stoll [105] ✓ ✓
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vISuAL DEBuGGING. We focus on verification debugging for heap-transforming pro-
grams. One of the hardest aspects of reasoning about such programs is understanding
which subtle heap configurations are possible under specified assumptions. Typically,
a verification expert needs to manually sketch such configurations in a pen-and-paper
approach, possibly using the raw values from an SMT model, which is cumbersome
and error-prone. However, existing visual debuggers demonstrate that this task can be
automated, e. g. SED (Sec. 4.1.2.8) and Viper-to-Alloy (Sec. 4.1.2.10) for symbolic execu-
tion and Auto-VCV (Sec. 4.1.2.3) for verification conditions about unbounded structures
(e. g. arrays). Our approach follows the lead, prioritizing diagrams over other possible
representations of the mutable program state.

OBjECT-ORIENTED DEBuGGING. Rather than focusing on the low-level, backend-specific
details of the verification backend, we opt for a debugger that is helpful to all program-
mers, even those who do not fully understand the intricacies of our program logic. For
example, symbolic execution traces can be useful for a verification expert but might
be counter-intuitive to programmers without special knowledge about the verifier. In
contrast, we assume that all programmers understand essential concepts e. g. local store,
program heap, heap objects, and object fields. Thus, in this chapter, we will build a debug-
ger that highlights as few aspects of the program logic as possible,5 while still helping
to understand verification failures.

INTEGRATION. We are interested in a tool that seamlessly integrates into an existing IDE
infrastructure that supports basic yet essential features, e. g. code navigation and edit-
ing, syntax highlighting, and interactive verification sessions. Thus, our implementation
must be lightweight, leveraging common interfaces supported by modern IDEs.

4.2.1 Running example

To demonstrate our approach, consider the simple heap-transforming method insert
that inserts the node n after the head node hd of a singly-linked list with footprint 𝔤
(Fig. 4.2).6 In the following, we will construct a counterexample heap model that helps
understanding why this method fails to verify.

4.2.1.1 Overview. Recall that our setting requires each method to specify its footprint
as a set of non-null nodes. Hence, the first precondition of insert requires permissions
to access (the next fields of) all nodes inside the footprint 𝔤 (via the macro NODES). The
second precondition requires that the nodes hd and n belong to the footprint.

5 Note that the verification techniques presented in Chap. 2 and Chap. 3 involve a very simple subset of
separation logic, i. e. no predicate abstractions.

6 This example was used as a running example for the Boogie verification debugger [62].
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field next: Ref
define NODES(𝔤) (null ∉ 𝔤 && forall 𝑛 ∈ 𝔤 • acc(𝑛.next))

method insert(𝔤: Set[Ref], hd: Ref, n: Ref)
requires NODES(𝔤)

hd ∈ 𝔤 ∧ n ∈ 𝔤
ensures NODES(𝔤)

n.next = old(hd.next) // fails to verify
{

label l0
n.next := hd.next
label l1
hd.next := n
label l2

}

Figure 4.2: Example program that fails to verify due to incorrect specifications.

The first postcondition (which verifies) ensures that all the permissions held by insert
are returned to the client (we assume that there are no memory leaks). The second post-
condition ensures that the successor of n after the call is the successor of hd before the
call. However, this postcondition fails to verify with the following report: Postcondition
of insert might not hold. Assertion n.next = old(hd.next) might not hold.

What is the reason for this postcondition to fail? An experienced programmer would
understand the issue by carefully reading the code and its specifications, concluding
that this is an aliasing problem. However, significantly more information than the above
error report should support this conclusion. In particular, we are interested in a coun-
terexample that would demonstrate which initial heap configuration leads to a state
violating our failed postcondition.

4.2.1.2 Structure of the SMT model. To obtain a counterexample, we rely on the model
provided by the SMT solver. Fig. 4.3 presents an example model containing full infor-
mation about a counterexample. We start by introducing the structure of the original
SMT model. Generally, models contain entries of tree kinds, as explained next.

CONSTANT ENTRIES assign literal values, called inner values, to variables. For example,
i ↦ 42 assigns the (integer) inner value 42 to the variable i, while r ↦ v0 assigns the
(uninterpreted) inner value "v0" to r. Since we consider partial models, some constant
entries may be unspecified, e. g. j ↦ unspecified.

AppLICATION ENTRIES combine several argument literals into a single value by applying
interpreted functions. For example, p ↦ (/ 1.0 2.0) assigns p to the result of an appli-
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[3] ↦ {
v8 v17 v2 ↦ v24
v18 v17 v2 ↦ v30
v25 v17 v2 ↦ v17
v27 v17 v2 ↦ v26
else ↦ unspecified

}

𝔤 ↦ v7

[2] ↦ {
v7 v3 ↦ false
v7 v17 ↦ true
else ↦ unspecified

}

n ↦ v17
hd ↦ v17
null ↦ v3
next ↦ v2
Heap@1 ↦ v25
Heap@0 ↦ v27
Heap@@18 ↦ v18
PostHeap@0 ↦ v8

Figure 4.3: Partial SMT model for the failure of Fig. 4.2 (only relevant entries are shown).

cation of the function / over the literals 1.0 and 2.0. Note that uninterpreted functions
are not applied this way in the model.

MAp ENTRIES are lookup tables that assign values to function interpretations for some
concrete cases of input arguments. For example, if the original program has the follow-
ing declaration: function equals(a:Ref,b:Ref): Bool {a = b}, then the SMT model
may contain the following interpretation: equals ↦ { v0 v0 ↦ true, else ↦ false }.
Here, equals is a map entry that specifies two cases: The concrete cases map a list of ar-
guments (["v0", "v0"], where "v0" is the inner value of the instantiations of a and b) to
their corresponding values (e. g. true), while the keyword elsemaps all other argument
lists (e. g. ["v1", "v0"] for some "v1") to the default value — false, in the example above.
The default value in a map entry may be unspecified (since we are dealing with partial
models); e. g. inv ↦ { v0 ↦ v1, else ↦ unspecified }.

TypES. Most verifiers encode the type system of a programming language via uninter-
preted functions, rather than exclusively relying on built-in SMT sorts [94]. For exam-
ple, Boogie declares two (uninterpreted) SMT sorts called "T@U" and "T@T"; a program
value is translated to some value of sort "T@U", while its program type is encoded via
the (uninterpreted) function "type" that maps "T@U" to "T@T". The solver models the
"type" function using a partial interpretation which may assign the same "T@T"-value to
program variable types which are incompatible at the level of the source program. For
example, the inner value "v1" may be assigned to (the SMT translation of) the two vari-
ables b:Bool and r:Ref.7 Therefore, we cannot rely on the type information from the
SMT model and must obtain it directly from the verifier.

4.2.1.3 Modeling local variables. We will now demonstrate how the SMT model can be
used to manually construct the counterexample for the verification failure in Fig. 4.2. We
start by looking up the values that the SMT solver assigned to the (encoded versions of)

7 Partial SMT models may not satisfy all axioms. If e. g. the disjointness of the types of b:Bool and r:Ref is
not needed to draw a contradiction, the solver may ignore this information while generating a model.
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our local program variables. In our scenario, the three local variables are 𝔤, hd, and n, and
their corresponding model values are resp. "v7", "v17", and "v17" (Fig. 4.3). Note that
the indices 7 and 17 are picked arbitrarily by the solver and are not important. However,
it is important that the model assigns the same value to hd and n; i. e., these variables will
be aliasing in the model.

Since we are dealing with Ref-type variables, it is also important to check whether
the model assigns some of them to null. Hence, we perform an additional lookup for
the value of null in the model, obtaining the value of "v3". From this, we conclude that
all our local variables are non-null in the model. This is an expected consequence of the
precondition of insert.

Note that mutable local variables may have different values in different program states.
The verifiers encode such variables in the static single assignment (SSA) form, i. e. each
assignment of a variable x in the program, called the prototype variable, results in a fresh
SMT variable, e. g. x@1 and x@2. The information about prototype variables is maintained
by the verifiers and used e. g. while reporting verification errors. However, our running
example of Fig. 4.2 does not involve assignments to local variables.

To summarize the counterexample information obtained so far, we sketch the simple
diagram of Fig. 4.4. This diagram shows the local store that contains our two (aliasing)
Ref-type variables, hd and n. Note that, for now, we omit the footprint 𝔤 (all methods in
our setting involve an explicit footprint). In the following, we will extract more informa-
tion from the SMT model, refining our sketch of Fig. 4.4 to show the heap configuration.

Local 

hd = n hd = v17

Figure 4.4: Sketching the local store of a
counterexample to Fig. 4.2.

4.2.1.4 Modeling field values. The next step towards building a complete counterex-
ample is to extract the information about the field values from the model. The SMT en-
coding of fields — and, more generally, program states — varies in symbolic execution
(SE) verifiers and verification condition generators (VCG). However, the information
contained in the SMT models from either kind of backend is conceptually equivalent,
i. e. one can extract the value of a given receiver’s field in a given program state using
the partial function interpretations provided in the models. To concretize the discussion,
we demonstrate next how this can be done for Viper’s VCG backend.

ExTRACTING FIELD vALuES FROM THE SMT MODEL. In Viper’s VCG, each field is repre-
sented with a constant entry, e. g. next ↦ v2 that assigns the field name "next" to the
inner value "v2". The values of the fields can be obtained by instantiating the field-value
map entry.8 The field-value map assigns triplets (corresponding to the program state,

8 For example, running Viper’s VCG with the default configuration of Boogie results in models that spec-
ify field-values via a map entry called "[3]", based on the arity of the corresponding Boogie map type
(Fig. 4.3).
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the receiver, and the field) to field values. For example, since our method insert has
the line hd.next := n, we are interested in the inner value of hd.next in the program
state after the assignment. We already have two out of three required arguments for
instantiating the field-value map (recall that hd ↦ v17 and next ↦ v2).

The missing argument for instantiating the field-value map is called the state marker,
i. e. an inner value corresponding to a program state. In Viper’s VCG, state markers are
also encoded as constant entries. For example, our model contains the following entries
that define various program states: "Heap@0", "Heap@1", "Heap@@18", and "PostHeap@0".
In both cases, these state markers are formed in several stages of the translation (from
Viper, to Boogie, to SMT). Each stage may have its own transformations, rewritings, and
optimizations that can affect the number and the effective names of the state markers.
Hence, the programmer needs knowledge about each transformation stage in order to
map the state markers (as they appear in the SMT model) back to the program states.

Assume that the following mapping from state markers to program states is known:
"Heap@@18" corresponds to l0, "Heap@0" to l1, and "Heap@1" to l2; the state marker
"PostHeap@0" corresponds to the (unlabeled) state of the postcondition of insert.9 Since
we are interested in obtaining a counterexample in the program state labeled l2 (i. e. af-
ter the second assignment), we look up the inner value of "Heap@1" in the model (Fig. 4.3),
which assigns "v25" to this state marker. Finally, the lookup in the field-value map for
the triplet ["v25", "v17", "v2"] yields the inner value "v17". Hence, we learn that "v17"
is the value of hd.next in l2, i. e. it is a self-reference.

We apply the information about field values obtained so far to extend the counterex-
ample diagram (Fig. 4.5). We visualize the object referenced by hd and n as tables; the
table header contains the name of this object (i. e. one of the variables that references it)
and its inner value from the model (in this case, "v17"). The rows of the table correspond
to the fields of this object; since fields may store different information in different states,
we annotate them with the state label (e. g. l2 in next[l2]). The dotted arrow connects
the local Ref-type variables to the corresponding heap objects (since they are known to
be non-null). The solid arrow depicts the heap edge, connecting hd’s only Ref-type field
to its destination.

Local 

hd = n hd = v17

next[l2]

Figure 4.5: Extending the counterexample
of Fig. 4.4 with intermediate heap
information.

4.2.1.5 Handling multiple states. To illustrate how the information about multiple pro-
gram states can be incorporated into a single counterexample, consider the state labeled
l1 in Fig. 4.2. This is the resulting state of the insert’s first assignment, n.next := hd.next.
Hence, we are interested in the value of n.next in l1. To obtain this value, we perform a

9 This information can be obtained via the instrumentation that we will present in Sec. 4.3.



4.2 MANuAL COuNTERExAMpLE ExTRACTION 209

field-value lookup for the triplet ["v27", "v17", "v2"], representing "Heap@0", the node n,
and the field next, resp. (recall that Heap@0 ↦ v27 is the state marker that corresponds
to l1). This lookup yields the inner value "v26". We learn that the next field of the cor-
responding object changes its value from "v26" (in l1) to "v17" (in l2).

Next, by performing an analogous lookup for the value of n.next in the initial state of
insert (labeled l0, corresponding to the state marker Heap@@18 ↦ v18), we learn that
the value of n.next in l0 is unspecified.10 We treat this case conservatively, concluding
that the value of n.next in the initial state l0 is not relevant for the counterexample.

We apply the newly gathered information, extending our counterexample with the
relevant field value information in multiple program states (Fig. 4.6).

Local 

hd = n

v26

hd = v17

next[l2]

next[l1]

next[l0] = ?

Figure 4.6: Extending the counterexample
of Fig. 4.5 with information about old
states.

4.2.1.6 Modeling method footprints. Recall that the SMT model assigns the inner value
"v26" to n.next in state l1. Using the knowledge about the type of the field next, we
conclude that "v26" must represent some Ref-typed value. Since this value is non-null
(as null ↦ v3), "v26" represents an object which itself may have a next field.

Recall that, in our setting, one can reason only about fields that belong to the nodes
of the current method’s footprint. In particular, the fields of the object represented by
"v26" are relevant to the counterexample only if this node belongs to the set 𝔤 (Fig. 4.2).
Intuitively, we need to check whether the model implies v26 ∈ 𝔤.

The set-in relation that we are interested in is encoded into SMT in a conceptually
equivalent way by both backends, SE and VCG. Generally, both backends use uninter-
preted functions to encode the theory of sets. Concretely, the VCG backend translates
Viper sets to Boogie maps, which in turn are translated to (partially axiomatized) unin-
terpreted functions that represent the operations and relations over instances of these
types.11 Analogously, the SE backend encodes its own theory of sets, but in the same
style, i. e. employing uninterpreted function symbols for each set-related operation and
relation, including the set-in relation, and supplies axioms that specify their properties.

To check whether hd belongs to the current footprint (according to the SMT model),
we proceed with a new lookup in the interpretation of the set-in relation (which is a map
entry of two arguments) with the values representing the footprint 𝔤 and the node hd;

10 Although it is possible to force an SMT solver, e. g. Z3, to produce only complete models, we opt for partial
models which provide the information that is likely needed for building helpful counterexamples. Con-
versely, it is not possible to identify what parts of a complete model are indeed relevant.

11 The resulting (binary) set-in relation is called "[2]".
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recall that their respective inner values are "v7" and "v17" (Fig. 4.3). The lookup yields
the value true; hence, we observe that the node hd, indeed, belongs to the footprint 𝔤.

4.2.1.7 Transitive heap analysis. Other than "v17", the only other non-null node in our
counterexample is the one referenced by hd.next in l1, i. e. "v26" (Fig. 4.6). However,
the lookup for the pair ["v7", "v26"] in the set-in map entry is unspecified, so we cannot
conclude that this node belongs to the footprint and treat its fields as irrelevant for the
model, i. e. we do not proceed with analyzing its field values. Otherwise, we would tran-
sitively analyze the fields, repeating the previous steps for newly encountered nodes.

4.2.1.8 Final visualization. Finally, we apply the gathered information about the foot-
print to further refine our counterexample (Fig. 4.7). The resulting diagram is helpful:
Indeed, the postcondition n.next = old(hd.next) (where old refers to l0) is violated if
n and hd alias. The diagram also shows the effect that insert has on the heap configura-
tion (cf. next[l1], next[l2]), helping to understand that the implementation is not the
problem of this scenario.

Footprint

Local 

hd = n hd = v17

next[l2]

next[l1]

next[l0] = ?

v26

Figure 4.7: Final counterexample to Fig. 4.2.

This diagram shows a heap configuration contra-
dicting the postcondition n.next = old(hd.next)
of insert. We merge information from different
states into one diagram. However, only current foot-
prints are depicted (in some selected state); we
will discuss footprints that change due to allocation
in Sec. 4.8.2.

4.2.2 Systematic approach

We have manually extracted a visual counterexample to a verification failure using the
information from the SMT model as well as some internal knowledge about the verifier
(e. g. the types of local definitions). We will now summarize our findings, systematizing
the assumptions (Sec. 4.2.2.1) and the stages (Sec. 4.2.2.2) of our technique.

4.2.2.1 Assumptions. We summarize the assumptions that enable our verification de-
bugging technique in the setting introduced in Sec. 1.2.

pROGRAM LOGIC. We expect the footprint of each method to be explicitly specified (via it-
erated separating conjunction, ISC [90]). This allows us to process SMT models obtained
from different verification backends uniformly. The backend-specific differences are mi-
nor, e. g. differing function signatures and field value lookups. However, the fact that we
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extract counterexamples of a pre-defined shape drastically simplifies the problem: Our
procedure for extracting counterexamples is agnostic to the most intricate differences in
separation logic engines, e. g. permission accounting and framing.

