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Abstract

Software has become ubiquitous, ranging from apps for toasters to important infrastructure such as
transportation, finance, and healthcare. Ensuring that software actually behaves as intended is critical in cases
where implementation errors may lead to various forms of damage, such as financial losses, losses of private
or confidential data, or even threats to human safety. To apply program verification to real-world programs a
high degree of automation is vital. In this thesis, we expand the state-of-the-art in two areas where techniques
for automated program verification remain challenging, namely the automated verification of modern
logics with advanced correctness properties such as linearizability and the verification of language-agnostic
information flow properties.

Modern separation logics allow one to prove rich properties of intricate code, e.g. functional correctness and
linearizability of non-blocking concurrent code. However, this expressiveness leads to a complexity that
makes these logics difficult to apply. Manual proofs or proofs in interactive theorem provers consist of a
large number of steps, often with subtle side conditions. On the other hand, automation with dedicated
verifiers typically requires sophisticated proof search algorithms that are specific to the given program logic,
resulting in limited tool support that makes it difficult to experiment with program logics, e.g. when learning,
improving, or comparing them.

In the context of secure information flow, security policies express the classification and declassification
of data. Existing policy frameworks that support automated reasoning about code are tightly linked to a
programming language, which limits their flexibility and complicates reasoning, for instance, during audits.
Language-agnostic policy frameworks, which abstract the concrete behavior of programs, lack automated
program verification.

First, we present Gobra, a modular, deductive program verifier for Go that proves memory safety, crash
safety, data-race freedom, and user-provided specifications. Gobra is based on separation logic and supports
a large subset of Go. Its implementation translates an annotated Go program into the Viper intermediate
verification language and uses an existing SMT-based verification backend to compute and discharge proof
obligations. We build our verification techniques for security properties on top of Gobra to apply them to a
practical, real-world programming language.

Second, we present a framework for the specification and verification of security policies for distributed
systems, where attackers may observe the I/O performed by a program, but not its memory. Our policies are
expressed over the I/O behaviors of programs and, thereby, language-agnostic. We present techniques to
reason formally about policies, and to verify that an implementation satisfies a given policy. We formalize these
verification techniques in Isabelle/HOL. An evaluation on several case studies, including an implementation
of the WireGuard VPN key exchange protocol, demonstrates that our policies are expressive, and that
verification is amenable to SMT-based verification.

Third, we systematically develop a proof outline checker for the TaDA logic, a complex program logic for
the verification of block-free code. Proof outline checkers take as input a program annotated with the most
essential proof steps and then check automatically that this outline represents a valid proof in the program
logic. Our proof outline checker reduces the verification of the TaDA logic to a simpler verification problem,
for which automated tools exist. Our approach leads to proof outline checkers that provide substantially more
automation than interactive provers, but are much simpler to develop than custom automatic verifiers.





Zusammenfassung

Software ist mittlerweile allgegenwärtig und reicht von Apps für Toaster bis hin zu wichtigen Infrastrukturen
für Verkehr, Finanzen, und Gesundheitswesen. Es ist wichtig sicherzustellen, dass sich Software tatsächlich
wie beabsichtigt verhält, vor allem in Fällen, in denen Implementierungsfehler zu verschiedenen Formen von
Schäden führen können, wie zum Beispiel finanziellen Verlusten, dem Verlust privater oder vertraulicher
Daten, oder sogar Gefahren für die menschliche Sicherheit. Ein hoher Automatisierungsgrad ist für die
Anwendung der Programmverifikation auf reale Programme unerlässlich. In dieser Arbeit erweitern wir
den Stand der Technik in zwei Bereichen, in welchen Techniken zur automatisierten Programmverifikation
nach wie vor eine Herausforderung darstellen. Diese Bereiche sind die automatisierte Verifikation moderner
Logiken mit fortgeschrittenen Korrektheitseigenschaften wie Linearisierbarkeit und die Verifikation von
programmiersprachunabhängigen Informationsflusseigenschaften.

Moderne Separationslogiken ermöglichen die Verifikation umfangreicher Eigenschaften von kompliziertem
Code, zum Beispiel die funktionale Korrektheit und die Linearisierbarkeit von nicht blockierendem, neben-
läufigem Code. Diese Ausdruckskraft führt jedoch zu einer Komplexität, die die Anwendung dieser Logiken
erschwert. Manuelle Beweise oder Beweise in interaktiven Theorembeweisern bestehen aus einer großen
Anzahl von Schritten, oft mit subtilen Nebenbedingungen. Andererseits erfordert die Automatisierung
mit dedizierten Verifizierern in der Regel hochentwickelte Algorithmen zur Beweissuche, die spezifisch
für die gegebene Programmlogik sind. Das führt zu einer begrenzten automatisierten Unterstützung, die
Experimente erschwert, zum Beispiel beim Lernen, Verbessern, oder Evaluieren einer Logik.

Im Kontext des sicheren Informationsflusses definieren Sicherheitsrichtlinien die Klassifizierung und
gültige Deklassifizierung von Daten. Bestehende Frameworks für Sicherheitsrichtlinien, die automatisierte
Verifikation von Code unterstützen, sind eng mit einer Programmiersprache verknüpft, was ihre Flexibilität
einschränkt und die Validierung von Richtlinien erschwert. Sprachunabhängige Frameworks, die das konkrete
Verhalten von Programmen abstrahieren, verfügen nicht über eine automatische Programmverifikation.

Als erstes präsentieren wir Gobra, ein modularer, deduktiver Programmverifizierer für Go, der Memory
Safety, Crash Safety, Data-Race-Freedom, und vom Benutzer definierte Spezifikationen beweist. Gobra
basiert auf Separationslogik und unterstützt eine große Teilmenge von Go. Seine Implementierung übersetzt
ein annotiertes Go Programm in die Zwischenverifikationssprache Viper und verwendet ein bestehendes
SMT-basiertes Verifikations-Backend, um Beweisverpflichtungen zu berechnen und zu überprüfen. Wir
bauen unsere Verifikationstechniken für Sicherheitseigenschaften auf Gobra auf, um unsere Techniken auf
eine praktische, reale Programmiersprache anzuwenden.

Zweitens stellen wir ein Framework für die Spezifikation und Verifikation von Sicherheitsrichtlinien für
verteilte Systeme vor, bei denen Angreifer zwar die von einem Programm ausgeführten I/O Operationen
beobachten können, nicht aber den Speicher eines Programms beobachten können. Unsere Richtlinien
werden über das I/O-Verhalten von Programmen ausgedrückt und sind somit sprachunabhängig. Wir
stellen Techniken vor, um formal über Richtlinien zu argumentieren und um zu überprüfen, ob eine
Implementierung eine gegebene Richtlinie erfüllt. Wir formalisieren diese Verifikationstechniken in Is-
abelle/HOL. Eine Evaluierung mehrerer Fallstudien, einschließlich einer Implementierung des WireGuard
VPN-Schlüsselaustauschprotokolls, zeigt, dass unsere Richtlinien aussagekräftig sind und dass die Verifika-
tion zugänglich für SMT-basierte Verifikation ist.

Drittens entwickeln wir systematisch einen Proof Outline Checker für die TaDA-Logik, eine komplexe
Programmlogik für die Verifikation von blockfreiem Code. Proof Outline Checker nehmen als Eingabe
ein mit den wichtigsten Beweisschritten annotiertes Programm und prüfen dann automatisch, ob diese
Schritte einen gültigen Beweis in der Programmlogik darstellen. Unser Proof Outline Checker reduziert die
Verifikation der TaDA-Logik auf ein einfacheres Verifikationsproblem, für das automatisierte Verifizierer
existieren. Unser Ansatz führt zu Proof Outline Checkern, die wesentlich mehr Automatisierung bieten als
interaktive Beweiser, aber einfacher zu entwickeln sind als benutzerdefinierte automatische Verifizierer.
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Introduction 1.
“I intend to live forever. So far, so

good.”

— Stephen Wright

Software has become ubiquitous, ranging from apps for toasters to
important infrastructure such as transportation, finance, and healthcare.
Ensuring that software actually behaves as intended is critical in cases
where implementation errors may lead to various forms of damage, such
as financial losses, losses of private or confidential data, or even threats
to human safety. Traditional techniques for quality assurance such as
testing or bug finders cannot guarantee the absence of bugs since these
techniques are only able to reason about a limited number of program
executions. In contrast, program verification aims to formally ensure the
correctness of software for all its executions, i. e. for all inputs, all thread
schedules, and all interactions with the environment.

To apply program verification to real-world code, the automation of pro-
gram verification is a crucial requirement. Deductive program verifiers take
a program together with a specification describing the intended behavior
and then verify whether the program satisfies the given specification. To
verify programs, such tools typically require hints by the user in the form
of proof annotations added to a program or interactive clues. The amount
of required proof annotations or clues then determines the degree of
automation of the verification technique. Without a sufficiently high
degree of automation, verifying large-scale or complex software systems
is intractable due to the amount of work and difficulty of the task.

The focus of this thesis is on advancing the state-of-the-art in terms of
the kind of code and the kind of properties that can be verified with
automated verification.

Regarding the targeted code, our work focuses on the verification of
code with fine-grained concurrency, where threads, instead of locks,
use atomic language primitives such as compare-and-swap to interact
with memory. Verifying rich properties about code with fine-grained
concurrency requires the verification of advanced correctness properties
about the code: Consider a small program z = *x; *x = z + 1 that
first reads the value of some pointer x into a temporal variable z and
then increases the value of the pointer by one. If the program is executed
sequentially, then we are able to verify that if the pointer x was not null
before the program execution, then after the program the value of the
pointer has been increased by one. However, for concurrent programs,
the specification does not hold if other treads are able to change the
pointer value between the read z = *x and write *x = z + 1 of the
program. To recover the ability to verify strong specifications, program
logics specialized for fine-grained concurrency introduce advanced
correctness properties such as linearizability. These specialized logics
are very expressive, but challenging to apply and automate because they
often comprise complex proof state and many complex proof rules.

Regarding the targeted properties, in addition to the advanced correct-
ness properties that are necessary to verify strong specifications for code
with fine-grained concurrency, our work focuses on the verification of ad-
vanced security properties about code, more specifically, on information
flow properties. Information flow properties specify how specific data



2 1. Introduction

may influence the behavior of a program. Flow properties have a variety
of applications: In the context of confidentiality, flow properties are used
to specify that information about confidential data may not influence the
publicly observable behavior of a program. For integrity, we are able to
specify that untrusted data does not taint trusted data, which is used
to reason about attack vectors such as injection attacks. Lastly, different
variations of access control specify who is permitted to access specific
data. Note that this is not an exhaustive list. A limitation of modern
verification approaches for information flow is that their guarantees are
tightly linked to a programming language. As a consequence, reasoning
about the guarantees established by code verification happens at the level
of the programming language and, thereby, faces the full complexity
of the language. This poses a challenge when aiming to reason about
real-world programs that are written in established programming lan-
guages with a plethora of complex language features. Reasoning about
the guarantees established by code verification is important, especially
for security, where the specification of information flow properties can
become large and we want to ensure, potentially with formal audits, that
the verified specification correctly reflects the intended security require-
ments for an application. In contrast to flow properties that are tied to a
programming language, which we refer to language-based flow properties,
system-based flow properties express language-agnostic specifications of
security. However, in contrast to language-based flow properties, auto-
mated verification techniques to verify system-based flow properties
have not been sufficiently explored.

1.1. State of the Art

Deductive program verifiers achieve automation in several different
ways. SMT-based program verifiers take programs that are annotated
with proof statements together with a specification of the intended
behavior and then produce either a single or set of SMT formulas such
that if the SMT formulas are satisfied, then the program satisfies the
given specification. These SMT formulas are then checked with high-
performant SMT solvers such as Z3 [1] or CVC5 [2]. Instead of a tool
producing these SMT formulas itself, several works [3–6] propose the[3]: Barnett et al. (2006), Boogie: A Mod-

ular Reusable Verifier for Object-oriented

Programs

[4]: Filliâtre et al. (2013), Why3 - Where

Programs Meet Provers

[5]: Müller et al. (2016), Viper: A Verifi-

cation Infrastructure for Permission-Based

Reasoning

[6]: Maksimovic et al. (2021), Gillian, Part

II: Real-World Verification for JavaScript and

C

use of intermediate verification languages (IVLs) to simplify the creation
of program verifiers. IVLs offer basic programming languages together
with verification backends for their language. Analogous to the encoding
into SMT formulas, program verifiers then encode their input into an
IVL program such that if the IVL program verifies successfully (using
the verification backend provided by the IVL), then the input program
satisfies its given specification. More recently, program verifiers based on
interactive theorem provers such as Coq [7] have achieved a high degree

[7]: consortium (n.d.), The Coq proof assis-

tant

of automation by developing sophisticated proof search algorithms [8–
10]. These proof search algorithms, often referred to as tactics, help to

[8]: Sammler et al. (2021), RefinedC: au-

tomating the foundational verification of C

code with refined ownership types

[9]: Gäher et al. (2024), RefinedRust: A

Type System for High-Assurance Verifica-

tion of Rust Programs

[10]: Mulder et al. (2022), Diaframe: auto-

mated verification of fine-grained concurrent

programs in Iris

construct formal proofs by automatically inferring the proof rules that
are necessary to reduce a proof goal into smaller sub-goals. An advantage
of using interactive theorem provers is that verification does not have to
trust the correctness of SMT solvers.

These advancements in the automation of program verifiers have made
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it possible to develop program verifiers for real-world programming lan-
guages. Examples are Verifast [11], Krakatoa [12], Frama-C [13], SecC [14],
VCC [15], RefinedC [8], and VerCors [16] for C and Java; Spec# [17] for C#,
Nagini [18] for Python; and Prusti [19], Creusot [20], and RefinedRust [9]
for Rust. With the exception of Verifast, SecC, RefinedC, and RefinedRust,
all of these program verifies are built on top of an IVL.

Verifying that a program satisfies an information flow property typically
requires reasoning about multiple executions of the program since im-
plicit flows of information may not be observable from a single execution.
Properties involving multiple executions of a program are referred to as
hyperproperties [21]. A successful approach for the automated verification [21]: Clarkson et al. (2008), Hyperproper-

tiesof hyperproperties is the use of product programs [22, 23]. A product
[22]: Barthe et al. (2011), Secure informa-

tion flow by self-composition

[23]: Barthe et al. (2011), Relational Verifi-

cation Using Product Programs

program construction composes a program with itself such that a single
execution of the constructed product program corresponds to a fixed
number of executions of the original properties. Hyperproperties are
then verified by applying the standard automated verification techniques
to the product program. So far, these automated verification techniques
have been mostly used for the verification of language-based informa-
tion flow properties. Existing work on system-based information flow
properties typically verifies programs either through refinements [24] or [24]: Mantel (2003), A uniform framework

for the formal specification and verification

of information flow security

unwinding techniques [25, 26], both of which are hard to automate.

[25]: Goguen et al. (1984), Unwinding and

Inference Control

[26]: Popescu et al. (2021), Bounded-

Deducibility Security (Invited Paper)

Under the hood, deductive program verifiers justify that a program
satisfies a given specification through the use of a program logic. Standard
Hoare logic [27] proves specifications of the form {𝑃}𝑐{𝑄}, describing

[27]: Hoare (1969), An Axiomatic Basis for

Computer Programming

that if an execution of the program 𝑐 starts in a program state 𝑠 that
satisfies the precondition 𝑃 and ends in a program state 𝑠′ after the
execution, then the program state 𝑠′ satisfies the postcondition 𝑄. A
successful approach to reason about memory and concurrency is to
use separation logic [28]. In separation logic, each memory location is
associated with a permission, guarding access to the memory location.
Permissions are created when a memory location is allocated. In particular,
permissions cannot be duplicated or forged. Permissions are held by
method executions and transferred between methods upon call and
return. Which permissions to transfer upon call and return is specified
in the callee’s method’s pre- and postcondition, respectively. A method
may access a memory location only if it holds the associated permissions.
Since permissions are not duplicable and cannot be forged, separation
logic ensures that accesses to memory locations do not cause segfaults,
since permissions only exist for allocated memory locations, or data-
races, since at most one thread has exclusive access to a memory location.
Code that uses locks to synchronize accesses to memory is verified by
defining lock invariants. A lock invariant specifies permissions that are
conceptually held by a lock and defines functional properties that have
to hold whenever the lock is not currently acquired. When a method
acquires a lock, the permissions of the lock invariant are transferred to
the method and the functional properties specified by the lock invariant
may be assumed. Conversely, when a lock is released, the permissions
are returned and the functional specification has to hold.

More recently, numerous separation logics have been proposed that
enable the verification of fine-grained concurrency by incorporating
ideas from concurrent separation logic, Owicki-Gries [29], and rely- [29]: Owicki et al. (1976), An Axiomatic

Proof Technique for Parallel Programs Iguarantee [30]. Examples include CAP [31], iCAP [32], CaReSL [33],
[30]: Jones (1983), Specification and Design

of (Parallel) Programs
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CoLoSL [34], FCSL [35], Iris [36], GPS [37], RSL [38], and TaDA [39]
(see Brookes et al. [40] for an overview). An important concept present[40]: Brookes et al. (2016), Concurrent sep-

aration logic in some of these logics is abstract atomicity. Instead of specifying the
state when a method returns, abstract atomic specifications describe the
state at the linearization point of a method. This technique enables the
verification of richer functional specifications for fine-grained concurrent
code since specifications about the linearization point do not have to
account for the interference caused by other threads happening after
the linearization point. This expressiveness comes at the price of more
complex proof state and proof rules. While some automated verifiers
for fine-grained concurrency logics have existed before our work, they
usually have strong limitations. For instance, Caper [41] supports an[41]: Dinsdale-Young et al. (2017), Caper

- Automatic Verification for Fine-Grained

Concurrency

improved version of CAP [31], a predecessor logic of TaDA. Caper

[31]: Dinsdale-Young et al. (2010), Con-

current Abstract Predicates

achieves an impressive degree of automation, but it cannot verify abstract
atomicity. SmallfootRG [42] can prove memory safety, but not functional

[42]: Calcagno et al. (2007), Modular

Safety Checking for Fine-Grained Concur-

rency

correctness. CAVE [43] can prove linearizability, but cannot reason about

[43]: Vafeiadis (2010), Automatically Prov-

ing Linearizability

non-linearizable code.

As for fine-grained concurrency, a plethora of logics enable us to reason
about secure information flow [14, 44–47]. A key challenge for the veri-

[14]: Ernst et al. (2019), SecCSL: Security

Concurrent Separation Logic

[44]: Murray et al. (2018), COVERN: A

Logic for Compositional Verification of Infor-

mation Flow Control

[45]: Yan et al. (2021), SecRSL: security

separation logic for C11 release-acquire con-

currency

[46]: Eilers et al. (2023), CommCSL: Prov-

ing Information Flow Security for Concur-

rent Programs using Abstract Commutativ-

ity

[47]: Frumin et al. (2021), Compositional

Non-Interference for Fine-Grained Concur-

rent Programs

fication of concurrent code is that the thread scheduler may influence
the behavior of a program. Therefore, data that influences the thread
schedule, for instance, by having an effect on the execution time, may
influence the rest of the program as well. In the context of secure infor-
mation flow, this issue is typically addressed by preventing confidential
data from influencing the execution time. Such influences are avoided
by enforcing that executions do not branch on confidential data, e.g. the
conditions of while- and if-statement may not depend on confidential
data. Some works permit branches on secrets, if they are able to prove
that both executions starting from the branch have an equal execution
time. A more recent approach [46] is to verify that the results computed

[46]: Eilers et al. (2023), CommCSL: Prov-

ing Information Flow Security for Concur-

rent Programs using Abstract Commutativ-

ity

by a program are the same regardless of how threads are scheduled,
entailing that the results are not influenced by the thread scheduler.

1.2. Challenges

The core goal of this thesis is to advance the state-of-the-art in terms of
the programs and in terms of the properties that can be verified with
automated verification techniques.

We tackle the following concrete challenges:

Challenge 1: Automation of Complex Logics. As discussed in Sec. 1.1,
modern separation logics allow one to prove rich properties of intricate
code, e.g. functional correctness and linearizability of non-blocking
concurrent code. However, this expressiveness leads to a complexity that
makes these logics difficult to apply. Automation with dedicated verifiers
typically requires sophisticated proof search algorithms that are specific
to the given program logic, resulting in a limited tool support and making
it difficult to experiment with program logics. A systematic approach
to automate the verification of such complex logics with advanced
correctness properties remains challenging.
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Challenge 2: Automation of System-Based Flow Properties. In contrast
to language-based information flow properties, there are only a few
modern works that focus on verifying that code satisfies system-based
flow properties. Language-based approaches define and verify flow
properties on top of a fixed programming language with a fixed language
semantic. Conversely, system-based approaches define flow properties
on a higher level, typically on top of some form of general traces that
provide an abstract representation of program behavior. The abstract
representation of program behavior introduced two challenges: (1) The
loss of information caused by the abstraction of program behavior makes
it challenging to define information flow properties that are expressive
enough to support modern programs with concurrency and heap effects.
For instance, decisions made by the thread scheduler are not visible
at the level of the abstracted program behavior and, thereby, hard to
distinguish from unintended flows of information. (2) Code verification
has to bridge the abstraction gap between the abstract program behavior
and the concrete operations performed by the code.

Existing system-based approaches are based on the notion of non-

deducibility [48]. These approaches are able to handle point (1), but [48]: Sutherland (1986), A model of infor-

mationrequire the explicit construction of proof witnesses, which is hard to
automate. An approach that solves point (1) and is amicable to automated
verification remains challenging.

Challenge 3: Reasoning about Practical Programming Languages. The
ultimate goal of program verification is to verify relevant real-world code.
Logics introduced to reason about advanced correctness or security prop-
erties are typically defined for simple canonical programming language
devoid of important features of practical programming languages such
as exceptions, interfaces, and closures. Conversely, program verifiers that
are able to verify practical programming languages such as Java or Rust
typically only support the verification of less advanced properties. The
aim of this challenge is the automated verification of advanced properties
for programs written in practical languages.

1.3. Contributions and Outline

We address the challenges with the following contributions (in reverse
order):

Contribution 1: Modular Verification of Go Code. In Chapter 2, we
present Gobra, a modular, deductive program verifier for Go that proves
memory safety, crash safety, data-race freedom, and user-provided spec-
ifications. Go is a popular systems programming language targeting,
especially, concurrent and distributed systems. Go differentiates itself
from other imperative languages by offering structural subtyping and
lightweight concurrency through goroutines with message-passing com-
munication. This combination of features poses interesting challenges
for static verification, most prominently the combination of a mutable
heap and advanced concurrency primitives. Gobra is based on separation
logic and supports a large subset of Go. Its implementation translates an
annotated Go program into the Viper intermediate verification language
and uses an existing SMT-based verification backend to compute and
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discharge proof obligations. Gobra is intended for the verification of
substantial, real-world code, and was, for instance, used to verify the Go
implementation of the SCION internet architecture [49, 50]. We build our[49]: Zhang et al. (2011), SCION: Scalabil-

ity, control, and isolation on next-generation

networks

[50]: Pereira et al. (2024), Protocols to Code:

Formal Verification of a Next-Generation In-

ternet Router

verification techniques for security properties on top of Gobra to apply
them to a practical, real-world programming language.

Contribution 2: Verifiable Security Policies for Distributed Systems.
In Chapter 3, we present a framework for the specification and verifi-
cation of system-based security policies for distributed systems, where
attackers may observe the I/O performed by a program, but not its
memory. Security policies belong to the group of secure information flow
hyperproperties, expressing that confidential data is not leaked during a
program’s execution. In this context, security policies classify the sensitiv-
ity of data and specify when declassification, i. e. the intentional release of
information, is permitted. We achieve system-based security policies by
expressing policies over traces of I/O actions, the basic building blocks of
communication, such as sending or receiving a message. This language-
independent representation is well-suited for distributed systems, where
attackers observe the I/O behavior of a program, but not the content of
the memory. To demonstrate the benefits of system-based properties, we
introduce a technique to reason formally about the guarantees provided
by a policy, enabling formal audits of security policies independent of
a specific program implementation or language. For code verification,
we introduce a technique to verify that an implementation satisfies a
policy using a combination of established verification techniques that
are well-suited for automation. We fully formalize our approach in the
theorem solver Isabelle/HOL. We implement our code verification on
top of Gobra to target real programs. An evaluation on several case stud-
ies, including an implementation of the WireGuard VPN key exchange
protocol, demonstrates that our policies are expressive, and that code
verification is amenable to automated verification.

Contribution 3: A Proof Outline Checker for TaDA. In Chapter 4, we
systematically develop an automated proof outline checker for the TaDA
logic [39]. Proof outline checkers take as input a proof outline, a formal[39]: Rocha Pinto et al. (2014), TaDA: A

Logic for Time and Data Abstraction proof skeleton that contains the key proof steps but omits most of the
details, and then check automatically that it represents a valid proof
in the program logic. Proof outline checkers provide automation for
proof steps for which good proof search algorithms exist, and can, as
we demonstrate, support expressive logics by requiring annotations for
complex proof steps. Due to this flexibility, proof outline checkers are
especially useful for experimenting with a logic. Our work goes beyond
existing proof outline checkers and automated verifiers by supporting
the substantially more complex program logic TaDA, which handles
fine-grained concurrency, linearizability, abstract atomicity, and other
advanced features. We believe that our systematic development of Voila
generalizes to other complex logics.

1.4. Publications

The chapters of this thesis are based on the following publications:



1.5. Further Contributions 7

Chapter 2 is based on

F. A. Wolf, L. Arquint, M. Clochard, W. Oortwĳn, J. C. Pereira, and P.

Müller.

Gobra: Modular Specification and Verification of Go Programs

In CAV 2021 [51]

Chapter 3 is based on a paper that is currently under submission:

F. A. Wolf and P. Müller.

Verifiable Security Policies for Distributed Systems

In CCS 2024 [52]

Chapter 4 is based on

F. A. Wolf, M. Schwerhoff, and P. Müller.

Concise Outlines for a Complex Logic: A Proof Outline Checker for

TaDA

In FM 2021 [53]

including the journal version of this paper

F. A. Wolf, M. Schwerhoff, and P. Müller.

Concise Outlines for a Complex Logic: A Proof Outline Checker for

TaDA

In Formal Methods Syst. Des. 2022 [54]

1.5. Further Contributions

During the thesis work, the following additional contributions to the
scientific community have been made:

C. Sprenger, T. Klenze, M. Eilers, F. A. Wolf, P. Müller, M. Clochard,

and D. A. Basin.

Igloo: soundly linking compositional refinement and separation logic for

distributed system verification

In OOPSLA 2020 [55]

L. Arquint, F. A. Wolf, J. Lallemand, R. Sasse, C. Sprenger, S. N. Wiesner,

D. A. Basin, and P. Müller.

Sound Verification of Security Protocols: From Design to Interoperable

Implementations

In SP 2023 [56]

J. C. Pereira, T. Klenze, S. Giampietro, M. Limbeck, D. Spiliopoulos,

F. A. Wolf, M. Eilers, C. Sprenger, D. A. Basin, P. Müller, and A.

Perrig.

Protocols to Code: Formal Verification of a Next-Generation Internet

Router

In CoRR 2024 [50]





Gobra: Modular Specification
and Verification of Go Programs 2.

“Beware of bugs in the above

code; I have only proved it

correct, not tried it.”

— Donald Knuth

Go is an increasingly popular systems programming language targeting,
especially, concurrent and distributed systems such as web applica-
tions. It combines standard features of imperative languages, such as
mutable heap data structures, with less common concepts, such as struc-
tural subtyping and lightweight concurrency through goroutines with
message-passing communication.

This combination of features poses interesting challenges for static ver-
ification, most prominently the combination of a mutable heap and
advanced concurrency primitives. Prior research on Go verification han-
dles some of these features, but not their combination. For instance,
Lange et al. [57, 58] verify safety and liveness of Go’s message-passing, [57]: Lange et al. (2017), Fencing off Go:

liveness and safety for channel-based pro-

gramming

[58]: Lange et al. (2018), A static verifica-

tion framework for message passing in Go

using behavioural types

but do not consider functional properties about the heap state, whereas
Perennial [59] supports heap data structures, but neither channels nor

[59]: Chajed et al. (2019), Verifying concur-

rent, crash-safe systems with Perennial

interfaces.

We present Gobra, an automated, modular verifier for heap-manipulating,
concurrent Go programs. Gobra supports a large subset of Go, including
Go’s interfaces and primitive data structures, both of which have not
been fully supported in previous work. Gobra verifies memory safety,
crash safety, data-race freedom, and user-provided specifications. It
takes as input a Go program annotated with assertions such as pre and
postconditions and loop invariants. Verification proceeds by encoding the
annotated programs into the intermediate verification language Viper [5] [5]: Müller et al. (2016), Viper: A Verifi-

cation Infrastructure for Permission-Based

Reasoning

and then applying an existing SMT-based verifier. In case verification
fails, Gobra reports at the level of the Go program which assertions it
could not verify.

Gobra’s assertion language builds on established concepts: Gobra uses
separation logic style permissions [28] to reason locally about heap data [28]: Reynolds (2002), Separation Logic: A

Logic for Shared Mutable Data Structuresstructures. It supports recursive predicates and specification methods to
abstract over (possibly unbounded) data structures and their contents. In
particular, Gobra has first-class predicates that enable a natural specifica-
tion of concurrency primitives, for instance, to parameterize a lock by an
invariant.

Gobra is intended for the verification of substantial, real-world code, and
was, for instance, used to verify the Go implementation of the SCION
internet architecture [49, 50]. This chapter makes the following technical [49]: Zhang et al. (2011), SCION: Scalabil-

ity, control, and isolation on next-generation

networks

[50]: Pereira et al. (2024), Protocols to Code:

Formal Verification of a Next-Generation In-

ternet Router

contributions:

▶ We present the Gobra tool, an automated modular verifier for
annotated Go programs. Our evaluation demonstrates that Gobra
can verify non-trivial examples with good performance. Our artifact
is available online [60]. [60]: Wolf et al. (2021), Gobra: Modular

Specification and Verification of Go Programs▶ We define a specification language for functional properties of
Go programs. Our specification language provides a consistent
abstraction at the level of Go and does not leak details of the
underlying encoding.

▶ We present the first specification and verification technique for
structural subtyping via Go interfaces.
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▶ Our Viper encoding supports, among other features, Go’s broad
collection of built-in data types, such as slices and channels. A
lightweight annotation allows it to apply separation logic to reason
soundly about addressable memory locations, but use a more
efficient encoding for others.

Outline. We demonstrate key features of Gobra on examples (Sec. 2.1),
give an overview of the encoding into Viper (Sec. 2.2), and provide an
experimental evaluation of Gobra (Sec. 2.4). Lastly, Sec. 2.5 discusses
related work and concludes.

This chapter is based on a previous publication about Gobra [51].[51]: Wolf et al. (2021), Gobra: Modular

Specification and Verification of Go Programs

2.1. Gobra in a Nutshell

This section illustrates Gobra’s specification language on simple examples
and shows how we handle interfaces, closures, and concurrency.

2.1.1. Basics

Gobra uses a variant of separation logic [28] in order to reason about[28]: Reynolds (2002), Separation Logic: A

Logic for Shared Mutable Data Structures mutable heap data structures and concurrency. Separation logics associate
an access permission with each heap location. Access permissions are
held by method executions and transferred between methods upon call
and return. A method may access a location only if it holds the associated
permission. Permission to a shared location v is denoted in Gobra by acc

(&v), which is analogous to separation logic’s v ↦→ _. Gobra provides
an expressive permission model supporting fractional permissions [61][61]: Boyland (2003), Checking Interference

with Fractional Permissions to allow concurrent read accesses while still ensuring exclusive writes,
(recursive) predicates to denote access to unbounded data structures,
and quantified permissions (also called iterated separating conjunction)
to express permissions to random-access data structures such as arrays
and slices.

The example in Fig. 2.1 illustrates the use of permissions. Method incr

increases all elements of a given slice s by an amount n. (Slices are data
types that can intuitively be seen as shared arrays of variable length.) The
method requires permission to all slice elements (via its precondition)
and returns them to the caller (via its first postcondition).

Functional properties are expressed via standard assertions, which in-
clude side-effect free Go expressions (including calls to pure methods, as
we explain below) as well as universal quantification and old-expressions
to refer to the value an expression had in the pre-state of a method. In
our example, the second postcondition uses these assertions to express
the functional behavior of the method. The loop invariants are analogous
to the method contracts and are needed for verification.

We refer to memory locations as either shared or exclusive. Shared locations
reside on the heap and, thus, are accessible by multiple methods and
threads; reasoning about shared locations requires permissions to ensure
race freedom and to enable framing, i. e. preserving information across
heap changes. On the other hand, exclusive locations are accessed exclu-
sively by one method execution and may be allocated on the stack; they
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1 requires ∀ k int :: 0 ≤ k < len(s) =⇒ acc(&s[k])
2 ensures ∀ k int :: 0 ≤ k < len(s) =⇒ acc(&s[k])
3 ensures ∀ k int :: 0 ≤ k < len(s) =⇒ s[k] == old(s[k]) + n
4 func incr (s []int, n int) {
5
6 invariant 0 ≤ i ≤ len(s)
7 invariant ∀ k int :: 0 ≤ k < len(s) =⇒ acc(&s[k])
8 invariant ∀ k int :: i ≤ k < len(s) =⇒ s[k] == old(s[k])
9 invariant ∀ k int :: 0 ≤ k < i =⇒ s[k] == old(s[k]) + n

10 for i := 0; i < len(s); i += 1 {
11 s[i] = s[i] + n
12 }
13 }

Figure 2.1.: A simple Gobra example
showing method and loop contracts.

can be reasoned about as local variables. The Go compiler determines
automatically whether a location is shared or exclusive, for instance by
determining whether its address is taken at some point of the execution.
To make verification independent of a particular compiler analysis, Go-
bra requires variables to be decorated with an extra annotation @ at the
declaration point to treat the variable as a shared location, as illustrated
by the following client of incr:

1 a@ := [4]int { 1, 2, 4, 8 }

2 incr(a[2:], 2)

3 assert a == [4]int { 1, 2, 6, 10 }

The first line declares a Go array a of fixed length 4, with values 1, 2,
4, and 8. This array is sliced on Line 2 using the syntax a[2:], thereby
omitting the first two elements of a from the created slice. Since a is
used in a context in which it is sliced, it is a shared location, which is
made explicit via the @ annotation. Consequently, the array creation will
produce permissions to the array elements, which are required by incr’s
precondition. Omitting the @ annotation will cause a verification error.

2.1.2. Interfaces

Go supports polymorphism through interfaces, named sets of method
signatures. Subtyping for interfaces is structural: a type implements an
interface iff every method of the interface is implemented by the type.
The subtype relationship is determined by the type checker, without any
declarations from the programmer‗.

Calls on an interface value are dynamically dispatched. In settings with
nominal subtyping, dynamic dispatch is handled by proving behavioral
subtyping [62]: each subtype declaration requires a proof that the specifi- [62]: Liskov et al. (1994), A Behavioral

Notion of Subtypingcations of subtype methods refine the specifications of the corresponding
supertype methods. Since structural subtypes are not declared explicitly,
we adapt this approach as follows.

Whenever a Go program assigns a value to a variable of an interface type,
Gobra requires an implementation proof, that is, a proof that each method
of the subtype satisfies the specification of the corresponding method
in the interface. Implementation proofs are inferred automatically by

‗ For the sake of simplicity, we omit embeddings, Go’s construct for delegation; an extension
is straightforward.
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Figure 2.2.: An interface specification for
a stream (Lines 1–10) together with an
implementation (Lines 12–20) and an im-
plementation proof (Lines 23–32). We
write acc(p, _) to denote an arbitrary,
positive amount of predicate p, and sim-
ply p for acc(p, 1/1). At Line 18, the
fractional permission to &x.max entails
that x.max is not modified.

1 type stream interface{
2 pred memory()
3
4 requires acc(memory(), _) // arbitrary fraction of memory()
5 pure hasNext() bool
6
7 requires memory() && hasNext()
8 ensures memory()
9 next() interface{}

10 }
11
12 type counter struct{ f int; max int }
13
14 requires acc(&x.f, _) && acc(&x.max, _)
15 pure func (x *counter) hasNext() bool { return x.f < x.max }
16
17 requires acc(&x.f) && acc(&x.max, 1/2) && x.hasNext()
18 ensures acc(&x.f) && acc(&x.max, 1/2) && x.f == old(x.f)+1
19 ensures typeOf(y) == int && y.(int) == old(x.f)
20 func (x *counter) next() (y interface{}) { x.f++;return x.f-1 }
21
22
23 pred (x *counter) memory() { acc(&x.f) && acc(&x.max) }
24
25 (*counter) implements stream {
26
27 pure (x *counter) hasNextProof() bool {
28 return unfolding acc(x.memory(), _) in x.hasNext()
29 }
30
31 (x *counter) nextProof() (res interface{}) { . . . }
32 }
33

Gobra in simple cases; user-provided implementation proofs are required
especially when they include ghost operations, for instance, to manipulate
predicates.

The example in Fig. 2.2 illustrates this approach. Interface stream (Lines 1–
10) declares an interface with two methods, hasNext and next. The
latter may return values of an arbitrary type, which is denoted by an
empty interface. Since interfaces do not contain an implementation, their
specification must be fully abstract. To this end, stream introduces an
abstract predicate memory, whose definition is provided by the subtypes
of the interface. The functional behavior of interface methods can be
expressed in terms of pure (that is, side-effect free) abstract methods,
here, hasNext, which will also be defined in subtypes.

Next, Lines 12–20 show an implementation of the interface in the form
of a counter. The counter has a current f and maximum max value. As
long as the maximum value is not reached, next will increase the current
value. At Line 20, an integer can be assigned to the empty interface
since behavioral subtyping holds trivially. The specification at Line 19
expresses that the returned interface value contains an integer with the
old value of the f field.

The counter implementation is completely independent of the stream

interface. Their connection is established only in the implementation
proof (Lines 23–32). This proof defines the memory predicate from the
stream interface for receivers of type counter (Line 23). Moreover, an
implementation proof verifies that the specification of each method
implementation refines the specification of the corresponding interface
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method. This proof checks that, assuming the precondition of an interface
method, a call to the implementation method with identical arguments
establishes the postcondition of the interface method. This format is
enforced syntactically and permits ghost operations before and after
the call to manipulate predicates. For instance, the proof on Line 28 for
hasNext temporarily unfolds the memory predicate to obtain permission
to x, which is required by the implementation method, and conversely
after the call.

Implementation proofs can be written explicitly, imported from other
packages, and also inferred automatically when no explicit proof exists
in the current scope. Currently, Gobra does not infer ghost operations
such as the unfolding on Line 28; our experiments suggest that already
simple heuristics can deal with many cases occurring in practice. For
instance, many implementation proofs we have encountered follow the
same pattern: First, the interface predicate instances of the precondition
are unfolded. Second, the implementation method is called. Lastly, the
interface predicate instances of the postcondition are folded. This pattern
can be generated automatically to alleviate the annotation burden.

Gobra’s implementation proofs enable one to reason about interfaces
without enforcing subtype declarations in either the interface or the
declaration, which would defeat the purpose of structural subtyping.
This solution allows one to reason about dynamically-dispatched calls.
For instance, the following code snippet verifies in Gobra:

1 x := &counter{0, 50}

2 var y stream = x

3 fold y.memory()

4 var z interface{} = y.next()

In particular, Gobra is able to determine that next’s precondition hasNext

() holds because y.hasNext() is equal to x.hasNext(), and the latter
follows from the definition of hasNext (Line 15) and the initial value
of x.f. This intuitive reasoning is enabled by an intricate underlying
encoding, which is not exposed to users. Users do not have to know how
interface predicates are encoded and can treat interface predicates the
same as any other separation-logic predicate.

2.1.3. Closures

As for other modern programming languages, Go supports first-class
functions, i. e. functions may be used like any other value, in particular,
assigned to variables, passed as arguments, and returned as results.
Function values are obtained either by referencing declared methods
or by defining closures. Closures are function literals that may reference
their surrounding variables. E.g., the closure func (n int) { x = n }

takes an integer n, which the closure then assigns to the variable x.

We reason about closures similar to interfaces with four ingredients:
(1) As for interface methods, we annotate the behavior of function
values via specifications consisting of pre- and postconditions. (2) To
specify that a, potentially dynamically created, function value f satisfies a
specification s, we introduce an implementation assertion f implements s.
(3) To derive an implementation assertion, as for interfaces, we require
an implementation proof, showing that the function value satisfies a
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Figure 2.3.: A toy example verifying the
use of a closure. Lines 36–39 show a
higher-order method taking a function f
as argument. The implementation asser-
tion f implements positive{c} speci-
fies which specification the method hof
expects the function to satisfy, where
Lines 1–4 define the pre- and postcondi-
tions. The predicate inv of the interface
companion expresses which permissions
and properties must hold so that the
specification expected by hof is satisfied
by the closure. Lastly, Lines 10–29 show a
client method that creates a closure and
then passes it to hof.

1 ghost
2 requires c.inv()
3 ensures c.inv() && r >= 0
4 func positive(c companion, a int) (r int)
5
6 type companion interface{
7 pred inv()
8 }
9

10 func main() {
11 x@ := 0
12 f := requires acc(&x)
13 ensures acc(&x) && m == max(old(x),n) && x == m
14 func fSpec(n int) (m int) {
15 if n > x {
16 x = n
17 }
18 return x
19 }
20
21 proof f implements positive{f_comp{&x}} {
22 unfold f_comp{&x}.inv()
23 r = f(a) as fSpec
24 fold f_comp{&x}.inv()
25 }
26
27 fold f_comp{&x}.inv()
28 y := hof(f_comp{&x}, f)
29 }
30
31 ghost type f_comp struct{ x *int }
32 pred (c f_comp) inv() { acc(c.x) && *c.x >= 0 }
33
34 requires c.inv() && f implements positive{c}
35 ensures c.inv() && res >= 0
36 func hof(ghost c companion, f func(int) int) (res int) {
37 res = f(42) as positive{c}
38 return
39 }

particular specification. (4) When calling a function value, we specify
which particular specification we want to use to reason about the call.

Because closures may capture their surrounding state, whether a closure
satisfies a specification may depend on the current program state. This
dependence makes it harder to provide closures with abstract specifica-
tions that do not involve specialized knowledge about the closure itself.
We address this challenge by enabling us to parameterize specifications
with interfaces. As discussed in Sec. 2.1.2, interfaces abstract the state
of concrete implementations. Analogously, we are able to use interfaces
to abstract over the state captured by a closure. By combining points
(1-4) with our support for interfaces, we are able to reason about closures
capturing arbitrary state.

We illustrate our approach with the example shown in Fig. 2.3. The
method main (Lines 10–29) assigns to a variable f a closure that takes an
integer and returns the maximum of all the arguments that the function
was called with (Lines 14–19). The closure stores the largest argument
encountered so far in a local variable x. After creating the closure, the
method main passes the closure to a higher-order function hof, which
calls the passed closure with the argument 42 and returns the result
(Lines 34–39).

In the example, we specify the behavior of the function stored in f
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in two ways, namely directly at the closure (Lines 12–13) and in the
implementation assertion f implements positive{c} (Line 34). In the
closure specification at Lines 12–13, the precondition expresses that calling
the closure requires write permissions to the captured variable x. Gobra
requires that all variables captured in closures are annotated as shared.
The postcondition specifies that the method returns the permissions to
the variable, that the returned value is the maximum of the argument
and the old value of x, and that the new value of x is equal to the returned
maximum. For the sake of brevity, we assume that a pure method max,
returning the maximum of two integers, is defined. In Gobra, the direct
specification of closures (e.g. Lines 12–13), which we refer to as a local

specification, may be used only within the method that the closure is
defined in. We enforce this restriction as a design choice since reading
the specification requires looking at the method that the closure was
defined in and local specifications may depend on local variables.

The implementation assertion used in the specification of the method hof

specifies a different behavior than the specification of the closure f. To
specify the behavior of a closure outside of the method that the closure is
defined in, we introduce specification expressions. Specification expressions
are of the form s{x1,x2,...} where s is the name of the method
whose pre- and postcondition specify the behavior of the function value.
The arguments x1,x2,... partially apply arguments of s, effectively
parameterizing the specification of s. For instance, the specification
expression positive{c} specifies that the result of a call is positive as
annotated in the postcondition of the method positive. The interface
companion abstracts over the state captured by the function values
satisfying the specification. In our example, the interface defines a single
predicate inv, abstracting the permissions and properties of the captured
state that have to hold to satisfy the specification. We do not add a special
feature to express when a specification is satisfied. Instead, by adding the
predicate instance c.inv() to the pre- and postcondition of positive,
we straightforwardly specify that calls require the predicate instance and
that calls preserve the predicate instance. The closure f only satisfies
that the result is non-negative if permissions to the captured variable are
held and if the value of the captured variable is non-negative. We express
this requirement with the specification argument f_comp{&x} (Line 21),
implementing the interface companion. As for the method positive,
f_comp is defined only for the purpose of verification to handle the
captured state of the closure f. The type f_comp defines a struct with a
field x, used to store the reference to the captured local variable x. The
predicate inv then specifies which assertion the local variable has to
satisfy as mentioned before.

Lines 21–25 show the implementation proof that verifies that the closure
satisfies the specification expression positive{f_comp{&x}}, which is
necessary to call hof. Analogous to the implementation proofs for inter-
faces, the implementation proofs for closures verify that a specification
satisfied by the closure entails the provided specification expression. In
our example, the proof requires only to unfold and fold the predicate
instance of the interface. As per our ingredients, calling the closure
requires us to specify which specification we want to use to reason
about the call. We denote with as s that we use the specification s to
reason about the call, i. e. the call requires and ensures the pre- and
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postcondition of s, respectively. At Line 23, fspec is the name of the local
specification. After the implementation proof, we obtain the assertion
f implements positive{f_comp{&x}}. Before calling hof, we fold the
predicate instance to satisfy the precondition of hof. Lastly, inside of the
hof method, we annotate that we use positive{c} to reason about the
call (Line 37), making it possible to show hof’s postcondition asserting
that the result is positive.

2.1.4. Concurrency

Go supports concurrency through goroutines, lightweight threads started
by prefixing a method call with the go keyword. Go offers the usual
synchronization primitives, but goroutines idiomatically synchronize
via channels. Buffered channels provide asynchronous communication,
where sending a message blocks only when the buffer is full. Unbuffered
channels offer rendez-vouz communication.

Gobra enables verification of concurrent programs by associating Go’s
synchronization primitives with predicates that do not only express
properties of data but also express how permissions to shared memory
get transferred between threads. For instance, lock invariants may include
properties as well as permissions to the data protected by the lock, and
channel invariants include properties and permissions of the data sent
over a channel. These invariants are specified via ghost operations when
the synchronization primitive is initialized.

Fig. 2.4 illustrates Gobra’s concurrency support using an excerpt from
a parallel search-and-replace algorithm (see the full paper [63] for the[63]: Wolf et al. (2021), Gobra: Modular

Specification and Verification of Go Programs

(extended version)

complete example). MethodsearchAndReplace spawns a series of worker
threads and then sends each of them a chunk of the input slice to process.
The worker threads are joined via a wait group wg. Method worker

implements the worker threads.

Gobra associates channels (like c in the example) with a predicate to
specify properties and permissions of the sent data. The call c.Init(...)
on Line 11 takes this predicate as an argument. As expressed on Line 2, it
includes permissions to the chunk a worker operates on. For synchronous
channels, an additional predicate can specify permissions transferred
in the opposite direction, from the receiver to the sender. Initializing a
channel also creates send and receive permissions for the channel, which
are used to control which threads may access it. In our example, we
transfer a fraction of the receive permission to each worker (Line 32).

The workers receive permission to the chunk they operate on via a
message sent on Line 27 and received on Line 39. The transfer back is
orchestrated through a wait group, which implements an abstract shared
counter. Wait groups are used as follows: The main thread adds to the
counter the number of units of work to be done in spawned goroutines
(Line 25). Each spawned goroutine decreases the counter each time a
unit of work is done (via a call to Done, Line 42). The master can await
the counter to reach 0 via a call to Wait (Line 29). Gobra uses dedicated
permissions to express the obligation of a thread to perform units of work
before decreasing the counter; each time this happens, permissions are
transferred to the wait group and, eventually to the main thread calling
Wait. We omit the details here for brevity.
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1 pred messagePerm(wg *sync.WaitGroup, chunk []int, x, y int) {
2 ( ∀ i int :: 0 ≤ i < len(chunk) =⇒ acc(&chunk[i]) ) && . . .
3 }
4
5 requires ∀ i int :: 0 ≤ i < len(s) =⇒ acc(&s[i])
6 func searchAndReplace(s []int, x, y int) {
7 var wg@ sync.WaitGroup
8 ghost wg.Init()
9 c := make(chan []int,4)

10 // predicate-name{. . ., _, . . .} is syntax for partial application
11 ghost c.Init(messagePerm{&wg, _, x, y})
12
13 // Spawn workers
14 invariant acc(c.RecvChannel(), _)
15 invariant c.RecvGotPerm() == messagePerm{&wg, _, x, y}
16 for i := 0; i < numOfWorkers; i++ { go worker(c, wg, x, y) }
17
18 // Split slice into chunks, which are sent to workers
19 invariant c.SendChannel()
20 invariant c.SendGivenPerm() == messagePerm{&wg, _, x, y}
21 invariant ∀ i int :: offset ≤ i < len(s) =⇒ acc(&s[i])
22 invariant . . . // constraints on offset and nextOffset
23 for offset := 0; offset != len(s); offset = nextOffset {
24 nextOffset = . . .
25 wg.Add(1)
26 fold messagePerm{&wg, _, x, y}(s[offset:nextOffset])
27 c <- s[offset:nextOffset]
28 }
29 wg.Wait()
30 }
31
32 requires acc(c.RecvChannel(), _)
33 requires c.RecvGotPerm() == messagePerm{wg, _, x, y};
34 func worker(c <- chan []int, wg *sync.WaitGroup, x, y int) {
35
36 invariant acc(c.RecvChannel(), _)
37 invariant c.RecvGotPerm() == messagePerm{wg, _, x, y};
38 invariant ok =⇒ messagePerm{wg, _, x, y}(chunk)
39 for chunk, ok := <- c; ok; chunk, ok = <-c {
40 unfold messagePerm{wg, _, x, y}(chunk)
41 . . . // replace x with y in chunk
42 wg.Done() // same as wg.Add(-1)
43 }
44 }

Figure 2.4.: Excerpt showing goroutines,
channels, and wait groups. The code
spawns workers (Line 16), sends slice
chunks through a channel to the workers
(Line 27), and then waits on a wait group
(Line 29). A worker receives a chunk
(Line 39), processes it, and then notifies
the wait group (Line 42). For the sake of
simplicity, some details were omitted.

