
Verifiable Security Policies for Distributed Systems
Felix A. Wolf

Department of Computer Science
ETH Zurich, Zurich, Switzerland

felix.wolf@inf.ethz.ch

Peter Müller
Department of Computer Science
ETH Zurich, Zurich, Switzerland

peter.mueller@inf.ethz.ch

Abstract
In the context of secure information flow, security policies express
the classification and declassification of data. Existing policy frame-
works are tightly linked to a programming language, which limits
their flexibility and complicates reasoning, for instance, during
audits. We present a framework for the specification and verifica-
tion of security policies for distributed systems, where attackers
may observe the I/O performed by a program, but not its mem-
ory. Our policies are expressed over the I/O behaviors of programs
and, thereby, language-agnostic. We present techniques to reason
formally about policies, and to verify that an implementation sat-
isfies a given policy. We formalize these verification techniques
in Isabelle/HOL. An evaluation on several case studies, including
an implementation of the WireGuard VPN key exchange protocol,
demonstrates that our policies are expressive, and that verification
is amenable to SMT-based verification.

CCS Concepts
• Security and privacy→ Logic and verification.

Keywords
Security Policy, Declassification Policy, Secure Information Flow,
Code Verification, Automated Verification

ACM Reference Format:
Felix A. Wolf and Peter Müller. 2024. Verifiable Security Policies for Dis-
tributed Systems. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’24), October 14–18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3658644.3690303

1 Introduction
For programs handling confidential data, one crucial concern is
secure information flow, meaning that confidential data is not leaked
during the program’s execution. In this context, security policies
express (1) the classification of data, for instance, by designating
part of the data as sensitive and others as public information, and
(2) the declassification of data, that is, rules that describe when
sensitive data can be deliberately treated as public.

Consider a simple authentication service. A security policy may
classify that keys read from disk and network packets have high
and low sensitivity, respectively. For declassification, a security
policy may permit declassifying messages signed with the read key.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications Security (CCS ’24),
October 14–18, 2024, Salt Lake City, UT, USA, https://doi.org/10.1145/3658644.3690303.

Recent works [9, 35, 40, 48, 50] have introduced policy frame-
works both to formally define security policies and to verify that
code actually satisfies a defined policy. These existing approaches
have two limitations: (1) Their frameworks are tightly linked to
a programming language, which has two drawbacks. First, they
cannot express policies in a language-agnostic way, which is for
instance useful in distributed systems, where different nodes may
be implemented in different languages. Second, reasoning about
policies happens at the level of the programming language and,
thus, involves the full complexity of the language. (2) Existing ap-
proaches enable verifying that an implementation satisfies a policy,
but do not support reasoning about the policy itself, in particular,
to validate that it expresses the intended security requirements.

This Work. We introduce a new policy framework that addresses
these limitations by expressing policies over traces of I/O actions,
the basic building blocks of communication, such as sending or
receiving a message. This language-independent representation is
well-suited for distributed systems, where attackers observe the
I/O behavior of a program, but not the content of the memory.

To specify classification, we associate with each I/O action pre-
and postconditions that express the sensitivity of outputs and in-
puts, respectively. For declassification, we introduce a designated
action 𝑑𝑒𝑐𝑙 (𝑥), which declassifies a value 𝑥 . A security policy is
then a tuple of a classification spec (the pre- and postconditions for
I/O actions) and an IOD spec, specifying the traces of I/O actions
and declassification actions that an implementation may produce.

Such policies are independent of the program to be verified, a
specific programming language, and the verification logic used to
prove that an implementation satisfies a policy. In particular, the
same policy can be used for multiple different implementations,
even with different programming languages, which addresses the
first limitation of existing frameworks discussed above. Regarding
the second limitation, a key advantage of our framework is that
policies can be audited completely independent of code and pro-
gramming language, both formally and informally. In particular, we
introduce a verification technique to show that all programs satis-
fying the policy guarantee that specific data remains confidential
even in the presence of declassification.

To prove that a concrete program satisfies a given policy, one
can use standard program verification techniques. We show how to
use ghost state (state that is used for verification but erased during
compilation) to store the trace of I/O actions and declassification
actions produced by a program execution. We can then prove that
a program satisfies a policy by showing that (1) the stored traces
refine the policy’s IOD spec and (2) the stored traces satisfy secure
information flow as expressed by the policy’s classification spec.

For the latter, we introduce a new formalization of secure infor-
mation flow that can deal with declassification and I/O behavior, and

1

https://orcid.org/0000-0002-8573-2387
https://orcid.org/0000-0001-7001-2566
https://doi.org/10.1145/3658644.3690303
https://doi.org/10.1145/3658644.3690303
https://doi.org/10.1145/3658644.3690303

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Felix A. Wolf and Peter Müller

is expressive enough for language agnostic policies. Our formaliza-
tion is inspired by observational determinism [33, 43] and amenable
to standard verification techniques such as self-composition [11–
13, 25]. However, in contrast to observational determinism, our
formalization is not restricted to deterministic I/O behavior, which
is crucial for concurrent and distributed systems.

We formalize our technique for verifying an implementation
against a security policy based on the SecCSL logic [26] and prove
its soundness in Isabelle/HOL. We demonstrate the practicality of
our approach on a variety of case studies, including an implementa-
tion of the WireGuard protocol. These case studies are carried out
using Gobra [53], an automated code verifier for Go, which demon-
strates that our approach is amenable to automation using SMT
solvers. Moreover, they show that our policy framework supports
established security policy concepts such as delimited release [45],
state-dependent declassification, and robust declassification [56].

Contributions.We make the following contributions:

• We introduce a new policy framework based on I/O behav-
iors that allows one to express classification and declassifi-
cation requirements independently of a given program or
programming language.

• We show how to reason formally about the guarantees pro-
vided by a policy, enabling formal audits of security policies.

• We present a technique to verify that an implementation
satisfies a given policy. We formalize this technique based
on SecCSL and prove its soundness in Isabelle/HOL.

• We illustrate the expressiveness of our policy framework
on several case studies, including an implementation of the
Wireguard protocol. These case studies also show that our
technique is amenable to SMT-based verification and scales
to real-world code of considerable size.

Our formalization, all proofs, and all verified programs are avail-
able in our artifact [54].

2 Overview
Fig. 1 gives an overview of our policy framework. In this section,
we give a high-level overview of its main components; details are
discussed in the subsequent sections.

Language Independence.To obtain a language-independent frame-
work for policies and policy validation, we represent programs as
their IOD behavior, i.e., the traces of I/O actions and declassifica-
tions that the program may produce. This representation has two
advantages: (1) As shown by previous works on protocol verifica-
tion [1, 38, 52], I/O actions and, thereby, IOD behaviors provide a
language-agnostic representation of program behavior. (2) Reason
about traces of I/O actions allows us to abstract from implementa-
tion details such as memory representations and concurrency.

In contrast to policy specifications (including the definition of
policy compliance, which defines when a policy is satisfied), verify-
ing that a given implementation satisfies a given policy is inevitably
language-specific. For this purpose, we instantiate our framework
with two concrete program verification approaches: We extend
an existing formalization of SecCSL to prove soundness of our
approach and use the existing Gobra verifier for our case studies.

Security Policies

Input
Closedness

Observational
Determinism
Extensions

Code Verification Policy Validation
GNIV

Policy
Compliance

Program Uncertainty Trace
Construction

Policy
Compliance

+
Policy Compliance

language-specific language-agnostic language-agnostic

I/O Behavior with DeclassificationsPer Programming
Language

IOD Spec
Classification Spec

+

Figure 1: An overview of policy framework. At the center are
our security policies and a definition of policy compliance
based on a variation of observational determinism. Policy
validation (on the right) allows one to prove that a given
policy indeed guarantees the intended security properties, in
our case an adaptation ofGeneralizedNon-Interference. Both
components are based on I/O behavior with declassifications
and, thereby, language agnostic. Code verification (on the
left) allows one to prove that a given program satisfies a given
policy.

Security Policies. As we have explained in the introduction, our
language-agnostic security policies consist of a classification spec
(the pre- and postconditions for I/O actions) and an IOD spec, spec-
ifying the traces of I/O actions and declassification actions that an
implementation may produce.

The main challenge of using IOD behaviors is to define policy
compliance, such that it satisfies three important requirements:
(1) The definitionmust be expressive enough to capture the behavior
of realistic programs. (2) The definition must be strong enough to
prove guarantees during policy validation. (3) The definition is
amenable to standard program verification techniques and tools,
in order to minimize the effort that is necessary to adapt code
verification to other languages.

We achieve these goals through a combination of three ingre-
dients, namely observational determinism, extensions, and input-
closedness. To facilitate code verification, we define policy compli-
ance using observational determinism (OD), which many existing
code verification techniques support. However, standard OD does
not allow non-deterministic behavior, which is pervasive in concur-
rent and distributed systems. We solve this problem by enriching
traces with information about non-deterministic choices. These
extensions effectively externalize non-deterministic choices, such
that standard observational determinism applies. Soundness is pre-
served by requiring input-closedness, a well-definedness condition
for extensions.
Code Verification. Our definition of policy compliance allows
us to apply standard code verification techniques and tools. Code
verification proves that a program produces only the IOD behaviors
permitted by the policy, which is achieved by generating appro-
priate proof obligations for each I/O and declassification action.
Moreover, code verification needs to ensure that the implementa-
tion satisfies the classification spec, using standard OD-reasoning.

2

Verifiable Security Policies for Distributed Systems CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

To prove soundness of our approach, we build on the formaliza-
tion of SecCSL [26], an existing logic for OD-reasoning. For our case
studies, we apply Gobra [53], an off-the-shelf automated verifier for
Go programs. Supporting other programming languages and verifi-
cation tools is straightforward and, in particular, does not require
any changes to the language-agnostic parts of our framework.

Policy Validation.We propose a methodology for proving—based
only on a policy—that data remains confidential even in the pres-
ence of declassification. We formalize this property as Generalized
Non-Interference Modulo Views (GNIV). GNIV is a more flexible
definition of generalized non-interference (GNI) [22] that permits
programs to release whether secret inputs exist as long as the val-
ues of secret inputs remain confidential. Such a definition is better
suited for distributed systems, where secret inputs may happen
as a reaction to public actions. For instance, a server may query a
database storing secret data as a reaction to a public query.

To prove GNIV, we build upon techniques for proving standard
GNI [28, 31], where we use the guarantees provided by policy
compliance to simplify proofs. More concretely, standard GNI is
typically proved by showing how from a trace 𝑡 , one can iteratively
construct an uncertainty trace 𝑡 ′ that has the same public behavior
as 𝑡 , but any possible secret data. Instead of the same public be-
havior, we require only that 𝑡 ′ performs the same declassifications
as 𝑡 . Policy compliance ensures that if the declassifications are the
same, then the public behavior is the same. In Fig. 1, this proof
methodology is referred to as uncertainty trace construction.

Outline. We introduce our specification language for policies and
define policy compliance in Sec. 3. In Sec. 4, we show how we can
combine established verification techniques to verify code. Sec. 5
discusses how we validate policies. Sec. 6 presents our Wireguard
case study and illustrates how we express established policy spec-
ification patterns based on examples from previous works. The
section also lists our trust assumptions. Sec. 7 discusses related
work, and Sec. 8 concludes.

3 Security Policies
This section presents the representation of I/O behavior (Sec. 3.1),
our policy specification language (Sec. 3.2), and our threat model
(Sec. 3.3). Lastly, Sec. 3.4 defines when policies are satisfied.