MuLTIpLE FAILuRES. We focus on debugging one verification failure at a time. We there-
fore assume that both the verifier and the SMT solver do not mix information from
several verification failures. In practice, verification errors often occur in groups, and
modifying one line of the specifications can sometimes fix multiple errors. Each coun-
terexample produced by a verification debugger should ideally focus on the cause of a
single problem.

SMT MODEL. The raw SMT model is the main source of information that we used for
building the counterexample of Fig. 4.7. Hence, whether our counterexamples can help
the programmer in understanding verification failures is predicated on the precision of
information in the SMT model. To generate precise counterexamples, e. g. those that ide-
ally show only relevant information, we rely on partial models that should specify only
the information that is necessary to draw contradiction. For the uninterpreted values in
the model, we assume that the inner values do not alias (i. e. ∀u, v • u ≢ v ⇒ u ≠ v).

vERIFIER. Extracting relevant information from SMT models requires some internal
knowledge (and assumptions) about the verifier. In particular, we assume that relevant
parts of the program are not optimized out by the translation. For example, the variable
bar does not affect the execution of the following program (which fails to verify):
method foo() { var bar: Int := 42; assert bar = 0 }

If the verifier performs inline expansion, the produced SMT model corresponding to
the optimized failing assertion 42 = 0 will no longer contain any information about bar.
Because this kind of information loss complicates debugging, we assume that optimiza-
tions like inline expansion are disabled in the verifier.

NAMING CONvENTION. We rely on the knowledge of the naming convention used inter-
nally by the verifier in its SMT encoding. For example, to extract the set-in relation, we
relied on the name of the corresponding predicate. Note that, in the following, we do not
assume the availability of the mapping from state markers to program states; although
we have assumed the availability of this mapping for demonstrating our running exam-
ple of Sec. 4.2.1; this information can be encoded in a verifier-agnostic manner, making
our technique portable, as will be explained in Sec. 4.3.

4.2.2.2 Processing stages. We will now summarize each of the model processing steps
used for building the counterexample for Fig. 4.2. Although our running example is very
simple, the concepts and decisions that were involved in producing the corresponding
counterexample establish the basis of our technique, which we will further generalize.
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1. Collect local definitions (Sec. 4.2.1.1)

2. Obtain the SMT model (Sec. 4.2.1.2)

3. Model local variables (Sec. 4.2.1.3)

4. Model field values for current heap nodes (Sec. 4.2.1.4)

5. Collect state markers (Sec. 4.2.1.5)

6. Model the current footprint (Sec. 4.2.1.6)

7. Model transitively reachable nodes (Sec. 4.2.1.7)

8. Visualize of the produced counterexample heap model (Sec. 4.2.1.8)

4.3 INSTRuMENTATION

This section introduces our verification debugging technique’s instrumentation of the
source program. The purpose of instrumentation is to slightly modify the original pro-
gram, adding useful information that facilitates producing meaningful counterexample
models. Theoretically, a verification debugger could obtain full information about the
program and the verification outcome from the verification backend (if the verifier pro-
vides the required interfaces). However, we are interested in a verification debugging
technique that does not rely on a particular verification backend implementation; ide-
ally, our instrumentation should work uniformly with all backends, e. g. those based on
symbolic execution as well as verification condition generation.

The information that our instrumentation provides is the mapping from (the interpre-
tations of) stateful functions to program locations. This information is crucial because de-
bugging heap-transforming programs and their verification failures requires state-aware
counterexamples. We will first explain how handling states complicates counterexam-
ple production (Sec. 4.3.1), then present our instrumentation approach (Sec. 4.3.2), and
then demonstrate how it helps processing the SMT model (Sec. 4.3.3).

4.3.1 Specifying the problem

Often, counterexamples to verification failures carry the information about multiple pro-
gram states. In particular, this was the case for our running example, insert (Fig. 4.2):
the postcondition n.next = old(hd.next) is a two-state assertion, depending on the con-
figuration of two, potentially different versions of the heap (in this case, the versions of
the post- and the precondition of insert). In terms of an SMT model, state-dependent
functions (and their interpretations), e. g. the value of the field next, are parameterized
with heap markers, i. e. inner values of the model specifying particular heap versions.
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Hence, it is important to identify the heap markers and map them to the relevant pro-
gram states of a counterexample.

Mapping from heap markers to program states is practically complicated. First, not
all heap markers may be relevant for understanding a verification failure, e. g. some of
them may encode auxiliary states used for checking permission amounts or that a state-
dependent expression is well-formed. Second, SMT model may assign different inner val-
ues to two markers that represent effectively equal states. For example, it is possible that
instantiating all heap-dependent functions in a model with the two heap marker ℎ1↦v1
and ℎ2↦v2 yields the same inner values. Third, heap markers do not fully define program
states as they do not contain information about the local store, as discussed next.

TRACkING LOCAL STORE vERSIONS. If a counterexample carries the information about
two program states, then it is important to distinguish the values that local variable
have in either of them, as they may be different. Hence, a local variable may have multi-
ple versions. Most verifiers rewrite local variables into the static single assignment (SSA)
form, so each variable ends up having only one version in the SMT model. For example,
a local variable declaration var x:Int := 0 can be translated (e. g. in Boogie) into two
statements (var x:Int and x:=0), each introducing a separate version of x, which are
translated to SMT as follows:
(declare-const x@0 Int)
(declare-const x@1 Int)
(assert (= x@1 0))

The SMT model corresponding to the translation above would be, e. g. x@0↦17, x@1↦0.
Here, the both translation and the model reflect the fact that there are two versions of
x. In this case, we are able to deduce that x@1 is the version of x after it is initialized,
but x@0 is not relevant for the source program. Next, we will discuss a simple yet general
solution for identifying the relevant versions of local store variables and mapping them
to particular locations in the source program.

4.3.2 Labeling program states

We have established that producing counterexamples to verification failures in our set-
ting requires (1) filtering relevant heap markers (and mapping them to observable pro-
gram locations), and (2) filtering relevant local store variables (and mapping them to
observable program locations). To that end, one needs to instrument the debugged pro-
gram with state labels, where each label has a name and identifies a location in the source
program. The Viper intermediate verification language includes label declarations that
enable labeled old expression, i. e. a generalization of old that allows referring to previous
heap versions (cf. Fig. 1.1). However, Viper labels (and labeled old expressions) cannot
be used to refer to previous versions of local store variables. Another limitation of Viper
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method swap(𝔤: Set[Ref], x: Ref, y: Ref)
requires NODES(𝔤)
requires x ∈ 𝔤 ∧ y ∈ 𝔤 ∧ x ≠ y
ensures NODES(𝔤)

THIS_STATE_IS__l3 ⟹ x.next ≠ old(x.next)
{
var tmp: Ref := x.next; assume THIS_STATE_IS__l0(tmp)
x.next := y.next; assume THIS_STATE_IS__l1(tmp)
y.next := tmp; assume THIS_STATE_IS__l2(tmp)

}

Figure 4.8: Instrumentation of an (incorrectly specified) program with state labels.

labels is that a label declaration must be a separate statement, e. g. a programmer cannot
easily instrument the state of a loop invariant.

To overcome these limitations, we opt for an alternative way of instrumenting the pro-
gram states. Our labels are pure expressions that can be soundly assumed at any program
location, or within any expression, as long as our instrumentation requirements are met.
Intuitively, a state label is merely an assumption that the program state (including both
the heap and the local store) at a given program location has a given name. This imme-
diately sets the first requirement: each label may be assumed only once (just like Viper
labels that must have unique names).

ExAMpLE. To illustrate our instrumentation, consider the example of Fig. 4.8. The method
swap swaps the nodes referenced by x and y of a singly-linked list (represented by the
node set 𝔤). The precondition requires permissions to access the list’s nodes, and that
x and y are (non-aliasing) members of this list. The postcondition ensures that all per-
missions are returned to the client, and tries, but fails to ensure that swap preserves the
value of x.next.12 The body of swap uses a temporary Ref variable, tmp, to (correctly)
perform the actual swap.

We instrument the program states after each statement in the body of swap. Each in-
strumentation starts with assume where the assumed predicate is a macro definition
named "THIS_STATE_IS__l𝑖", where 𝑖 ∈ {0, 1, 2} is the current state’s specified index.
These macros are defined in Fig. 4.9. Since the verifier fails to verify the last bit of swap’s
postcondition, we also instrument the postcondition, this time — by adding the macro
"THIS_STATE_IS__l4" as the LHS of an implication; the implication’s RHS is the original
postcondition that we wish to debug.

The auxiliary definitions used in our instrumentation technique are presented in Fig. 4.9.
Each state labels’ names have the form "l𝑖" where 𝑖 is this state’s index. The corre-
sponding macro definition is rewritten into a conjunction in which the first conjunct

12 Such an error could easily happen in practice due to a typo; e. g. x.next = old(y.next) differs in only one
character and would be a correct specification for swap.
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function @heap(𝔤: Set[Ref]): Map[Ref, Ref]
requires NODES(𝔤)
ensures domain(result) = 𝔤

∀u:Ref • {u.next} u ∈ domain(result) ⟹ result[u] = u.next

function l0(): Map[Ref, Ref] function @local$tmp$l0(): Ref
function l1(): Map[Ref, Ref] function @local$tmp$l1(): Ref
function l2(): Map[Ref, Ref] function @local$tmp$l2(): Ref
function l3(): Map[Ref, Ref]

define THIS_STATE_IS__l0(tmp) (@heap(𝔤) = l0()∧ tmp = @local$tmp$l0())
define THIS_STATE_IS__l1(tmp) (@heap(𝔤) = l1()∧ tmp = @local$tmp$l1())
define THIS_STATE_IS__l2(tmp) (@heap(𝔤) = l2()∧ tmp = @local$tmp$l2())
define THIS_STATE_IS__l3 (@heap(𝔤) = l3())

Figure 4.9: Auxiliary instrumentation definitions.

is the equality of the form @heap(𝔤) = l𝑖, and the subsequent conjuncts have the form
⋀v = @local$v$𝑖, where the conjunction iterates over all (mutable) local variable names
(v) and the labels instrumenting the program locations in which the corresponding vari-
ables are defined (𝑖). For example, the local variable tmp is defined in l0, l1, and l2 but
is not in scope of l4 (Fig. 4.8); hence, the instrumentation macro for l4 does not depend
on the value of tmp.

INSTRuMENTING THE HEAp. In each instrumented program location, we assume that the
value of the @heap(𝔤) function over the current footprint equals some freshly selected
constant; these constants are represented via nullary functions, e. g. l0()–l3(). To en-
sure that any modification of the footprint will result in a new value of @heap(𝔤), we
axiomatize the function’s (Map-type) value in its postcondition. We first consider the sim-
ple case in which all nodes within the current footprint have only one field, and then
discuss how to generalize.

An assignment to a field (say, next) of a node (say, u) in the current footprint (𝔤)
should trigger the quantifier in @heap(𝔤)’s postcondition (e. g. this should happen af-
ter x.next := … and y.next := … in Fig. 4.8). The instantiation results in the formula
result[u] = u.next, connecting the field value to the value of @heap(𝔤) at u; intuitively,
modifying the nextfield potentially modified the resulting map. Since this map depends
on each object’s field, any modification of the heap inside 𝔤 will result in a state in which
@heap(𝔤) yields a fresh value.

Recall the snapshot functions, rsnap, used internally in our set comprehensions tech-
nique of Chap. 2. The argument of rsnap is the current method’s footprint, 𝔤, and the
result is a map from Ref to a polymorphic type S (i. e. the type of a comprehension ex-
pression). Consider an instantiation of S with the field type, e. g. Ref in the example
of swap. Notice that the postcondition of @heap exactly matches that of rsnap. Indeed:
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our heap instrumentation function is a special case of a set comprehension. Therefore, to
generalize our instrumentation to the case of multiple fields per node, one can combine
multiple snapshots as follows:

define THIS_STATE_IS__l𝑖(𝐹, 𝐿) ( ⋀
𝑓∈𝐹

@heap$𝑓 (𝔤) = l𝑖$𝑓 ) ∧ ( ⋀
𝑣∈𝐿

𝑣 = @local$𝑣$l𝑖())

Here, 𝑖 is the index of the state that is to be instrumented,13 𝐹 is the set of names of all
the field modified by this method, and 𝐿 is the set of local variable names.

4.3.3 Processing instrumented SMT models

We will now revisit our example of Fig. 4.8 to explain how one can extract relevant infor-
mation from an SMT model of an instrumented program. Recall that the method swap in
this example has a buggy specification; concretely, its postcondition causes a verification
error. This error is accompanied by an SMT model that combines our instrumentation
with information about a counterexample to the failed postcondition (Fig. 4.10).

[3] ↦ {
v20 v15 v2 ↦ v33

...}

@heap ↦ {
v20 v7 ↦ v39
v30 v7 ↦ v31
v34 v7 ↦ v44
else ↦ unspecified

}

Heap@0 ↦ v34
Heap@1 ↦ v30
Heap@@14 ↦ v20
PostHeap@0 ↦ v8

@local$tmp$0 ↦ v32
@local$tmp$1 ↦ v32
@local$tmp$2 ↦ v32

𝔤 ↦ v7
x ↦ v15
y ↦ v18
l0 ↦ v39
l1 ↦ v44
l2 ↦ v31
l3 ↦ v31
next ↦ v2
tmp ↦ v19
tmp@0 ↦ v32

Figure 4.10: Partial SMT model for the failure of the instrumented method swap.

pROCESSING THE MODEL OF THE HEAp. The name templates of heap markers depend on
the verification backend. In our example, we run the verification via Viper’s VCG back-
end, so the expected heap markers contain "Heap" in their names, i. e. Heap@0, Heap@1,
Heap@@14, PostHeap@0 in the model of Fig. 4.10. Recall that the heap markers parame-
terize each state-dependent function. In particular, a heap marker is the 1st argument of
$heap in the SMT encoding (the 2nd argument is the current footprint). Therefore, we ob-
tain the following mapping from heap markers to inner values of $heap: Heap@0 ↔ v44,
Heap@1 ↔ v31, Heap@@14 ↔ v39. Note that the value of $heap for PostHeap@0 is unspec-
ified; this is because the corresponding heap is not instrumented and should therefore
be ignored.

13 The indices can be selected by the programmer (as long as they are unique), labeling the states that are
relevant for debugging.
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Recall that the value of $heap applied over the current footprint equals its correspond-
ing label’s value (Fig. 4.9). Therefore, we can use the the model to obtain the mapping
from heap markers to sets of labels:

Heap val. Marker Label val. Labels
v20 ⟷ Heap@@14 ⟷ v39 ⟷ { l0 }
v34 ⟷ Heap@0 ⟷ v44 ⟷ { l1 }
v30 ⟷ Heap@1 ⟷ v31 ⟷ { l2, l3 }

(HeapsToLabels)

Here, we added the information about the heap markers’ inner values (at the very left), fol-
lowed by the heap marker names, the inner values of the corresponding cases of $heap,
and the sets of labels.

We can now use the information of (HeapsToLabels) to extract the values of heap-
dependent functions from the model. For example, we obtain the value of x.next in
the program state labeled l0 by performing a lookup into the field-value function, [3],
by instantiating its three arguments with v20 for the heap of l0, v15 for the receiver
x, and v2 for the next field (obtaining the inner value of a fresh node v33). Note that
multiple labels might be merged in the model, effectively specifying the same heap; in
our example, this aliasing situation occurs between l2 and l3.

pROCESSING THE MODEL OF THE LOCAL STORE. Finally, we demonstrate the mapping from
labels to the local store versions. To that end, we collect and parse all the local variable
snapshots, i. e. @local constants in the model. Each such constant provides the informa-
tion about the inner value of a local store variable in a labeled state. In our example
of Fig. 4.10, the only local variable is tmp, and its value is v32 in the states labeled l0, l1,
and l2 and is unspecified in l3. Indeed, this variable is assigned only once in the body of
swap (Fig. 4.8), and it is not available in its postcondition.

Similar to heaps, store versions may alias, too. While, in our example, the first three
labeled local stores are aliasing, the store labeled l3 is unique (as it lacks tmp). Hence, in
the SMT model obtained for swap, the actual program states (consisting of a heap and a
local store) that are labeled l0–l3 are all pairwise distinct.

This example demonstrates that our instrumentation provides a precise mapping from
labeled program locations to the corresponding versions of the heap and the local store.
Additionally, the instrumentation allows us to filter out the redundant heap markers
from the SMT model. In particular, one can see that the model entry tmp↦v19 is irrele-
vant for the counterexample, while tmp@0 is relevant.14

LABELING LOOp INvARIANTS. Conceptually, loop invariants are assertions that are checked
before entering the loop and after a loop iteration; they are also assumed at the beginning
of a loop iteration and after the loop terminates [7, 8]. Since checking a loop invariant

14 The extra tmp symbol is an artifact of Boogie’s SSA transformation; see Sec. 4.3.1.
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may fail, the programmer should be able to label and debug the corresponding program
states. A straightforward approach is to label the state before the loop (for debugging
failed invariant entry checks) and the final state of the loop body (for debugging failed
invariant preservation checks). However, the latter state is not exactly the same as the one
in which the verifier checks the invariant, e. g. due to the limited lexical scope of local
variables. To guarantee that the right state is labeled, we propose an alternative, more
precise approach.

