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Abstract. In this work, we present a novel approach based on recent
advances in software model checking to synthesize ranking functions and
prove termination (and non-termination) of imperative programs.
Our approach incrementally refines a termination argument from an
under-approximation of the terminating program state. Specifically, we
learn bits of information from terminating executions, and from these we
extrapolate ranking functions over-approximating the number of loop it-
erations needed for termination. We combine these pieces into piecewise-
defined, lexicographic, or multiphase ranking functions.
The proposed technique has been implemented in SeaHorn – an LLVM
based verification framework – targeting C code. Preliminary experi-
mental evaluation demonstrated its effectiveness in synthesizing ranking
functions and proving termination of C programs.

1 Introduction

The traditional method for proving program termination and other liveness
properties is based on the synthesis of ranking functions, that is, for any po-
tentially looping computation, proving that some well-founded metric strictly
decreases every time around the loop.

State-of-the-art termination provers (e.g., [5,10,16]) reduce termination to the
safety property that no program state is repeatedly visited (and it is not covered
by the current termination argument), and compose termination arguments by
repeatedly invoking ranking function synthesis tools (e.g., [8,4,26]).

In this work, we present a novel approach based on recent advances in soft-
ware model checking to synthesize ranking functions and prove termination (and
non-termination) of imperative programs. The core of our approach lies on an
innovative use of safety verification techniques to build termination arguments.
We use a safety verifier to systematically sample terminating program execu-
tions and extrapolate from these a candidate ranking function for the program,
or to otherwise provide a witness for program non-termination. More specifi-
cally, rather than verifying that no program state is repeatedly visited, we verify
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Fig. 1: Overview of our approach.

the safety property that no program state is terminating (and it is not covered
by the current termination argument). The counterexamples are terminating
program executions which provide an under-approximation of the terminating
program states. From these we extrapolate a candidate ranking function which
over-approximates the number of loop iterations to termination and is possi-
bly valid also for other terminating program executions. The candidate ranking
function can be an affine function, or a piecewise-defined, lexicographic, or multi-
phase combination of affine functions. We then use the safety verifier to validate
that the candidate ranking function is indeed a ranking function, or to provide
a counterexample non-terminating program state.

The proposed approach has been implemented in SeaHorn [15] targeting C
code. We show empirically that it performs well on a wide variety of benchmarks
collected from SV-COMP 20154, is competitive with the state-of-the-art and is
able to analyze programs that are out of the reach of existing techniques.

Overview. Figure 1 provides an overview of our approach for proving termina-
tion via safety verification. The overall algorithm is presented in Section 3.2. A
program P systematically undergoes a transformation Tterm described in Sec-
tion 4.1 which allows sampling terminating executions β not covered by the
current candidate ranking function rank. The candidate rank is systematically
refined as described in Section 4.2 until no terminating execution β is left uncov-
ered. Finally, P undergoes a final transformation Trank described in Section 4.1
which allows validating the ranking function rank or providing a counterexample
non-terminating state η.

4 http://sv-comp.sosy-lab.org/2015/

http://sv-comp.sosy-lab.org/2015/


Synthesizing Ranking Functions from Bits and Pieces 3

P

T
T

T

T

N
N

(a)

2
1

0

0

(b)

Fig. 2: Traces and Ranking Function.

2 Preliminaries

In this section, we introduce the basic concepts that serve in subsequent sections
and we establish the notation used throughout the paper.

Transition Systems. We formalize programs using transition systems 〈Σ, τ〉
where Σ is the set of program states and τ ⊆ Σ × Σ defines the transition
relation. Note that this model allows representing programs with (possibly un-
bounded) non-determinism. In the following, a program state s ∈ Σ is a pair
〈l, x̄〉 consisting of a program control point l ∈ L and a vector x̄ of integers
representing the values of the program variables at that control point. We write

τ(s, s′) for 〈s, s′〉 ∈ τ . The set of initial states is I def
= {〈i, x̄〉 | i ∈ L} ⊆ Σ,

where i ∈ L is the program initial control point, and the set of final states is

F def
= {〈f, x̄〉 | f ∈ L} ⊆ Σ, where f ∈ L is the program final control point.
Given a transition system 〈Σ, τ〉, a trace is a non-empty sequence of states

in Σ determined by the transition relation τ , that is τ(s, s′) for each pair of
consecutive states s, s′ ∈ Σ in the sequence. A state s′ ∈ Σ is reachable from
another state s ∈ Σ if and only if there exists a trace from s to s′. In the
following, we write τ∗(s, s′) to denote the existence of a trace from s to s′. A
state s′ ∈ Σ is reachable if and only if it is reachable from an initial state s ∈ I.