To illustrate our policy framework and its application, we use a
small running example throughout this paper. Consider a protocol
to query a person’s remaining vaccine protection duration from a
server: Every user has a pre-established id and private and public
key ksk, kpk. First, a user sends their id. Next, the application sends
a challenge 𝑛. The user signs the challenge with their private key.
Finally, if the challenge was successful, the application sends the
remaining protection duration encrypted with the public key. The
server acquires the requested data by querying a database, which
also returns the client’s public key and a list of compatible vaccines.
Below is an informal description of the protocol. For the sake of
brevity, we simplify messages by omitting addresses, tags, and

Database Application Network
query

send

recv

Figure 2: A deployment diagram for the running example.
Network communication happens via the receive and send
action. The action query communicates with the database.

additional ids.

Client → Server : id

Server → Client : n

Client → Server : enc(n, ksk)
Server → Database : id

Database → Server : (kpk, date, vaccines)
Server → Client : enc(date, kpk)

3.1 I/O Behavior
A program’s I/O behavior captures all communication with the
program’s environment. The I/O behavior of a program execution
is represented as a sequence of I/O actions, which are executions of
communication primitives, such as sending or receiving a message.
We refer to sequences of I/O actions as traces.

I/O actions provide a language-independent representation of a
program’s I/O behavior [38, 39, 55]. To reason about a program in
a specific language, I/O actions can be linked to the I/O library of
that language by providing (trusted) specifications to the library
methods expressing which I/O action is performed by a method.
I/O Behavior of Programs. I/O actions have the form 𝑁 (𝑥, 𝑟)
for an action name 𝑁 , an output 𝑥 forwarded to the environment,
and an input 𝑟 obtained from the environment. E.g., the actions
send(1,) and recv(, 0) represent sending a 1 and receiving a 0,
respectively. We use a designated default value if an action does
not have an output or input. We omit arguments when they are
clear from the context.

A program’s I/O behavior is the set of traces of all partial program
executions. Considering partial executions allows us to represent a
non-terminating program execution via the set of finite prefixes of
its infinite traces. As a consequence, I/O behaviors are always prefix-
closed. For brevity, we sometimes omit partial executions that follow
from prefix-closedness, e.g., we write {recv(0) · send(1)} instead of
{𝜖, recv(0), recv(0) · send(1)}, where · and 𝜖 denote concatenation
and the empty trace, respectively. Concurrent programs are also
represented by a single set of traces. For instance, the trace recv(0) ·
recv(5) · send(6) · send(1) may represent an execution where two
threads each increment and forward a received number, namely 0
and 5, respectively.

Example 1. Fig. 2 shows a deployment diagram for our running ex-
ample. The application communicates with clients via the network
and communicates with an external database via remote procedure
calls. The action send represents sending a packet over the network,
where the action’s output is the sent packet. Similarly, the input of
the action recv is the received packet. For brevity, a network packet
is only the message payload, represented as a bytestring. Network
addresses and headers are omitted. The action query represents a

3

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Felix A. Wolf and Peter Müller

remote procedure call to the external database. The action’s output
is a user id and the action’s input is the stored medical record 𝑟 ,
consisting of the public key 𝑟key, the protection date 𝑟date, and the
compatible vaccines 𝑟vacs. A trace of a single sequential execution
of the protocol may look as follows, where we use enc to denote
the value obtained by encrypting a given value with a given key:

recv(201) · send(13) · recv(enc(13, ksk))·
query(201, ((kpk, 02.02.22, v))) · send(enc(02.02.22, kpk))

3.2 Policy Specifications
Security policies classify the sensitivity of data and define what
data may be declassified, and when. A successful approach for
language-based policy frameworks is to specify (1) classification by
annotating library methods to express the sensitivity of inputs and
outputs, and (2) when declassification is permitted as a condition
on the global state of a program [9, 35, 48, 50]. For instance in our
running example, we may permit declassifying enc(date, key) if
(date, key) is stored in a designated queue used by the implementa-
tion to store past queries.

To obtain language-agnostic policies, we lift this approach to I/O
behaviors. For classification, we specify pre- and postconditions for
I/O actions, which we refer to as classification spec. To reason about
declassification, we extend I/O behaviors by declassification actions
of the form decl(𝑥), representing the declassification of value 𝑥 .
We call this extension IOD behaviors. To be language-agnostic, we
specify when declassification is permitted as a condition on the
trace of produced I/O actions and declassification (instead of the
language and implementation-specific program state). We capture
these conditions formally by specifying the set of traces of I/O
actions and declassification actions that an implementation may
produce, which we refer to as IOD spec. Our security policies are
then a tuple of a classification spec and an IOD spec.

Definition 3.1 (Security Policy). A security policy (Σ, 𝑅) is a tuple
of a classification spec Σ and an IOD spec 𝑅.

Expressing security policies on the level of IOD behaviors allows
us to abstract from concrete computations and data representations
and, thus, to express policies independent of a concrete implemen-
tation or programming language. Prior work demonstrated that
traces of I/O actions [1, 52] can nevertheless express the behav-
ior of stateful distributed systems. In particular, specifications of
traces can refer to results of computations by using mathemati-
cal functions. For instance, a specification recv(𝑥) · send(hash(𝑥))
represents all executions that receive a value 𝑥 and then send the
hash of 𝑥 , where hash is a mathematical function describing the
result of a hashing algorithm, e.g., SHA-256, without referring to its
concrete code implementation. The formal connection between the
mathematical function and the code implementation is established
during code verification. This approach works for any stateful com-
putation whose result can be described as a mathematical function
of prior inputs. By abstracting from concrete states, our policies
cannot express declassification based on arbitrary program state,
which is not visible in the IOD behavior. However, none of our case
studies required this expressiveness.

𝑎 ::= true | Low(𝑒) | 𝑎 ∧ 𝑎 | 𝑒 ⇒ 𝑎

Figure 3: Assertion language for pre- and postconditions. We
use 𝑎 and 𝑒 to range over assertions and expressions.

3.2.1 Classification Spec. A classification spec expresses sensi-
tivity requirements and guarantees for data via pre- and post-
conditions for both I/O and declassification actions. E.g., the pre-
condition of the send action may express that the sent payload
must be low. We express this specification using the Hoare triple
{Low(𝑥)}send(𝑥){true}, where Low(𝑥) specifies that 𝑥 has low
sensitivity. Analogously, we can use a postcondition to express that
received payloads are assumed to be low: {true}recv(𝑟){Low(𝑟)}.
For simplicity, we limit sensitivity levels to {Low,High}, where
High and Low specify that data is confidential and not confiden-
tial, respectively. An extension to arbitrary sensitivity lattices is
straightforward [36].

The pre- and postconditions of a classification spec are expressed
in the assertion language shown in Fig. 3. Assertions may combine
sensitivity with logical constraints, for instance, to express sensi-
tivity depending on the values of inputs and outputs. E.g., for the
action query(id, 𝑟), the postcondition Low(𝑟key) ∧ (id ∈ Public ⇒
Low(𝑟)) specifies that the public keys are low and if the id is in
some fixed set Public, then the entire record is low.

Every output or input that is not explicitly specified as low is,
by default, considered to be potentially high. For instance, the
triple {true}getKey(𝑟){Low(len(r))} expresses that the length of
the input 𝑟 is low, whereas other aspects of 𝑟 , such as the actual
content, are potentially high.

For declassification, the triple {Low(𝑝)}decl(𝑝, 𝑥){Low(𝑥)} ex-
presses that after declassification, we may assume that 𝑥 has low
sensitivity, capturing information release. The role of the additional
parameter 𝑝 will be explained in Sec. 3.2.2.

I/O actions may leak information even if all outputs actually have
low sensitivity because the occurrence of the action itself reveals
information about the control flow in the program. To reason about
such indirect information flow, we also classify each I/O action as
low or high; the occurrence of low actions can be observed by the
attacker and, thereby, must not depend on high data. For simplicity,
we assume in this paper that all I/O actions are low, i.e., whether an
action occurs must never depend on high data. Our implementation
provides an annotation to specify action sensitivity.

Example 2. In our running example, we assume that attackers
have access to the network and observe sent and received pay-
loads. Conversely, we consider the communication channel with
the database to be secure. Moreover, we consider the stored public
keys to be low. For the action query, we specify that the queried
id and the public key of the record are low, but the protection
date and the compatible vaccines are (implicitly) potentially high:
{Low(id)}query(id, 𝑟){Low(𝑟key)}.
3.2.2 IOD Spec. IOD specs specify all traces permitted by a policy.
Since traces include declassification actions, the permitted traces
capture what data may be declassified and when. Our policy frame-
work does not prescribe how IOD specs are expressed. In this paper,
we use IOD-guarded transition systems, which extend the transition

4

Verifiable Security Policies for Distributed Systems CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

systems by Sprenger et al. [52] with declassification. In our imple-
mentation and evaluation, we express IOD specs also in separation
logic [39, 52, 55] to leverage existing verification tools.

Definition 3.2 (IOD-guarded transition system). An IOD-guarded
transition system is a labeled transition system (𝑆,Act,𝑉 ,𝐺,𝑈),
where 𝑆 is a set of states, Act is a set of action names, 𝑉 is a set of
output and input values, 𝐺 : 𝑆 × Act ×𝑉 → {⊤,⊥} is a guard, and
𝑈 : 𝑆 × Act ×𝑉 ×𝑉 → 𝑆 is an update function.

An IOD-guarded system induces the transition relation → =

{(𝑠0,N(𝑥, 𝑟), 𝑠1) | 𝐺 (𝑠0, 𝑁 , 𝑥) ∧ 𝑠1 = 𝑈 (𝑠0, 𝑁 , 𝑥, 𝑟)}. We lift the
relation to traces, where (𝑠, 𝜖, 𝑠) ∈→∗ and (𝑠, 𝑡 · N(𝑥, 𝑟), 𝑠′′) ∈→∗
whenever (𝑠, 𝑡, 𝑠′) ∈→∗ and (𝑠′,N(𝑥, 𝑟), 𝑠′′) ∈→ for some 𝑠′. Given
a set of initial states 𝑆0 ⊆ 𝑆 , the traces of an IOD-guarded system
are all traces 𝑡 with (𝑠0, 𝑡, 𝑠′) ∈→∗ for some states 𝑠0 ∈ 𝑆0 and
𝑠′ ∈ 𝑆 .

It is essential for soundness that an IOD spec prescribes all de-
classifications deterministically. To understand why, consider a
situation where an IOD spec permits the declassification of either
𝑥 or 𝑦. This would allow implementations to choose which of the
two to declassify. In particular, an implementation could make this
choice depending on a secret and, thereby, leak it. To prevent such
situations, we require that any declassification of sensitive data in
an IOD spec is determined by the previous actions on the trace.

This determinism requirement is sound, but too restrictive in
practice. Continuing our hypothetical example from the previous
paragraph, applications should have the freedom to declassify ei-
ther 𝑥 or 𝑦, as long as the choice does not depend on a secret. To
allow that, we parameterize our declassification action with an
additional parameter 𝑝 , which can be used as a tag, to distinguish
different occurrences of declassification. With this addition, we
require the declassified value to be determined by the previous
actions on the trace and the value of 𝑝 . By requiring 𝑝 to be low,
implementations cannot choose it depending on a secret, thereby
avoiding unintentional leaking. The following definition captures
this intuition.

Definition 3.3 (Well-defined IOD spec). An IOD spec 𝑅 is well-
defined if for every trace 𝑡 and all values 𝑥1, 𝑥2, 𝑝 ,

𝑡 · decl(𝑝, 𝑥1) ∈ 𝑅 ∧ 𝑡 · decl(𝑝, 𝑥2) ∈ 𝑅 ⇒ 𝑥1 = 𝑥2 .