This following approach requires inhale-exhale assertions, which are available e. g. in
Viper [91]. An inhale-exhale assertion [𝐴, 𝐵] behaves as 𝐴 when the assertion is as-
sumed, while the same assertion [𝐴, 𝐵] behaves as 𝐵 when it is checked. If the pro-
grammer wishes to label a loop invariant, say 𝐴, with some label, e. g. "l1", then our
instrumentation rewrites this invariant as [𝐴, THIS_STATE_IS__l1(𝐹, 𝐿) ⟹ 𝐴]. As be-
fore, 𝐹 is the set of names of all the field modified by this method, and 𝐿 is the set of local
variable names. The new invariant behaves as the original one in all places in which the
verifier assumes it. Conversely, the verifier checks a modified version of the invariant that
has our state label assumption as the LHS of the implication (and the original invariant
as the RHS). Thus, we label the state of a possible failure of the invariant’s preservation
check.

4.4 GENERAL ALGORITHM

In this section, we introduce our algorithm (Alg. 1) for producing counterexample heap
models. This algorithm generalizes and further systematizes the ideas and observations
introduced in Sec. 4.2. In particular, our algorithm automates the steps listed in Sec. 4.2.2.2.

4.4.1 Algorithm overview

The entry point of Alg. 1 is PRODUCEHEAPMODEL.15 This procedure takes two arguments:
the program definitions (pds) and the raw SMT model (model). The former maps symbol
names to definitions, i. e. instances of type ProgDef, each storing the name and the type of
the corresponding program definitions. We assume that these definitions are exactly the
ones that are relevant to the current verification failure for which the algorithm intends
to produce counterexample models.

RAw SMT MODELS. The structure of model is slightly more involved, mapping model
names to entries, i. e. instances of type Entry. Its two subtypes define constant entries
(ConstEntry) and map entries (MapEntry), resp. In addition to entry names, constant en-

15 Our pseudocode is statically typed with subtyping. For brevity, we infrequently write type annotations to
improve readability and in pattern matching. E. g., ConstEntry is a subtype of Entry, so the λ-function in
model.collect(λe: ConstEntry ⋅ …) is partial, applying only to model elements of type ConstEntry.
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Algorithm 1 Produce Heap Model
1: interface Entry(name)
2: struct ConstEntry(name, val) <: Entry
3: struct MapEntry(name, apply) <: Entry

4: struct ProgDef(name, type)
5: procedure PRODUCEHEAPMODEL(pds:{str ↦ ProgDef}, ▷ Program definitions

model:{str ↦ Entry}) ▷ SMT model
6: states ← COLLECTPROGSTATES(pds, model)
7: eqcls ← COLLECTINITIALEQUIVCLASSES(pds, model, states)
8: graphs, nodes, scalars, fields ← SATURATE(pds, model, states, eqcls))
9: ftprints ← CONNECTGRAPHSANDNODES(model, graphs, nodes)

10: return states, ftprints, graphs, nodes, scalars, fields

tries store (concrete) values, i. e. the inner value that the SMT solver assigns to a vari-
able. In contrast, map entries model function interpretations; in order to obtain a con-
crete value from a map entry, one needs to perform a lookup based on some arguments.
MapEntry provides the method apply that abstracts such lookups; this method takes a
list of arguments and returns a value corresponding to the map lookup for these argu-
ments. The size of the argument list corresponds to the arity of the modeled function.
For example, if our source program declares function bar(i:Int, b:Bool): Ref, then
the interpretation of bar in the SMT model is a map entry with the name bar that assigns
cases e. g. i0 b0 ↦ r0, where i0, b0, and r0 are some constants the types of which can
be interpreted as Int, Bool, and Ref, resp.

For simplicity of the presentation, we do not consider the case of application entries.
Application entries without arguments, e. g. (f 1) for an uninterpreted function f in the
SMT notation, can be serialized in a pre-processing step and treated as constant entries
by the rest of our algorithm. Application entries with arguments, e. g. (= (:var 0) 42),
sometimes occur inside map entries, specifying conditions over function arguments un-
der which a particular case should be taken (here, (:var 0) refers to the value of the
first argument of a map entry). Again, a preprocessing step can rewrite such map en-
tries without the use of application entries. Refer to Sec. 4.2.1.2 for an overview of the
structure of SMT models.

HIGH-LEvEL STEpS. The algorithm produces heap models in four steps. First (line 6),
the procedure COLLECTPROGSTATES identifies and returns the relevant program states. A
program state is an instance of type State (Alg. 2, line 12), containing the versions of
the program heap, the local store, and the corresponding state labels.16

16 Although our algorithm produces counterexample heap models for one verification failure at a time, the
cause of each failure may involve the information about multiple program states.
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Figure 4.11: Rendering of a heap model.

The diagram shows our visualization approach for the outputs generated by Alg. 1. This diagram
depicts a superposition of two program states (l4 and l5). The local store contains a variable a
and two constants, hd and n, that reference distinct objects of the client’s footprint (purple box).
The object referenced by hd has two fields, data and next (depicted in either of the two states),
while the object referenced by n depicts only the field next in the state l4 (the information about
other fields and states is not relevant for in this example). The diagram shows that hd.next and
n.next reference the same object (denoted ρ40) in l4, yet hd.next references n in l5.

Second (line 7), the procedure COLLECTINITIALEQUIVCLASSES identifies and returns the
initial equivalence classes, i. e. instances of EquivClass (Alg. 2, line 49) modeling the rele-
vant (potentially aliasing) program variables. For example, the formal arguments of the
current method (including its footprint), local variables, as well as null (which has its
own inner value in the model) all form the initial equivalence classes.

Third (line 8), the procedure SATURATE transitively analyzes the Ref-fields of all reach-
able objects (within the current method’s footprint). This procedure returns four ob-
jects: (1) graphs is the set of all (equivalence classes modeling) Set[Ref]-type variables;
(2) nodes is the set of all relevant heap objects; (3) scalars is the set of all other objects,
e. g. local integer variables, and (4) fields is the list of all relevant heap adjacency relations,
i. e. instances of type Relation. Since the input model is finite, this analysis saturates af-
ter a finite number of steps (Sec. 4.4.4).

Fourth (line 9), the procedure CONNECTGRAPHSANDNODES identifies which nodes be-
long to which graphs, and returns ftprints, containing the graphs that model the foot-
prints (both for the caller and the callee methods).

Rendering visual heap diagrams based on the returned objects (line 10) is straightfor-
ward. Fig. 4.11 shows an example of the rendering of our algorithm’s end result (via a
layout interface implemented on top of Graphviz [16]).
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4.4.2 Modeling program states

INSTRuMENTATION. Generally, the SMT model contains information about all program
states needed for the verification of a program, including some that are not observed
by the programmer, e. g. auxiliary states for checking that state-dependent expressions
are well-formed. To produce a meaningful counterexample that can be understood by
any programmer, and not just the experts familiar with the verifier’s implementation,
our algorithm requires labeling all program locations that should be considered for the
counterexample. We described our instrumentation technique in Sec. 4.3; we will now
explain how program states are treated algorithmically.

HIGH-LEvEL OvERvIEw. The procedure COLLECTPROGSTATES (Alg. 2) takes the program
definitions and the SMT model and returns a list of states. Each state is an instance of
State with four fields: val is the inner value of heap markers, aliases is the set of heap
markers, e. g.{"Heap@0" , "Heap@0"} (the model may assign the same value to multiple
heap markers), labels is the set of state labels, e. g. {"l0", "l1"} (multiple labels may
end up referring to the same state in the counterexample), and storeHash is a value that
uniquely represents each store version, e. g. "x=1;y=2" for a local store with two integer
variables x and y.

The procedure works in three phases. Phase A extracts the information about state
labels from the instrumentation (Sec. 4.4.2.1). Phase B extracts the raw heap markers
from the model and maps them to the corresponding state labels (Sec. 4.4.2.2). Finally,
Phase C consolidates potentially equivalent states (Sec. 4.4.2.3).

4.4.2.1 Extracting state labels. The first step of this phase declares and populates the
map labelVarVal from label names to store variables to their corresponding inner val-
ues (lines 14 to 17). To that end, we first iterate through the model entries (line 15), fil-
tering constant entries whose name starts with "@local"; recall that this is the prefix of
local variable snapshots in our instrumentation technique Sec. 4.3.2. Second, we decode
the labels, extracting a variable name and the corresponding label (line 16). For example,
"@local$x$l7" is x’s snapshot in a state labeled l7. Finally, we store this information in
the labelVarVal map (line 17).

Second, the procedure maps label names to the corresponding store hashes (lines 18
to 21). This mapping is store in storeHash (line 18). We iterate through the value/key
pairs of labelVarVal; each pair defines a mapping from variable names to values and a
state label, resp. (line 19). We then compute the store hash for this label’s state (line 20).
The store hash is simply a string representation of pairs of variable names with their
corresponding values; e. g. if varToVal is {"x" ↦ "1", "y" ↦ "2"}, then we obtain
"x=1;y=2" for the store hash. We then save the store hash into the storeHashes map
under the current label’s name (line 21).
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Third, we collect the model entries that assign values to labels (lines 22 to 23). If the
source program is correctly instrumented, then state labels should be constant entries
in the model, their names should be present in the program definitions (pds), and their
type should be "Label".

Fourth, we create the lookup table storeHashes from (label value/store hash) pairs to
label names (lines 24 to 28). The purpose of step is twofold: (1) Hashing labels by their
inner values and store hashes ensures that equivalent labels are consolidated. Recall
from Sec. 4.3.3 that multiple labels may end up referring to equivalent states in a par-
ticular model, e. g. due to an effectless field update x.next := y where x.next already
equals y before the assignment. Note, however, that versions of both the heap and the
local store are state equivalence factors, hence the pair structure of keys (line 26). (2) Ad-
ditionally, the storeHashes map helps labeling heap markers with consolidated state
labels in Phase B (Sec. 4.4.2.2).

Fifth, we declare and populate the auxiliary map valToStores, this time — from label
names to the corresponding store hashes (lines 29 to 32). To that end, we iterate through
(label value/store hash) pairs, i. e. the keys of storeHashes (line 30), aggregating store
hashes per label inner values (lines 31 to 32). This map enables a concise yet efficient
implementation of the next phase of COLLECTPROGSTATES, as presented next.

4.4.2.2 Combining stores and heaps. Equipped with the state labels, we are now pre-
pared for Phase B: combining stores and heaps into labeled states. We first collect the
heap markers from the model (line 33). Recall that heap markers are constant entries
named according to some backend-specific convention. To abstract over this convention,
we use a predicate called isHeapSnapshot. For example, isHeapSnapshot(e), where e is
a constant entry, can be rewritten as e.name.includes("Heap") for Viper’s VCG, or as
e.name.includes("$FVF") for Viper’s SE engine.17 18 We then use the entry to construct
a new heap, i. e. instance of type Heap (line 11), storing the heap marker’s inner value and
initializing the set of its aliases with the marker itself (line 34).

We then declare the states map from (heap inner value/store hash) pairs to actual
states (line 35). Note that states are instances of type State (line 12) which extends Heap
with two fields: labels (a set of labels referring to this state) and storeHash (the string
representation of the local store in this state). To populate states, we iterate through
heaps (line 36). For each heap h value h.val, we perform a lookup into the "@heap"
function, obtaining the inner value of a state label, labelVal (line 37). We then check if
this value corresponds to some store hashes in the valToStores map; if this is the case,
we iterate through these store hashes (line 38).

Next, we combine the current heap’s value (h.val) with the current store hash (storeHash)
into a single key (line 39); we proceed only if this key is not yet present in our states

17 str.includes(sub) evaluates to true iff sub is a substring of str.
18 In Viper’s SE engine, FVF stands for field-value function [92].
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Algorithm 2 Collect Program States
11: struct Heap(val, aliases)
12: struct State(val, aliases, labels, storeHash,

hash ← λ() ⋅ [labels.join(), storeHash].join()) <: Heap

13: procedure COLLECTPROGSTATES(pds, model)
. . . . . . . . . . . . . . . . . . . . . . Phase A: Extract State Labels . . . . . . . . . . . . . . . . . . . . . .

14: labelVarVal ←{} ▷ Maps labels to store variables to values
15: model.foreach(λentry: ConstEntry ⋅ entry.name.startswith("@local"))
16: prefix, var, label ← entry.name.split("$") ▷ E.g. "@local$x$l7"
17: localVarVal[label][var] ← entry.val
18: storeHashes ←{} ▷ Maps labels to store hashes
19: labelVarVal.foreach(λ(varToVal, label) ⋅ ▷ Compute store hashes
20: storeHash ← varToVal.map(λ(val, var) ⋅ var + "="+ val).join(";")
21: storeHashes[label] ←storeHash )
22: labelEntries ← model.filter(λe: ConstEntry ⋅ ▷ Collect label entries
23: e.name ∈ pds ∧ pds[e.name].type = "Label")
24: valStoreToLabels ←{} ▷ Maps (label value/store hash) pairs to labels
25: labelEntries.foreach(λe ⋅ ▷ Merge labels by (label value/store hash) pairs
26: key ← (e.val, storeHashes[e.name]) ▷ Keys are ADT pairs
27: key ∈ valStoreToLabels ? valStoreToLabels[key].extend(e.name)
28: : valStoreToLabels[key] ← [e.name])
29: valToStores ←{} ▷ Maps label values to store hashes
30: valStoreToLabels.keys().foreach(λ(storeHash, labelVal) ⋅
31: labelVal ∈ valToStores ? valToStores[labelVal].extend(storeHash)
32: : valToStores[labelVal] ← [storeHash])

. . . . . . . . . . . . . . . . . . . . . . Phase B: Combine Stores and Heaps . . . . . . . . . . . . . . . . . . . . . .
33: heaps ← model.collect(λe: ConstEntry ⋅ ▷ Collect heaps from model
34: isHeapSnapshot(e) ⇒ Heap(e.val, aliases ←{e.name} ))
35: states ←{} ▷ Maps heap/store pairs to states
36: heaps.foreach(λh ⋅ ▷ Collect labeled states
37: labelVal ← model["@heap"].apply([h.val]) ▷ Model lookup
38: labelVal ∈ valToStores ⇒ valToStores[labelVal].foreach(λstoreHash⋅
39: key ← (h.val, storeHash)
40: key ∉ states ⇒ ▷ Drop redundant labels
41: labels ← valStoreToLabels[(labelVal, storeHash)].sorted()
42: states[key] ← State(h.val, h.aliases, labels, storeHash)))

. . . . . . . . . . . . . . . . . . . . . Phase C: Consolidate Equivalent States . . . . . . . . . . . . . . . . . . . . .
43: unique ←{} ▷ Maps label hashes to states
44: states.foreach(λs ⋅ key ← s.labels.join("/") ▷ Merge states by labels
45: key ∈ unique ? unique[key].aliases.extend(s.aliases)
46: : unique[key] ← s)
47: return unique.values()
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map19 (line 40). If this is a fresh key, i. e. we have not already encountered for a state with
these exact heap marker value and store hash, then we retrieve the corresponding state
labels from valStoreToLabels (note that the key here is different, combining the label’s
inner value with this store hash), ascendingly sort, and store them into labels (line 41).
Finally, we construct a new State instance (resembling our heap, h, but also storing the
corresponding labels and the store hash), and save it into states under this key (line 42).

4.4.2.3 Consolidating equivalent states. The final phase of COLLECTPROGSTATES consoli-
dates equivalent states (lines 43 to 46). First, we declare the map unique from label hashes
to states (line 43). Label hashes are string representations of multiple labels, e. g. the
hash of{"l0" , "l1", "l2"} is the string "l0/l1/l2" (recall that we store sorted sets of
labels). We then iterate through each state s, computing and saving its hash into key
(line 44). If key is already present in unique, we consolidate the previously saved state
(unique[key]) with the new state (s) by merging their aliases (line 45). Otherwise, we
save the fresh state s under key in unique (line 46).

In the end, COLLECTPROGSTATES returns the consolidated states, i. e. the values of the
unique map (line 47).

4.4.3 Modeling initial equivalence classes

This step is implemented via the procedure COLLECTINITIALEQUIVCLASSES (Alg. 3) that
takes the program definitions (pds), the raw SMT model (model), and the list of relevant
program states (states), returning a list of initial equivalence classes. The algorithm
works in three phases: Phase A collects constants (Sec. 4.4.3.1), Phase B collects mutable
variables (Sec. 4.4.3.2), and then Phase C forms the equivalence classes amongst them
(Sec. 4.4.3.3). We will first describe the structures used by COLLECTINITIALEQUIVCLASSES
and then explain its three phases.

STRuCTuRE OF ATOMS. Each equivalence class summarizes a set of atoms — instances of
type Atom (line 48) — that have the same inner value (val) and type (type). In addition
to val and type, these objects have the following three fields: (1) The field proto stores
the name of this atom’s prototype variable; (2) state stores either the state in which this
atom is active (i. e. relevant to the counterexample), or the special value None (if this atom
models a constant value); (3) The isLocal flag indicates whether this atom models a
local store variable (and, hence, should be depicted as a member of the program store
in the resulting model).