A state s ∈ Σ is terminating if and only if all traces to which it belongs are
finite, potentially non-terminating if and only if it belongs to at least one infinite
trace. Dually, it is non-terminating if and only if all traces to which it belongs
are infinite, and potentially terminating if and only if it belongs to at least
one finite trace. Note that, terminating states are also potentially terminating
states, and non-terminating states are also potentially non-terminating states.
For instance, consider the traces depicted in Figure 2a: the states labeled with
T are terminating, the states labeled with N are non-terminating, and the state
labeled with P is potentially non-terminating and potentially terminating.

Ranking Functions. The traditional method for proving termination dates back
to Turing [29] and Floyd [14] and it requires finding a ranking function:

Definition 1 (Ranking Function). Given a transition system 〈Σ, τ〉, a rank-
ing function is a partial function rank whose domain dom(rank) is a subset
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int 1x := ?

while 2(x 6= 0) do

if 3(x < 10) then
4x := x+ 1

else
5x := −x

fi

od6
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Fig. 3: Terminating program 3pieces (a) and its control flow graph (b).

of the program states and whose value (i) strictly decreases through transitions
between program states, that is ∀s, s′ ∈ dom(rank) : τ(s, s′) ⇒ rank(s′) <
rank(s), and (ii) is bounded from below, that is ∀s ∈ dom(rank) : rank(s) ≥ 0.

For instance, an obvious ranking function maps each program state to some
well-chosen upper bound on the number of transitions until termination. Fig-
ure 2b shows a ranking function labeling the terminating states of Figure 2a.

Control Flow Graphs. The control flow graph (CFG) induced by a transition
system 〈Σ, τ〉 is a graph whose nodes are the program control points L and
whose edges E ⊆ L × L are pairs of control points corresponding to transitions
in the transition system: ∀〈l, x̄〉, 〈l, x̄′〉 ∈ Σ : τ(〈l, x̄〉, 〈l, x̄′〉)⇒ 〈l, l′〉 ∈ E . In the
following, we restrict our attention to reducible control flow graphs. A loop is a
strongly connected component of the CFG with a single entry node h called loop
header. The loops nested within a loop are the strongly connected components
of the loop after removing the loop header. A loop entry edge is an edge whose
source is outside the loop and whose target is inside the loop, a loop edge is an
edge whose source and target are within the loop, and a loop exit edge is an edge
whose source is inside the loop and whose target is outside the loop. Similarly,
we can partition the corresponding transitions in the transition system into loop
entry transitions, loop transitions, and loop exit transition.

Example 1. Consider the program in Figure 3a: the integer variable x is initial-
ized non-deterministically; then, at each loop iteration, the value of x is increased
by one or negated when it becomes greater than or equal to ten, until x becomes
zero. The control flow graph of the program is depicted in Figure 3b. The pro-
gram while loop corresponds to the strongly connected component of the CFG
formed by the nodes 2, 3, 4 and 5. The loop header is the node 2. There is a
single entry edge 〈1,2〉 and a single exit edge 〈2,6〉.
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Remark 1. Note that it is not necessary for a ranking function to strictly decrease
at each transition but only around each loop iteration [11]: ∀〈h, x̄〉, 〈h, x̄′〉 ∈
dom(rank) : τ∗(〈h, x̄〉, 〈h, x̄′〉)⇒ rank(〈h, x̄′〉) < rank(〈h, x̄〉).

Example 2. The program 3pieces of Figure 3a terminates whatever the initial
value of the variable x. The following piecewise-defined function:

f(x) =


−x x ≤ 0

21− x 0 < x < 10

x+ 1 10 ≤ x

is a valid ranking function for the program, which maps the initial value of x to
the number of loop iterations needed for termination.