Example 3. The following IOD-guarded transition system for
our running example permits the declassification of the encrypted
server response enc(date, kpk), where date and kpk are the protec-
tion date and public key returned from the database.

send(𝑥) : ⊤ ▷ 𝑠 recv(𝑟) : ⊤ ▷ 𝑠

query(id, 𝑑) : ⊤ ▷ 𝑠 [id ↦→ (𝑑date, 𝑑key)]
decl(id, 𝑥) : id ∈ 𝑠 ∧ 𝑥 = enc(𝑠 [id]date, 𝑠 [id]key) ▷ 𝑠

We use the notation N(𝑥, 𝑟) : 𝐺 (𝑠, 𝑁 , 𝑥) ▷ 𝑈 (𝑠, 𝑁 , 𝑥, 𝑟). The state 𝑠
(of the transition system, not a concrete implementation) is a map
from ids to the last-queried key and date. It is changed only in
the update of query. The guard for declassification expresses what
data may be classified; it uses id as a low parameter to satisfy the
well-definedness requirement from Def. 3.3. The guards of all other
actions are true. Note how the mathematical function enc lets us
describe the effect of a (possibly stateful) computation performed
by the implementation, as explained above.

3.3 Threat Model
We consider attackers that know the executed code and can ob-
serve the low data of performed I/O. However, they do not have
direct access to the machines on which code is run and cannot
inspect memory. We do not consider side channels such as tim-
ing information. An extension to timing channels is interesting
future work and can be tackled by moving from formal guarantees
based on possibilistic secure information flow [51] to a probabilistic
model [46].

The observational capabilities of attackers are defined by a se-
curity policy’s classification spec. A program that complies with a
given policy is secure against attackers that can observe (at most)
the data and actions classified as low.

3.4 Policy Compliance
Whether a program satisfies a security policy is determined entirely
over the program’s IOD behavior. To satisfy the policy’s IOD spec 𝑅,
the IOD behavior of the program (that is, its set of traces) has to be
a subset of 𝑅. To satisfy its classification spec Σ, the program’s IOD
behavior has to satisfy secure information flow, where requirements
and assumptions about low sensitivity are specified by Σ. We focus
on the latter property in this subsection, in particular, on defining
secure information flow as a variation of observational determinism
that permits non-deterministic I/O behaviors.

Note that declassification is handled by the combination of both
requirements. The IOD spec expresses where a declassification
may occur in a trace, and the classification spec of declassification
actions ensures that the occurrence of a declassification action does
not depend on a secret (see Sec. 3.2.2) and expresses that declassified
data has low sensitivity.

3.4.1 Secure Information Flow. We define secure information flow
(SIF) based on observational determinism (OD) [33, 43], a widely-
used criterion that is supported by standard code verification tech-
niques [24, 25] and, thus, enables us to use off-the-shelf program
verifiers to prove that a program satisfies a policy (see Sec. 4).

However, OD has a critical limitation. A program satisfies OD
only if its low outputs are deterministic in the low inputs. This defi-
nition ensures that low outputs do not depend on confidential data.
However, real-world programs usually have non-deterministic IOD
behavior, for instance, due to concurrency and memory allocation,
such that standard OD is not applicable.

Existing solutions [26, 37] for language-specific frameworks
solve this problem by externalizing the non-deterministic choices.
That is, they make program executions artificially deterministic by
parameterizing the language semantics with an oracle that captures
the non-deterministic choices of an execution, for instance, how
threads have been scheduled or how memory has been allocated.
OD is then satisfied if the low outputs are deterministic in the low
inputs and the oracle. The same technique is also used to reason
about applied 𝜋-calculus and its extensions, for instance, to prove
observational equivalence [29, 44].

We adapt the idea of externalizing non-deterministic choices to
IOD behavior. Instead of parameterizing executions with oracles,
we extend traces with the information about non-deterministic
choices, which we refer to as extensions. While language-specific
approaches know where non-deterministic choices happen, our

5

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Felix A. Wolf and Peter Müller

language-agnostic framework does not have this information. There-
fore, we allow extensions at any point in the trace, but introduce a
soundness condition called input-closedness to ensure that traces
are not extended incorrectly.

An IOD behavior then satisfies SIF if there exists an input-closed
extension that satisfies OD. In the following, we explain extensions
and input-closedness.

We provide formal definitions in Sec. 3.4.2.
Extensions. An IOD behavior 𝑇 ′ is an extension of 𝑇 if 𝑇 ′ is
obtained by adding auxiliary actions into 𝑇 ’s traces. The added
auxiliary actions are not actually produced by the program, but
instead are used to justify that a program satisfies SIF.

Consider the program (send(1) || send(2)), which sends 1
and 2 in parallel. The IOD behavior of the program is {send(1) ·
send(2), send(2) · send(1)}. The program does not satisfy OD be-
cause the sent message is not deterministic. However, the program
is secure since the sent message is independent of any confiden-
tial data. Extensions allow us to make the secret-independence
of non-deterministic behaviors explicit. In our example, a suit-
able extension introduces an auxiliary action Sched that captures
whether the scheduler executes the left or right parallel branch
first: {Sched(L) · send(1) · send(2), Sched(R) · send(2) · send(1)}.
Auxiliary actions have their own classification spec. With the spec
{true}Sched(𝑥){Low(𝑥)}, our extension satisfies OD as the sent
messages are now deterministic in the scheduler choice.

To ensure that declassifications happen only if permitted by the
policy, auxiliary actions must not implicitly declassify data, that is,
their classification specs are not allowed to describe declassifica-
tions, e.g., by specifying that an output is low in the postcondition.
For simplicity, we enforce that auxiliary actions always have the
spec {Low(𝑥)}N(𝑥, 𝑟){Low(𝑟)}, i.e., auxiliary actions do not take
high data and, therefore, never declassify anything (for auxiliary
actions that do not have an output, the precondition Low() is
equivalent to true). This spec is sufficient to verify our case studies
in Gobra. Our Isabelle/HOL formalization defines a weaker crite-
rion for the classification spec of auxiliary actions that expresses
that specs do not describe declassifications.

Our formal definition of SIF below allows one to choose an
extension for each program and policy. To reduce the necessary
specification overhead, our implementation fixes the extension and
the classification spec for auxiliary actions.
Example 4. We formalized our approach based on SecCSL [26],
a logic for a simple concurrent programming language with refer-
ences. For this programming language, we introduce two auxiliary
actions. For concurrency, the action Sched(𝛾, 𝜏) has as input the in-
formation which thread is scheduled next. The output is necessary
for input-closedness and explained in Example 5. Because exten-
sions contain which thread is scheduled next, the IOD behavior
becomes deterministic. For heap state, the action Init(𝑠) is added as
the first action of a trace and has as input the initial heap memory.
For both actions, input and output are classified as low.

Input-closedness.Without restrictions, extensions can trivially in-
validate SIF by laundering confidential inputs. Consider the insecure
IOD behavior {getKey(𝑥) · send(𝑥) | 𝑥 ∈ N}, which first gets a con-
fidential key 𝑥 and then sends it on a public channel. An invalid ex-
tension can mask the origin of 𝑥 by adding an auxiliary action In(𝑥)

that has the key as low input, e.g., as {getKey(𝑥) · In(𝑥) · send(𝑥) |
𝑥 ∈ N}. This IOD behavior satisfies OD. However, since the auxil-
iary action is not present in an actual program execution, it remains
insecure.

To prevent auxiliary actions from masking the origin of inputs,
we require extensions to be input-closed: an extension must contain
traces for all possible inputs of actions. The above extension violates
this condition because it contains only traces where the inputs from
getKey and In are the same. If we add traces where both actions
receive different inputs, the insecurity becomes apparent.

Example 5. We have formally proved that our extensions chosen
for SecCSL are input-closed. The action Init(𝑠) trivially maintains
input-closedness because the IOD behavior contains traces for all
possible initial heap memories. For Sched(𝛾, 𝜏), we have to show
that every possible input of Sched may actually be scheduled. In
SecCSL’s language, all unblocked threads may be scheduled; these
are captured by the current program configuration 𝛾 . Defining the
inputs of Sched accordingly requires us to add 𝛾 as an output (see
Sec. 3.4.2). By classifying Sched’s output and input as low, we re-
cover a standard OD reasoning principle for concurrent programs: If
we show that control flow is low, and thus the current configuration
is low then we may assume that decisions made by the scheduler
are low.

3.4.2 Formal Definition of Secure Information Flow. We will now
define the concepts introduced in the previous subsubsection.
Extensions. We introduce a projection actual(·), removing aux-
iliary actions from traces, e.g., actual(In(𝑥) · recv(𝑟)) = recv(𝑟),
where In(𝑥) is an auxiliary action. We lift the projection to sets
of traces. Therefore, an IOD behavior 𝑇 ′ is an extension of 𝑇 if
actual(𝑇 ′) = 𝑇 holds.
Input-closedness. Def. 3.4 defines formally when a set of traces is
input-closed. As discussed, if an action has some input 𝑟 , then for
every possible input 𝑟 ′ of that action, there must be a trace where
the action has input 𝑟 ′. An input is possible if it occurs in some
trace (expressed with 𝑡 ′ · 𝑁 (𝑥, 𝑟 ′) in Def. 3.4).

Definition 3.4 (Input-Closed IOD Behaviors). A set of traces 𝑇 is
input-closed if

𝑡 · 𝑁 (𝑥, 𝑟) ∈ 𝑇 ∧ 𝑡 ′ · 𝑁 (𝑥, 𝑟 ′) ∈ 𝑇 ⇒ 𝑡 · 𝑁 (𝑥, 𝑟 ′) ∈ 𝑇

LowData Projection. To define OD, we have to express which data
is required and assumed to be low. In our framework, this is the data
classified as low by pre- and postconditions, respectively. For this
purpose, we introduce two projections ·↓preΣ and ·↓postΣ which can
be applied to actions and remove any data that is not low according
to the action’s classification spec (for the pre- and postcondition,
respectively). For the classification spec of our running example,
we have for instance:

send(𝑥)↓preΣ = send(𝑥) recv(𝑟)↓postΣ = recv(𝑟)

query(id, 𝑑)↓postΣ = query(𝑑key) decl(𝑥)↓postΣ = decl(𝑥)

Recall that N(𝑥) and N(𝑟) are shorthands for N(𝑥,) and N(, 𝑟),
respectively. We lift the projections from single actions to traces.
Observational Determinism.We build on the definition of OD
introduced by Clarkson and Schneider [22]. Their definition does

6

Verifiable Security Policies for Distributed Systems CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

not consider progress channels, i.e., information may be released
by not producing observable actions, e.g., due to an infinite loop. To
prevent such information leakage, we require in addition progress
sensitivity [3], enforcing the absence of progress channels. In the
definitions below, we refer to Clarkson and Schneider’s definition
as progress-insensitive OD.

An IOD behavior satisfies progress-insensitive OD if for every
action, the data expected to be low is deterministic in the data
assumed to be low for previous actions. Determinism is expressed
formally by considering pairs of extended traces.

Definition 3.5 (Progress-Insensitive Σ-OD). A set of traces𝑇 satis-
fies progress-insensitive Σ-OD if, for all of traces 𝑡1, 𝑡2 and actions
𝑒1, 𝑒2 with 𝑡1 · 𝑒1 ∈ 𝑇 and 𝑡2 · 𝑒2 ∈ 𝑇 ,

𝑡1↓postΣ = 𝑡2↓postΣ ⇒ 𝑒1↓preΣ = 𝑒2↓preΣ .

The definition of progress sensitivity is analogous. An IOD be-
havior satisfies progress sensitivity if whether or not a trace makes
progress is deterministic in the data previously assumed to be low.
Formally, we specify that if one trace has more progress than an-
other trace, i.e., is longer, then the shorter trace can be extended.

Definition 3.6 (Progress Sensitivity). A set of traces 𝑇 satisfies
progress sensitivity for a classification spec Σ if, for all of traces
𝑡1, 𝑡2 and every action 𝑒1 with 𝑡1 · 𝑒1 ∈ 𝑇 and 𝑡2 ∈ 𝑇 ,

𝑡1↓postΣ = 𝑡2↓postΣ ⇒ ∃𝑒2 . 𝑡2 · 𝑒2 ∈ 𝑇 .