In our example, this mechanism allows the main thread to recover
the permissions to the entire slice once the workers have terminated.
The example in Fig. 2.4 illustrates only the permission aspect of the
verification. Functional correctness can be verified easily based on the
explained machinery, by specifying a stronger channel invariant that
includes the work obligation for each worker. We omit the details here,
but see the full paper [63] for the complete example. [63]: Wolf et al. (2021), Gobra: Modular

Specification and Verification of Go Programs

(extended version)

2.2. Encoding

Gobra encodes an annotated Go program into a Viper program verifying
only if the input program is correct. Viper provides a simple imperative
language, where a program, as for Gobra, consists of methods (with
pre- and postconditions), pure methods, and predicates. Since many
features of Gobra are also present in Viper, parts of the encoding are
straightforward. All topmost structural members of a Go program,
namely methods, pure methods, and predicates, are encoded to their
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Viper counterparts. Furthermore, Viper supports permissions-based
reasoning, including fractional and quantified permissions. However,
Viper does not offer most of Go’s types, such as slices, interfaces, and
closures; and memory is represented differently in Viper. In contrast to
Go’s pointer-based memory model, Viper’s memory is object-based, i. e.

only objects are stored in the memory, and thereby may be aliased, where
objects have user-declared fields to store values.

Our encoding then has two main ingredients: First, we define a type
encoding that specifies how we represent Go’s program state and Gobra’s
ghost state in Viper. Second, we encode operations on Go’s program state
and Gobra’s ghost state into Viper operations that preserve the encoded
operation’s behavior with respect to the type encoding.

A key aspect of the type encoding is how we model whether data is stored
on the heap or not. As discussed in Sec. 2.1.1, we use the notion of shared

and exclusive to determine where data resides. Shared memory locations
reside in the heap and, thereby, require permission-based reasoning.
Conversely, exclusive memory locations do not reside in the heap and,
thereby, do not require permission-based reasoning. For the encoding, to
capture whether an expression represents a shared or exclusive memory
location, we extend Go’s types with a shared and exclusive modifier,
denoted as 𝑡@ and 𝑡•, respectively, for some type 𝑡. We then encode
expressions with type 𝑡• and 𝑡@ to a Viper expression representing a
value of 𝑡 and a memory location storing values of 𝑡, respectively. For the
latter, we use Viper’s objects to get access to Viper’s permission-based
reasoning. We refer to expressions with a shared and exclusive type as
shared and exclusive expressions, respectively.

Importantly, our classification of shared and exclusive memory locations
may differ from how programs actually store data. In Sec. 2.2.5, we show
that our memory model, i. e. our treatment of shared and exclusive, is
sound. More specifically, we show that verified properties hold for the
actual executions of a program, too, even if data is stored differently.

In Sec. 2.2.1, we present Gobra’s augmented type system. In Sec. 2.2.2, we
present the core of Gobra’s encoding, detailing how we bridge the gap
between our and Viper’s memory model. Afterwards, we introduce the
encodings of more specific features, namely interfaces (Sec. 2.2.3) and
closures (Sec. 2.2.4).

2.2.1. Gobra’s Augmented Type System

The purpose of our augmented type system is to identify whether an
expression is shared or not. The type system does not enforce restrictions
beyond the restriction that only shared variables, i. e. variables annotated
with @, may be referenced. This restriction includes implicit references,
namely capturing a variable in a closure or taking a slice of an array.
This restriction ensures that exclusive expressions never have aliases,
and thereby, do not require permission-based reasoning. Every Go
program where only shared variables are referenced is well-typed in our
augmented type system. Every Go program is trivially well-typed if all
variables are annotated as shared.
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(Var)
Γ, x□ : 𝑡 ⊢ x : 𝑡□

Γ ⊢ 𝑒 : 𝑡@
(Load)

Γ ⊢ 𝑒 : 𝑡•
Γ ⊢ 𝑒 : *𝑡• (Deref)
Γ ⊢ *𝑒 : 𝑡@

Γ ⊢ 𝑒 : 𝑡@
(Ref)

Γ ⊢ &𝑒 : *𝑡•

Γ ⊢ 𝑒 : struct{ . . . }□
(Field)

Γ ⊢ 𝑒.f𝑖 : 𝑡𝑖□

Γ ⊢ 𝑒1 : [n]𝑡□ Γ ⊢ 𝑒2 : int•
(Index)

Γ ⊢ 𝑒1[𝑒2] : 𝑡□

Γ ⊢ 𝑓 : (𝑡1 • × · · · × 𝑡𝑛•) → 𝑡′ • Γ ⊢ 𝑒1 : 𝑡1 • . . . Γ ⊢ 𝑒𝑛 : 𝑡𝑛•
(Call)

Γ ⊢ 𝑓 (𝑒1 , . . . , 𝑒𝑛) : 𝑡′•

Γ ⊢ 𝑒1 : 𝑡1 • Γ ⊢ 𝑒2 : 𝑡2 • 𝑡2 ⊑ 𝑡1
(Assign)

Γ ⊢ 𝑒1 = 𝑒2

Figure 2.5.: Key rules of our augmented
type system. We use □ to range over the
set {@, •}. We use 𝑡2 ⊑ 𝑡1 to denote that
the Go type 𝑡2 is a subtype of the Go
type 𝑡1. For the sake of brevity, we omit
subtyping constraints for the rule Call.

Fig. 2.5 shows the key rules of our augmented type system. The rules Var,
Deref, Field, and Index capture when an expression may be shared. An
expression 𝑒 is shared if either 𝑒 is a variable that is annotated with the
shared modifier @ (rule Var), 𝑒 is a dereferenced pointer (rule Deref), 𝑒 is
the field of a shared struct (rule Field), or 𝑒 is the index of a shared array
(rule Index) or an exclusive slice (rule omitted). These rules formalize
Go’s notion of addressibility except that variables are only addressable if
annotated with @. We use □ to range over shared and exclusive modifiers.
E.g., a field access is exclusive if the struct is exclusive. Variables that
are not explicitly annotated with the shared modifier @ are considered
to be annotated with the exclusive modifier • implicitly. The rule Ref
restricts that only shared expressions may be referenced. We omit the
rules for the two other restrictions, namely that closures may capture
only shared variables and that only shared arrays may be sliced with
Go’s slicing operator, both of which take references implicitly. All other
operations, including arithmetic operations, memory allocation, and calls
(rule Call), take exclusive arguments and produce exclusive results. Note
that the result of a reference and the argument of a dereference are also
exclusive. The rule Load captures that shared expressions may always
also be used as exclusive expressions. This rule reflects the access of heap
data. Consider the expression x + 3, where x is a shared variable, whose
value resides in the heap. To compute the value of x + 3, the value of
x is read from the heap, which in our type system is captured by the
cast to an exclusive type through the rule Load. Lastly, assignments are
allowed if the Go type of the left-hand side is a subtype of the right-hand
side, denoted as ⊑, but have no further restrictions. In particular, shared
expressions may be assigned to exclusive expressions and vice versa since
only values and not memory locations are copied. We omitted subtyping
for the rule Call.

2.2.2. Core Encoding

In this section, we present the core of Gobra’s type encoding and en-
coding of operations, detailing how we encode heap data and how we
leverage Viper’s permission-based reasoning, respectively. Furthermore,
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Figure 2.6.: Encoding of types. For a Go
type 𝑡, J𝑡•K and J𝑡@K are the encodings of
values of 𝑡 and memory storing values of
𝑡, respectively. We use Ref ↦→ 𝑡 to denote
that a type is encoded as the Viper object
type Ref, where we define a Viper field
with type 𝑡.

Jbool•K ≜ Bool J𝑠@K ≜ Ref ↦→ J𝑠•K
Jint•K ≜ Int where 𝑠 is not
J*𝑡•K ≜ J𝑡@K a struct or array
J[]𝑡•K ≜ Slice[J𝑡@K]
J[n]𝑡•K ≜ Array[J𝑡•K] J[n]𝑡@K ≜ MemArray[J𝑡@K]
Jstruct{𝑡1 , . . . , 𝑡𝑛}•K ≜ NTuple[J𝑡1•K, . . . , J𝑡𝑛•K]
Jstruct{𝑡1 , . . . , 𝑡𝑛}@K ≜ NMemTuple[J𝑡1@K, . . . , J𝑡𝑛@K]

we illustrate based on our encoding of structs and arrays how we encode
more complex types in Viper. Since we focus on our treatment of heap
data, we only cover primitive types, pointers, structs, and arrays in this
section. We cover more specific features, namely interfaces and closures,
in the subsequent sections.

We first discuss our type encoding in Sec. 2.2.2.1. We then discuss the
encoding of operations in Sec. 2.2.2.2.

To illustrate our encoding, we introduce the running example below. The
method link takes a pointer x to a linked list node, allocates a node
n pointing to x, and then returns a pointer to n. The method also sets
n.val to x.val. The specification expresses that the method requires
read permissions to the val field of x, returns write permissions to the
allocated node, and that the value of the node *p is as expected.

1 type node struct{ next *node; val bool }

2
3 requires acc(&x.val, 1/2)

4 ensures acc(&x.val, 1/2) && acc(p)

5 ensures *p == node{x,x.val}

6 func link(x *node) (p *node) {

7 var n@ node

8 n.next = x

9 n.val = x.val

10 return &n

11 }

2.2.2.1. Type Encoding

Since we augment the type system with shared and exclusive modifiers,
our encoding of types captures not only how we represent values, but
also how we represent heap data. For a Go type 𝑡, we encode 𝑡• and 𝑡@
as the Viper type capturing the values of 𝑡 and the Viper type capturing
the memory locations storing values of 𝑡, respectively.

Fig. 2.6 shows our encoding of the relevant types. Exclusive booleans
and integers are encoded straightforwardly to their Viper counterparts.
For types not directly supported in Viper, we use Viper’s domain mecha-
nism to declare custom types using uninterpreted types, uninterpreted
functions, and appropriate axioms. As such, we define mathematical
tuples (NTuple) and mathematical sequences of values (Array) to encode
exclusive structs and arrays, respectively. These custom types are param-
eterized in the types of the elements. As a technical detail, our encoding
of types does not directly capture the size of arrays. Instead, we treat the
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size of an array as a property of array values. Lastly, we encode pointers
as the memory locations storing the values that are pointed to. Therefore,
an exclusive pointer type *𝑡• is encoded the same as 𝑡@.

The encoding of shared types is determined by how code may interact
with the memory locations. At the lowest level, memory is a sequence of
addressable word-sized values. However, for a type-safe language such
as Go, this level of detail is not observable. In Go, for all types except
structs, arrays, and slices, code cannot obtain references for only parts
of a stored value, e.g. the last byte of an integer. For structs, arrays, and
slices, only well-defined locations, namely struct fields and array and
slice indices, can be accessed. Therefore, memory may be treated as a
partition into indivisible fragments that store well-typed values, some
of which are composed together to form structs, arrays, and slices. This
partition is captured in our type encoding. For every type 𝑠 that is not a
struct or an array, 𝑠@ is encoded into Viper’s object type Refwith a field of
type J𝑠•K to represent the stored value. Shared slices are also encoded as
Ref because we treat slices analogously to array pointers. A shared slice
captures the memory location of an exclusive slice whereas an exclusive
slice captures the memory locations of the contained elements. In Viper,
fields are not part of the type definition. We use Ref ↦→ 𝑡 to denote
that a field with Viper type 𝑡 is declared. Shared structs and shared
arrays are encoded as tuples (NMemTuple) and sequences (NMemTuple)
of memory locations, respectively. The custom type Slice is a wrapper
around MemArray adding some additional data, namely the offset, size,
and capacity of the slice.

For our running example, the struct type node@ (and thereby also
*node•) encodes to 2MemTuple[Ref,Ref]. Note that *node@ is encoded as
Ref. Conversely, node• encodes to 2Tuple[2MemTuple[Ref,Ref],Bool].
Below, we show a partially encoded of the link method where all types
are encoded. As mentioned before, we use Viper methods to encode Gobra
methods. We use comments for the parts that are not yet encoded.

1 method link(x: 2MemTuple[Ref,Ref]) (p: 2MemTuple[Ref,Ref])

2 requires // acc(&x.val, 1/2)

3 ensures // acc(&x.val, 1/2) && acc(p)

4 ensures // *p == node{x,x.val}

5 {

6 // var n@ node

7 // n.next = x

8 // n.val = x.val

9 // return &n

10 }

For the rest of the type encoding, we discuss the custom types introduced
to encode shared and exclusive structs and arrays. In particular, we focus
on the differences between encoding values and memory locations.

Encoding Values and Memory Locations. The methodology for encod-
ing values of types is straightforward. For each operation on the type,
we introduce an uninterpreted function and then express the desired
properties of combinations of operations as axioms. The challenge is to
define a set of axioms that is complete, sound, and has a good verification
performance. Encoding memory locations is similar, however, the prop-
erties desired for memory locations are different from the properties of
values. In contrast to values, the memory locations of structs and arrays
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Figure 2.7.: Definition of the custom
types that we use to represent mathe-
matical tuples (left) and the memory of
structs (right). In Viper, domains define
uninterpreted types. These types may
have generic parameters (T0 and T1). In
the body of a domain definition, we may
define uninterpreted functions and ax-
ioms about these functions. For mathe-
matical tuples, we use axioms to express
that the getters yield the expected val-
ues and that tuples are equal if their
elements are equal. For memory tuples,
we express that, as for actual memory,
the individual references are disjoint.

1 domain 2Tuple[T0,T1] {
2 func get0(2Tuple[T1,T2]): T0
3 func get1(2Tuple[T1,T2]): T1
4
5 func tup2(T0,T1): 2Tuple[T0,T1]
6
7 axiom {
8 ∀ v0: T0, v1: T1 ::
9 get0(tup2(v0,v1)) == v0 &&

10 get1(tup2(v0,v1)) == v1
11 }
12
13 axiom {
14 ∀ t: 2Tuple[T1,T2] ::
15 tup2(get0(t),get1(t)) == t
16 }
17 }

1 domain 2MemTuple[T0,T1] {
2 func loc0(2MemTuple[T0,T1]): T0
3 func loc1(2MemTuple[T0,T1]): T1
4
5 func inv0(T0): 2MemTuple[T0,T1]
6 func inv1(T1): 2MemTuple[T0,T1]
7
8 axiom {
9 ∀ t: 2MemTuple ::

10 inv0(loc0(t)) == t &&
11 inv1(loc1(t)) == t
12 }
13
14
15
16
17 }

are made up of disjoint smaller memory locations. We have to capture
this disjointness to fully reason about memory. Consider the code snippet
below. The method foo takes two node pointers and compares whether
the references of the val fields are equal. Because the memory locations
of different values are disjoint, we know that if references of the field are
equal, then the two node pointers must be equal, too.

1 type node struct{ next *node; val bool }

2
3 requires x != nil && y != nil

4 func foo(x, y *node) {

5 if &x.val == &y.val {

6 assert x == y // succeeds

7 }

8 }

We formally capture the disjointness of memory locations by requiring
that the operations yielding the disjoint memory locations are injective.
For instance, for structs, the field memory location &p.f is injective in p

for every struct pointer p and field f. With this disjointness, the above
snippet verifies successfully.

Next, we present our custom type definitions for structs and arrays,
namely the types NTuple, NMemTuple, and MemArray of our type encoding
in Fig. 2.6.

Mathematical Tuples. Fig. 2.7 shows on the left our custom type definition
for tuples of size two, used to encode exclusive structs. The definition
introduces the type 2Tuple[T0,T1], where T0 and T1 are generic type
parameters for the first and second element of the tuple, respectively. We
define three functions to capture the operations on tuples. The functions
get0 and get1 take a tuple and return the first and second element,
respectively. The function tup2 takes two elements and returns the
tuple containing these two elements. Regarding axioms, the first axiom
captures the behavior of the getters, namely that the result of a getter is
the expected element. The second axiom defines when two tuples are
equal.

Memory Tuples. The right snippet of Fig. 2.7 shows our type definition
for structs in memory. As for 2Tuple, the type has two generic type
parameters. In contrast to 2Tuple, these parameters capture the memory
locations of the struct’s elements. The functions loc0 and loc1 return
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1 domain MemArray[T] {
2 func loc(MemArray[T], Int): T func inv_array(T): MemArray[T]
3 func len(MemArray[T]): Int func inv_idx(T): Int
4
5 axiom {
6 ∀ a: MemArray[T], i: Int :: 0 ≤ i < len(a) =⇒
7 inv_array(loc(a, i)) == a && inv_idx(loc(a, i)) == i
8 }
9

10 axiom { ∀ a: MemArray[T] :: len(a) ≥ 0 }
11 }

Figure 2.8.: The type definition of our ar-
rays. The function loc returns the mem-
ory location of indices. The function len
returns the size of an array. We express
the injectivity of loc using inv_array
and inv_idx.

J&𝑒K ≜ not_nil(J𝑒K𝑀)

J𝑒: 𝑡@K ≜ load(J𝑒K𝑀) J*𝑒: 𝑡@K𝑀 ≜ J𝑒K
J𝑒.f: 𝑡•K ≜ getI(J𝑒K) J𝑒.f: 𝑡@K𝑀 ≜ locI(J𝑒K𝑀)

Jx: 𝑡•K ≜ x Jx: 𝑡@K𝑀 ≜ x

Je1 == e2K ≜ Je1K==Je2K

Figure 2.9.: The encoding of expressions.
For an expression 𝑒, J𝑒K and J𝑒K𝑀 en-
code the value and memory location of
𝑒 respectively.

the memory location of the first and second struct element, respectively.
In our example, these functions return the references of the next and val

field, respectively. We capture that a function is injective by expressing
that there exists an inverse for the results of the function. We introduce
the functions inv0 and inv1 to capture these inverses.

Injectivity requires a careful treatment of axioms and uninterpreted
functions. E.g., because of injectivity, we do not introduce a function
analogous to tup2 creating instances of tuples. Such a function implies
the existence of tuples with arbitrary memory locations, in particular,
tup2(x,x) for some memory location x, contradicting injectivity.

Memory Arrays. Fig. 2.8 shows our type definition for arrays in memory.
We use a singular type definition to encode Go’s arrays and the arrays
that underlie slices. The function loc returns the memory location of
a specific array index. Similar to structs, we introduce the functions
inv_array and inv_idx to formalize that loc(a,i) is injective in the
array a and index i. Lastly, the function len returns an array’s size. Our
two axioms express that the size of an array is always non-negative and
the aforementioned injectivity of the loc function.

Nil. As for other C-like languages, Go has null pointers, denoted as nil.
Since we encode pointers as the memory location storing the values, we
also model null memory locations. For Ref, we encode nil as Viper’s
null value. For structs and arrays, nil is the instance where the memory
locations of all elements are nil. As a technical detail, the nil array
memory location has a length of 1 to not contradict the injectivity axiom
of arrays.

2.2.2.2. Encoding of Expressions, Permissions, and Statements

For structs, arrays, and pointers, the encoding of operations on values
mostly follows from our type encoding. Analogous to our type encoding,
we introduce encoding functions J·K and J·K𝑀 for values and memory
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Figure 2.10.: Declarations of the load
functions for each type. The functions
read the values stored in a memory loca-
tion to create an exclusive value.

1 function load(x: J𝑠@K) returns (y: J𝑠•K)
2 requires Jacc(&x, _)K // where 𝑠 is not a struct or array type
3 ensures y == x._𝑠
4
5 function load(x: Jstruct{𝑡1 , . . . , 𝑡𝑛}@K) returns (y: Jstruct{𝑡1 , . . . , 𝑡𝑛}•K)
6 requires Jacc(&x, _)K
7 ensures Jy.f1 == x.f1K && . . . && Jy.f𝑛 == x.f𝑛K
8
9 function load(x: J[n]𝑡@K) returns (y: J[n]𝑡•K)

10 requires Jacc(&x, _)K
11 ensures ∀ i: Int :: 0 ≤ i < n =⇒ Jy[i] == x[i]K

Figure 2.11.: The encoding of permis-
sions.

Jacc(&𝑒 : *𝑠)K ≜ acc(J𝑒K𝑀._𝑠)

Jacc(&𝑒 : *struct{𝑡1 , . . . , 𝑡𝑛})K ≜
J𝑒K𝑀 != JnilK && Jacc(&𝑒.f1)K && . . . && Jacc(&𝑒.f𝑛)K

Jacc(&𝑒 : *[n]𝑡)K ≜
J𝑒K𝑀 != JnilK && ∀ i: Int :: 0 ≤ i < n =⇒ Jacc(&𝑒[i])K

Jacc(𝑒 : []𝑡)K ≜
∀ i: Int :: 0 ≤ i < Jlen(𝑒)K =⇒ Jacc(&𝑒[i])K

locations, respectively. Fig. 2.9 shows the encoding of the most impor-
tant operations. Accessing a field is encoded as a getter of NTuple or
NMemTuple, depending on whether we are encoding a memory location
or not. Analogous to the type encoding, &𝑒 is encoded as the memory
location of 𝑒, i. e. J𝑒K𝑀 . Since in Go, taking the reference of nil causes
an exception, we furthermore assert that 𝑒’s memory location is not nil,
denoted as not_nil( · ). Conversely, the memory location of a derefer-
ence is encoded as the value of the pointer. For variables, the value of
an exclusive variable and the memory location of a shared variable is
encoded as the value of the variable itself. We obtain the exclusive value
of a shared expression e, i. e. the value stored in the memory location,
by reading the memory locations of e. As shown in Fig. 2.10, for each
expression type, we define a pure function load that takes a shared value
of type 𝑡@ and returns the stored exclusive value of type 𝑡•. Viper’s pure
functions correspond to Gobra’s pure methods, i. e. they are side-effect
free functions that may be invoked in assertions. The load functions
require read permissions to the argument because of the memory reads
in the function. The postconditions specify the relation between the
shared and the exclusive value. For types that are not structs or arrays,
we express that the returned exclusive value is equal to the value stored
in the declared field _𝑠. For structs and arrays, the postcondition states
that the values of the fields and indices are equal, respectively.

Permission Encoding. The encoding of permissions, shown in Fig. 2.11,
also follows from the type encoding. For types that are neither structs nor
arrays, the permissions to a pointer are encoded as the Viper permissions
to the field _𝑠 storing the exclusive value. For structs and arrays, the
permissions to a pointer are encoded as the conjunction of the permissions
to all field and index pointers, respectively. Since in Go, structs and arrays
may have zero fields or indices, we also include that the pointer is not
nil. Lastly, the permissions to a slice are also encoded as the conjunction
of the permissions to all index pointers.
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Jx: 𝑡• = 𝑒K ≜ x = J𝑒K
J𝑒1.f: 𝑡• = 𝑒2K ≜ J𝑒1 = upd_f(𝑒1 , 𝑒2)K

J𝑙: 𝑡@ = 𝑒K ≜ exhale Jacc(&𝑙)K
inhale Jacc(&𝑙)K && J𝑙 == 𝑒K

Jvar x 𝑡•K ≜ var x J𝑡•K
Jx • = default[𝑡•]K

Jvar x 𝑡@K ≜ var x J𝑡@K; inhale Jacc(&x)K
Jx@ = default[𝑡@]K

Jx := new(𝑡)K ≜ Jvar x 𝑡@K

Figure 2.12.: The encoding of assign-
ments, variable declarations, and Go’s
new statement. Viper’s exhale statement
asserts the given assertion and removes
all permissions expressed by the asser-
tion from the verification state. Con-
versely, Viper’s inhale statement as-
sumes the given assertion and adds all
permissions of the assertion to the veri-
fication state. The function upd_f is an
auxiliary function that we introduce at
the level of Gobra to streamline the en-
coding. The call upd_f(𝑒1 , 𝑒2) returns
the struct that stores 𝑒2 at field f and
otherwise has the same fields as 𝑒1. The
expression default[𝑡] returns the de-
fault value of type 𝑡.

Given the encoding of expressions and assertions, we are able to encode
the pre- and postconditions of our running example, which is shown
below. The comments contain the encoded Gobra specifications. We
also include the two declared fields that store the values of int and
*node memory locations. To improve the performance, Gobra simplifies
Viper expressions if possible. E.g., instead of comparing load(p) with
an instance of tup2, Gobra compares all fields (not done in the snippet
below). Note that our type system enforces that the field access x.val is
encoded as load(loc1(x)) instead of get1(load(x)). The latter requires
permissions to all fields.

1 field _int: Int

2 field _*node: 2MemTuple[Ref,Ref]

3
4 method link(x: 2MemTuple[Ref,Ref]) (p: 2MemTuple[Ref,Ref])

5 requires acc(loc1(x)._int, 1/2) // acc(&x.val, 1/2)

6 ensures acc(loc1(x)._int, 1/2) &&

7 acc(loc0(p)._*node) && acc(loc1(p)._int) // acc(p)

8 ensures load(p) == tup2(x, load(loc1(x))) // *p == node{x,x.val}

9 { ... }

Statement Encoding. Fig. 2.12 presents the encoding of statements that
involve memory locations, namely assignments, variable declarations,
and memory allocation. The declaration of an exclusive variable is
encoded as a Viper variable declaration. Because in Go, all variables are
initialized with a default value, the encoding furthermore assigns the
default value, denoted as default[𝑡] for type 𝑡, to the declared variable.
Assignments to exclusive variables are also encoded directly as Viper
assignments. For more complex assignments to exclusive targets, e.g.

assignments to fields, we introduce functions that update fields and
indices. The call upd_f(𝑒1 , 𝑒2) returns the struct that stores 𝑒2 in field
f and otherwise has the same fields as 𝑒1. Shared variables are also
encoded as variables, but now represent the memory location storing
the value of the variable. We use Viper’s inhale statement to create the
permissions for the memory location. An inhale statement inhale A

adds to Viper’s verification state all permissions of the assertion A and
then assumes that the functional specification of A holds. Conversely,
exhale statements first assert that the specified assertion holds and then
remove from the verification state all permissions of the assertion. As
for exclusive variables, the encoding also assigns the default value to
the declared variable. Assignments to shared locations are encoded by
first exhaling the permissions to the shared location, thereby checking
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that write permissions are held, and then inhaling the permissions again
and assuming that the location now stores the left-hand side of the
assignment. Encoding assignments by exhaling and inhaling permissions
is a standard approach for Viper [5, 19]. Since shared variables represent
memory locations, allocating new memory, which in Go may be done
via the statement new, is encoded the same as a variable declaration.

Below we show the full encoding of our running example. Again, we
put the encoded Go code into comments. All statements are encoded as
defined in Fig. 2.12.

1 method link(x: 2MemTuple[Ref,Ref]) (p: 2MemTuple[Ref,Ref])

2 requires acc(loc1(x)._int, 1/2)

3 ensures acc(loc1(x)._int, 1/2) &&

4 acc(loc0(p)._*node) && acc(loc1(p)._int)

5 ensures tup2(loc0(p)._*node, loc1(p)._int) == tup2(x, loc1(x)._int)

6 {

7 // var n@ node

8 var n: 2MemTuple[Ref,Ref]

9 inhale acc(loc0(n)._*node) && acc(loc1(n)._int)

10 // n.next = x

11 exhale acc(loc0(n)._*node)

12 inhale acc(loc0(n)._*node) && loc0(n)._*node == x

13 // n.val = x.val

14 exhale acc(loc1(n)._int)

15 inhale acc(loc1(n)._int) && loc1(n)._int == loc1(x)._int

16 // return &n

17 return n

18 }

2.2.3. Interface Encoding

Analogous to our core encoding, we first present the encoding of interface
values and then present how operations on interfaces, in particular,
interface predicates and pure methods, are encoded.

Type Encoding. Conceptually, we encode interfaces as tuples of the
dynamic type and the dynamic value, i. e. the value stored in the inter-
face. Fig. 2.13 shows the Viper domains used in our interface encoding.
To access the dynamic value and dynamic type of an interface, the
domain Interface defines the functions dynamicVal and dynamicTyp,
respectively. To ensure that the dynamic value of an interface is an
instance of the interface’s dynamic type, we construct interface values
using the functions toInterface_𝑇. For a dynamic type 𝑇, the function
toInterface_𝑇 takes a value 𝑥 of type 𝑇 and returns an interface con-
taining 𝑥. The function’s postconditions express that the dynamic value
and type of the interface are the value 𝑥 and its static type 𝑇, respec-
tively. For instance, toInterface_int(5) returns the interface containing
the integer 5. Inconsistent instances, such as toInterface_int(true),
which attempts to create an interface with the dynamic type int and the
dynamic value true, are rejected by Viper’s type system.

We encode dynamic types as an ADT representation of Go’s types. For the
sake of brevity, we omit the definition of the domain Type encoding this
ADT. The encoding of dynamic values is a bit more involved. In Go, every
value may be cast to an interface. Therefore, our Viper representation of
dynamic values also has to be able to capture every possible value. Viper
does not have polymorphic types natively. We represent a polymorphic
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1 domain Interface {
2 func dynamicVal(Interface): DynamicValue
3 func dynamicTyp(Interface): Type
4 }
5
6 function toInterface_𝑇(x: Jtype[𝑇]K) returns (y: Interface)
7 ensures dynamicVal(y) == box_𝑇(x)
8 ensures dynamicTyp(y) == Jtype[𝑇]K
9

10 domain DynamicValue {
11 . . .
12 func box_𝑇(J𝑇K): DynamicValue
13 func unbox_𝑇(DynamicValue): J𝑇K
14
15 axiom { ∀ x: J𝑇K :: unbox_𝑇(box_𝑇(x)) == x }
16 axiom {
17 ∀ i: Interface :: dynamicTyp(i) == Jtype[𝑇]K
18 ⇒ box_𝑇(unbox_𝑇(dynamicVal(i))) == dynamicVal(i)
19 }
20 . . .
21 }

Figure 2.13.: Definition of the Interface
domain that Gobra uses to encode inter-
face values. The domains DynamicValue
and Type are used to encode the values
stored inside of interfaces and the dy-
namic types of interfaces, respectively.

type in Viper using the DynamicValue domain shown in Fig. 2.13. To
capture values for a Go type 𝑇, the domain defines the functions box_𝑇
that takes a value of type J𝑇K and returns the corresponding dynamic
value. Vice versa, the function unbox_𝑇 takes dynamic values and returns
the original value that was put into the dynamic value, which is specified
by the first axiom. The second axiom specifies that for interfaces with a
dynamic type 𝑇, the function unbox_𝑇 is injective, which is required for
our encoding of interface predicates and interface pure method, which is
discussed later.

Encoding of Operations. Given the type encoding, the encoding of the
basic operations on interfaces is straightforward. As shown below, we
encode Gobra’s typeOf function and Go’s type assertions (e.(T)) using
the getter for dynamic types and values. We use 𝑒1 ▷ 𝑒2 to denote a Viper
expression with value 𝑒2, but for which Viper checks that the condition
𝑒1 holds. We use this expression to encode well-definedness checks. For
instance, to cast an expression 𝑒 to a non-interface type 𝑇 (𝑒.(T) below),
we first assert that the dynamic type of 𝑒 is 𝑇 and then get the dynamic
value. Casts from interfaces to interfaces (𝑒.(I) below) are encoded
by asserting that the dynamic type of 𝑒 is a subtype of the interface
type. We encode Go’s subtype relation using a domain function subtype.
The call subtype(a,b) returns true if the type a was verified to be a
behavioral subtype of type b. More concretely, Gobra generates an axiom
that subtype(a,b) is true if there exists a corresponding implementation
proof. Our treatment of the subtype relation over-approximates Go’s
subtype relation, i. e. the verification of a cast may fail even though Go
does not throw a panic. Lastly, in Go, interfaces may only be compared
with other values if they are comparable. As for the subtype relation, Gobra
uses a domain function comparable(t) to encode whether the Go type
t is comparable according to Go’s language specification.
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JtypeOf(𝑒)K ≜ dynamicTyp(J𝑒K)

J𝑒.(T)K ≜ JtypeOf(𝑒) == TK ▷ unbox_T(dynamicVal(J𝑒K))

J𝑒.(I)K ≜ subtype(JtypeOf(𝑒)K, J𝐼K) ▷ J𝑒K

J𝑒1 == 𝑒2K ≜ comparable(J𝑒1K) && comparable(J𝑒2K) ▷ J𝑒1K == J𝑒2K

Interface Predicates and Pure Methods. As explained in Sec. 2.1.2, the key
ingredients of our treatment of Go interfaces are the interface predicates,
specification methods, and implementation proofs. We explain how we
handle the former two here; based on this encoding, the encoding of
implementation proofs is analogous to methods.

Intuitively, we encode interface predicates as a case split over all possible
implementations. All implementations not present in the current scope
are subsumed by an abstract default case. Consequently, adding an im-
plementation does not invalidate existing proofs, which enables modular
reasoning. The predicate for the stream example (Fig. 2.2) is encoded as
follows:

predicate memory(x: Jinterface{}K) {

JtypeOf(x) == *counterK ? Jacc(x.(*counter))K : unknownMemory(x)

}

predicate unknownMemory(x: Jinterface{}K)

function hasNext(x: Jinterface{}K) returns (y: JboolK)
req Jacc(x.memory(), _)K
ens JtypeOf(x) == *counterK =⇒ y == hasNextProof(Jx.(*counter)K)

The body of the predicate branches on the dynamic type of x, with a
single case for the (only) given implementation. The abstract predicate
unknownMemory encodes the default case. The encoding of pure methods
such as hasNext uses an analogous case split, but uses hasNextProof,
which is part of the implementation proof (Fig. 2.2 Line 27) and couples
the interface and implementation method. Our encoding of interface
predicates is an instance of an abstract predicate family [64]. For Go, we have[64]: Parkinson et al. (2005), Separation

logic and abstraction crafted the variant illustrated above that is well-suited for implementation
proofs, pure interface methods, and structural subtyping.

2.2.4. Closure Encoding

As discussed in Sec. 2.1.3, Gobra leverages interfaces to provide a power-
ful support for closures. The encoding of closures themselves is rather
straightforward. Gobra encodes the values of closures with a domain
type Closure. The domain defines neither functions nor axioms. The
implements assertion, which specifies that a closure satisfies some specifi-
cation, is encoded with the uninterpreted function implements as shown
below. We use F to range over specifications. We encode specification

values, i. e. the second parameter of the implements relation, with an
ADT that defines a constructor for every specification occurring in a pro-
gram. As shown below, the specification expression positive{e} used
in our example in Fig. 2.3 is encoded as positive_ctor(J𝑒K), where
positive_ctor is the ADT constructor. The partially applied arguments
of the specification become the arguments of the ADT constructor. Local
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specifications, such as 𝑓Spec in Fig. 2.3, implicitly take the captured vari-
ables as arguments. Below, the added parameter xp is the reference of
the captured variable x. If a user writes f implements fSpec in Fig. 2.3,
Gobra treats this assertion as f implements fSpec{xp}.

J𝑒 implements FK ≜ implements(J𝑒K, J𝐹K)

Jf implements positive{𝑒}K ≜ implements(f, positive_ctor(J𝑒K))

Jf implements fSpec{xp}K ≜ implements(f, fSpec_ctor(𝑥𝑝))

As shown below, the creation of a closure with local specification F

(x := . . . F . . . below) is encoded by first declaring a variable and then
assuming that the variable satisfies F. Gobra generates a separate method
to verify that the body of the function literal actually satisfies its local
specification. Fig. 2.14 shows the Gobra method fSpec that is generated
to verify the function literal of our example in Fig. 2.3. As for the spec-
ification expression, the variables that are captured by the function
literal are added as parameters to the generated method. In Fig. 2.14,
as before, the argument xp of fSpec is the reference of the variable x

captured by the closure. Calls to closures are encoded by first asserting
that the closure actually satisfies the given specification and then calling
the specification. For specifications with parameters, the parameters
become the corresponding call arguments, e.g. r = f(a) as fSpec is en-
coded as assert f implements fSpec{xp}; r = fSpec(xp, a), where
xp is again the captured variable. Lastly, implementation proofs are
encoded by assuming that the closure satisfies the specification. As for
the creation of closures, Gobra generates a separate method to verify
implementation proofs. Fig. 2.14 shows the method main_f_proof that
Gobra generates to verify the implementation proof of the example
in Fig. 2.3. Again, the parameter xp represents the captured variable.
Gobra infers the precondition f implements fSpec{xp} from the call
annotations inside the implementation proof.

Jx := . . . F . . .K ≜ var x: Closure

inhale Jx implements FK

Jx = 𝑒1(𝑒2) as FK ≜ assert J𝑒1 implements FK

x = F(J𝑒2K)

Jproof 𝑒 implements F {...}K ≜ inhale J𝑒 implements FK

2.2.5. Soundness of the Memory Model

We use our classification of shared and exclusive expressions to determine
whether or not we treat data as heap data. However, a program may
store data on the heap differently. Go’s language specification does not
specify whether variables or allocated memory is stored on the heap
or stack. E.g., variables not annotated as shared actually may be stored
on the heap. Conversely, shared variables or even data allocated with
Go’s new statement actually may be stored on the stack or in registers. In
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Figure 2.14.: The Gobra methods gener-
ated for our example in Fig. 2.3 to check
that the closure satisfies its local specifica-
tion (fSpec) and to check that the closures
satisfies the specification positive{&x}
(main_f_proof).

1 requires acc(xp)
2 ensures acc(xp) && m == max(old(*xp),n) && *xp == m
3 func fSpec(xp *int, n int) (m int) {
4 if n > *xp {
5 *xp = n
6 }
7 return *xp
8 }
9

10 requires f implements fSpec{xp}
11 requires f_comp{xp}.inv()
12 ensures f_comp{xp}.inv() && r >= 0
13 func main_f_proof(f func(int) int, xp *int) (r int) {
14 unfold f_comp{xp}.inv()
15 r = f(a) as fSpec{xp}
16 fold f_comp{xp}.inv()
17 }

this subsection, we provide a sketch of a formal argument to show that
properties verified for a program imply that these properties also hold
for the actual executions with their unspecified memory allocation.

Our argument consists of three steps: (1) Instead of specifying where data
is stored, the Go compiler guarantees that all data may be treated as if it
was allocated on the heap. Therefore, for every actual execution, there
exists a heapified execution where all data is stored on the heap. This is
our Go trust assumption. (2) We show that our type system ensures that
if all data is stored on the heap, then the exclusive data may be treated as
if it was not allocated on the heap. Therefore, for every execution where
all data is stored on the heap, there exists an execution where exclusive
data is not stored on the heap, but shared data is still stored on the
heap. (3) Therefore, for every actual execution, there exists an execution
verified by Gobra where only shared data is stored on the heap and thus,
properties verified by Gobra are also satisfied by the actual executions.

Go’s Guarantees. To better understand the Go compiler’s guarantee
that all data may be treated heap-allocated data, consider the following
program on the left that returns the pointer to a variable.

1 func alloc() (*int) {

2 var x int

3 x = 2

4 return &x

5 }

1 func alloc() (*int) {

2 var xp *int = new(int)

3 *xp = 2

4 return xp

5 }

Go ensures that the left program behaves the same as the right program,
where the value of the variable x is instead stored on the heap, pointed
to by the pointer xp. Analogous to the encoding discussed in Sec. 2.2.2,
the variable declaration and assignment become a heap allocation and a
pointer assignment, respectively. Note that in languages such as C, the
left program is unsafe because the variable x is stored on the stack and,
thereby, a reference to the variable becomes invalid after the method
returns. Internally, Go uses an escape analysis and other optimizations
to decide whether or not to store variables and other data on the heap.

The next definition formalizes our aforementioned trust assumption
for the Go compiler. We denote an execution of a program 𝑐 starting
from state 𝜎 and reaching a state 𝜎′ as ⟨𝑐; 𝜎⟩ →∗ 𝜎′, where → is the
transition relation of an assumed small-step semantics for Go. To describe
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heapified executions where all data is stored on the heap, we introduce an
overloaded function M that maps states to states where all data is stored
on the heap and maps programs to programs operating on the data
accordingly. For our two programs above, the right program represents
the heapified version of the left program, i. e. the right program is the
result of applying M to the left program.

Definition 2.2.1 (Go Trust Assumption) For every execution ⟨𝑐; 𝜎⟩ →∗ 𝜎′,
there exists the execution ⟨M(𝑐);M(𝜎)⟩ →∗ M(𝜎′), where all variables and

allocated memory are stored on the heap.

Guarantees of the Type System. The next definition captures the second
step of our soundness argument, namely how we define soundness
for our type system. As discussed above, the type system must ensure
that if all data is stored on the heap, then the exclusive data may be
treated as if it was not allocated on the heap. More formally, there must
exist an execution that does not crash and where the exclusive data is
not stored on the heap. Analogous to the function M, we introduce a
function PΓ that maps states and programs to the corresponding states
and programs, respectively, where exclusive variables are not stored on
the heap anymore. The context Γ captures which variables are annotated
as shared. We use Γ ⊢ 𝑐 to denote that a program 𝑐 is well-typed given the
annotations Γ. For our two programs above, the variable x is annotated
as shared. Therefore, applying 𝑃Γ to the right program does not change
anything (since there are no exclusive variables). For exclusive variables,
the changes done by the M function are reversed by PΓ.

Definition 2.2.2 (Type System Soundness) For all well-typed pro-

grams 𝑐 with addressibility annotations Γ, denoted as Γ ⊢ 𝑐, and

for every execution ⟨M(𝑐);M(𝜎)⟩ →∗ 𝜎′, there exists the execution

⟨PΓ(M(𝑐));PΓ(M(𝜎))⟩ →∗ PΓ(𝜎′), where all exclusive variables are not

stored on the heap.

We have not formally proved soundness of our Go type system. Such
a proof requires formalized language semantics for Go, which do not
exist. We have formalized parts of the argument in Isabelle/HOL for a
toy programming language without concurrency. This proof proceeds by
induction on the step relation. We identify two key parts of the argument:
First, because we only consider heapified executions and, thereby, all
variables are allocated on the heap, we are guaranteed that accessing
these variables, e.g. the dereference of xp in our example, do not cause
null-pointer exceptions. Second, because well-typed programs do not
take references of exclusive variables, references of exclusive variables do
not influence the program behavior. More formally, for every expression
𝑒 in a well-typed program and every state 𝜎, the expression PΓ(M(𝑒))
evaluates in the state PΓ(M(𝜎)) to the same value as the expression M(𝑒)
in the state M(𝜎). Both parts together justify that we may safely move
exclusive variables that are allocated on the heap to the stack without
changing the program behavior.

Entailment of Properties. Theorem 2.2.1 formalizes the soundness of
our memory model. Assuming that the Go trust assumption and type
system soundness holds, then if a program 𝑐 satisfies the specification
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{𝑃}𝑐{𝑄} in our memory model, denoted as Γ ⊨𝐺 {𝑃}𝑐{𝑄}, then the
actual executions of the program satisfy the specification {⌊𝑃⌋}𝑐{⌊𝑄⌋}.
The function ⌊·⌋ erases the permissions from an assertion. For instance,
if we verify a postcondition acc(&x) && x == 1 in Gobra, then just the
functional specification x == 1 holds for the actual program. Since we do
not know where memory is allocated, permission annotations only have
meaning when reasoning about memory safety. In particular, permissions
do not have an interpretation for actual executions.

Theorem 2.2.1 If the Go trust assumption and type system soundness holds,

then Γ ⊨𝐺 {𝑃}𝑐{𝑄} implies ⊨ {⌊𝑃⌋}𝑐{⌊𝑄⌋}.

Before we discuss a proof sketch for Theorem 2.2.1, we first formally
define when a specification holds according to Gobra’s memory model
and according to the actual memory model.

Def. 2.2.3 defines when the actual executions of a Go program 𝑐 satisfy a
spec {�̂�}𝑐{�̂�}. The definition reflects the standard definition of program
correctness: The executions of a program satisfy a spec {�̂�}𝑐{�̂�}, if an
execution of the statement 𝑐 that starts in a state that satisfies the precon-
dition �̂� reaches a state 𝜎′, then 𝜎′ must satisfy the postcondition �̂�. We
use �̂� and �̂� to range over assertions without permission annotations.

Definition 2.2.3 (Spec Semantics) A program 𝑐 satisfies a postcondition

�̂� given a precondition �̂�, denoted as ⊨ {�̂�}𝑐{�̂�}, if

∀𝜎. 𝜎 ⊨ �̂� ∧ ⟨𝑐; 𝜎⟩ →∗ 𝜎
′ ⇒ 𝜎′ ⊨ �̂�

Next, Def. 2.2.4 defines when a program satisfies a spec according to
Gobra’s memory model. In contrast to Def. 2.2.3, Gobra considers just the
executions where only shared data is stored on the heap. Furthermore,
we require that the program and spec are well-typed.

Definition 2.2.4 (Gobra’s Spec Semantics) In Gobra, a program 𝑐 with the

addressibility annotations Γ satisfies a postcondition 𝑄 given a precondition

𝑃, denoted as Γ ⊨𝐺 {𝑃}𝑐{𝑄}, if the program is well-typed, i. e. Γ ⊢ 𝑐, Γ ⊢ 𝑃,

and Γ ⊢ 𝑄 hold, and

∀𝜎. PΓ(M(𝜎)) ⊨𝐺 𝑃 ∧ ⟨PΓ(M(𝑐));PΓ(M(𝜎))⟩ →∗ 𝜎
′ ⇒ 𝜎′ ⊨𝐺 𝑄

Finally, we provide a proof sketch for Theorem 2.2.1.

Proof. The Go trust assumption (Def. 2.2.1) entails that for every actual
execution ⟨𝑐; 𝜎⟩ →∗ 𝜎′, there exists the execution ⟨M(𝑐);M(𝜎)⟩ →∗
M(𝜎′). In combination with type system soundness (Def. 2.2.2), we get
that for every actual execution ⟨𝑐; 𝜎⟩ →∗ 𝜎′, there exists the execution
verified by Gobra ⟨PΓ(M(𝑐));PΓ(M(𝜎))⟩ →∗ PΓ(M(𝜎′)). To connect the
pre- and postconditions𝑃, 𝑄 and ⌊𝑃⌋, ⌊𝑄⌋, we have to show that whether
an assertion is satisfied does not depend on whether or not data is stored
on the heap. More formally, for all well-typed assertions 𝐴, 𝜎 ⊨ ⌊𝐴⌋ ⇔
PΓ(M(𝜎)) ⊨𝐺 𝐴 holds for all states 𝜎. This property holds since with the
exception of permission assertions, which are erased, Gobra’s assertion
language does not specify where data is stored. The remainder of the proof
of Theorem 2.2.1 is straightforward. 𝜎 ⊨ ⌊𝑃⌋ implies PΓ(M(𝜎)) ⊨𝐺 𝑃.
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Therefore, we can use Def. 2.2.4 to get PΓ(M(𝜎′)) ⊨𝐺 𝑄, which entails
𝜎′ ⊨ ⌊𝑄⌋, concluding the proof sketch.

2.3. Slicing Verification Conditions

A challenge for the verification of large-scale software is that the encoded
Viper programs may become too large for Viper’s verification backends
to handle, causing verification to not terminate. An issue for very large
programs is that while methods and functions can be verified separately,
the verification of each method and function is impacted by the program’s
context, i. e. the functions, predicates, domains, and fields defined in the
same Viper program. As a consequence, a larger context increases the
complexity of the verification task handled by Viper’s backends. We
reduce the size of contexts by applying program slicing techniques [65,
66] to the Viper programs generated by Gobra. More concretely, we [65]: Weiser (1984), Program Slicing

[66]: Horwitz et al. (1988), Interprocedural

Slicing Using Dependence Graphs

introduce an algorithm to split a Viper program 𝑐 into a set of smaller
Viper programs Cwith smaller contexts such that if all programs in Care
correct, then the program 𝑐 is correct. By reducing the context per program
in C, the algorithm enables us to verify programs whose verification
does not terminate otherwise. We make the algorithm available to users
of Gobra via a command line option. The option specifies only (1) that
programs should be split and (2) the maximum number of programs that
programs should be split into. Gobra then applies the algorithm on the
generated Viper program and invokes Viper’s backends on each resulting
program separately. Users of Gobra do not have to be aware of the details
of the algorithm. In particular, users do not have to provide additional
annotations. Our introduced algorithm is orthogonal to Gobra’s encoding
and can be applied in different contexts as well.

2.3.1. Slicing Algorithm

Our algorithm splits a Viper program 𝑐 in two phases: In the first phase,
for every method and function of 𝑐, we compute the smallest subset of
𝑐 necessary to verify the method or function. In the second phase, we
incrementally merge these subsets until the user-specified bound of the
maximum number of programs is reached.

In the remainder of this section, we discuss the first phase. The second
phase is driven by a heuristic that defines a cost function for the merge
of two programs, where we greedily perform the cheapest merge until
the targeted number of programs remains. We leave the exploration of
alternative merging strategies to future work.

To illustrate the result of our algorithm, we use the toy example shown
in Fig. 2.15. The Viper program on the left contains two methods. The
method code1 takes a reference, for which the precondition requires an
instance of the mem predicate. The predicate is then unfolded in the body
of code1, getting access to the permission acc(x.val). The method code2

takes a reference, calls code1, and returns the empty list. The example
represents lists with the domain type List, which provides functions for
the empty list (nil), adding an element to a list (cons), and the length
of a list (len). Two axioms define the standard properties of the length
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Figure 2.15.: A toy example of a Viper
program (left), together with the pro-
gram’s smallest subset necessary to ver-
ify the method code1 (top right) and
the method code2 (bottom right), respec-
tively.

1 field val: Int
2
3 pred mem(x: Ref) { acc(x.val) }
4
5 domain List {
6 func nil(): List
7 func cons(Int, List): List
8 func len(): Int
9 axiom { len(nil()) == 0 }

10 axiom {
11 ∀i:Int, l:List :: {cons(i,l)}
12 len(cons(i,l)) == 1+len(i)
13 }
14 }
15
16
17 method code1(x: Ref)
18 requires mem(x)
19 { unfold mem(x) }
20
21 method code2(x: Ref) (r: List)
22 requires mem(x)
23 { code1(x); r := nil() }

1 field val: Int
2
3 pred mem(x: Ref) { acc(x.val) }
4
5 method code1(x: Ref)
6 requires mem(x)
7 { unfold mem(x) }

1 pred mem(x: Ref)
2
3 domain List {
4 func nil(): List
5 func len(): Int
6 axiom { len(nil()) == 0 }
7 }
8
9 method code1(x: Ref)

10 requires mem(x)
11
12 method code2(x: Ref) (r: List)
13 requires mem(x)
14 { code1(x); r := nil() }

function. Line 11 shows a detail that we typically omit in this thesis for
the sake of simplicity. As for SMT, the trigger [67] {cons(i,l)} specifies
when the quantified expression is instantiated. For the context of this
section, the only relevant behavior of triggers is that if the expression in
the trigger, e.g. cons(i,l) cannot be constructed (because functions are
missing), then the body of the quantifier does not influence verification.
On the right, we show the subsets of the program necessary to verify
the code1 method (top right) and the code2 method (bottom right),
respectively, which our algorithm returns for the program on the left. For
the code1method, the unused domain is not necessary and, thus, omitted.
For the code2 method, since the predicate instance is not unfolded in
the method’s body, the definition of the mem predicate and, thereby, the
definition of the val field is not necessary. Furthermore, without a use of
the cons function, the definition of the cons function together with its
axiom are omitted, too. Our algorithm over-approximates the treatment
of axioms. For instance, as shown in Fig. 2.15, we include the axiom
len(nil()) == 0 even though that axiom is not necessary to verify the
method.