3 Verifying Termination via Safety

In the late 1970s, Lamport suggested a classification of program properties into
the classes of safety and liveness properties [20]. Safety properties represent
requirements that should be continuously maintained by the program. On the
other hand, liveness properties represent requirements that need not hold con-
tinuously but whose eventual or repeated realization must be guaranteed. Thus,
a counterexample to a safety property is a finite (prefix of a) program execution,
while for a liveness property a counterexample is an infinite execution on which
an event of interest does not occur. A prominent example of a liveness property is
termination. Instead, non-termination is a safety property since any terminating
(and, thus, finite) program execution is a witness against non-termination.

3.1 Verifying Safety Properties

The verification of safety properties often amounts to checking the reachability
of an error location: a program is safe when the error location is unreachable;
otherwise, the program is unsafe. In the former case, safety provers often provide
an invariant testifying the validity of the property. In the latter case, safety
provers usually provide a counterexample trace violating the safety property.
In the following, we propose some examples to informally illustrate how safety
properties can be verified by checking the (un)-reachability of an error.

Verifying Non-Termination [6]. Consider the program in Figure 4a: the integer
variables x and y are initialized with value zero and nine, respectively; then, at
each iteration, x and y are increased by one, until x becomes equal to y. Since
safety provers report counterexample traces reaching an error location, in order
to verify that the program is non-terminating, we turn terminating traces into
counterexamples to be found. In Figure 4b, we added an error location — defined
as assert(false) — before the end of the program of Figure 4a: only terminating
traces would execute assert(false), thus the program is non-terminating since
in this case the error location is in fact unreachable.
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int 1x := 0, y := 9
while 2(x 6= y) do

3x := x+ 1
4y := y + 1

od5

(a)

int 1x := 0, y := 9
while 2(x 6= y) do

3x := x+ 1
4y := y + 1

od

assert (false)5

(b)

Fig. 4: Non-terminating program (a) annotated with an error location (b).

int 1x := ?, r := max{−x, 21− x, x+ 1}
while 2(x 6= 0) do

r := r − 1
assert (r ≥ 0)
if 3(x < 10) then 4x := x+ 1 else 5x := −x fi

od6

Fig. 5: Program 3pieces annotated with a ranking function.

Verifying a Ranking Function. Safety provers can also be used to verify whether
a given function is a ranking function for a program. For instance, to check wether
max{−x, 21− x, x+ 1} is a ranking function for the program 3pieces shown in
Figure 3a, we instrument the program as shown in Figure 5: we add a variable r
initialized with the given function max{−x, 21−x, x+ 1}; then, within the loop,
according to Definition 1 and Remark 1 (i) we strictly decrease the value of r
(i.e., we decrease r by one), and (ii) we assert that the value of r is bounded
from below (i.e., we assert that r is greater than or equal to zero). Note that the
counterexample traces that would violate the assertion are either (prefixes of)
non-terminating traces, or (prefixes of) traces that are terminating but require a
higher number of loop iterations with respect to the initial value of r. In this case,
since the assertion is never violated, the given function max{−x, 21 − x, x + 1}
is a valid ranking function for the program 3pieces.

3.2 Verifying Termination via Safety

In the following, we describe the overall algorithm for proving termination via
safety. We detail our specific implementation choices in Section 4.

The overall algorithm is illustrated by Algorithm 1. We verify termination
of each loop in a program, implicitly constructing a lexicographic ranking func-
tion for nested sets of loops [1]. The function isTerminating takes as input
a transition system 〈Σ, τ〉 and returns either true : R, meaning that the pro-
gram is terminating and R is a ranking function, or false : ρ, meaning that the
program is potentially non-terminating and ρ is a counterexample potentially
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Algorithm 1 : Program Termination

1: function IsTerminating(〈Σ, τ〉)
2: R← ∅
3: for h ∈ getLoops(〈Σ, τ〉) do . h is a loop header in the program
4: r : ρ← isLoopTerminating(h, 〈Σ, τ〉)
5: if r then . the loop is terminating
6: R← R [h 7→ ρ]
7: else return false : ρ . ρ is a potentially non-terminating state