19 Otherwise, one could warn the user that multiple labels refer to the same state (not shown in Alg. 2).
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Algorithm 3 Collect Initial Equivalence Classes
48: struct Atom(val, type, proto, state ← None, isLocal ← true,

hash ← λ() ⋅ [val, type].join()) ▷ Hash by value/type

49: struct EquivClass(val, type, aliases,
hash ← λ() ⋅ [val, type].join()) ▷ Hash by value/type

50: struct GraphNode(val, aliases, fields ← []) <: EquivClass(type ← "Ref")
51: struct Graph(val, aliases, nodes ←{} ) <: EquivClass(type ← "Set[Ref]")
52: procedure COLLECTINITIALEQUIVCLASSES(pds, model, states)

. . . . . . . . . . . . . . . . . . . . . . . Phase A: Collect constants . . . . . . . . . . . . . . . . . . . . . . .
53: immut ← model.collect(λe: ConstEntry ⋅ p ← e.name

54: p ∈ pds∧ pds[p].type = "Argument" ⇒ Atom(e.val, pds[p].type, p))
. . . . . . . . . . . . . . . . . . Phase B: Collect mutable local store variables . . . . . . . . . . . . . . . . . .

55: labelsToStates ←{} ▷ Maps labels to states
56: states.foreach(λstate ⋅ state.labels.foreach(λlabel ⋅
57: labelsToStates[label] ← state))
58: mut ←{} ▷ Maps (variable name/state hash) pairs to atoms
59: model.foreach(λentry ⋅ entry.name.startswith("@local") ⇒
60: prefix, var, label ← entry.name.split("$") ▷ E.g. "@local$x$l7"
61: state ← labelsToStates[label]
62: type ← pds[var].type
63: key ← (var, state.hash())
64: key ∉ mut ⇒ mut[key] ← Atom(entry.val, type, var, Some(state)))

. . . . . . . . . . . . . . . . . . Phase C: Group atoms into equivalence classes . . . . . . . . . . . . . . . . . .
65: eqcls ←{} ▷ Maps (value/type) pairs to equivalence classes
66: immut.extend(mut.values()).foreach(λatom ⋅ key ← (atom.val, atom.type)
67: key ∈ eqcls ? eqcls[key].aliases.extend(atom)
68: : eqcls[key] ← EquivClass(atom.val, atom.type, {atom} ))
69: return eqcls.values()

STRuCTuRE OF EquIvALENCE CLASSES. Equivalence classes (line 49) have the following
fields: val and type are the inner value and the type (e. g. "Int" or "Ref") of the atoms
forming this equivalence class; the field aliases is an (ordered) set of aliasing atoms.

The two extensions of EquivClass are graph nodes, i. e. GraphNode (line 50) and graphs i. e. Graph
(line 51). Graph nodes model variables of type Ref; since non-null references correspond
to heap objects, graph nodes may have fields which are stored in GraphNode.fields.
Graphs model variables of type Set[Ref], i. e. the type used for representing method
footprints in our setting; these have an (ordered set) field Graph.nodes, indicating which
nodes belong to a particular graph.



226 vERIFICATION DEBuGGING

4.4.3.1 Immutable variables. The algorithm first collects immutable variables, i. e. those
that must have the same value in all states, e. g. formal method arguments (lines 53 to 54).
We start by collecting constant model entries e, storing their names into p (line 53). We
then check that e has a corresponding program definition whose type is "Argument", in
which case we construct a new atom for each such entry (line 54).

4.4.3.2 Mutable variables. We collect mutable variables in two steps. First, we create
and populate the map labelsToStates from label names (e. g. "l1") to lists of states cor-
responding to those labels (lines 55 to 57). Recall from Sec. 4.4.2 that each label uniquely
identifies a state, but our consolidated states may have multiple labels.

Second, we collect model entries whose name starts with the reserved prefix "@local";
these are special instrumentation constants in the source program that mark particular
variable versions with state labels (lines 58 to 64). The full name of these constants is
e. g. "@local$x$l7" where x is the name of a local variable and l7 is the state label in
which x is marked; these values are stored in var and label, resp. (line 60).

We proceed by retrieving the state corresponding to label from the labelsToStates
map; we obtain the state in which the current atom is active in the counterexample
(line 61). Next, we obtain the variable’s type from the program definitions pds (line 62).
We then form a key of two factors: the variable name and the state hash20 (line 63). Fi-
nally, we check that the key is not already present in the mut map, in which case we
construct a new atom, storing all information about this variable version, and saving it
into mut under key (line 64).

AvOIDING DupLICATE ATOMS. Two distinct program states may have identical local stores
if they differ only in their heaps, e. g. in the following scenario (in which we assume that
t and x are two nodes in the current method’s footprint, 𝔤):
t := null; THIS_STATE_IS__l1(t) // yields (@heap(𝔤) = l1()∧ t = @local$t$l1())
x.next := t; THIS_STATE_IS__l2(t) // yields (@heap(𝔤) = l2()∧ t = @local$t$l2())

On the one hand, the two assignments result in states labeled l1 and l2, resp. Assume
that the model includes the entry null ↦v11. The local store hash is then the same in
both l1 and l2, namely, the string "t=v11" (cf. line 20).

On the other hand, our instrumentation yields two distinct model entries "@local$t$l1"
and "@local$t$l2" that define the local variable snapshots of t in l1 and l2; both of
these entries will be processed on line 59. Therefore, our two-factor key (cf. line 63) de-
pends on both the name of a local variable and the local store hash in the state in which
this variable is labeled, avoiding the creation of duplicate atoms.

4.4.3.3 Forming equivalence classes. The last phase of COLLECTINITIALEQUIVCLASSES it-
erates through all the atoms (both immutable and mutable), consolidating them by their

20 We explain why this particular key structure is used shortly after.
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Algorithm 4 Transitive heap analysis
70: struct Data(eqcls ←{} , gs ←{} , ns ←{} , cs ←{} , fs ← [])
71: procedure SATURATE(pds, model, states, eqcls)
72: d ←Data()
73: repeat
74: d.eqcls.extend(eqcls)
75: nodes ← GROUPEQUIVCLASSESBYTYPE(eqcls, d) ▷ Extends d.gs, d.ns, d.cs
76: eqcls ← EXTRACTFIELDS(pds, model, states, nodes, d) ▷ Extends d.fs
77: until eqcls = []
78: return d.gs, d.ns, d.cs, d.fs

inner value and type (lines 65 to 68). First, we declare the map eqcls from (inner value/-
type) pairs to equivalent classes (line 65). We iterate through all the atoms; for each atom,
we create a two-factor key with its inner value and type and store it in key (line 66).

We then check if this key is already present in the eqclsmap, in which case we add the
current atom to the set of aliases of the existing equivalence class (line 67). Otherwise,
we create a new equivalence class with this atom’s inner value and type, and initialize
its aliases set with a singleton set of the current atom; we save the new equivalence class
into eqcls under key (line 68).

The procedure COLLECTINITIALEQUIVCLASSES returns eqcls.values(), i. e. the set of all
equivalence classes (modeling both immutable and mutable variables) (line 69).

4.4.4 Transitive heap analysis

After collecting the relevant program states (Sec. 4.4.2) and the initial equivalence classes
(Sec. 4.4.3), the algorithm proceeds with its main step of transitive heap analysis. This
step is implemented via the procedure SATURATE (Alg. 4).

The procedure takes as input the program definitions (pds), the raw SMT model (model),
and the relevant program states and starting equivalence classes (resp. states, eqcls).
Next, we discuss the four collections that are returned at the end of SATURATE. Graphs
(d.gs) are arbitrary node sets (including footprints) i. e. all variables of type Set[Ref].
Correspondingly, graph nodes (d.ns) are (non-null) references, i. e. those referring to
actual heap objects, while scalar atoms (d.cs) contain variables of all other types.

Finally, SATURATE returns the heap adjacency relations (d.fs). Each relation, i. e. an in-
stance of type Relation (line 94) has a name (corresponding to some Ref-field’s name),
a state in which it is active, as well as this relation’s predecessor and successor. For example,
if the source program has the line x.next := y for some Ref-field next and two refer-
ences x and y, then we will model the corresponding relation as Relation("next", s,x, y),
where s models the state after this assignment. Note that we will not need Relation’s
method hash until Sec. 4.5.
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Algorithm 5 Group Atoms by Type

79: procedure GROUPEQUIVCLASSESBYTYPE(eqcls, data)
80: nodes ← []
81: eqcls.foreach(λe ⋅ match e.type
82: case "Set[Ref]" ⇒ data.gs.extend(Graph(e))
83: case "Ref" ⇒ nodes.extend(GraphNode(e))
84: case _ ⇒ data.cs.extend(e))
85: data.ns.extend(nodes)
86: return nodes

The body of SATURATE first initializes a singleton object, d, containing data across all
iterations (line 72), then repeats the three steps (discussed below), until atoms becomes
empty (lines 73 to 77).

SATuRATION. We now discuss the body of the repeat-until loop of SATURATE, which con-
sists of three steps. First, the current equivalent classes are added to the global collec-
tion d.eqcls (line 74).21 Then, GROUPEQUIVCLASSESBYTYPE forms three groups: graphs,
nodes, and all others, accumulating them in the corresponding fields of d (line 75). This
procedure returns nodes, i. e. the subset of the new Ref-type atoms (Sec. 4.4.4.1).

Third, EXTRACTFIELDS extracts new heap adjacency relations by analyzing the field values
of new graph nodes and accumulates them into d.fs (line 76). This procedure returns
the set of fresh, transitive equivalence classes, i. e. those modeling newly reached nodes
(via one heap edge) that were not already processed on previous iterations (Sec. 4.4.4.2).

The loop repeats until there are no new transitive equivalence classes. We will next de-
scribe the saturation steps in more detail and then present a typical scenario of running
SATURATE and an informal analysis of this algorithm (Sec. 4.4.4.3).

4.4.4.1 Grouping equivalence classes by type. The procedure GROUPEQUIVCLASSESBY-
TYPE is straightforward (Alg. 5). At a high-level, the procedure initializes a new list
(line 80), nodes, then populates it with atoms whose type is Ref (lines 81 to 84), and
then returns the list (line 86). In addition, we accumulate graphs, i. e. atoms with type
Set[Ref] (line 84) and scalar nodes (line 84) into the corresponding fields of data; graph
nodes are accumulated into data as well (line 85). Note that each of the three cases
(lines 82 to 84) upcasts the current atom, a, to the corresponding subtype.

4.4.4.2 Extracting field values. The last step of an iteration in Alg. 4 is the procedure
EXTRACTFIELDS that collects fields of the new nodes. This procedure uses the program
definitions (pds), the model (model), the relevant program states (states), and the new
graph nodes (ns); it then accumulates new fields into data; and then returns the list trans

21 We will explain why the two sets of equivalence classes are always disjoint in Sec. 4.4.4.2.
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of transitive, i. e. newly reached, atoms. We model fields as relations, i. e. instances of type
Relation (line 94), that specify a field’s name, a program state, as well as the predecessor
(which must be a graph node) and the successor (which may be any equivalence class).

ACTIvE RECEIvERS. The first step in EXTRACTFIELDS is to obtain a mapping from each
state to the set of field receivers, i. e. non-null nodes with active atoms in that state; we
achieve this by involving the sub-procedure GETACTIVEOBJECTS (line 97).

GETACTIVEOBJECTS takes a set of nodes nodes as input and returns a function that maps
each state to the set of nodes that are active in that state. We start by initializing the map
vObjs from states to nodes and the set cObjs for collecting immutable objects (line 88).

We then iterate through (non-null) nodes (line 89).22 For each node n, we then tra-
verse its aliasing atoms n.aliases; and for each atom a, we pattern match on the type of
a.state (line 90). If some state is associated with this atom, then we add its equivalence
class, i. e. the node n, to the set of nodes in vObjs for the state s (line 91). Otherwise, this
is an immutable object that is active in all states, and we add it to the set cObjs (line 92).

After grouping the input nodes between vObjs and cObjs, we return a λ-function of
one argument, state, that yields exactly the objects that are active in state (line 93).

Algorithm 6 Map States to Active Objects
87: procedure GETACTIVEOBJECTS(nodes)
88: vObjs, cObjs ←{} , {} ▷ v: maps states to active objs.; c: set of constant objs.
89: nodes.foreach(λn ⋅ isNotNull(n) ⇒ ▷ Only non-null Refs are objects
90: n.aliases.foreach(λa ⋅ match a.state ▷ Check if atom has state
91: case Some(s) ⇒ s ∈ vObjs ? vObjs[s].extend(n) : vObjs[s] ←{n}
92: case None ⇒ cObjs.extend(n))) ▷ No associated state ⇒ constant
93: return λstate ⋅ state ∈ vObjs ? vObjs[state].union(cObjs) : cObjs

FIELD-RELATED MODEL ENTRIES. Returning to Alg. 7, we collect all field-related model
entries that provide information about field values (lines 98 to 98). These are the entries
that correspond to program definitions with type "Field".23

SETTING up THE HEAp ANALySIS. We proceed by initializing the set for transitive nodes
(line 99) and iterating through the states state; we then obtain the set objs ← stateToNodes(states)
of all active nodes of this state (line 100). We proceed by iterating through these relevant
nodes and all field-related entries (line 101).

For each (state/receiver object/field entry) triplet, we first perform a lookup into the
field entry, passing as arguments the inner values of this state, object, and field, and stor-

22 The function isNotNull(node) can be implemented as model["null"].val ≠ node.val.
23 For simplicity of the presentation, we assume in Alg. 7 a particular organization of field-related entries in

the model (i. e. as in Viper’s VCG). Some aspects of EXTRACTFIELDS require (simple) customization to support
other verification backends, e. g. the condition pd.name ∈ model (line 98) and the signature of fent.apply.
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ing the resulting value in val (line 102).24 Then, we check that val is specified, i. e. the
model assigns some field value (line 103). Recall that we use partial SMT models that typ-
ically leave some unspecified cases in function interpretations, e. g. because the solver
could not find a suitable assignment or because this value is not needed for drawing the
contradiction. If the value is specified in the model, we proceed.

HEAp ANALySIS. The algorithm proceeds as follows. First, we obtain this field’s type
from the program definitions, pds (line 104). Second, we form a two-factor key based on
val and type (line 105).

Third, we create a set of aliasing atoms, one for each alias of the field’s receiver object,
and save them into aliases (lines 106 to 109). For example, if obj has two aliases, say a
and b, the current field’s name is 𝑛𝑒𝑥𝑡, and state is labeled as l1, then the algorithm will
create two new aliasing atoms, naming them "a.next[l1]" and "b.next[l1]" (cf. lines 107
to 108); these atoms will be active in state and marked as non-local as they are reached
via a heap edge (cf. line 109).

Fourth, we consider whether to reuse an equivalence class created on previous itera-
tions of SATURATE (lines 110 to 112) or earlier on this iteration, e. g. for another state or
field (lines 113 to 115); in both cases, we extend the set of aliases of the existing equiva-
lence class with the newly created atoms from aliases. Alternatively, if no equivalence
classes have been created so far for these value and type, then we create a new equiv-
alence class that represents our newly collected set of aliasing atoms; we save this new
class into the trans map under key (lines 116 to 118).

Fifth, we use the obtained class succ that models the field value in order to construct
a new relation, storing it in field (line 119); we then associate the this field with the
receiver object (line 120) and accumulate it in data.fs (line 121).

The EXTRACTFIELDS procedure accumulates each new field in data.fs (line 121). After
all fields are created, the procedure returns the list of transitive atoms (line 122).

4.4.4.3 Managing equivalence classes. Recall that atoms represent variables and con-
stants of our source program.25 While generating a model, the SMT solver may choose
whether to assign a fresh value to a particular atom or to reuse an existing one. Hence,
some atoms may end up with the same inner value. Equivalence classes consolidate
aliasing atoms, enabling us to reason about unique heap objects in a counterexample.

ExAMpLE. Assume we have a model of two non-null references a ↦v1, b ↦v1; this
indicates that a = b, i. e. a and b reference the same object. Let the corresponding initial
atoms be a ← Atom(val ← "v1", type ← "Ref", proto ← "a", isLocal ← true) and
b ← Atom(val ← "v1", type ← "Ref", proto ← "b", isLocal ← true). These two local

24 Viper’s SE uses separate functions for each field’s values; an adaptation of EXTRACTFIELDS is straightforward.
25 We use the terms atom and constant model entry interchangeably as they are isomorphic.
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Algorithm 7 Extract Field Values
94: struct Relation(name, state, pred, succ, hash ← λ() ⋅ ▷ Hash all but the name
95: [state.labels.join(), pred.hash(), succ.hash()].join())
96: procedure EXTRACTFIELDS(pds, model, states, nodes, data)
97: stateToNodes ← GETACTIVEOBJECTS(nodes)
98: fents ← pds.collect(λpd ⋅ ▷ Collect field-related model entries

pd.type = "Field"∧ pd.name ∈ model ⇒ model[pd.name])
99: trans ←{} ▷ Maps (value/type) pairs to new transitive equiv. classes

100: states.foreach(λstate ⋅ objs ← stateToNodes(state)

101: objs.foreach(λobj ⋅ fents.foreach(λfent ⋅
102: val ← fent.apply([state.val, obj.val, fent.val]) ▷ Model lookup
103: val ≠ "unspecified" ⇒ ▷ Skip unspecified field values
104: type ← pds[fent.name].type ▷ Get this field’s type
105: key ← [val, type].join()
106: aliases ← obj.aliases.map(λrec ⋅ ▷ E.g. if a = b then a.𝑓 = b.𝑓
107: sid ← state.labels.join("/") ▷ E.g. "l1" or "l2/l3"
108: name ← rec.name+ "."+ fent.name+ "["+ sid+ "]"
109: return Atom(val, type, name, Some(state), isLocal ← false))
110: if key ∈ data.eqcls then ▷ Reuse eq.cl. from previous iterations
111: succ ← data.eqcls[key]
112: succ.aliases.extend(aliases) ▷ Merge in new aliasing atoms
113: else if key ∈ trans ▷ Reuse eq.cl. from this iteration
114: succ ← trans[key]
115: succ.aliases.extend(aliases) ▷ Merge in new aliasing atoms
116: else ▷ Found eq.cl. with fresh value/type
117: succ ← EquivClass(val, type, aliases) ▷ New new eq.cl.
118: trans.extend(succ) ▷ Save fresh eq.cl.
119: field ← Relation(fent.name, state, obj, succ) ▷ New relation
120: obj.fields.extend(field) ▷ Extend this receiver’s fields

121: data.fs.extend(field)))) ▷ Extend global fields

122: return trans.values() ▷ Return new transitive equiv. classes
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atoms are merged in Phase C of COLLECTINITIALEQUIVCLASSES into one equivalence class
of the form ab ← EquivClass(val ← "v1", type ← "Ref", aliases ←{a , b}).