To compute the necessary program subsets, we construct a dependency
graph for a program. In the graph, every node represents a part of the
program. An edge from some part 𝑎 to another part 𝑏 represents that
for verification, if a program contains 𝑎, then the program must also
contain 𝑏. The smallest subset of a program necessary to verify a method
or function 𝑚 is then the set of all parts that are reachable from the node
representing 𝑚.

Nodes. As illustrated by the example, we want a fine granularity of
program parts that, for instance, distinguishes between predicates with
and without body and between individual domain functions and axioms.
We achieve this granularity by introducing a node for each part that
we want to distinguish. Accordingly, for every method, function, and
predicate, our dependency graph contains a node for the member with
and without a body. Furthermore, we introduce separate nodes for each
domain function and axiom.



2.3. Slicing Verification Conditions 35

uses ( acc(p(E1),E2) ) = {pspec} ∪ uses ( E1 , E2 )
uses ( unfolding acc(p(E1),E2) in E3 ) = {pbody} ∪ uses ( E1 , E2 , E3 )
uses ( f(E) ) = {fspec} ∪ uses ( E )
uses ( reveal f(E) ) = {fbody} ∪ uses ( E )

Figure 2.16.: A snippet of the definition
of the function uses, which takes a Viper
expression, type, or statement 𝑥 and re-
turns the nodes of the parts that are nec-
essary to verify 𝑥.

deps ( method m(V) (R) req P ens Q { B } ) =
mbody → uses ( V,R,P,Q,B ) ∪ mspec → uses ( V, R, P, Q )

deps ( function f(V) (R) req P ens Q { B } ) =
fbody → uses ( V, R, P, Q, B ) ∪ {fspec → fbody}

deps ( opaque function f(V) (R) req P ens Q { B } ) =
fbody → uses ( V, R, P, Q, B ) ∪ fspec → uses ( V, R, P, Q )

deps ( predicate p(V) { B } ) =
pbody → uses ( V, B ) ∪ pspec → uses ( V )

deps ( field f: T ) = f → uses ( T )
deps ( domain d { FN; AX } ) = deps ( FN ) ∪ deps ( AX )
deps ( axiom ax { A } ) =

srcs ( A ) → ax ∪ ax → uses ( A )
srcs ( forall V :: Triggers B ) = srcs ( Triggers )

Figure 2.17.: Definition of the deps func-
tion that takes a part of a Viper program
and returns the set of dependencies (rep-
resented as edges) induced by that part.
We denote an edge from a node 𝑛1 to
a node 𝑛2 as 𝑛1 → 𝑛2. We use 𝑛 → 𝑁 ,
where 𝑁 is a set of nodes, as a shorthand
for the set {𝑛 → 𝑚 | 𝑚 ∈ 𝑁}. Further-
more, we use uses ( X1 , . . . , X𝑖 ) as a short-
hand for uses ( X1 ) ∪ · · · ∪ uses ( X𝑛 ).

Edges. To define the dependencies that we extract from a Viper program,
we introduce two functions, namely uses and deps. The function uses
returns the nodes that are necessary for a specific type, expression, or
assertion. Fig. 2.16 shows the most important cases of the function. The
nodes nbody and nspec represent the member named n with and without
its body, respectively. A predicate instance of p requires that the predicate
p, potentially without its body, is included in the Viper program. The
body of a predicate is only required if the predicate is unfolded. Similarly,
the body of a function is definitely required if a function call is annotated
with Viper’s reveal expression.

The function deps, defined in Fig. 2.17, returns all edges induced by a
program part. The cases for methods, functions, predicates, and fields are
straightforward. For instance, a method with a body has dependencies to
the parts used in the method’s arguments (V), results (R), preconditions
(P), postconditions (Q), and body (B). Without its bodies, there are no
dependencies to the body (B). For functions, unless a function is annotated
with a special keyword opaque, Viper considers a function’s body part of
its specification. We capture this behavior with an edge from a function’s
specification to its body (the edge fspec → fbody in Fig. 2.17). Domain
definitions introduce edges for all domain functions and axioms.

Since users do not annotate when axioms are used, axioms are treated
differently than, for instance, methods or predicates. Identifying whether
an axiom is required for verification is hard. For instance, an axiom may
be required even though not all members referenced in the axiom are
included in a program. Consider the two axioms∀x :: f(x) == g(x) and
∀x :: g(x) == 1. Even if a program includes only the function f, but not
the function g, both these axioms are required to verify that f(x) is equal
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to 1. Our algorithm over-approximates whether an axiom is required by
including axioms if at least one of the members referenced in the axiom
is included. As an optimization, since quantified expressions are only
instantiated based on their trigger, to determine whether a quantified
expression inside an axiom has to be included, we only analyze the
trigger of the quantified expression (excluding its body). Because of our
over-approximation, some axioms are included even though they are not
required to verify a method or function. For instance, as shown in Fig. 2.15,
we include the axiom len(nil()) == 0 because the function nil() is
required to verify the method code2. In Fig. 2.17, the auxiliary function
srcs(𝑒) returns the nodes that have a dependency to the expression 𝑒

occurring inside of an axiom. The srcs function returns the same nodes
as the uses function, except that the body of quantified expressions is
disregarded and that types are excluded.

2.4. Evaluation and Case Studies

The Gobra implementation consists of a parser and type checker for
annotated Go programs and a translation of those programs into the
Viper intermediate verification language. The resulting Viper program is
verified using Viper’s symbolic execution backend, which in turn uses
the Z3 SMT solver [1]. Verification errors are translated back to the Go[1]: De Moura et al. (2008), Z3: An Efficient

SMT Solver level, such that users are not exposed to the internal encodings. Users
never have to inspect the encoding. Error messages contain the failing
assertion and a reason describing why the assertion failed. Gobra’s test
suite contains 407 verification tests (with and without errors) with a
total of 10’030 LOCs (Go code and annotations) that take 14.9 minutes to
verify.

2.4.1. Evaluation

We evaluated Gobra on 16 interesting verification problems, which include
well-known algorithms and data structures, and cover Go’s main features,
such as interfaces (Examples 7,10,and 11), closures (Examples 8 and 13),
and concurrency primitives (Examples 13 and 14), including goroutines,
mutexes, wait groups, and channels. For each example, Gobra verifies
memory safety and functional correctness properties. To assess Gobra’s
performance on failing verifications, we have additionally constructed
two incorrect variations of each example, one with a seeded error in the
specification and one in the implementation.

All experiments were executed on a warmed-up JVM on a MacBook Pro
with a 2.3 GHz 8-Core Intel Core i9 CPU and 32 GB of RAM, running
macOS 11.1 and OpenJDK 11. For each experiment, we measured its
verification time using Viper’s symbolic execution backend and averaged
the duration of twelve executions, excluding the slowest and fastest
outlier.

Fig. 2.18 summarizes the results, including the required annotations and
verification times for the three variants of each example. The annotation
overhead ranges between 0.3 and 3.1 lines of annotations per line of
code, which is typical for SMT-based deductive verifiers. Verification
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# Example LOC / Spec. Viper LOC T[s] Tspec error[s] Timpl error[s]
1 binary search tree 125 / 140 632 10.88 10.50 11.67
2 dutchflag 22 / 16 142 2.02 1.78 1.88
3 heapsort 47 / 93 271 16.72 19.30 15.23
4 dense and sparse matrix 69 / 62 326 10.46 10.55 10.06
5 binary tree 59 / 20 217 2.09 2.08 2.11
6 running ex. (Fig. 2.1) 10 / 11 164 1.71 1.70 1.70
7 running ex. (Fig. 2.2) 24 / 16 186 1.04 0.98 1.01
8 running ex. (Fig. 2.3) 15 / 19 172 1.13 1.04 1.05
9 relaxed prefix 25 / 36 158 7.08 5.36 4.19
10 list of interfaces 46 / 27 219 1.45 1.41 1.54
11 visitor pattern 76 / 30 475 4.38 4.22 5.45
12 zune 31 / 12 141 1.08 1.07 1.06
13 slice map 30 / 95 611 44.23 41.93 41.63
14 pair insertion sort 50 / 105 353 15.55 12.64 13.96
15 parallel search replace 35 / 94 565 53.18 51.97 61.54
16 parallel sum 31 / 98 527 58.39 50.25 57.69

Figure 2.18.: Experimental results. For each experiment, we list the number of lines of Go code (LOC), number of lines of specification
and proof annotations (Spec), and the average verification time in seconds for correct examples (T), errors in the specification (Tspec error),
and errors in the implementation (Timpl error). A line containing both, code and annotations, is counted as one line of Go code and one
line of annotation.

times range between a second and a minute per example. The verification
times are significantly higher when the verified code uses concurrency
features; these examples require quantitatively more and more-complex
specifications, which complicates reasoning. Lastly, there is hardly any
difference between successful and failed verification attempts. Consistent
performance is crucial when verifiers are used interactively, where users
run them frequently, especially on programs that do not yet verify.

2.4.2. Case Studies

Since Gobra’s creation, Gobra has been applied successfully to verify
large real-world software. In this subsection, we provide an overview of
the two largest bodies of code that have been verified with Gobra.

WireGuard. WireGuard is a widely-used Virtual Private Network (VPN).
In the protocol, two agents first establish a secret session key in a hand-
shake phase and then use this key to exchange messages in a transport
phase. In the work by Arquint et al. [56], Gobra has been used to verify [56]: Arquint et al. (2023), Sound Verifica-

tion of Security Protocols: From Design to

Interoperable Implementations

that a modified version of WireGuard’s official Go implementation [68]

[68]: Donenfeld (n.d.), Go Implementation

of WireGuard

refines a specification of the WireGuard protocol, which was formal-
ized in the Tamarin [69] protocol verifier. Their verified WireGuard

[69]: Meier et al. (2013), The TAMARIN

Prover for the Symbolic Analysis of Security

Protocols

implementation consists of 608 lines of Go code. The program has 3,936
lines of specifications and proof annotations, mostly due to the large
specification overhead of their verification technique. The annotation
overhead remains below 3.1 lines of proof annotations per line of code,
which as stated in the evaluation, is typical for SMT-based verifiers. The
verification of the entire code base takes around 286 seconds.

The official Go implementation was changed in two ways: (1) To reduce
verification effort, DDos protection, load balancing, and metrics were
omitted. In particular, load balancing requires complex concurrency
reasoning not supported by Gobra. (2) -Cryptographic operations and
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network operations were moved into trusted libraries. The individual
steps processing a connection, i. e. parsing and constructing messages,
have remained unchanged. In particular, the verified implementation is
interoperable with WireGuard’s official Go implementation.

Scion. The Scion Internet architecture [49] is a new inter-networking[49]: Zhang et al. (2011), SCION: Scalabil-

ity, control, and isolation on next-generation

networks

infrastructure that focuses on security and reliability. In the work by
Pereira et al. [50], similar to WireGuard, they used Gobra to verify

[50]: Pereira et al. (2024), Protocols to Code:

Formal Verification of a Next-Generation

Internet Router

that Scion’s border router, the component that is responsible for packet
forwarding, refines a formal specification of the Scion protocol. In contrast
to the WireGuard case study, they directly targeted the performance-
optimized open-source implementation of Scion’s border router with
the exception of three minor changes to the code: (1) They rewrote a
specific combination of interfaces and Go’s embedded fields that Gobra
does not support. Before their verification work, we were not aware
that this combination of features is permitted in Go. (2) To simplify
the permission-based reasoning, they replaced some uses of iterators
with standard for-loops. (3) To add proof annotations for intermediate
computation results, they split some compound expressions into smaller
parts.

In total, they verified 4,700 lines of Go code against 900 lines of specifica-
tion with 2,400 lines of specifications for trusted libraries. Verification
required 13,400 lines of proof annotations, resulting in an annotation
overhead of around 2.8 lines of proof annotations per line of code. The
verification of the border router with Gobra takes around three hours.

This case study in particular demonstrates that Gobra is capable of
verifying large-scale real-world code.

2.5. Related Work and Conclusion

Besides Gobra, we are aware of two other verification approaches for Go.
Perennial [59] reasons about concurrent, crash-safe systems. Their core[59]: Chajed et al. (2019), Verifying concur-

rent, crash-safe systems with Perennial techniques are an extension to the Iris framework [70] and independent
[70]: Jung et al. (2018), Iris from the ground

up: A modular foundation for higher-order

concurrent separation logic

of Go. They connect their theory to Go programs with Goose, a shallow
embedding of Go into Coq [7], which proves that Go code complies

[7]: consortium (n.d.), The Coq proof assis-

tant

with a given transition system. In contrast to Gobra, Perennial does not
support core Go features such as channels and interfaces.

Several prior works [57, 58, 71] infer behavioral types [72] to reason[57]: Lange et al. (2017), Fencing off Go:

liveness and safety for channel-based pro-

gramming

[58]: Lange et al. (2018), A static verifica-

tion framework for message passing in Go

using behavioural types

[71]: Gabet et al. (2020), Static Race Detec-

tion and Mutex Safety and Liveness for Go

Programs

[72]: Hüttel et al. (2016), Foundations of

Session Types and Behavioural Contracts

about Go’s channel-based message passing. After they infer behavioral
types for a given program, they check safety and liveness properties
on the inferred types, using model checkers such as mCRL2 [73]. Some

[73]: Cranen et al. (2013), An Overview of

the mCRL2 Toolset and Its Recent Advances

works use additional analyses to strengthen the provided guarantees.
Lange et al. [58] add a termination analysis to enable one to verify
unbounded properties under certain conditions. Gabet and Yoshida [71]
extend this work by inferring behavioral types on shared variables and
locks to additionally reason about data-race freedom, lock safety, and lock
liveness. The approaches by Lange et al. [58] and Gabet and Yoshida [71]
are vastly different from Gobra. They do not verify code contracts, but
instead verify global properties such as deadlock and data-race freedom.
Their automation is high and annotation overhead minimal, but their
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analyses are not modular and do not verify functional properties of code.
Furthermore, they do not verify properties about the state of the heap.

There are some prior works that can handle channel-based concurrency
and heap-manipulating programs, but these do not apply directly to Go.
Villard et al. [74] introduce a powerful contract mechanism to specify [74]: Villard et al. (2009), Proving Copyless

Message Passingprotocols that channels must adhere to. Their channel specification
language is more expressive than the one presented in this paper. Their
contracts are finite state machines and thus can have multiple phases.
However, their channels are always shared between two peers whereas
Go supports more advanced concurrency patterns where both channel
endpoints are shared between an unbounded number of peers. Actris [75,
76] is a concurrent separation logic built on top of the Iris framework [75]: Hinrichsen et al. (2019), Actris:

Session-type based reasoning in separation

logic

[76]: Hinrichsen et al. (2020), Actris 2.0:

Asynchronous Session-Type Based Reason-

ing in Separation Logic

to reason about session types in an interactive theorem prover. Actris
can go beyond two peers, but to do so, it requires a memory model that
is incompatible with Go’s memory model. Actris models the sharing of
channel endpoints via Iris’ ghost locks, which to our knowledge, implies
sequentialization of sends, and dually receives, which is not guaranteed
by Go’s memory model.

Gobra’s verification logic and encoding into Viper have been inspired
by several other Viper-based verifiers, such as Nagini [18] for Python, [18]: Eilers et al. (2018), Nagini: A Static

Verifier for PythonPrusti [19] for Rust, and VerCors [16] for Java. None of these verifiers
[19]: Astrauskas et al. (2019), Leveraging

Rust Types for Modular Specification and

Verification

[16]: Blom et al. (2014), The VerCors Tool

for Verification of Concurrent Programs

address the Go-specific features that Gobra supports.

Very recently, there has been work that introduces a type modifier
similar to Gobra’s exclusive variables. Lorenzen et al. [77] propose an

[77]: Lorenzen et al. (2024), Oxidizing

OCaml with Modal Memory Management

extension of OCaml’s type system that tracks a variety of different
type modifiers to identify which data may be allocated on the stack
and which updates to immutable data structures may be performed
in-place. Their introduced local and global type modifier coincide
with Gobra’s exclusive and shared modifier, respectively. Analogous
to Gobra, local memory locations may not escape their current scope.
In contrast to Gobra, which uses the modifiers to determine whether
permission-based reasoning is necessary for a memory location, they use
the local modifier to determine that a memory location may be safely
put on the stack, improving the performance of programs. Furthermore,
they use the modifier in the context of a larger type system to reason
about the uniqueness of references to immutable data structures, going
significantly beyond Gobra’s use of the exclusive modifier.

Conclusion. We introduced Gobra, the first modular verifier for Go that
supports reasoning about a crucial aspect of the language: the combina-
tion of channel-based concurrency and heap-manipulating constructs.
Moreover, Gobra is the first verifier to support Go’s version of interfaces
and structural subtyping. Gobra is expressive and performant enough to
verify large-scale real-world code. For instance, in the work by Pereira
et al. [50] Gobra has been applied to verify the implementation of a full- [50]: Pereira et al. (2024), Protocols to Code:

Formal Verification of a Next-Generation

Internet Router

fledged network router [49]. In other chapters, we expand the properties

[49]: Zhang et al. (2011), SCION: Scalabil-

ity, control, and isolation on next-generation

networks

that can be verified with Gobra to certain hyper-properties.





Verifiable Security Policies for
Distributed Systems 3.

“Those are my principles, and if

you don’t like them... well, I have

others.”

— Groucho Marx

For programs handling confidential data, one crucial concern is secure

information flow, meaning that confidential data is not leaked during
the program’s execution. In this context, security policies express (1) the
classification of data, for instance, by designating part of the data as
sensitive and others as public information, and (2) the declassification of
data, that is, rules that describe when sensitive data can be deliberately
treated as public.

Consider a simple authentication service. A security policy may classify
that keys read from disk and network packets have high and low sen-
sitivity, respectively. For declassification, a security policy may permit
declassifying messages signed with the read key.

Recent works [26, 78–81] have introduced policy frameworks both to [26]: Popescu et al. (2021), Bounded-

Deducibility Security (Invited Paper)

[78]: Schoepe et al. (2020), VERONICA:

Expressive and Precise Concurrent Informa-

tion Flow Security

[79]: Murray et al. (2023), Assume but

Verify: Deductive Verification of Leaked In-

formation in Concurrent Applications

[80]: Banerjee et al. (2008), Expressive De-

classification Policies and Modular Static

Enforcement

[81]: Smith (2022), Declassification Predi-

cates for Controlled Information Release

formally define security policies and to verify that code actually satisfies
a defined policy. These existing approaches have two limitations: (1) Their
frameworks are tightly linked to a programming language, which has
two drawbacks. First, they cannot express policies in a language-agnostic
way, which is for instance useful in distributed systems, where different
nodes may be implemented in different languages. Second, reasoning
about policies happens at the level of the programming language and,
thus, involves the full complexity of the language. (2) Existing approaches
enable verifying that an implementation satisfies a policy, but do not
support reasoning about the policy itself, in particular, to validate that it
expresses the intended security requirements.

This Work. We introduce a new policy framework that addresses these
limitations by expressing policies over traces of I/O actions, the basic
building blocks of communication, such as sending or receiving a message.
This language-independent representation is well-suited for distributed
systems, where attackers observe the I/O behavior of a program, but not

the content of the memory.

To specify classification, we associate with each I/O action pre- and post-
conditions that express the sensitivity of outputs and inputs, respectively.
For declassification, we introduce a designated action 𝑑𝑒𝑐𝑙(𝑥), which de-
classifies a value 𝑥. A security policy is then a tuple of a classification

spec (the pre- and postconditions for I/O actions) and an IOD spec,
specifying the traces of I/O actions and declassification actions that an
implementation may produce.

Such policies are independent of the program to be verified, a specific
programming language, and the verification logic used to prove that
an implementation satisfies a policy. In particular, the same policy can
be used for multiple different implementations, even with different
programming languages, which addresses the first limitation of existing
frameworks discussed above. Regarding the second limitation, a key
advantage of our framework is that policies can be audited completely
independent of code and programming language, both formally and
informally. In particular, we introduce a verification technique to show
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that all programs satisfying the policy guarantee that specific data remains
confidential even in the presence of declassification.

To prove that a concrete program satisfies a given policy, one can use
standard program verification techniques. We show how to use ghost
state (state that is used for verification but erased during compilation)
to store the trace of I/O actions and declassification actions produced
by a program execution. We can then prove that a program satisfies a
policy by showing that (1) the stored traces refine the policy’s IOD spec
and (2) the stored traces satisfy secure information flow as expressed by
the policy’s classification spec.

For the latter, we introduce a new formalization of secure information
flow that can deal with declassification and I/O behavior, and is ex-
pressive enough for language agnostic policies. Our formalization is
inspired by observational determinism [82, 83] and amenable to standard[82]: McLean (1992), Proving Noninter-

ference and Functional Correctness Using

Traces

[83]: Roscoe (1995), CSP and determinism

in security modelling

verification techniques such as self-composition [22, 23, 84, 85]. How-

[22]: Barthe et al. (2011), Secure informa-

tion flow by self-composition

[23]: Barthe et al. (2011), Relational Verifi-

cation Using Product Programs

[84]: Barthe et al. (2013), Beyond 2-Safety:

Asymmetric Product Programs for Rela-

tional Program Verification

[85]: Eilers et al. (2018), Modular Product

Programs

ever, in contrast to observational determinism, our formalization is not
restricted to deterministic I/O behavior, which is crucial for concurrent
and distributed systems.

We formalize our technique for verifying an implementation against a
security policy based on the SecCSL logic [14] and prove its soundness

[14]: Ernst et al. (2019), SecCSL: Security

Concurrent Separation Logic

in Isabelle/HOL. We demonstrate the practicality of our approach on a
variety of case studies, including an implementation of the WireGuard
protocol. These case studies are carried out using Gobra [51], an auto-

[51]: Wolf et al. (2021), Gobra: Modular

Specification and Verification of Go Programs

mated code verifier for Go, which demonstrates that our approach is
amenable to automation using SMT solvers. Moreover, they show that
our policy framework supports established security policy concepts such
as delimited release [86], state-dependent declassification, and robust

[86]: Sabelfeld et al. (2003), A Model for

Delimited Information Release

declassification [87].

[87]: Zdancewic et al. (2001), Robust De-

classification

Contributions. We make the following contributions:

▶ We introduce a new policy framework based on I/O behaviors
that allows one to express classification and declassification re-
quirements independently of a given program or programming
language.

▶ We show how to reason formally about the guarantees provided
by a policy, enabling formal audits of security policies.

▶ We present a technique to verify that an implementation satisfies
a given policy. We formalize this technique based on SecCSL and
prove its soundness in Isabelle/HOL.

▶ We illustrate the expressiveness of our policy framework on several
case studies, including an implementation of the Wireguard proto-
col. These case studies also show that our technique is amenable to
SMT-based verification and scales to real-world code of consider-
able size.

This chapter is based on a paper that is currently under submission. All
proofs shown in this chapter have been proved in Isabelle/HOL.
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Input 
Closedness

Observational 
Determinism
Extensions

Code Verification Policy Validation
GNIV

Policy 
Compliance

Program Uncertainty Trace 
Construction

Policy 
Compliance

+
Policy Compliance

language-specific language-agnostic language-agnostic

I/O Behavior with DeclassificationsPer Programming 
Language

IOD Spec
Classification Spec

+
Figure 3.1.: An overview of policy frame-
work. At the center are our security poli-
cies and a definition of policy compliance
based on a variation of observational
determinism. Policy validation (on the
right) allows one to prove that a given pol-
icy indeed guarantees the intended secu-
rity properties, in our case an adaptation
of Generalized Non-Interference. Both
components are based on I/O behavior
with declassifications and, thereby, lan-
guage agnostic. Code verification (on the
left) allows one to prove that a given pro-
gram satisfies a given policy.

3.1. Overview

Fig. 3.1 gives an overview of our policy framework. In this section, we
give a high-level overview of its main components; details are discussed
in the subsequent sections.

Language Independence. To obtain a language-independent framework
for policies and policy validation, we represent programs as their IOD

behavior, i. e. the traces of I/O actions and declassifications that the
program may produce. This representation has two advantages: (1) As
shown by previous works on protocol verification [55, 56, 88], I/O actions [55]: Sprenger et al. (2020), Igloo: soundly

linking compositional refinement and separa-

tion logic for distributed system verification

[56]: Arquint et al. (2023), Sound Verifica-

tion of Security Protocols: From Design to

Interoperable Implementations

[88]: Oortwĳn et al. (2019), Practical Ab-

stractions for Automated Verification of Mes-

sage Passing Concurrency

and, thereby, IOD behaviors provide a language-agnostic representation
of program behavior. (2) Reason about traces of I/O actions allows us to
abstract from implementation details such as memory representations
and concurrency.

In contrast to policy specifications (including the definition of policy

compliance, which defines when a policy is satisfied), verifying that
a given implementation satisfies a given policy is inevitably language-
specific. For this purpose, we instantiate our framework with two concrete
program verification approaches: We extend an existing formalization of
SecCSL to prove soundness of our approach and use the existing Gobra
verifier for our case studies.

Security Policies. As we have explained in the introduction, our language-
agnostic security policies consist of a classification spec (the pre- and
postconditions for I/O actions) and an IOD spec, specifying the traces
of I/O actions and declassification actions that an implementation may
produce.

The main challenge of using IOD behaviors is to define policy compliance,
such that it satisfies three important requirements: (1) The definition
must be expressive enough to capture the behavior of realistic programs.
(2) The definition must be strong enough to prove guarantees during
policy validation. (3) The definition is amenable to standard program
verification techniques and tools, in order to minimize the effort that is
necessary to adapt code verification to other languages.

We achieve these goals through a combination of three ingredients,
namely observational determinism, extensions, and input-closedness. To
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facilitate code verification, we define policy compliance using observa-
tional determinism (OD), which many existing code verification tech-
niques support. However, standard OD does not allow non-deterministic
behavior, which is pervasive in concurrent and distributed systems.
We solve this problem by enriching traces with information about
non-deterministic choices. These extensions effectively externalize non-
deterministic choices, such that standard observational determinism
applies. Soundness is preserved by requiring input-closedness, a well-
definedness condition for extensions.

Code Verification. Our definition of policy compliance allows us to apply
standard code verification techniques and tools. Code verification proves
that a program produces only the IOD behaviors permitted by the policy,
which is achieved by generating appropriate proof obligations for each
I/O and declassification action. Moreover, code verification needs to
ensure that the implementation satisfies the classification spec, using
standard OD-reasoning.

To prove soundness of our approach, we build on the formalization of
SecCSL [14], an existing logic for OD-reasoning. For our case studies,[14]: Ernst et al. (2019), SecCSL: Security

Concurrent Separation Logic we apply Gobra [51], an off-the-shelf automated verifier for Go pro-
[51]: Wolf et al. (2021), Gobra: Modular

Specification and Verification of Go Programs

grams. Supporting other programming languages and verification tools
is straightforward and, in particular, does not require any changes to the
language-agnostic parts of our framework.

Policy Validation. We propose a methodology for proving—based only
on a policy—that data remains confidential even in the presence of
declassification. We formalize this property as Generalized Non-Interference

Modulo Views (GNIV). GNIV is a more flexible definition of generalized
non-interference (GNI) [21] that permits programs to release whether[21]: Clarkson et al. (2008), Hyperproper-

ties secret inputs exist as long as the values of secret inputs remain confidential.
Such a definition is better suited for distributed systems, where secret
inputs may happen as a reaction to public actions. For instance, a server
may query a database storing secret data as a reaction to a public query.

To prove GNIV, we build upon techniques for proving standard GNI [24,
25], where we use the guarantees provided by policy compliance to[24]: Mantel (2003), A uniform framework

for the formal specification and verification

of information flow security

[25]: Goguen et al. (1984), Unwinding and

Inference Control

simplify proofs. More concretely, standard GNI is typically proved by
showing how from a trace 𝑡, one can iteratively construct an uncertainty
trace 𝑡′ that has the same public behavior as 𝑡, but any possible secret data.
Instead of the same public behavior, we require only that 𝑡′ performs
the same declassifications as 𝑡. Policy compliance ensures that if the
declassifications are the same, then the public behavior is the same.
In Fig. 3.1, this proof methodology is referred to as uncertainty trace

construction.

Outline. We introduce our specification language for policies and define
policy compliance in Sec. 3.2. In Sec. 3.3, we show how we can com-
bine established verification techniques to verify code. We discuss the
soundness of our code verification approach in Sec. 3.4. Sec. 3.5 discusses
how we validate policies. Sec. 3.6 presents our Wireguard case study
and illustrates how we express established policy specification patterns
based on examples from previous works. The section also lists our trust
assumptions. Sec. 3.7 discusses related work, and Sec. 3.8 concludes.
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3.2. Security Policies

This section presents the representation of I/O behavior (Sec. 3.2.1), our
policy specification language (Sec. 3.2.2), and our threat model (Sec. 3.2.3).
Lastly, Sec. 3.2.4 defines when policies are satisfied.

To illustrate our policy framework and its application, we use a small
running example throughout this chapter. Consider a protocol to query
a person’s remaining vaccine protection duration from a server: Every
user has a pre-established id and private and public key ksk , kpk. First,
a user sends their id. Next, the application sends a challenge 𝑛. The
user signs the challenge with their private key. Finally, if the challenge
was successful, the application sends the remaining protection duration
encrypted with the public key. The server acquires the requested data by
querying a database, which also returns the client’s public key and a list
of compatible vaccines. Below is an informal description of the protocol.
For the sake of brevity, we simplify messages by omitting addresses, tags,
and additional ids.

Client → Server : id

Server → Client : n

Client → Server : enc(n, ksk)
Server → Database : id

Database → Server : (kpk , date, vaccines)
Server → Client : enc(date, kpk)

3.2.1. I/O Behavior

A program’s I/O behavior captures all communication with the pro-
gram’s environment. The I/O behavior of a program execution is repre-
sented as a sequence of I/O actions, which are executions of communication
primitives, such as sending or receiving a message. We refer to sequences
of I/O actions as traces.

I/O actions provide a language-independent representation of a pro-
gram’s I/O behavior [88–90]. To reason about a program in a specific [88]: Oortwĳn et al. (2019), Practical Ab-

stractions for Automated Verification of Mes-

sage Passing Concurrency

[89]: Penninckx et al. (2015), Sound, Mod-

ular and Compositional Verification of the

Input/Output Behavior of Programs

[90]: Xia et al. (2020), Interaction trees: rep-

resenting recursive and impure programs in

Coq

language, I/O actions can be linked to the I/O library of that language
by providing (trusted) specifications to the library methods expressing
which I/O action is performed by a method.

I/O Behavior of Programs. I/O actions have the form 𝑁(𝑥, 𝑟) for an
action name 𝑁 , an output 𝑥 forwarded to the environment, and an input 𝑟
obtained from the environment. E.g., the actions send(1, ) and recv( , 0)
represent sending a 1 and receiving a 0, respectively. We use a designated
default value if an action does not have an output or input. We omit
arguments when they are clear from the context.

A program’s I/O behavior is the set of traces of all partial program
executions. Considering partial executions allows us to represent a non-
terminating program execution via the set of finite prefixes of its infinite
traces. As a consequence, I/O behaviors are always prefix-closed. For
brevity, we sometimes omit partial executions that follow from prefix-
closedness, e.g. we write {recv(0) · send(1)} instead of {𝜖, recv(0), recv(0) ·
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Figure 3.2.: A deployment diagram for
the running example. Network commu-
nication happens via the receive and
send action. The action query commu-
nicates with the database.

Database Application Network
query

send

recv

send(1)}, where · and 𝜖 denote concatenation and the empty trace,
respectively. Concurrent programs are also represented by a single set
of traces. For instance, the trace recv(0) · recv(5) · send(6) · send(1) may
represent an execution where two threads each increment and forward a
received number, namely 0 and 5, respectively.

Example 3.2.1 Fig. 3.2 shows a deployment diagram for our running
example. The application communicates with clients via the network
and communicates with an external database via remote procedure
calls. The action send represents sending a packet over the network,
where the action’s output is the sent packet. Similarly, the input of
the action recv is the received packet. For brevity, a network packet
is only the message payload, represented as a bytestring. Network
addresses and headers are omitted. The action query represents a
remote procedure call to the external database. The action’s output is a
user id and the action’s input is the stored medical record 𝑟, consisting
of the public key 𝑟key, the protection date 𝑟date, and the compatible
vaccines 𝑟vacs. A trace of a single sequential execution of the protocol
may look as follows, where we use enc to denote the value obtained by
encrypting a given value with a given key:

recv(201) · send(13) · recv(enc(13, ksk))·
query(201, ((kpk , 02.02.22, v))) · send(enc(02.02.22, kpk))

3.2.2. Policy Specifications

Security policies classify the sensitivity of data and define what data
may be declassified, and when. A successful approach for language-
based policy frameworks is to specify (1) classification by annotating
library methods to express the sensitivity of inputs and outputs, and
(2) when declassification is permitted as a condition on the global state of
a program [78–81]. For instance in our running example, we may permit
declassifying enc(date, key) if (date, key) is stored in a designated queue
used by the implementation to store past queries.

To obtain language-agnostic policies, we lift this approach to I/O behav-
iors. For classification, we specify pre- and postconditions for I/O actions,
which we refer to as classification spec. To reason about declassification,
we extend I/O behaviors by declassification actions of the form decl(𝑥),
representing the declassification of value 𝑥. We call this extension IOD

behaviors. To be language-agnostic, we specify when declassification is
permitted as a condition on the trace of produced I/O actions and declas-
sification (instead of the language and implementation-specific program
state). We capture these conditions formally by specifying the set of traces
of I/O actions and declassification actions that an implementation may
produce, which we refer to as IOD spec. Our security policies are then a
tuple of a classification spec and an IOD spec.
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𝑎 ::= true | Low(𝑒) | 𝑎 ∧ 𝑎 | 𝑒 ⇒ 𝑎
Figure 3.3.: Assertion language for pre-
and postconditions. We use 𝑎 and 𝑒 to
range over assertions and expressions.

Definition 3.2.1 (Security Policy) A security policy (S, 𝑅) is a tuple of a

classification spec Sand an IOD spec 𝑅.

Expressing security policies on the level of IOD behaviors allows us
to abstract from concrete computations and data representations and,
thus, to express policies independent of a concrete implementation or
programming language. Prior work demonstrated that traces of I/O ac-
tions [55, 56] can nevertheless express the behavior of stateful distributed [55]: Sprenger et al. (2020), Igloo: soundly

linking compositional refinement and separa-

tion logic for distributed system verification

[56]: Arquint et al. (2023), Sound Verifica-

tion of Security Protocols: From Design to

Interoperable Implementations

systems. In particular, specifications of traces can refer to results of com-
putations by using mathematical functions. For instance, a specification
recv(𝑥) · send(hash(𝑥)) represents all executions that receive a value 𝑥

and then send the hash of 𝑥, where hash is a mathematical function
describing the result of a hashing algorithm, e.g. SHA-256, without
referring to its concrete code implementation. The formal connection
between the mathematical function and the code implementation is es-
tablished during code verification. This approach works for any stateful
computation whose result can be described as a mathematical function
of prior inputs. By abstracting from concrete states, our policies cannot
express declassification based on arbitrary program state, which is not
visible in the IOD behavior. However, none of our case studies required
this expressiveness.

3.2.2.1. Classification Spec

A classification spec expresses sensitivity requirements and guarantees
for data via pre- and postconditions for both I/O and declassification
actions. E.g., the precondition of the send action may express that the sent
payload must be low. We express this specification using the Hoare triple
{Low(𝑥)}send(𝑥){true}, where Low(𝑥) specifies that 𝑥 has low sensitivity.
Analogously, we can use a postcondition to express that received payloads
are assumed to be low: {true}recv(𝑟){Low(𝑟)}. For simplicity, we limit
sensitivity levels to {Low,High}, where High and Low specify that data is
confidential and not confidential, respectively. An extension to arbitrary
sensitivity lattices is straightforward [91]. [91]: Naumann (2006), From Coupling Re-

lations to Mated Invariants for Checking

Information FlowThe pre- and postconditions of a classification spec are expressed in the
assertion language shown in Fig. 3.3. Assertions may combine sensitivity
with logical constraints, for instance, to express sensitivity depending
on the values of inputs and outputs. E.g., for the action query(id, 𝑟), the
postcondition Low(𝑟key) ∧ (id ∈ Public ⇒ Low(𝑟)) specifies that the public
keys are low and if the id is in some fixed set Public, then the entire record
is low.

Every output or input that is not explicitly specified as low is, by default,
considered to be potentially high. For instance, the specification triple
{true}getKey(𝑟){Low(len(r))} expresses that the length of the input 𝑟 is
low, whereas other aspects of 𝑟, such as the actual content, are potentially
high.
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For declassification, the triple {Low(𝑝)}decl(𝑝, 𝑥){Low(𝑥)} expresses that
after declassification, we may assume that 𝑥 has low sensitivity, capturing
information release. The role of the additional parameter 𝑝 will be
explained in Sec. 3.2.2.2.

I/O actions may leak information even if all outputs actually have low
sensitivity because the occurrence of the action itself reveals information
about the control flow in the program. To reason about such indirect
information flow, we also classify each I/O action as low or high; the
occurrence of low actions can be observed by the attacker and, thereby,
must not depend on high data. For simplicity, we assume in this chapter
that all I/O actions are low, i. e. whether an action occurs must never
depend on high data. Our implementation provides an annotation to
specify action sensitivity.

Example 3.2.2 In our running example, we assume that attackers
have access to the network and observe sent and received payloads.
Conversely, we consider the communication channel with the database
to be secure. Moreover, we consider the stored public keys to be low. For
the action query, we specify that the queried id and the public key of
the record are low, but the protection date and the compatible vaccines
are (implicitly) potentially high: {Low(id)}query(id, 𝑟){Low(𝑟key)}.

3.2.2.2. IOD Spec

IOD specs specify all traces permitted by a policy. Since traces include
declassification actions, the permitted traces capture what data may be
declassified and when. Our policy framework does not prescribe how
IOD specs are expressed. In this chapter, we use IOD-guarded transition

systems, which extend the transition systems by Sprenger et al. [55] with[55]: Sprenger et al. (2020), Igloo: soundly

linking compositional refinement and separa-

tion logic for distributed system verification

declassification. In our implementation and evaluation, we express IOD
specs also in separation logic [55, 89, 90] to leverage existing verification

[55]: Sprenger et al. (2020), Igloo: soundly

linking compositional refinement and separa-

tion logic for distributed system verification

[89]: Penninckx et al. (2015), Sound, Mod-

ular and Compositional Verification of the

Input/Output Behavior of Programs

[90]: Xia et al. (2020), Interaction trees: rep-

resenting recursive and impure programs in

Coq

tools.

Definition 3.2.2 (IOD-guarded transition system) An IOD-guarded

transition system is a labeled transition system (𝑆,Act, 𝑉 , 𝐺,𝑈), where 𝑆

is a set of states, Act is a set of action names, 𝑉 is a set of output and input

values, 𝐺 : 𝑆×Act×𝑉 → {⊤,⊥} is a guard, and𝑈 : 𝑆×Act×𝑉×𝑉 → 𝑆

is an update function.

An IOD-guarded system induces the following transition relation:

→ = {(𝑠0 ,N(𝑥, 𝑟), 𝑠1) | 𝐺(𝑠0 , 𝑁 , 𝑥) ∧ 𝑠1 = 𝑈(𝑠0 , 𝑁 , 𝑥, 𝑟)}

We lift the relation to traces, where (𝑠, 𝜖, 𝑠) ∈→∗ and (𝑠, 𝑡·N(𝑥, 𝑟), 𝑠′′) ∈→∗
whenever (𝑠, 𝑡 , 𝑠′) ∈→∗ and (𝑠′,N(𝑥, 𝑟), 𝑠′′) ∈→ for some 𝑠′. Given a set
of initial states 𝑆0 ⊆ 𝑆, the traces of an IOD-guarded system are all traces
𝑡 with (𝑠0 , 𝑡 , 𝑠

′) ∈→∗ for some states 𝑠0 ∈ 𝑆0 and 𝑠′ ∈ 𝑆.

It is essential for soundness that an IOD spec prescribes all declassifica-
tions deterministically. To understand why, consider a situation where an
IOD spec permits the declassification of either 𝑥 or 𝑦. This would allow
implementations to choose which of the two to declassify. In particular,
an implementation could make this choice depending on a secret and,
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thereby, leak it. To prevent such situations, we require that any declassi-
fication of sensitive data in an IOD spec is determined by the previous
actions on the trace.

This determinism requirement is sound, but too restrictive in practice.
Continuing our hypothetical example from the previous paragraph,
applications should have the freedom to declassify either 𝑥 or 𝑦, as long
as the choice does not depend on a secret. To allow that, we parameterize
our declassification action with an additional parameter 𝑝, which can
be used as a tag, to distinguish different occurrences of declassification.
With this addition, we require the declassified value to be determined by
the previous actions on the trace and the value of 𝑝. By requiring 𝑝 to be
low, implementations cannot choose it depending on a secret, thereby
avoiding unintentional leaking. The following definition captures this
intuition.

Definition 3.2.3 (Well-defined IOD spec) An IOD spec 𝑅 is well-defined

if for every trace 𝑡 and all values 𝑥1 , 𝑥2 , 𝑝,

𝑡 · decl(𝑝, 𝑥1) ∈ 𝑅 ∧ 𝑡 · decl(𝑝, 𝑥2) ∈ 𝑅 ⇒ 𝑥1 = 𝑥2.

Example 3.2.3 The following IOD-guarded transition system for our
running example permits the declassification of the encrypted server
response enc(date, kpk), where date and kpk are the protection date and
public key returned from the database.

send(𝑥) : ⊤ ▷ 𝑠 recv(𝑟) : ⊤ ▷ 𝑠

query(id, 𝑑) : ⊤ ▷ 𝑠[id ↦→ (𝑑date , 𝑑key)]
decl(id, 𝑥) : id ∈ 𝑠 ∧ 𝑥 = enc(𝑠[id]date , 𝑠[id]key) ▷ 𝑠

We use the notation N(𝑥, 𝑟) : 𝐺(𝑠, 𝑁, 𝑥) ▷𝑈(𝑠, 𝑁, 𝑥, 𝑟). The state 𝑠 (of
the transition system, not a concrete implementation) is a map from
ids to the last-queried key and date. It is changed only in the update
of query. The guard for declassification expresses what data may be
classified; it uses id as a low parameter to satisfy the well-definedness
requirement from Def. 3.2.3. The guards of all other actions are true.
Note how the mathematical function enc lets us describe the effect of a
(possibly stateful) computation performed by the implementation, as
explained above.

3.2.3. Threat Model

We consider attackers that know the executed code and can observe the
low data of performed I/O. However, they do not have direct access to
the machines on which code is run and cannot inspect memory. We do
not consider side channels such as timing information. An extension
to timing channels is interesting future work and can be tackled by
moving from formal guarantees based on possibilistic secure information
flow [92] to a probabilistic model [93]. [92]: Smith et al. (1998), Secure Informa-

tion Flow in a Multi-Threaded Imperative

Language

[93]: Sabelfeld et al. (2000), Probabilis-

tic Noninterference for Multi-Threaded Pro-

grams

The observational capabilities of attackers are defined by a security
policy’s classification spec. A program that complies with a given policy
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is secure against attackers that can observe (at most) the data and actions
classified as low.

3.2.4. Policy Compliance

Whether a program satisfies a security policy is determined entirely over
the program’s IOD behavior. To satisfy the policy’s IOD spec 𝑅, the IOD
behavior of the program (that is, its set of traces) has to be a subset of
𝑅. To satisfy its classification spec S, the program’s IOD behavior has to
satisfy secure information flow, where requirements and assumptions
about low sensitivity are specified by S. We focus on the latter property
in this subsection, in particular, on defining secure information flow as a
variation of observational determinism that permits non-deterministic
I/O behaviors.

Note that declassification is handled by the combination of both require-
ments. The IOD spec expresses where a declassification may occur in a
trace, and the classification spec of declassification actions ensures that
the occurrence of a declassification action does not depend on a secret (see
Sec. 3.2.2.2) and expresses that declassified data has low sensitivity.

3.2.4.1. Secure Information Flow

We define secure information flow (SIF) based on observational determin-
ism (OD) [82, 83], a widely-used criterion that is supported by standard[82]: McLean (1992), Proving Noninter-

ference and Functional Correctness Using

Traces

[83]: Roscoe (1995), CSP and determinism

in security modelling

code verification techniques [85, 94] and, thus, enables us to use off-the-

[85]: Eilers et al. (2018), Modular Product

Programs

[94]: Eilers et al. (2021), Product Programs

in the Wild: Retrofitting Program Verifiers

to Check Information Flow Security

shelf program verifiers to prove that a program satisfies a policy (see
Sec. 3.3).

However, OD has a critical limitation. A program satisfies OD only if its
low outputs are deterministic in the low inputs. This definition ensures
that low outputs do not depend on confidential data. However, real-world
programs usually have non-deterministic IOD behavior, for instance, due
to concurrency and memory allocation, such that standard OD is not
applicable.

Existing solutions [14, 95] for language-specific frameworks solve this[14]: Ernst et al. (2019), SecCSL: Security

Concurrent Separation Logic

[95]: O’Neill et al. (2006), Information-

Flow Security for Interactive Programs

problem by externalizing the non-deterministic choices. That is, they
make program executions artificially deterministic by parameterizing the
language semantics with an oracle that captures the non-deterministic
choices of an execution, for instance, how threads have been scheduled or
how memory has been allocated. OD is then satisfied if the low outputs
are deterministic in the low inputs and the oracle. The same technique
is also used to reason about applied 𝜋-calculus and its extensions, for
instance, to prove observational equivalence [96, 97].[96]: Ryan et al. (2011), Applied pi calculus

[97]: Goubault-Larrecq et al. (2007), A

Probabilistic Applied Pi-Calculus We adapt the idea of externalizing non-deterministic choices to IOD
behavior. Instead of parameterizing executions with oracles, we extend
traces with the information about non-deterministic choices, which we
refer to as extensions. While language-specific approaches know where
non-deterministic choices happen, our language-agnostic framework
does not have this information. Therefore, we allow extensions at any
point in the trace, but introduce a soundness condition called input-

closedness to ensure that traces are not extended incorrectly.
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An IOD behavior then satisfies SIF if there exists an input-closed extension
that satisfies OD. In the following, we explain extensions and input-
closedness. We provide formal definitions in Sec. 3.2.4.2.

Extensions. An IOD behavior 𝑇′ is an extension of 𝑇 if 𝑇′ is obtained by
adding auxiliary actions into 𝑇’s traces. The added auxiliary actions are
not actually produced by the program, but instead are used to justify
that a program satisfies SIF.

Consider the program (send(1) || send(2)), which sends 1 and 2 in
parallel. The IOD behavior of the program is {send(1) · send(2), send(2) ·
send(1)}. The program does not satisfy OD because the sent message
is not deterministic. However, the program is secure since the sent
message is independent of any confidential data. Extensions allow us to
make the secret-independence of non-deterministic behaviors explicit.
In our example, a suitable extension introduces an auxiliary action
Sched that captures whether the scheduler executes the left or right
parallel branch first: {Sched(L) · send(1) · send(2), Sched(R) · send(2) ·
send(1)}. Auxiliary actions have their own classification spec. With
the spec {true}Sched(𝑥){Low(𝑥)}, our extension satisfies OD as the sent
messages are now deterministic in the scheduler choice.

To ensure that declassifications happen only if permitted by the policy,
auxiliary actions must not implicitly declassify data, that is, their classifica-
tion specs are not allowed to describe declassifications, e.g. by specifying
that an output is low in the postcondition. For simplicity, we enforce
that auxiliary actions always have the spec {Low(𝑥)}N(𝑥, 𝑟){Low(𝑟)}, i. e.

auxiliary actions do not take high data and, therefore, never declassify
anything (for auxiliary actions that do not have an output, the precon-
dition Low( ) is equivalent to true). This spec is sufficient to verify our
case studies in Gobra. Our Isabelle/HOL formalization defines a weaker
criterion for the classification spec of auxiliary actions that expresses that
specs do not describe declassifications.

Our formal definition of SIF below allows one to choose an extension for
each program and policy. To reduce the necessary specification overhead,
our implementation fixes the extension and the classification spec for
auxiliary actions.

Example 3.2.4 We have formalized our approach based on SecCSL [14] [14]: Ernst et al. (2019), SecCSL: Security

Concurrent Separation Logic

,
a logic for a simple concurrent programming language with references.
For this programming language, we introduce two auxiliary actions. For
concurrency, the action Sched(𝛾, 𝜏) has as input the information which
thread is scheduled next. The output is necessary for input-closedness
and explained in Example 3.2.5. Because extensions contain which
thread is scheduled next, the IOD behavior becomes deterministic.
For heap state, the action Init(𝑠) is added as the first action of a trace
and has as input the initial heap memory. For both actions, input and
output are classified as low. More details are discussed in Sec. 3.4.

Input-closedness. Without restrictions, extensions can trivially invalidate
SIF by laundering confidential inputs. Consider the insecure IOD behavior
{getKey(𝑥) · send(𝑥) | 𝑥 ∈ ℕ}, which first gets a confidential key 𝑥 and
then sends it on a public channel. An invalid extension can mask the
origin of 𝑥 by adding an auxiliary action In(𝑥) that has the key as low
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input, e.g. as {getKey(𝑥) · In(𝑥) · send(𝑥) | 𝑥 ∈ ℕ}. This IOD behavior
satisfies OD. However, since the auxiliary action is not present in an actual
program execution, it remains insecure.

To prevent auxiliary actions from masking the origin of inputs, we require
extensions to be input-closed: an extension must contain traces for all
possible inputs of actions. The above extension violates this condition
because it contains only traces where the inputs from getKey and In are
the same. If we add traces where both actions receive different inputs, the
insecurity becomes apparent.

Example 3.2.5 We have formally proved that our extensions chosen
for SecCSL are input-closed (see Sec. 3.4). The action Init(𝑠) trivially
maintains input-closedness because the IOD behavior contains traces
for all possible initial heap memories. For Sched(𝛾, 𝜏), we have to
show that every possible input of Sched may actually be scheduled.
In SecCSL’s language, all unblocked threads may be scheduled; these
are captured by the current program configuration 𝛾. Defining the
inputs of Sched accordingly requires us to add 𝛾 as an output (see
Sec. 3.2.4.2).
By classifying Sched’s output and input as low, we recover a standard
OD reasoning principle for concurrent programs: If we show that
control flow is low, and thus the current configuration is low then we
may assume that decisions made by the scheduler are low.

3.2.4.2. Formal Definition of Secure Information Flow

We will now define the concepts introduced in the previous subsubsec-
tion.

Extensions. We introduce a projection actual(·), removing auxiliary ac-
tions from traces, e.g. actual(In(𝑥) · recv(𝑟)) = recv(𝑟), where In(𝑥) is an
auxiliary action. We lift the projection also to sets of traces. Therefore, an
IOD behavior 𝑇′ is an extension of 𝑇 if actual(𝑇′) = 𝑇 holds.