Definition 3.7 (Σ-OD). A set of traces𝑇 satisfies Σ-OD if𝑇 satisfies
progress-insensitive Σ-OD and progress-sensitivity for Σ.

Secure Information Flow. Given all the defined ingredients, we
can define SIF as discussed in Sec. 3.4.1. We use (Σ + NoDecl) to
denote the classification spec, which uses Σ for actual actions and
specifies the triple {Low(𝑥)}N(𝑥, 𝑟){Low(𝑟)} for all auxiliary ac-
tions.

Definition 3.8 (Σ-SIF). A set of traces 𝑇 satisfies Σ-SIF if there
exists an extension 𝑇 ′ such that (1) actual(𝑇 ′) = 𝑇 , (2) 𝑇 ′ is prefix-
closed, (3) 𝑇 ′ is input-closed, (4) 𝑇 ′ satisfies (Σ + NoDecl)-OD.

4 Code Verification
To enable code verification in a given language, we first equip the
language and its libraries to record the performed IOD behavior,
introduce auxiliary actions to enable us to verify non-deterministic
programs, and prove that the resulting extended IOD behaviors are
input-closed. This lets us verify that a program in that language
satisfies a security policy by proving the two requirements of policy
compliance, namely that the IOD behavior satisfies the IOD spec
and that the extended IOD behavior satisfies OD.

We illustrate code verification using Gobra [53], an automated
code verifier for Go.We provide the necessary background onGobra
in Sec. 4.1. We discuss how we record IOD behavior in Sec. 4.2, and
explain how we verify policy compliance for a given program in
Sec. 4.3.

4.1 Background on Gobra
Gobra uses a variant of separation logic [42, 49] to reason about
memory and concurrency. Each memory location is associated with

a permission, which is created when the location is allocated. Per-
missions are held by method executions and transferred between
methods upon call and return, but they cannot be duplicated or
forged. A method may access a location only if it holds the asso-
ciated permission. Note that permissions are a notion used only
for verification, but not present in the executable program; conse-
quently, they do not incur any run-time overhead.

Which permissions to transfer upon call and return is specified
in the callee method’s pre- and postcondition, respectively. In such
assertions, the permission to a memory location l, for instance, a
pointer or an array, is denoted as acc(l) and includes permission
to all locations of an array or fields of a struct. Gobra distinguishes
between write permissions acc(l) and read permissions, which we
will denote as acc(l,read). As the name suggests, reading from
and writing to memory location requires that read and write per-
missions are held, respectively. Verification ensures that writes are
exclusive, whereas multiple functions may hold read permissions
and, thus, read concurrently.

Functional properties are expressed via standard assertions, in-
cluding side-effect free expressions, calls to side-effect free functions
(so-called pure functions), and old-expressions, which refer to the
value that an expression had right before a method was called.

It is often useful to instrument programs with additional state
and operations for the sole purpose of verification, for instance, to
track data about a program execution that is not explicitly main-
tained by the program. Such verification-only code is called ghost
code [27] and gets removed during compilation. Gobra ensures that
ghost code cannot affect the execution of non-ghost code to ensure
that erasing ghost code does not change the program semantics.
For instance, an attempt to assign a ghost variable to a non-ghost
variable is rejected by the tool.

Gobra previously did not support OD reasoning.We implemented
support for standard OD reasoning based on an existing product
construction [24, 25], which simulates two executions of the input
program by a single execution of the constructed product program,
which can then be verified by off-the-shelf verifiers such as Gobra.
Our extended version of Gobra supports the relational low assertion
low(·) [11, 25]; low(e) expresses that the value of the expression e
is low according to OD (as formalized in Sec. 3.4.2). As such, low(e)
holds if e’s value is deterministic in the values known to be low.

4.2 Recording IOD Behavior
For every programming language, we need to define how we ab-
stract executions of programs in that language to IOD traces. As
discussed in Sec. 3.1, we assume that I/O actions are performed by
a set of trusted library methods. For declassification, we add a ghost
method to the I/O library that is called to declassify data. In order
to reason about the IOD behavior of a program, we use an existing
specification technique [9, 35]: we record the produced IOD trace
of a program execution explicitly in ghost state. To this end, we
add a global trace data structure to the program, which is accessed
via a ghost pointer Trace. This trace is initially empty and gets
extended by library methods that produce an I/O or declassification
action. To describe this effect, we equip each such method with a
specification that expresses which action it appends to the recorded
trace. Using this technique, the abstraction of a program execution

7

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Felix A. Wolf and Peter Müller

1 req acc(Trace) && acc(msg)
2 ens acc(Trace) && *Trace = old(*Trace) · send(Abs(msg))
3 func Send(msg []byte)

5 req acc(Trace)
6 ens acc(msg)
7 ens acc(Trace) && *Trace = old(*Trace) · recv(Abs(msg))
8 func Recv() (msg []byte)

10 req acc(Trace)
11 ens acc(Trace) && *Trace = old(*Trace) · decl(p,value)
12 ghost func Declassify(p, value any)

Figure 4: Specifications of library methods producing IOD
actions. Specifications about Trace describe an atomic effect.
Data is declassified via the Declassify ghost method. Abs
returns the bytes stored in an array.

to an IOD trace is explicitly available for verification, but does not
incur any run-time overhead since the trace structure is ghost code
and will be erased during compilation.

Fig. 4 shows the specification of some library methods, including
declassification. Recall that we simplify IOD actions for the sake
of brevity, so arguments such as target addresses are omitted. The
preconditions, preceded by req, specify that permissions to the
ghost pointer Trace and the parameter array msg is transferred to
the method. The postconditions, preceded by ens, specify that the
permission to the global trace is returned to the caller, such that the
caller can use it for subsequent calls. Moreover, the postconditions
express which action has been appended to the trace. The expres-
sion old(*Trace) denotes the value of the trace before the call.
The function Abs returns the sequence of bytes stored in an array.
For instance, *Trace = old(*Trace) · send(Abs(msg)) expresses
that at some point during the call, the trace is appended with the
action send(Abs(msg)).

As discussed in Sec. 3.4, (extended) traces include, besides I/O
and declassification actions, auxiliary actions that describe non-
deterministic choices. These choices are typically taken implicitly
by the language semantics, without invoking an explicit operation.
For instance, the action Sched occurs whenever the run-time sys-
tem schedules a different thread. For each programming language,
we define which auxiliary actions are produced and prove, based
on the language semantics, that the resulting extended IOD behav-
ior is input-closed. In contrast to I/O and declassification actions,
we do not record auxiliary actions on the global trace. Instead, we
prove that any requirement imposed on auxiliary actions is indeed
enforced by the used verification logic wherever such an auxiliary
action may occur. For instance, Sched(𝛾, 𝜏) requires that the cur-
rent program configuration is low, which is enforced in Gobra and
SecCSL by requiring that all branch conditions are low.

In summary, our ghost trace records the I/O and declassification
actions performed by a program execution, but not the auxiliary
actions, which are handled differently. Since program verification
proves properties of a program for all possible executions and, in
particular, for all possible values of our ghost trace, verification
captures the program’s entire IOD behavior (except auxiliary ac-
tions). Note that the entire machinery to maintain the ghost trace

and to handle auxiliary actions needs to be set up once for a pro-
gramming language and can then be re-used for the verification of
each program written in that language.

4.3 Verifying Policy Compliance
To verify that a program satisfies a policy, we have to prove that
(1) the program’s IOD behavior satisfies the IOD spec and (2) the pro-
gram’s extended IOD behavior satisfies Σ-OD for the classification
spec (together with input-closedness proved for the programming
language, Σ-OD implies Σ-SIF). In this subsection, we explain how
we specify security policies in Gobra, discuss how we verify these
two properties, and illustrate verification on our running example.

Specifying Security Policies in Gobra. We express security poli-
cies in Gobra as implementations of an interface Policy. This inter-
face is defined in a re-usable library and prescribes three functions
that need to be defined for each concrete security policy (see top of
Fig. 5). This library also contains a representation of actions, the
states of the IOD transition system, assertions, and specifications as
terms of an algebraic datatype (ADT), together with functions that
yield these terms. For instance, True() and Low(e) are function
calls that yield terms for the assertions true and Low(e), respec-
tively. Our library defines a function for each assertion of the asser-
tion language defined in Fig. 3. Similarly, the call Spec{P,Q} yields a
tuple term consisting of the precondition P and the postcondition Q.

Lines 7–22 in Fig. 5 show the implementation Vac of the Policy
interface for our running example. The classification spec of a secu-
rity policy is captured by the function Classification. Lines 7–11
express the classification spec for our running example as discussed
in Example 2. The Classification function takes an action and
returns its spec, consisting of a precondition and a postcondition.
The function uses pattern matching to distinguish the different
actions. The prefix ? binds matched arguments. For instance, the
pattern query{?id,?f}matches the action query and binds its out-
put and input to the variables id and f, respectively. For instance,
the case for query{?id,?f} expresses that the action requires id
to be low and ensures that the key of the resulting record f is low.
The default case at Line 11 handles receive and send actions. The
ADT destructors .out and .in return an action’s output and input,
respectively.

The IOD-guarded transition system defining the IOD spec of a
security policy is expressed via the functions Guard and Update
(Lines 13–22). The guard function takes the state of the transition
system and an action, and yields whether the action is enabled in
that state. The update function also takes a state and an action and
updates the state. Both function definitions correspond directly to
the IOD transition system presented in Example 3.

Verifying the IOD Spec. As we discussed in Sec. 4.2, our global
trace records all actions performed by a program. Therefore, we
can prove that a program’s IOD behavior satisfies the IOD spec by
showing that the recorded trace is one of the traces induced by the
IOD-guarded transition system (see Sec. 3.2.2). In other words, we
need to prove that there exists a state in the transition system that
is reachable by performing the actions in the recorded trace. This
property holds trivially at the program start, when the recorded
trace is empty. We impose a proof obligation that this property is

8

Verifiable Security Policies for Distributed Systems CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 interface Policy {
2 pure Classification(Action) Spec
3 pure Guard(State ,Action) bool
4 pure Update(State ,Action) State
5 }
6
7 pure func (Vac) Classification(action Action) Spec {
8 return (match action {
9 case query{?id ,?f}: Spec{Low(id), Low(f.key)}
10 case decl{?id ,?x}: Spec{Low(id), Low(x)}
11 case ?a: Spec{Low(a.out),Low(a.in)} })}
12
13 pure func (Vac) Guard(st State , action Action) bool {
14 return (match action {
15 case decl{?id ,?x}:
16 id ∈ st && x = enc(st[id].date ,st[id].key)
17 case _: true })}
18
19 pure func (Vac) Update(st State , action Action) State {
20 return (match action {
21 case query{?id ,?f}: st[id := {f.date ,f.key}]
22 case _: st })}

Figure 5: The Policy interface (top segment) prescribing the
functions that need to be implemented to define a concrete
security policy in Gobra. The two bottom segments specify
the security policy for our running example.

preserved whenever the trace is extended (that is, when an I/O or
declassification action is performed).

To encode this approach, our reusable library defines a function
Reaches(𝑝, 𝑡, 𝑠) to express that 𝑡 is a trace of the IOD spec
defined by the policy 𝑝 and reaches state 𝑠 from the initial state.
Conceptually, we impose a proof obligation ∃ st :: Reaches(p,
*Trace, st) for each operation that performs an action to check
that the trace extended by the performed action is still permitted
by the IOD-guarded transition system (here, p is the instance of
the security policy). In practice, we avoid the existential quantifier
by storing the transition system state explicitly in a ghost variable
and updating it using the Update function of the policy whenever
an action is performed. This allows us to instantiate the existential
quantifier directly and, thereby, avoid a well-known weakness of
SMT solvers.