Further, assume that our method assigns to a.next. This may lead EXTRACTFIELDS to
discover a fresh atom (e. g., Atom(val ← "v3", …)), modeling a.next’s value in some
state (say, s). Since the algorithm maintains equivalent classes of atoms, it will consider
a along with all of its potential aliases (in this case, b); the newly discovered field rela-
tion will thus be represented as Relation("next", s, ab, cd). Here cd is the transitive
equivalence class that models the atoms a.next and b.next which alias so long as a = b.

If the given inner value ("v3") and type ("Ref") were used on previous iterations
of SATURATE, then we would not have created cd, reusing the existing equivalence class
from data.eqcls (lines 110 to 112). Analogously, if the given inner value and type were
already used on this iteration of SATURATE (e. g. for a different program state on line 100),
then we would also not have created cd, this time, reusing the existing equivalence class
from trans (lines 113 to 115). Only if neither of the two cases apply do we create a new
equivalence class, using a fresh value and type combination, and adding all the aliasing
atoms, i. e. a.next and b.next in the scenario above (lines 116 to 118).

In all three cases, the considered equivalence class can be uniquely identified via the in-
ner value and type. Hence, the equivalence classes collected in trans and in data.eqcls
are always disjoint; merging disjoint sets of equivalence classes is trivial (line 74).

TypE INFORMATION. The type information from the SMT model can be imprecise; e. g. the
model may assign the same inner value to atoms representing program values of incom-
patible types. Hence, we rely on the type information only from the verifier (via pds),
incorporating it into the hash of atoms and equivalence classes (line 49). This guarantees
that atoms with incompatible types are not merged by one equivalence class.

TERMINATION. Recall that for the procedure SATURATE to terminate, EXTRACTFIELDS must
return an empty list, indicating that there are no fresh, transitively reachable equivalence
classes to consider. This condition is eventually fulfilled because (1) The set of all possible
equivalence classes for a given SMT model (say, 𝐸𝐶), is finite as there are finitely-many
(inner value/type) pairs; (2) The set of equivalence classes produced by EXTRACTFIELDS
(say, 𝑇𝑅0) is guaranteed to be disjoint with the set of equivalence classes collected in all
previous iterations of SATURATE (say, 𝐷𝑇0), as we informally argue above. We have that
(𝑇𝑅0⊎𝐷𝑇0) ⊆ 𝐸𝐶. If 𝑇𝑅0 = ∅, then the algorithm terminates. Otherwise, we proceed to
the next iteration, replacing 𝐷𝑇0 with 𝐷𝑇1 = (𝑇𝑅0 ⊎𝐷𝑇0) and repeating the argument
for 𝑇𝑅1. Because 𝐷𝑇0 ⊂ 𝐷𝑇1 ⊂ … are all subsets of 𝐸𝐶, we can see that the number of
iterations must be finite; hence, Alg. 4 terminates.
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Algorithm 8 Connect Graphs and Nodes
123: procedure CONNECTGRAPHSANDNODES(model, graphs, nodes)
124: footprints ←{}
125: graphs.foreach(λgraph ⋅
126: graph.name = "𝔤" ⇒ footprints["client"] ← graph
127: graph.name = "𝔥" ⇒ footprints["callee"] ← graph
128: nodes.foreach(λnode ⋅
129: res ← model["Set.in"].apply([graph, node])
130: res = "true" ⇒ graph.nodes.add(node)))
131: return footprints

4.4.5 Connecting graphs and nodes

CONNECTGRAPHSANDNODES (Alg. 8) is the final procedure of our model-generating algo-
rithm of Alg. 1, providing the information about the heap node’s membership (e. g. does
this node belong to the client’s footprint?). Recall that footprints are node sets with special
names (each method specifies its footprint via the node set 𝔤 and its callee’s footprint
as 𝔥). We assume for simplicity that the method being debugged does not change its
footprint (there is no allocation or deallocation of memory); generalizing our algorithm
to handle multiple footprint versions is straightforward since the algorithm collects the
information about all node sets.26

The procedure starts by declaring the footprints object (line 124). It then iterates
through the graphs (line 125). For each graph, the procedure performs three steps: (1) Check-
ing if this graph is the client’s (line 126) or the callee’s (line 127) footprint, in which case
they are saved into the footprint object.(2) Iterating through the nodes (line 128), per-
forming a lookup in the model’s set-in entry27 whether each node belongs to this graph
(line 129). (3) If the interpretation of the set-in relation for this graph-node pair evaluates
to "true", then the procedure adds this node to this graph’s nodes set (line 130). Finally,
the procedure returns the footprints object (line 131).

4.4.6 Summary

We presented an algorithm that produces counterexample models to verification fail-
ures of heap-transforming programs. We assumed that the program is specified in sep-
aration logic; in particular, each method’s footprint must be declared as a set of heap
nodes (𝔤), while the permissions to access the fields of these nodes should be specified
via iterated separating conjunctions.28 Correspondingly, before a client method can in-

26 However, it is hard to visualize superpositions of program states with non-constant footprints.
27 The exact name of the model entry for the set-in relation is verifier-specific, e. g. it is "[2]" in Viper’s VCG.
28 In case method footprints are not available, our technique gracefully degrades to modeling heap nodes and

edges without footprint affiliation by simply skipping CONNECTGRAPHSANDNODES (Alg. 8).
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voke a callee, it should declare the callee’s footprint as a set of heap nodes (𝔥). In order
for the counterexamples to refer to states in an understandable way, we require the pro-
grammer to instrument the program with state labels (Sec. 4.3).

The inputs of our algorithm are the raw SMT model obtained after a verification fail-
ure and the program definitions. While the SMT model contains (almost) all the infor-
mation needed to produce a counterexample, filtering the relevant bits out of a large
number of model entries requires a number of choices that make this process not trivial.
For example, it is crucial to merge aliasing atoms (since aliasing is often the cause of ver-
ification failures); yet, it is not obvious at what stages to merge them into equivalence
classes as fresh atoms may occur while traversing the heap’s model. Our approach makes
merging atoms trivial (Alg. 4, line 74) as we form explicit equivalence classes from the
beginning and then update them as soon as a fresh atom is reached.

In addition to merging aliasing atoms, our algorithm overcomes the problem of alias-
ing states. Our state consolidation procedure (Alg. 2) merges states if and only if both
the store and the heap are equivalent, automating an otherwise cumbersome (and error-
prone) manual task.

4.5 HEAp REACHABILITy MODELS

Our general algorithm of Sec. 4.4 leverages partial SMT models and precise type infor-
mation to produce counterexample heap models. These counterexamples contain the
basic information needed for visualizing and understanding heap configurations, pos-
sibly in multiple states; in addition to the heap edges, we keep track of the in-set relation
defining which nodes are inside the current method’s footprint.

In this section, we will show that an important advantage of our algorithm is its ex-
tensibility, i. e. one can easily extend this algorithm to enrich the produced counterexam-
ples with other useful information from the program specifications. Concretely, we will
demonstrate this for the local reachability relation used in our modular heap reachability
verification technique of Chap. 3.29

We implement or extended algorithm in Alg. 9.

4.5.1 Purpose of heap reachability models

The purpose of Alg. 9 is to augment counterexample heap models produced by the
general algorithm with local reachability information, indicating the transitive heap paths
that exist or do not exist (according to the SMT solver). This information is collected as a
list of relations, i. e. instances of type LocalRelation (line 137), and returned alongside
the components of the general model (line 136).

29 We assume that the reader is familiar with our local reachability notation described in Sec. 3.3.
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Algorithm 9 Produce Reachability Model
132: procedure PRODUCEREACHABILITYMODEL(pds:{str ↦ ProgDef}, ▷ Program def-s

model:{str ↦ Entry}) ▷ SMT model
133: states, ftprints, graphs, nodes, fields ← PRODUCEHEAPMODEL(pds, model)
134: reach ← EXTRACTREACHABILITY(pds, model, graphs, nodes)
135: reach ← REDUCE(reach, fields, ftprints)
136: return states, ftprints, graphs, nodes, fields, reach

137: struct LocalRelation(name, state, graph, pred, succ) <: Relation

138: procedure EXTRACTREACHABILITY(pds, model, states, graphs, nodes)
139: pathEntry ← model["exists_path"] ▷ Local reachability predicate
140: snapEntry ← model["rsnap"] ▷ Snapshot function
141: stateToNodes ← GETACTIVEOBJECTS(nodes) ▷ Maps states to actve nodes
142: stateToGraphs ← GETACTIVEOBJECTS(graphs) ▷ Maps states to actve graphs

143: return states.flatmap(λstate ⋅ stateToGraphs(state).collect(λgraph ⋅

144: rsnap ← snapEntry.apply([state.val, graph.val]) ▷ 1st lookup in model
145: rsnap ≠ "unspecified" ⇒ ▷ Check if value is relevant
146: stateToNodes(state).flatmap(λpred⋅ stateToNodes(state).collect(λsucc⋅
147: reach ← pathEntry.apply([rsnap, pred, succ]) ▷ 2nd lookup
148: reach ≠ "unspecified" ⇒ ▷ Check if value is relevant
149: name ← (reach = "true") ? "P" : "¬P"
150: return LocalRelation(name, state, graph, pred, succ) ) ) ) )

LOCAL REACHABILITy. We recap on the semantics of local reachability relations that were
defined in Chap. 3. The local reachability relation P𝐹σ(𝔤, 𝑥, 𝑦) holds iff, in the state σ, there
exists a (possibly, zero-length) path 𝑥…𝑦 of fields from the set 𝐹, s.t. all nodes on this
path are inside the footprint 𝔤 (except, possibly, the last node, which may or may not be
in 𝔤). For example, 𝑥.left.right.left = 𝑦 implies P{left, right}σ (𝔤, 𝑥, 𝑦).

In modular verification, local reachability relations serve two main purposes: (1) they
provide an abstract view over concrete heap edges and (2) they specify absence of reachabil-
ity, e. g. ¬P{left, right}σ (𝔤, 𝑦, 𝑥) expresses that, in the state σ, 𝑦 cannot reach 𝑥 by following
left or right fields of nodes from 𝔤. Therefore, local reachability relations provide es-
sential information for understanding complex heap configurations.

MOTIvATING ExAMpLE. To motivate the algorithm described in this section, we illustrate
two versions of a counterexample heap model (Fig. 4.12). These models are constructed
for a buggy method reverse of an acyclic list.30 The first model corresponds to the out-
put generated by our general algorithm of Alg. 1, showing only direct heap edges. In

30 We will discuss reverse in full detail in Sec. 4.7.1.
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Figure 4.12: Heap model and its augmentation with local reachability information.

(a) A regular heap model. Concrete heap edges are depicted via black arrows. (b) Heap reacha-
bility model. Facts about local reachability are depicted via blue arrows; solid and dashed arrows
denote existing and non-existing local heap paths, resp. (according to the solver).

contrast, the second model (generated by Alg. 9) additionally contains local reachabil-
ity relations essential for fully understanding the heap configuration. In particular, the
unreachability facts are needed to see that the structure is acyclic, which direct heap
edges cannot express. Additionally, the heap reachability model of Fig. 4.12b shows
that ρ32 reaches ρ56, which contradicts the intuition since the only heap edge originat-
ing in ρ32 leads to ρ92, which itself has no outgoing edges. While spurious relations are
a typical artifact of an incomplete SMT model, visualizing them helps the programmer
understanding what facts the solver can or cannot establish.

4.5.2 Overview of the extended algorithm

The entry point of Alg. 9 is PRODUCEREACHABILITYMODEL. This procedure takes the same
inputs (the program definitions pds and the raw SMT model model) as our general algo-
rithm of Alg. 1, which is invoked at the very first step (line 133). Refer to Sec. 4.4.1 for an
overview of the input structures.

We collect relevant reachability information in two steps. First, we directly obtain all
the reachability relations from the raw SMT model (line 134; details in Sec. 4.5.3). Second,
we reduce the relations to an intelligible set (line 135; details in Sec. 4.5.4).

4.5.3 Extracting reachability relations

We implement this step via EXTRACTREACHABILITY. This procedure takes the program def-
initions (pds), the SMT model (model), the program states (states), the graphs (graphs),
and the nodes (nodes) and returns a list of local relations. Each local relation (instance
of LocalRelation) contains a name, a state, a graph (defining its locality), as well as a
predecessor and a successor node.
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For collecting local reachability information from the SMT model, we will use only
two relation names: "P" and "¬P". The prior relation corresponds to existing heap paths,
while the latter relation corresponds to non-existing heap paths. For example, recall that
if a subgraph of a graph 𝔤 is an acyclic list segment with x as its head and y as its last
node, then P(𝔤, x, y) and ¬P(𝔤, y, x) must hold in our technique.

We collect local reachability relations as follows. First, we obtain the reachability-
defining model entries, i. e. the interpretations of the functions named "exists_path"
and "rsnap" (lines 139 to 140). Recall from Sec. 3.3.4 that the former function is uninter-
preted and state-independent,31 while the latter is the (state-dependent) snapshot func-
tion. In our local reachability encoding, the snapshot function takes the current footprint
and yields an edge set, i. e. a mathematical representation of the heap graph in the cur-
rent state (in the SMT translation, the snapshot function explicitly depends on a heap
marker). This edge set can be used as the first argument of exists_path; the other two
arguments are the predecessor and the successor nodes.

Second, we obtain two mapping functions: stateToNodes maps each state to the graph
nodes that are active in that state; stateToGraphs maps each state to the active graphs
(lines 141 to 142). Active objects are those that have some aliases relevant to a particular
state; e. g. atoms modeling immutable variables are active in all states, but atoms model-
ing local variables are not active in the states in which the corresponding variables have
different values. Sec. 4.4.4.2 discusses active nodes in more detail and outlines GETAC-
TIVEOBJECTS (Alg. 6).

Third, we iterate through each program state (state) and each graph (graph) that is
active in that state (line 143). Using these two parameters, we perform a lookup into
snapEntry, storing the result in rsnap (line 144). If rsnap is specified, we proceed; other-
wise, the model does not have reachability information for this state and graph (line 145).

Next, since rsnap is a specified snapshot, we proceed by iterating through all pairs of
nodes (pred, succ) that are active in the current state (line 146). We use rsnap, pred, and
succ to perform the second lookup into the model, this time into pathEntry, storing the
result in reach (line 147). If reach is specified, we proceed; otherwise, the model does
not provide the information about the value of Pstate(graph, pred, succ) (line 148).

If reach is specified, then it is a Boolean literal that determines our relation’s name
(line 149). Finally, we create a new local relation instance with this name, storing the
current state, graph, and the predecessor and successor nodes (line 150). We collect all
such relations into a list that is then returned as the result of EXTRACTREACHABILITY.

4.5.4 Reducing reachability relations

Our procedure ExtractReachability provides us with an over-approximation of the
reachability relations that are relevant for understanding a counterexample heap config-

31 We used the name �̂� for exists_path in Chap. 3.
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Figure 4.13: Comparison of unfiltered (a) and filtered (b) heap reachability models.

The two heap models represent the same counterexample obtained for the method union of the
Union-Find data structure. Solid blue edges represent local heap reachability and dashed blue
edges represent local unreachability relations (based on the SMT model’s information).

uration. We will now discuss how these relations can be reduced to simplify the overall
counterexample models. To motivate this step, consider a heap reachability model in
two versions: before and after applying our reduction steps (Fig. 4.13); we will present
other heap reachability models in Sec. 4.7.

REDuCTION OvERvIEw. We implement the reduction step via REDUCE (Alg. 10). This pro-
cedure takes the initial reachability relations reach, the field relations fields, and the
current footprints (of the client and the callee) stored in footprints. The relevant subset
of the original reachability relations is returned.