Input-closedness. Def. 3.2.4 defines formally when a set of traces is
input-closed. As discussed, if an action has some input 𝑟, then for every
possible input 𝑟′ of that action, there must be a trace where the action
has input 𝑟′. An input is possible if it occurs in some trace (expressed
with 𝑡′ · 𝑁(𝑥, 𝑟′) in Def. 3.2.4).

Definition 3.2.4 (Input-Closed IOD Behaviors) A set of traces 𝑇 is

input-closed if

𝑡 · 𝑁(𝑥, 𝑟) ∈ 𝑇 ∧ 𝑡′ · 𝑁(𝑥, 𝑟′) ∈ 𝑇 ⇒ 𝑡 · 𝑁(𝑥, 𝑟′) ∈ 𝑇

Low Data Projection. To define OD, we have to express which data
is required and assumed to be low. In our framework, this is the data
classified as low by pre- and postconditions, respectively. For this purpose,
we introduce two projections ·↓pre

S
and ·↓post

S
which can be applied to

actions and remove any data that is not low according to the action’s
classification spec (for the pre- and postcondition, respectively). For the
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classification spec of our running example, we have for instance:

send(𝑥)↓pre
S
= send(𝑥) recv(𝑟)↓post

S
= recv(𝑟)

query(id, 𝑑)↓post
S

= query(𝑑key) decl(𝑥)↓post
S

= decl(𝑥)

Recall that N(𝑥) and N(𝑟) are shorthands for N(𝑥, ) and N( , 𝑟), respec-
tively. We lift the projections from single actions to traces.

Observational Determinism. We build on the definition of OD intro-
duced by Clarkson and Schneider [21]. Their definition does not consider [21]: Clarkson et al. (2008), Hyperproper-

tiesprogress channels, i. e. information may be released by not producing
observable actions, e.g. due to an infinite loop. To prevent such informa-
tion leakage, we require in addition progress sensitivity [98], enforcing [98]: Askarov et al. (2008), Termination-

Insensitive Noninterference Leaks More

Than Just a Bit

the absence of progress channels. In the definitions below, we refer to
Clarkson and Schneider’s definition as progress-insensitive OD.

An IOD behavior satisfies progress-insensitive OD if for every action, the
data expected to be low is deterministic in the data assumed to be low
for previous actions. Determinism is expressed formally by considering
pairs of extended traces.

Definition 3.2.5 (Progress-Insensitive S-OD) A set of traces 𝑇 satisfies

progress-insensitive S-OD if, for all of traces 𝑡1 , 𝑡2 and actions 𝑒1 , 𝑒2 with

𝑡1 · 𝑒1 ∈ 𝑇 and 𝑡2 · 𝑒2 ∈ 𝑇,

𝑡1↓post
S

= 𝑡2↓post
S

⇒ 𝑒1↓pre
S
= 𝑒2↓pre

S
.

The definition of progress sensitivity is analogous. An IOD behavior
satisfies progress sensitivity if whether or not a trace makes progress
is deterministic in the data previously assumed to be low. Formally, we
specify that if one trace has more progress than another trace, i. e. is
longer, then the shorter trace can be extended.

Definition 3.2.6 (Progress Sensitivity) A set of traces 𝑇 satisfies progress

sensitivity for a classification spec S if, for all of traces 𝑡1 , 𝑡2 and every action

𝑒1 with 𝑡1 · 𝑒1 ∈ 𝑇 and 𝑡2 ∈ 𝑇,

𝑡1↓post
S

= 𝑡2↓post
S

⇒ ∃𝑒2. 𝑡2 · 𝑒2 ∈ 𝑇.

Definition 3.2.7 (S-OD) A set of traces 𝑇 satisfies S-OD if 𝑇 satisfies

progress-insensitive S-OD and progress-sensitivity for S.

Secure Information Flow. Given all the defined ingredients, we can
define SIF as discussed in Sec. 3.2.4.1. We use (S+ NoDecl) to denote the
classification spec, which uses S for actual actions and specifies the triple
{Low(𝑥)}N(𝑥, 𝑟){Low(𝑟)} for all auxiliary actions.

Definition 3.2.8 (S-SIF) A set of traces 𝑇 satisfies S-SIF if there exists an

extension 𝑇′
such that (1) actual(𝑇′) = 𝑇, (2) 𝑇′

is prefix-closed, (3) 𝑇′
is

input-closed, (4) 𝑇′
satisfies (S+ NoDecl)-OD.

As motivated throughout this chapter, our definition of secure informa-
tion flow does not require that IOD behavior is deterministic. In fact, we
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are able prove that every IOD behavior satisfies secure information flow
if it does not involve confidential data, i. e. if the arguments of all actions
are classified as low by the classification spec.

Lemma 3.2.1 Every IOD behavior 𝑇 satisfies NoDecl-SIF

3.2.4.3. Composition of Policy Compliance

In our running example, we consider the case that a single implementation
satisfies a given policy. However, our use of IOD traces enables us to
also reason about whether a set of implementations that run together
in a distributed system satisfies a policy. For instance, consider that we
extend our running example with the feature to also query the list of
compatible vaccines (in addition to the remaining vaccine protection).
To improve availability or performance, real-world implementations
may want to implement the application with a set of servers, some
handling only vaccine protection requests, some handling only vaccine
compatibility requests, and even some handling both. Our security
policies are expressive enough to handle that a single policy governing
the vaccine protections and compatible vaccines is satisfied by such a set
of servers together.

The key ingredient is that policy compliance is compositional: If two IOD
behaviors 𝑇1 and 𝑇2 satisfy two policies (S1 , 𝑅1) and (S2 , 𝑅2), respectively,
then the parallel composition of 𝑇1 and 𝑇2, i. e. the IOD behavior of both
programs running together in a distributed system, satisfies a composition
of both policies. Compositionality makes the following workflow possible:
If a policy is satisfied by multiple programs 𝑇1 , . . . , 𝑇𝑛 , then we first
decompose a policy (S, 𝑅) into one policy (S𝑖 , 𝑅𝑖) per program 𝑇𝑖 such
that the parallel composition of the policies (S𝑖 , 𝑅𝑖) is the original policy
(S, 𝑅). Afterward, using our standard code verification technique, we
verify separately that each program𝑇𝑖 satisfies its respective policy (S𝑖 , 𝑅𝑖).
Compositionality entails that if all programs satisfy their respective policy,
then the parallel composition of all programs satisfies the original policy
(S, 𝑅). This approach is inspired by the work by Sprenger et al. [55], where[55]: Sprenger et al. (2020), Igloo: soundly

linking compositional refinement and separa-

tion logic for distributed system verification

a global I/O spec is decomposed into an I/O spec per implementation,
which is then verified.

We first define the parallel composition of IOD behaviors and then
formally capture the compositionality of policy compliance.

Parallel Composition of IOD Behaviors. We define the parallel com-
position of IOD behaviors as the set of all interleavings of traces of
both IOD behaviors. Def. 3.2.9 shows our formal definition of the set of
interleavings for a pair of traces. The interleavings are all combinations
of actions that maintain the relative order of actions. For instance, the
interleavings of recv(𝑎1) · send(𝑎2) and send(𝑏1) are

sendR(𝑏1) · recvL(𝑎1) · sendL(𝑎2)
recvL(𝑎1) · sendR(𝑏1) · sendL(𝑎2)
recvL(𝑎1) · sendL(𝑎2) · sendR(𝑏1)
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We mark actions (NL and NR) to identify from which program an action
originates. Recall that in our model, communication between programs
happens via the environment, which may interfere with all actions. As a
consequence, our composition of IOD behaviors does not synchronize
actions, e.g. the receive action of one program does not have to happen
after the send action of another program since the environment may
send messages by itself.

Definition 3.2.9 (Composition of Traces) For two traces 𝑡0 and 𝑡1, we

define their set of interleavings, denoted as (𝑡0 ∥ 𝑡1), as the smallest set such

that,

▶ 𝜖 ∈ (𝜖 ∥ 𝜖)
▶ 𝑡′ ∈ (𝑡0 ∥ 𝑡1) ⇒ NL(𝑥, 𝑟) · 𝑡′ ∈ (N(𝑥, 𝑟) · 𝑡0 ∥ 𝑡1)
▶ 𝑡′ ∈ (𝑡0 ∥ 𝑡1) ⇒ NR(𝑥, 𝑟) · 𝑡′ ∈ (𝑡0 ∥ N(𝑥, 𝑟) · 𝑡1)

The parallel composition of two IOD behaviors𝑇0 and𝑇1 is then the union
of all interleavings, i. e. (𝑇0 ∥ 𝑇1) =

⋃{(𝑡0 ∥ 𝑡1) | 𝑡0 ∈ 𝑇0 ∧ 𝑡1 ∈ 𝑇1}.

Composition of Policies. Lemma 3.2.2 formalizes the compositionality
of policy compliance discussed above. We use S1 + S2 to denote the
classification spec that classifies the actions of the two IOD behaviors
with S1 and S2, respectively.

To decompose a policy (S, 𝑅) into two policies (S1 , 𝑅1) and (S2 , 𝑅2) (for
two programs), we have prove that S= S1 + S2 and 𝑅 = (𝑅1 ∥ 𝑅2) holds.
The first condition S= S1 + S2 holds trivially as long as the decomposed
classification specs S1 and S2 specify the same classifications as the
original classification S. Proving the second condition 𝑅 = (𝑅1 ∥ 𝑅2)
may be more involved depending on the representation of the IOD spec.
In this work, we do not provide techniques to decompose IOD specs.
For instance, the work by Sprenger et al. [55, 56] proposes techniques to [55]: Sprenger et al. (2020), Igloo: soundly

linking compositional refinement and separa-

tion logic for distributed system verification

[56]: Arquint et al. (2023), Sound Verifica-

tion of Security Protocols: From Design to

Interoperable Implementations

perform such decompositions.

As a minor technical detail, satisfying a policy with a set of programs
requires that actions have an additional parameter to account for the
markings NL and NR. Such a parameter does not rule out that a policy is
satisfied by a single component.

Lemma 3.2.2 (Compositionality of Policy Compliance) For all IOD

behaviors 𝑇1 and 𝑇2 satisfying the policies (S1 , 𝑅1) and (S2 , 𝑅2), respectively,

the parallel composition of the IOD behaviors (𝑇1 ∥ 𝑇2) satisfies the policy

(S1 + S2 , (𝑅1 ∥ 𝑅2)).

3.3. Code Verification

To enable code verification in a given language, we first equip the language
and its libraries to record the performed IOD behavior, introduce auxiliary
actions to enable us to verify non-deterministic programs, and prove that
the resulting extended IOD behaviors are input-closed. This lets us verify
that a program in that language satisfies a security policy by proving the
two requirements of policy compliance, namely that the IOD behavior
satisfies the IOD spec and that the extended IOD behavior satisfies OD.
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We illustrate code verification using Gobra (see Chapter 2), which we
adapted to support OD reasoning. We discuss how we record IOD
behavior in Sec. 3.3.1, and explain how we verify policy compliance for a
given program in Sec. 3.3.2.

Changes to Gobra. Gobra previously did not support OD reasoning.
We implemented support for standard OD reasoning using an existing
product construction [85], which simulates two executions of the input[85]: Eilers et al. (2018), Modular Product

Programs program by a single execution of the constructed product program,
which can then be verified by off-the-shelf verifiers such as Gobra.
Since Gobra is built on top of Viper, we did not have to implement a
product construction for Go, but instead used Viper’s product program
construction as proposed by Eilers et al. [94].[94]: Eilers et al. (2021), Product Programs

in the Wild: Retrofitting Program Verifiers

to Check Information Flow Security Our extended version of Gobra supports the relational low assertion

low(·) [23, 85]; low(e) expresses that the value of the expression e is low[23]: Barthe et al. (2011), Relational Verifi-

cation Using Product Programs

[85]: Eilers et al. (2018), Modular Product

Programs

according to OD (as formalized in Sec. 3.2.4.2). As such, low(e) holds if
e’s value is deterministic in the values known to be low.

We enforce the common restriction that programs must not branch on
secrets [78, 93, 99, 100]. This restriction may be lifted for sequential code,[78]: Schoepe et al. (2020), VERONICA:

Expressive and Precise Concurrent Informa-

tion Flow Security

[93]: Sabelfeld et al. (2000), Probabilis-

tic Noninterference for Multi-Threaded Pro-

grams

[99]: Murray et al. (2018), COVERN: A

Logic for Compositional Verification of Infor-

mation Flow Control

[100]: Smith (2007), Principles of Secure

Information Flow Analysis

but is necessary for concurrent code where timing differences between
branches may affect a program’s low I/O behavior. This restriction
includes implicit branches on secrets. For instance, in Go, dynamic calls
branch implicitly on the receiver’s dynamic type. Gobra verifies for all
branch conditions e, e.g. the conditions of if-statements and loops as well
as the dynamic types of dynamic calls, that low(e) holds.

3.3.1. Recording IOD Behavior

For every programming language, we need to define how we abstract
executions of programs in that language to IOD traces. As discussed in
Sec. 3.2.1, we assume that I/O actions are performed by a set of trusted
library methods. For declassification, we add a ghost method to the I/O
library that is called to declassify data. In order to reason about the IOD
behavior of a program, we use an existing specification technique [79,
80]: we record the produced IOD trace of a program execution explicitly[79]: Murray et al. (2023), Assume but

Verify: Deductive Verification of Leaked In-

formation in Concurrent Applications

[80]: Banerjee et al. (2008), Expressive De-

classification Policies and Modular Static

Enforcement

in ghost state. To this end, we add a global trace data structure to the
program, which is accessed via a ghost pointer Trace. This trace is
initially empty and gets extended by library methods that produce an
I/O or declassification action. To describe this effect, we equip each such
method with a specification that expresses which action it appends to
the recorded trace. Using this technique, the abstraction of a program
execution to an IOD trace is explicitly available for verification, but does
not incur any run-time overhead since the trace structure is ghost code
and will be erased during compilation.

Fig. 3.4 shows the specification of some library methods, including
declassification. Recall that we simplify IOD actions for the sake of brevity,
so arguments such as target addresses are omitted. The preconditions,
preceded by req, specify that permissions to the ghost pointer Trace and
the parameter array msg is transferred to the method. The postconditions,
preceded by ens, specify that the permission to the global trace is returned
to the caller, such that the caller can use it for subsequent calls. Moreover,
the postconditions express which action has been appended to the trace.
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1 req acc(Trace) && acc(msg)
2 ens acc(Trace) && *Trace = old(*Trace) · send(Abs(msg))
3 func Send(msg []byte)
4
5 req acc(Trace)
6 ens acc(msg)
7 ens acc(Trace) && *Trace = old(*Trace) · recv(Abs(msg))
8 func Recv() (msg []byte)
9

10 req acc(Trace)
11 ens acc(Trace) && *Trace = old(*Trace) · decl(p,value)
12 ghost func Declassify(p, value any)

Figure 3.4.: Specifications of library
methods producing IOD actions. Specifi-
cations about Trace describe an atomic
effect. Data is declassified via the
Declassify ghost method. Abs returns
the bytes stored in an array.

The expression old(*Trace) denotes the value of the trace before the
call. The function Abs returns the sequence of bytes stored in an array.
For instance, *Trace = old(*Trace) · send(Abs(msg)) expresses that
at some point during the call, the trace is appended with the action
send(Abs(msg)).

As discussed in Sec. 3.2.4, (extended) traces include, besides I/O and
declassification actions, auxiliary actions that describe non-deterministic
choices. These choices are typically taken implicitly by the language
semantics, without invoking an explicit operation. For instance, the
action Sched occurs whenever the run-time system schedules a different
thread. For each programming language, we define which auxiliary
actions are produced and prove, based on the language semantics, that
the resulting extended IOD behavior is input-closed. In contrast to I/O
and declassification actions, we do not record auxiliary actions on the
global trace. Instead, we prove that any requirement imposed on auxiliary
actions is indeed enforced by the used verification logic wherever such
an auxiliary action may occur. For instance, Sched(𝛾, 𝜏) requires that the
current program configuration is low, which is enforced in Gobra and
SecCSL by requiring that all branch conditions are low.

In summary, our ghost trace records the I/O and declassification actions
performed by a program execution, but not the auxiliary actions, which
are handled differently. Since program verification proves properties of
a program for all possible executions and, in particular, for all possible
values of our ghost trace, verification captures the program’s entire IOD
behavior (except auxiliary actions). Note that the entire machinery to
maintain the ghost trace and to handle auxiliary actions needs to be set
up once for a programming language and can then be re-used for the
verification of each program written in that language.

3.3.2. Verifying Policy Compliance

To verify that a program satisfies a policy, we have to prove that (1) the
program’s IOD behavior satisfies the IOD spec and (2) the program’s
extended IOD behavior satisfies S-OD for the classification spec (together
with input-closedness proved for the programming language, S-OD
implies S-SIF). In this subsection, we explain how we specify security
policies in Gobra, discuss how we verify these two properties, and
illustrate verification on our running example.

Specifying Security Policies in Gobra. We express security policies
in Gobra as implementations of an interface Policy. This interface is



58 3. Verifiable Security Policies for Distributed Systems

Figure 3.5.: The Policy interface (top
segment) prescribing the functions that
need to be implemented to define a con-
crete security policy in Gobra. The two
bottom segments specify the security pol-
icy for our running example.

1 interface Policy {
2 pure Classification(Action) Spec
3 pure Guard(State,Action) bool
4 pure Update(State,Action) State
5 }
6
7 pure func (Vac) Classification(action Action) Spec {
8 return (match action {
9 case query{?id,?f}: Spec{Low(id), Low(f.key)}

10 case decl{?id,?x}: Spec{Low(id), Low(x)}
11 case ?a: Spec{Low(a.out),Low(a.in)} })}
12
13 pure func (Vac) Guard(st State, action Action) bool {
14 return (match action {
15 case decl{?id,?x}:
16 id ∈ st && x = enc(st[id].date,st[id].key)
17 case _: true })}
18
19 pure func (Vac) Update(st State, action Action) State {
20 return (match action {
21 case query{?id,?f}: st[id := {f.date,f.key}]
22 case _: st })}

defined in a re-usable library and prescribes three functions that need
to be defined for each concrete security policy (see top of Fig. 3.5). This
library also contains a representation of actions, the states of the IOD
transition system, assertions, and specifications as terms of an algebraic
datatype (ADT), together with functions that yield these terms. For
instance, True() and Low(e) are function calls that yield terms for the
assertions true and Low(e), respectively. Our library defines a function
for each assertion of the assertion language defined in Fig. 3.3. Similarly,
the call Spec{P,Q} yields a tuple term consisting of the precondition P

and the postcondition Q.

Lines 7–22 in Fig. 3.5 show the implementation Vac of the Policy in-
terface for our running example. The classification spec of a security
policy is captured by the function Classification. Lines 7–11 express
the classification spec for our running example as discussed in Exam-
ple 3.2.2. The Classification function takes an action and returns its
spec, consisting of a precondition and a postcondition. The function uses
pattern matching to distinguish the different actions. The prefix ? binds
matched arguments. For instance, the pattern query{?id,?f} matches
the action query and binds its output and input to the variables id and
f, respectively. For instance, the case for query{?id,?f} expresses that
the action requires id to be low and ensures that the key of the resulting
record f is low. The default case at Line 11 handles receive and send
actions. The ADT destructors .out and .in return an action’s output and
input, respectively.

The IOD-guarded transition system defining the IOD spec of a security
policy is expressed via the functions Guard and Update (Lines 13–22). The
guard function takes the state of the transition system and an action, and
yields whether the action is enabled in that state. The update function
also takes a state and an action and updates the state. Both function
definitions correspond directly to the IOD transition system presented in
Example 3.2.3.

Verifying the IOD Spec. As we discussed in Sec. 3.3.1, our global trace
records all actions performed by a program. Therefore, we can prove that
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a program’s IOD behavior satisfies the IOD spec by showing that the
recorded trace is one of the traces induced by the IOD-guarded transition
system (see Sec. 3.2.2.2). In other words, we need to prove that there
exists a state in the transition system that is reachable by performing the
actions in the recorded trace. This property holds trivially at the program
start, when the recorded trace is empty. We impose a proof obligation
that this property is preserved whenever the trace is extended (that is,
when an I/O or declassification action is performed).

To encode this approach, our library defines a functionReaches(𝑝,𝑡,𝑠) to
express that 𝑡 is a trace of the IOD spec defined by the policy 𝑝 and reaches
state 𝑠 from the initial state. Conceptually, we impose a proof obligation
∃ st :: Reaches(p, *Trace, st) for each operation that performs an
action to check that the trace extended by the performed action is still
permitted by the IOD-guarded transition system (here, p is the instance
of the security policy). In practice, we avoid the existential quantifier
by storing the transition system state explicitly in a ghost variable and
updating it using the Update function of the policy whenever an action is
performed. This allows us to instantiate the existential quantifier directly
and, thereby, avoid a well-known weakness of SMT solvers.

Imposing proof obligations whenever an action is performed (instead
of checking that the trace is permitted at the end of the program) leads
to simpler proof obligations and works for non-terminating programs.
However, this approach cannot verify programs that branch on a secret,
but perform equivalent actions in both branches, e.g. if h {Send(1)}

else {Send(1)}, where h is confidential. This limitation is not relevant
for our code verification in Gobra and SecCSL, where we disallow
branching on secrets anyway.

Verifying Observational Determinism. To prove that a program satisfies
OD, we have to prove progress-insensitive S-OD (Def. 3.2.5) and progress
sensitivity (Def. 3.2.6). The latter is trivial in our setting: since we do not
allow branching on secrets, the termination of loops and calls (that is,
progress) cannot depend on a secret.

To verify progress-insensitive S-OD, we have to prove that the arguments
of each action on the recorded trace that are classified as low by the
action’s preconditions are deterministic in the arguments of the previous
actions on the trace that are classified as low by their postconditions. As
for verifying the IOD spec, this property holds trivially for the empty
trace and we check that this property is preserved whenever the trace
is extended. Before performing an action, we assume low(*Trace↓post

S
)

and then check after the action that low(*Trace↓pre
S
) holds. Our reusable

library defines functions Pre(𝑝,𝑡) and Post(𝑝,𝑡) to express the low
data projections 𝑡↓pre

S
and 𝑡↓post

S
, respectively.

Concurrency Reasoning. As we have seen so far, our proof obligations
for code verification are expressed in terms of the recorded trace, which
is stored in a mutable ghost data structure. Standard separation logic
ensures that mutable state is exclusively owned: only one method can
hold the permission to the data structure at any point in the execution.
This is problematic for concurrent implementations, where multiple
threads may perform IOD actions and, thus, need mutable access to the
trace.
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In Gobra, we solve this problem using shared invariants [36], which express[36]: Jung et al. (2015), Iris: Monoids and

Invariants as an Orthogonal Basis for Con-

current Reasoning

assertions that always hold. Data structures that are governed by a shared
invariant may be updated concurrently under two conditions: (1) the
update preserves the shared invariant and second, (2) the update is per-
formed atomically (such that other threads cannot observe intermediate
states in which the shared invariant does not hold).

For our ghost trace, we use the shared invariant shown at the top of
Fig. 3.6. It provides the permission to access the ghost trace, and expresses
that the current trace is compatible with the IOD transition system and
its pre-projection is low. Performing an IOD action satisfies the two
conditions above: (1) adding a new action to the trace preserves the
shared invariant; (2) since these updates affect only ghost state, they can
be treated as atomic.

Running Example. Fig. 3.6 shows our running example in Gobra. Lines 5–
18 show snippets of an implementation together with some of the required
proof annotations. The shown snippet can be run in parallel by multiple
threads.

At Line 5, the trace is extended with a recv action. The permission to
Trace, necessary for the call, is obtained from the shared invariant. The
invariant holds trivially after Line 5 as recv’s precondition and guard
are true and its update keeps the state unchanged. At Line 6, before
the next action and after having verified low(Pre(Vac{})), we assume
low(Post(Vac{}), *Trace), establishing that the received message is
low. The other calls are verified similarly.

Line 7 checks whether the request is already processed. The IOD spec
specifies that we may declassify only the most recently queried data for
id and, thus, use it for a reply. The code handles this requirement by
letting at most one thread process requests for a specific id. It stops if the
request is already being handled (Line 8). Note that requests for different
ids can be processed in parallel.

The precondition of the query action (Line 10) requires that Abs(id) is
low, which we get from Line 6. Furthermore, the transition system’s state
gets updated with the queried date and key (Line 12). As discussed, we
use the transition system’s Update function to keep track of the new
state.

Line 14 encrypts the date with the key. The specification of the method
Encrypt shown at Lines 20–23 relates calls of the Encrypt method to the
mathematical function enc, which illustrates how we connect concrete
computations to the abstract state tracked in an IOD spec. After the
call, we know from Encrypt’s postcondition that Abs(reply) is equal to
enc(Abs(info.date), Abs(info.key)). The guard of the declassification
(Line 15) holds since we declassify the most recent date encrypted with
the most recent key. As a technicality, ensuring the absence of other
queries since Line 10 requires some concurrency reasoning, which we
omitted to focus on the essentials. The call to the Send method at Line 17
completes the request. We can show that the sent payload is low due to
the assumption gained from the declassification at Line 16.
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1 pred SharedInvariant() {
2 acc(Trace) && low(Pre(Vac{},*Trace)) &&
3 ∃ st :: Reaches(Vac{}, *Trace, st)
4
5 id := Recv()
6 // assume low(Post(Vac{}), *Trace)
7 already_processed := queue.add(id)
8 if already_processed { /* stop */ }
9 . . .

10 info := Query(id)
11 // assume low(Post(Vac{}), *Trace)
12 // update transition system state
13 . . .
14 reply := Encrypt(info.date, info.key)
15 ghost Declassify(Abs(id),Abs(reply))
16 // assume low(Post(Vac{}), *Trace)
17 Send(reply)
18 queue.remove(id)
19
20 req acc(data, read) && acc(key, read)
21 ens acc(data, read) && acc(key, read) && acc(ciph)
22 ens Abs(ciph) = enc(Abs(data), Abs(key))
23 func Encrypt(data, key []byte) (ciph []byte)

Figure 3.6.: Verification of the running
example in Gobra (Lines 5–18) together
with the used shared invariant (Lines 1–
3). Lines 20–23 shows the specification
of the encryption method, relating calls
to the mathematical function enc. Proof
annotations are indicated with the key-
word ghost.

3.4. Soundness of Code Verification

In Sec. 3.3, we discuss how to verify programs using a combination of
standard code verification techniques. In this section, we discuss how
we apply this approach with the SecCSL logic and, in particular, we
present how we proved formally for SecCSL, that the code verification is
sound, i. e. programs that verify successfully actually satisfy the specified
policy.

We follow the same structure as Sec. 3.3: We first equip the language
to record the performed IOD behavior, introduce the auxiliary actions
to define the extended IOD behaviors of programs, and prove that the
extended IOD behaviors are input-closed. Afterward, we prove that if for
a policy (S, 𝑅), a program is verified as discussed in Sec. 3.3.2, then the
program’s IOD behavior satisfies the IOD spec 𝑅 and it’s extended IOD
behavior satisfies S-OD (which together with input-closedness proves
that the program’s IOD behavior satisfies the policy (S, 𝑅)).

We formally capture our code verification approach from Sec. 3.3 with
a function decorateS,𝑅(·). The function takes actual program statements
and adds the proof statements necessary to verify that the policy (S, 𝑅)
is satisfied. More concretely, the function, as discussed in Sec. 3.3.1,
adds the ghost pointer Trace such that it records the produced IOD
actions and, as discussed in Sec. 3.3.2, adds all checks done for program
verification. To verify that a program consisting of the statements c

satisfies a policy (S, 𝑅), we then verify decorateS,𝑅(c) using the SecCSL
logic. We refer to c and decorateS,𝑅(c) as the undecorated and decorated

program, respectively.

In our soundness proof, we prove that the IOD behavior of the un-
decorated programs satisfies the policy. To define the IOD behavior of
undecorated programs, we equip SecCSL’s language semantic to record
the performed IOD actions. As a consequence, we record a program’s
IOD in two ways, namely with the ghost trace for verification and on top
of the language semantic to express our soundness result.
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We first provide the necessary background on SecCSL in Sec. 3.4.1. In
Sec. 3.4.2, we discuss SecCSL’s programming language and its language
semantics and we define the IOD behavior of programs. In Sec. 3.4.3,
we define the extended IOD behavior of programs and prove that they
are input-closed. In Sec. 3.4.4, we show how our program verification
approach (from Sec. 3.3.2) is realized with SecCSL. In particular, we define
the decorate function. Lastly, in Sec. 3.4.5, we prove that if a program is
verified, then the program’s IOD behavior and extended IOD behavior
satisfy the IOD spec and S-OD, respectively.

All results are formalized and proved in Isabelle/HOL.

3.4.1. Background on SecCSL

SecCSL is a Floyd-Hoare style program logic to reason about the secure
information flow of heap-manipulating concurrent programs. The logic
is formalized in Isabelle/HOL. For our soundness proof, knowledge
about SecCSL’s proof rules is not necessary. In this section, we provide
the necessary background on SecCSL’s assertions and features.

As for Gobra, SecCSL incorporates separation logic [28] to reason about
memory and concurrency and uses the relational low assertion low(e) to
reason about observational determinism. In contrast to Gobra’s permis-
sion annotation acc(x), permissions are specified with the separation
logic’s points-to assertion x ↦→ v, denoting that (write) permissions to
the pointer x are held and that the pointer stores the value v, i. e. *x is v.
Otherwise, SecCSL’s permission reasoning is analogous to Gobra.

SecCSL targets a simple programming language with lock-based concur-
rency, which we refer to as SCL (SecCSL’s Language) and discuss in more
detail in Sec. 3.4.2. To reason about concurrency, every lock is associated
with a lock invariant, an assertion specifying which permissions are held
by the lock and which properties must hold whenever the lock is not
locked. A function Inv maps locks to their associated lock invariants. For
instance, the lock invariant Inv(𝑙1) = ∃𝑣. y ↦→ 𝑣 ∧ 𝑣 > 0 specifies that the
lock 𝑙1 holds permissions to the pointer y, which stores some positive
value. When a lock is acquired the permissions are transferred from the
lock to the method acquiring the lock and the functional properties may
be assumed. Conversely, when the lock is released the permissions are
transferred back to the lock and the functional properties have to hold.

SCL does not have statements to allocate memory or locks. Instead, the
precondition of a program or the lock invariants are used to specify which
memory locations are assumed to be allocated at the start of the program.
For that reason, in SCL, a program (c, 𝐴, 𝐿) is a triple of a statement c,
an assertion 𝐴 describing the initial program state, and the initial set of
locks 𝐿. For instance, the program ([x] := 2, x ↦→ 0, {𝑙1}) expresses the
program that starts with an allocated pointer x that initially stores 0 and
a single lock 𝑙1 and then updates that value to 2.
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c ::= skip | x := e | x := N(e) | [e1] := e2 | x := [e] | lock 𝑙

| unlock 𝑙 | c1;c2 | c1∥c2 | if(e){c1}{c2} | while(e){c}

Figure 3.7.: Syntax of the SCL program-
ming language. We use c, x, e, and 𝑙 to
range over statements, variables, expres-
sions, and locks, respectively. I/O actions
and declassifications are performed via
the action statement x := N(e), assign-
ing the input to variable x. If an action has
no input, then a unit value is assigned to
x. The statement c1∥c2 denotes parallel
composition.

𝑣 = JeK𝑠
(Action)

run(x := N(e), 𝐿, 𝑠, ℎ)
⟨action N; N(𝑣, 𝑟)⟩
−−−−−−−−−−−−−−−→ stop(𝐿, 𝑠[𝑥 ↦→ 𝑟], ℎ)

𝑣1 = Je1K𝑠 𝑣2 = Je2K𝑠 𝑣1 ∈ dom(ℎ)
(Store)

run([e1] := e2 , 𝐿, 𝑠, ℎ)
⟨store; 𝜖⟩
−−−−−−−−→ stop(𝐿, 𝑠, ℎ[𝑣1 ↦→ 𝑣2])

𝑣1 = Je1K𝑠 𝑣1 ∉ dom(ℎ)
(StoreFail)

run([e1] := e2 , 𝐿, 𝑠, ℎ)
⟨store; 𝜖⟩
−−−−−−−−→ abort

𝑙 ∈ 𝐿
(Lock)

run(lock 𝑙 , 𝐿, 𝑠, ℎ)
⟨lock; 𝜖⟩
−−−−−−−→ stop(𝐿 − {𝑙}, 𝑠 , ℎ)

run(c1 , 𝐿, 𝑠, ℎ)
⟨𝜏; 𝑡⟩
−−−−→ run(c′1 , 𝐿′, 𝑠′, ℎ′) (Par2)

run(c1∥c2 , 𝐿, 𝑠, ℎ)
⟨left · 𝜏; 𝑡⟩
−−−−−−−−→ run(c′1∥c2 , 𝐿

′, 𝑠′, ℎ′)

run(c2 , 𝐿, 𝑠, ℎ)
⟨𝜏; 𝑡⟩
−−−−→ run(c′2 , 𝐿′, 𝑠′, ℎ′) (Par4)

run(c1∥c2 , 𝐿, 𝑠, ℎ)
⟨right · 𝜏; 𝑡⟩
−−−−−−−−−→ run(c1∥c′2 , 𝐿′, 𝑠′, ℎ′)

Figure 3.8.: Subset of the semantics of the
SCL programming language. The step
relation records the execution schedule
𝜏 and the produced trace 𝑡. The schedule
determines which statement is executed
next. The expression JeK𝑠 evaluates the
expression e given the store 𝑠.

3.4.2. The SCL Language and the IOD Behavior of
Programs

Fig. 3.7 shows the syntax of SCL’s program statements. We have extended
SCL with three statements, namely action statements and standard assume
and assert statements. The action statement x := N(e)performs the action
named N, where e is the output for the action and the action’s input is
assigned to the variable x. For actions such as send, a unit value is assigned
to x. For simplicity, we use the same statement to perform declassifications.
The assume statement assume A and the assert statement assert A

assume and assert that the assertion A holds, respectively. Assume and
assert statements are ghost statements and are added by the decorate
function only, i. e. actual code does not use them (they are omitted in
Fig. 3.7 since they are not actual statements). All other statements are
unchanged compared to standard SCL. The heap is modified and read
with a store ([e1] := e2) and load statement (x := [e]), respectively. For
concurrency, the statement c1∥c2 denotes the parallel execution of the
statements c1 and c2. As mentioned before, the language does not have
statements to allocate heap memory, locks, or threads, which conceptually
happens before the program execution.
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SCL’s Language Semantic. Fig. 3.8 shows an excerpt of the language’s
semantics, where we have added which IOD actions are performed in an

execution step. The small-step relation 𝛾
⟨𝜏; 𝑡⟩
−−−−→ 𝛾′ denotes one execution

step from configuration 𝛾 to configuration 𝛾′, where 𝜏 is the schedule
of the execution step and 𝑡 is the produced trace of IOD actions. The
schedule determines which statement is executed next. The language has
three kinds of configurations: run(c, 𝐿, 𝑠, ℎ) denotes that the statement c
remains to be executed, where 𝑠 is the current store, a map from variables
to values, and ℎ is the current heap, a partial map from allocated heap
locations to values. The lock set 𝐿 contains all locks that are currently not
locked and may be obtained by c. The terminal configuration stop(𝐿, 𝑠, ℎ)
denotes that the execution ended with the given store, heap, and lock set.
Lastly, the configuration abort denotes that the program aborted due to
an invalid memory access or that the assertion of an assert statement did
not hold.

As shown in Fig. 3.8, the action statement (Action) never aborts and may
obtain any possible action input. We use JeK𝑠 to denote the evaluation of
the expression e with the store 𝑠. Heap modifications (Store) cause an
abort if the targeted heap location is not allocated, i. e. if 𝑣1 ∈ dom(ℎ) does
not hold. The lock statement (Lock) removes the lock from the lock set 𝐿.
Recall that the schedule captures which statement is executed next. In
particular, for parallel composition, the schedule determines whether the
left (Par2) or right statement (Par4) is executed next. We lift small-step
relations to relations of sequences of steps straightforwardly as shown
below:

𝛾
⟨𝜖; 𝜖⟩
−−−−−→∗ 𝛾

𝛾
⟨𝜏; 𝑡⟩
−−−−→ 𝛾′′ 𝛾′′ ⟨𝜏′; 𝑡′⟩

−−−−−−→∗ 𝛾′

𝛾
⟨𝜏 · 𝜏′; 𝑡 · 𝑡′⟩
−−−−−−−−−−→∗ 𝛾′

The IOD Behavior of Programs. Def. 3.4.1 defines the IOD behavior
of programs. A trace 𝑡 is an element of a program’s IOD behavior
if there exists an execution that produces the trace and starts from a
valid store and heap. The definition of a valid store and heap is more
technical. A store and heap are valid if they satisfy the assertion 𝐴 and
all lock invariants of the initial set of locks 𝐿, denoted as Inv(𝐿). SecCSL’s
relational semantics of assertions (𝑠1 , ℎ1), (𝑠2 , ℎ2) ⊨ 𝐴′ specifies when a
pair of states satisfies an assertion 𝐴′.

Definition 3.4.1 We define the IOD behavior of a program (c, 𝐴, 𝐿) as

Sem(c, 𝐴, 𝐿) =
{

𝑡
∃𝑠, ℎ, 𝜏, 𝛾. (𝑠, ℎ), (𝑠, ℎ) ⊨ 𝐴 && Inv(𝐿) ∧

run(c, 𝐿, 𝑠, ℎ)
⟨𝜏; 𝑡⟩
−−−−→∗ 𝛾

}

3.4.3. SCL’s Extended IOD Behavior and
Input-Closedness

We define the extended IOD behavior of SCL programs as discussed in
Example 3.2.4 and Example 3.2.5, which is formalized in Def. 3.4.2. The
auxiliary action Init has as input the initial store and heap. Furthermore,
the auxiliary actions Sched capture the schedules of every program
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step. Recall that Sched takes as output everything that influences which
statement may be executed next, i. e. the current statement and lock
set. To specify the extended IOD behavior, we introduce a small-step
relation for extensions −−→

ex
, which we again lift to sequences of steps

straightforwardly. We refer to the step relation −−→
ex

as the extended step
relation. The extended step relation produces in every step a Sched action
with the current statement, lock set, and schedule, together with the
actions produced by the standard language semantics. We use cl𝑋 to
denote the prefix-closure of 𝑋, i. e. the set {𝑡 | ∃𝑡′ ∈ 𝑋. 𝑡 ≤ 𝑡′}.

Definition 3.4.2 We define the extensions of a program (c, 𝐴, 𝐿) as

Esem(c, 𝐴, 𝐿) = cl


Init(𝑠, ℎ) · 𝑡

∃𝑠, ℎ, 𝛾.
(𝑠, ℎ), (𝑠, ℎ) ⊨ 𝐴 && Inv(𝐿) ∧

run(c, 𝐿, 𝑠, ℎ) 𝑡−−→
ex ∗ 𝛾


where

run(c, 𝐿, 𝑠, ℎ)
⟨𝜏; 𝑡⟩
−−−−→ 𝛾

(Extended Step)
run(c, 𝐿, 𝑠, ℎ)

Sched(c, 𝐿, 𝜏) · 𝑡
−−−−−−−−−−−−−−→

ex
𝛾

Input-Closedness. As formalized in Def. 3.2.4, to prove input-closedness
of all extended IOD behaviors, we show that for every program, if there
exists some trace 𝑡 ·𝑁(𝑥, 𝑟) ∈ Esem(c, 𝐴, 𝐿) and some other possible input
𝑟′, i. e. there exists 𝑡′ with 𝑡′ · 𝑁(𝑥, 𝑟′) ∈ Esem(c, 𝐴, 𝐿), then 𝑡 · 𝑁(𝑥, 𝑟′) ∈
Esem(c, 𝐴, 𝐿) also holds. We prove this property by a case distinction on
the action 𝑁 . For actual actions, 𝑡 · 𝑁(𝑥, 𝑟′) ∈ Esem(c, 𝐴, 𝐿) is implied
directly by the language semantic shown in Fig. 3.8. The case for the
auxiliary Init action is trivial since it is always the first action of a trace.
In particular, the trace 𝑡′ · 𝑁(𝑥, 𝑟′), which is in Esem(c, 𝐴, 𝐿), is the same
as 𝑡 · 𝑁(𝑥, 𝑟′) since 𝑡′ = 𝜖 = 𝑡. The case for the auxiliary Sched action
is also straightforward. If 𝑁 = Sched, then the output 𝑥 is the tuple
of some statement c′ and lock set 𝐿′ and the inputs 𝑟 and 𝑟′ are some
schedules 𝜏 and 𝜏′, respectively. As discussed in Example 3.2.5, the
case for 𝑁 = Sched boils down to proving that whether something
is the schedule of an execution step depends only on the statement
and lock set of the execution step, i. e. the outputs of the auxiliary
Sched action. More formally, we prove that if there is an execution step

run(c′, 𝐿′, 𝑠0 , ℎ0)
⟨𝜏; 𝑡0⟩−−−−−→ 𝛾0 (stemming from 𝑡 · 𝑁(𝑥, 𝑟) ∈ Esem(c, 𝐴, 𝐿))

and another execution step run(c′, 𝐿′, 𝑠1 , ℎ1)
⟨𝜏′; 𝑡1⟩−−−−−−→ 𝛾1 (stemming from

𝑡′ ·𝑁(𝑥, 𝑟′) ∈ Esem(c, 𝐴, 𝐿)), then the first execution step is possible with

the schedule 𝜏′, i. e. run(c′, 𝐿′, 𝑠0 , ℎ0)
⟨𝜏′; 𝑡2⟩−−−−−−→ 𝛾2 holds for some 𝑡2 and

𝛾2 (justifying 𝑡 · 𝑁(𝑥, 𝑟′) ∈ Esem(c, 𝐴, 𝐿)). We prove this property by
induction on the step relation, concluding the proof.

Theorem 3.4.1 Esem(c, 𝐴, 𝐿) is input-closed for every program (c, 𝐴, 𝐿).
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Figure 3.9.: Definition of the decorate
function, which adds all necessary proof
statements to SCL statements. The func-
tion adds the ghost pointer Trace that
records all produced actions and the
checks necessary to satisfy the policy
(S, 𝑅).

decorateS,𝑅(c) =



told := [Trace];
eold := e;
x := N(e);
[Trace] := told · N(eold , x);
assume told · N(eold , x) ≤ Proph;
assert low(told · N(eold , x)↓pre

S
);

assert told · N(eold , x) ∈ 𝑅

if c is x := N(e)

s if c is not x := N(e)

3.4.4. Code Verification with SecCSL

As discussed at the start of this section, to verify that a program (c, 𝐴, 𝐿)
satisfies a policy (S, 𝑅), we verify decorateS,𝑅(c), i. e. the decorated pro-
gram with the necessary proof statements, using the SecCSL logic. More
formally, we derive the triple {𝑃} decorateS,𝑅(c) {true} for a specific pre-
condition 𝑃 in the SecCSL logic. In this subsection, we first discuss the
function decorate, and afterward, we define the precondition 𝑃.

The decorate Function. Fig. 3.9 shows the definition of the decorate
function. The function adds for action statements x := N(e), statements
to (1) record the produced IOD actions (Sec. 3.3.1) and to (2) check that
the IOD behavior and extended IOD behavior satisfy the IOD spec and
S-OD, respectively (Sec. 3.3.2).

To record the IOD actions, the ghost pointer is first read (told := [Trace])
and then appended with the produced action ([Trace] := told · N(eold , x)).
The temporary variable eold stores the value of the output. In contrast to
Gobra, where we annotate the pre- and postconditions of library methods,
we assign to the ghost pointer directly because SCL’s action statements
do not have user-specified pre- and postconditions.

Regarding checks, as discussed in Sec. 3.3.2, after an action is produced,
for the IOD spec, we check that the recorded trace is a trace of the IOD spec
(assert told ·N(eold , x) ∈ 𝑅 in Fig. 3.9) and for observational determinism,
we check that low(*Trace↓pre

S
) holds (assert low(told · N(eold , x)↓pre

S
) in

Fig. 3.9).‗ Lastly, the statement assume told · N(eold , x) ≤ Proph, which we
explain later, enables us to assume that low(*Trace↓post

S
) holds before

an action is produced. Since SecCSl is formalized in Isabelle/HOL, in
contrast to Gobra, we are able to use the low projections and the IOD spec
directly. In particular, we do not need utility functions such as Reaches
or Pre.

The Precondition. Recall that to verify that a program satisfies a policy
in Gobra, we verify the program with the precondition that we have
write permission to the Trace pointer and the Trace pointer stores the
empty trace (see Sec. 3.3). The analogous precondition for a SCL program
(c, 𝐴, 𝐿), namely Trace ↦→ 𝜖 && 𝐴, is ill-suited to prove soundness. In
a soundness proof, we have to justify why we are allowed to assume
low(*Trace↓post

S
) before an action is produced. To justify this assumption,

‗ As a technicality, SecCSL does not support assert statements with low assertions. Instead,
SecCSL supports low pointers, whose value must always be low. We assert that a value is
low by writing to such a low pointer. We have extended SecCSL’s language with assume
and assert statements for assertions without low.
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we extend the precondition Trace ↦→ 𝜖 && 𝐴 with an additional assertion,
which we refer to as the justification assertion. The justification assertion
does not influence the verification approach, in particular, it does neither
change nor add proof obligations. Because of that, we may omit the
justification assertion when verifying programs, e.g. with Gobra. For the
remainder of this subsection, we explain and specify the justification
assertion.

We specify the justification assertion using a technique from literature [101,
102]: We introduce a prophecy variable Proph that stores, already at the [101]: Tasiran et al. (2009), Verifying Opti-

mistic Concurrency: Prophecy Variables and

Backward Reasoning

[102]: Jung et al. (2020), The future is ours:

prophecy variables in separation logic

beginning of a program, the trace of actions that an execution is going to
produce. The justification assertion then specifies that Proph stores a trace
𝑡 that satisfies the implication low(𝑡′↓pre

S
) ⇒ low(𝑡′↓post

S
) for all prefixes

𝑡′ ≤ 𝑡. Because we show low(*Trace↓pre
S
) after an action is produced

and *Trace records a prefix of the trace that is going to be produced, we
achieve our goal that we are allowed to assume low(*Trace↓post

S
) before

the next action is produced.

We first formalize the justification assertion and then discuss how we
realize the prophecy variable in SecCSL, in particular, how we capture
that the prophecy variable stores the trace that is going to be produced.
Lastly, we define when a program is successfully verified with SecCSL.

The Justification Assertion. Recall that we reason about observational
determinism with pairs of executions. Def. 3.4.3 defines when a pair of
traces satisfies the condition mentioned above, namely that all prefixes
satisfy low(𝑡′↓pre

S
) ⇒ low(𝑡′↓post

S
), which we refer to as assumption-

compatible. The justification assertion is then (Proph = 𝑡1 ∨ Proph = 𝑡2) &&
𝑡1 #S 𝑡2, expressing that the prophecy variable Proph stores one of the
assumption-compatible traces. The assertion entails that for pairs of
executions, the trace 𝑡 stored in the Proph variable in one execution
and the trace 𝑡′ stored in the other execution are always assumption-
compatible. Note that traces are assumption-compatible with themselves,
i. e. 𝑡 #S 𝑡 always holds. Lemma 3.4.2 captures formally that with the
justification assertion, as long as a trace t is a prefix of Proph, the desired
implication low(t↓pre

S
) ⇒ low(t↓post

S
) holds. Programs never modify the

prophecy variable and, thereby, the justification assertion always holds.

Definition 3.4.3 Two traces 𝑡1 , 𝑡2 are assumption-compatible, denoted as

𝑡1 #S 𝑡2, if for all prefixes 𝑡′1 ≤ 𝑡1 and 𝑡′2 ≤ 𝑡2,

𝑡′1↓
pre
S
= 𝑡′2↓

pre
S
⇒ 𝑡′1↓

post
S

= 𝑡′2↓
post
S

Lemma 3.4.2 The following implication holds in SecCSL:

(Proph = 𝑡1 ∨ Proph = 𝑡2) && 𝑡1 #S 𝑡2 && t ≤ Proph &&

low(t↓pre
S
) ⇒ low(t↓post

S
)

The Prophecy Variable. We realize the prophecy variable Proph with
two ingredients: Firstly, to capture that Proph stores the trace that is going
to be produced, we add the assumption that the recorded trace is always
a prefix of Proph. More concretely, as shown in the definition of decorate
in Fig. 3.9, we add the assume statement assume told · N(eold , x) ≤ Proph.
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Secondly, to justify this assumption, we verify a program for all values of
Proph. By verifying a program for all traces, we also verify the program for
the trace that correctly predicts the IOD actions that will be produced. Our
soundness proof shows that this treatment is sound (see Sec. 3.4.5.3).

Verification Correctness. Def. 3.4.4 defines our notion of verification
correctness: To verify that a program (c, 𝐴, 𝐿) satisfies a policy (S, 𝑅), we
have to derive in SecCSL for all traces 𝑡1 and 𝑡2, the triple specified in
Def. 3.4.4.

Definition 3.4.4 A program (c, 𝐴, 𝐿) is successfully verified for a policy

(S, 𝑅), which we denote as verifiedS,𝑅(c, 𝐴, 𝐿), if for all 𝑡1, 𝑡2,

⊢
{
(Proph = 𝑡1 ∨ Proph = 𝑡2) && 𝑡1 #S 𝑡2
&& Trace ↦→ 𝜖 && 𝐴

}
decorateS,𝑅(c) {true}

3.4.5. Soundness

In this section, we complete the soundness proof by proving that if a
program (c, 𝐴, 𝐿) is successfully verified for a policy (S, 𝑅), then the
program’s IOD behavior satisfies the IOD spec, i. e. Sem(c, 𝐴, 𝐿) ⊆ 𝑅, and
the program’s extended IOD behavior Esem(c, 𝐴, 𝐿) satisfies S-OD. As
discussed at the beginning of this section, together with the property
that the extended IOD behaviors are input-closed for all programs, we
prove the main soundness result captured in Theorem 3.4.3.

Theorem 3.4.3 For every successfully verified program verifiedS,𝑅(c, 𝐴, 𝐿),
the IOD behavior Sem(c, 𝐴, 𝐿) satisfies the policy (S, 𝑅).

We prove that for successfully verified programs, the IOD spec and S-OD
are satisfied in two phases: In the first phase, we prove a soundness result
at the level of our extended step relation, which we refer to as extended

verification soundness. We prove extended verification soundness using
SecCSL’s original soundness result about pairs of executions proved
by Ernst and Murray [14]. Except for the addition of standard assume
and assert statements, whose discussion we omit, we do not modify the
soundness proof of the SecCSL logic. Instead, we only lift the soundness
result to our extended step relation. In the second phase, we prove that
extended verification soundness entails that for successfully verified
programs, the IOD spec and S-OD are satisfied by the program’s IOD
behavior and extended IOD behavior, respectively.11: In our Isabelle/HOL formalization,

for historical reasons, we prove the sec-
ond phase directly, without proving ex-
tended verification soundness separately.
We present the two phases for the sake
of clarity.