Imposing proof obligations whenever an action is performed
(instead of checking that the trace is permitted at the end of the
program) leads to simpler proof obligations and works for non-
terminating programs. However, this approach cannot verify pro-
grams that branch on a secret, but perform equivalent actions in
both branches, e.g., if h {Send(1)} else {Send(1)}, where h
is confidential. This limitation is not relevant for our code verifica-
tion in Gobra and SecCSL, where we disallow branching on secrets
anyway.
Verifying Observational Determinism. To prove that a program
satisfies OD, we have to prove progress-insensitive Σ-OD (Def. 3.5)
and progress sensitivity (Def. 3.6). The latter is trivial in our setting:
since we do not allow branching on secrets, the termination of
loops and calls (that is, progress) cannot depend on a secret.

To verify progress-insensitive Σ-OD, we have to prove that the
arguments of each action on the recorded trace that are classified
as low by the action’s preconditions are deterministic in the ar-
guments of the previous actions on the trace that are classified as

low by their postconditions. As for verifying the IOD spec, this
property holds trivially for the empty trace and we check that this
property is preserved whenever the trace is extended. Before per-
forming an action, we assume low(*Trace↓postΣ) and then check
after the action that low(*Trace↓preΣ) holds. Our reusable library
defines functions Pre(𝑝,𝑡) and Post(𝑝,𝑡) to express the low data
projections 𝑡↓preΣ and 𝑡↓postΣ , respectively.
Concurrency Reasoning. As we have seen so far, our proof obli-
gations for code verification are expressed in terms of the recorded
trace, which is stored in a mutable ghost data structure. Standard
separation logic ensures that mutable state is exclusively owned:
only one method can hold the permission to the data structure
at any point in the execution. This is problematic for concurrent
implementations, where multiple threads may perform IOD actions
and, thus, need mutable access to the trace.

In Gobra, we solve this problem using shared invariants [30],
which express assertions that always hold. Data structures that
are governed by a shared invariant may be updated concurrently
under two conditions: (1) the update preserves the shared invariant
and second, (2) the update is performed atomically (such that other
threads cannot observe intermediate states in which the shared
invariant does not hold).

For our ghost trace, we use the shared invariant shown at the
top of Fig. 6. It provides the permission to access the ghost trace,
and expresses that the current trace is compatible with the IOD
transition system and its pre-projection is low. Performing an IOD
action satisfies the two conditions above: (1) adding a new action
to the trace preserves the shared invariant; (2) since these updates
affect only ghost state, they can be treated as atomic.
Running Example. Fig. 6 shows our running example in Gobra.
Lines 5–18 show snippets of an implementation together with some
of the required proof annotations. The shown snippet can be run
in parallel by multiple threads.

At Line 5, the trace is extended with a recv action. The permis-
sion to Trace, necessary for the call, is obtained from the shared
invariant. The invariant holds trivially after Line 5 as recv’s pre-
condition and guard are true and its update keeps the state un-
changed. At Line 6, before the next action and after having verified
low(Pre(Vac{})), we assume low(Post(Vac{}), *Trace), es-
tablishing that the received message is low. The other calls are
verified similarly.

Line 7 checks whether the request is already processed. The
IOD spec specifies that we may declassify only the most recently
queried data for id and, thus, use it for a reply. The code handles
this requirement by letting at most one thread process requests for
a specific id. It stops if the request is already being handled (Line 8).
Note that requests for different ids can be processed in parallel.

The precondition of the query action (Line 10) requires that
Abs(id) is low, which we get from Line 6. Furthermore, the tran-
sition system’s state gets updated with the queried date and key
(Line 12). As discussed, we use the transition system’s Update func-
tion to keep track of the new state.

Line 14 encrypts the date with the key. The specification of the
method Encrypt shown at Lines 20–23 relates calls of the Encrypt
method to the mathematical function enc, which illustrates how we
connect concrete computations to the abstract state tracked in an

9

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Felix A. Wolf and Peter Müller

1 pred SharedInvariant () {
2 acc(Trace) && low(Pre(Vac{},*Trace)) &&
3 ∃ st :: Reaches(Vac{}, *Trace , st)
4
5 id := Recv()
6 // assume low(Post(Vac{}), *Trace)
7 already_processed := queue.add(id)
8 if already_processed { /* stop */ }
9 . . .

10 info := Query(id)
11 // assume low(Post(Vac{}), *Trace)
12 // update transition system state
13 . . .

14 reply := Encrypt(info.date , info.key)
15 ghost Declassify(Abs(id),Abs(reply))
16 // assume low(Post(Vac{}), *Trace)
17 Send(reply)
18 queue.remove(id)
19
20 req acc(data , read) && acc(key , read)
21 ens acc(data , read) && acc(key , read) && acc(ciph)
22 ens Abs(ciph) = enc(Abs(data), Abs(key))
23 func Encrypt(data , key []byte) (ciph []byte)

Figure 6: Verification of the running example in Gobra
(Lines 5–18) together with the used shared invariant (Lines 1–
3). Lines 20–23 shows the specification of the encryption
method, relating calls to the mathematical function enc.
Proof annotations are indicated with the keyword ghost.

IOD spec. After the call, we get from Encrypt’s postcondition that
Abs(reply) is equal to enc(Abs(info.date), Abs(info.key)).
The guard of the declassification (Line 15) holds since we declassify
the most recent date encrypted with the most recent key. As a
technicality, ensuring the absence of other queries since Line 10
requires some concurrency reasoning, which we omitted to focus
on the essentials. The call to the Send method at Line 17 completes
the request. We can show that the sent payload is low due to the
assumption gained from the declassification at Line 16.

5 Policy Validation
Like code, security policies may contain errors due to human failure.
The aim of validating a security policy is to increase the confidence
that the policy specifies the intended security requirements. We val-
idate policies by proving properties that hold for all IOD behaviors
satisfying the policy. In this section, we focus on validating that a
policy does not permit the release of information that is intended
to remain confidential.

Consider an incorrect variant of our running example’s IOD spec
(Example 3), where a declassification action decl(id, 𝑥) is permitted
whenever 𝑥 is the encryption of the date and key queried for id if
(instead of and) id has been queried. This IOD spec is bad since it
permits the declassification of any value, e.g., the confidential list
of compatible vaccines, if the id has not been queried yet.

We use two approaches to validate policies: (1) Since implemen-
tations refine a policy’s IOD spec 𝑅, any trace property 𝑃 satisfied
by the IOD spec is also satisfied by the implementation. E.g., for our
running example, we may prove that a declassification is permitted
only if the id has been queried beforehand. (2) The combination of
IOD spec and classification spec enables us, instead of just validat-
ing properties about when declassification is permitted, to prove

directly that specific data remains confidential even in the presence
of declassification. Approach (1) requires standard reasoning about
transition systems; we focus on Approach (2) in this section.

We formalize the property that data remains confidential as
Generalized Non-Interference Modulo Views (GNIV). As mentioned
in Sec. 2, GNIV is an adaptation of generalized non-interference [22]
(GNI) that can handle distributed systems. We first discuss the
definition of GNIV for passive attackers (Sec. 5.1) and show how to
prove it (Sec. 5.2). Afterwards, we extend GNIV to active attackers
(Sec. 5.3). As defined in Sec. 3.3, passive attackers are able to observe
the low data of all performed I/O actions. Active attackers are in
addition able to change the low inputs of actions.

5.1 Definition of GNIV
Declassifications are able to release information about high data.
Therefore, not all data classified as high by the classification spec
remains confidential. To capture the intended confidentiality, we
use a function Λ, referred to as view, that takes a trace and returns
the data that we want to prove remains confidential in the presence
of declassification. We lift Λ to sets of traces, denoted with ·↓Λ.

Before we discuss the definition of GNIV, we first illustrate why
standard GNI is ill-suited for distributed systems. GNI is satisfied
by an IOD behavior if for every pair of traces 𝑡1, 𝑡2 ∈ 𝑇 , there exists
a trace 𝑡𝑢 with the same low data as 𝑡1 and the same secret as 𝑡2 (i.e.,
Λ(𝑡𝑢) = Λ(𝑡2)).We refer to 𝑡𝑢 as the uncertainty trace. Asmentioned
before, the issue is that GNI rules out IOD behaviors that let an
attacker learn whether a secret input exists, regardless of whether
the attacker actually is able to learn the value of the secret input
itself. Consider the program below and a view Λ0 : 𝑡 ↦→ 𝑡↓getKey,
where 𝑡↓getKey denotes the sequence of inputs of getKey actions
occurring in the trace 𝑡 . In the code, getKey actions are produced
by calls to the GetKey method:

h1 := GetKey (); if Recv() { h2 := GetKey (); }

The program does not satisfy GNI for Λ0 because the low input
received from Recv implies whether a second getKey action hap-
pens. More formally, there exists no uncertainty trace that has the
same secrets as the trace getKey(ℎ1) · recv(true) · getKey(ℎ2) but
also the same low data as the trace getKey(ℎ′1) · recv(false) for all
values ℎ1,ℎ2,ℎ′1. GNI fails because the number of getKey actions is
different depending on a trace’s low data. However, we consider the
program secure since no information about the inputs of getKey
actions is released (the program does not even use these inputs).

Our definition of GNIV solves this issue by adapting GNI in two
ways. First, when comparing the uncertainty trace and trace 𝑡2, we
consider secrets that are intended to remain confidential according
to a view Λ. Second, we compare the two traces only up to the
common number of secret inputs by allowing the uncertainty trace
to have more or fewer actions, accounting for different numbers of
secret inputs:

Definition 5.1 (Compatibility). An uncertainty trace 𝑡𝑢 is compat-
ible with a secret ℎ for a view Λ, denoted as 𝑡𝑢 #Λ ℎ, if there exists
a trace 𝑡 ′ with Λ(𝑡 ′) = ℎ and 𝑡𝑢 ≤ 𝑡 ′ ∨ 𝑡 ′ ≤ 𝑡𝑢 .

For our example, the uncertainty trace getKey(h1) · recv(false)
is compatible with the secret of trace getKey(ℎ1) · recv(true).

10

Verifiable Security Policies for Distributed Systems CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

For the definition of GNIV, to express a trace’s low data, we use
the projection ·↓Σ, combining ·↓preΣ and ·↓postΣ , e.g., query(id, 𝑑)↓Σ=
query(id, 𝑑key).

Definition 5.2 (GNIV). An IOD behavior 𝑇 satisfies GNIV for a
classification spec Σ and view Λ, if for every secret ℎ ∈ 𝑇↓Λ and
every low data 𝑙 ∈ 𝑇↓Σ, there exists an uncertainty trace 𝑡𝑢 ∈ 𝑇 ,

𝑡𝑢↓Σ= 𝑙 ∧ 𝑡𝑢 #Λ ℎ.

5.2 Proving GNIV
To prove that all IOD behaviors satisfying a policy also satisfy GNIV
(for some view), we construct an uncertainty trace step by step. For
every trace 𝑡 of the IOD spec and every possible secret ℎ (according
to the view), we show that there is an uncertainty trace 𝑡𝑢 that has
the same declassifications as 𝑡 but is also secret compatible with ℎ.

We formalize the step-by-step construction as a trace construc-
tion plan, a function that takes the secret ℎ, the uncertainty trace
constructed so far, the low data (in particular, the declassifications)
that still have to be constructed, and the next action N(𝑥, 𝑟), and
returns the input 𝑟 ′ that replaces 𝑟 to create the uncertainty trace.
E.g., for our previous example with getKey, a suitable plan 𝜉 satis-
fies 𝜉 (ℎ1 ·ℎ2, 𝑙, 𝜖, getKey(ℎ′1)) = ℎ1, i.e., the plan replaces the secret
input ℎ′1 of the first getKey action (the trace constructed so far is
empty) with the first value ℎ1 of the sequence of secrets ℎ1 ·ℎ2 that
the uncertainty trace has to be compatible with. The low data 𝑙 that
still has to be constructed is either recv(true) or recv(false).