We reduce the set of reachability relations as follows. First, we filter out the spurious
reachability relations (Sec. 4.5.4.1). Second, we collect the heap edge relations and com-
pute their transitive closure, which we then use to synchronize our reachability relations
(Sec. 4.5.4.2). Finally, we supplant weak reachability information by strong reachability in-
formation that is available (Sec. 4.5.4.3).

4.5.4.1 Filtering out spurious reachability. Spurious reachability relations are those that
originate in nodes outside of the local graph. Recall that if 𝑥…𝑦 is a local path in a graph
𝔤, then 𝑥 ∈ 𝔤, but 𝑦 may or may not be in 𝔤 (Fig. 3.16). Hence, if 𝑥 ∉ 𝔤, then 𝑥…𝑦 cannot
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Algorithm 10 Reduce Reachability Relations
151: procedure REDUCE(reach, fields, footprints)

. . . . . . . . . . . . . . . . . . Phase A: Drop spurious reachability relations . . . . . . . . . . . . . . . . . .
152: reach ← reach.filter(λrel ⋅ rel.pred ∈ rel.graph.nodes)

. . . . . . . . . . . . . Phase B: Synchronize reachability with transitive closure . . . . . . . . . . . . .
153: edges ← fields.filter(λf ⋅ f.type = "Ref"∧ isNotNull(f.succ))

▷ Compute transitive closure over heap edges per state
154: tc ← TransClosInStates(edges)

▷ Synchronize local reachability with the TC relation
155: reach ← reach.filter(λrel ⋅
156: rel.state ∉ tc ⇒ true ▷ No trans. rel-s for this state
157: rel.hash() ∉ tc[rel.state] ⇒ true ▷ No trans. rel. for pred/succ
158: rel.name = "P" ⇒ false ▷ Path follows heap edges; redundant
159: rel.name = "¬P" ⇒ true) ▷ Desynchronization

. . . . . . . . . . . . Phase C: Drop reachability framing-relation redundancies . . . . . . . . . . . .
160: clientPos, clientNeg, calleePos, calleeNeg ←{} , {} , {} , {} ▷ hash to rel
161: reach.foreach(λrel ⋅ ▷ Group (pos-ve, nag-ve) client- and callee-local reach.
162: rel.graph = footprints.client ⇒
163: rel.name = "P" ⇒ clientPos[rel.hash()] ← rel
164: rel.name = "¬P" ⇒ clientNeg[rel.hash()] ← rel
165: rel.graph = footprints.callee ⇒
166: rel.name = "P" ⇒ calleePos[rel.hash()] ← rel
167: rel.name = "¬P" ⇒ calleeNeg[rel.hash()] ← rel)
168: final ← [] ▷ Stores final reach. relations
169: final.extend(clientNeg) ▷ Keep strong reachability information
170: final.extend(calleePos) ▷ Filter weak reachability information
171: clientPos.foreach(λgPos ⋅gPos.hash() ∉ calleePos ⇒ final.extend(gPos))
172: calleeNeg.foreach(λhNeg ⋅hNeg.hash() ∉ clientNeg ⇒ final.extend(hNeg))
173: return final

exist as a local path in 𝔤, and P(𝔤, 𝑥, 𝑦) is then spurious. The outline of this filtering step
is straightforward (line 152).

Note that the SMT model may contain such spurious relations because the solver can-
not exhaustively instantiate all the quantified constraints, and the models that it gen-
erates are approximate. Generally, understanding which facts can the solver establish
is essential for debugging spurious verification failures that are caused by the solver’s
incompleteness. However, establishing the above property always requires exactly one
quantifier instantiation (i. e. the postcondition of rsnap; see Sec. 3.3.5); lacking this prop-
erty indicates that the corresponding heap path is irrelevant for deriving a contradiction.

4.5.4.2 Synchronizing reachability with transitive closure. Our goal is to decide whether
a particular reachability relation is helpful for understanding the verification failure. We
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will now explain and illustrate the reasons why we keep or drop certain reachability re-
lations, and then present our filtering procedure.

SyNCHRONIzATION. Information about existing paths is redundant if it follows from the
direct heap edges in the model. For example, if the model has three direct heap edges
(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑), where 𝑎, 𝑏, 𝑐 are all different nodes of the current footprint, say 𝔤, then
the hypothetical local reachability predicate P(𝔤, 𝑎, 𝑑) is redundant whereas P(𝔤, 𝑑, 𝑎) is
not redundant.

DESyNCHRONIzATION. Since our local reachability verification technique is inherently in-
complete, some facts about reachability may be out of sync with the transitive closure of
the direct heap edge relations. For example, the local unreachability predicate ¬P(𝔤, 𝑎, 𝑑)
contradicts the direct heap edges (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑). However, this unreachability rela-
tion is not redundant because the desynchronization of reachability and direct heap in-
formation may be crucial for understanding the verification failure.32

Desynchronization can also occur for positive local reachability relations, e. g. P(𝔤, m, n),
where (1) n ≠ m, (2) the model contains the information that n.next = null, and (3) there
are no other reference fields except next. Again, we keep this relation as it demonstrates
an important incompleteness and is therefore not redundant.33

FILTERING pROCEDuRE OvERvIEw. Based on the above insights, we will now develop a
systematic procedure for filtering local reachability relations based on transitive closure
of direct heap edges. First, we have to compute this transitive closure. To that end, we
collect all heap edges, i. e. reference field relations with non-null successors, saving them
into edges (line 153). We then delegate the computation of the transitive closure of edges
to a sub-procedure called TRANSCLOSINSTATES (Alg. 11), obtaining the map tc from states
to sets of transitive relations (line 154). These transitive relations are instances of type
Relation (not LocalRelation) named "TC".

COMpuTING STATE-AwARE TRANSITIvE CLOSuRE. We briefly discuss the outline of TRAN-
SCLOSINSTATES (Alg. 11). This procedure starts by declaring a map tc from states to
(hashed) relations (line 175). Recall that the relation hash depends on its state, prede-
cessor, and successor, but does not depend on the relation name (line 94). Hence, tc is
well-suited for looking up matches by other relations, such as our reachability relations,
which is important for Alg. 10.

To populate tc, we first create an auxiliary map edgesInStates from states to edge
relations (lines 176 to 179) and then iterate through each (value/key) pair of this map:
sedges, state (line 180). We then compute the mathematical transitive closure of sedges

32 Transitively expanding reachability information (e. g. concluding P(𝔤, 𝑥0, 𝑥𝑁) from P(𝔤, 𝑥0, 𝑥1) ∧
P(𝔤, 𝑥1, 𝑥2) ∧ …∧ P(𝔤, 𝑥𝑁−1, 𝑥𝑁)) is as hard of a problem as reasoning with general transitive closures.

33 In practice, most incompletenesses of this kind are caused by inadequate triggering patterns in the pro-
gram’s specifications, i. e. it is likely that the programmer has control over mitigating the issue.
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Algorithm 11 Compute Transitive Closure per Program State
174: procedure TRANSCLOSINSTATES(edges)
175: tc ←{} ▷ Maps states to hashes to relations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
176: edgesInState ←{} ▷ Maps states to relations
177: edges.foreach(λedge⋅ ▷ Hash heap edges by state
178: edge.state ∈ edgesInState ? edgesInState[edge.state] ← [edge]
179: : edgesInState[edge.state].extend(edge))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
180: edgesInState.foreach(λ(sedges, state) ⋅ ▷ Process each state’s edges
181: tcInState ← TC(sedges)
182: relHashMap ←{} ▷ Maps relation hashes to relations
183: tcInState.foreach(λrel ⋅ relHashMap[rel.hash()] ← rel)
184: tc[state] ← relHashMap)
185: return tc

using an off-the-shelf procedure TC (Alg. 12); we save the resulting list of transitive rela-
tions into tcInState (line 181). We then hash the obtained relations by all their fields
except for the names, simplifying future lookups (lines 182 to 183). Finally, we save
relHashMap in tc under state (line 184).

After computing transitive closures for all states, TRANSCLOSINSTATES returns tc.

FILTERING CRITERION. We proceed by filtering the reachability relations (line 155). For
each local reachability relation rel, we first check that its state is missing in tc, in which
case we keep this local reachability relation as it is definitely not redundant (line 156). If
tc does have some relations under rel.state, then we check that none of them match
rel, in which case we also keep this local reachability relation as non-redundant (line 157).

If there is a match between rel and some relation from the transitive closure, then this
relation is either redundant (as it merely follows direct heap edges) or it is desynchronized,
e. g. if a negative local reachability predicate of the form ¬P(𝔤, 𝑥, 𝑦) matched a relation
from the transitive closure of the form 𝑥…𝑦.34 As explained above, we decide to drop
rel in the former case and keep it in the later case (lines 158 to 159).

4.5.4.3 Supplanting weak reachability by strong reachability We will now define an-
other tactic for filtering redundant local reachability relations from the model. To that
end, recall that local reachability predicates are characterized by their local footprints for
which they are defined (e. g. 𝔤 in P(𝔤, 𝑥, 𝑦) for the 𝔤-local path 𝑥…𝑦). The idea is to sup-
plant relations modeling weak local reachability predicates by their strong analogues (if
the latter are available) without losing any information.

34 Unlike local reachability, the transitive closure always carries positive reachability information, i. e. facts
about the existence but never about the absence of heap paths.
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Algorithm 12 Transitive Closure
186: procedure TC(edges)
187: clos ←{} ▷ Maps hashes to relations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
188: edges.foreach(λedge ⋅
189: root ← Relation("TC", edge.state, edge.pred, edge.succ)
190: clos[root.hash()] ← root)
191: while true do

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
192: newRels ←{} ▷ Maps hashes to relations
193: clos.foreach(λa ⋅ clos.foreach(λb ⋅ ▷ Construct transitive relations
194: a.succ = b.pred ⇒ ▷ Assert a.state = b.state
195: trans ← Relation("TC", a.state, a.pred, b.succ)
196: newRels[trans.hash()] ← trans))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
197: foundNewRels ← false ▷ Indicates saturation
198: newRels.foreach(λ(rel, rhash) ⋅ ▷ Merge fresh relations into the closure
199: rhash ∉ clos ⇒ foundNewRels ← true
200: clos[rhash] ← rel)
201: if ¬foundNewRels then return clos
202: end

Definition 2 (Relatively Weak and Relatively Strong Reachability). In a given program
state, for a given set of reference fields 𝐹, and for two footprints 𝔤 and 𝔥 ⊂ 𝔤, the predicates
P𝐹(𝔤, 𝑥, 𝑦) and ¬P𝐹(𝔥, 𝑥, 𝑦) are called relatively weak reachability predicates and the predi-
cates ¬P𝐹(𝔤, 𝑥, 𝑦) and P𝐹(𝔥, 𝑥, 𝑦) are called relatively strong reachability predicates iff 𝑥 ∈ 𝔥
and 𝑦 ≠ null.

Intuitively, the knowledge that a path exists in 𝔥 is stronger that the knowledge of the
same fact but in the context of 𝔤, which has at least all the edges of 𝔥. Analogously, the
knowledge that 𝔤 does not contain a some path, say, 𝑥…𝑦, is stronger than the knowledge
that the same path does not exist in its subgraph 𝔥.35

FILTERING. The outline of this tactic consists of two steps (lines 160 to 172).
First, we group all the available local reachability relations into four sets: the client-

local (positive and negative) reachability relations (clientPos, clientNeg) and the callee-
local (positive and negative) reachability relations (calleePos, calleeNeg); these sets are
realized as maps from relation hashes to relations (lines 160 to 167).

Second, we collect the relevant relations into the final list (line 168). Strong reach-
ability relations, i. e. those modeling the client-local negative and the callee-local posi-

35 The notions of relatively weak and relatively strong reachability are aligned with the problem of reachabil-
ity framing that we discussed in Sec. 3.5.
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tive predicates, are added completely (lines 169 to 170). Conversely, weak reachability
relations are added to final only if there is no strong counterpart, i. e. we add positive
client-local relations that do not match any positive callee-local ones; and we add negative
callee-local relations that do not match any negative client-local ones (lines 171 to 172).36

Finally, REDUCE returns final, i. e. the list of filtered local reachability relations (line 173).

4.6 IMpLEMENTATION

We have implemented algorithm Alg. 9 and applied it in Viper IDE’s verification de-
bugger called Lizard.37 Lizard is written in TypeScript, closely following the listings
of Sec. 4.4 and Sec. 4.5.

Lizard is a Visual Studio Code extension that enhances the functionality of Viper IDE
with an intuitive verification debugging experience. Beyond the core algorithm, the
extension features (1) a renderer that translates heap reachability models into dot di-
agrams [16] and (2) a WebView-based debugger panel that displays these diagrams and
offers some control over the rendering process. Fig. 4.15 is a screenshot from a typical
verification debugging session using Viper IDE with Lizard. Fig. 4.14 shows a high-level
overview of the extension. The complete source code of the algorithm and the debugger
extension is publicly available [125].

TypICAL SCENARIO. When verification fails for a source program, the debugger panel
opens automatically, displaying a heap model that represents a counterexample to the
(last) verification failure. The user can then select any other verification failure from the
menu (although only one failure at a time). The displayed counterexample heap model
depicts a superposition of all selected states; this is a scalable graphic, allowing the user
to zoom in, zoom out, or scroll without any restrictions.

The debugger panel is interactive, allowing the user to select arbitrary subsets of the
source program’s instrumented states; selecting a new subset triggers the debugger to
render a new diagram of the corresponding projection, i. e. a model that contains only
information that is meaningful for the selected states.

INTERMEDIATE MODELS. For IDE developers, the debugger panel can be expanded to
show three intermediate representations of the counterexample model: (1) the raw model
produced by the SMT solver, (2) the heap reachability model produced by Alg. 9, and
(3) the dot diagram description produced by the renderer. All of these are represented as
in interactively-expandable JSON tree. The entire debugger panel supports the common
text search feature that simplifies navigation through large models.

36 Our relations are matched via a three-factor hash over their states, predecessors, and successors (line 94).
37 Although the motivation behind the name is primarily to avoid confusion with previous Viper debugger

projects, it does follow Viper ecosystem’s reptile-based naming convention.
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Figure 4.14: Implementation overview.

The diagram shows the main compo-
nents (grey boxes) in our verification
debugger implementation. Dashed ar-
rows are aggregation relations; solid ar-
rows with khaki labels indicate data
flow. Extension host is the entry point;
this is a VS Code extension that receives
messages of two kinds from Viper IDE
(program definitions, verification fail-
ures). If a failure message contains a
counterexample SMT model, the exten-
sion host creates a session instance, ini-
tializing it with the current program def-
initions and SMT model. The session ap-
plies Alg. 9, producing a heap model.
The heap model is then passed to the
renderer that returns a dot graph that is
then visualized by the WebView panel
and displayed to the user. The Web-
View panel is interactive, e. g. the user
can submit a query to project the model
over selected states. The query is then
processed by the extension host.

OpTIMAL LAyOuTS. The diversity of possible heap configurations that occurs in verifica-
tion debugging makes it impossible to find a perfect layout that is optimal in all cases.
The debugger panel provides only two buttons for adjusting the layout, so the user can
switch between Graphviz’s rankdir options, i. e. top-down vs. left-right layouts, as well
as between our two heap node notations. We developed two intuitive visual notations
with complementary advantages.

In the first notation (used in this chapter), each object is depicted as a table, with the
head row specifying the (symbolic) memory location and the possible variable names.
Other rows correspond to the fields. Reference fields are black arrows originating from
the corresponding row in the receiver’s table and pointing to the header row of the target’s
table. The field arrows thus do not require labels to disambiguate which field name,
state, and receiver they belong to.

In the second notation, each object is depicted as a box specifying the (symbolic) mem-
ory location and the possible names of variables that refer to this location. Since fields
are not depicted as table rows, heap edges are instead labeled black arrows, i. e. ordi-
nary edges in a directed multigraph. Labels carry information about field names and
states. This layout requires significantly less rendering per node, leaving more space for
depicting relations. Hence, this layout better suits dense heap reachability models.



Figure 4.15: Screenshot of a verification debugging session in Viper IDE with Lizard.
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4.7 CASE STuDy

In this section, we present a study of our algorithm’s applicability in two scenarios. In the
first scenario, the programmer specifies and verifies an in-place list reversing algorithm
implementation, and the debugger is used interactively for understanding the verification
failures caused by incomplete specifications (Sec. 4.7.1). In the second scenario, the pro-
grammer is given a correct implementation of the method find from the Union-Find
(disjoint set) data structure [9], and the debugger is used for inspecting the possible heap
configurations (Sec. 4.7.2).

4.7.1 Specifying and verifying List-Reverse

In this scenario, the programmer attempts to specify and verify local reachability prop-
erties of the method reverse that reverses a singly-linked list in place (Fig. 4.16). While
this is a classical programming problem that most programmers can solve easily, cor-
rectly writing its formal specifications requires deep understanding of the algorithm
and the consideration of its corner cases. Typically, devising the final version of such
specifications takes several verification attempts. Therefore, we consider a scenario in
which the programmer refines reverse’s loop invariant in three steps.