The remainder of this section is structured as follows: We first define
extended verification soundness (Sec. 3.4.5.1). Afterward, we discuss the
phases in reverse order. In Sec. 3.4.5.2, we prove that extended verification
soundness entails Theorem 3.4.3. Lastly, in Sec. 3.4.5.3, we prove extended
verification soundness.

3.4.5.1. Definition of Extended Verification Soundness

As defined in Lemma 3.4.4, extended verification Soundness entails that
if a program is successfully verified, then for all pairs of execution that
produce assumption-compatible extended traces (𝑡1 #(S+NoDecl) 𝑡2), we
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get that (1) the reached configurations 𝛾1 and 𝛾2 are not abortions, (2) if
the produced extended traces have the same number of low actions, then
the reached configurations 𝛾1 and 𝛾2 are the same kind (either run or
stop configurations) with the same statement and lock set, and (3) the
outputs that are classified as low by the action’s preconditions of both
produced extended traces are equal. Point (2) entails that the control
flow and, in particular, the statements and lock sets of configurations
are low (for executions with an equal number of steps). The produced
extended traces may have different sizes. Therefore, instead of expressing
that the low data is equal, we express that the low data is equal up to the
common length, which is captured by the definition of ∼ (also shown in
Lemma 3.4.4).

Lemma 3.4.4 (Extended Verification Soundness) For every verified pro-

gram verifiedS,𝑅(c, 𝐴, 𝐿) and valid initial state (𝑠, ℎ), (𝑠, ℎ) ⊨ 𝐴 && Inv(𝐿),

run(c, 𝐿, 𝑠, ℎ) 𝑡1−−→
ex ∗ 𝛾1 ∧ run(c, 𝐿, 𝑠, ℎ) 𝑡2−−→

ex ∗ 𝛾2 ∧ 𝑡1 #(S+NoDecl) 𝑡2

⇒
Ctxt(𝛾1) ≠ abort ∧ Ctxt(𝛾2) ≠ abort
∧

(
|𝑡1↓(S+NoDecl) | = |𝑡2↓(S+NoDecl) | ⇒ Ctxt(𝛾1) = Ctxt(𝛾2)

)
∧ 𝑡1↓pre

(S+NoDecl)∼ 𝑡2↓pre
(S+NoDecl)

where 𝑎 ∼ 𝑏 if 𝑎 ≤ 𝑏 or 𝑎 ≥ 𝑏 and

Ctxt(run(c, 𝐿, 𝑠, ℎ)) = (run, c, 𝐿)
Ctxt(stop(𝐿, 𝑠, ℎ)) = (stop, 𝐿)
Ctxt(abort) = abort

3.4.5.2. Proof of the IOD Spec and S-OD

We first prove that the IOD behaviors of programs satisfy the IOD spec
(Theorem 3.4.5). Afterward, we prove that the extended IOD behaviors
of programs satisfy S-OD by first proving progress-insensitive S-OD
(Theorem 3.4.6) and then proving progress-sensitivity (Theorem 3.4.8).

Theorem 3.4.5 For every successfully verified program verifiedS,𝑅(c, 𝐴, 𝐿),
the IOD behavior Sem(c, 𝐴, 𝐿) is a subset of the IOD spec 𝑅.

Proof. 𝑡 ∈ Sem(c, 𝐴, 𝐿) entails that there exists an execution that reaches
some configuration 𝛾′ and produces the trace 𝑡. Since every trace is
assumption-compatible with itself, i. e. 𝑡 #S 𝑡 always holds, we are able
to use extended verification soundness (Lemma 3.4.4) to derive that 𝛾′

is not an abortion. Since 𝛾′ is not an abortion, we know that the assert
statements assert told · N(eold , x) ∈ 𝑅 added by the decorate function
succeeded and, thereby, 𝑡 ∈ 𝑅 holds, concluding the proof.

Theorem 3.4.6 For every successfully verified program verifiedS,𝑅(c, 𝐴, 𝐿),
the extended IOD behavior Esem(c, 𝐴, 𝐿) satisfies progress-insensitive (S+
NoDecl)-OD.
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Proof. As an intermediate step, we first prove Lemma 3.4.7, which pro-
vides a more suitable way to prove progress-insensitive OD. Lemma 3.4.7
itself is proved with a straightforward induction.

Lemma 3.4.7 The prefix-closure of an IOD behavior 𝑇 satisfies progress-

insensitive S′
-OD if, for all traces 𝑡1 , 𝑡2 ∈ 𝑇,

𝑡1 #S′ 𝑡2 ⇒ 𝑡1↓pre
S′ ∼ 𝑡2↓pre

S′

We then prove Theorem 3.4.6 straightforwardly. If there are two extended
traces 𝑡1 and 𝑡2 in the extended IOD behavior Esem(c, 𝐴, 𝐿), then we
know that there are two executions that produce 𝑡1 and 𝑡2 (with the ex-
tended step relation). Together with 𝑡1 #S+NoDecl 𝑡2, extended verification
soundness (Lemma 3.4.4) implies that 𝑡1↓pre

(S+NoDecl)∼ 𝑡2↓pre
(S+NoDecl) holds,

concluding the proof.

Theorem 3.4.8 For every successfully verified program verifiedS,𝑅(c, 𝐴, 𝐿),
the extended IOD behavior Esem(c, 𝐴, 𝐿) satisfies progress-sensitivity.

Proof. The proof boils down to proving that if there are two executions
that produce the extended traces 𝑡1 and 𝑡2 with 𝑡1↓post

S+NoDecl= 𝑡2↓post
S+NoDecl

and reach configurations 𝛾1 and 𝛾2, respectively, and if there exists
another execution step from 𝛾1, then there must also be another execution
step from 𝛾2. 𝑡1↓post

S+NoDecl= 𝑡2↓post
S+NoDecl entails 𝑡1 #S+NoDecl 𝑡2. Therefore, we

can use extended verification soundness (Lemma 3.4.4) to derive that the
configurations 𝛾1 and 𝛾2 have the same statements and lock set. We then
conclude the proof by showing that whether another execution step is
possible depends only on the statement and lock set of a configuration,
which is formalized with Lemma 3.4.9.

Lemma 3.4.9 For every store 𝑠′ and heap ℎ′,

run(c, 𝐿, 𝑠, ℎ)
⟨𝜏; 𝑡⟩
−−−−→ 𝛾 ⇒ ∃𝜏′, 𝑡′, 𝛾′. run(c, 𝐿, 𝑠′, ℎ′)

⟨𝜏′; 𝑡′⟩
−−−−−−→ 𝛾′

We prove Lemma 3.4.9 with an induction on the step relation.

3.4.5.3. Proof of Extended Verification Soundness

As mentioned above, we prove extended verification soundness by lifting
SecCSL’s soundness result proved by Ernst and Murray [14] to our[14]: Ernst et al. (2019), SecCSL: Security

Concurrent Separation Logic extended step relation. To split the proof, we first lift SecCSL’s soundness
result to decorated statements and then to our extended step relation.
Before discussing these proofs, we first explain SecCSL’s soundness
result.

SecCSL’s Soundness Result. Theorem 3.4.10 formalizes a simplified
version of SecCSL’s soundness result proved by Ernst and Murray. For
verified programs, SecCSL ensures that for pairs of executions with the
same schedule that reach the configurations �̂�1 and �̂�2, (1) �̂�1 and �̂�2 are
not abortions, (2) �̂�1 and �̂�2 are the same kind of configuration (either
run or stop) with the same statement and lock set, and (3) values stored
on the heap or store that are asserted as low (with the low assertion)
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are equal in both executions, denoted as Low(�̂�1) = Low(�̂�2). Points (1)
and (2) are analogous to extended verification soundness. Since traces
produced by a program become the content of the Trace pointer and we
assert low(*Trace↓pre

S
) (see Fig. 3.9), point (3) entails that the outputs of

produced actions that are classified as low by the action’s preconditions
are equal for both executions. We omit the trace parameter of the step
relation when specifying the executions of undecorated statements. Since
we have not modified SecCSL’s soundness result, it does not include the
trace parameter, which was added by us.

Theorem 3.4.10 (SecCSL’s Verification Soundness) For every SCL state-

ment ĉ verified in SecCSL with precondition 𝑃, i. e. ⊢ {𝑃}ĉ{true}, and valid

initial states (𝑠1 , ℎ1), (𝑠2 , ℎ2) ⊨ 𝑃 && Inv(𝐿),

run(c, 𝐿, 𝑠1 , ℎ1)
𝜏−→∗ �̂�1 ∧ run(c, 𝐿, 𝑠2 , ℎ2)

𝜏−→∗ �̂�2

⇒ Ctxt(�̂�1) ≠ abort ∧ Ctxt(�̂�1) = Ctxt(�̂�2) ∧ Low(�̂�1) = Low(�̂�2)

Decorated Verification Soundness. Lemma 3.4.11 formalizes the sound-
ness result lifted to the verified decorated statements. The property is
similar to our extended verification soundness, except that, because
the schedules of both executions are equal, we are guaranteed that the
executions have the same number of steps.

Lemma 3.4.11 (Decorated Verification Soundness) For every verified

program verifiedS,𝑅(c, 𝐴, 𝐿) and valid initial state (𝑠, ℎ), (𝑠, ℎ) ⊨ 𝐴 &&

Inv(𝐿),

run(c, 𝐿, 𝑠, ℎ)
⟨𝜏; 𝑡1⟩−−−−−→∗ 𝛾1 ∧ run(c, 𝐿, 𝑠, ℎ)

⟨𝜏; 𝑡2⟩−−−−−→∗ 𝛾2

∧ 𝑡1 #S 𝑡2 ⇒ Ctxt(𝛾1) ≠ abort ∧ Ctxt(𝛾1) = Ctxt(𝛾2) ∧ 𝑡1↓S= 𝑡2↓S

Proof. We prove Lemma 3.4.11 from SecCSL’s verification soundness
(Theorem 3.4.10) by proving the relation between program executions
of undecorated and decorated statements. If the execution of an undec-
orated statement c produces a trace 𝑡, then there exists an execution of
decorateS,𝑅(c), which either aborts (if an assertion failed) or results in a
state where Trace stores the produced trace 𝑡. Lemma 3.4.12 formalizes
a generalized version of the relation, where we consider that a trace 𝑡′

has been produced beforehand and a trace 𝑡′′ is going to be produced
afterward. As before, we omit the trace parameter of the step relation
when specifying executions of undecorated statements. The function
decod(𝜏) returns the schedule of the execution for decorateS,𝑅(c). The
function accounts for the fact that the single action statements result in
a sequence of statements (due to the added proof statements). We use
𝑠[𝑥 ↦→ 𝑣] to denote the store where the variable 𝑥 is updated with value
𝑣. Similarly, ℎ[𝑙 ↦→ 𝑣] denotes the heap where the pointer 𝑙 is updated
with the value 𝑣. We prove Lemma 3.4.12 by an induction on the step
relation.
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Lemma 3.4.12 For every statement c and all traces 𝑡 , 𝑡′, 𝑡′′,

run(c, 𝐿, 𝑠, ℎ)
⟨𝜏; 𝑡⟩
−−−−→∗ 𝛾 ⇒

run(decorateS,𝑅(c), 𝐿, 𝑠[Proph ↦→ 𝑡′ · 𝑡 · 𝑡′′], ℎ[Trace ↦→ 𝑡′])
decod(𝜏)
−−−−−−−→∗ �̂�

∧ (�̂� = abort ∨ �̂� = decorateS,𝑅(𝛾, 𝑡′ · 𝑡 · 𝑡′′, 𝑡′ · 𝑡))

where

decorateS,𝑅(run(c, 𝐿, 𝑠, ℎ), 𝑡′ · 𝑡 · 𝑡′′, 𝑡′ · 𝑡) =
run(decorateS,𝑅(c), 𝐿, 𝑠[Proph ↦→ 𝑡′ · 𝑡 · 𝑡′′], ℎ[Trace ↦→ 𝑡′ · 𝑡])

decorateS,𝑅(stop(𝐿, 𝑠, ℎ), 𝑡′ · 𝑡 · 𝑡′′, 𝑡′ · 𝑡) =
stop(𝐿, 𝑠[Proph ↦→ 𝑡′ · 𝑡 · 𝑡′′], ℎ[Trace ↦→ 𝑡′ · 𝑡])

Note that by assigning the trace 𝑡′ · 𝑡 · 𝑡′′ to the prophecy variable Proph,
the prophecy variable stores a trace that correctly predicts the IOD actions
that are going to be produced. In particular, all assertions of the assume
statements added by the decorate function are satisfied.

Given Lemma 3.4.12, Lemma 3.4.11 follows directly from SecCSL’s verifi-
cation soundness (Theorem 3.4.10).

Extended Verification Soundness. Lastly, we prove extended verification
soundness by lifting the verification soundness of decorated statements
(Lemma 3.4.11) to the extended step relation.

Proof. Instead of just run(c, 𝐿, 𝑠, ℎ)
𝑡𝑖−−→
ex ∗ 𝛾𝑖 , we track an execution prefix

leading to the execution run(c, 𝐿, 𝑠, ℎ)
⟨𝜏𝑖 ; 𝑡′𝑖⟩−−−−−−→∗ 𝛾′

𝑖
such that 𝛾′

𝑖

𝑡𝑖−−→
ex ∗ 𝛾𝑖 .

We then prove extended verification soundness (Lemma 3.4.4) using
an induction on the extended step relation. As part of the induction
hypothesis, we enforce that schedules of both execution prefixes are
equal, i. e. 𝜏1 = 𝜏2. In the induction step, we use Lemma 3.4.11 to get
that the statement and lock set of 𝛾′

1 and 𝛾′
2 are equal. Since 𝑡1 and 𝑡2

are assumption-compatible, we get that the schedules of the next steps
of 𝛾′

1 and 𝛾′
2 are equal (if such next steps exist), reestablishing that the

schedules of both executions are equal. Lastly, we derive 𝑡1↓pre
S
= 𝑡2↓pre

S
by

applying Lemma 3.4.11 to the execution prefixes.

3.5. Policy Validation

Like code, security policies may contain errors due to human failure. The
aim of validating a security policy is to increase the confidence that the
policy specifies the intended security requirements. We validate policies
by proving properties that hold for all IOD behaviors satisfying the policy.
In this section, we focus on validating that a policy does not permit the
release of information that is intended to remain confidential.

Consider an incorrect variant of our running example’s IOD spec (Exam-
ple 3.2.3), where a declassification action decl(id, 𝑥) is permitted whenever
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𝑥 is the encryption of the date and key queried for id if (instead of and) id

has been queried. This IOD spec is bad since it permits the declassification
of any value, e.g. the confidential list of compatible vaccines, if the id has
not been queried yet.

We use two approaches to validate policies: (1) Since implementations
refine a policy’s IOD spec 𝑅, any trace property 𝑃 satisfied by the IOD
spec is also satisfied by the implementation. E.g., for our running example,
we may prove that a declassification is permitted only if the id has been
queried beforehand. (2) The combination of IOD spec and classification
spec enables us, instead of just validating properties about when de-
classification is permitted, to prove directly that specific data remains
confidential even in the presence of declassification. Approach (1) requires
standard reasoning about transition systems; we focus on Approach (2)
in this section.

We formalize the property that data remains confidential as GNIV.
As mentioned in Sec. 3.1, GNIV is an adaptation of generalized non-
interference [21] (GNI) that can handle distributed systems. [21]: Clarkson et al. (2008), Hyperproper-

ties

We first discuss the definition of GNIV for passive attackers (Sec. 3.5.1)
and show how to prove it (Sec. 3.5.2). Afterwards, we extend GNIV to
active attackers (Sec. 3.5.3). As defined in Sec. 3.2.3, passive attackers
are able to observe the low data of all performed I/O actions. Active
attackers are in addition able to change the low inputs of actions.

3.5.1. Definition of GNIV

Declassifications are able to release information about high data. There-
fore, not all data classified as high by the classification spec remains
confidential. To capture the intended confidentiality, we use a function Λ,
referred to as view, that takes a trace and returns the data that we want
to prove remains confidential in the presence of declassification. We lift
Λ to sets of traces, denoted with ·↓Λ.

Before we discuss the definition of GNIV, we first illustrate why standard
GNI is ill-suited for distributed systems. GNI is satisfied by an IOD
behavior if for every pair of traces 𝑡1 , 𝑡2 ∈ 𝑇, there exists a trace 𝑡𝑢 with
the same low data as 𝑡1 and the same secret as 𝑡2 (i. e. Λ(𝑡𝑢) = Λ(𝑡2)). We
refer to 𝑡𝑢 as the uncertainty trace. As mentioned before, the issue is that
GNI rules out IOD behaviors that let an attacker learn whether a secret
input exists, regardless of whether the attacker actually is able to learn
the value of the secret input itself. Consider the program below and a
view Λ0 : 𝑡 ↦→ 𝑡↓getKey, where 𝑡↓getKey denotes the sequence of inputs of
getKey actions occurring in the trace 𝑡. In the code, getKey actions are
produced by calls to the GetKey method:

h1 := GetKey(); if Recv() { h2 := GetKey(); }

The program does not satisfy GNI for Λ0 because the low input received
from Recv implies whether a second getKey action happens. More for-
mally, there exists no uncertainty trace that has the same secrets as the
trace getKey(ℎ1) · recv(true) · getKey(ℎ2) but also the same low data as the
trace getKey(ℎ′1) · recv(false) for all values ℎ1,ℎ2,ℎ′1. GNI fails because the
number of getKey actions is different depending on a trace’s low data.
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However, we consider the program secure since no information about
the inputs of getKey actions is released (the program does not even use
these inputs).

Our definition of GNIV solves this issue by adapting GNI in two ways.
First, when comparing the uncertainty trace and trace 𝑡2, we consider
secrets that are intended to remain confidential according to a view Λ.
Second, we compare the two traces only up to the common number of
secret inputs by allowing the uncertainty trace to have more or fewer
actions, accounting for different numbers of secret inputs:

Definition 3.5.1 (Compatibility) An uncertainty trace 𝑡𝑢 is compatible

with a secret ℎ for a view Λ, denoted as 𝑡𝑢 #Λ ℎ, if there exists a trace 𝑡′ with

Λ(𝑡′) = ℎ and 𝑡𝑢 ≤ 𝑡′ ∨ 𝑡′ ≤ 𝑡𝑢 .

For our example, the uncertainty trace getKey(h1)·recv(false) is compatible
with the secret of trace getKey(ℎ1) · recv(true).

For the definition of GNIV, to express a trace’s low data, we use the projec-
tion ·↓S, combining ·↓pre

S
and ·↓post

S
, e.g. query(id, 𝑑)↓S= query(id, 𝑑key).

Definition 3.5.2 (GNIV) An IOD behavior𝑇 satisfies GNIV for a classification

spec Sand view Λ, if for every secret ℎ ∈ 𝑇↓Λ and every low data 𝑙 ∈ 𝑇↓S,

there exists an uncertainty trace 𝑡𝑢 ∈ 𝑇,

𝑡𝑢↓S= 𝑙 ∧ 𝑡𝑢 #Λ ℎ.

3.5.2. Proving GNIV

To prove that all IOD behaviors satisfying a policy also satisfy GNIV (for
some view), we construct an uncertainty trace step by step. For every
trace 𝑡 of the IOD spec and every possible secret ℎ (according to the
view), we show that there is an uncertainty trace 𝑡𝑢 that has the same
declassifications as 𝑡 but is also secret compatible with ℎ.

We formalize the step-by-step construction as a trace construction plan,
a function that takes the secret ℎ, the uncertainty trace constructed so
far, the low data (in particular, the declassifications) that still have to be
constructed, and the next action N(𝑥, 𝑟), and returns the input 𝑟′ that
replaces 𝑟 to create the uncertainty trace. E.g., for our previous example
with getKey, a suitable plan 𝜉 satisfies 𝜉(ℎ1 · ℎ2 , 𝑙 , 𝜖, getKey(ℎ′1)) = ℎ1, i. e.

the plan replaces the secret input ℎ′1 of the first getKey action (the trace
constructed so far is empty) with the first value ℎ1 of the sequence of
secrets ℎ1 · ℎ2 that the uncertainty trace has to be compatible with. The low
data 𝑙 that still has to be constructed is either recv(true) or recv(false).

To prove that a policy entails GNIV for a view, we have to show that
there exists a trace construction plan that satisfies three conditions
that we define below. For our examples, we have done these proofs in
Isabelle/HOL; we leave the automation of such proofs to future work.

The three conditions that a trace construction plan has to satisfy are as
follows: (1) The plan must be well-defined in the sense that it does not
change low data and does not return impossible inputs. (2) The plan must
be secret-compatible, meaning that created uncertainty traces are actually
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compatible with secret ℎ. (3) The plan must be declassification-compatible,
meaning that created uncertainty traces are permitted to declassify the
same values as the original trace.

Theorem 3.5.1 (Passive Attacker Security) Given a program’s IOD behavior

𝑇 that satisfies a security policy (S, 𝑅). The IOD behavior 𝑇 satisfies GNIV

for the classification spec Sand a view Λ, if there exists a well-defined plan 𝜉
that is secret- and declassification-compatible.

We next define the three conditions formally. Well-Defined Plans. Well-
definedness of plans is straightforward. Since only inputs are modified
by a plan, data classified by preconditions remains unchanged trivially.
The condition ∃𝑡′. 𝑡′ · N(𝑥, 𝑟′) ∈ 𝑅 captures that the returned input must
be an actual input of the action.

Definition 3.5.3 (Well-defined Plan) A plan 𝜉 is well-defined for a policy

(S, 𝑅), if

𝑡 · N(𝑥, 𝑟′) ∈ 𝑅 ∧ 𝑟′ = 𝜉(ℎ, 𝑙, 𝑡 ,N(𝑥, 𝑟))
⇒ (∃𝑡′. 𝑡′ · N(𝑥, 𝑟′) ∈ 𝑅) ∧ N(𝑥, 𝑟′)↓post

S
= N(𝑥, 𝑟)↓post

S
.

Secret-Compatible Plans. Every trace produced by a plan must be
compatible with the secret ℎ. Since the empty trace is always compatible
with ℎ, i. e. 𝜖 #Λ ℎ, we only require that appending the next modified
action maintains compatibility.

Definition 3.5.4 (Secret-Compatible) For a policy (S, 𝑅) and a view Λ,

a plan 𝜉 is secret-compatible if for every secret ℎ ∈ 𝑅↓Λ, every trace 𝑡 and

action N(𝑥, 𝑟) with 𝑡 · N(𝑥, 𝑟) ∈ 𝑅, and every 𝑙 , 𝑟′,

𝑡 #Λ ℎ ∧ 𝑟′ = 𝜉(ℎ, 𝑙, 𝑡 ,N(𝑥, 𝑟)) ⇒ 𝑡 · N(𝑥, 𝑟′) #Λ ℎ

Declassification-Compatible Plans. GNIV requires that all permitted
declassifications are not influenced by the view. Thus, if a declassification
is permitted in the original trace, then the same declassification must be
permitted in the constructed trace.

Formally, for every prefix 𝑡 constructed by a plan, whenever a declas-
sification decl(𝑝, 𝑥) is the next action, then the declassification must be
permitted after 𝑡, i. e. 𝑡 · decl(𝑝, 𝑥) ∈ 𝑅. To quantify over constructed
prefixes, we define the image ImgS,𝑅(𝜉, ℎ, 𝑙𝑝 , 𝑙𝑐) of a plan 𝜉 as the set of
all prefixes that may be constructed by 𝜉 for the secret ℎ and the low data
𝑙𝑝 and 𝑙𝑐 of the prefix and continuation, respectively.

Definition 3.5.5 (Plan Image) We define the image of a plan 𝜉 inductively

via

𝜖 ∈ ImgS,𝑅(𝜉, ℎ, 𝜖, 𝑙𝑐)

𝑡 ∈ ImgS,𝑅(𝜉, ℎ, 𝑙𝑝 , 𝑙𝑛 · 𝑙𝑐) ∧ 𝑡 · N(𝑥, 𝑟) ∈ 𝑅 ∧ N(𝑥, 𝑟)↓S= 𝑙𝑛

⇒ 𝑡 · N(𝑥, 𝜉(ℎ, 𝑙𝑐 , 𝑡 ,N(𝑥, 𝑟))) ∈ ImgS,𝑅(𝜉, ℎ, 𝑙𝑝 · 𝑙𝑛 , 𝑙𝑐)
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Definition 3.5.6 (Declassification-Compatible) For a policy (S, 𝑅) and a

view Λ, a plan 𝜉 is declassification-compatible if for every secret ℎ ∈ 𝑅↓Λ
and every low data 𝑙𝑝 , decl(𝑝, 𝑥), 𝑙𝑐 ,

∀𝑡. 𝑡 ∈ ImgS,𝑅(𝜉, ℎ, 𝑙𝑝 , decl(𝑝, 𝑥) · 𝑙𝑐) ∧ (∃𝑥′. 𝑡 · decl(𝑝, 𝑥′) ∈ 𝑅)
⇒ 𝑡 · decl(𝑝, 𝑥) ∈ 𝑅.

Note that the condition 𝑡 ∈ ImgS,𝑅(𝜉, ℎ, 𝑙𝑝 , decl(𝑝, 𝑥) · 𝑙𝑐) does not guaran-
tee that a declassification may actually happen after the modified prefix,
which we capture with ∃𝑥′. 𝑡 · decl(𝑝, 𝑥′) ∈ 𝑅.

Example 3.5.1 For our running example, we show GNIV for two views.
Without additional assumptions, we show that the unused secret
data from queries, namely the list of compatible vaccines, remains
confidential. A suitable plan 𝜉0 replaces (1) all queried vaccines with
the secret according to the view and (2) all queried dates with the
date that is encrypted in the next declassification. Otherwise, inputs
remain unchanged. I.e., 𝜉0(ℎ · hs, 𝑙 , 𝑡 , query(id, 𝑑)) returns 𝑑[date ↦→
Next(id, l), vac ↦→ ℎ′], where Next(id, l) returns the date encrypted in
the next declassification for id in 𝑙 and ℎ′ is the relevant entry of ℎ.
We have to also replace the queried data to prove that subsequent
declassifications are permitted.
The plan 𝜉0 is trivially well-defined and secret-compatible. The plan
𝜉0 is also declassification-compatible because, if a declassification may
happen next, then there was a previous query action that was modified
accordingly by 𝜉0.
Given strong assumptions about encryption, we also show that parts
of the queried dates remain confidential. The challenge is that after
replacing a queried date, a subsequent declassification declassifies
a different ciphertext. We resolve this issue by partitioning queried
dates into confidential days and non-confidential milliseconds, where
we assume that a plan can change milliseconds to obtain the desired
ciphertexts. More formally, we assume that for every public key 𝑘,
and dates 𝑑0 , 𝑑1, we can change the milliseconds of 𝑑1 such that the
encryption of 𝑑0 and the modified 𝑑1 with 𝑘 are the same. For a
Dolev-Yao attacker, this assumption implies that an attacker does not
know the private keys. Under this assumption, we prove that days of
queried dates remain confidential. A suitable plan replaces the day of
queried dates with the targeted secret and replaces the corresponding
milliseconds such that subsequent declassification is correct.
Our incorrect variant of the IOD spec from the beginning of this
section does not satisfy GNIV for either view. In particular, our defined
plans are not declassification-compatible for the incorrect policy. If a
declassification may happen next, then we are not guaranteed that
there exists a previous query action whose encrypted date and key are
being declassified.

3.5.2.1. Proof Sketch of Theorem 3.5.1

As for all other theorems shown in this chapter, we proved Theorem 3.5.1
in Isabelle/HOL. In this subsection, we give a sketch of our mechanized
proof.
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We prove Theorem 3.5.1 in two phases. In the first phase, we prove
GNIV for IOD behaviors satisfying observational determinism, which
is formalized in Lemma 3.5.2. In particular, we do not yet consider
extensions. In the second phase, we lift this result to extensions, yielding
Theorem 3.5.1.

Lemma 3.5.2 Given an IOD behavior �̂�, an IOD spec �̂�, and a classification

spec Ŝ such that �̂� is well-defined; and �̂� is prefix-closed, input-closed, a

subset of �̂�, and satisfies Ŝ-OD. �̂� satisfies GNIV for a view Λ̂ if there exists

a well-defined trace construction plan �̂� that is secret- and declassification-

compatible.

Proving Lemma 3.5.2. Let an IOD behavior �̂�, a policy (Ŝ, �̂�), and a trace
construction plan �̂� that satisfy all assumptions be arbitrary. Furthermore,
let the secret ℎ ∈ �̂�↓

Λ̂
and the low data 𝑙 ∈ �̂�↓Ŝ be arbitrary. We show

that there exists a suitable uncertainty trace 𝑡𝑢 ∈ �̂� by induction on the
prefixes 𝑙𝑝 of the low data 𝑙. We use the following induction hypothesis
IH(𝑙𝑝):

∀𝑙𝑐 . 𝑙 = 𝑙𝑝 · 𝑙𝑐
⇒ ∃𝑡′𝑢 ∈ �̂�. 𝑡′𝑢 ∈ ImgŜ,�̂�(�̂�, ℎ, 𝑙𝑝 , 𝑙𝑐) ∧ 𝑡′𝑢↓Ŝ= 𝑙𝑝 ∧ 𝑡′𝑢 #

Λ̂
ℎ IH(𝑙𝑝)

As discussed in Sec. 3.5.2, we construct the uncertainty trace iteratively.
Conceptually, 𝑡′𝑢 captures the modified prefix and 𝑙𝑐 captures the low
data of the missing continuation. We have constructed the full required
uncertainty trace 𝑡𝑢 when the modified prefix has low data 𝑙, i. e. IH(𝑙)
holds.

The base case IH(𝜖) holds trivially with 𝑡′𝑢 = 𝜖. The inductive step consists
of several smaller steps. The induction hypothesis entails that there exists
𝑡0 ∈ �̂� with 𝑡0 ∈ ImgŜ,�̂�(�̂�, ℎ, 𝑙𝑝 , 𝑤 · 𝑙𝑐), 𝑡0↓Ŝ= 𝑙𝑝 , and 𝑡0 #

Λ̂
ℎ, where 𝑤 is

the low data that the next action must have. Since 𝑙 is in �̂�↓Ŝ, there exists
a trace 𝑡origin ∈ �̂� with 𝑡origin↓Ŝ= 𝑙 = 𝑙𝑝 · 𝑤 · 𝑙𝑐 . Ŝ-OD entails that there
exists a continuation 𝑒0 of 𝑡0 with 𝑡0 · 𝑒0 ∈ �̂� and 𝑒0↓pre

Ŝ
= pre(𝑤), where

pre(𝑤) is the data of 𝑤 classified as low by the precondition.

If 𝑒0 is a declassification, then 𝑡′𝑢 = 𝑡0 · 𝑒0 already satisfies the goal of the
induction step since 𝑒0↓Ŝ= 𝑤. More formally, we know 𝑤 = decl(𝑝, 𝑥)
and 𝑒0 = decl(𝑝′, 𝑥′) for some 𝑝, 𝑝′, 𝑥, 𝑥′. However, 𝑒0↓pre

Ŝ
= pre(𝑤) entails

𝑝 = 𝑝′. Declassification-compatibility entails 𝑡0 · decl(𝑝, 𝑥) ∈ �̂� and,
thereby, well-definedness of �̂� entails 𝑥 = 𝑥′, concluding the case.

Otherwise, if 𝑒 = N(𝑥, 𝑟) is not a declassifying action, then because
of that, there exists a possible output 𝑟′ with N(𝑥, 𝑟′) ↓Ŝ= 𝑤. Input-
closedness entails that 𝑡0 · N(𝑥, 𝑟′) is in �̂�. Lastly, we conclude the case
with 𝑡′𝑢 = 𝑡0 · N(𝑥, �̂�(ℎ, 𝑙𝑐 , 𝑡0 ,N(𝑥, 𝑟′))). Well-definedness and secret-
compatibility guarantee that 𝑡′𝑢 has the same low data as 𝑡0 · N(𝑥, 𝑟′) and
stays compatible with ℎ.

Recall that in our generalized framework, actions may have high visibility.
For such actions, we do not have to show that whether an action occurs
is low. In this case, the step where we get a continuation 𝑒0 of 𝑡0 using
Ŝ-OD becomes more involved because there may be a sequence of high
actions (actions with high visibility) between 𝑡0 and 𝑒0. In particular, to
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conclude the induction, we require that the actions between 𝑡0 and 𝑒0
have also been modified by the plan �̂�. We deal with these high actions
using another induction. We iteratively (1) apply the plan �̂� to the next
high action and then (2) use Ŝ-OD to acquire another continuation. These
steps are done until all actions between 𝑡0 and 𝑒0 have been modified.
To ensure this induction is well-founded, our generalized framework
also requires a termination criteria for trace construction plans. A plan
terminates if there exists a measure, a function from traces to natural
numbers, that strictly decreases when modifying an action in a sequence
of high actions. Termination holds trivially if the IOD spec does not
include infinite sequences of high actions.

Proving Theorem 3.5.1. Let an IOD behavior 𝑇 that satisfies the well-
defined policy (S, 𝑅) be arbitrary. Furthermore, let 𝜉 be a well-defined
and secret- and declassification-compatible plan for the policy. We prove
Theorem 3.5.1 by instantiating Lemma 3.5.2 in a specific way. Policy
compliance entails that there exists an extension 𝑇′ of 𝑇 such that 𝑇′

is prefix-closed and input-closed, and satisfies (S+ NoDecl)-OD. We
instantiate the IOD behavior �̂� and classification spec Ŝstraightforwardly
with 𝑇′ and (S+ NoDecl), respectively. For the IOD spec, we use the
largest extension of 𝑅, namely �̂� = {𝑡 | actual(𝑡) ∈ 𝑅}. Importantly, every
extension of a subset of 𝑅 is also a subset of �̂� and well-definedness
of 𝑅 trivially entails well-definedness of �̂�. Finally, we lift the plan 𝜉
to extensions by defining that the lifted plan �̂� (1) does not modify the
added auxiliary actions, i. e. just returns the input of auxiliary actions,
and (2) otherwise modifies actions in the same way as 𝜉. Accordingly,
we use Λ̂(𝑡) = Λ(actual(𝑡)).

To use Lemma 3.5.2, we show that �̂� is well-defined and secret- and
declassification-compatible whenever 𝜉 is well-defined and secret- and
declassification-compatible, which holds straightforwardly. Lastly, to
conclude the proof, we show that GNIV for the extension 𝑇′ entails GNIV
for the original IOD behavior 𝑇.

Let the secret ℎ ∈ 𝑇 ↓Λ and the low data 𝑙 ∈ 𝑇′↓S be arbitrary. The
definition of �̂� entails ℎ ∈ 𝑇′↓

Λ̂
. Regarding the low data, we know that

there exists an extended low data 𝑙′ ∈ 𝑇′↓(S+NoDecl) with actual(𝑙′) =

𝑙. GNIV for 𝑇′ implies that there exists the uncertainty trace 𝑡′𝑢 with
𝑡′𝑢↓(S+NoDecl)= 𝑙′ and 𝑡′𝑢 #

Λ̂
ℎ. Therefore, actual(𝑡′𝑢) is a correct uncertainty

trace for ℎ and 𝑙 since actual(𝑡′𝑢)↓S= 𝑙 and actual(𝑡′𝑢) #Λ ℎ hold.

3.5.3. Active Attacker

GNIV is strong enough to provide guarantees against active attackers that
are also able to modify the low inputs of all actions. In this subsection,
we define Active-GNIV, a variation of GNIV for active attackers, and show
under which conditions GNIV entails Active-GNIV.

We parameterize Active-GNIV with the set of considered attackers. In
our model, active attackers are able to change inputs of actions, e.g. by
intercepting messages and modifying the payloads. We formalize an
attacker as a function 𝐴 : Tr × Act ×𝕌×𝕌 → 𝕌 that takes (1) the trace of
past actions and (2) the next action N(𝑥, 𝑟), and returns an attacker-chosen
input 𝑟′ that replaces 𝑟. To reason about attackers, we define the image of
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an attacker Attacks(𝐴, 𝑇) as the set of traces that are possible under the
influence of an attacker 𝐴 for an IOD behavior 𝑇.

Definition 3.5.7 (Attacker Image) The image of an attacker 𝐴 : Tr×Act×
𝕌 × 𝕌 → 𝕌 is the smallest set that satisfies:

𝜖 ∈ Attacks(𝐴, 𝑇)

𝑡 ∈ Attacks(𝐴, 𝑇) ∧ 𝑡 · N(𝑥, 𝑟) ∈ 𝑇

⇒ 𝑡 · N(𝑥, 𝐴(𝑡 ,N(𝑥, 𝑟))) ∈ Attacks(𝐴, 𝑇)

Active-GNIV is then a variation of GNIV where for every considered
attacker, the uncertainty traces must exist under the influence of the
attacker. In particular, the uncertainty traces must exist regardless of
whether the secret ℎ is possible under the influence of the attacker or
not.

Definition 3.5.8 (Active-GNIV) An IOD behavior 𝑇 satisfies Active-GNIV

for a set of attackers A, a classification spec S, and a view Λ, if for every

attacker 𝐴 ∈ A, secret ℎ ∈ 𝑇↓Λ, and low data 𝑙 ∈ Attacks(𝐴, 𝑇)↓S, there

exists a trace 𝑡𝑢 ∈ Attacks(𝐴, 𝑇),

𝑡𝑢↓S= 𝑙 ∧ 𝑡𝑢 #Λ ℎ.

GNIV entails Active-GNIV if all considered attackers are low-limited. Intu-
itively, an attacker is low-limited if the attacker may only observe and
modify low data. We capture this intuition formally by defining that
low-limited attackers cannot distinguish traces with the same low data,
i. e. if one trace is possible under the attacker, then every trace with the
same low data is possible, too.

Definition 3.5.9 (Low-limited Attacker) An attacker 𝐴 : Tr × Act × 𝕌 ×
𝕌 → 𝕌 is low-limited for a classification spec S, if

∀𝑇, 𝑡 ∈ Attacks(𝐴, 𝑇), 𝑡′ ∈ 𝑇. 𝑡↓S= 𝑡′↓S⇒ 𝑡′ ∈ Attacks(𝐴, 𝑇).

Corollary 3.5.3 Given an IOD behavior 𝑇 that satisfies GNIV for the classifi-

cation spec Sand a view Λ. 𝑇 satisfies Active-GNIV for the attacker set A if

every attacker 𝐴 ∈ A is low-limited.

3.5.4. Advanced Properties of GNIV

In this section, we discuss further techniques to reason about GNIV. More
concretely, we discuss (1) guarantees about the parallel composition of
IOD behaviors, (2) guarantees about refinements of IOD behaviors, and
(3) guarantees against weaker attackers.

To be able to express these more advanced properties of GNIV, we first
introduce a definition of GNIV that is parameterized in the compatibility
relation #Λ.

Paramterized GNIV. Def. 3.5.10 shows the more generalized definition of
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GNIV, which replaces the compatibility relation #Λ with the relation Hthat
is a parameter of the definition. This version of GNIV is more expressive
than our standard definition of GNIV (Sec. 3.5.1), but also provides less
guarantees about IOD behaviors. For instance, consider a view that
returns some confidential bytestring. By defining that (𝑡𝑢 , ℎ) ∈ Hholds
if the secret of the uncertainty trace Λ(𝑡𝑢) differs at most one byte from
ℎ, we permit IOD behaviors to release one byte of the secret. Similar
to security policies themselves, we have to validate that the used H

parameter does not permit more information release than intended,
making this definition less suited for policy validation than our standard
definition of GNIV.

Definition 3.5.10 (Parameterized GNIV) An IOD behavior 𝑇 satisfies

Gniv(S,Λ,H) for a classification spec S, view Λ, and a relation H, if for

every secret ℎ ∈ 𝑇↓Λ and every low data 𝑙 ∈ 𝑇↓S, there exists an uncertainty

trace 𝑡𝑢 ∈ 𝑇,

𝑡𝑢↓S= 𝑙 ∧ (𝑡𝑢 , ℎ) ∈ H.

Parameterized GNIV is proved in the same way as standard GNIV. By
adapting secret-compatibility to H-compatibility, formalized below, we
recover passive (and active) attacker security. H-compatibility is defined
analogously to secret-compatibility. Note that the second condition,
namely that (𝜖, ℎ) ∈ Hholds for all secrets, is satisfied by our definition
of #Λ (see Def. 3.5.1).

Theorem 3.5.4 Given a program’s IOD behavior 𝑇 that satisfies a security

policy (S, 𝑅). The IOD behavior 𝑇 satisfies Gniv(S,Λ,H) if there exists a

well-defined plan 𝜉 that is H-compatible and declassification-compatible.

Definition 3.5.11 (H-Compatible) For a policy (S, 𝑅), a view Λ, and a

relation H, a plan 𝜉 is H-compatible if

▶ for every secret ℎ ∈ 𝑅 ↓Λ, every trace 𝑡 and action N(𝑥, 𝑟) with

𝑡 · N(𝑥, 𝑟) ∈ 𝑅, and every 𝑙 , 𝑟′,

(𝑡 , ℎ) ∈ H∧ 𝑟′ = 𝜉(ℎ, 𝑙, 𝑡 ,N(𝑥, 𝑟)) ⇒ (𝑡 · N(𝑥, 𝑟′), ℎ) ∈ H

▶ for every ℎ ∈ 𝑅↓Λ, (𝜖, ℎ) ∈ Hholds

Composition of GNIV. As for policy compliance, we are able to compose
the guarantees of separate IOD behaviors. More concretely, if the IOD
behavior 𝑇0 and 𝑇1 ensure that the views Λ0 and Λ1 remain confidential,
respectively, then the composition (𝑇0 ∥ 𝑇1) ensures that the composed
view Λ(𝑡) = (Λ0(𝑡↓L),Λ1(𝑡↓R)) remains confidential. The projections 𝑡↓L
and 𝑡↓R remove all actions of 𝑇0 and 𝑇1, respectively.

Lemma 3.5.5 (GNIV Composition) For every IOD behavior 𝑇0 satisfying

Gniv(S0 ,Λ0 ,H0) and IOD behavior 𝑇1 satisfying Gniv(S1 ,Λ1 ,H1), the

composition (𝑇0 ∥ 𝑇1) satisfies Gniv(S0 + S1 ,Λ
′,H′), where

Λ′(𝑡) = (Λ0(𝑡↓L),Λ1(𝑡↓R))
H′ = {(𝑡 , (ℎ0 , ℎ1)) | (𝑡↓L , ℎ0) ∈ H0 ∧ (𝑡↓R , ℎ1) ∈ H1}
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Consider Example 3.5.1, where the policy ensures that the queried
dates remain confidential if private keys are confidential. Lemma 3.5.5
gives us that if applications run with clients that keep their private key
confidential, then the composed system keeps the queried data and the
private keys confidential.

Importantly, the composition of GNIV does not require that the composed
IOD behaviors satisfy a policy. Since every IOD behavior keeps the trivial
view Λ(𝑡) = 𝜖 confidential (Lemma 3.5.6), we get that, if an IOD behavior
keeps a view Λ confidential, then every composition also keeps the view
Λ confidential.

Lemma 3.5.6 An IOD behavior 𝑇 satisfies Gniv(S,𝜆𝑡. 𝜖, 𝑇 × {𝜖}).

Refinement. For real-world programs, to accurately capture I/O behavior,
actions have to specify exactly which bytestrings are exchanged with
other entities. However, reasoning at this level can make the specification
of policies and validating properties about policies arduous.

Instead, we may specify and validate policies at a more abstract level and
then refine guarantees provided by the policy to the concrete level. E.g.,
consider that, instead of bytestrings, we model transferred payloads as
abstract data types. We then connect the abstract data types to concrete
bytestrings by introducing a concretization function 𝑓 , mapping abstract
actions to concrete actions. In particular, for an abstract IOD behavior 𝑇,
𝑇↓ 𝑓 captures the concrete IOD behavior of the program. The steps of our
approach are then as follows: (1) We specify a policy (S, 𝑅) at the abstract
level. (2) We verify that the abstract IOD behavior𝑇 of a program satisfies
the policy. (3) We get that if (S, 𝑅) entails GNIV for a view Λ, thereby, 𝑇
satisfies GNIV for Λ, then 𝑇↓ 𝑓 satisfies GNIV for a refined view Λ′.

We do not show that the concrete IOD behavior𝑇↓ 𝑓 satisfies some refined
policy (S′, 𝑅′). Such a property requires much stronger restrictions on
the concretization function 𝑓 , reducing the level of abstraction we are
able to use.

Sec. 3.6.4 discusses how we use our approach to verify an implementation
of the WireGuard protocol. In particular, we discuss how to verify for
concrete code that its abstract IOD behavior satisfies a policy.

Lemma 3.5.7 states under which conditions and for which refined clas-
sification specs S′ and refined views Λ′, step (3) is sound. Regarding
classification specs, the classification spec for concrete actions may clas-
sify less data as low. Regarding views, we require that for every concrete
secret ℎ′ ∈ 𝑇↓ 𝑓↓Λ′ , there exists an abstract secret ℎ ∈ 𝑇↓Λ that is compati-
ble with an abstract trace 𝑡 iff ℎ′ is compatible with the corresponding
concrete trace 𝑡↓ 𝑓 . The lemma’s requirements hold, for instance, if there
exists a homomorphism between abstract and concrete actions, which
we discuss in Sec. 3.6.4.5.

Lemma 3.5.7 (GNIV Refinement) Given a function 𝑓 : Act × 𝑉 × 𝑉 →
Act

′ ×𝑉 ′ ×𝑉 ′
from actions to actions (with different names and argument

types). For every abstract IOD behavior 𝑇 that satisfies Gniv(S,Λ,H), the

concrete IOD behavior 𝑇↓ 𝑓 satisfies Gniv(S′,Λ′,H′) if

▶ for all 𝑡0 , 𝑡1 ∈ 𝑇, 𝑡0↓S= 𝑡1↓S implies 𝑡0↓ 𝑓↓S′= 𝑡1↓ 𝑓↓S′ , and
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▶ for every 𝑡 ∈ 𝑇 and ℎ′ ∈ 𝑇 ↓ 𝑓↓Λ′ , there exists ℎ ∈ 𝑇 ↓Λ with

(𝑡 , ℎ) ∈ H↔ (𝑡↓ 𝑓 , ℎ
′) ∈ H′

.

Instead of a concretization function 𝑓 , we may use an abstraction function
𝑔 mapping concrete actions to abstract actions. Lemma 3.5.8 captures the
corresponding refinement. Whether we use an abstraction or concretiza-
tion function depends on the relation between abstract and concrete
values. A concretization function requires that every abstract value
has at most one concrete representation, and vice versa for abstraction
functions.

Lemma 3.5.8 Given a function 𝑔 : Act
′ × 𝑉 ′ × 𝑉 ′ → Act × 𝑉 × 𝑉 from

actions to actions (with different names and argument types). For every

abstract IOD behavior 𝑇′↓𝑔 that satisfies Gniv(S,Λ,H), the concrete IOD

behavior 𝑇′
satisfies Gniv(S′,Λ′,H′) if

▶ for all 𝑡0 , 𝑡1 ∈ 𝑇′↓𝑔 , 𝑡0↓𝑔↓S= 𝑡1↓𝑔↓S implies 𝑡0↓S′= 𝑡1↓S′ , and

▶ for every 𝑡′ ∈ 𝑇′
and ℎ′ ∈ 𝑇′ ↓Λ′ , there exists ℎ ∈ 𝑇′ ↓𝑔↓Λ with

(𝑡′↓𝑔 , ℎ) ∈ H↔ (𝑡′, ℎ′) ∈ H′
.

Weakening of Classification Specs. As discussed in our threat model
(Sec. 3.2.3), we assume that attackers may observe at most the data that
is classified as low by the classification spec. Simultaneously, we do not
expect that attackers are able to observe everything that is classified
low. For instance, attackers cannot observe declassifications, which do
not correspond to actual program operations. To bridge this gap, we
show that a view also remains secret against attackers that observe less
data. Since we define the observational capabilities of attackers with
classification specs, we only have to show that GNIV is preserved for
classification specs classifying less data as low, which we refer to as
dominated classification specs.

Formally, a classification spec S is dominated by another spec S′, if
whenever S′ is satisfied, then also S is satisfied.

Definition 3.5.12 (Classification Spec Domination) A classification spec

S is dominated by a classification spec S′
, denoted as S≤ S′

, if for all 𝑡0 , 𝑡1

𝑡0↓S′= 𝑡1↓S′ ⇒ 𝑡0↓S= 𝑡1↓S

Lemma 3.5.9 (GNIV Weakening) If S is dominated by S′
, then every IOD

behavior 𝑇 that satisfies Gniv(S′,Λ,H) also satisfies Gniv(S,Λ,H).

An analogous lemma for policy compliance does not hold since S-SIF
requires the postconditions of actions to show that data is low. E.g., policy
compliance does usually not hold if declassifications do not actually give
us the assumption that declassified data is low.

3.6. Case Study

To show that our policy framework is powerful and applicable to real-
world programs, we verified an implementation of the WireGuard pro-
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tocol against an appropriate security policy defined by us (Sec. 3.6.2).
Before discussing the case study, we first list our trust assumptions
(Sec. 3.6.1). Lastly, we discuss several smaller programs that illustrate
how we express specification patterns from previous works (Sec. 3.6.3).
All verified programs are available here [103].

3.6.1. Trust Assumptions

We have fully formalized and proved in Isabelle/HOL an instantiation
of our policy framework that uses the SecCSL logic for code verification.
To benefit from more automation, we verified the programs discussed
in this section using Gobra as shown in Sec. 3.3. When using Gobra, we
make two assumptions: (1) We assume that our annotations for trusted
libraries that specify I/O behavior (Sec. 3.3.1) are satisfied and that the
resulting I/O behavior is input-closed. (2) We assume that Gobra is
sound, i. e. if Gobra reports a successful verification, then the verified
code actually satisfies the provided specifications.

For a security policy to be meaningful, we additionally assume that
attackers satisfy our threat model (Sec. 3.2.3).

3.6.2. The WireGuard VPN

WireGuard is a widely-used Virtual Private Network (VPN). In the
protocol, two agents first establish a secret session key in a handshake
phase and then use this key to exchange messages in a transport phase. For
our case study, we reuse results from Arquint et al. [56]. They verify that a [56]: Arquint et al. (2023), Sound Verifica-

tion of Security Protocols: From Design to

Interoperable Implementations

modified version of WireGuard’s official Go implementation [68] refines

[68]: Donenfeld (n.d.), Go Implementation

of WireGuard

an I/O spec (without declassifications) generated from a Tamarin [69]

[69]: Meier et al. (2013), The TAMARIN

Prover for the Symbolic Analysis of Security

Protocols

model of the protocol.