8: return true : R . R is a ranking function for the program

Algorithm 2 : Loop Termination

1: function IsLoopTerminating(h,〈Σ, τ〉) . h is the loop header
2: rank ← 0 . candidate ranking function initialization
3: B ← ∅
4: while true do
5: β ← getTerminatingTrace(h, 〈Σ, τ〉, rank)
6: if β then . there are terminating traces violating rank
7: B ← B ∪ β
8: rank ← getCandidateRankingFunction(rank,B)
9: else . there are no terminating traces violating rank

10: η ← isRankingFunction(rank)
11: if η then . η is a potentially non-terminating state
12: return false : η
13: else . rank is a ranking function for the loop
14: return true : rank

non-terminating initial state. Specifically, isTerminating invokes the function
isLoopTerminating for each loop in the program (identified by the function
getLoops, cf. Line 4) and maps each loop header h (cf. Line 3) to the re-
turned ranking function (cf. Line 6), or returns as soon as a counterexample
non-terminating state ρ is found (cf. Line 7). The function getLoops imple-
ments a standard control-flow analysis to identify (natural) loops within the
CFG induced by the transition system 〈Σ, τ〉. We omit its pseudocode due to
space limitations. The identified program loops are analyzed in no specific order.

The function isLoopTerminating is shown in Algorithm 2. Initially, is-
LoopTerminating assumes that all program states within the loop are non-
terminating and looks for a counterexample, that is, a terminating trace β (cf.
Line 5). Then, the call to the function getCandidateRankingFunction com-
putes a candidate ranking function rank for the (potentially terminating) states
along this trace (cf. Line 8). The original non-termination property is weakened
to only search for terminating traces violating the candidate rank, and the pro-
cess starts over. The information provided by the collected terminating traces is
used to incrementally refine the candidate rank with further ranking function
pieces. In case no further terminating traces violating rank are found (cf. Line 9),
the call to the function isRankingFunction checks wether all program states
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within the loop are terminating (cf. Line 10): if so, rank is a ranking function
for the loop (cf. Line 14); if not, a counterexample potentially non-terminating
initial state η (that is, η belongs to at least one infinite trace) is returned (cf.
Line 12). Note that isLoopTerminating might also not terminate (cf. Line 4).

4 Counterexample-Guided Ranking Function Synthesis

We now detail our implementation choices for the functions getTerminating-
Trace, isRankingFunction and getCandidateRankingFunctions. We
omit their pseudocode due to space limitations.

4.1 Search for Ranking Function Counterexamples

In Section 3.1, we have seen how to use a safety prover for verifying non-
termination by turning terminating traces into counterexamples (cf. Figure 4).
In our approach, we use a similar intuition to systematically detect terminating
traces violating a given candidate ranking function rank.

In the following, we consider a generic candidate rank and we introduce two
program transformations Tterm and Trank implemented by the functions get-
TerminatingTrace and isRankingFunction, respectively. We detail these
transformations with respect to a specific candidate rank in Section 4.2.

TTERM Transformation. Let h be a loop header within a program 〈Σ, τ〉 and
let rank be a candidate ranking function for the loop. We modify the program
in order to turn terminating traces violating rank into counterexamples to be
found. Specifically, we modify Σ in order to include the value of rank and we
add an error state ω 6∈ Σ: (Σ×Z)∪{ω}. In the following, s, s′, and 〈h, x̄〉 denote
program states in Σ. We also define the modified transition relation τ as follows:

– for each loop entry transition τ(s, 〈h, x̄〉) there exists an entry transition
τ rank which also includes the candidate rank:

τ rank(〈s, r〉, 〈〈h, x̄〉, r′〉)⇔ τ(s, 〈h, x̄〉) ∧ r′ = rank(x̄)

– for each loop transition τ(〈h, x̄〉, s) whose source is the loop header h there
exists a loop transition τ	 which also strictly decreases the value of rank:

τ	(〈〈h, x̄〉, r〉, 〈s, r′〉)⇔ τ(〈h, x̄〉, s) ∧ r′ = r 	 1

– for each loop exit transition τ(s, s′) there exists transition τ� to the error
state ω when the candidate ranking function is negative:

τ�(〈s, r〉, ω)
def
= r � 0

For every other transition τ(s, s′) there exists a transition τ ′(〈s, r〉, 〈s′, r′〉) ⇔
τ(s, s′)∧ r′ = r. The counterexample traces that reach the error state are traces
that are leaving the considered loop but violate the candidate rank since they re-
quire a higher number of loop iterations with respect to the initial value of rank.
The function getTerminatingTrace returns any of these counterexamples.