OvERvIEw. The method reverse takes the footprint 𝔤, consisting of all the nodes of the
list, and xe, referring to the head of the list. The method returns y, referring to the head
of the reversed list. The precondition of reverse requires that 𝔤 is a directed acyclic graph
(functional, since there is only one reference field per node, next).The last precondition
specifies that xe is indeed the head of the list, i. e. all other nodes in 𝔤 are reachable from
it. The postcondition of reverse ensures that the resulting heap configuration is also a
DAG, and that the returned variable y indeed refers to the new list head.

4.7.1.1 Initial verification attempt. Assume that the programmer has developed some in-
tuition for the algorithm and proceeds with sketching its specifications, which involve
devising a suitable loop invariant. The very first loop iteration starts by processing the
entire list initially headed in xe (which is also the initial value of x); in this state, y is
initialized with null. This situation is summarizes by the two bits of the loop invariant
marked /*A*/ (Fig. 4.16). Analogously, the very last iteration ends with the entire (re-
versed) list headed in y, in which state x becomes null, as there are no more nodes to
process. The corresponding two bits are marked /*B*/.

Next, the programmer specifies the intermediate heap configuration that occurs at all
other iterations of the loop. Namely, we have two list segments: one segment (headed in
y) consists of the nodes that are already processed, and the other segment (headed in
x) consists of the nodes that are yet to be processed. Hence, the programmer writes the
condition marked /*C*/, specifying each node in 𝔤 as reachable from x or from y.
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method reverse(𝔤: Set[Ref], xe: Ref) returns (y: Ref)
requires DAG(𝔤) && xe ∈ 𝔤

∀𝑛 ∈ 𝔤 • n ∈ 𝔤 ⟹ P(𝔤, xe, n)
ensures DAG(𝔤)

∀𝑛 ∈ 𝔤 • n ∈ 𝔤 ⟹ P(𝔤, y, n)
{
var x: Ref := xe; y := null; assume THIS_STATE_IS__l0(x, y)
while (x ≠ null) invariant DAG(G)
/*A */ x ≠ null ⟹ x ∈ 𝔤

y = null ⟹ ∀n ∈ 𝔤 • P(𝔤, x, n)
/*B */ y ≠ null ⟹ y ∈ 𝔤

x = null ⟹ ∀n ∈ 𝔤 • P(𝔤, y, n) /* R2 */
/*C */ x ≠ null∧ y ≠ null ⟹ ∀n ∈ 𝔤 • {P(𝔤, x, n)}{P(𝔤, y, n)} P(𝔤, x, n) ∨ P(𝔤, y, n)
/*R1*/ x ≠ null∧ y ≠ null ⟹ ∀n ∈ 𝔤 • {P(𝔤, x, n)}{P(𝔤, y, n)} ¬P(𝔤, x, n) ∨ ¬P(𝔤, y, n)
{
var tmp := x.next; assume THIS_STATE_IS__l1(x, y, tmp)
x.next := y; assume THIS_STATE_IS__l2(x, y, tmp)
y := x; assume THIS_STATE_IS__l3(x, y, tmp)
x := tmp; assume THIS_STATE_IS__l4(x, y, tmp)

} }

Figure 4.16: Method reverse with its local reachability specifications and instrumentation.

Three refinements of the loop invariant are depicted. First, the programmer attempts to verify the
invariant in black font (inc. A, B, C). Then, they add the missing condition, in blue font, i. e. each
node is exclusively reachable from x or y in intermediate states of the loop (R1) Finally, they add
the missing triggering patterns, in purple font (R2). The assumed instrumentation macros mark
the five program states (l0–l4) that are relevant for debugging.

However, attempting to verify the program (specified using only black font in Fig. 4.16)
results in a verification failure with the following message:

Loop invariant DAG(𝔤) might not be preserved; ACYCLIC(𝔤) might not hold.

To understand what heap configuration can violate the acyclicity property, the pro-
grammer refers to the counterexample model. The raw SMT model for the above verifica-
tion failure includes ca. 800 assignments;38 rather than manually processing the model,
the programmer applies PRODUCEREACHABILITYMODEL (Alg. 9) to automatically produce
a relevant heap reachability model that can be easily visualized. This visualization is
presented in Fig. 4.17.

The resulting diagram shows that acyclicity can be violated in l4, e. g. due to a self-
edge of the form y.next = y. Indeed, this cyclic heap configuration can occur if y and x
alias at the beginning of a loop iteration (note xl1 = yl1 in the model). Then, the assign-
ment x.next := y (Fig. 4.16) will result in a new heap edge that completes a cycle.

38 We are using Viper’s VCG backend for this experiment.
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Client = γ5

Local 

xe

xl1=y l1=y l4
tmp l1=tmpl4=x l4  = null

xe = ρ46

xl1=yl1=yl4 = ρ79

nextl1  = null

nextl4

Figure 4.17: First counterexample to Fig. 4.16.

The diagram visualizes the projection of the
complete model over states {l1, l4}.

4.7.1.2 First refinement. The counterexample heap model of Fig. 4.17 shows that the
aliasing of x and y is a symptom of the general problem that the acyclicity invariant can
be violated. On the one hand, this possibility contradicts the programmer’s intuition
since they expect x and y to reference heads of list segments that should be disjoint. On
the other hand, the programmer is aware that acyclicity is a reachability property (recall
that ACYCLIC(𝔤) ≡ ∀𝑢, 𝑣 ∈ 𝔤 • 𝑣.next ≠ 𝑢 ∨¬P(𝔤, 𝑢, 𝑣)).

The programmer concludes that the missing condition must be a reachability prop-
erty that, together with the rest of the invariant, ensures the disjointness of our two
intermediate acyclic list segments. Concretely, they strengthen the invariant by adding
the condition marked /*R1*/ in Fig. 4.16. Together with /*C*/, these two conjuncts of
the loop invariant specify that each node must be exclusively reachable from either x or
y (but not both at the same time).

However, attempting to verify the program (specified using black and blue font in Fig. 4.16)
results in a new verification failure with the following message:

Loop invariant R1 might not be preserved; ¬P(𝔤, x, n)∨¬P(𝔤, y, n) might not hold.

To understand the problem, the programmer again refers to the counterexample model.
This time, the raw SMT model includes over 1,500 assignments; hence, the programmer
applies PRODUCEREACHABILITYMODEL (Alg. 9) to automatically produce a relevant heap
reachability model. The corresponding visualization is presented in Fig. 4.18.

This diagram shows the node ρ56 that is reachable from both x and y in the states l1
and l4, contradicting the formula marked /*R1*/ in Fig. 4.16.

4.7.1.3 Second refinement. The fact that the contradiction depicted in Fig. 4.18 occurs
in l1, i. e. even before the field assignment takes place in the loop body, hints that some
information from the loop invariant cannot be used by the solver.

The incompleteness is due to quantifier instantiation, which is an undecidable problem;
recall that in our setting, SMT solvers employ an incomplete instantiation mechanism
called E-matching [11, 44].39 To work with E-matching, the quantifiers in our program

39 We have discussed E-matching in Sec. 2.1.2.
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Figure 4.18: Second counterexample to Fig. 4.16.

The diagram visualizes the projection of the complete model over states {l1, l4}.

specifications must be annotated with triggering patterns, i. e. annotations that specify
which syntactic terms should trigger a particular quantifier’s instantiation.40

Thus, the programmer decides to revisit the patterns, discovering that they are lim-
ited for the quantifiers marked /*C*/ and /*R1*/ (Fig. 4.16). Concretely, these quanti-
fiers have only one triggering pattern {P(𝔤, x, n)}, while their bodies are formulas over
two local reachability predicates (P(𝔤, x, n) and P(𝔤, y, n)). For both quantifiers, the pro-
grammer adds the missing triggering pattern {P(𝔤, y, n)}. This enables the solver to in-
stantiate the quantifiers based on any of the two patterns.

After this refinement, the verification of reverse succeeds.

4.7.1.4 Discussion This case demonstrated that visual counterexample heap reachabil-
ity diagrams can be helpful for debugging verification failures of two practically impor-
tant kinds: (1) failures due to incomplete specifications and (2) failures due to inadequate
quantifier triggering patterns. Manually reconstructing counterexample models based
on raw SMT models is time consuming and prone to errors, e. g. because the models
contain hundreds of assignments and because mapping the state-dependent relations
to known program locations requires additional information. In contrast, our technique
is automatic, modulo the low overhead from source program instrumentation.

4.7.2 Inspecting Union-Find

In this scenario, the programmer is given a correct implementation of the method find
of the Union-Find disjoint set data structure, as well as its local reachability specification
(Fig. 4.16). The recursive method find has two branches; the programmer’s task is to

40 Triggering patterns are specified between { and } preceding the quantifier’s body (Fig. 4.16).
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method find(𝔤: Set[Ref], x: Ref) returns (r: Ref)
requires DAG(𝔤) && x ∈ 𝔤 ∧ ∀n ∈ 𝔤 • P(𝔤, x, n)
ensures DAG(𝔤) && r ∈ 𝔤

∀𝑎, 𝑏 ∈ 𝔤 • P(𝔤, a, b) ⟺ 𝑎 = 𝑏 ∨ 𝑏 = r
{ assume THIS_STATE_IS__l0(r)
if (x.next = null) {
r := x; assume THIS_STATE_IS__l1(r)
assert false // I

} else {
var 𝔥 := 𝔤 setminus Set(x) // Declare new footprint
r := find(𝔥, x.next);
x.next := r; assume THIS_STATE_IS__l2(r, 𝔥)
assert false // II

} }

Figure 4.19: Method find with its local reachability specifications and instrumentation.

The original program written in black font verifies. To inspect possible heap configurations, the
programmer adds an assert false statement at the end of each branch (first, only the line in
blue font; second, only the line in purple font), causing the verifier to fail at those locations. The
models obtained for each of the caused failures are valid heap configurations that occur along the
corresponding execution paths.

construct some heap configurations that may occur after executing each of the branches
in order to better understand the corresponding data structure and what information is
available to the SMT solver.

OvERvIEw. The method find takes the footprint 𝔤 and the starting node x. The method
returns the root node, r, which is the last node on the heap path from x along next-fields.
The precondition requires that 𝔤 is a DAG, that x is indeed in 𝔤, and specifies that all
nodes in 𝔤 are reachable from x, i. e. the footprint is precise. The postcondition ensures
that (1) all held access permissions to footprint nodes are returned to the client, while
the heap configuration remains a DAG; (2) the returned node r is within the footprint;
and (3) a 𝔤-local heap path 𝑎…𝑏 exists iff 𝑎 = 𝑏 (i. e. it is trivial) or 𝑏 = r (i. e. the path
ends in the returned node r).

4.7.2.1 Inspecting the Then-branch. Assume that the programmer is not yet familiar
with the Union-Find data structure. To develop understanding, they begin by consider-
ing the implementation of find, in particular, the first branch. This branch is taken under
the condition x.next = null, leading to a single assignment, r := x. What would be a
possible heap configuration in the resulting state?

To answer this question, the programmer may add an assertion contradicting the
method’s specifications, thus leading to a verification failure at the location of interest.
In our scenario, the programmer adds the statement assert false after the assignment
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in the then-branch of find (marked //I). Attempting to verify the resulting program
(specified in black and blue font in Fig. 4.19) results in an (expected) verification failure
with the following message:

Assertion might fail: false might not hold.

To obtain information about a possible heap configuration at the point of the failing
assertion, the programmer refers to the counterexample model.41 The raw SMT model
includes 442 assignments; rather than manually processing the model, the programmer
applies PRODUCEREACHABILITYMODEL (Alg. 9) to automatically produce a relevant heap
model that can be easily visualized (Fig. 4.20).

Client = γ6

Local 

rl1=x

rl0

rl1=x = ρ13

nextl0  = null

nextl1  = null

rl0 = ρ14

Figure 4.20: Inspecting the Then-branch to Fig. 4.19.

The diagram shows a superposition of two states, l0 and l1. In
l0, i refers to some node ρ14; the model does not provide any in-
formation about this node as it is outside of the current footprint
(γ6). Local variable x is the (immutable) input parameter of find;
its value is the same in both states (hence, no subscript is needed).
In both states, the field values of ρ13 (referenced by x) store null.
Due to r := x, the same object ρ13 is also referenced by r in l1.

4.7.2.2 Inspecting the Else-branch. The programmer proceeds with the second branch.
This branch is taken under the condition x.next ≠ null, leading to (1) the declaration
of a sub-footprint, 𝔥, (2) the recursive call to find, and (3) an assignment to x.next. To
develop understanding of this branch, we ask the same question again: What would be
a possible heap configuration in the resulting state?

To answer this question, the programmer may repeat the inspection steps performed
for the first branch. Concretely, they add an assertion contradicting find’s specifications,
thus leading the verifier to a verification failure at the location of interest. In our scenario,
the programmer adds assert false as the last statement (marked //II) of the else-
branch. As before, attempting to verify the resulting program (specified in black and
purple font in Fig. 4.19) results in an (expected) verification failure with the message:

Assertion might fail: false might not hold.

To obtain information about a possible heap configuration at the point of the failing as-
sertion, the programmer again refers to the counterexample model. The raw SMT model
includes ca. 1,600 assignments; the programmer applies PRODUCEREACHABILITYMODEL
(Alg. 9) to automatically produce a relevant heap reachability model (Fig. 4.21).

41 A counterexample to a trivial failure is effectively an example of a valid run of the original program.
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Client = γ223

Callee  = γ221

Local 

x

rl0=rl2

rl0=rl2 = ρ242

nextl0  = null

nextl2  = null

ρ219

nextl0 

x = ρ13

nextl0 

nextl2 

¬P l0/l2 ¬P l0 

¬P l0/l2 

P l2 

¬P l0/l2 

Figure 4.21: Inspecting the Else-branch to Fig. 4.19.

The diagram shows a possible heap configuration in
superposition of two states, l0 and l2. The heap
configuration in l0 includes the singly linked list
[x, x.next=ρ219, r] comprising the client’s footprint
(𝔤=γ, i. e. the blue box). The recursive call processes the
sublist [x.next=ρ219, r] comprising the callee’s foot-
print (𝔥=γ221, i. e. the orange box), returning r. Finally,
the assignment x.next:=r compresses the path x… r s.t.
in l2, each node of the original list is directly attached
to r. Blue (dashed) arrows depict known client-local
(un)reachability information; the orange dashed arrow
depicts the only available callee-local unreachability in-
formation: ¬Pl0(𝔥, r, x.next). Note that Pl2(𝔤, r, x.next)
is a spurious bit in our SMT model.

4.7.2.3 Discussion. The problem of understanding existing algorithm implementations
occurs frequently in practice e. g. among academic reviewers and formal verification stu-
dents. The case that we presented demonstrates that visual counterexample heap reach-
ability diagrams can be helpful for supporting the understanding implementations of
such algorithms that are already specified and verified. The efforts required from the
programmer are minimal (i. e. adding an assert false statement it the location of inter-
est), while the resulting heap configurations are produced automatically and are some-
times non-trivial (e. g. Fig. 4.21). Beyond the information about the algorithm and its
specifications, our models expose the aspects that are caused by the SMT solver’s poten-
tially incomplete reasoning, e. g. field value information and local reachability informa-
tion that are out of sync.

4.8 DISCuSSION

In this section, we summarize the strengths (Sec. 4.8.1) and limitations (Sec. 4.8.2) of our
verification debugging technique42 and conclude the chapter (Sec. 4.8.3).

4.8.1 Strengths

BACkEND-AGNOSTIC DEBuGGING. Our verification debugging technique is conceptually
agnostic to particular separation-logic engines. To our knowledge, this is the first static
technique that works with both symbolic execution and verification condition-based

42 The technique is also suitable for inspecting programs that verify, as demonstrated in Sec. 4.7.2.
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backends. The core algorithm Alg. 1 requires only minor adaptations (e. g. the arity of
field-value functions must be specified) to account for the differences in SMT models
used in different backends. The extended algorithm Alg. 9 requires no adaptation be-
cause our local reachability encoding is backend-agnostic.

HEAp REACHABILITy MODELS. To our knowledge, our technique is the first to produce
heap reachability models for arbitrary DAGs and ZOPGs, i. e. the rich family of heap
structures supported by the reachability reasoning technique of Chap. 3. Modeling heap
graphs that are beyond functional, with multiple reference fields per node, is a fundamen-
tal challenge because the reachability relations in such structures generally cannot be de-
scribed in a decidable logic, requiring unbounded quantification. In practice, this leads
to models that are partial and, possibly, imprecise, e. g. in case some reachability informa-
tion was not available to the solver through sufficient quantifier instantiations. Despite
the incompleteness, our case study of Sec. 4.7 demonstrates that the heap reachability
models produced by our algorithm are helpful for understanding verification failures.

DEBuGGING SpuRIOuS FAILuRES. Models produced by our technique help understanding
the solver’s imprecision rather than hiding it from the programmer. For example, the
reduction step in Alg. 9 effectively compares reachability information from the model
with transitive closure of direct heap edges; if the former source contradicts the latter, we
still include the corresponding relations in the resulting model because such desynchro-
nization may be the cause of the verification failure. Conversely, we declutter the model
by removing reachability relations that are implied by direct edges as such relations can-
not cause spurious contradictions. This way, our approach enables the programmer to
understand verification failures from the perspective of the verifier.

vISuALIzATION. Our technique supports heap diagrams: a natural representation of coun-
terexamples for heap-transforming programs. In fact, programmers typically sketch heap
diagrams manually while studying a new program or a verification failure; our tech-
nique automates this process. Although our (independently developed) visualization
approach and GRASShopper counterexamples are alike, they differ in visualizing e. g. lo-
cal store variables, and our technique is capable of visualizing nested method footprints
and local reachability relations.