For a security policy, we defined an IOD spec by extending the I/O spec
of Arquint et al. with declassification actions. Furthermore, we defined a
classification spec from scratch. We then verified that the implementation
of the initiator role from Arquint et al. satisfies this policy. We were able
to fully reuse the refinement proof by Arquint et al. To verify the code,
we added only additional proof annotations to verify that our added
declassification actions are permitted, and to verify secure information
flow.

The IOD spec of our security extends Arquint et al.’s I/O spec by
declassifications. However, their I/O spec is expressed using separation
logic [55, 89] rather than a transition system. In this formalism, the [55]: Sprenger et al. (2020), Igloo: soundly

linking compositional refinement and separa-

tion logic for distributed system verification

[89]: Penninckx et al. (2015), Sound, Mod-

ular and Compositional Verification of the

Input/Output Behavior of Programs

permitted I/O behavior is expressed via a co-inductive separation logic
predicate that is parameterized by the current position in and the abstract
state of the protocol; these two parameters correspond to the transition
system state in IOD transition systems. The body of the predicate consists
of a number of cases (conjuncts) that each describe (1) the condition under
which an I/O action may take place, (2) the action and its arguments
(expressed as separation logic predicates), and (3) the effect of the action
on the protocol position and abstract state. These ingredients correspond
directly to the guard and update functions of our IOD transition systems.
In fact, Sprenger et al. [55] formally proved the equivalence between I/O [55]: Sprenger et al. (2020), Igloo: soundly

linking compositional refinement and separa-

tion logic for distributed system verification
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specifications in separation logic and I/O-guarded transition systems,
and Arquint et al.’s I/O spec is indeed generated from such transition
systems. Due to this equivalence, and since our framework does not
prescribe how IOD specs are expressed (Sec. 3.2.2), we were able to re-use
Arquint et al.’s I/O spec. Since this spec is expressed in separation logic,
it is compatible with Gobra’s verification technique. Code verification
proceeds analogously to the approach shown in Sec. 3.3.

Security Policy. For the classification spec, we classify that long-term
private keys, generated ephemeral keys, and user messages encrypted
during the transport phase are secret. All other inputs and outputs,
such as network messages, public keys, and timestamps are low data.
Furthermore, we classify that the size of private keys is low, too. To reason
about keys, setting up the long-term keys and generating ephemeral keys
are captured as I/O actions.

For the IOD spec, to specify which declassifications are permitted, we
introduce the sets Out and In that, for the current point in the proto-
col, contain the messages that may be sent and are being processed,
respectively. Our IOD spec definition derives these sets from the transi-
tion system state (resp. the state parameters of the I/O spec expressed
in separation logic). We then permit three groups of declassifications:
(1) Every message 𝑚 that may be sent 𝑚 ∈ Out may also be declassified.
(2) Similarly, for every encryption enc(𝑚, 𝑘) occurring in Out and decryp-
tion dec(𝑚, 𝑘) occurring In, we may declassify whether the encryption
or decryption fails. (3) We may declassify whether WireGuard’s well-
definedness condition holds, namely whether the responder’s public key
to the power of the initiator’s private key or ephemeral key is zero (where
the keys are also derived from the transition system state).

Our verification approach is expressive enough to verify the imple-
mentation against the security policy. All non-deterministic effects in
the program, in particular, concurrency and error handling of network
sockets, are handled by our auxiliary actions.

Regarding guarantees for the policy, Arquint et al. proved that the I/O
spec satisfies key agreement and forward secrecy, which are preserved
by our IOD spec. These guarantees entail that if the protocol is in the
transport phase according to the transition system state, then indeed
a successful handshake between the actors has been established. This
allows the IOD spec to express that declassifications are permitted only
in the transport phase by expressing a corresponding precondition for
declassification actions in terms of the transition system state, such that
they are guaranteed to occur after a successful handshake.

Code Changes. We have taken the implementation from Arquint et al.
as is, inheriting their changes to the official Go implementation. The
official Go implementation was changed in two ways: (1) To reduce
verification effort, DDos protection, load balancing, and metrics were
omitted. In particular, load balancing requires complex concurrency
reasoning not supported by Gobra. (2) -Cryptographic operations and
network operations were moved into trusted libraries. The individual
steps processing a connection, i. e. parsing and constructing messages,
have remained unchanged.
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# Program LOC LOS LOP T [s]
1 vaccinations 91 15 150 42
2 vaccinations (quantitative) 91 18 165 75
3 database [80] 116 33 190 76
4 embargoed information [104] 13 20 46 36

Figure 3.10.: Program used to illustrate
expressiveness. We list the number of
lines of Go code (LOC), security policy
(LOS), proof annotations (LOP), and the
average verification time in seconds.

Statistics. The initiator consists of 345 lines of code (LOC) that we have
verified. The security policy consists of 18 LOC for the classification spec
and 219 LOC for the IOD spec. The specification mechanism for the
IOD spec used by Arquint et al. is more verbose than the one shown in
Sec. 3.3. Out of the 219 lines, 147 lines are generated from the verified
Tamarin protocol model and only 27 lines contain relevant information
for declassification. To verify that the code satisfies the policy, 714 lines of
proof annotations were necessary, 123 of which were added for this work.
The lines added for this work are either low assertions, annotations to
use the shared invariant, or annotations to prove that the declassification
conditions are satisfied. The annotation overhead of proof annotations
per line of code is around 2, which is typical for SMT-based deductive
verifiers. Verification takes 15 minutes on a Lenovo T480s with an Intel
Core i7-8650U and 24 GB of RAM. Compared to Arquint et al., the
verification time has increased by 13 minutes. This increase is due to the
added secure information flow reasoning.

3.6.3. Expressiveness

To show that our approach supports common specification patterns of
security policies, we specified and verified several smaller programs.
Fig. 3.10 depicts statistics about these programs. For robust declassifica-
tion [87] and secret data over public channels, we took policies from the [87]: Zdancewic et al. (2001), Robust De-

classificationliterature [80, 104] and wrote code implementations in Go (Program #4
[80]: Banerjee et al. (2008), Expressive De-

classification Policies and Modular Static

Enforcement

[104]: Askarov et al. (2010), A Semantic

Framework for Declassification and Endorse-

ment

and #3 respectively). For declassification with quantitative criteria, we
extended our running example (Program #2). We also list our running
example (Program #1). We focus our discussion on how we express
specification patterns.

State-Dependent Declassification. In this pattern, declassifications are
permitted based on the state of an execution. We use this pattern in our
WireGuard case study, where, for instance, we permit declassifications
involving user inputs only after a successful handshake. When using IOD-
guarded transition systems, we express state-dependent declassification
straightforwardly by capturing in the transition system state all relevant
information, e.g. the protocol phase. The declassification’s guard may
then permit declassifications based on the captured state.

Quantitative Criteria. As an extension of state-dependent declassifica-
tion, declassification with quantitative criteria permits declassification
based not only on the actual execution state but also based on past
declassifications. Since we treat declassification as actions themselves,
we express this specification pattern analogously to state-dependent
declassification. As an illustrating example, we extended our running
example such that declassifications are permitted at most 10 times per
id (Program #2 of Fig. 3.10). For this change, we extended the state of
our IOD-guarded transition system to also store the number of past
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declassifications per id, which is then increased in the update of the
declassification action.

Robust Declassification. In this pattern, declassification is permitted only
for values with high integrity, i. e. trusted data [87]. The aim is to ensure[87]: Zdancewic et al. (2001), Robust De-

classification that attackers are not able to influence when and what is declassified
in unintended ways. In our framework, we reason about integrity by
defining an additional classification spec, specifying which data has high
integrity. We then specify in the precondition for declassification that
the declassified data has high integrity. For endorsement, i. e. the act of
elevating the integrity of data, we add an action endorse analogously to
declassification, which is then also governed by the IOD spec. We verify
the code for both classification specs. Because integrity is the dual of
confidentiality [105], we are able to use our low assertions to also express[105]: Biba (1977), Integrity Considerations

for Secure Computer Systems high integrity. In particular, we do not have to adapt our formalism.
As an example, we verified a program by Askarov and Myers [104][104]: Askarov et al. (2010), A Semantic

Framework for Declassification and Endorse-

ment

where data may be declassified if a received timestamp is older than a
specified embargo time (Program #4 in Fig. 3.10). The received timestamp
is endorsed only if it is in the past.

Secret Data from Public Inputs. In our running example, secret data
originates from a remote database. However, for many applications, secret
data arrives encrypted over the public network. In our framework, we
express encrypted sources of secret data by classifying the decryption key
as confidential. Classifying the key is sufficient, as all data derived using
the confidential key is considered confidential itself. In particular, we
are guaranteed that programs do not unintentionally release decrypted
payloads. As an example, we verified a program inspired by Banerjee at
al. (Program #3). A medical database receives encrypted medical records,
parts of which are declassified and forwarded to an auditing company.

3.6.4. Verification with Abstract Messages

In our WireGuard case study, we use the refinement approach introduced
in Sec. 3.5.4. Instead of bytestrings, the policy uses abstract messages to
represent arguments of actions. This representation enabled Arquint et
al. to use Tamarin [69, 106], a state-of-the-art tool to analyze protocols, to[69]: Meier et al. (2013), The TAMARIN

Prover for the Symbolic Analysis of Security

Protocols

[106]: Schmidt et al. (2012), Automated

Analysis of Diffie-Hellman Protocols and

Advanced Security Properties

prove key agreement and forward secrecy for the IOD spec. However,
using abstract messages instead of the concrete bytestrings that are
actually manipulated by the code implementation poses two challenges:
(1) For code verification, we have to bridge the abstraction gap between
the abstract messages in the policy and the bytestrings manipulated by
the code. (2) For policy validation, we want to derive guarantees about
the concrete IOD behavior based on the guarantees validated for the
policy (which uses abstract messages).

In this subsection, we explain how we relate bytestrings to abstract
messages (Sec. 3.6.4.1) and we show how we verify that the abstract IOD
behavior of code manipulating concrete bytestrings satisfies a policy
(Sec. 3.6.4.2). Lastly, we discuss how to derive guarantees about the
concrete IOD behavior based on the policy. The discussed techniques for
code verification have originally been published in [56].[56]: Arquint et al. (2023), Sound Verifica-

tion of Security Protocols: From Design to

Interoperable Implementations
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Our proposed method enables us to verify that pre-existing real-world
code satisfies IOD specs produced from abstract Tamarin models.

3.6.4.1. Relating Abstract Messages and Bytestrings

We relate bytestrings and abstract messages using a concretization func-
tion 𝛾 : M→ 𝔹★ from abstract messages to bytestrings, which we also lift
to actions. E.g., an action N(𝑥, 𝑟) with abstract arguments is concretized
to 𝛾(N(𝑥, 𝑟)) = N(𝛾(𝑥), 𝛾(𝑟)). We do not use an abstraction function
from bytestrings to abstract messages because such a mapping assumes
that each bytestring corresponds to exactly one term, and consequently,
that every bytestring can be uniquely parsed as a term. To minimize
our assumptions, we do not a priori want to exclude collisions between
bytestrings, i. e. a bytestring may have several term interpretations.

As for Tamarin, abstract messages 𝑚 ∈ M are elements of a term algebra

T= TΣ(C∪ V). Message terms are built over a signature Σ of function
symbols and a set of constants C and variables V. The arguments of
actions are ground terms, i. e. terms without variables. The term algebra
is equipped with an equational theory E, which is a set of equations, and
we denote by =E the equality modulo E.

We model the concrete messages and the operations on them as bytestring

algebras defined as term algebras Bwith the set of bytestrings 𝔹★ as the
carrier set. To relate terms to bytestrings, we use a surjective term algebra
homomorphism 𝛾 : M→ B, which maps constants C to bytestrings and
the signature’s symbols to functions on bytestrings:

𝛾(𝑛) = 𝑛B for 𝑛 ∈ C

𝛾( 𝑓 (𝑡1 , . . . , 𝑡𝑘)) = 𝑓B(𝛾(𝑡1), . . . , 𝛾(𝑡𝑘)) for 𝑓 ∈ Σ𝑘

With the requirement that 𝛾 is surjective, we avoid junk bytestrings that
do not represent any term (i.e., the algebra B is term-generated). This is
without loss of generality as there are countably infinitely many public
names that can be mapped to potential junk bytestrings.

Note that term algebra homomorphisms are required to preserve equali-
ties. For example, a symbolic equality dec(𝑘, enc(𝑘, 𝑚)) =E 𝑚 on terms
implies the equality

decB(key, encB(key,msg)) = msg

on bytestrings. In what follows, we will use the bytestring algebra’s
functions in our cryptographic library’s specification. This enables us to
reason about message parsing and construction.

3.6.4.2. Verifying Abstract Policies

The code verification for policies with abstract messages follows the same
approach as shown in Sec. 3.3. The only difference is that the memory
location Trace is appended with abstract actions instead of the concrete
actions. Fig. 3.11 shows the altered specification of the Receive method.
We add ghost parameters (here m) to capture the abstract arguments of
actions. The received concrete bytestring is then the concretization of
the abstract argument. Recall that Abs(b) is the bytestring stored in the
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Figure 3.11.: Simplified specifications
for encryption, decryption, and receive.
The function Abs abstracts an in-memory
byte array to B. We omit conditions on
the size of bytestrings.

ens Abs(ciph) = enc𝐵(Abs(key), Abs(msg))
func Encrypt(key, msg []byte) (ciph []byte)

ens ok =⇒ Abs(c) = enc𝐵(Abs(k), Abs(m))
func Decrypt(k, c []byte) (m []byte, ok bool)

req acc(Trace) && acc(b)
ens acc(Trace) && *Trace = old(*Trace) · recv(m)
ens Abs(b) = 𝛾(m)
func Receive() (b []byte, ghost m term)

array b. The specification of policies and the assertions that we verify to
show that a policy is satisfied remain unchanged otherwise. However,
our introduction of abstraction makes reasoning about the arguments
of actions, especially inputs, more challenging. We first discuss how to
show that the IOD spec is satisfied. We discuss how to show that the
classification spec is satisfied afterward.

Reasoning about Outputs. Verifying that the IOD spec permits an ac-
tion such as sending or declassifying an abstract message boils down
to verifying that the bytestring 𝛾(𝑚) for a permitted message 𝑚 was
constructed and then sent or declassified, respectively. Showing such
constructions becomes straightforward by equipping a trusted cryp-
tographic library with suitable specifications. Consider the simplified
specification of an encryption function shown in Fig. 3.11. Due to the
specification and the surjectivity of 𝛾, the result of encrypt(key, msg)

is equal to 𝛾(enc(𝑚key , 𝑚msg)) for some messages 𝑚key and 𝑚msg, where
𝛾(𝑚key) = Abs(key) and 𝛾(𝑚msg) = Abs(msg). To verify the construction
of an entire message, we combine the information of all such calls.

Reasoning about Inputs. For action inputs, we do not have to show that
the IOD spec permits them. However, the IOD spec may require us to
show that an abstract input of an action matches a specific term. Consider
a policy that permits declassification only after an encrypted challenge
enc(𝑘, 𝑛) has been received. To verify that a declassification is permitted,
we have to verify that the term enc(𝑘, 𝑛) has been received. We refer to
such terms as patterns.

Verifying that an abstract message 𝑚 returned by Receive() matches a
pattern 𝑡 is more involved. Using our cryptographic library’s specifica-
tions, we can verify that 𝛾(𝑚) is equal to 𝛾(𝑡𝜎), where the substitution 𝜎
instantiates the variables of 𝑡 with messages. Unfortunately, this does not
entail that the received message 𝑚 matches the pattern 𝑡. The function
𝛾 may have collisions and hence 𝛾(𝑚) may equal 𝛾(𝑡𝜎), while 𝑚 and
𝑡𝜎 differ. We address this issue by requiring that instances of the IOD
specs’s patterns do not collide with other bytestrings; we discuss below
how we justify this requirement.

Definition 3.6.1 The pattern requirement for a pattern 𝑡 ∈ T is defined

by

𝛾(𝑡𝜎) = 𝛾(𝑚) =⇒ ∃𝜎′. 𝑚 =E 𝑡𝜎′. (PaR(𝑡))

This requirement states that if messages 𝑚 and 𝑡𝜎 coincide under 𝛾, then
𝑚 must match the pattern 𝑡 (mod E) with some substitution 𝜎′, which
may differ from 𝜎.
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1 // Abs(key) = 𝛾(k) holds
2 ciph, c := Receive()
3 assert Abs(ciph) = 𝛾(c)
4 msg, ok := Decrypt(key, ciph); if !ok {return}
5 assert ∃u. Abs(msg) = 𝛾(u)
6 && Abs(ciph) = 𝛾(enc(k, u))
7 PaR1(m, ...) // using the pattern requirement
8 assert ∃w. c =E enc(k, w) && Abs(msg) = 𝛾(w) Figure 3.12.: Reasoning about receiving

and parsing a ciphertext.

req acc(Trace, read) && Reaches(p,*Trace,s) && s.key = k
req ∃x. 𝛾(enc(k,x)) = 𝛾(m)
ens acc(Trace, read) && ∃x′. m =E enc(k,x′)
ghost func PaR1(m,s,k)

Figure 3.13.: Ghost function for the pat-
tern requirement of Example 3.6.1. There
is the single pattern enc(𝑘, 𝑥), where 𝑘 is
a constant and 𝑥 is a variable.

We need the pattern requirement for all patterns of the IOD spec. For
code verification, we express the pattern requirement as a ghost method
whose pre- and postcondition are the left-hand and right-hand side of the
pattern requirement, for each pattern respectively. To apply the pattern
requirement, the corresponding ghost method is called in the code. In
Sec. 3.6.4.3 and Sec. 3.6.4.4, we will explain how to prove the pattern
requirement for a given pattern 𝑡.

Example 3.6.1 Consider a simple protocol where a policy expects a
message matching the pattern enc(𝑘, 𝑥), where 𝑘 is a pre-shared key.
We assume that key 𝑘 is stored in the model state of our IOD-guarded
transition system. Fig. 3.12 shows part of an implementation. The
variable key stores the pre-shared key, expressed as Abs(key) = 𝛾(k).
After successfully receiving a bytestring ciph with a message c, Abs(
ciph) = 𝛾(c) holds due to receive’s specification (Fig. 3.11). Next, the
code decrypts ciph. If successful, ciph equals the bytestring 𝛾(enc(k,u
)) for some message u with Abs(msg) = 𝛾(u) (lines 5–6) by decrypt’s
postcondition (Fig. 3.11) and 𝛾 being a surjective homomorphism.
Furthermore, we know that 𝛾(enc(k,u)) equals 𝛾(c), but not yet
that the received message c matches the pattern enc(𝑘, 𝑥) (line 8). For
this, we apply the pattern requirement by calling the ghost method
PaR1 (Fig. 3.13). The constant 𝑘 of the pattern enc(𝑘, 𝑥) is passed as an
argument to the call, and related to the state of the IOD spec via the
ghost method’s precondition (with s.key = k).

Verifying Classification Spec. Verification of the classification spec is
straightforward. For preconditions, to show that an abstract message 𝑚

is low, we show that all abstract messages involved in the construction
of 𝑚 are low. The pattern requirement helps us to derive the abstract
terms of bytestrings involved in the message creation. For postconditions,
we trivially get that the concretizations of low inputs are low since if an
abstract term 𝑚 is low, then also 𝛾(𝑚) is low.

3.6.4.3. Deriving the Pattern Requirement

The pattern requirement for a given pattern 𝑡 can be derived from
two more basic properties. We define these properties here and prove
this implication. Afterward, we discuss assumptions and justifications
regarding these properties.
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The first property is image disjointness, which has two parts: (1) the images
of constants under 𝛾 are pairwise disjoint and (2) the image of any
function 𝑓B for 𝑓 ∈ Σup neither collides with the image of any other
function 𝑔B, for 𝑔 ∈ Σ, nor with the image of constants under 𝛾. We use
Σup to denote the set of all constructive functions, i. e. functions that do not
reduce a term such as decryptions or field projections. Image disjointness
for destructive functions such as decryptions is not necessary. Due to
equational theory, collisions of different functions are ok if there exist
equal terms (mod E) that do not collide. This case is useful for equational
theories with neutral elements, e.g. 𝑔1 = 𝑔, which would otherwise
cause trivial collisions. Lemma 3.6.1 states the case without equational
theory.

Definition 3.6.2 (Image disjointness) Image disjointness holds for a pattern

𝑡 if, (1) 𝛾 is injective for all names C occurring in 𝑡 and (2) for all 𝑓 ∈ Σup
occurring in 𝑡,

𝑓 (𝑡′1 , ..., 𝑡′𝑘) ⊑ 𝑡 ∧ 𝛾( 𝑓 (𝑡′1𝜎, ..., 𝑡′𝑘𝜎)) = 𝛾(𝑚)
⇒ ∃𝑏1 , ..., 𝑏𝑘 . 𝑚 =E 𝑓B(𝑏1 , ..., 𝑏𝑘). (ID 𝑓 (𝑡))

Lemma 3.6.1 Image disjointness holds if:

▶ 𝛾 is injective on the set of names C and

▶ for all 𝑓 , 𝑔 ∈ Σup such that 𝑓 ≠ 𝑔,

img( 𝑓B) ∩ (img(𝑔B) ∪ 𝛾(C)) = ∅.

The second property is pattern injectivity for a pattern 𝑡. This constitutes a
much weaker form of standard injectivity. It is required to hold only for
subterms 𝑡′ ⊑ 𝑡 and where, again, equality is guaranteed only modulo a
substitution 𝜎′.

Definition 3.6.3 (Pattern injectivity) Pattern injectivity holds for a pattern

𝑡 if, for all 𝑓 ∈ Σup occurring in 𝑡,

𝑓 (𝑡′1 , ..., 𝑡′𝑘) ⊑ 𝑡 ∧ 𝑓B(𝛾(𝑡′1𝜎), ..., 𝛾(𝑡′𝑘𝜎)) = 𝑓B(𝑏1 , ..., 𝑏𝑘)
=⇒ ∃𝜎′. 𝑏1 = 𝛾(𝑡′1𝜎′) ∧ ... ∧ 𝑏𝑘 = 𝛾(𝑡′𝑘𝜎

′). (PaI 𝑓 (𝑡))

Proposition 3.6.2 Given a linear pattern 𝑡 (where every variable occurs

only once), image disjointness and pattern injectivity for 𝑡 imply the pattern

requirement for 𝑡.

Proof. We prove the proposition’s statement for all 𝑡′ ⊑ 𝑡 by induction
on 𝑡′.

We split non-linear patterns into multiple linear ones. For instance, the
non-linear pattern 𝑡 = ⟨𝑥, hash(𝑥)⟩ can be split into 𝑡1 = ⟨𝑥, _⟩ and
𝑡2 = ⟨_, hash(𝑥)⟩ (where _ matches any term). Conceptually, we then first
match a given term ⟨𝑢, hash(𝑢)⟩ against 𝑡1, which binds 𝑥 to 𝑢, and then
against ⟨_, hash(𝑢)⟩ = 𝑡2[𝑥 ↦→ 𝑢]. This is equivalent to matching against
𝑡. This turned out to be simpler to work with than a single linearized
pattern with additional equality constraints.



3.6. Case Study 91

3.6.4.4. Assumptions and Proof Obligations

We discuss assumptions and proof obligations regarding image disjoint-
ness and pattern injectivity. In doing so, we distinguish cryptographic
operations from formats [107]. Formats are user-defined function symbols, [107]: Mödersheim et al. (2014), A Sound

Abstraction of the Parsing Problemalong with projections for all arguments, that behave like tuples. In the
concretization, each format is mapped to a combination of tags (i. e. con-
stant bytestrings), fixed-size fields, and variable-sized fields prepended
with a length field.

Since we are working in a symbolic (Dolev-Yao) model, which assumes
perfect cryptography, we maintain this assumption for cryptographic
operations at the bytestring level in the following form.

Assumption 3.6.1 (Cryptographic operations) We assume that

▶ 𝛾 is injective on the set of names C,

▶ (ID 𝑓 (𝑡)) holds for cryptographic 𝑓 ∈ Σup,

▶ (PaI 𝑓 (𝑡)) holds for all protocol patterns 𝑡 and all cryptographic 𝑓 ∈ Σup
occurring in 𝑡.

We justify these assumptions by noting that we can expect collisions
violating these assumptions to occur only with negligible probability
in good cryptographic libraries. Also recall that pattern injectivity is a
much weaker requirement than standard injectivity.

The situation is different for formats. We can expect that the formats of a
well-designed protocol are unambiguously parseable (i. e. injective and
hence pattern-injective) and mutually disjoint (i. e. image disjoint). We
therefore require that these properties are proved for formats, e.g. using
the techniques proposed in [107, 108]. [107]: Mödersheim et al. (2014), A Sound

Abstraction of the Parsing Problem

[108]: Ramananandro et al. (2019), Ever-

Parse: Verified Secure Zero-Copy Parsers for

Authenticated Message Formats

Remark 3.6.1 An obvious way to achieve image disjointness and
pattern injectiveness is to tag each construct of the bytestring algebra
with a different bytestring. This approach is followed, e.g. in [55] [55]: Sprenger et al. (2020), Igloo: soundly

linking compositional refinement and separa-

tion logic for distributed system verification

but it
is unrealistic for real protocols.
Alternatively, image disjointness holds if different operations result in
differently sized bytestrings. For operations with varying output sizes,
such as stream encryption, this may require restricting the allowed
argument sizes in the implementation. In some cases, this approach
may allow us to prove image disjointness even for some cryptographic
operations. Indeed, we do this for our pre-existing implementation of
the WireGuard protocol, which does not use tagging. However, this
approach also has its limitations; for example, AES-256 or SHA-256
have the same output size.

3.6.4.5. Guarantees about the Concrete IOD Behavior

As discussed in Sec. 3.5.4, we get guarantees about the concrete IOD
behavior (based on bytestrings) by refining the guarantees of the abstract
policy. Our link between bytestrings and message terms enables us to
use a more specialized version of Lemma 3.5.7. Lemma 3.6.3 states that if
there exist concretization functions for classified data (denoted as 𝛾𝐿) and
secrets (denoted as 𝛾𝐻) that extend the homomorphism to classification
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specs and views, then for views kept confidential at the abstract level, the
corresponding concrete view is kept confidential at the concrete level.

Lemma 3.6.3 For every IOD behavior 𝑇 that satisfies Gniv(S,Λ,H), the

IOD behavior 𝑇 ↓𝛾 satisfies Gniv(SB,ΛB,HB) if for every 𝑡 ∈ 𝑇 and

ℎ ∈ 𝑇↓Λ,

▶ 𝛾𝐿(𝑡↓S) = 𝑡↓𝛾↓SB

▶ 𝛾𝐻(Λ(𝑡)) = ΛB(𝑡↓𝛾)
▶ (𝑡 , ℎ) ∈ H↔ (𝑡↓𝛾 , 𝛾𝐻(ℎ)) ∈ HB

.

Consider the abstract spec {Low(id)}query(id, 𝑟){Low(key(𝑟))}, where
key(𝑟) returns the key of the now abstract term 𝑟. To obtain a suitable
concrete spec, 𝛾𝐿 may exchange all abstract functions with their con-
crete counterparts, i. e. {Low(id)}query(id, 𝑟){Low(keyB(𝑟))}. Views are
concretized analogously.

3.7. Related work

We categorize existing work about secure information flow policies based
on 2 criteria.

Firstly, we distinguish between programming-language-based frame-
works [109], where security is defined with a fixed programming language,[109]: Sabelfeld et al. (2003), Language-

based information-flow security and system-based framework [24], where security is defined at a higher
[24]: Mantel (2003), A uniform framework

for the formal specification and verification

of information flow security

level, usually some form of general traces. Language-based approaches
have the advantage that they are closer to code verification and amicable
to powerful definitions of security, in particular, non-determinism is
taken care of based on the fixed language semantics. However, this more
concrete formalization comes at the cost that reasoning about policies is
tied to the fixed semantics, changing languages requires adapting the
policy framework, and programs written in different languages cannot
be formally governed by the same policy.

Secondly, as introduced by Sabelfeld and Sands [110], we use 4 dimensions[110]: Sabelfeld et al. (2005), Dimensions

and Principles of Declassification to classify which kind of information release is governed: (1) What
information is declassified. (2) When may information be declassified,
in particular, which property has to hold so that declassification is
permitted. (3) Where in a program may declassifications happen. (4)
Who may declassify information. Our policy framework tackles the
what and when dimensions. Our support for robust declassification, as
outlined in Sec. 3.6.3, is sometimes considered to address part of the who
dimension.

We focus our discussion of related work on approaches that involve
reasoning about code.

Language-based definitions of security. A lot of language-based frame-
works define security based on the epistemic definition introduced
by Askarov and Sabelfeld [111], which has been extended in various[111]: Askarov et al. (2007), Gradual Re-

lease: Unifying Declassification, Encryption

and Key Release Policies

ways [112–115]. A program is secure if the attacker uncertainty, i. e. the set of
secrets compatible with low data, remains unchanged for every execution
step of the program, except for declassification. To rule out that declassi-
fications cause arbitrary information release, some frameworks [79, 80,
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116] require further that the reduction of attacker uncertainty caused
per declassification is bound based on the program and policy. Our
introduction of GNIV follows the same motivation. Instead of enforcing
that the reduction of attacker uncertainty is bound, GNIV requires that
the attacker uncertainty remains unchanged for a given view of the secret
data. Robust declassification [87] combines secure information flow with [87]: Zdancewic et al. (2001), Robust De-

classificationreasoning about the integrity of data to limit the information release
even against an active attacker. In these approaches, declassification
is permitted in a trusted context only, limiting the influence an active
attacker can have.

Another approach for language-based frameworks is to define security
via a variation of low-bisimulations [92, 117]. The definition considers [92]: Smith et al. (1998), Secure Informa-

tion Flow in a Multi-Threaded Imperative

Language

[117]: Mantel et al. (2011), Assumptions

and Guarantees for Compositional Noninter-

ference

pairs of executions with equal low data. A program is secure if, for every
step of one execution, the other execution is able to perform a step that
again establishes equal low data. For declassifications, pairs that do not
agree on the declassified value are disregarded [81, 86, 118].

[81]: Smith (2022), Declassification Predi-

cates for Controlled Information Release

[86]: Sabelfeld et al. (2003), A Model for

Delimited Information Release

[118]: Askarov et al. (2007), Localized delim-

ited release: combining the what and where

dimensions of information release

An advantage of these epistemic- and simulation-based definitions is
that they consider timing-channels. Furthermore, epistemic definitions
provide immediate guarantees against attackers. However, these defini-
tions require a fixed language semantics, making them ill-suited for our
purposes.

System-based definitions of security. For system-based frameworks,
security is defined on top of some notion of event traces, describing the
behavior of a system. Early work without declassification [24] classifies [24]: Mantel (2003), A uniform framework

for the formal specification and verification

of information flow security

events as either secret or public and then defines security as an attacker’s
inability to deduce when secret events happen. These approaches con-
sider whether an event occurs as confidential. Later works change this
perspective to the notion that, instead of events themselves, the data
produced by events is confidential. Observational determinism [82, 83] [82]: McLean (1992), Proving Noninter-

ference and Functional Correctness Using

Traces

[83]: Roscoe (1995), CSP and determinism

in security modelling

describes that the observable public behavior is deterministic in the
low inputs of the system, thereby, ruling out that public behavior de-
pends on secret data. Sutherland’s non-deducibility [48] describes that

[48]: Sutherland (1986), A model of infor-

mation

for every public observation and every secret, there exists a trace in-
corporating both, which prevents possibilistic deductions about secrets
based on public observations. Our definition of GNIV slightly adapts
Sutherland’s non-deducibility to consider different notions of whether a
trace incorporates a secret.

To allow intended information release, a line of work [119, 120] combines [119]: Dimitrova et al. (2012), Model Check-

ing Information Flow in Reactive Systems

[120]: Clarkson et al. (2014), Temporal Log-

ics for Hyperproperties

LTL reasoning with secure-information flow reasoning. These approaches
are able to express until when secrets are supposed to remain secret, where
information release is permitted afterward. Bounded-deducibility [26] [26]: Popescu et al. (2021), Bounded-

Deducibility Security (Invited Paper)
implements a similar idea, but without LTL reasoning. Policies specify
under which condition declassification is not permitted and how much
of the secrets must be protected.

Instead of policies specifying classification and declassification, an al-
ternative approach is to express security policies as an abstract model
that must be refined to satisfy the policy [121, 122]. Implementations [121]: Cohen et al. (2009), Abstraction in

model checking multi-agent systems

[122]: Baumann et al. (2021), On Composi-

tional Information Flow Aware Refinement

are allowed to release as much information as the abstract model, in
particular, permitting specific declassifications is not necessary. While
some definitions of security such as observational determinism are pre-
served under standard refinements [21], security definitions involving
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intentional information release are often not [21, 122]. Existing works[21]: Clarkson et al. (2008), Hyperproper-

ties

[122]: Baumann et al. (2021), On Composi-

tional Information Flow Aware Refinement

therefore restrict refinements such that implementations do not introduce
more information releases than the abstraction. For instance, Baumann et
al. [122] introduce a compositional refinement ensuring that the attacker
uncertainty of the refined program and abstract model are equal.

Language-based frameworks. Closest to our work, but not language-
agnostic, Murray et al. [79] specify declassification policies as a condition[79]: Murray et al. (2023), Assume but

Verify: Deductive Verification of Leaked In-

formation in Concurrent Applications

on a trace of values and a relational assertion, specifying when and what
may be declassified, respectively. To populate the trace, programs are
also annotated with specifications capturing how this trace is extended.
In contrast to our approach, where traces record IOD actions, programs
can add arbitrary values to their traces using program annotations. As a
consequence, their declassification policies are more flexible than ours,
but policies provide weaker guarantees by themselves without further
knowledge about the program annotations. For classification, trusted
libraries are annotated directly with pre- and postconditions containing
low assertions. While we do not consider this work to be language-
agnostic due to the fixed programming language, the introduction of a
trace to govern declassification and the flexibility of annotating trusted
libraries make the approach more easily applicable to other languages
than previous works.

Previous language-based frameworks specify policies similarly. Banerjee
et al. [80] permit declassification based on a condition on the global[80]: Banerjee et al. (2008), Expressive De-

classification Policies and Modular Static

Enforcement

program state. Schoepe et al. [78] and Smith [81] specify a predicate,

[78]: Schoepe et al. (2020), VERONICA:

Expressive and Precise Concurrent Informa-

tion Flow Security

[81]: Smith (2022), Declassification Predi-

cates for Controlled Information Release

defining whether a concrete declassification statement is permitted
depending on the current and initial program state respectively. Since
these approaches permit declassification for specific statements in a
program, they also address the where dimension of declassification.

Programs are verified using a relational verification logic [78, 79, 81], a
type system [104, 118, 123], or a combination thereof [80].[104]: Askarov et al. (2010), A Semantic

Framework for Declassification and Endorse-

ment

[118]: Askarov et al. (2007), Localized delim-

ited release: combining the what and where

dimensions of information release

[123]: Barthe et al. (2008), Tractable En-

forcement of Declassification Policies

Lastly, a line of work [124–126] focuses on the where and what dimensions

[124]: Broberg et al. (2006), Flow Locks:

Towards a Core Calculus for Dynamic Flow

Policies

[125]: Broberg et al. (2009), Flow-sensitive

semantics for dynamic information flow poli-

cies

[126]: Menz et al. (2023), Compositional

Security Definitions for Higher-Order Where

Declassification

instead of the when dimension. This line of work defines policies by
assigning flow lock specs to data. A flow lock spec is a set of logical locks
that have to be opened to release data over a specific channel. These
logical locks are opened through static annotations in the code, capturing
the position of relevant places in the code. The work by Menz et al. [126]
extends this approach to a higher-order language.

System-based frameworks. To our knowledge, there is no existing
work that lifts policy frameworks similar to the ones discussed for
language-based frameworks, i. e. frameworks with explicit policies that
tackle the verification of existing code, to the system-based setting.
Instead of verifying existing code, another approach is to verify code
generated from a more abstract model. In the approach proposed by
Popescu et al. [26], programs are specified as I/O automata producing[26]: Popescu et al. (2021), Bounded-

Deducibility Security (Invited Paper) I/O actions. For verification, the automata is first checked against a
policy and then automatically translated into a functional programming
language. Importantly, the translation maintains the guarantees provided
by the policy. For classification, policies specify public observations
and confidential data of the automata’s transitions. Declassification is
governed by bounded-deducibility as discussed before. Their approach
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is used to verify a conference management system [127] and a social
media platform [128, 129].

3.8. Conclusion

We have introduced a novel policy framework, where policies are speci-
fied and validated at the level of I/O behavior. This abstraction enables
us to specify security policies independent of programs and program-
ming languages, and to provide guarantees for all programs satisfying
a security policy based on the policy alone. To validate policies, we
introduce GNIV, entailing for passive and certain active attackers, that a
selection of data remains confidential even in the presence of declassifi-
cation. For code verification, we verify that programs satisfy our policies
using a combination of standard code verification techniques. Our ap-
proach is powerful, compatible with different verification techniques,
and applicable to real-world code.

We see multiple possible directions for future work. One direction is to
automate proving guarantees provided by policies. In our framework,
we prove such guarantees manually in Isabelle/HOL. Another direction
is to extend our framework to other versions of secure information flow
such as probabilistic non-interference. We expect that the main challenge
is, when instantiating the framework for code verification, how to handle
the technical assumptions that verification techniques require to satisfy
probabilistic non-interference.
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for TaDA 4.
“Everything is vague to a degree

you do not realize till you have

tried to make it precise.”

— Bertrand Russel

Standard separation logic enables the modular verification of heap-
manipulating sequential [28, 130] and data-race free concurrent pro-

[28]: Reynolds (2002), Separation Logic: A

Logic for Shared Mutable Data Structures

[130]: O’Hearn et al. (2001), Local Reason-

ing about Programs that Alter Data Struc-

tures

grams [131, 132]. More recently, numerous separation logics have been

[131]: O’Hearn (2004), Resources, Concur-

rency and Local Reasoning

[132]: Brookes (2004), A Semantics for Con-

current Separation Logic

proposed that enable the verification of fine-grained concurrency by incor-
porating ideas from concurrent separation logic, Owicki-Gries [29], and

[29]: Owicki et al. (1976), An Axiomatic

Proof Technique for Parallel Programs I

rely-guarantee [30]. Examples include CAP [31], iCAP [32], CaReSL [33],

[30]: Jones (1983), Specification and Design

of (Parallel) Programs

[31]: Dinsdale-Young et al. (2010), Con-

current Abstract Predicates

[32]: Svendsen et al. (2014), Impredicative

Concurrent Abstract Predicates

[33]: Turon et al. (2013), Unifying refine-

ment and Hoare-style reasoning in a logic

for higher-order concurrency

CoLoSL [34], FCSL [35], GPS [37], RSL [38], and TaDA [39] (see Brookes

[34]: Raad et al. (2015), CoLoSL: Concur-

rent Local Subjective Logic

[35]: Sergey et al. (2015), Mechanized veri-

fication of fine-grained concurrent programs

[37]: Turon et al. (2014), GPS: navigating

weak memory with ghosts, protocols, and

separation

[38]: Vafeiadis et al. (2013), Relaxed sepa-

ration logic: a program logic for C11 concur-

rency

[39]: Rocha Pinto et al. (2014), TaDA: A

Logic for Time and Data Abstraction

et al. [40] for an overview). These logics are very expressive, but chal-

[40]: Brookes et al. (2016), Concurrent sep-

aration logic

lenging to apply because they often comprise many complex proof
rules. E.g., our running example (Fig. 4.1) consists of two statements,
but requires over 20 rule applications in TaDA, many of which have
non-trivial instantiations and subtle side conditions. This complexity
seems inevitable for challenging verification problems involving, e.g.

fine-grained concurrency or weak memory.

The complexity of advanced separation logics makes it difficult to develop
proofs in these logics. It is, thus, crucial to have tools that check the
validity of proofs and automate parts of the proof search. One way
to provide this tool support is through proof checkers, which take as
input a nearly complete proof and check its validity. They typically
embed program logics into the higher-order logic of an interactive
theorem prover such as Coq. Proof checkers exist, e.g. for RSL [38] and
FCSL [35]. Alternatively, automated verifiers take as input a program
with specifications and devise the proof automatically. They typically
combine existing reasoning engines such as SMT solvers with logic-
specific proof search algorithms. Examples are Smallfoot [133] and

[133]: Berdine et al. (2005), Smallfoot: Mod-

ular Automatic Assertion Checking with Sep-

aration Logic

Grasshopper [134] for traditional separation logics, and Caper [41] for

[134]: Piskac et al. (2014), GRASShopper

- Complete Heap Verification with Mixed

Specifications

[41]: Dinsdale-Young et al. (2017), Caper

- Automatic Verification for Fine-Grained

Concurrency

fine-grained concurrency.

Proof checkers and automated verifiers strike different trade-offs in the
design space. Proof checkers are typically very expressive, enabling the
verification of complex programs and properties, and produce founda-
tional proofs: ultimately based on a language semantics, with a minimal
trusted core. However, existing proof checkers offer little automation.
Automated verifiers, on the other hand, significantly reduce the proof
effort, but compromise on expressiveness and require substantial de-
velopment effort, especially, to devise custom proof search algorithms
(which increase the trusted core).

It is in principle possible to increase the automation of proof checkers by
developing proof tactics, or to increase the expressiveness of automated
verifiers by developing stronger custom proof search algorithms. How-
ever, such developments are too costly for the vast majority of program
logics, which serve mostly a scientific or educational purpose. As a result,
adequate tool support is very rare, which makes it difficult for developers
of such logics, lecturers and students, as well as engineers to apply, and
gain experience with, such logics.

To remedy the situation, several tools took inspiration from the idea of
proof outlines [135, 136] (see, e.g. Pierce et al. [137] for a detailed discussion): [135]: Owicki (1975), Axiomatic Proof Tech-

niques for Parallel Programs

[136]: Apt et al. (2009), Verification of Se-

quential and Concurrent Programs

[137]: Pierce et al. (2018), Programming

Language Foundations

formal proof skeletons that contain the key proof steps, but omit most of
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the details. Proof outlines are a standard notation to present program
proofs in publications and teaching material. Proof outline checkers such
as Starling [138] and VeriFast [11] take as input a proof outline and[138]: Windsor et al. (2017), Starling:

Lightweight Concurrency Verification with

Views

[11]: Jacobs et al. (2011), VeriFast: A Pow-

erful, Sound, Predictable, Fast Verifier for C

and Java

then check automatically that it represents a valid proof in the program
logic. They provide automation for proof steps for which good proof
search algorithms exist, and can support expressive logics by requiring
annotations for complex proof steps. Due to this flexibility, proof outline
checkers are especially useful for experimenting with a logic.

In this chapter, we present Voila, a proof outline checker for TaDA [39],
which goes beyond existing proof outline checkers and automated veri-
fiers by supporting a substantially more complex program logic, which
handles fine-grained concurrency, linearizability, abstract atomicity, and
other advanced features. We believe that our systematic development
of Voila generalizes to other complex logics. Our contributions are as
follows:

▶ The Voila proof outline language, which supports a large subset of
TaDA and enables users to write proof outlines very similar to
those used by the TaDA authors [39, 139].

▶ A systematic approach to automate the expansion of a proof outline
into a full proof candidate via a normal form and heuristics. Our
approach automates most proof steps (e.g. 20 out of 22 for the
running example from Fig. 4.1).

▶ An encoding of the proof candidate into Viper [5], which checks[5]: Müller et al. (2016), Viper: A Verifi-

cation Infrastructure for Permission-Based

Reasoning

its validity without requiring any TaDA-specific proof search algo-
rithms.

▶ The Voila proof outline checker, the first tool that supports specifica-
tion for linearization points, provides a high degree of automation,
and achieves good performance. Our submission artifact [140][140]: Wolf et al. (2021), Concise Outlines

for a Complex Logic: A Proof Outline Checker

for TaDA

contains the executable Voila tool; the Voila source code is also
available [141].

[141]: Wolf et al. (n.d.), The Voila source

repository This chapter is based on a previous publication about Voila [53, 54].
[53]: Wolf et al. (2021), Concise Outlines for

a Complex Logic: A Proof Outline Checker

for TaDA

[54]: Wolf et al. (2022), Concise outlines

for a complex logic: a proof outline checker

for TaDA

Outline. Sec. 4.1 gives an overview of the TaDA logic and illustrates
our approach. Sec. 4.2 presents the Voila proof outline language, and
Sec. 4.3 summarizes how we verify proof outlines. We explain how we
automatically expand a proof outline into a proof candidate in Sec. 4.4
and how we encode a proof candidate into Viper in Sec. 4.5. Sec. 4.6
provides a detailed soundness argument. In Sec. 4.9, we evaluate our
technique by verifying several challenging examples. We discuss related
work in Sec. 4.11 and conclude in Sec. 4.12.

Our technical report [142] contains a substantial appendix with many[142]: Wolf et al. (2020), Concise Outlines

for a Complex Logic: A Proof Outline Checker

for TaDA (Full Paper)

further details, including: the full version and Viper encoding of our
running example, with TaDA levels (omitted from this chapter, but
supported by Voila) and nested regions; additional inference heuristics;
and the general Viper encoding scheme.

4.1. Running Example and TaDA Overview

Fig. 4.1 shows the first half of our running example, adapted from the
original TaDA publication [39]: the TaDA proof outline of the lock[39]: Rocha Pinto et al. (2014), TaDA: A

Logic for Time and Data Abstraction
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Figure 4.1.: First half of our running
example: a spinlock with atomic TaDA
specifications and shared region Lock;
adapted with only minor changes from
TaDA [39]. The lock region (Lines 1–
2) comprises a single memory location,
whose value is either 0 (available) or
1 (acquired). Guard G allows locking
and unlocking (Lines 3–4), and is unique
(Line 5). The proof outline (Lines 6–22)
shows the implementation of a CAS-
based lock operation with atomic speci-
fications. Levels (denoted by 𝜆 in TaDA)
are omitted from the discussion in this
chapter, but supported by Voila and in-
cluded in the technical report [142].

procedure of a spinlock, whose atomic specifications capture its essence
as a primitive for mutual exclusion. In Sec. 4.1.4, we then discuss a
non-atomic specification derived from lock that conceptually ties a lock
to an invariant. As in the original publication [39], the outline in Fig. 4.1 [39]: Rocha Pinto et al. (2014), TaDA: A

Logic for Time and Data Abstractionshows only two out of 22 proof steps, and omits most side conditions. In
a TaDA proof outline, a proof step corresponds to the application of a
TaDA rule, including suitable pre- and postconditions. Our outline shows
applications of the rules MakeAtomic and UpdateRegion. Deriving the
shown pre- and postconditions may require additional rule applications,
which are omitted.

We use our running example to introduce the necessary TaDA back-
ground, explain TaDA proof outlines, and illustrate the corresponding
Voila proof outlines.

4.1.1. Regions and Atomicity

TaDA targets shared-memory concurrency with sequentially-consistent
memory, and TaDA programs manipulate shared regions: data structures
that are concurrently modified according to a specified protocol (as in rely-
guarantee reasoning [30]). A shared region such as Lock𝑟(x, 𝑠) (subscript [30]: Jones (1983), Specification and Design

of (Parallel) Programs𝑟 uniquely identifies a specific region instance) is an abstraction over
the region’s content, analogous to abstract predicates [143] in traditional [143]: Parkinson et al. (2005), Separation

logic and abstractionseparation logic. The interpretation I(Lock𝑟(x, 𝑠)) defines the region’s
content. In our example (Lines 1–2), the lock owns memory location 𝑥

(denoted by separation logic’s points-to predicate 𝑥 ↦→ _), and its abstract

state 𝑠 is 0 or 1, indicating whether it is unlocked or locked. Here, the
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abstract state (second region parameter) and the content of the memory
location (value pointed to by 𝑥) coincide, but they may differ in general.

Unlike traditional abstract predicates, shared regions are duplicable, i. e.

the equivalence Lock𝑟(x, 𝑠) ⇔ Lock𝑟(x, 𝑠) ∗ Lock𝑟(x, 𝑠) holds. This allows
multiple threads to obtain an instance of a Lock𝑟 region, and to compete
for the corresponding lock. However, note that duplicating a shared
region indirectly also allows duplicating points-to predicates, which are
unique in traditional separation logic and elsewhere in TaDA. This is
nevertheless sound because TaDA’s intricate proof rules ensure that a
shared region is opened only for an abstractly-atomic duration, and that
no two instances of the same region are opened simultaneously.

Lines 3–5 define the protocol for modifications of a lock as a labeled
transition system. The labels are guards – abstract resources that restrict
when a transition may be taken. Here, guard G allows both locking and
unlocking (Lines 3-4), and is unique (Line 5). Using a unique guard in a
context where multiple threads compete for acquiring a lock may seem
counterintuitive, but the combination of unique guards and duplicable
shared region assertions resolves this perceived conflict, as discussed in
Sec. 4.1.4. Note that the transition system is defined relative to a region’s
abstract value, not its internal memory values, which is not directly
apparent in this example, since abstract and concrete values coincide.

Lines 6–22 contain the proof outline for the lock procedure, which
updates a lock x from an undetermined state – it can seesaw between
locked and unlocked due to environment interference – to the locked state.
Importantly, this update appears to be atomic to clients of the spinlock.
These properties are expressed by the atomic TaDA triple (Lines 6, 7, and
22)

𝑠 ∈ {0, 1} · ⟨Lock𝑟(x, 𝑠) ∗ [G]𝑟 ⟩ lock(x) ⟨Lock𝑟(x, 1) ∗ [G]𝑟 ∗ 𝑠 = 0⟩

Atomic triples (angle brackets) express that their statement is lineariz-
able [144]. The abstract state of shared regions occurring in pre- and[144]: Herlihy et al. (1990), Linearizabil-

ity: A Correctness Condition for Concurrent

Objects

postconditions of atomic triples is interpreted relative to the linearization

point, i. e. the moment in time when the update becomes visible to other
threads (here, when the CAS operation on Line 14 succeeds). In contrast,
pre- and postconditions of standard Hoare triples (curly braces) are
interpreted as usual: relative to the start and the end of the specified
statement’s execution. Intuitively, it is the combination of linearizability,
shared regions with abstract state, and guarded transition systems that
establishes TaDA’s abstract atomicity: operations (e.g. lock) appear atomic
when interacted with on the level of a shared region (e.g. Lock𝑟(x, 𝑠)),
and TaDA’s derivation rules ensure that the abstraction holds, even if the
underlying memory is manipulated non-atomically.