Synthesizing Ranking Functions from Bits and Pieces 9

int 1x := ?, r := rank
while 2(x 6= 0) do

r := r − 1
if 3(x < 10) then 4x := x+ 1 else 5x := −x fi

od

assert (r ≥ 0)6

Fig. 6: Program 3pieces annotated with a candidate ranking function rank.

Theorem 1. Let h be a loop header of a program 〈Σ, τ〉 and let 〈Σ′, τ ′〉 be the
program resulting from the Tterm transformation for a given candidate ranking
function rank. Then, τ ′∗(〈〈h, x̄〉, rank(x̄)〉, 〈s, r〉)∧τ(〈s, r〉, ω) if and only if there
exist s′ ∈ Σ τ(s, s′) and the transition is an exit transition, and τ∗(s, s′) and the
trace visits the loop header h strictly more than rank(x̄) times.

Example 3. Consider again the program 3pieces of Figure 3a. The transforma-
tion that we have just described intuitively corresponds to modifying 3pieces
as illustrated in Figure 6: we add a variable r initialized with the candidate
rank within the entry transition 〈1,2〉; then, within the loop transition 〈2,3〉,
we decrease the value of r by one and, after the loop, we assert that the value of
r is greater than or equal to zero. The assertion is equivalent to adding an error
transition 〈2,ω〉 when r is negative. The counterexample traces that violate the
assertion are traces that leave the loop after rank− r loop iterations, where r is
the (negative) value of the variable r after the loop.

TRANK Transformation. Note that traces that never leave the considered loop
are not counterexamples since they never reach the error state. For this reason
Algorithm 2 includes a final validation of the ranking function (cf. Lines 10-14).
We implement this using an analogous program transformation: we define entry
transitions τ rank and loop transitions τ	 as before:

τ rank(〈s, r〉, 〈〈h, x̄〉, r′〉)⇔ τ(s, 〈h, x̄〉) ∧ r′ = rank(x̄)

τ	(〈〈h, x̄〉, r〉, 〈s, r′〉)⇔ τ(〈h, x̄〉, s) ∧ r′ = r 	 1

unlike before, for each loop transition τ(s, s′) we also define a transition τ� to
the error state ω when the candidate ranking function is negative:

τ�(〈s, r〉, ω)
def
= r � 0

Other transitions are again defined as τ ′(〈s, r〉, 〈s′, r′〉) def
= τ(s, s′) ∧ r′ = r. The

counterexample traces that violate the assertion are necessarily (prefixes of) non-
terminating traces, since the Tterm transformation has excluded all terminating
traces violating the candidate ranking function. The function isRankingFunc-
tion returns the initial state of any of these counterexamples.
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Theorem 2. Let h be a loop header of a program 〈Σ, τ〉 and let 〈Σ′, τ ′〉 be the
program resulting from the Trank transformation for a given candidate rank-
ing function rank. Then, τ ′∗(〈〈h, x̄〉, rank(x̄)〉, 〈s, r〉) ∧ τ(〈s, r〉, ω) if and only
if τ∗(〈h, x̄〉, s) and the trace is the prefix of an infinite trace and visits the loop
header h strictly more than rank(x̄) times.

Example 4. The transformation that we have just described intuitively corre-
sponds to modifying the program 3pieces of Figure 3a as illustrated in Figure 5
and described in Section 3.1.

4.2 Synthesis of Candidate Ranking Functions

The function getCandidateRankingFunction uses the terminating traces
collected by getTerminatingTrace to extrapolate ranking function pieces
which are combined into a candidate loop ranking function. We only consider
affine pieces and leave the extrapolation of non-linear pieces for future work.

In Algorithm 2, the initial candidate is the constant function equal to zero
(cf. Line 2). Then, the candidate ranking function is systematically updated in
order to be valid for the newly discovered terminating traces, and possibly for
other terminating traces not explicitly enumerated.