To prove that a policy entails GNIV for a view, we have to show
that there exists a trace construction plan that satisfies three condi-
tions: (1) The plan must be well-defined in the sense that it does
not change low data and does not return impossible inputs. (2) The
plan must be secret-compatible, meaning that created uncertainty
traces are actually compatible with secret ℎ. (3) The plan must be
declassification-compatible, meaning that created uncertainty traces
are permitted to declassify the same values as the original trace.

Theorem 1 (Passive Attacker Security). Given a program’s IOD
behavior 𝑇 that satisfies a security policy (Σ, 𝑅). The IOD behavior 𝑇
satisfies GNIV for the classification spec Σ and a view Λ, if there exists
a well-defined plan 𝜉 that is secret- and declassification-compatible.

We next define the three conditions formally.
Well-Defined Plans. Well-definedness of plans is straightforward.
Since only inputs are modified by a plan, data classified by precondi-
tions remains unchanged trivially. The condition ∃𝑡 ′ . 𝑡 ′ ·N(𝑥, 𝑟 ′) ∈
𝑅 captures that the returned input must be an actual input of the
action.

Definition 5.3 (Well-defined Plan). A plan 𝜉 is well-defined for a
policy (Σ, 𝑅), if

𝑡 · N(𝑥, 𝑟 ′) ∈ 𝑅 ∧ 𝑟 ′ = 𝜉 (ℎ, 𝑙, 𝑡,N(𝑥, 𝑟))

⇒ (∃𝑡 ′ . 𝑡 ′ · N(𝑥, 𝑟 ′) ∈ 𝑅) ∧ N(𝑥, 𝑟 ′)↓postΣ = N(𝑥, 𝑟)↓postΣ .

Secret-Compatible Plans. Every trace produced by a plan must
be compatible with the secret ℎ. Since the empty trace is always
compatible with ℎ, i.e., 𝜖 #Λ ℎ, we only require that appending the
next modified action maintains compatibility.

Definition 5.4 (Secret-Compatible). For a policy (Σ, 𝑅) and a view
Λ, a plan 𝜉 is secret-compatible if for every secret ℎ ∈ 𝑅↓Λ, every
trace 𝑡 and action N(𝑥, 𝑟) with 𝑡 · N(𝑥, 𝑟) ∈ 𝑅, and every 𝑙, 𝑟 ′,

𝑡 #Λ ℎ ∧ 𝑟 ′ = 𝜉 (ℎ, 𝑙, 𝑡,N(𝑥, 𝑟)) ⇒ 𝑡 · N(𝑥, 𝑟 ′) #Λ ℎ

Declassification-Compatible Plans. GNIV requires that all per-
mitted declassifications are not influenced by the view. Thus, if a
declassification is permitted in the original trace, then the same
declassification must be permitted in the constructed trace.

Formally, for every prefix 𝑡 constructed by a plan, whenever a de-
classification decl(𝑝, 𝑥) is the next action, then the declassification
must be permitted after 𝑡 , i.e., 𝑡 · decl(𝑝, 𝑥) ∈ 𝑅. To quantify over
constructed prefixes, we define the image ImgΣ,𝑅 (𝜉, ℎ, 𝑙𝑝 , 𝑙𝑐) of a
plan 𝜉 as the set of all prefixes that may be constructed by 𝜉 for the
secret ℎ and the low data 𝑙𝑝 and 𝑙𝑐 of the prefix and continuation,
respectively.

Definition 5.5 (Plan Image). We define the image of a plan 𝜉

inductively via

𝜖 ∈ ImgΣ,𝑅 (𝜉, ℎ, 𝜖, 𝑙𝑐)

𝑡 ∈ ImgΣ,𝑅 (𝜉, ℎ, 𝑙𝑝 , 𝑙𝑛 · 𝑙𝑐) ∧ 𝑡 · N(𝑥, 𝑟) ∈ 𝑅 ∧ N(𝑥, 𝑟)↓Σ= 𝑙𝑛

⇒ 𝑡 · N(𝑥, 𝜉 (ℎ, 𝑙𝑐 , 𝑡,N(𝑥, 𝑟))) ∈ ImgΣ,𝑅 (𝜉, ℎ, 𝑙𝑝 · 𝑙𝑛, 𝑙𝑐)

Definition 5.6 (Declassification-Compatible). For a policy (Σ, 𝑅)
and a view Λ, a plan 𝜉 is declassification-compatible if for every
secret ℎ ∈ 𝑅↓Λ and every low data 𝑙𝑝 , decl(𝑝, 𝑥), 𝑙𝑐 ,

∀𝑡 . 𝑡 ∈ ImgΣ,𝑅 (𝜉, ℎ, 𝑙𝑝 , decl(𝑝, 𝑥) · 𝑙𝑐) ∧ (∃𝑥 ′ . 𝑡 · decl(𝑝, 𝑥 ′) ∈ 𝑅)
⇒ 𝑡 · decl(𝑝, 𝑥) ∈ 𝑅.

Note that the condition 𝑡 ∈ ImgΣ,𝑅 (𝜉, ℎ, 𝑙𝑝 , decl(𝑝, 𝑥) · 𝑙𝑐) does
not guarantee that a declassification may actually happen after the
modified prefix, which we capture with ∃𝑥 ′ . 𝑡 · decl(𝑝, 𝑥 ′) ∈ 𝑅.

Example 6. For our running example, we show GNIV for two views.
Without additional assumptions, we show that the unused secret
data from queries, namely the list of compatible vaccines, remains
confidential. A suitable plan 𝜉0 replaces (1) all queried vaccines
with the secret according to the view and (2) all queried dates with
the date that is encrypted in the next declassification. Otherwise,
inputs remain unchanged. I.e., 𝜉0 (ℎ · hs, 𝑙, 𝑡, query(id, 𝑑)) returns
𝑑 [date ↦→ Next(id, l), vac ↦→ ℎ′], where Next(id, l) returns the
date encrypted in the next declassification for id in 𝑙 and ℎ′ is the
relevant entry of ℎ. We have to also replace the queried data to
prove that subsequent declassifications are permitted.

The plan 𝜉0 is trivially well-defined and secret-compatible. The
plan 𝜉0 is also declassification-compatible because, if a declassifica-
tion may happen next, then there was a previous query action that
was modified accordingly by 𝜉0.

Given strong assumptions about encryption, we also show that
parts of the queried dates remain confidential. The challenge is
that after replacing a queried date, a subsequent declassification
declassifies a different ciphertext. We resolve this issue by parti-
tioning queried dates into confidential days and non-confidential
milliseconds, where we assume that a plan can change milliseconds
to obtain the desired ciphertexts. More formally, we assume that for
every public key 𝑘 , and dates 𝑑0, 𝑑1, we can change the milliseconds
of 𝑑1 such that the encryption of 𝑑0 and the modified 𝑑1 with 𝑘 are

11

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Felix A. Wolf and Peter Müller

the same. For a Dolev-Yao attacker, this assumption implies that an
attacker does not know the private keys. Under this assumption,
we prove that days of queried dates remain confidential. A suit-
able plan replaces the day of queried dates with the targeted secret
and replaces the corresponding milliseconds such that subsequent
declassification is correct.

Our incorrect variant of the IOD spec from the beginning of
this section does not satisfy GNIV for either view. In particular, our
defined plans are not declassification-compatible for the incorrect
policy. If a declassification may happen next, then we are not guar-
anteed that there exists a previous query action whose encrypted
date and key are being declassified.

5.3 Active Attacker
GNIV is strong enough to provide guarantees against active attackers
that are also able to modify the low inputs of all actions. In this
subsection, we define Active-GNIV, a variation of GNIV for active
attackers, and show under which conditions GNIV entails Active-
GNIV.

We parameterize Active-GNIV with the set of considered attack-
ers. In our model, active attackers are able to change inputs of
actions, e.g., by intercepting messages and modifying the payloads.
We formalize an attacker as a function 𝐴 : Tr × Act × U × U → U
that takes (1) the trace of past actions and (2) the next actionN(𝑥, 𝑟),
and returns an attacker-chosen input 𝑟 ′ that replaces 𝑟 . To reason
about attackers, we define the image of an attacker Attacks(𝐴,𝑇) as
the set of traces that are possible under the influence of an attacker
𝐴 for an IOD behavior 𝑇 .

Definition 5.7 (Attacker Image). The image of an attacker 𝐴 :
Tr × Act × U × U → U is the smallest set that satisfies:

𝜖 ∈ Attacks(𝐴,𝑇)

𝑡 ∈ Attacks(𝐴,𝑇) ∧ 𝑡 · N(𝑥, 𝑟) ∈ 𝑇

⇒ 𝑡 · N(𝑥,𝐴(𝑡,N(𝑥, 𝑟))) ∈ Attacks(𝐴,𝑇)

Active-GNIV is then a variation of GNIV where for every consid-
ered attacker, the uncertainty traces must exist under the influence
of the attacker. In particular, the uncertainty traces must exist re-
gardless of whether the secret ℎ is possible under the influence of
the attacker or not.

Definition 5.8 (Active-GNIV). An IOD behavior 𝑇 satisfies Active-
GNIV for a set of attackers A, a classification spec Σ, and a view
Λ, if for every attacker 𝐴 ∈ A, secret ℎ ∈ 𝑇 ↓Λ, and low data
𝑙 ∈ Attacks(𝐴,𝑇)↓Σ, there exists a trace 𝑡𝑢 ∈ Attacks(𝐴,𝑇),

𝑡𝑢↓Σ= 𝑙 ∧ 𝑡𝑢 #Λ ℎ.

GNIV entails Active-GNIV if all considered attackers are low-
limited. Intuitively, an attacker is low-limited if the attacker may
only observe and modify low data. We capture this intuition for-
mally by defining that low-limited attackers cannot distinguish
traces with the same low data, i.e., if one trace is possible under the
attacker, then every trace with the same low data is possible, too.

Definition 5.9 (Low-limited Attacker). An attacker 𝐴 : Tr ×Act ×
U × U → U is low-limited for a classification spec Σ, if

∀𝑇, 𝑡 ∈ Attacks(𝐴,𝑇), 𝑡 ′ ∈ 𝑇 . 𝑡↓Σ= 𝑡 ′↓Σ⇒ 𝑡 ′ ∈ Attacks(𝐴,𝑇).

Corollary 1. Given an IOD behavior 𝑇 that satisfies GNIV for the
classification spec Σ and a view Λ. 𝑇 satisfies Active-GNIV for the
attacker set A if every attacker 𝐴 ∈ A is low-limited.

6 Case Study
To show that our policy framework is powerful and applicable to
real-world programs, we verified an implementation of the Wire-
Guard protocol against an appropriate security policy defined by
us (Sec. 6.2). Before discussing the case study, we first list our trust
assumptions (Sec. 6.1). Lastly, we discuss several smaller programs
that illustrate how we express specification patterns from previ-
ous works (Sec. 6.3). All verified programs are available in our
artifact [54].

6.1 Trust Assumptions
As mentioned before, we have fully formalized and proved in Is-
abelle/HOL an instantiation of our policy framework that uses the
SecCSL logic for code verification. To benefit from more automa-
tion, we verified the programs discussed in this section using Gobra
as shown in Sec. 4. When using Gobra, we make two assumptions:
(1) We assume that our annotations for trusted libraries that spec-
ify I/O behavior (Sec. 4.2) are satisfied and that the resulting I/O
behavior is input-closed. (2) We assume that Gobra is sound, i.e.,
if Gobra reports a successful verification, then the verified code
actually satisfies the provided specifications.

For a security policy to be meaningful, we additionally assume
that attackers satisfy our threat model (Sec. 3.3).

6.2 The WireGuard VPN
WireGuard is a widely-used Virtual Private Network (VPN). In
the protocol, two agents first establish a secret session key in a
handshake phase and then use this key to exchange messages in a
transport phase. For our case study, we reuse results from Arquint
et al. [1]. They verify that a modified version of WireGuard’s official
Go implementation [23] refines an I/O spec (without declassifica-
tions) generated from a Tamarin [14] model of the protocol.