The interference context 𝑠 ∈ {0, 1} is a special binding for the abstract
region state that forces callers of lock to guarantee that the environment
keeps the lock state in the set {0, 1} until the linearization point is reached.
Correspondingly, it also requires the callees to not take the region out
of this abstract state (i. e. {0, 1}) before its linearization point is reached.
In this case, both restrictions are vacuous; in general, the interference
context can be understood as a symmetric rely-guarantee condition.
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Figure 4.2.: Simplified versions of two key TaDA rules used in Fig. 4.1. MakeAtomic establishes an atomic triple (conclusion) for a
linearizable block of code (premise), which includes checking that a state update complies with the region’s transition system: T𝑅(𝐺)∗ is
the reflexive, transitive closure of the transitions that G allows. R𝑟 (®𝑧, 𝑥) and I(R𝑟 (®𝑧, 𝑥)) are the shared region and its content, respectively.
UpdateRegion identifies a linearization point, for instance, a CAS statement. If successful, the diamond tracking-resource 𝑟 Z⇒ ♦ is
exchanged for the witness tracking-resource 𝑟 Z⇒ (𝑥, 𝑦) to record the performed state update; otherwise, the diamond resource is kept,
such that the operation can be attempted again. 𝑃(𝑥), 𝑄1(𝑥, 𝑦, 𝑤), and 𝑄2(𝑥, 𝑤) are some TaDA assertions. UseAtomic is a special
combination of MakeAtomic and UpdateRegion, where the linearizable statements itself is the linearization point. Again, 𝑃(𝑥) and
𝑄(𝑥, 𝑦) are some TaDA assertions.

The precondition of the triple states that an instance of guard 𝐺 for region
𝑟, [G]𝑟 , is required to execute lock(x). The postcondition expresses
that, at the linearization point, the lock’s abstract state was changed from
unlocked (𝑠 = 0) to locked (Lock𝑟(x, 1)). Such precise specifications of
state updates are enabled by the atomic triple’s interpretation relative to
the linearization point. In contrast, standard Hoare triples would have
to account for potential environment interference before and after the
linearization point – and can thus often only specify preservation of data
structure invariants. In this chapter, we refer to standard Hoare triples
also as non-atomic triples.

4.1.2. TaDA Proof Outline

Lines 6–22 of the proof outline in Fig. 4.1 show the main proof steps;
Fig. 4.2 shows simplified versions of the applied key TaDA rules. The
inner rule application, UpdateRegion, identifies the linearization point
inside an abstractly-atomic code block. The surrounding rule application,
MakeAtomic, then checks that there is exactly one such linearization
point, ensuring that the block of code is indeed atomic w.r.t. a shared
region abstraction, and establishes an atomic triple. This justifies the
change from non-atomic premise triple (Lines 9 and 21) to an atomic
conclusion triple (Lines 7 and 22), around the body of the CAS-based
implementation of the lock procedure.

Rule MakeAtomic requires that the atomicity context of the premise triple,
a set A of pending updates (for brevity, omitted from the previously-
shown triple for lock(x)), includes any region updates performed by the
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statement of the triple. By tracking pending updates and allowing at most
one per region (𝑟 ∉ A in Fig. 4.2), MakeAtomic intuitively prevents more
than one observable change to the same shared region from happening
during an abstractly-atomic operation.

In the proof outline, this requirement is reflected on Line 8, which shows
the intended update of the lock’s state: 𝑟 : 𝑠 ∈ trans ∗ {0, 1}1 (following
TaDA publications, we omitted the tail of the atomicity context from the
outline). MakeAtomic checks that the update is allowed by the region’s
transition system with the available guards (the rule’s second premise
in Fig. 4.2), but following the original TaDA publication, the check is
omitted from the proof outline. Then MakeAtomic temporarily exchanges
the corresponding guard [G]𝑟 for the diamond tracking-resource 𝑟 Z⇒ ♦
(Line 9), which serves as evidence that the intended update was not yet
performed.

Inside the loop, an application of UpdateRegion identifies the CAS
(Line 14) as the linearization point. The rule requires the diamond resource
in its precondition (Line 11), modifies the shared region (Lines 12–16),
and case-splits in its postcondition: if the update failed (Line 19) then the
diamond is kept for the next attempt; otherwise (Line 18), the diamond is
exchanged for the witness tracking-resource 𝑟 Z⇒ (0, 1), which indicates that
the region was updated from abstract state 0 to 1. Intuitively, the witness
resource guarantees that there is exactly one linearization point where
the relevant state update happened. This guarantee enables MakeAtomic
to establish atomic triples from non-atomic triples. Furthermore, the
witness resource is needed to carry sufficient information from the
linearization point (which may not be the last statement in the procedure)
to the point at which the operation’s postcondition is to be established:
the latter is interpreted w.r.t. the linearization point, but other threads
may have changed the shared region since then. Finally, at the end of
MakeAtomic (Lines 21–22), the witness resource is consumed and the
desired abstractly-atomic postcondition is established, stating that the
shared region was updated from 0 to 1 at the linearization point.

Note that the proof outline also illustrates how to convert between atomic
and non-atomic triples in TaDA. The MakeAtomic rule is the only rule
that can establish atomic triples, justified by the single linearization point.
Conversely, an atomic triple can always be converted to a non-atomic
triple by weakening its postcondition to account for the environment’s
interference. In Fig. 4.1, this happens around UpdateRegion. The need
for weakening postconditions is discussed in more detail in Sec. 4.4, in
the context of stable assertions.

4.1.3. Voila Proof Outline

Fig. 4.3 shows the complete proof outline of our example discussed so
far, in the Voila proof outline language, which closely resembles the
TaDA outline from Fig. 4.1. In particular, the region declaration defines a
region’s interpretation, abstract state, and transition system, just like the
initial declarations in Fig. 4.1. The subsequent proof outline for procedure
lock annotates the same two rule applications as the TaDA outline and a
very similar loop invariant. The Voila proof outline verifies automatically
via an encoding into Viper, but the outline is expressed completely in
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1 struct cell { int val; }
2
3 region Lock(id r, cell x)
4 interpretation { x.val |-> ?v && (v == 0 || v == 1) }
5 state { v }
6 guards { unique G; }
7 actions { G: 0 ~> 1; G: 1 ~> 0; }
8
9 abstract_atomic procedure lock(id r, cell x)

10 interference ?s in Set(0, 1);
11 requires Lock(r, x, s) && G@r;
12 ensures Lock(r, x, 1) && G@r && s == 0;
13 {
14 bool b;
15 make_atomic using Lock(r, x) with G@r {
16 do
17 invariant Lock(r, x);
18 invariant !b ==> r |=> <D>;
19 invariant b ==> r |=> (0, 1);
20 {
21 update_region using Lock(r, x) {
22 b := CAS(x, 0, 1);
23 }
24 } while (!b);
25 }
26 }

Figure 4.3.: The Voila proof outline of
our example, strongly resembling the
TaDA proof outline from Fig. 4.1. id is
the type of region identifiers; primitive
types are passed by value, structs by ref-
erence. Logical variables are introduced
using a question mark; e. g. x.val ↦→ ?v
binds the logical variable v to the value of
the location x.val. Operator && denotes
separating conjunction.

terms of TaDA concepts; it does not expose any details of the underlying
verification infrastructure. The successful verification shows that our tool
automatically infers the additional 20 rule applications, and all omitted
side conditions, thereby closing the gap between the user-provided proof
outline and a corresponding full-fledged proof.

4.1.4. Locks with Resource Invariants

This subsection completes our running example by showing a TaDA
outline (Fig. 4.4) and corresponding Voila code (Fig. 4.5) for a specification
of lock that ties the spinlock to a resource invariant the lock protects.
The resources in this invariant are then temporarily transferred to any
threads that acquires the lock.

Following the TaDA publication, we introduce a new shared region called
CAPLock (Lines 1–4 of Fig. 4.4), which wraps an instance of the previously
declared Lock region, and two new guards (Lines 5–6): a vacuous empty

guard 0 that is always available and used to acquire a lock, and a unique
guard U for releasing it. Note that 0 and U both guard transitions of
the abstract state of the CAPLock region. Transitioning the underlying
Lock region (i. e. actually acquiring and releasing the lock) still requires
the previously-introduced guard G. Consequently, an unlocked CAPLock

region (Lines 1–2) contains guards G and U, and resource invariant Inv

(left abstract for brevity). In contrast, when locked (Lines 3–4), both
resources U and Inv are owned by the lock holder, and the shared region
only contains guard G.

The body of the proof outline (Lines 8–15) uses the previously established
atomic TaDA triple for procedure lock to derive the following, non-atomic
TaDA triple:

A ⊢ {∃𝑣 ∈ {0, 1}·CAPLock𝑎(𝑟, x, 𝑣)} lock(x) {CAPLock𝑎(𝑟, x, 1)∗[U]𝑎∗Inv}
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Figure 4.4.: TaDA declarations and proof
outline for a shared region CAPLock,
taken (with minor changes) from the
TaDA publication [39], and building on
the lock example from Fig. 4.1. The ad-
ditional declarations and the outline’s
postcondition provide the usual seman-
tics of a lock that protects a resource
invariant: the vacuous empty guard 0
allows arbitrarily many clients to com-
pete for the lock, but only the holder of
the unique guard U can release the lock.
Lock holders also temporarily gain own-
ership of the lock’s resource invariant.
Levels are again omitted, but supported
by Voila and included in the technical
report [142].
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As before, the proof outline omits most steps, and shows only two rule
applications: the frame rule and UseAtomic. The application of the frame
rule enables us to preserve the assertion 𝑣 = 0 → [U]𝑎 ∗ Inv (abbreviated
as 𝐹 in the figure) across the call to lock. For the postcondition, we use an
omitted rule of consequence to derive from 𝑣 = 0 and 𝑣 = 0 → [U]𝑎 ∗ Inv

the assertion [U]𝑎 ∗ Inv. Intuitively, the application of UseAtomic (also
shown in Fig. 4.2) applies MakeAtomic and UpdateRegion together at
once.

The complete Voila proof outline for CAPLock is shown in Fig. 4.5, where
procedure caplock has the desired specification. The example verifies in
Voila when combined with the previously shown code from Fig. 4.3.
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1 edicate Inv() /* Invariant, left abstract */
2
3 gion CAPLock(id a, id r, cell x)
4 interpretation {
5 Lock(r, x, ?v) && G@r && (v == 0 || v == 1) && (v == 0 ==> U@a &&

Inv())
6 }
7 state { v }
8 guards { duplicable Z; unique U; }
9 actions { Z: 0 ~> 1; U: 1 ~> 0; }

10
11 ocedure caplock(id a, id r, cell x)
12 requires CAPLock(a, r, x) && Z@a;
13 ensures CAPLock(a, r, x, 1) && U@a && Inv();
14
15 use_atomic using CAPLock(a, r, x) with Z@a {
16 lock(r, x);
17 }

Figure 4.5.: The Voila proof outline of
TaDA’s CAPLock, building on our lock
example from Fig. 4.3, and strongly re-
sembling the TaDA proof outline from
Fig. 4.4. Note that Voila does not yet sup-
port TaDA’s empty guard; instead, we
use a duplicable guard Z.

4.2. Proof Outline Language

Proof outlines annotate programs with rule applications of a given
program logic. These annotations indicate where to apply rules and how
to instantiate their meta-variables. The goal of a proof outline is to convey
the essential proof steps; ideally, consumers of such outlines can then
construct a full proof with modest effort. Consumers may be human
readers [135], or tools that automatically check the validity of a proof [135]: Owicki (1975), Axiomatic Proof Tech-

niques for Parallel Programsoutline [11, 138, 145]; our focus is on the latter.
[11]: Jacobs et al. (2011), VeriFast: A Pow-

erful, Sound, Predictable, Fast Verifier for C

and Java

[138]: Windsor et al. (2017), Starling:

Lightweight Concurrency Verification with

Views

[145]: Mooĳ et al. (2005), Incremental Veri-

fication of Owicki/Gries Proof Outlines Us-

ing PVS

The key challenge of designing a proof outline language is to define
annotations that accomplish this goal with low annotation overhead
for proof outline authors. To approach this challenge systematically, we
classify the rules of the program logic (here: TaDA) into three categories:
(1) For some rules, the program prescribes where and how to apply them,
i. e. they do not require any annotations. We call such rules syntax-driven

rules. An example in standard Hoare logic is the assignment rule, where
the assignment statement prescribes how to manipulate the adjacent
assertions. (2) Some rules can be applied and instantiated in many
meaningful ways. For such rules, the author of the proof outline needs to
indicate where or how to apply them through suitable annotations. Since
such rules often indicate essential proof steps, we call them key rules. In
proof outlines for standard Hoare logic, the while-rule typically requires
an annotation how to apply it, namely the loop invariant. (3) The effort of
authoring a proof outline can be greatly reduced by applying some rules
heuristically, based on information already present in the outline. We
call such rules bridge rules. Heuristics reduce the annotation overhead,
but may lead to incompleteness if they fail; a proof outline language
may provide annotations to complement the heuristics in such situations,
slightly blurring the distinction between key and bridge rules. E.g., the
Dafny verifier [146] applies heuristics to guess termination measures for [146]: Leino (2010), Dafny: An Automatic

Program Verifier for Functional Correctnessloops, but also offers an annotation to provide a measure manually, if
necessary. Another common example is the rule of consequence: SMT-
based verifiers (such as Voila) automatically discharge most entailment
checks, but may require additional user annotations in cases where the
underlying SMT solver is incomplete.

The rule classification depends on the proof search capabilities of the
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verification tool that is used to check the proof outline. We use Viper [5],[5]: Müller et al. (2016), Viper: A Verifi-

cation Infrastructure for Permission-Based

Reasoning

which provides a high degree of automation for standard separation
logic and, thus, allows us to focus on the specific aspects of TaDA.

In the rest of this section, we give an overview of the Voila proof outline
language and, in particular, discuss which TaDA rules are supported as
syntax-driven, key, and bridge rules. Voila’s grammar can be found in
Sec. 4.10, showing that Voila strongly resembles TaDA, but requires fewer
technical details.

Expressions and Statements. Voila supports all of TaDA’s programming
language constructs, including variables and heap locations, primitive
types and operations thereon, atomic heap reads and writes, loops,
and procedure calls. Consequently, Voila supports the corresponding
syntax-driven TaDA rules.

Background Definitions. Voila’s syntax for declaring regions and transi-
tions closely resembles TaDA, but e.g. subscripts are replaced by addi-
tional parameters, such as the region identifier r. A region declaration
defines the region’s content via an interpretation assertion, and its
value via a state function. The latter may refer to region parameters, as
well as values bound in the interpretation, such as v in the example from
Fig. 4.3. The region’s transition system is declared by introducing the
guards and the permitted actions, i. e. transitions. Voila includes several
built-in guard algebras (adopted from Caper [41]); additional ones can be[41]: Dinsdale-Young et al. (2017), Caper

- Automatic Verification for Fine-Grained

Concurrency

encoded, see the Sec. 4.8. A region declaration introduces a correspond-
ing region predicate, which has an additional out-parameter that yields
the region’s abstract state (e.g. s in the precondition of procedure lock in
Fig. 4.3), as defined by the state function. We omit this out-parameter
when its value is irrelevant.

Specifications. Voila proof outlines require specifications for procedures,
and invariants for loops; we again chose a TaDA-like syntax for familiarity.
Explicit loop invariants are required by Viper, but also enable us to
automatically instantiate certain bridge rules (see framing in Sec. 4.4).

Recall that specifications in TaDA are written as atomic or non-atomic
triples, and include an interference context and an atomicity context.
Voila simplifies the notation significantly by requiring these contexts
only for abstractly-atomic procedure specifications; for all statements and
rule applications, they are determined automatically, despite changing
regularly during a proof. For procedures with abstractly-atomic behav-
ior (modifier abstract_atomic), the interference context is declared
through the interference clause. E.g., for procedure lock from Fig. 4.3,
it corresponds to TaDA’s interference context 𝑠 ∈ {0, 1}.

Key Rules. In addition to procedure and loop specifications, Voila
requires user input only for the following fundamental TaDA rules:
UpdateRegion, MakeAtomic, UseAtomic, and OpenRegion; applications
of all other rules are automated. Since they capture the core ideas behind
TaDA, these rules are among the most complex rules of the logic and
admit a vast proof search space. Therefore, their annotation is essential,
for both human readers [39, 139] and automatic checkers. As seen in[39]: Rocha Pinto et al. (2014), TaDA: A

Logic for Time and Data Abstraction

[139]: Rocha Pinto (2016), Reasoning with

time and data abstractions

Fig. 4.3, the annotations for these key rules include only the used region
and, for updates, the used guard; all other information present in the
corresponding TaDA rules is derived automatically.
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Bridge Rules. All other TaDA rules are applied automatically, and thus
have no Voila counterparts. This includes all structural rules for manipu-
lating triple atomicity (e.g. AWeakening1, AExists), interference contexts
(e.g. Substitution, AWeakening2), and levels (e.g. AWeakening3). Their
applications are heuristically derived from the program, applications of
key rules, and adjacent triples. TaDA’s frame rule is also automatically
applied by leveraging Viper’s built-in support for framing, combined
with additional encoding steps to satisfy TaDA’s frame stability side
condition. Finally, TaDA entailments are bridge rules when they can be
automated by the used verification tool. For Viper, this is the case for
standard separation logic entailments, which constitute the majority of
entailments to perform. To support TaDA’s view shifts [139, 147] – entail- [139]: Rocha Pinto (2016), Reasoning with

time and data abstractions

[147]: Dinsdale-Young et al. (2013), Views:

compositional reasoning for concurrent pro-

grams

ments similar to the classical rule of consequence, but involving arbitrary
definitions of regions and guard algebras – Voila provides specialized
annotations.

4.3. Proof Workflow

Our approach, and corresponding implementation, enables the following
workflow: users provide a proof outline and possibly some annotations for
complex entailments. If the outline summarizes a valid proof, verification
is automatic, without a tedious process of manually applying additional
rules. If the outline is invalid, our tool reports which specification (e.g.

loop invariant) it could not prove or which key rule application it could
not verify, and why (e.g. missing guard).

Achieving this workflow, however, is challenging: by design, proof
outlines provide the important proof steps, but are not complete proofs.
Consider, e.g. the TaDA and Voila outlines from Fig. 4.1 and Fig. 4.3,
respectively. Applying UpdateRegion produces an atomic triple in its
conclusion, whereas the while-rule requires a non-atomic triple for the
loop body. A complete proof needs to perform the necessary adjustment
through additional applications of bridge rules, which are not present in
the proof outlines, and thus need to be inferred.

Our workflow is enabled by first expanding proof outlines into proof

candidates, in two main steps: step 1 automatically inserts the applications
of all syntax-driven rules; step 2 expands further by applying heuristics to
insert bridge rule applications. The resulting proof candidate contains the
applications of all rules of the program logic. Afterwards, we check that
the proof candidate corresponds to a valid proof, by encoding it as a Viper
program that checks whether all proof rules are applied correctly. Our
actual implementation deviates slightly from this conceptual structure,
e.g. because Viper does not require one to make the application of all

syntax-driven rules, framing, and entailment checking explicit.

4.4. Expanding Proof Outlines to Proof
Candidates

Automatically expanding a proof outline is ultimately a proof search
problem, with a vast search space in case of complex logics such as TaDA.
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Our choice of key rules (and corresponding annotations) reduces the
search space, but it remains vast, due to TaDA’s many structural rules that
can be applied to almost all triples. To further reduce the search space,
without introducing additional annotation overhead, we devised (and
enforce) a normal form for proof candidate triples. Our normal form allows
us to define heuristics for the application of bridge rules locally, based
only on adjacent rule applications, without having to inspect larger proof
parts. This locality reduces the search space substantially, and enables
us to automatically close the gap between user-provided proof outline
and finally verified proof candidate. Out of the 22 rule applications for
our running example, our heuristics infer 17 applications of bridge rules.
Three syntax-driven rules are also applied automatically, such that only
two key rules require manual annotations. The complete TaDA proof
shown in App. A details all inferred applications of bridge rules and
syntax-driven rules.

It might be helpful to consider an analogy with standard Hoare logic: its
rule of consequence can be applied to each Hoare triple. A suitable normal
form could restrict proofs to use the rule of consequence only at the
beginning of the program and for each loop (as in a weakest-precondition
calculus). A heuristic can then infer the concrete applications, in particular,
the entailments used in the rule application, treating the rule as a bridge
rule.

Normal Form. Our normal form is established by a combination of
syntactic checks and proof obligations in the final Viper encoding. Its main
restrictions are as follows: (1) A triple is atomic if and only if the enclosed
Voila outline statement is abstract atomic, namely a CAS operation, a call
to an abstract atomic procedure, or a key rule statement. As a consequence,
we can infer the triple kinds from statements and key rule applications.
Due to this restriction, Voila cannot express specifications that combine
atomic and non-atomic behaviors. However, such specifications do not
occur frequently (see Sec. 5.2.3 in [139] for an example) and could be[139]: Rocha Pinto (2016), Reasoning with

time and data abstractions supported via additional annotations. (2) All triple preconditions, as
well as the postconditions of non-atomic triples, are stable, i. e. cannot be
invalidated by (legal) concurrent operations. In contrast, TaDA requires
stability only for certain assertions. Our stronger requirement enables
us to rely on stability at various points in the proof instead of having to
check it – most importantly, when Viper automatically applies its frame
rule. To enforce this restriction, we eagerly stabilize assertions through
suitable weakening steps. (3) In atomic triples, the state of every region
is bound by exactly one interference quantifier ( ), which simplifies the
manipulation of interference contexts, e.g. for procedure calls. To the
best of our knowledge, this restriction does not limit the expressiveness
of Voila proofs. (4) Triples must hold for a range of atomicity contexts
A, rather than just a single context. This stronger proof obligation rules
out certain applications of MakeAtomic – which we have seen only
in contrived examples – but it increases automation substantially and
improves procedure modularity.

By design, our normal form prevents Voila from constructing certain
TaDA proofs. However, the only practical limitation is that Voila does
not support TaDA’s combination of atomic and non-atomic behavior in a
single triple. As far as we are aware, all other normal form restrictions do
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not limit expressiveness for practical examples, or can be worked around
in systematic ways.

Heuristics. We employ five main heuristics: (1) to determine when to
change triple atomicity, (2) to ensure stable frames by construction,
(3) to compute atomicity context ranges, (4) to compute levels, and
(5) to compute interference contexts in procedure body proofs. All
heuristics are based on inspecting adjacent rule applications and their
proof state. We briefly discuss the first three heuristics here. We give a
more detailed explanation and discuss the other two heuristics in an
extended discussion of our running example in Sec. 4.7. (1) Changing
triple atomicity corresponds to an application of (at least) TaDA rule
AWeakening1, necessary when a non-atomic composite statement (e.g.

the while statement in Fig. 4.1) has an abstract-atomic sub-statement
(e.g. the atomic CAS in Fig. 4.1). We infer all applications of this rule.
(2) A more complex heuristic is used in the context of framing: TaDA’s
frame rule requires the frame, i. e., the assertion preserved across a
statement, to be stable. For simple statements such as heap accesses, it
is sound to rely on Viper’s built-in support for framing. For composite
statements with arbitrary user-provided footprints (assertions such as
a loop invariant describing which resources the composite statement
may modify), we greedily infer frame rule applications that attempt to
preserve all information outside the footprint. The inferred applications
are later encoded in Viper such that the resulting frame is stable, by
applying suitable weakening steps. (3) Atomicity context ranges are
heuristically inferred from currently-owned tracking-resources and level
information. We track the range with a lower and an upper bound on
atomicity contexts capturing which regions must be and are definitely
not in an atomicity context, respectively. We capture the lower bound as
the set of all regions that are currently being updated. The upper bound
is captured as the lowest level of any region that is being updated, i. e.

regions with a lower level are definitely not in the atomicity context.
Atomicity contexts are not manipulated by a specific TaDA rule, but they
need to be instantiated when applying rules. The lower bound is changed
and checked by MakeAtomic and UpdateRegion, respectively. The upper
bound is used for procedure calls: specifically, to ensure that there is not
already a pending update for a region the callee might update as well.

In our experience, our heuristics fail only in two scenarios: the first are
contrived examples, concerned with TaDA resources in isolation, not
properties of actual code – where they fail to expand a proof outline into
a valid proof. More relevant is the second scenario, where our heuristics
yield a valid proof that Viper then fails to verify because it requires
entailments that Viper cannot prove automatically. To work around
such problems when they occur, Voila allows programmers to provide
additional annotations to indicate where to apply complex entailments.

Importantly, a failure of our heuristics does not compromise soundness:
if they infer invalid bridge rule applications, e.g. whose side conditions
do not hold, the resulting invalid proof candidates are rejected by Viper
in the final validation.

For our running example from Fig. 4.1, four of our heuristics are necessary
to complete the proof candidate. The heuristic (1) is necessary around
UpdateRegion to change the triple atomicity. The heuristic (2) is necessary
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around the CAS operation to frame information about the arguments.
The heuristic (3) is necessary so that clients can call the lock procedure.
Lastly, the heuristic (4) is necessary around UpdateRegion to change
levels.

4.5. Validating Proof Candidates in Viper

Proof candidates – i. e. the user-provided program with heuristically
inserted bridge rule applications – do not necessarily represent valid
proofs, e.g. when users provide incorrect loop invariants. To check
whether a proof candidate actually represents a valid proof, we need to
verify (1) that each rule is applied correctly, in particular, that its premises
and side conditions hold, and (2) that the property shown by the proof
candidate entails the intended specification. To validate proof candidates
automatically, we use the existing Viper tool [5]. In this section, we give a[5]: Müller et al. (2016), Viper: A Verifi-

cation Infrastructure for Permission-Based

Reasoning

high-level overview of how we encode proof candidates into the Viper
language.

Viper Language. We discussed Viper in Chapter 2. We briefly reiterate the
necessary background: Viper uses a variation of separation logic [148, 149][148]: Smans et al. (2009), Implicit Dy-

namic Frames: Combining Dynamic Frames

and Separation Logic

[149]: Parkinson et al. (2012), The Relation-

ship Between Separation Logic and Implicit

Dynamic Frames

whose assertions separate access permissions from value information:
separation logic’s points-to assertion x.f ↦→ v is expressed as acc(x.f)
&& x.f == v, and separation logic predicates [143] are similarly split into

[143]: Parkinson et al. (2005), Separation

logic and abstraction

a predicate (abstracting over permissions) and a heap-dependent function
(abstracting over values). Well-definedness checks ensure that the heap
is accessed only under sufficient permissions. Viper provides a simple
imperative language, which includes in particular two statements to
manipulate the verification state: exhale 𝐴 asserts all logical constraints
in assertion𝐴, removes the permissions in𝐴 from the current state (or fails
if the permissions are not available) and assigns non-deterministic values
to the corresponding memory locations (to reflect that the environment
could now modify them); inhale 𝐴 conversely assumes constraints and
adds permissions.

Regions and Assertions. TaDA’s regions introduce various resources such
as region predicates and guards. We encode these into Viper permissions
and predicates as summarized in Fig. 4.6 (left). Each region R gives rise to
a corresponding predicate, which is defined by the region interpretation.
A region’s abstract state may be accessed by a Viper function R_State,
which is defined based on the region’s state clause, and depends on
the region predicate. Moreover, we introduce an abstract Viper predicate
R_g for each guard g of the region.

These declarations allow us to encode most TaDA assertions in a fairly
straightforward way. E.g., the assertion Lock𝑟(x, 𝑠) from Fig. 4.1 is encoded
as a combination of a region predicate and the function yielding its
abstract state: Lock(𝑟,x) && Lock_State(𝑟,x) == 𝑠. We encode region
identifiers as references in Viper, which allows us to use the permissions
and values of designated fields to represent resources and information
associated with a region instance. E.g., we use the permission acc(𝑟.

diamond) to encode the TaDA resource 𝑟 Z⇒ ♦. Similarly, the permissions
to the fields R_from and R_to represent TaDA’s 𝑟 Z⇒ (𝑥, 𝑦) resource, while
the fields’ values reflect the arguments 𝑥 and 𝑦. Therefore, 𝑟 Z⇒ (0, 1)
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1 Jregion R(r: id, p: t)
2 interpretation 𝐼
3 state 𝑆
4 guards 𝐺
5 actions 𝐴K ->

6 pred R(r: Ref, p:JtK) { J𝐼K }
7
8 func R_State(r: Ref, p:JtK): 𝑇
9 requires R(r,p)

10 { unfolding R(r,p) in J𝑆K }
11
12 foreach g(p’: t’) ∈ 𝐺:

13 pred R_g(r: Ref, p’:Jt’K)
14 end
15
16 field diamond: Bool
17 field R_from: 𝑇
18 field R_to: 𝑇
19
20 field R_X: Set[𝑇]
21 field R_A: Set[𝑇]

1 field val: Int
2
3 pred Lock(r: Ref, x: Ref) {
4 acc(x.val) &&
5 (x.val == 0 OR x.val == 1)
6 }
7
8 func Lock_State
9 (r: Ref, x: Ref):

Int
10 requires Lock(r, x)
11 { unfolding lock(r, x) in x.val }
12
13 pred Lock_G(r: Ref)
14
15 field diamond: Bool
16 field Lock_from: Int
17 field Lock_to: Int
18
19 field Lock_X: Set[Int]
20 field Lock_A: Set[Int]

Figure 4.6.: Excerpt of the Viper encod-
ing of regions; general case (left), and
for the lock region from Fig. 4.3 (right).
The encoding function is denoted by
double square brackets; overlines denote
lists; foreach loops are expanded statically.
Type 𝑇 is the type of the state expression
𝑆, which is inferred. Actions 𝐴 do not
induce any global declarations. The el-
ements of struct types and type id are
encoded as Viper references (type Ref).
The unfolding expression temporarily
unfolds a predicate into its definition; it
is required by Viper’s backend verifiers.
The struct type cell from Fig. 4.3 is en-
coded as a Viper reference with field val
(in Viper, all objects have all fields de-
clared in the program).

from Fig. 4.1 is encoded as acc(𝑟.Lock_from) && acc(𝑟.Lock_to) &&

𝑟.Lock_from == 0 && 𝑟.Lock_to == 1.

Besides assertions, TaDA judgments include an interference context
and an atomicity context. An interference context of the form 𝑠 ∈ 𝑋,
associated with a region R(𝑟, . . .), is represented by a field 𝑟.R_X, which
stores the set of values to which the environment may set the region’s
abstract state. The encoding of an atomicity context A, which tracks
pending updates and prevents multiple such updates for the same region
instance, is more involved. As explained in Sec. 4.4, we check the proof
outline for all atomicity contexts within a range of atomicity contexts,
which we express with a lower and an upper bound. The lower bound
is represented by a set-typed variable update, local to each procedure,
storing the set of all regions currently being updated. The upper bound
is represented with the variable alevel, storing the lowest level of any
region for which an update is pending. Lastly, the domain of an update
A(r) is encoded with a set-typed field r.R_A. Its value influences assertion
stabilization: while an update is pending (i. e., inside make_atomic), the
environment may not take the region value out of r.R_A; the latter is set
to r’s interference context (r.R_X) when make_atomic is entered.

Rule Applications. Proof candidates are tree structures, where each
premise of a rule application 𝑅 is established as the conclusion of another
rule application, as illustrated below.

...

{𝑃𝑝}𝑠𝑝{𝑄𝑝}
(𝑅)

{𝑃𝑐}𝑠𝑐{𝑄𝑐}
...

In TaDA, the statement of the premise 𝑠𝑝 is guaranteed to be a sub-
statement of the statement of the conclusion 𝑠𝑐 . To check the validity
of a candidate, we check the validity of each rule application. For rules
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Figure 4.7.: Encoding of stabilization and
interference inference for the Lock exam-
ple. Viper labels enable referring to the
verification state at a particular point in
the program (i. e., they generalize old ex-
pressions, which refer to the prestate of a
method). We assume that symbols intro-
duced by macros, e. g. label pre_havoc,
are always fresh and never result in name
clashes. The Viper expression perm(𝜌)
denotes the permission currently held to
a resource 𝜌.

1 INTERFERENCE_PERMITTED(Lock(r, x), from, to) ->
2 (none < perm(r.diamond) ==> Lock_State(r, x) in r.Lock_A)
3 && ( from == 0 && to == 1 && ENV_MAY_HOLD(Lock_G(r))
4 || from == 1 && to == 0 && ENV_MAY_HOLD(Lock_G(r)) )
5
6 ENV_MAY_HOLD(Lock_G(r)) -> perm(Lock_G(r)) == none
7
8 STABILIZE(Lock(r, x)) ->
9 label pre_havoc

10 havoc Lock(r, x)
11 inhale INTERFERENCE_PERMITTED(Lock(r, x),
12 old[pre_havoc](Lock_State(r, x)), Lock_State(r, x))
13
14 INFER_INTERFERENCE(Lock(r, x)) ->
15 havoc r.Lock_X
16 inhale forall s: Int :: s in r.Lock_X
17 <==> INTERFERENCE_PERMITTED(Lock(r, x), Lock_State(r, x), s)

that are natively supported by Viper (e.g. the assignment rule), Viper
performs all necessary checks. Each other rule application is checked via
an encoding into the following sequence of Viper instructions: (1) Exhale
the precondition 𝑃𝑐 of the conclusion to check that the required assertion
holds. (2) Inhale the precondition 𝑃𝑝 of the premise since it may be as-
sumed when proving the premise. (3) After the encoding of the proof for
the premise, exhale the postcondition 𝑄𝑝 of the premise to check that it
was established by the proof for the premise. (4) Inhale the postcondition
𝑄𝑐 of the conclusion. Steps 2 and 3 are performed for each premise of
the rule. Moreover, we assert the side conditions of each rule. If a proof
candidate is invalid, e.g. composes incompatible rules, one of the checks
above fails and the candidate is rejected.

Using this encoding of rule applications as building blocks, we can
assemble entire procedure proofs as follows: for each procedure, we
inhale its precondition, encode the rule application for its body, and then
exhale its postcondition.

Example: Stability and Interference Context Inference. Recall that an
assertion 𝐴 is stable if and only if the environment cannot invalidate
𝐴 by performing any legal region updates. In practice, this means
that the environment cannot hold a guard that allows it to change the
state of a region in a way that violates 𝐴. The challenge of checking
stability as a side-condition is to avoid higher-order quantification over
region instances and guards, which is hard to automate. We address
this challenge by actively stabilizing assertions in the Viper encoding.
That is, we remove information from Viper’s verification state such that
the remaining information about the state is stable. We achieve this
effect by first assigning non-deterministic values to the region state, and
then constraining these to be within the states permitted by the region’s
transition system, taking into account the guards the environment could
hold.

Fig. 4.7 shows the encoding of stabilization for instances of ourLock region
(macro STABILIZE). First, the region state is havocked, i. e., all information
about the state is thrown away. Afterwards, the new region state is
assumed to be any state reachable by the environment from the old state.
We encode this property of reachability by the environment in two steps:
ENV_MAY_HOLD yields whether a guard may be held by the environment.
The encoding depends on the guard kind: the environment can hold
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the unique guard G only if it is not already present in the proof state. In
contrast, duplicable guards may always be held by the environment, in
which case ENV_MAY_HOLD would be defined as true. Building on ENV_-

MAY_HOLD, INTERFERENCE_PERMITTED encodes the actual reachability
property: the environment may perform a state transition if it holds at
least the guard that is required for this transition by the transition system.
Furthermore, the transition has to stay within the atomicity context if
an update is still pending, which is TaDA’s interference rely-guarantee.
To avoid computing the transitive closure, Voila requires (and checks)
transition systems to be transitively closed.

The encoded reachability (macro INTERFERENCE_PERMITTED) is also es-
sential for the inference of interference contexts. Intuitively, the smallest
interference context, at a given program point, corresponds to the set
of states that the environment could transition to, which is exactly the
set we already need for stabilization. Therefore, as shown in macro
INFER_INTERFERENCE, we can obtain a suitable interference context by
constraining r.Lock_X to be the set of all states reachable by the environ-
ment.

4.6. Soundness

Voila is sound if the successful verification of a procedure in Voila implies
that the procedure’s specification can be derived in TaDA. That is, our
soundness argument builds on the soundness of the TaDA logic itself,
which has been proven separately [150] w.r.t. an operational semantics. [150]: Rocha Pinto et al. (2016), Modular

Termination Verification for Non-blocking

Concurrency

Voila succeeds if the encoded proof candidate of the procedure success-
fully verifies in Viper. Consequently, to show soundness of Voila, we need
to show that successful verification of a proof candidate in Viper implies
the existence of a corresponding TaDA proof for the given procedure and
its specification.

Notations. Before we formalize our argument, we introduce basic ter-
minology and notation. As discussed in Sec. 4.5, proof candidates are
derivation trees in the TaDA logic. We refer to the proof candidate that
is inferred for a Voila outline statement 𝑠 as the proof candidate for 𝑠.
We introduce a function 𝐶 to model the inference of proof candidates,
where 𝐶(𝑠) is the proof candidate of the Voila outline statement 𝑠. The
entire proof candidate for a procedure is obtained by applying 𝐶 to
the procedure’s body. For a proof candidate 𝑝, 𝑝’s root is the last rule
application of 𝑝, which derives the overall conclusion, and 𝑝’s children are
the proof candidates whose roots are rule applications to the premises of
that last rule application in 𝑝.

As discussed in Sec. 4.5, proof candidates are encoded to Viper statements
by encoding all rule applications of the proof candidate. For a proof
candidate 𝑝, J 𝑝 K denotes the Viper statement that 𝑝 is encoded to. We
use the same notation to encode TaDA assertions and expressions. Viper

verification states model the entire knowledge of the Viper verifier at a
specific point in a Viper program. Technically, each Viper verification
state is a set of concrete Viper states; this set can be characterized by a
Viper assertion. For a Viper assertion 𝐴, Υ(𝐴) denotes the initial Viper
verification state after inhaling 𝐴 only. The expression post(𝑐, 𝜐) denotes
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the Viper verification state resulting from verifying a Viper statement 𝑐
starting from the Viper verification state 𝜐. The function post is analogous
to the strongest postcondition of standard Hoare logic. We refer to 𝜐 and
post(𝑐, 𝜐) as the Viper verification pre- and poststate of 𝑐, respectively.
The special error Viper verification state  models that an assertion failed
during verification. We use 𝑠, 𝑝, 𝜐 to range over Voila outline statements,
proof candidates, and Viper verification states, respectively.

4.6.1. Proof Overview

We split our soundness argument into five steps: (1) We determine
invariants on the Viper verification pre- and poststates of encoded rule
applications. (2) We define a judgment mapping L 𝜐, 𝑝 M, which takes a
Viper verification state 𝜐 satisfying our invariants from the first step,
together with a proof candidate 𝑝, and returns a TaDA judgment. We
refer to L 𝜐, 𝑝 M also as the TaDA judgment of 𝜐 and 𝑝, sometimes omitting
𝜐.

This judgment mapping establishes our connection between verifying a
Viper program and deriving a TaDA proof. (3) We show that the Viper
encoding of single rule applications is sound: Consider a proof candidate
𝑝 whose root is a rule application for a TaDA rule 𝑟. Let the proof
candidates 𝑝′1 , . . . , 𝑝

′
𝑁

be 𝑝’s children and let 𝜐0 be a Viper verification
state satisfying our invariants. Since soundness considers only Voila
statements, for which the Viper encoding verifies successfully, we may
assume that no assertion fails when verifying the Viper encoding of 𝑟’s
rule application starting from 𝜐0. As illustrated below, we then show that
the TaDA rule 𝑟 can be applied correctly to derive 𝑝’s TaDA judgment
L 𝜐0 , 𝑝 M as the conclusion. The rule application must contain the TaDA
judgments L 𝜐1 , 𝑝

′
1 M, . . . , L 𝜐𝑁 , 𝑝

′
𝑁
M of 𝑝’s children as the premises. The

Viper verification states 𝜐1 , . . . , 𝜐𝑁 are the prestates of the childrens’
Viper encodings.

L 𝜐1 , 𝑝
′
1 M . . . L 𝜐𝑁 , 𝑝′𝑁 M (𝑟)

L 𝜐0 , 𝑝 M

(4) We show inductively that the Viper encoding of proof candidates is
sound: Let 𝑠 be a Voila outline statement and 𝜐 be a Viper verification state
satisfying our invariants. We may assume that no assertion failed when
verifying the encoded proof candidate J𝐶(𝑠) K of 𝑠 starting from 𝜐. We
then show that the TaDA judgment L 𝜐, 𝐶(𝑠) M of the proof candidate 𝐶(𝑠)
is derivable in TaDA. (5) We show soundness of the specification encoding:
Consider a successfully-verified Voila procedure with precondition 𝑃,
postcondition 𝑄, and body 𝑠. We show that the procedure’s specification
can be derived in TaDA as a conclusion using the rule of consequence
on the TaDA judgment LΥ(J𝑃 K), 𝐶(𝑠) M of the Viper verification state
Υ(J𝑃 K) from the encoded precondition J𝑃 K and of the procedure’s proof
candidate 𝐶(𝑠).

Combining these steps, we formally connect verification of an encoded
proof candidate to derivability of a corresponding TaDA proof, resulting
in the soundness of Voila. We first illustrate this approach in more detail
on a simplified version of TaDA. Afterwards, we discuss how we apply
this approach to full TaDA.
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4.6.2. Proof for Simplified TaDA

For a simplified version of TaDA, assume that TaDA judgments are stan-
dard Hoare judgments of the form ⊢ {𝑃} 𝑠 {𝑄}. We omit atomic triples,
levels, atomicity contexts, interference contexts, and the requirement
that pre- and postconditions are stable. These features are discussed in
Sec. 4.6.3. Furthermore, for simplicity, we do not distinguish between
Voila and TaDA assertions since they differ only in syntax. For our
simplified version of TaDA, we illustrate how to instantiate our five
aforementioned steps to show soundness.

Step 1: Invariants. To prove soundness, we will later (in step 2) connect
Viper verification states to TaDA pre- and postconditions. However, not
every Viper verification state can be connected to a TaDA assertion. E.g.,
TaDA does not support fractional permissions [61] for points-to predicates [61]: Boyland (2003), Checking Interference

with Fractional Permissions(x.f ↦→ 𝑣), whereas fractional permissions are generally possible in
Viper verification states. We define invariants on Viper verification states
that rule out Viper verification states that do not correspond to TaDA
assertions. These invariants have to hold only for those Viper verification
states that we have to connect to TaDA assertions, namely the pre- and
poststates of encoded rule applications. In particular, intermediate Viper
verification states of our Viper encoding do not have to satisfy the
invariants. We use these invariants in the definition of the judgment
mapping.

Step 2: Judgment Mapping. For our simplified version of TaDA, we
define a judgment mapping for a Viper verification state 𝜐 and the proof
candidate of a Voila outline statement 𝑠 as

L 𝜐, 𝐶(𝑠) M = {𝜙(𝜐)} ⌞𝑠⌟ {𝜙(post(J𝐶(𝑠) K, 𝜐))},

where 𝜙 maps Viper verification states to TaDA assertions and ⌞·⌟ maps
Voila outline statements to TaDA statements. We refer to 𝜙 as the TaDA

assertion interpretation. The definition of𝜙 is very technical and omitted for
the sake of simplicity. Conversely, the definition of ⌞·⌟ is straightforward.
The function removes all rule annotations from a Voila outline statement,
e.g. ⌞update_region{b := CAS(x,0,1)}⌟ is b := CAS(x,0,1).

As explained for step 1, only Viper verification pre- and poststates of
encoded rule applications are connected to TaDA assertions. To use the
judgment mapping, we have to show that the invariants hold for the
verification state-argument (𝜐 above).

To lift deductions at the level of Viper verification states to deductions at
the level of TaDA assertions, we prove that the TaDA assertion interpreta-
tion 𝜙 satisfies two properties: (1) An entailment in Viper, e.g. 𝜐1 ⊨Viper 𝜐2
for some Viper verification states 𝜐1 and 𝜐2 (recall that Viper verifica-
tion states correspond to Viper assertions), implies the corresponding
entailment in TaDA, i. e. 𝜙(𝜐1) ⊨TaDA 𝜙(𝜐1). (2) 𝜙 is the inverse of the
encoding, i. e. 𝜙(Υ(J𝑃 K)) = 𝑃 for all TaDA assertions 𝑃. Using these
two properties, we can show that if an encoded TaDA assertion J𝑃 K is
successfully verified starting from a Viper verification state 𝜐, then 𝜙(𝜐)
entails 𝑃 in TaDA, i. e. 𝜙(𝜐) ⊨TaDA 𝑃 holds. This is the basis for checking
the correctness of rule applications in Viper.
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Step 3: Single Rule Applications. Consider a proof candidate 𝑝 whose
root is an application of the syntax-driven rule for loops. Let the TaDA
statement that the rule is applied to be do invariant 𝐼 {𝑠} while(𝑏)

for some TaDA expression 𝑏, TaDA statement 𝑠, and TaDA invariant 𝐼.
Viper has while loops, but not do-while loops. A simplified Viper encod-
ing of the loop rule application is thus J 𝑝′ K; while(J 𝑏 K) invariant

J 𝐼 K {J 𝑝′ K}, where the proof candidate 𝑝′ is the child of 𝑝. If verification
is successful, then the TaDA invariant 𝐼 is preserved after the first exe-
cution of the loop body. Thus, TaDA’s do-while rule can be applied to
the TaDA judgment L 𝑣, 𝑝 M, where 𝑣 is the Viper verification state the
verification started from. We show soundness of the Viper encoding of
single rule applications separately for each rule, obtaining a soundness
lemma per rule.

Side conditions already guaranteed by neighboring rule applications,
either through checking or by construction, are not checked again. There-
fore, for some rules, some of their side conditions are established by the
encoding of neighboring rule applications. For the rules where neighbor-
ing rule applications guarantee some side conditions, we obtain weaker
soundness lemmas, requiring that the necessary side conditions already
hold. These dependencies make induction over the proof candidates
difficult. Thus, instead of induction over all proof candidates, we perform
induction over the Voila outline statements, as shown in the next step.

Step 4: Proof Candidates. The following lemma (Se) formalizes soundness
of the Viper encoding of proof candidates, as well as that our invariants
on Viper verification states, referred to as 𝕀, are maintained by the Viper
encoding.

𝜐 ∈ 𝕀 ∧ post(J𝐶(𝑠) K, 𝜐) ≠  =⇒ L 𝜐, 𝐶(𝑠) M ∧ post(J𝐶(𝑠) K, 𝜐) ∈ 𝕀 (Se)

Verbally, the lemma expresses “For all Voila outline statements 𝑠 and Viper

verification states satisfying our invariants 𝜐 ∈ 𝕀, the absence of failed assertions

during the verification of the encoded proof candidate, written post(J𝐶(𝑠) K, 𝜐) ≠
 , implies that the proof candidate’s TaDA judgment L 𝜐, 𝐶(𝑠) M is derivable in

TaDA and that the Viper verification poststate satisfies our Viper verification

state invariants”. We apply the lemma to the body of a Voila procedure to
get that the Voila proof candidate corresponds to a correct TaDA proof.

We prove the lemma (Se) by structural induction over Voila outline state-
ments. In general, the induction proceeds as follows: Consider a com-
pound outline statement 𝑠{𝑠′} (𝑠 is the compound, e.g. update_region,
and 𝑠′ is its body, e.g. CAS(...)) with a Viper encoding J𝐶(𝑠{𝑠′}) K =
c1;J𝐶(𝑠′) K;c2, where c1 and c2 are the Viper statements before and
after the Viper encoding of the body’s proof candidate, respectively.
There are four Viper verification states of interest: the prestate 𝜐0
of the compound statement 𝑠, the prestate 𝜐1 = post(c1 , 𝜐0 ,) of the
body 𝑠′, the poststate 𝜐2 = post(J 𝑠′ K, 𝜐1 ,) of 𝑠′, and the poststate
𝜐3 = post(c2 , 𝜐2 ,) of 𝑠. From the induction hypothesis, we get that the
TaDA judgment L 𝜐1 , 𝐶(𝑠′) M = {𝜙(𝜐1)} ⌞𝑠′⌟ {𝜙(𝜐2)} of the body’s proof
candidate is derivable in TaDA. We have to show that the TaDA judgment
L 𝜐0 , 𝐶(𝑠{𝑠′}) M = {𝜙(𝜐0)} ⌞𝑠{𝑠′}⌟ {𝜙(𝜐3)} of the compound statement’s
proof candidate is derivable in TaDA. Showing this derivation corre-
sponds to applying rules from TaDA to identify the missing proof steps
(indicated by ?) in the TaDA proof below. The application of IH denotes
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using the induction hypothesis that {𝜙(𝜐1)} ⌞𝑠′⌟ {𝜙(𝜐2)} is derivable in
TaDA. The necessary rule applications for the missing proof steps are
determined by the proof candidate. For each rule application from the
proof candidate, we apply the lemma obtained from the soundness of
the Viper encoding of single rule applications (step 3), ultimately closing
the gap.

... (IH)
{𝜙(𝜐1)} ⌞𝑠′⌟ {𝜙(𝜐2)}

(?)
{𝜙(𝜐0)} ⌞𝑠{𝑠′}⌟ {𝜙(𝜐3)}

Step 5: Specification. The previous proof steps and, in particular,
Lemma (Se) show the existence of a TaDA proof for a given Voila state-
ment, but do not yet show that this TaDA proof also establishes the pre-
and postcondition of the Voila statement, which we do next. Consider
a Voila procedure with a precondition 𝑃, postcondition 𝑄, and body 𝑠.
We need to prove that the procedure’s TaDA specification {𝑃} ⌞𝑠⌟ {𝑄}
is derivable as a conclusion using the rule of consequence on theTaDA
judgment LΥ(J𝑃 K), 𝐶(𝑠) M of the procedure’s proof candidate 𝐶(𝑠).

For our simplified version of TaDA discussed in this subsection, this
property holds if (1) 𝑃 entails 𝜙(Υ(J𝑃 K)) and (2) 𝑄 is entailed by the
TaDA assertion interpretation𝜙(𝜐post), where𝜐post is the Viper verification
poststate of the encoded proof candidate J𝐶(𝑠) K. Both entailments follow
from the properties we proved for the TaDA assertion interpretation
𝜙, namely that 𝜙 is the inverse of the encoding and that 𝜙 lifts Viper
entailments to TaDA entailments. For (2), it is relevant that the Viper
encoding asserts J𝑄 K directly after the encoded proof candidate.

Overall Soundness of Voila. The soundness of the Viper encoding of
both, specification and proof candidate, enables us to show that Voila
is sound. Again, consider a Voila procedure with a precondition 𝑃,
postcondition 𝑄, and body 𝑠. Verification succeeds, if Viper successfully
verifies the encoded proof candidate. More concretely, for the Viper
precondition J𝑃 K, the Viper tool verifies the Viper statement J𝐶(𝑠) K
without failing an assertion and verifies the Viper postcondition J𝑄 K
afterwards. For soundness, we have to show that the corresponding TaDA
specification, namely {𝑃} ⌞𝑠⌟ {𝑄}, is derivable in TaDA.

By instantiating 𝑣 with Υ(J𝑃 K), Lemma (Se) gives us that the TaDA
judgment LΥ(J𝑃 K), 𝐶(𝑠) M of the procedure’s proof candidate is derivable
in TaDA. From the specification encoding soundness (step 5), we get
that the procedure’s TaDA judgment ⊢ {𝑃} ⌞𝑠⌟ {𝑄} can be derived
from the TaDA judgment of the procedure’s proof candidate using
TaDA’s rule of consequence. Combining both implies that the TaDA
judgment {𝑃} ⌞𝑠⌟ {𝑄} is derivable in TaDA, completing the soundness
argument.