We extrapolate an affine ranking function piece from terminating traces map-
ping the initial states of these traces to the number of loop iterations needed
for termination, and then finding an affine ranking function which fits these bits
of information. More specifically, let {〈x̄1, r1〉, 〈x̄2, r2〉, . . . } be the set of pairs
mapping the initial states x̄1, x̄2, . . . of the collected terminating traces to the
number r1, r2, . . . of loop iterations needed for termination. We find a fitting
affine function m̄ · x̄+ q of the program variables x̄ by linear interpolation, that
is by solving the system of equations:

m̄ · x̄1 + q = r1
m̄ · x̄2 + q = r2

...

for the unknowns m̄ and q.

Example 5. Let {〈9, 12〉, 〈4, 17〉} be the set of pairs mapping some initial states
of the program 3pieces of Figure 3a to the number of loop iterations needed for
termination: the initial state with x = 9 needs 12 loop iterations, and the initial
state with x = 4 needs 17 loop iterations. Solving the system of equations:

m · 9 + q = 12
m · 4 + q = 17

yields the affine function 21 − x of the program variable x. Note that this is a
valid ranking function for all initial states with 0 < x < 10, and not only for the
given initial states with x = 9 and x = 4 (cf. Example 2).
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When the system is unsatisfiable, we discard all collected states and we start
over by building a new ranking function piece. The ranking function pieces are al-
ternatively combined into piecewise-defined, lexicographic, or multiphase ranking
functions [24]. These combinations have complementary strengths: piecewise-
defined combinations are well-suited when multiple paths are present within
loops (cf. Figure 3a), lexicographic combinations are convenient for loops fea-
turing unbounded non-determinism (cf. Figure 7), and multiphase combinations
target loops that go through a number of phases in their executions [3]. The
choice of the combination is a parameter of the analysis.

Piecewise-Defined Ranking Functions. We represent piecewise-defined affine rank-
ing functions using max combinations of affine ranking functions [25]:

max{rank1, . . . , rankn}

where rank1, . . . , rankn are the affine ranking function pieces.
In the transformations Tterm and Trank described in Section 4.1, the modified

loop transitions τ	 strictly decrease a max combination of ranking functions by
strictly decreasing all its pieces:

max{r1, . . . , rn} 	 1 = max{r1 − 1, . . . , rn − 1}

In the added error transitions τ� a max combination of ranking functions is
negative when all its pieces are negative:

max{r1, . . . , rn}� 0⇔ r1 < 0 ∧ · · · ∧ rn < 0

Example 6. The transformations Tterm and Trank of the program 3pieces of
Figure 3a are shown in Figure 6 and Figure 5, respectively.

Lexicographic Ranking Functions. Lexicographic ranking functions are tuples:

(rank1, . . . , rankn)

where rank1, . . . , rankn are affine ranking function pieces.
In the transformations Tterm and Trank, the modified loop transitions τ	

strictly decrease a lexicographic ranking function resetting the less significant
pieces to their initial affine expression:

(r1, . . . , ri, ri+1, . . . , rn)	 1 = (r1, . . . , ri − 1, ranki+1, . . . rankn)

were ri+1, . . . , rn are negative and get reset to the initial ranki+1, . . . , rankn. In
the added error transitions τ� a lexicographic combination of ranking functions
is negative when the first of its pieces is negative:

(r1, . . . , rn) � 0⇔ r1 < 0



12 Caterina Urban, Arie Gurfinkel, and Temesghen Kahsai

int 1x := ?, y := ?, r := (x, y)
while 2(x > 0 ∧ y > 0) do

if (snd(r) < 0) then r := (fst(r)− 1, y) else r := (fst(r), snd(r)− 1) fi

assert (fst(r) ≥ 0)
if 3(?) then 4x := x− 1; 5y := ? else 6y := y − 1 fi

od7

Fig. 7: Program annotated with a lexicographic ranking function.

Example 7. Consider the program in Figure 7: the integer variables x and y are
initialized non-deterministically; then, at each iteration, either the value of y
is decreased by one or the value of x is decreased by one and the value of y
is reset non-deterministically, until either variable is less than or equal to zero.
The program terminates whatever the initial value of x and y. Let (x, y) be
a candidate lexicographic ranking function for the program. In this case, the
transformation Trank intuitively corresponds to adding a variable r initialized
with (x, y) within the entry transition 〈1,2〉; then, within the loop transition
〈2,3〉, decreasing the value of r lexicographically resetting its second component
snd(r) when negative, and asserting that its first component fst(r) is greater
than or equal to zero. The assertion is equivalent to adding an error transition
〈2,ω〉 when fst(r) is negative. In this case, since the assertion is never violated,
(x, y) is a valid lexicographic ranking function for the program.