For a security policy, we defined an IOD spec by extending the
I/O spec of Arquint et al. with declassification actions. Furthermore,
we defined a classification spec from scratch. We then verified that
the implementation of the initiator role from Arquint et al. satisfies
this policy. We were able to fully reuse the refinement proof by
Arquint et al. To verify the code, we added only additional proof
annotations to verify that our added declassification actions are
permitted, and to verify secure information flow.

The IOD spec of our security extends Arquint et al.’s I/O spec
by declassifications. However, their I/O spec is expressed using
separation logic [39, 52] rather than a transition system. In this for-
malism, the permitted I/O behavior is expressed via a co-inductive
separation logic predicate that is parameterized by the current posi-
tion in and the abstract state of the protocol; these two parameters
correspond to the transition system state in IOD transition systems.
The body of the predicate consists of a number of cases (conjuncts)
that each describe (1) the condition under which an I/O action may
take place, (2) the action and its arguments (expressed as separation
logic predicates), and (3) the effect of the action on the protocol
position and abstract state. These ingredients correspond directly

12

Verifiable Security Policies for Distributed Systems CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

to the guard and update functions of our IOD transition systems. In
fact, Sprenger et al. [52] formally proved the equivalence between
I/O specifications in separation logic and I/O-guarded transition
systems, and Arquint et al.’s I/O spec is indeed generated from such
transition systems. Due to this equivalence, and since our frame-
work does not prescribe how IOD specs are expressed (Sec. 3.2),
we were able to re-use Arquint et al.’s I/O spec. Since this spec is
expressed in separation logic, it is compatible with Gobra’s veri-
fication technique. Code verification proceeds analogously to the
approach shown in Sec. 4.
Security Policy. For the classification spec, we classify that long-
term private keys, generated ephemeral keys, and user messages
encrypted during the transport phase are secret. All other inputs
and outputs, such as networkmessages, public keys, and timestamps
are low data. Furthermore, we classify that the size of private keys
is low, too. To reason about keys, setting up the long-term keys and
generating ephemeral keys are captured as I/O actions.

For the IOD spec, to specify which declassifications are permit-
ted, we introduce the sets Out and In that, for the current point in
the protocol, contain the messages that may be sent and are be-
ing processed, respectively. Our IOD spec definition derives these
sets from the transition system state (resp. the state parameters of
the I/O spec expressed in separation logic). We then permit three
groups of declassifications: (1) Every message𝑚 that may be sent
𝑚 ∈ Out may also be declassified. (2) Similarly, for every encryp-
tion enc(𝑚,𝑘) occurring inOut and decryption dec(𝑚,𝑘) occurring
In, we may declassify whether the encryption or decryption fails.
(3) We may declassify whether WireGuard’s well-definedness con-
dition holds, namely whether the responder’s public key to the
power of the initiator’s private key or ephemeral key is zero (where
the keys are also derived from the transition system state).

Our verification approach is expressive enough to verify the
implementation against the security policy. All non-deterministic
effects in the program, in particular, concurrency and error handling
of network sockets, are handled by our auxiliary actions.

Regarding guarantees for the policy, Arquint et al. proved that
the I/O spec satisfies key agreement and forward secrecy, which
are preserved by our IOD spec. These guarantees entail that if the
protocol is in the transport phase according to the transition system
state, then indeed a successful handshake between the actors has
been established. This allows the IOD spec to express that declassi-
fications are permitted only in the transport phase by expressing a
corresponding precondition for declassification actions in terms of
the transition system state, such that they are guaranteed to occur
after a successful handshake.
CodeChanges.Wehave taken the implementation fromArquint et
al. as is, inheriting their changes to the official Go implementation.
The official Go implementation was changed in two ways: (1) To
reduce verification effort, DDos protection, load balancing, and met-
rics were omitted. In particular, load balancing requires complex
concurrency reasoning not supported by Gobra. (2) -Cryptographic
operations and network operations were moved into trusted li-
braries. The individual steps processing a connection, i.e., parsing
and constructing messages, have remained unchanged.
Statistics. The initiator consists of 345 lines of code (LOC) that
we have verified. The security policy consists of 18 LOC for the

Program LOC LOS LOP T [s]
1 vaccinations 91 15 150 42
2 vaccinations (quantitative) 91 18 165 75
3 database [9] 116 33 190 76
4 embargoed information [4] 13 20 46 36

Figure 7: Programs used to illustrate expressiveness. We list
the number of lines of Go code (LOC), security policy (LOS),
proof annotations (LOP), and the average verification time
in seconds.

classification spec and 219 LOC for the IOD spec. The specification
mechanism for the IOD spec used by Arquint et al. is more verbose
than the one shown in Sec. 4. Out of the 219 lines, 147 lines are
generated from the verified Tamarin protocol model and only 27
lines contain relevant information for declassification. To verify
that the code satisfies the policy, 714 lines of proof annotations
were necessary, 123 of which were added for this work. The lines
added for this work are either low assertions, annotations to use the
shared invariant, or annotations to prove that the declassification
conditions are satisfied. The annotation overhead of proof annota-
tions per line of code is around 2, which is typical for SMT-based
deductive verifiers. Verification takes 15 minutes on a Lenovo T480s
with an Intel Core i7-8650U and 24 GB of RAM. Compared to Ar-
quint et al., the verification time has increased by 13 minutes. This
increase is due to the added secure information flow reasoning.

6.3 Expressiveness
To show that our approach supports common specification patterns
of security policies, we specified and verified several smaller pro-
grams. Fig. 7 depicts statistics about these programs. For robust
declassification [56] and secret data over public channels, we took
policies from the literature [4, 9] and wrote code implementations
in Go (Program #4 and #3 respectively). For declassification with
quantitative criteria, we extended our running example (Program
#2). We also list our running example (Program #1). We focus our
discussion on how we express specification patterns. For details
about the verified examples, we refer readers to our artifact [54].
State-Dependent Declassification. In this pattern, declassifica-
tions are permitted based on the state of an execution. We use
this pattern in our WireGuard case study, where, for instance, we
permit declassifications involving user inputs only after a success-
ful handshake. When using IOD-guarded transition systems, we
express state-dependent declassification straightforwardly by cap-
turing in the transition system state all relevant information, e.g.,
the protocol phase. The declassification’s guard may then permit
declassifications based on the captured state.
Quantitative Criteria. As an extension of state-dependent de-
classification, declassification with quantitative criteria permits
declassification based not only on the actual execution state but
also based on past declassifications. Since we treat declassifica-
tion as actions themselves, we express this specification pattern
analogously to state-dependent declassification. As an illustrating
example, we extended our running example such that declassifica-
tions are permitted at most 10 times per id (Program #2 of Fig. 7).

13

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Felix A. Wolf and Peter Müller

For this change, we extended the state of our IOD-guarded transi-
tion system to also store the number of past declassifications per id,
which is then increased in the update of the declassification action.

Robust Declassification. In this pattern, declassification is per-
mitted only for values with high integrity, i.e., trusted data [56].
The aim is to ensure that attackers are not able to influence when
and what is declassified in unintended ways. In our framework, we
reason about integrity by defining an additional classification spec,
specifying which data has high integrity. We then specify in the
precondition for declassification that the declassified data has high
integrity. For endorsement, i.e., the act of elevating the integrity
of data, we add an action endorse analogously to declassification,
which is then also governed by the IOD spec. We verify the code
for both classification specs. Because integrity is the dual of confi-
dentiality [17], we are able to use our low assertions to also express
high integrity. In particular, we do not have to adapt our formalism.
As an example, we verified a program by Askarov and Myers [4]
where data may be declassified if a received timestamp is older
than a specified embargo time (Program #4 in Fig. 7). The received
timestamp is endorsed only if it is in the past.

Secret Data from Public Inputs. In our running example, secret
data originates from a remote database. However, for many ap-
plications, secret data arrives encrypted over the public network.
In our framework, we express encrypted sources of secret data
by classifying the decryption key as confidential. Classifying the
key is sufficient, as all data derived using the confidential key is
considered confidential itself. In particular, we are guaranteed that
programs do not unintentionally release decrypted payloads. As an
example, we verified a program inspired by Banerjee at al. (Program
#3). A medical database receives encrypted medical records, parts
of which are declassified and forwarded to an auditing company.

7 Related work
We compare our work to other policy frameworks with code verifi-
cation. We distinguish between top-down approaches [40], which
generate code from abstract models, and bottom-up approaches [9,
35, 48, 50], which target existing written code.

Bottom-up Policy Frameworks. Closest to our work, but not
language-agnostic, Murray et al. [35] specify declassification poli-
cies as a condition on a trace of values and a relational assertion,
specifying when and what may be declassified, respectively. To
populate the trace, programs are also annotated with specifications
capturing how this trace is extended. In contrast to our approach,
where traces record IOD actions, programs can add arbitrary values
to their traces using program annotations. As a consequence, their
declassification policies are more flexible than ours, but policies pro-
vide weaker guarantees by themselves without further knowledge
about the program annotations. For classification, trusted libraries
are annotated directly with pre- and postconditions containing low
assertions.

Previous frameworks specify policies similarly. Banerjee et al. [9]
permit declassification based on a condition on the global program
state. Schoepe et al. [48] and Smith [50] specify a predicate, defining
whether a concrete declassification statement is permitted depend-
ing on the current and initial program state respectively.

Programs are verified using a relational verification logic [35, 48,
50], a type system [4, 6, 10], or a combination thereof [9].
Definition of Security.Most aforementioned bottom-up frame-
works [9, 35, 48] define security based on the epistemic definition
introduced by Askarov and Sabelfeld [5], which has been extended
in various ways [2, 8, 20, 21]. A program is secure if the attacker
uncertainty, i.e., the set of secrets compatible with low data, re-
mains unchanged for every execution step of the program, except
for declassification. Some frameworks [7, 9, 35] require further that
the reduction of attacker uncertainty caused per declassification is
bounded based on the program and policy.

Another approach is to define security via a variation of low-
bisimulations [32, 51]. The definition considers pairs of executions
with equal low data. A program is secure if for every step of one
execution, the other execution is able to perform a step that again
establishes equal low data. For declassifications, pairs that do not
agree on the declassified value are disregarded [6, 45, 50].

An advantage of these epistemic- and simulation-based defini-
tions is that they consider timing-channels. Furthermore, epistemic
definitions provide immediate guarantees against attackers. How-
ever, these definitions require a fixed language semantics, making
them ill-suited for our purposes.
Where-Declassification. As analyzed in detail by Sabelfeld and
Sands [47], in contrast to our policies, specifying when and what
may be declassified, several approaches specify where in a program,
declassification is permitted [6, 18, 48, 50]. As mentioned before,
Schoepe et al. [48] and Smith [50] permit declassification for con-
crete declassification statements in the program, thereby describing
where declassifications happen. A line of work [18, 19, 34] defines
policies by assigning flow lock specs to data. A flow lock spec is
a set of logical locks that have to be opened to release data over
a specific channel. These logical locks are opened through static
annotations in the code, capturing the position of relevant places
in the code. The work by Menz et al. [34] extends this approach to
a higher-order language.
Top-down Policy Frameworks. In the approach proposed by
Popescu et al. [40], programs are specified as I/O automata pro-
ducing I/O actions. For verification, the automata is first checked
against a policy and then automatically translated into a functional
programming language. Importantly, the translation maintains the
guarantees provided by the policy. For classification, policies spec-
ify public observations and confidential data of the automata’s
transitions. For declassification, policies specify under which condi-
tion declassification is not permitted and how much of the secrets
must be protected. Their approach is used to verify a conference
management system [41] and a social media platform [15, 16].