The key principle behind our visualization approach is to present the programmer
with a single diagram per counterexample. Since counterexamples often contain informa-
tion about multiple program states, it is challenging to visualize them as a state superpo-
sition. Arguably, our layout approach results in intelligible state superposition diagrams
in most cases, even without user input.

The programmer may select any subset of the instrumented states. Our approach to
projecting the original model over user-selected states is inspired by Alloy Analyzer [65].
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We deliberately limit the possible user interactions as our goal is to provide as much
automation as possible.

INTEGRATION. Often, tool support and IDE integration are the practical bottlenecks of a
novel debugging technique. We implemented our algorithm in a way that seamlessly in-
tegrates into the existing Viper IDE [121] workflow. Our implementation is lightweight;
it reuses Viper’s existing interfaces that provide program definitions and forward veri-
fication failure messages and counterexample SMT models. We provided more details
about the implementation in Sec. 4.6.

4.8.2 Limitations

pARTIAL MODELS. Our technique relies on information from the SMT solver (through
counterexample models). In our setting, the models are partial, and so are the counterex-
ample heap models that our algorithm produces. We embrace partial models because
revealing the solvers imprecision can help the programmer better understand the true
cause of a verification failure. However, the programmer has to interpret our counterex-
amples in order to classify them as implementation bug, prover incapacity, or specifica-
tion inadequacy. In future, we plan to augment our technique with existing approaches
for automatic counterexample classification [102].

INSTRuMENTATION. To label stateful relations (e. g. fields or reachability) in a backend-
agnostic manner, our technique relies on an instrumentation of the source program
(Sec. 4.3). This instrumentation reuses an idea from our modular comprehensions tech-
nique of Chap. 2, allowing the programmer to label versions of the program state. La-
beling program heaps is conceptually challenging because the label depends on a po-
tentially unbounded set of memory locations, i. e. labeling functions are a special case
of (heap-dependent) set comprehensions.

Our instrumentation imposes a performance overhead on the verifier. In our exper-
iments, this overhead averaged around 25% of the original verification time, which al-
lows debugging most verification failures that occur in practice but can theoretically
lead to spurious timeouts on very complex examples. In one instance (while debugging
method Union of Union-Find), we have observed that, for unknown reasons, the verifi-
cation of an instrumented program took magnitudes longer than the verification of the
original program. However, automatic debugging information is especially important
for such complex examples that cannot be interactively re-verified. Thus, our technique
could significantly benefit from a verifier’s API that would supplant the need for our
instrumentation’s quantifier-heavy encoding.

SCALABILITy. Our counterexample-extracting algorithms Alg. 1 and Alg. 9 are guaran-
teed to terminate and are worst-case polynomial (both in terms of space and time) to the
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size of the input SMT model. This makes verification time, rather than model extraction,
the sole bottleneck of a debugging process. Compared to the scenario in which coun-
terexamples are not extracted at all, the verification time might increase since model
generation sometimes involves less optimized algorithms in SMT solver implementa-
tions. However, the most notable difference in verification times is practically due to
our instrumentation that relies on universal quantification, as discussed above.

CHANGING FOOTpRINTS. The example methods presented throughout this chapter have
constant footprints. However, methods can generally change their footprint, e. g. by al-
locating memory, which is not supported by our state-superposition visualization ap-
proach. One can nonetheless visualize changing footprints by rendering one state at a
time (state projections are already available in our implementation). In future, we plan
to generalize our visualization approach to support state superpositions in presence of
changing footprints. A possible approach would be to symbolically label nodes that be-
long to the same nodeset, rather than clustering the nodes. Extending our algorithms to
collect information about potentially changing footprints is straightforward.

ISC-BASED SETTING. We emphasized that our verification debugging technique comple-
ments the compositional verification techniques of Chap. 2 and Chap. 3. In particular,
most of our benchmark methods explicitly specify their footprints as nodesets. How-
ever, our technique can support other flavors of separation logic. It is due to the instru-
mentation that we require explicit footprints, but our algorithm produces useful coun-
terexamples even if the program is not instrumented. The outputs generated without an
instrumentation might display auxiliary program states that are hard to understand for
a non-expert. One approach is to provide a better debugging API from the verifiers (see
above). Another approach is to encode the footprint nodeset as part of the instrumenta-
tion, if the logic supports permission introspection, which is the case e. g. in Viper [91].

We will discuss generalizations of our techniques in more detail in Sec. 5.1.

4.8.3 Conclusion

In this chapter, we have presented a visual counterexample-based verification debug-
ging technique for separation logic. Our technique abstracts concrete SMT representa-
tions of stateful relations used in different verification backends. The technique enables
visual verification debugging of local heap reachability properties in an ISC-based set-
ting. Our technique is implemented as an automatic, publicly available tool [125] and is
integrated into Viper IDE.





5 CONCLUSION

In this thesis, we have explored the problems related to compositional reasoning about
rich properties of heap-transforming programs in separation logic. Concretely, our set-
ting is based on the iterated separating conjunction (ISC) connective which allows the pro-
grammer to disentangle specifications of memory layouts and rich structural properties.
The main challenge in this setting is to establish suitable conditions under which these
properties are, indeed, compositional.

Set comprehensions comprise the first class of properties that we have considered.
These rich properties generalize the concept of first-order quantification by summa-
rizing potentially unbounded heap structures via commutative, associative operators,
e. g. addition, multiplication, and minimization. For these properties, we proposed a
novel technique based on a lightweight separation logic encoding that supports modular
reasoning and enables automation. Our technique abstracts over particular object access
models, supporting ordered structures, e. g. arrays, and unordered ones, e. g. graphs. To
support framing of comprehensive properties, we leveraged the compositional nature
of set comprehensions and developed a first-order axiomatization that automates fram-
ing for the cases of field updates and method calls. We also proposed an axiomatization
that automates entailment proofs required for the verification of comprehensive prop-
erties; although such proofs generally require inductive reasoning and cannot be fully
automated, our axioms improve over those used in the state of the art and are suitable
to verify a diverse set of challenging benchmarks.

Heap reachability is the second class of properties that we have considered. Reacha-
bility properties complement set comprehensions, allowing to express connectivity or
detachment between object pairs needed for specifying cyclic and acyclic data struc-
tures, disjointness of heap fragments, etc. We have proposed a novel technique for mod-
ular reachability specifications based on the generalized notion of local heap reacha-
bility and developed a lightweight encoding of local reachability into separation logic.
We have proposed a new, highly permissive condition — relative convexity of method
footprints — under which local reachability is compositional. Relative convexity en-
ables a precise, first-order solution of the framing problem in general heap structures
(with bounded outdegree). Based on relative convexity, we developed a modular verifi-
cation technique for local reachability properties. We adapted existing precise update
formulas for the global reachability relation to our modular setting, supporting two
broad classes of heap structures: arbitrary acyclic graphs (with bounded outdegree) and
(potentially, cyclic) 0–1-path graphs. We devised a first-order axiomatization that auto-
mates reachability-related entailment proofs in a diverse set of challenging benchmarks.
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Finally, we have proposed a novel technique for counterexample-based verification de-
bugging of heap-transforming programs. This technique extracts counterexample heap
models from raw models produced by an SMT solver when verification fails. The tech-
nique is based on a verifier-agnostic procedure, supporting both symbolic execution and
verification condition generation through only minor customization of function signa-
tures. The technique supports an intuitive (optional) instrumentation that enables the
programmer to select and label program states via ghost annotations. We demonstrated
the extensibility of our procedure by proposing an algorithm that augments concrete
heap models with relevant local reachability relations. To our knowledge, our approach
is the first to produce counterexamples with heap reachability relations in complex struc-
tures, e. g. acyclic or 0–1-path graphs. We have demonstrated that automatically gener-
ated visualizations of our procedure’s outputs are effective for diagnosing verification
failure causes and for example-based understanding of typical program behaviors.

5.1 FuTuRE RESEARCH DIRECTIONS

The work presented in this thesis inspires several new research directions; we will now
discuss the five most promising ones. The first direction could improve completeness
of our technique (Sec. 5.1.1). The second direction is related to verification debugging
(Sec. 5.1.2). The third direction could explore the applications of our compositional ver-
ification techniques to a concrete imperative programming language (Sec. 5.1.3). The
fourth direction could further explore algebraic properties of heaps and graphs (Sec. 5.1.4).
The fifth direction could shift the focus from heap-transforming programs and towards
distributed applications (Sec. 5.1.5).

5.1.1 Reducing incompleteness

Generally, a verifier targeting our setting cannot be complete without trading off some of
the advantages of our techniques. Thus, some valid assertions that require incomplete
reasoning might not automatically verify. Incomplete reasoning in our setting is typi-
cally due to unbounded first-order quantification or undecidable theories, e. g. nonlin-
ear arithmetic. Although inherently incomplete, the techniques presented in this thesis
are based on precise first-order reasoning, i. e. information cannot be lost as a result of
decomposing or recomposing comprehensive properties or reachability properties.

The benchmarks for an inherently incomplete deductive verification technique are
(formally specified) real-world programs that require nontrivial pen-and-paper proofs
(by size or complexity) with a significant overhead for the programmer. Often, there
are multiple alternative, mathematically valid specifications for a given program. Some-
times an automated verifier cannot verify the program against one valid specification
but succeeds with a refined specification. Such issues are typically related to quantifier
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instantiation, i. e. different specification versions may lead the underlying SMT solver
to establish potentially different sets of lemmas.

Even without changing the specification, the programmer can aid the verifier by as-
serting ground facts at an intermediate state of a program that fails to verify. Although
manual, these assertions are still fundamentally easier to write than formal proofs: Our
specification language is seamlessly integrated into the programming language and is
familiar to programmers. For example, a complete proof of Union-Find is over 600 lines
of Coq [41], while in our technique the programmer needs to write only 16 lines of code-
level specifications, i. e. 12 method contracts, 3 footprint declarations for the method
calls, and 1 manual assertion.

It is interesting to study the potential for improving completeness of the first-order ax-
iomatizations powering our techniques, further reducing the number of cases in which
manual assertions are needed. A possible approach is to devise better triggering strate-
gies for instantiating the axioms. Fortunately, there are existing automatic tools for di-
agnosing both types of triggering issues, namely, detecting overly permissive [108] and
overly restrictive triggering patterns [122].

Additionally, when there will be found reachability update formulas for edge updates
in graphs that fit neither the DAG nor the ZOPG classes, one could study the correspond-
ing extension of our technique. In particular, this would simplify and further generalize
our technique by potentially lifting the requirement that footprints must be either DAGs
or ZOPGs. The related problem of descriptive complexity of field updates was discussed
in Sec. 3.2.1.2.

5.1.2 Verification debugging

Our work on verification debugging could be continued in four orthogonal directions.
First, one could improve the existing technique’s instrumentation and visualization.

The visualization could be optimized, e. g. by automatically merging multiple reacha-
bility relations connecting the same pair of nodes. Generally, the standard Graphviz
algorithm for strict graphs is superior to the one for multigraphs (that we use); theoreti-
cally, the layout engine could be improved, and our tool would then produce smoother
diagrams. The instrumentation could be applied automatically, e. g. via a Viper plugin.
Further, the instrumentation could be optimized if the verifier natively supported first-
class state labels; Viper’s current labels lack some needed functionality, e. g. they cannot
be used to differentiate local store versions or used as function arguments.

Second, one could extend our verification debugging procedure to support compo-
sitional program properties encoded via ISC. In particular, set comprehensions are an
immediate candidate. Visualizing comprehensive properties is an open problem.

Third, one could study a backend-agnostic approach to verification debugging in pres-
ence of other specification styles supported in separation logic, e. g. recursive predicates
and magic wands [83]. While each verification backend may translate these specifica-
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tions in a fundamentally different way, our experience with debugging ISC suggests
that extracting relevant information for generating counterexample models might not re-
quire the knowledge about particular verification backend implementations. Thus, one
could likely identify common abstractions, e. g. heap markers, in the case of ISC debug-
ging, and devise minimal requirements for debugger-compatible backends. For this line
of work, practically useful visualizations have been studied in the context of recursive
predicate definitions [88, 95], but visualization of magic wands is an open problem.

Fourth, one could apply our procedure for generating counterexample heap reach-
ability models to a concrete imperative programming language. In this case, it would
be practically useful to combine our static counterexample generation technique with a
dynamic technique for classifying verification failures [63, 102].

5.1.3 Compositional frontend verifiers

The verification techniques developed in the scope of this thesis are designed for a in-
termediate verification language. In future, we plan to implement a lightweight Viper
frontend to apply our compositional verification techniques fully automatically.

A possible direction of future research is to also apply our techniques to a programming
language, e. g. Go or Rust. In particular, one could support rich specifications in one
of the existing Viper frontends, supporting modular comprehensive specifications and
reachability properties.

An interesting setting to consider is one that lifts the requirement of specifying method
footprints. Recall that, in an ISC-based setting, the programmer must specify footprints
via an extra method parameter 𝔤:Set[Ref]. However, the semantics of this set can be
inferred from other specifications. For example, one can typically use local reachabil-
ity relations to specify whether an object belongs to a heap structure, e. g. objects in a
tree must be reachable from its root. This idea has been already exploited in the EPR
technique for reasoning about deterministic heap paths in linked list structures [76].
However, EPR requires the programmer to define footprints via reachability relations
rather than inferring these footprints automatically. One open problem that we antici-
pate is automatically identifying required permission amounts, e. g. to distinguish read
and write permissions, especially in concurrent programs.

5.1.4 Algebraic properties of heaps and graphs

Our results inspire the exploration of further extensions of our setting. First, the fact that
relative convexity implies compositionality1 of reachability in program heaps suggests
that there may be developed (or discovered) conditions that enable compositionality of
other properties that are generally non-compositional; one could thus investigate fur-

1 A nice introduction to the principle of compositionality is given in [117].
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ther the algebraic properties of graphs that are useful in the context of program verifi-
cation. An algebraic view of the problem of reasoning about graphs has been recently
proposed in the context of effect propagation-free operations [100]. However, this work
focuses on invariant preservation; to our knowledge, general algebraic frameworks and
abstractions for compositional effect propagation are underdeveloped.

5.1.5 Compositional verification of distributed applications

The theoretical results of our work, while only scratching the surface, suggest that there
may be other applications, even beyond deductive program verification, that can benefit
from ideas similar to the ones powering our technique. In particular, the scope of Th. 1,
and the relative convexity principle, are not limited to program heaps, and the formula-
tion of our theorem about a three-way relatively convex partitioning carries over to the
general theory of networks.

Therefore, we conclude this dissertation by considering a line of future work that tar-
gets higher abstraction levels than that of heap-transforming programs. Many compositionality-
related challenges that we have faced in the current thesis exist on multiple abstrac-
tion levels, e. g. reachability, partitioning and summarization of graphs, etc. It is there-
fore interesting to study the extent to which our techniques and observations could
be carried over to reasoning about dapps (decentralized applications) rather than heap-
transforming programs.

On the other hand, the emerging new generation of Internet technologies, known col-
loquially as Web3, raises the challenge of building novel ecosystems of dapps. Typically,
the novelty of dapps comes from the stronger guarantees that they provide, e. g. fault
tolerance, resource sharing, or closedness, rather than from conceptually new function-
ality. Dapp programmers need formal verification to ensure that their implementation
actually satisfies these properties, but are existing tools up to the challenge? We believe
that there are open challenges that make verification of dapps an essential research area.

To support our intuition that the ideas of this thesis might help in compositional rea-
soning about dapps, we draw the following analogies between the two settings.

• Abstractions — Modular reasoning about classical programs is done at the method
level. In contrast, Dapps consist of actors that interact via APIs [21]. Dapp develop-
ers can change an actor’s implementation or run the dapp with a different network
configuration, but the API is typically guaranteed to be backwards-compatible to
support existing clients. Thus, it is convenient to reason about the behavior of
dapps at the API level. Existing approaches based on session types [79, 120, 124]
can express local API properties, e. g. the reaction of an actor to particular in-
coming messages. Compositional reasoning about rich properties of whole dapps,
e. g. those related to network topology, is an open problem.
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• Shared state — Concurrent programs often use heap memory as a shared global
resource; program logics impose access protocols (e. g. permission-based access in
the case of separation logic), ensuring that these resources are managed correctly.
Similarly, dapps can operate on shared distributed resources, e. g. distributed ledgers [93].
Accessing such resources also requires carefully designed protocols, but the prob-
lem is further complicated since untrusted parties may violate these protocols. Ex-
isting techniques based on capabilities provide a low-level abstraction for specifying
shared memory protocols in dapps [6, 115]. In future, higher-level compositional
abstractions for specifying stateful API-level properties could be developed.

• Effect boundaries — A prerequisite of modular reasoning about programs is that
each method’s specification contains full information about its behavior. For exam-
ple, a method should not access global variables in an unspecified way and should
not leak memory. Similarly, dapp actors should not interact with the global envi-
ronment except via their formally specified API. In particular, formal reasoning is
practically intractable in case actors capture or leak capabilities [119].
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