Multiphase Ranking Functions. Multiphase ranking functions specify ranking
functions that proceed through a certain number of phases during program ex-
ecution [24]. They are represented as tuples:

(rank1, . . . , rankn)

where rank1, . . . , rankn are affine ranking function pieces. Each piece represents
a phase of the ranking function. In the transformations Tterm and Trank, the
modified loop transitions τ	 strictly decrease a multiphase combination of rank-
ing functions as follows:

(r1, . . . , ri, ri+1, . . . , rn)	 1 = (r1, . . . , ri − 1, ri+1, . . . rn)

were ri+1, . . . , rn are negative (and, unlike in the lexicographic combination,
are never reset). In the added error transitions τ� a multiphase combination of
ranking functions is negative when the first of its pieces is negative:

(r1, . . . , rn) � 0⇔ r1 < 0

In summary, our approach systematically collects terminating program ex-
ecutions and searches for a function that uniformly captures the termination
argument of the program. The function can be an affine ranking function, or
a piecewise, lexicographic, or multiphase combination of affine functions. Then,
we either manage to validate the candidate ranking function or we provide a
witness for program non-termination.
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Tot Time

SeaHorn 135 1.71s

AProVE [28] 129 10.77s

FuncTion [30] 111 0.55s

HIPTnT+ [22] 152 0.62s

Ultimate [16] 109 8.45s

(a)

SeaHorn

�  × N

AProVE [28] 39 33 96 22

FuncTion [30] 50 26 85 29

HIPTnT+ [22] 16 33 119 22

Ultimate [16] 55 29 80 26

(b)

Fig. 8: Overview of the experimental evaluation.

5 Implementation

Our approach is implemented in SeaHorn5, an LLVM [21] based safety verifica-
tion framework. SeaHorn verifies user-supplied assertions as well as a number
of built-in safety properties (e.g., buffer and signed integer overflows). It can also
be used to check for inconsistent code in C programs [18].

SeaHorn is parameterized by the semantic representation of the program
using Constrained Horn Clauses (CHCs), and by the verification engine that
leverages the latest advances made in SMT-based Model Checking and Abstract
Interpretation. Detailed information about SeaHorn can be found in [15]. The
transformations Tterm and Trank presented in Section 4.1 are used to enhance
the CHCs passed to the verification engine. SeaHorn employs several SMT-
based model checking engines based on PDR/IC3 [2], including Spacer [19]. The
synthesis of candidate ranking functions presented in Section 4.2 uses Z3 [12] to
find affine functions fitting the collected terminating states.

Experimental Evaluation. We compared SeaHorn to the participants in the ter-
mination division of SV-COMP 2015: AProVE [28], FuncTion [30], HIPTnT+ [22],
and Ultimate Automizer [16]. We evaluated the tools against 190 terminat-
ing C programs collected from the SV-COMP 2015 benchmarks. Specifically, we
selected only the programs that all tools could analyze (e.g., without parse er-
rors or other clear issues) among the two most populated verification tasks of
the termination category (i.e., crafted-lit and memory alloca). Note that other
tools (e.g., FuncTion) provide a very limited support for arrays and pointers.
Therefore, we were not able to analyze 30% of the considered benchmarks. The
experiments were performed on a machine with a 2.90GHz 64-bit Dual-Core
CPU (Intel i5-5287U) and 4GB of RAM, and running Ubuntu 14.04.

In the evaluation, we run in parallel three instances of SeaHorn parameter-
ized with the different ranking function combinations presented in Section 4.2,
halting the analysis as soon as one instance reported a result. Figure 8 summa-
rizes our experimental evaluation and Figure 9 shows a detailed comparison of
SeaHorn against each other tool. In Figure 8a, the first column reports the

5 http://seahorn.github.io/

http://seahorn.github.io/
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Fig. 9: Detailed comparison of SeaHorn against AProVE [28] (a), Func-
Tion [30] (b), HIPTnT+ [22] (c), and Ultimate Automizer [16] (d).

total number of programs that each tool could prove terminating, and the sec-
ond column reports the average running time in seconds for the programs where
the tool proved termination. We used a time limit of 30 seconds for each pro-
gram. In Figure 8b, the first column (�) lists the total number of programs that
the tool was not able to prove termination for and that SeaHorn could prove
terminating, the second column ( ) reports the total number of programs that
SeaHorn was not able to prove termination for and that the tool could prove
terminating, and the last two columns report the total number of programs that
both the tool and SeaHorn were able (×) or unable (N) to prove terminating.
The same symbols are used in Figure 9.