8 Conclusion
We have introduced a novel policy framework, where policies are
specified and validated at the level of I/O behavior. This abstraction
enables us to specify security policies independent of programs and
programming languages, and to provide guarantees for all programs
satisfying a security policy based on the policy alone. To validate
policies, we introduce GNIV, entailing for passive and certain active
attackers, that a selection of data remains confidential even in the
presence of declassification. For code verification, we verify that

14

Verifiable Security Policies for Distributed Systems CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

programs satisfy our policies using a combination of standard code
verification techniques. Our approach is powerful, compatible with
different verification techniques, and applicable to real-world code.

We see multiple possible directions for future work. One direc-
tion is to automate proving guarantees provided by policies. In our
framework, we prove such guarantees manually in Isabelle/HOL.
Another direction is to extend our framework to other versions of
secure information flow such as probabilistic non-interference.
Acknowledgements.Thisworkwas funded by theWerner Siemens-
Stiftung (WSS). We thank the WSS for their generous support of
this project.

References
[1] Linard Arquint, Felix A. Wolf, Joseph Lallemand, Ralf Sasse, Christoph Sprenger,

Sven N. Wiesner, David A. Basin, and Peter Müller. 2023. Sound Verification of
Security Protocols: From Design to Interoperable Implementations. In SP. IEEE,
1077–1093.

[2] Aslan Askarov and Stephen Chong. 2012. Learning is Change in Knowledge:
Knowledge-Based Security for Dynamic Policies. In CSF. IEEE Computer Society,
308–322.

[3] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. 2008.
Termination-Insensitive Noninterference Leaks More Than Just a Bit. In ESORICS
(LNCS, Vol. 5283). Springer, 333–348.

[4] Aslan Askarov and Andrew C. Myers. 2010. A Semantic Framework for Declassi-
fication and Endorsement. In ESOP (LNCS, Vol. 6012). Springer, 64–84.

[5] Aslan Askarov and Andrei Sabelfeld. 2007. Gradual Release: Unifying Declassi-
fication, Encryption and Key Release Policies. In S&P. IEEE Computer Society,
207–221.

[6] Aslan Askarov and Andrei Sabelfeld. 2007. Localized delimited release: combining
the what and where dimensions of information release. In PLAS. ACM, 53–60.

[7] Aslan Askarov and Andrei Sabelfeld. 2009. Tight Enforcement of Information-
Release Policies for Dynamic Languages. In CSF. IEEE Computer Society, 43–59.

[8] Musard Balliu, Mads Dam, and Gurvan Le Guernic. 2011. Epistemic temporal
logic for information flow security. In PLAS. ACM, 6.

[9] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. 2008. Expressive
Declassification Policies and Modular Static Enforcement. In SP. IEEE Computer
Society, 339–353.

[10] Gilles Barthe, Salvador Cavadini, and Tamara Rezk. 2008. Tractable Enforcement
of Declassification Policies. In CSF. IEEE Computer Society, 83–97.

[11] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational Verification
Using Product Programs. In FM (LNCS, Vol. 6664). Springer, 200–214.

[12] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2013. Beyond 2-Safety:
Asymmetric Product Programs for Relational Program Verification. In LFCS
(LNCS, Vol. 7734). Springer, 29–43.

[13] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2011. Secure information
flow by self-composition. Math. Struct. Comput. Sci. 21, 6 (2011), 1207–1252.

[14] David A. Basin, Cas Cremers, Jannik Dreier, and Ralf Sasse. 2022. Tamarin:
Verification of Large-Scale, Real-World, Cryptographic Protocols. IEEE Secur. Priv.
20, 3 (2022), 24–32. https://doi.org/10.1109/MSEC.2022.3154689

[15] Thomas Bauereiss and Andrei Popescu. 2021. CoSMed: A confidentiality-verified
social media platform. Arch. Formal Proofs 2021 (2021).

[16] Thomas Bauereiss and Andrei Popescu. 2021. CoSMeDis: A confidentiality-
verified distributed social media platform. Arch. Formal Proofs 2021 (2021).

[17] Ken Biba. 1977. Integrity Considerations for Secure Computer Systems. (1977).
[18] Niklas Broberg and David Sands. 2006. Flow Locks: Towards a Core Calculus for

Dynamic Flow Policies. In ESOP (LNCS, Vol. 3924). Springer, 180–196.
[19] Niklas Broberg and David Sands. 2009. Flow-sensitive semantics for dynamic

information flow policies. In PLAS. ACM, 101–112.
[20] Niklas Broberg, Bart van Delft, and David Sands. 2015. The Anatomy and Facets

of Dynamic Policies. In CSF. IEEE Computer Society, 122–136.
[21] Andrey Chudnov and David A. Naumann. 2018. Assuming You Know: Epistemic

Semantics of Relational Annotations for Expressive Flow Policies. In CSF. IEEE
Computer Society, 189–203.

[22] Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In CSF. IEEE
Computer Society, 51–65.

[23] Jason A. Donenfeld. [n. d.]. Go Implementation of WireGuard. https://git.zx2c4.
com/wireguard-go. [Online; accessed 11-March-2021].

[24] Marco Eilers, Severin Meier, and Peter Müller. 2021. Product Programs in the
Wild: Retrofitting Program Verifiers to Check Information Flow Security. In CAV
(1) (LNCS, Vol. 12759). Springer, 718–741.

[25] Marco Eilers, Peter Müller, and Samuel Hitz. 2018. Modular Product Programs.
In ESOP (LNCS, Vol. 10801). Springer, 502–529.

[26] Gidon Ernst and Toby Murray. 2019. SecCSL: Security Concurrent Separation
Logic. In CAV (2) (LNCS, Vol. 11562). Springer, 208–230.

[27] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. 2016. The
spirit of ghost code. Formal Methods Syst. Des. 48, 3 (2016), 152–174.

[28] Joseph A. Goguen and José Meseguer. 1984. Unwinding and Inference Control.
In S&P. IEEE Computer Society, 75–87.

[29] Jean Goubault-Larrecq, Catuscia Palamidessi, and Angelo Troina. 2007. A Proba-
bilistic Applied Pi-Calculus. In APLAS (LNCS, Vol. 4807). Springer, 175–190.

[30] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars
Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an Orthogonal
Basis for Concurrent Reasoning. In POPL. ACM, 637–650.

[31] Heiko Mantel. 2003. A uniform framework for the formal specification and ver-
ification of information flow security. Ph. D. Dissertation. Saarland University,
Saarbrücken, Germany.

[32] Heiko Mantel, David Sands, and Henning Sudbrock. 2011. Assumptions and
Guarantees for Compositional Noninterference. In CSF. IEEE Computer Society,
218–232.

[33] John McLean. 1992. Proving Noninterference and Functional Correctness Using
Traces. J. Comput. Secur. 1, 1 (1992), 37–58.

[34] Jan Menz, Andrew K. Hirsch, Peixuan Li, and Deepak Garg. 2023. Composi-
tional Security Definitions for Higher-Order Where Declassification. Proc. ACM
Program. Lang. 7, OOPSLA1 (2023), 406–433.

[35] Toby Murray, Mukesh Tiwari, Gidon Ernst, and David A. Naumann. 2023. As-
sume but Verify: Deductive Verification of Leaked Information in Concurrent
Applications. In CCS. ACM, 1746–1760.

[36] David A. Naumann. 2006. From Coupling Relations to Mated Invariants for
Checking Information Flow. In ESORICS (LNCS, Vol. 4189). Springer, 279–296.

[37] Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. 2006. Information-
Flow Security for Interactive Programs. In CSFW. IEEE Computer Society, 190–
201.

[38] Wytse Oortwijn and Marieke Huisman. 2019. Practical Abstractions for Auto-
mated Verification of Message Passing Concurrency. In IFM (LNCS, Vol. 11918).
Springer, 399–417.

[39] Willem Penninckx, Bart Jacobs, and Frank Piessens. 2015. Sound, Modular and
Compositional Verification of the Input/Output Behavior of Programs. In ESOP
(LNCS, Vol. 9032). Springer, 158–182.

[40] Andrei Popescu, Thomas Bauereiss, and Peter Lammich. 2021. Bounded-
Deducibility Security (Invited Paper). In ITP (LIPIcs, Vol. 193). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 3:1–3:20.

[41] Andrei Popescu, Peter Lammich, and Thomas Bauereiss. 2021. CoCon: A
Confidentiality-Verified Conference Management System. Arch. Formal Proofs
2021 (2021).

[42] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data
Structures. In LICS. IEEE Computer Society, 55–74.

[43] A. W. Roscoe. 1995. CSP and determinism in security modelling. In S&P. IEEE
Computer Society, 114–127.

[44] Mark Dermot Ryan and Ben Smyth. 2011. Applied pi calculus. In Formal Models
and Techniques for Analyzing Security Protocols. Cryptology and Information
Security Series, Vol. 5. IOS Press, 112–142.

[45] Andrei Sabelfeld and Andrew C. Myers. 2003. A Model for Delimited Information
Release. In ISSS (LNCS, Vol. 3233). Springer, 174–191.

[46] Andrei Sabelfeld and David Sands. 2000. Probabilistic Noninterference for Multi-
Threaded Programs. In CSFW. IEEE Computer Society, 200–214.

[47] Andrei Sabelfeld and David Sands. 2005. Dimensions and Principles of Declassi-
fication. In CSFW. IEEE Computer Society, 255–269.

[48] Daniel Schoepe, TobyMurray, andAndrei Sabelfeld. 2020. VERONICA: Expressive
and Precise Concurrent Information Flow Security. In CSF. IEEE, 79–94.

[49] Jan Smans, Bart Jacobs, and Frank Piessens. 2012. Implicit dynamic frames. ACM
Trans. Program. Lang. Syst. 34, 1 (2012), 2:1–2:58.

[50] Graeme Smith. 2022. Declassification Predicates for Controlled Information
Release. In ICFEM (LNCS, Vol. 13478). Springer, 298–315.

[51] Geoffrey Smith and Dennis M. Volpano. 1998. Secure Information Flow in a
Multi-Threaded Imperative Language. In POPL. ACM, 355–364.

[52] Christoph Sprenger, Tobias Klenze, Marco Eilers, Felix A. Wolf, Peter Müller,
Martin Clochard, and David A. Basin. 2020. Igloo: soundly linking compositional
refinement and separation logic for distributed system verification. Proc. ACM
Program. Lang. 4, OOPSLA (2020), 152:1–152:31.

[53] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João Carlos
Pereira, and Peter Müller. 2021. Gobra: Modular Specification and Verification of
Go Programs. In CAV (1) (LNCS, Vol. 12759). Springer, 367–379.

[54] Felix A. Wolf and Peter Müller. 2024. Verifiable Security Policies for Distributed
Systems. https://doi.org/10.5281/zenodo.13686927

[55] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Ben-
jamin C. Pierce, and Steve Zdancewic. 2020. Interaction trees: representing
recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL (2020),
51:1–51:32.

[56] Steve Zdancewic and Andrew C. Myers. 2001. Robust Declassification. In CSFW.
IEEE Computer Society, 15–23.

15

https://doi.org/10.1109/MSEC.2022.3154689
https://git.zx2c4.com/wireguard-go
https://git.zx2c4.com/wireguard-go
https://doi.org/10.5281/zenodo.13686927

	Abstract
	1 Introduction
	2 Overview
	3 Security Policies
	3.1 I/O Behavior
	3.2 Policy Specifications
	3.3 Threat Model
	3.4 Policy Compliance

	4 Code Verification
	4.1 Background on Gobra
	4.2 Recording IOD Behavior
	4.3 Verifying Policy Compliance

	5 Policy Validation
	5.1 Definition of GNIV
	5.2 Proving GNIV
	5.3 Active Attacker

	6 Case Study
	6.1 Trust Assumptions
	6.2 The WireGuard VPN
	6.3 Expressiveness

	7 Related work
	8 Conclusion
	References