As a technical detail, to apply lemma (Se), we need to guarantee that the
initial Viper verification state Υ(J𝑃 K) from the encoded precondition
satisfies the invariants 𝕀. For our simplified version of TaDA discussed in
this subsection, the invariants are guaranteed by the syntactic restrictions
of the Voila specification language. For full TaDA, syntactic restrictions
do not suffice, since assertions also have to be stable. Voila verifies that
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user-provided assertions are well-defined, i. e. that their corresponding
Viper states are contained in 𝕀, using additional Viper proof obligations.

4.6.3. Generalization to TaDA

The proof sketch shown in Sec. 4.6.2 does not account for TaDA’s atomic
triples, stability requirements, and judgment parameters, namely level,
atomicity context, and interference context. To generalize the proof to
full TaDA, we introduce three extensions.

First, the semantics of a TaDA assertion differs depending on its use,
i. e. whether it is a pre- or postcondition and whether it is part of an
atomic or non-atomic TaDA triple. Therefore, we need multiple mappings
from Viper verification states to TaDA assertions (previously, just 𝜙).
Second, we extend lemma (Se) according to point (2) of our normal
form from Sec. 4.4. More concretely, we add to the invariants 𝕀 the
restrictions enforced by our normal form about when TaDA pre- and
postconditions have to be stable. Lastly, Voila proves TaDA judgments
for a set of parameters (point (4) of our normal form from Sec. 4.4). As
a consequence, the judgment mapping changes. E.g., for a non-atomic
Voila outline statement 𝑠, our extended judgment mapping has the shape
L 𝜐, 𝐶(𝑠) M = ∀𝜆 ∈ 𝕃(𝜐),A ∈ 𝔸(𝜐). 𝜆,A ⊢ {𝜙(𝜐)} ⌞𝑠⌟ {𝜙(𝜐′)} where
𝕃(𝜐) and 𝔸(𝜐) are the set of levels and atomicity contexts that the TaDA
judgment is proved for, respectively. For atomic triples, we use a set of
interference contexts as well.

4.7. Extended Discussion of our Running
Example

In this section, we provide for our running example, an extended discus-
sion of our heuristics (Sec. 4.7.1) and of our validation of rule applications
(Sec. 4.7.2). Fig. 4.8 shows the Voila outline, the proof candidate, and
the Viper encoding. We visualize proof candidates by adding steps for
inferred bridge rule instantiations (e.g. triple_weak, denoting TaDA rule
AWeakening1), analogous to the user-provided key rule instantiations.
For simplicity, some of the inferred steps are omitted.

4.7.1. Extended Discussion of our Heuristics

Recall from Sec. 4.4 that our heuristics infer bridge rule applications
locally, by inspecting only adjacent rule applications that are to be
composed, and their proof state. We employ five main heuristics: to
determine when to change triple atomicity, to ensure stable frames by
construction, to compute atomicity context ranges, to compute levels,
and to compute interference contexts in procedure body proofs. The first
three heuristics have been described briefly in Sec. 4.4; here, we provide
additional details and illustrate the heuristics guided by our running
example.

Changing Triple Kinds. Atomicity changes of a triple are necessary when
a non-atomic composite statement has an abstract-atomic sub-statement.
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  1 
 2 make_atomic  
 3     using Lock(r, x)  
 4     with G@r { 
 5   do { 
 6 
 7 
 8 
 9     update_region  
10         using Lock(r, x) { 
11       b := CAS(x, 0, 1) 
12     } 
13 
14 
15 
16   } inv I while (!b) 
17 } 

 1   INFER_INTERFERENCE(Lock(r, x))  
 2     var oldA := r.A               
 3     exhale r in update            
 4         && acc(r.A)               
 5     var oldUpdate := update       
 6     update := update minus Set(r) 
 7     exhale acc(r.diamond)         
 8     unfold Lock(r, x)             
 9     havoc Lock(r, x)              
10 
11       b := CAS(x, 0, 1) 
12     fold Lock(r, x)               
13     UPD_TRACK_RES(Lock(r, x))     
14     update := oldUpdate            
15     inhale acc(r.A)               
16         && r.A == oldA            
17 STABILIZE(Lock(r, x))             

 1 frame Lock(r, x) && G@r { 
 2   make_atomic 
 3       using Lock(r, x) with G@r { 
 4     frame I { 
 5       do { 
 6         triple_weak {                 
 7           stabilize {                 
 8             atomic_exists {           
 9               update_region           
10                   using Lock(r, x) {  
11                 b := CAS(x, 0, 1) 
12               }                       
13             }                         
14           }                           
15         }                             
16       } inv I while (!b) 
17     } 
18   } 
19 } 

Figure 4.8.: Left to right: the core of our running example’s lock procedure (same as Fig. 4.3), the proof candidate with inferred bridge
rules, and an excerpt of its Viper encoding. Colors link operations of the proof candidate to their encoding. I abbreviates the loop
invariant from Fig. 4.3. The encoding uses macros such as STABILIZE to abstract over Viper details. For the sake of brevity, in the
encoding, we shorten the field r.Lock_A, which stores the domain of an update to r.A. Furthermore, changes to the alevel variable,
which tracks the upper bound of the range of atomicity contexts, is omitted.

In such cases, we apply triple_weak (Line 6 in Fig. 4.8) to obtain a
non-atomic triple from an atomic one. The corresponding TaDA rule
AWeakening1 requires that the postcondition is stable, which we achieve
via stabilization, that is, by applying a specialized TaDA entailment that
weakens the postcondition to satisfy stability constructively. We denote
this step with a stabilize annotation (Line 7) in the proof candidate.

Framing. TaDA’s frame rule requires the frame, i. e., the assertion pre-
served across a statement, to be stable. We infer frames greedily, that
is, we (actually, Viper) frame as much information around a statement
as soundly possible. For simple statements such as heap accesses, this
approach automatically leads to stable frames. For composite statements
with (arbitrary) user-provided footprints (assertions such as loop invari-
ants describing which resources are taken into the composite statement),
we need to ensure explicitly that our greedy approach does not produce
an unstable frame. For this purpose, we insert explicit frame bridge steps
(Line 4) around composite statements; all other resources are then framed
across, and our encoding will ensure that these frames are stable. In our
case, such composite statements are loops (invariants), calls (pre- and
postconditions) and make_atomic (using-clauses). In each case, a step
frame 𝐹 is inserted, indicating that “everything but footprint 𝐹” will be
framed across and must thus be stable.

Interference Contexts. TaDA’s rules for opening a region and calling
a procedure (OpenRegion and FunctionCall; both not necessary for
our running example) require that the state of each involved region
in the precondition is bound by exactly one interference context ( ).
This is not guaranteed in arbitrary TaDA proofs (where a region’s state
might, e.g. not be bound at all), but it is in Voila, due to our normal
form. As a consequence, no additional step is necessary before opening a
region; before calling a procedure (not used by our running example), a
substitution step is inserted to check the compatibility of the caller’s
and the callee’s interference contexts. However, the frequently necessary
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atomicity triple changes from non-atomic to atomic triples violate the
single binder restriction of our normal form since non-atomic triples
have no interference contexts; similarly, opening a region may violate
the restriction since the state of nested regions is typically not bound.
To re-establish the normal form, we insert atomic_exists steps in both
cases, which automatically determine suitable interference contexts for
unbound region state, e.g. on Line 8, where the preceding triple_weak

changes triple atomicity.

Levels. Region levels have been omitted in this chapter, but are supported
by Voila. Levels are essentially an order on region instances, and are used
to prevent circular reasoning when nesting TaDA’s duplicable regions.
When a region is opened or updated, or when a procedure is called,
instantiating the corresponding rule requires a specific triple level. E.g., to
open a region, the current level (conclusion) must be one higher than the
level of the region to open. To meet such requirements, we infer suitable
instances of AWeakening3, to change the triple level, for every rule –
with specific level requirements – already present in the proof candidate.
Inferring and instantiating AWeakening3 is relatively straightforward,
and we believe that our heuristic never fails to infer a suitable application,
if one is possible.

4.7.2. Extended Discussion of the Validation of Rule
Applications

Recall from Sec. 4.5 that our proof candidates are tree structures (anal-
ogous to proof trees in standard Hoare logic), and that we check the
validity of a proof candidate by checking the validity of each rule appli-
cation in it. For that, we (among other things) check that the necessary
triple preconditions hold, and that the executed code establishes the
necessary postconditions.

We illustrate our encoding scheme on the body of the loop in our running
example, see Fig. 4.8. We discuss the proof top-down in the Hoare logic
proof, that is, inside-out in the proof candidate and Viper encoding,
starting with the CAS statement. The CAS statement itself is encoded
as a Viper method whose specification provides the semantics of the
operation.

The proof candidate wraps the CAS statement inside an application of the
UpdateRegion rule (the blue part in the middle column of Fig. 4.8; the rule
itself is shown in Fig. 4.2). Lines 2-6 of the Viper encoding (right column)
check and update the atomicity context according to UpdateRegion.
Together with the subsequent exhale and unfold, these Viper statements
encode steps 1 and 2 of the rule application: instead of exhaling the entire
precondition of the conclusion (step 1) and inhaling the precondition
of the premise (step 2), the encoding represents only the net effect of
these two operations. Therefore, it exhales the diamond resource 𝑟 Z⇒ ♦.
Going from the conclusion to the premise, UpdateRegion replaces the
region predicate (here, Lock(𝑟,x)) by its interpretation. Given the region
encoding from Fig. 4.6, this is exactly what Viper’s unfold operation does.
Note that we instantiate the conjunct 𝑃(𝑥) in the UpdateRegion rule to
represent all other resources and properties that hold in the prestate of
the rule application. Hence, it does not show up in the encoding. The
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subsequent havoc operation assigns a non-deterministic value to the
state of all held, still folded Lock(r,x) predicates. This step is necessary
because TaDA region predicates are duplicable. 𝑃(𝑥) thus could contain
such predicate instances (in addition to the unfolded one), and we must
prevent Viper from using those instances to frame old region state around
the CAS statement, which would be unsound. As confirmed by the authors
in personal communication, the latter problem is actually currently not
addressed in TaDA.

The first two Viper statements after the CAS statement (right column,
Lines 12-13) encode steps 3 and 4 of the rule application: the fold operation
replaces the interpretation of the Lock predicate by the predicate itself.
UPD_TRACK_RES is an encoding macro, which inhales, depending on the
success of the CAS operation, one of the tracking resources 𝑟 Z⇒ (0, 1) or
𝑟 Z⇒ ♦. Analogously to 𝑃(𝑥) in the precondition, we take 𝑄1 and 𝑄2 to
represent all other resources and properties that hold in the poststate
of the rule application in these two cases. Since they occur in both
postconditions, there is no net effect of inhaling and then exhaling them,
and we can omit them from the encoding. The final two instructions
(Lines 14-16) in the blue part of the encoding maintain the atomicity
context.

Besides UpdateRegion, the loop body contains three additional rule
applications. atomic_exists (green section) establishes the interference
context, which we encode via macro INFER_INTERFERENCE. triple_weak
(orange) weakens an atomic triple in its premise to a non-atomic triple
in its conclusion. Since our encoding does not track the triple kind
explicitly, triple_weak is not directly reflected in the encoding. However,
its conclusion – like all non-atomic triples – must be stable. This side
condition is enforced in the encoding via the STABILIZE macro. We
explain both stability and our treatment of interference contexts next.

4.8. Encoding Custom Guard Algebras

Voila provides a high degree of automation, as demonstrated by our
evaluation in Sec. 4.9. For concepts not directly supported and automated,
Voila provides various features, such as ghost code, to encode them
manually. These features enable users of Voila to experiment, for instance,
with guard algebras that are not supported by Voila. Crucially, all of
these features operate on the level of Voila; programmers do not need to
understand (or even be aware of) the encoding into Viper. Voila trusts that
users of Voila use these features correctly. In particular, an incorrect usage
results in false-positives, i. e. Voila may accept a proof outline that does
not correspond to a valid TaDA proof. In this section, we demonstrate
Voila’s support for manual encodings by an example that uses a custom
guard algebra.

Specifically, we chose a TaDA-adaptation [139] of Owicki-Gries’ classical [139]: Rocha Pinto (2016), Reasoning with

time and data abstractionsparallel-increment example: given multiple threads that successively
increment a shared counter in parallel, prove that the final counter state
equals the sum of the local increments. To achieve the latter, the TaDA
proof uses the custom guard algebra defined in Fig. 4.9, which defines
resources (as guards) for tracking increments, and laws that govern their
use and allow relating local and total increments. The example is included
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Figure 4.9.: Custom guard algebra (an in-
stance of Iris’ authoritative monoid [36])
used by the TaDA adaptation of Owicki-
Gries’ classical parallel-increment exam-
ple. Guard Inc counts local increments,
and can be split and merged, similar to
fractional permissions [61], in which case
the local increments are split/merged as
well. Guard Total, in contrast, is exclu-
sive and counts the overall increments.
Composing the whole Inc instance with
Total allows concluding that the sum
of the local increments equals the total
count. Lastly, both values can only be
changed in lockstep.

Inc(𝑛1 + 𝑛2 ,𝜋1 + 𝜋2) = Inc(𝑛1 ,𝜋1) • Inc(𝑛2 ,𝜋2) (4.1)
Total(𝑚) • Inc(𝑛, 1) =⇒ 𝑛 = 𝑚 (4.2)

Total(𝑚) • Inc(𝑛,𝜋) = Total(𝑚 + 𝑑) • Inc(𝑛 + 𝑑,𝜋) (4.3)

Figure 4.10.: Example declarations from
the Voila encoding of TaDA’s counter-
client example, including the CClient
region, and the signature of proce-

dure single_client (see also Fig. 4.12),
which is executed by each thread. Lemma
procedure INC_split encodes the left-
to-right direction of definition 4.1 from
Fig. 4.9 by means of pre- and postcon-
ditions. The remaining algebra laws are
encoded analogously, and omitted for
brevity.

1 region CClient(id s, id r, cell x)
2 guards {
3 manual INC(int, frac);
4 manual TOTAL(int);
5 }
6 interpretation {
7 Counter(r, x, ?n) && G@r && TOTAL(n)@s
8 }
9 state { n }

10 actions {
11 ?n, ?m, ?k, ?p | 0f < p && n < m | INC(k, p): n ~> m;
12 }
13
14 lemma INC_split(id s, int k1, int k2, frac p1, frac p2)
15 requires INC(k1 + k2, p1 + p2)@s;
16 requires 0f < p1 && 0f < p2;
17 ensures INC(k1, p1)@s && INC(k2, p2)@s;
18
19 procedure single_client(id s, id r, cell x, int m)
20 requires CClient(s, r, x, _) && INC(0, 1/2)@s;
21 ensures CClient(s, r, x, _) && INC(m, 1/2)@s;

in our evaluation (CounterCl), and, to the best of our knowledge, cannot
be encoded in any comparable tool.

Fig. 4.10 shows the Voila declaration of region CClient, whose manip-
ulation is governed by aforementioned guard algebra. Guards INC and
TOTAL are declared as manual to indicate that they are not part of a guard
algebra that Voila automates (see also Sec. 4.9). In particular, this means
that Voila will not make any uniqueness assumptions about these guards,
e.g. when stabilizing region state. The laws of the guard algebra are
encoded as lemma procedures such as INC_split, which encodes the
left-to-right direction of definition 4.1. Region CClient abstracts over
the shared Counter(r,n,x), whose value n corresponds to the total
increment count; guard G, declared by region Counter (see Fig. 4.12),
is needed to increment that value. The region’s actions clause demon-
strates Voila’s most general syntax for specifying region transitions, and
declares that the region state can be incremented from any n to any
larger m, by anybody holding a non-zero fraction of INC (regardless of the
latter’s local increments value k). Fig. 4.10 also shows the specification of
procedure single_client, whose implementation (shown in Fig. 4.12)
loops until it made v successive increments to the shared counter. Note
that single_client could be parametric in the permission amount re-
quired for INC (currently fixed to 1/2), which would allow arbitrarily
many parallel instances (e.g. 1/t for a statically-unknown number of t
threads).
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1 // Allocate memory and create region instances ...
2
3 use INC_split(s, 0, 0, 1/2, 1/2);
4
5 parallel {
6 single_client(s, r, x, 9);
7 single_client(s, r, x, 11);
8 }
9

10 use INC_merge(s, 9, 11, 1/2, 1/2);
11
12 unfold CClient(s, r, x);
13 assert Counter(r, x, ?n);
14
15 use TOTAL_INC_equality(s, n, 20);
16 assert n == 20;
17
18 // ... destroy region instances and deallocate memory

Figure 4.11.: The central part of the Voila
encoding of TaDA’s Owicki-Gries adapta-
tion: We use a lemma method to split the
guard INC before the parallel execution
of two calls to single_client. After the
calls, another lemma method is used to
recombine INC and to sum up the local
increments. Finally, we assert the equal-
ity between local and total increments.

Fig. 4.11 shows the central part of the verified code: first, guard INC(0,0)

is split into two equal fractions by using lemma procedure INC_split;
afterwards, two calls to single_client are run in parallel. Upon termi-
nation, lemma procedure INC_merge (whose straightforward declaration
we omitted), corresponding to the right-to-left direction of guard al-
gebra definition 4.1, is used to combine the INC guards obtained from
the postconditions of single_client into a single instance INC(20,1f).
Subsequent ghost code then opens (unfolds) region CClient to bind the
– at this point unknown – value of the counter to the logical variable n.
Finally, lemma procedure TOTAL_INC_equality, corresponding to guard
algebra definition 4.2, is used to learn that n’s value is equal to INC’s
value, i. e. 20. Note that the lemma application would (here) fail for values
other than 20, and that it is possible to work with statically unknown
values, e.g. m1, m2 and m1 + m2 instead of constants 9, 11 and 20.

In addition to lemma procedures, Voila provides several ghost operations
for manipulating its verification state, including: in-/exhale statements
for gaining/giving up resources; unfold/fold statements for opening/-
closing regions; but also region ghost fields, e.g. for witnessing existentials.
All of these can be used to encode TaDA proof steps that are beyond what
Voila automates, and to experiment with potential extensions. Ghost
operations are always applied on the Voila level such that users do not
need to be aware of the encoding into Viper.



124 4. Concise Outlines for a Complex Logic: A Proof Outline Checker for TaDA

Figure 4.12.: Further Voila code from the
parallel counter example: the Counter re-
gion and its incr procedure, and the im-
plementation of the single_client pro-
cedure that is executed by each thread.
We slightly simplified the loop invari-
ant by omitting obvious properties. The
body of incr, omitted for brevity, is sim-
ilar to procedure lock from our running
example in Fig. 4.3: a loop around a CAS
that attempts to increment the counter
by one.

1 struct cell {
2 int f;
3 }
4
5 region Counter(id r, cell x)
6 guards { unique G; }
7 interpretation { x.f |-> ?n }
8 state { n }
9 actions { ?n, ?m | n < m | G: n ~> m; }

10
11 abstract_atomic procedure incr(id r, cell x)
12 interference ?n in Int;
13 requires Counter(r, x, n) && G@r;
14 ensures Counter(r, x, n + 1) && G@r;
15
16 procedure single_client(id s, id r, cell x, int m)
17 requires CClient(s, r, x, _) && INC(0, 1/2)@s;
18 ensures CClient(s, r, x, _) && INC(m, 1/2)@s;
19 {
20 int i := 0;
21
22 while (i < m)
23 invariant CClient(s, r, x, _);
24 invariant INC(i, 1/2)@s;
25 {
26 use_atomic
27 using CClient(s, r, x, ?v) with INC(i, 1/2)@s;
28 {
29 incr(r, x);
30 use TOTAL_INC_inc(s, v, i, 1/2);
31 }
32
33 i := i + 1;
34 }
35 }

4.9. Evaluation

We evaluated Voila on nine benchmark examples from Caper’s test
suite, with the Treiber’s stack [151] variant BagStack being the most[151]: Treiber (1986), Systems Program-

ming: Coping with Parallelism complex example, and report verification times and annotation overhead.
Each example has been verified in two versions: a version with Caper’s
comparatively weak non-atomic specifications, and another version with
TaDA’s strong atomic specifications; see Sec. 4.11 for a more detailed
comparison of Voila and Caper. An additional example, CounterCl,
demonstrates the encoding of a custom guard algebra not supported in
Caper (see Sec. 4.8). To evaluate the performance for both successful and
failing verification attempts, we seeded four examples with errors in the
loop invariant, procedure postcondition, code, and region specification,
respectively. Our benchmark suite is relatively small, but each example
involves nontrivial specifications. To the best of our knowledge, no other
(semi-)automated tool is able to verify similarly strong specifications.

Performance. Fig. 4.13 shows the runtime for each example in seconds.
All measurements were carried out on a Lenovo W540 with an Intel
Core i7-4800MQ and 16GB of RAM, running Windows 10 x64 and Java
HotSpot JVM 18.9 x64; Voila was compiled using Scala 2.12.7. We used a
recent checkout of Viper and Z3 4.5.0 x64 (we failed to compile Caper
against newer versions of Z3). Each example was verified ten times (on
a continuously-running JVM); after removing the highest and lowest
measurement, the remaining eight values were averaged. Caper (which
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Program LOC Stg Wk Cpr
SLock 15 2.6 2.1 1.4
TLock 23 21.8 8.1 2.4
TLockCl 16 2.9 2.6 0.5
CASCtr 25 3.9 2.7 1.5
BoundedCtr 24 8.1 5.1 63.1
IncDecCtr 28 4.2 3.1 2.9
ForkJoin 16 2.1 1.3 1.0
ForkJoinCl 28 2.9 2.3 1.6
BagStack 29 29.9 18.0 211.6
CounterCl 45 - 5.8 -

Program Err Stg Wk Cpr

CASCtr

L 1.5 1.9 1.5
P 2.5 1.9 11.2
C 1.5 1.2 0.5
R 1.2 1.1 0.3

TLock

L 3.9 7.2 2.0
P 7.2 3.4 2.4
C 15.6 1.8 0.6
R 4.1 1.8 0.7

TLockCl

P 2.9 2.6 143.4
C 2.5 2.5 115.5
R 1.8 1.7 5.0

BagStack

L 26.5 17.8 > 600
P 27.9 17.7 > 600
C 26.3 17.8 > 600
R 14.4 9.2 216.6

Figure 4.13.: Timings in seconds for successful (left table) and failing (right table) verification runs; lines of code (LOC) are given for Voila
programs and exclude proof annotations. Stg/Wk denote strong/weak Voila specifications; Cpr abbreviates Caper. Programs include
spin and ticket locks, counters (Ctr), and client programs (Cl) using the proven specifications. Errors (Err) were seeded in loop invariants
(L), postconditions (P), code (C), and region specifications (R).

compiles to native code) was measured analogously.

Overall, Voila’s verification times are good; most examples verify in under
five seconds. Voila is slower than Caper and its logic-specific symbolic
execution engine, but it exhibits stable performance for successful and
failing runs, which is crucial in the common case that proof outlines
are developed interactively, such that the checker is run frequently on
incorrect versions. As demonstrated by the error-seeded versions of
TLockCl and BagStack, Caper’s performance is less stable.

Another interesting observation is that strong specifications typically do
not take significantly longer to verify, although only they require the full
spectrum of TaDA ingredients and make use of TaDA’s most complex
rules, MakeAtomic and UpdateRegion. Notable exceptions are: BagStack,
where only the strong specification requires sequence theory reasoning;
and TLock and BoundedCtr, whose complex transition systems with
many disjunctions significantly increase the workload when verifying
atomicity rules such as MakeAtomic.

Automation. Voila’s annotation overhead, averaged over the programs
with strong specifications from Fig. 4.13, is 0.8 lines of proof annotations
(not counting declarations and procedure specifications; neither for Ca-
per) per line of code, which demonstrates the high degree of automation
Voila achieves. Caper has an average annotation overhead of 0.13 for its
programs from Fig. 4.13, but significantly weaker specifications. Verifying
only the latter in Voila does not reduce annotation overhead significantly
since Voila was designed to support TaDA’s strong specifications. The
overhead reported for encodings into interactive theorem provers such as
Coq [38, 152–154] is typically much higher, ranging between 10 and 20. [38]: Vafeiadis et al. (2013), Relaxed sepa-

ration logic: a program logic for C11 concur-

rency

[152]: Doko et al. (2017), Tackling Real-Life

Relaxed Concurrency with FSL++

[153]: Kaiser et al. (2017), Strong Logic for

Weak Memory: Reasoning About Release-

Acquire Consistency in Iris

[154]: Klein et al. (2009), seL4: formal veri-

fication of an OS kernel

Supported TaDA Ingredients. Fig. 4.14 provides an overview of Voila’s
features, w.r.t. TaDA ingredients and Caper guard algebras [41]. The left

[41]: Dinsdale-Young et al. (2017), Caper

- Automatic Verification for Fine-Grained

Concurrency

column lists TaDA features and to which extent their incur annotation
overhead. None means that the ingredient does not surface at all in
a Voila program. Once means that there is a one-time annotation per
Voila program, typically in the form of a background declaration such
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as a region. In contrast, proc means that the feature requires a one-
time annotation per Voila procedure, typically as part of a procedure
specification. Next, low means that the feature may result in more than one
annotation per procedure: for regions, these are new-region statements
(one per newly created region instance), in addition to region declarations.
Tracking resources, on the other hand, typically appear in invariants of
loops that repeat until an update succeeded. Finally, View shifts incur a
medium annotation overhead: most standard view shifts are automated by
Voila and do not require annotations, but for complex, manually encoded
examples, additional annotations may be required. See also Sec. 4.8.

Most of Caper’s guard algebras are supported by Voila, and as such, do
not incur any additional overhead (the guards themselves must still be
mentioned, e.g. in specifications). Only counting and sum guards are
not directly supported by Voila; they can be encoded, which will require
additional annotations. See also Sec. 4.8 for an example of a manually
encoded guard algebra.

Figure 4.14.: Supported TaDA ingredi-
ents, with a classification of the incurred
annotation overhead, and Caper guard
algebras [41], with a classification of their
support. TaDA’s combination of public
and private assertions in a rule triple is
currently not supported by Voila.

Ingredient Annotations
Regions low
Transition systems once
Triple kinds proc
Interference contexts proc
Atomicity contexts none
Levels proc
Tracking resources low
Private vs. public –
View Shifts medium
Stability none
Framing none

Guard Algebra Support
Trivial built-in
All-or-nothing built-in
Counting encodable
Indexed built-in
Product built-in
Permissions built-in
Sum encodable

4.10. Voila Grammar

This section gives an overview of Voila’s grammar, and shows that
Voila strongly resembles TaDA, but requires fewer technical details in its
annotation language.

Fig. 4.15 (top) shows Voila’s core syntax for types 𝑡, expressions 𝑒, and
assertions 𝑎. Types 𝑡 include the type of region identifiers id, fractions
frac, and struct types 𝑆. Expressions 𝑒 include variables 𝑥, literals 𝑙,
fields 𝑓 , and the usual expression operators, e.g. relational ones. They
also include variable binders ?𝑥, which are allowed in only two places:
the right-hand side of points-to assertions and the last parameter of a
region instance, binding the region’s abstract state. Assertions 𝑎 include,
besides the usual separation logic assertions, region instances 𝑅(𝑟, 𝑒),
where 𝑅 denotes a region name, 𝑟 a region identifier, and 𝑒 the region’s
abstract state; the last argument may be omitted when the region state
is unspecified. As usual, overlines denote lists. Moreover, assertions
include guards 𝐺(𝑒)@𝑟, where 𝐺 denotes a guard name and 𝑒 the guard
arguments (guards without arguments are written as 𝐺@𝑟), and TaDA’s
two tracking resources. For brevity, we omitted levels, collection data
types (i. e. sets, sequence, maps, and tuples), and more complex guards
(but see also Sec. 4.9 and Sec. 4.8).
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𝑡 ::= id | bool | int | frac | 𝑆

𝑒 ::= 𝑥 | ?𝑥 | 𝑙 | 𝑒 && 𝑒 | 𝑒 || 𝑒 | !𝑒 | 𝑒 ⇒ 𝑒 | 𝑒 op 𝑒

𝑎 ::= 𝑒 | 𝑥. 𝑓 ↦→ 𝑒 | 𝑎 && 𝑎 | 𝑒 ⇒ 𝑎 | 𝑅(𝑟, 𝑒) | 𝐺(𝑒)@𝑟 | 𝑟 Z⇒ ♦ | 𝑟 Z⇒ (𝑒 , 𝑒)

𝑛𝑠 ::= 𝑥 := 𝑒
| 𝑥 := 𝑃(𝑒)
| if (𝑒) {𝑠} else {𝑠}
| while (𝑒) invariant 𝑎 {𝑠}
| 𝑠; 𝑠

𝑠 ::= 𝑡 𝑥 | 𝑛𝑠 | 𝑎𝑠

𝑎𝑠 ::= 𝑥. 𝑓 := 𝑒
| 𝑦 := 𝑥. 𝑓
| 𝑥 := 𝑃(𝑒)
| use_atomic using 𝑅(𝑟, 𝑒) with 𝐺(𝑒)@𝑟 {𝑎𝑠}
| make_atomic using 𝑅(𝑟, 𝑒) with 𝐺(𝑒)@𝑟 {𝑠}
| open_region using 𝑅(𝑟, 𝑒) {𝑎𝑠}
| update_region using 𝑅(𝑟, 𝑒) {𝑎𝑠}

struct 𝑆 {𝑡 𝑓 } region 𝑅(id 𝑟, 𝑡 𝑥)

interpretation {𝑎}

state {𝑒}

guards {𝑚𝑜𝑑 𝐺(𝑡 𝑥)}
actions {𝐺(𝑒) : 𝑒 { 𝑒}

abstract_atomic procedure 𝑃(𝑡 𝑥)

returns (𝑡 𝑦)

interference ?𝑥 in 𝑒

requires 𝑎

ensures 𝑎

{𝑠}

Figure 4.15.: Voila’s core syntax for (top) types 𝑡, expressions 𝑒, assertions 𝑎, (middle) statements 𝑠, atomic statements as, non-atomic
statements ns, (bottom) struct, region, and procedure declarations.

Next, Fig. 4.15 (middle) shows Voila’s core syntax for statements 𝑠, atomic
statements as, and non-atomic statements ns. Statements 𝑠 comprise
variable declarations as well as atomic and non-atomic statements; the
categorization of the latter follows TaDA. Atomic statements as include
field reads and writes, invocations of abstract-atomic procedures, and
key rule statements. Following TaDA, rule statements other than make_-

atomic may only nest atomic statements. Non-atomic statements ns are
local variable assignments, invocations of non-atomic procedures, and
compound statements. For brevity, statements for creating struct and
region instances have been omitted, as have ghost statements useful for
encoding, e.g. complex guard algebras (see Sec. 4.8).

Lastly, Fig. 4.15 (bottom) shows Voila’s core syntax for struct, region, and
procedure declarations. Structs declare fields and induce homonymous
types. Region declarations include name 𝑅, identifier 𝑟 and further formal
arguments 𝑡 𝑥. A region’s interpretation and state are an assertion and
expression, respectively. Each region may declare guards 𝐺(𝑡 𝑥), with
formal arguments 𝑥 and modifier unique or duplicable, and actions that
describe possible state changes. Abstract-atomic procedure declarations
include an interference clause that corresponds to TaDA’s interference
context. More complex guard and action definitions are omitted for
brevity, as are non-atomic and lemma procedures.

4.11. Related Work

We compare Voila to three groups of tools: automated verifiers, focusing
on automation; proof checkers, focusing on expressiveness; and proof
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outline checkers, designed to strike a balance between automation and
expressiveness. Closest to our work in the kind of supported logic is the
automated verifier Caper [41], from which we drew inspiration, e.g. for[41]: Dinsdale-Young et al. (2017), Caper

- Automatic Verification for Fine-Grained

Concurrency

how to specify region transition systems. Caper supports an improved
version of CAP [31], a predecessor logic of TaDA. Caper’s symbolic execu-

[31]: Dinsdale-Young et al. (2010), Con-

current Abstract Predicates

tion engine achieves an impressive degree of automation, which, for more
complex examples, is higher than Voila’s. Caper’s automation also covers
slightly more guard algebras than Voila. However, the automation comes
at the price of expressiveness, compared to Voila: postconditions are often
significantly weaker because the logic does not support linearizability (or
any other notion of abstract atomicity). E.g., Caper cannot prove that the
spinlock’s unlock procedure actually releases the lock. As was shown
in Sec. 4.9, Caper is typically faster than Voila, but exhibits less stable
performance when a program or its specifications are wrong.

Other automated verifiers for fine-grained concurrency reasoning are
SmallfootRG [42], which can prove memory safety, but not functional[42]: Calcagno et al. (2007), Modular

Safety Checking for Fine-Grained Concur-

rency

correctness, and CAVE [43], which can prove linearizability, but cannot

[43]: Vafeiadis (2010), Automatically Prov-

ing Linearizability

reason about non-linearizable code (which TaDA and Voila can). Ver-
Cors [155] combines a concurrent separation logic with process-algebraic

[155]: Oortwĳn et al. (2017), An Abstrac-

tion Technique for Describing Concurrent

Program Behaviour

specifications; special program annotations are used to relate concrete
program operations to terms in the abstract process algebra model.
Reasoning about the resulting term sequences is automated via model
checking, but is non-modular. Summers et al. [156] present an automated[156]: Summers et al. (2018), Automat-

ing Deductive Verification for Weak-Memory

Programs

verifier for the RSL family of logics [38, 152, 157] for reasoning about

[38]: Vafeiadis et al. (2013), Relaxed sepa-

ration logic: a program logic for C11 concur-

rency

[152]: Doko et al. (2017), Tackling Real-Life

Relaxed Concurrency with FSL++

[157]: Doko et al. (2016), A Program Logic

for C11 Memory Fences

weak-memory concurrency. Their tool also encodes into Viper and re-
quires very few annotations because proofs in the RSL logics are more
stylized than in TaDA.

A variety of complex separation logics [35, 37, 70, 158–160] are supported

[35]: Sergey et al. (2015), Mechanized veri-

fication of fine-grained concurrent programs

[37]: Turon et al. (2014), GPS: navigating

weak memory with ghosts, protocols, and

separation

[70]: Jung et al. (2018), Iris from the ground

up: A modular foundation for higher-order

concurrent separation logic

[158]: Nanevski et al. (2014), Communi-

cating State Transition Systems for Fine-

Grained Concurrent Resources

[159]: Frumin et al. (2018), ReLoC: A Mech-

anised Relational Logic for Fine-Grained

Concurrency

[160]: Krebbers et al. (2018), MoSeL: a

general, extensible modal framework for in-

teractive proofs in separation logic

by proof checkers, typically via Coq encodings. As discussed in the intro-
duction, such tools strike a different trade-off than proof outline checkers:
they provide foundational proofs, but typically offer little automation,
which hampers experimenting with logics. Diaframe [10] introduces a

[10]: Mulder et al. (2022), Diaframe: auto-

mated verification of fine-grained concurrent

programs in Iris

custom proof search strategy for Iris [36], achieving foundational proofs

[36]: Jung et al. (2015), Iris: Monoids and

Invariants as an Orthogonal Basis for Con-

current Reasoning

and a high degree of automation. This strategy applies rules based on the
syntactic shape of the verification goal. To improve completeness, users
can provide hints that specify how certain goals are split into subgoals.

Starling [138] is a proof outline checker and closest to Voila in terms of

[138]: Windsor et al. (2017), Starling:

Lightweight Concurrency Verification with

Views

the overall design, but it focuses on proofs that are easy to automate. To
achieve this, it uses a simple instantiation of the Views meta-logic [147] as

[147]: Dinsdale-Young et al. (2013), Views:

compositional reasoning for concurrent pro-

grams

its logic. Starling’s logic does not enable the kind of strong, linearizability-
based postconditions that Voila can prove (see the discussion of Caper
above). Starling generates proof obligations that can be discharged by
an SMT solver, or by GRASShopper [134] if the program requires heap
reasoning. The parts of an outline that involve the heap must be written
in GRASShopper’s input language. In contrast, Voila does not expose the
underlying system, and users can work on the abstraction level of TaDA.

VeriFast [11] can be seen as an outline checker for a separation logic with
impressive features such as higher-order functions and predicates. It has
no dedicated support for fine-grained concurrency, but the developers
manually encoded examples such as concurrent stacks and queues.
VeriFast favors expressiveness over automation: proofs often require
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non-trivial specification adaptations and substantial amounts of ghost
code, but the results typically verify quickly.

4.12. Conclusion

We introduced Voila, a novel proof outline checker that supports most
of TaDA’s features, and achieves a high degree of automation and good
performance. This combination enables concise proof outlines with a
strong resemblance of TaDA.

Voila is the first deductive verifier that can reason automatically about a
procedure’s effect at its linearization point, which is essential for a wide
range of concurrent programs. Earlier work either proves much weaker
properties (the preservation of basic data structure invariants rather than
the functional behavior of procedures) or requires substantially more
user input (entire proofs rather than concise outlines).

We believe that our systematic approach to developing Voila can be
generalized to other complex logics. In particular, encoding proof outlines
into an existing verification framework allows one to develop proof outline
checkers efficiently, without developing custom proof search algorithms.
Our work also illustrates that an intermediate verification language such
as Viper is suitable for encoding a highly-specialized program logic such
as TaDA. During the development of Voila, we uncovered and fixed
several soundness and modularity issues in TaDA, which the original
authors acknowledged and had partly not been aware of. We view this
as anecdotal evidence of the benefits of tool support that we described in
the introduction.

Voila supports the vast majority of TaDA’s features; most of the others
can be supported with additional annotations. The main exception are
TaDA’s hybrid assertions, which combine atomic and non-atomic behavior.
Adding support for those is future work. Other plans include an extension
of the supported logic, e.g. to handle extensions of TaDA [150, 161]. [150]: Rocha Pinto et al. (2016), Modular

Termination Verification for Non-blocking

Concurrency

[161]: D’Osualdo et al. (2019), TaDA Live:

Compositional Reasoning for Termination of

Fine-grained Concurrent Programs





Conclusion 5.
“Now I will have less

distraction.”

— Leonhard Euler

In this thesis, we have proposed techniques to automate the verification
of advanced logics with complex proof state and proof rules and we have
proposed techniques to specify, verify, and validate language-agnostic
security policies.

We introduced Gobra, the first modular verifier for Go supporting
a significant subset of the language, including channels, goroutines,
heap-manipulating constructs, closures, and interfaces. Gobra is the
first verifier to support Go’s interfaces with structural subtyping. Our
proposed specification of interfaces is expressive and flexible enough
to also improve the verification of closures and security policies. Since
Gobra’s initial publication, Gobra has been used in other works [50, 56,
162] to verify several case studies, most notably, the implementation of [50]: Pereira et al. (2024), Protocols to Code:

Formal Verification of a Next-Generation In-

ternet Router

[56]: Arquint et al. (2023), Sound Verifica-

tion of Security Protocols: From Design to

Interoperable Implementations

[162]: Arquint et al. (2023), A Generic

Methodology for the Modular Verification of

Security Protocol Implementations

the WireGuard VPN key exchange protocol and the implementation of a
full-fledged network router. These case studies demonstrate that Gobra is
expressive and performant enough to verify large-scale real-world code.
Gobra incorporates an augmented type system to reduce permission-
based reasoning and the slicing of verification conditions to improve its
performance. Without these techniques, the verification of these case
studies would not have been possible.

We introduced a novel policy framework for the specification, verification,
and validation of language-agnostic security policies. We achieve a
language-agnostic specification and validation of policies by defining
them on top of I/O behavior with the addition of declassification actions.
Using this abstraction of program behavior, we are able to reason about
the guarantees provided by policies based only on a policy itself, in
particular, without facing the complexity of the programming languages
with which programs are written. To demonstrate these benefits of
language-agnostic policies, we introduce a reasoning technique to prove
GNIV, a non-deducibility property ensuring that for passive and certain
active attackers, a selection of data remains confidential even in the
presence of declassification. For code verification, we present how to
verify that a program satisfies a security policy using a combination of
standard code verification techniques. As a result, we are able to use
off-the-shelf automated program verifiers to verify code. We have applied
our security policy framework to Gobra to verify real-world programs.

Lastly, we introduced Voila, a systematically developed novel proof
outline checker for the TaDA logic. Voila supports reasoning about
linearizability and abstract atomicity while simultaneously achieving
a high degree of automation. Our work goes beyond existing proof
outline checkers and automated verifiers by supporting the substantially
more complex program logic TaDA. We believe that our systematic
approach to developing Voila can be generalized to other complex logics.
Encoding proof outlines into an existing verification language makes it
possible to develop automated program verifiers without developing
custom proof search algorithms. Our work further demonstrates that an
intermediate verification language such as Viper is suitable for encoding
highly-specialized program logics such as TaDA.





Appendix





Full TaDA Proof for the Spin Lock A.
Fig. A.1 shows the full TaDA proof of the TaDA proof outline from Fig. 4.1.
The purpose of the figure is to illustrate the complexity of full TaDA
proofs. We do not expect readers to be able to understand the proof. All
parts of the proof that are present in the TaDA proof outline are colored
in blue. Everything else is inferred by Voila.



136 A. Full TaDA Proof for the Spin Lock

(CAS)
0;A ⊢ 𝑠 ·

〈
𝑣1 = 𝑥 ∗ 𝑣2 = 0 ∗ 𝑣3 = 1

∗ 𝑣1 ↦→ 𝑠

〉
ccas

〈
𝑣1 ↦→ 𝑣3 ∗ 𝑠 = 𝑣2 ∗ 𝑏 = 1
∨ 𝑣1 ↦→ 𝑠 ∗ 𝑠 ≠ 𝑣2 ∗ 𝑏 = 0

〉
(Frame)

0;A ⊢ 𝑠 ·
〈

𝑣1 = 𝑥 ∗ 𝑣2 = 0 ∗ 𝑣3 = 1
∗ 𝑣1 = 𝑥 ∗ 𝑣2 = 0 ∗ 𝑣3 = 1

∗ 𝑣1 ↦→ 𝑠

〉
ccas

〈
𝑣1 = 𝑥 ∗ 𝑣2 = 0 ∗ 𝑣3 = 1

∗ (𝑣1 ↦→ 𝑣3 ∗ 𝑠 = 𝑣2 ∗ 𝑏 = 1
∨ 𝑣1 ↦→ 𝑠 ∗ 𝑠 ≠ 𝑣2 ∗ 𝑏 = 0)

〉
(AExists)

0;A ⊢ 𝑠 ·
〈 ∃𝑣1 , 𝑣2 , 𝑣3·

𝑣1 = 𝑥 ∗ 𝑣2 = 0 ∗ 𝑣3 = 1
∗ 𝑣1 = 𝑥 ∗ 𝑣2 = 0 ∗ 𝑣3 = 1

∗ 𝑣1 ↦→ 𝑠

〉
ccas

〈 ∃𝑣1 , 𝑣2 , 𝑣3·
𝑣1 = 𝑥 ∗ 𝑣2 = 0 ∗ 𝑣3 = 1

∗ (𝑣1 ↦→ 𝑣3 ∗ 𝑠 = 𝑣2 ∗ 𝑏 = 1
∨ 𝑣1 ↦→ 𝑠 ∗ 𝑠 ≠ 𝑣2 ∗ 𝑏 = 0)

〉
(Consequence)

0;A ⊢ 𝑠 ·
〈
𝑥 ↦→ 𝑠

〉
ccas

〈
𝑥 ↦→ 1 ∗ 𝑠 = 0 ∗ 𝑏 = 1

∨ 𝑥 ↦→ 𝑠 ∗ 𝑠 ≠ 0 ∗ 𝑏 = 0

〉
(Substitution)

0;A ⊢ 𝑠 ∈ {0, 1} ·
〈
𝑥 ↦→ 𝑠

〉
ccas

〈
𝑥 ↦→ 1 ∗ 𝑠 = 0 ∗ 𝑏 = 1

∨ 𝑥 ↦→ 𝑠 ∗ 𝑠 ≠ 0 ∗ 𝑏 = 0

〉
(AWeakening3)

𝜆;A ⊢ 𝑠 ∈ {0, 1} ·
〈
𝑥 ↦→ 𝑠

〉
ccas

〈
𝑥 ↦→ 1 ∗ 𝑠 = 0 ∗ 𝑏 = 1

∨ 𝑥 ↦→ 𝑠 ∗ 𝑠 ≠ 0 ∗ 𝑏 = 0

〉
(Substitution)

𝜆;A ⊢ 𝑠 ∈ {0, 1} ·
〈
𝑥 ↦→ 𝑠

〉
ccas 𝑡 ∈ {1} ·

〈
𝑥 ↦→ 1 ∗ 𝑠 = 0 ∗ 𝑏 = 1

∨ 𝑥 ↦→ 𝑠 ∗ 𝑠 ≠ 0 ∗ 𝑏 = 0

〉
(Consequence)

𝜆;A ⊢ 𝑠 ∈ {0, 1} ·
〈
𝑥 ↦→ 𝑠

〉
ccas 𝑡 ∈ {1} ·

〈
𝑥 ↦→ 𝑡 ∗ 𝑠 = 0 ∗ 𝑏 = 1

∨ 𝑥 ↦→ 𝑠 ∗ 𝑠 ≠ 0 ∗ 𝑏 = 0

〉
(UpdateRegion)

𝜆+1;A′ ⊢ 𝑠 ∈ {0, 1} ·
〈

Lock𝜆𝑟 (x, 𝑠)
∗ 𝑟 Z⇒ ♦

〉
ccas 𝑡 ∈ {1} ·

〈 Lock𝜆𝑟 (x, 𝑡) ∗ 𝑠 = 0
∗ 𝑏 = 1 ∗ 𝑟 Z⇒ (𝑠, 𝑡)
∨ Lock𝜆𝑟 (x, 𝑠) ∗ 𝑠 ≠ 0

∗ 𝑏 = 0 ∗ 𝑟 Z⇒ ♦

〉
(AWeakening3)

𝑙;A′ ⊢ 𝑠 ∈ {0, 1} ·
〈

Lock𝜆𝑟 (x, 𝑠)
∗ 𝑟 Z⇒ ♦

〉
ccas 𝑡 ∈ {1} ·

〈 Lock𝜆𝑟 (x, 𝑡) ∗ 𝑠 = 0
∗ 𝑏 = 1 ∗ 𝑟 Z⇒ (𝑠, 𝑡)
∨ Lock𝜆𝑟 (x, 𝑠) ∗ 𝑠 ≠ 0

∗ 𝑏 = 0 ∗ 𝑟 Z⇒ ♦

〉
(AExists)

𝑙;A′ ⊢
〈
∃𝑠 ∈ {0, 1} · Lock𝜆𝑟 (x, 𝑠)

∗ 𝑟 Z⇒ ♦

〉
ccas 𝑠 ∈ {0, 1}, 𝑡 ∈ {1} ·

〈 Lock𝜆𝑟 (x, 𝑡) ∗ 𝑠 = 0
∗ 𝑏 = 1 ∗ 𝑟 Z⇒ (𝑠, 𝑡)
∨ Lock𝜆𝑟 (x, 𝑠) ∗ 𝑠 ≠ 0

∗ 𝑏 = 0 ∗ 𝑟 Z⇒ ♦

〉
(Consequence)

𝑙;A′ ⊢
〈
∃𝑠 ∈ {0, 1} · Lock𝜆𝑟 (x, 𝑠)

∗ 𝑟 Z⇒ ♦

〉
ccas 𝑠 ∈ {0, 1}, 𝑡 ∈ {1} ·

〈
LoopInv

〉
(Substitution)

𝑙;A′ ⊢ ⟨∃𝑠 ∈ {0, 1} · Lock𝜆𝑟 (x, 𝑠) ∗ 𝑟 Z⇒ ♦⟩ ccas ⟨LoopInv⟩
(AWeakening1)

𝑙;A′ ⊢ {∃𝑠 ∈ {0, 1} · Lock𝜆𝑟 (x, 𝑠) ∗ 𝑟 Z⇒ ♦} ccas {LoopInv}
(Consequence)

𝑙;A′ ⊢
{
LoopInv ∗ 𝑏 = 0

}
ccas

{
LoopInv

}
(Loop)

𝑙;A′ ⊢
{
LoopInv

}
cloop

{
LoopInv ∗ ¬(𝑏 = 0)

}
(Consequence)

𝑙;A′ ⊢
{
∃𝑠 ∈ {0, 1} · Lock𝜆𝑟 (x, 𝑠) ∗ 𝑟 Z⇒ ♦

}
cloop {𝑟 Z⇒ (0, 1) ∗ 𝑏 = 1}

(Consequence)
𝑙;A′ ⊢

{
∃𝑠 ∈ {0, 1} · Lock𝜆𝑟 (x, 𝑠) ∗ 𝑟 Z⇒ ♦

}
cloop {∃𝑠 ∈ {0, 1}, 𝑡 ∈ {1} · 𝑠 = 0 ∗ 𝑟 Z⇒ (𝑠, 𝑡)}

(MakeAtomic)
𝑙;A ⊢ 𝑠 ∈ {0, 1} · ⟨Lock𝜆𝑟 (x, 𝑠) ∗ [G]𝑟⟩ cloop 𝑡 ∈ {1} · ⟨Lock𝜆𝑟 (x, t) ∗ [G]𝑟 ∗ 𝑠 = 0⟩

(Consequence)
𝑙;A ⊢ 𝑠 ∈ {0, 1} · ⟨Lock𝜆𝑟 (x, 𝑠) ∗ [G]𝑟⟩ cloop 𝑡 ∈ {1} · ⟨Lock𝜆𝑟 (x, 1) ∗ [G]𝑟 ∗ 𝑠 = 0⟩

(Substitution)
𝑙;A ⊢ 𝑠 ∈ {0, 1} · ⟨Lock𝜆𝑟 (x, 𝑠) ∗ [G]𝑟 ⟩ cloop ⟨Lock𝜆𝑟 (x, 1) ∗ [G]𝑟 ∗ 𝑠 = 0⟩

(Function)
𝑙;A ⊢ 𝑠 ∈ {0, 1} · ⟨Lock𝜆𝑟 (x, 𝑠) ∗ [G]𝑟 ⟩ lock(x) ⟨Lock𝜆𝑟 (x, 1) ∗ [G]𝑟 ∗ 𝑠 = 0⟩

Figure A.1.: Simplified version of the full TaDA proof for the TaDA proof outline from Fig. 4.1. The parts that are present in the TaDA
proof outline are colored blue. The statements cloop and ccas are the loop and CAS statement, respectively. The loop invariant LoopInv

is ∃𝑠 ∈ {0, 1} · Lock𝜆𝑟 (x, 𝑠) ∗ (𝑟 Z⇒ (0, 1) ∗ 𝑏 = 1 ∨ 𝑟 Z⇒ ♦ ∗ 𝑏 = 0). The atomicity context A′ is 𝑟 : 𝑠 ∈ trans ∗ {0, 1}1,A. For simplicity,
redundant quantifiers are omitted and local variables are not put into the private part of atomic assertions. Furthermore, the proof uses a
variation of the MakeAtomic rule that can be derived in TaDA.
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