Figure 8a shows that SeaHorn is able to prove termination of 3.2% more
programs than AProVE, 12.6% more programs than FuncTion, and 13.7%
more programs than Ultimate Automizer. HIPTnT+ is able to prove termi-
nation of 8.9% more programs than SeaHorn, but SeaHorn can prove termi-
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nation of 42.1% of the programs that HIPTnT+ is not able to prove terminating
(8.4% of the total program test cases, cf. Figure 8b).

Figure 8b highlights the complementary strengths of SeaHorn and each of
the other tools. Specifically, SeaHorn and AProVE seem to form the best
combination with respectively 20.5% and 17.4% of the total program test cases
that could be proved terminating only by one tool and not the other, and only
11.6% of the test case that could not be proved terminating by either tool.

Figure 9 shows that SeaHorn is generally faster than AProVE (cf. Fig-
ure 9a) and Ultimate Automizer (cf. Figure 9d), and often slower than Func-
Tion (cf. Figure 9b) and HIPTnT+ (cf. Figure 9c). In Figure 9b and Figure 9c,
we also see that FuncTion and HIPTnT+ give up earlier when unable to prove
termination, while SeaHorn, AProVE, and Ultimate Automizer usually
persist with the analysis until the timeout (cf. also Figure 9a and Figure 9d).

Finally, we noticed that five of the SV-COMP 2015 program test cases could
be proved terminating only by SeaHorn (one only by AProVE, one only by
FuncTion, two only by HIPTnT+, and five only by Ultimate). No tool could
prove termination of six of the program test cases.

6 Related Work

In the recent past, termination analysis has benefited from many research ad-
vances and powerful termination provers have emerged. Many approaches in this
area reduce termination to a safety property. For instance, the approach imple-
mented in Terminator [10] systematically verifies that no program state is
repeatedly visited (and it is not covered by the current termination argument).
The identified counterexamples are independently proved to be terminating [26]
building a disjunctive well-founded termination argument [27]. A similar incre-
mental approach is used in T2 [5] for the construction of lexicographic ranking
functions. An automata-based incremental approach is described in [17] and
implemented in Ultimate [16]. An approach based on conflict-driven learning
is used in [13] to enhance the abstract interpretation-based termination analy-
sis [31] implemented in FuncTion [30].

The incremental approach that we have proposed in this paper uses safety
verifiers for proving termination in a fundamentally different way than existing
methods: rather than systematically verifying that no program state is visited
repeatedly, we systematically verify that no program state is terminating. Thus,
our counterexamples are finite traces and do not need to be proven terminating.

The counterexample finite traces identified by our approach are used to ex-
trapolate affine ranking functions. The linear interpolation that we use resembles
the widening operator described in [31]. The extrapolated ranking functions are
combined into a piecewise-defined, lexicographic, or multiphase ranking function
for a program. Thus, our method provides more valuable information than just a
positive or inconclusive answer like the methods based on the size-change termi-
nation principle [23] and implemented in AProVE [28], or like the already cited
methods based on disjunctive well-foundedness and implemented in Termina-



16 Caterina Urban, Arie Gurfinkel, and Temesghen Kahsai

tor. Finally, compared to the incomplete methods implemented in AProVE
and FuncTion, our method is also able to prove program non-termination.

7 Conclusion and Future Work

This paper provides a new perspective on the use of safety verifiers for proving
program (non-)termination. We have proposed a novel incremental approach,
which uses a safety verifier to systematically sample terminating program ex-
ecutions and synthesize from these a ranking function for the program, or to
otherwise provide a witness for program non-termination.

It remains for future work to adapt the approach in order to infer sufficient
preconditions for program termination [7,31]. We also plan to extend the ap-
proach to other liveness properties [9,32].
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