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Abstract. Modern separation logics allow one to prove rich proper-
ties of intricate code, e.g. functional correctness and linearizability of
non-blocking concurrent code. However, this expressiveness leads to a
complexity that makes these logics difficult to apply. Manual proofs or
proofs in interactive theorem provers consist of a large number of steps,
often with subtle side conditions. On the other hand, automation with
dedicated verifiers typically requires sophisticated proof search algorithms
that are specific to the given program logic, resulting in limited tool
support that makes it difficult to experiment with program logics, e.g.
when learning, improving, or comparing them. Proof outline checkers fill
this gap. Their input is a program annotated with the most essential
proof steps, just like the proof outlines typically presented in papers.
The tool then checks automatically that this outline represents a valid
proof in the program logic. In this paper, we systematically develop a
proof outline checker for the TaDA logic, which reduces the checking
to a simpler verification problem, for which automated tools exist. Our
approach leads to proof outline checkers that provide substantially more
automation than interactive provers, but are much simpler to develop
than custom automatic verifiers.

1 Introduction

Standard separation logic enables the modular verification of heap-manipulating
sequential [27,35] and data-race free concurrent programs [26,5]. More recently,
numerous separation logics have been proposed that enable the verification of
fine-grained concurrency by incorporating ideas from concurrent separation logic,
Owicki-Gries [30], and rely-guarantee [16]. Examples include CAP [8], iCAP [43],
CaReSL [45], CoLoSL [34], FCSL [39], GPS [46], RSL [48], and TaDA [37]
(see Brookes et al. [4] for an overview). These logics are very expressive, but
challenging to apply because they often comprise many complex proof rules. E.g.
our running example (Fig. 1) consists of two statements, but requires over 20 rule
applications in TaDA, many of which have non-trivial instantiations and subtle
side conditions. This complexity seems inevitable for challenging verification
problems involving, e.g. fine-grained concurrency or weak memory.

The complexity of advanced separation logics makes it difficult to develop
proofs in these logics. It is, thus, crucial to have tools that check the validity
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of proofs and automate parts of the proof search. One way to provide this tool
support is through proof checkers, which take as input a nearly complete proof
and check its validity. They typically embed program logics into the higher-order
logic of an interactive theorem prover such as Coq. Proof checkers exist, e.g.
for RSL [48] and FCSL [39]. Alternatively, automated verifiers take as input a
program with specifications and devise the proof automatically. They typically
combine existing reasoning engines such as SMT solvers with logic-specific proof
search algorithms. Examples are Smallfoot [2] and Grasshopper [33] for traditional
separation logics, and Caper [9] for fine-grained concurrency.

Proof checkers and automated verifiers strike different trade-offs in the design
space. Proof checkers are typically very expressive, enabling the verification of
complex programs and properties, and produce foundational proofs. However,
existing proof checkers offer little automation. Automated verifiers, on the other
hand, significantly reduce the proof effort, but compromise on expressiveness and
require substantial development effort, especially, to devise custom proof search
algorithms.

It is in principle possible to increase the automation of proof checkers by
developing proof tactics, or to increase the expressiveness of automated verifiers by
developing stronger custom proof search algorithms. However, such developments
are too costly for the vast majority of program logics, which serve mostly a
scientific or educational purpose. As a result, adequate tool support is very rare,
which makes it difficult for developers of such logics, lecturers and students, as
well as engineers to apply, and gain experience with, such logics.

To remedy the situation, several tools took inspiration from the idea of proof
outlines [29,1], formal proof skeletons that contain the key proof steps, but omit
most of the details. Proof outlines are a standard notation to present program
proofs in publications and teaching material. Proof outline checkers such as
Starling [49] and VeriFast [15] take as input a proof outline and then check
automatically that it represents a valid proof in the program logic. They provide
automation for proof steps for which good proof search algorithms exist, and can
support expressive logics by requiring annotations for complex proof steps. Due
to this flexibility, proof outline checkers are especially useful for experimenting
with a logic, in situations where foundational proofs are not essential.

In this paper, we present Voila, a proof outline checker for TaDA [37], which
goes beyond existing proof outline checkers and automated verifiers by supporting
a substantially more complex program logic, handling fine-grained concurrency,
linearizability, abstract atomicity, and other advanced features. We believe that
our systematic development of Voila generalizes to other complex logics. Our
contributions are as follows:

– The Voila proof outline language, which supports a large subset of TaDA and
enables users to write proof outlines very similar to those used by the TaDA
authors [37,36] (Sec. 3).

– A systematic approach to automate the expansion of a proof outline into a
full proof candidate via a normal form and heuristics (Sec. 5). Our approach
automates most proof steps (20 out of 22 in the running example from Fig. 1).
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– An encoding of the proof candidate into Viper [24], which checks its validity
without requiring any TaDA-specific proof search algorithms (Sec. 6).

– The Voila proof outline checker, the first tool that supports specification for
linearization points, provides a high degree of automation, and achieves good
performance (Sec. 7). Our submission artifact with the Voila tool ready-to-use
can be found at [51], and the Voila source repository is located at [50].

Outline. Sec. 2 gives an overview of the TaDA logic and illustrates our approach.
Sec. 3 presents the Voila proof outline language, and Sec. 4 summarizes how we
verify proof outlines. We explain how we automatically expand a proof outline
into a proof candidate in Sec. 5 and how we encode a proof candidate into Viper
in Sec. 6. In Sec. 7, we evaluate our technique by verifying several challenging
examples, discuss related work in Sec. 8, and conclude in Sec. 9.

The appendix contains many further details, including: the full version and
Viper encoding of our running example, with TaDA levels (omitted from this
paper, but supported by Voila) and nested regions; additional inference heuristics;
general Viper encoding scheme; encoding of a custom guard algebra; and a
substantial soundness sketch.

2 Running Example and TaDA Overview

Fig. 1 shows our running example: a TaDA proof outline for the lock procedure of
a spinlock. As in the original publication [37], the outline shows only two out of
22 proof steps and omits most side conditions. We use this example to introduce
the necessary TaDA background, explain TaDA proof outlines, and illustrate the
corresponding Voila proof outline.

2.1 Regions and Atomicity

TaDA targets shared-memory concurrency with sequentially consistent memory.
TaDA programs manipulate shared regions, data structures that are concurrently
modified according to a specified protocol (as in rely-guarantee reasoning [16]).
A shared region such as Lockr(x, s) is an abstraction over the region’s content,
analogous to abstract predicates [32] in traditional separation logic. In our
example (lines 1–2), the lock owns memory location x (denoted by separation
logic’s points-to predicate x 7→ _), and its abstract state s is 0 or 1, indicating
whether it is unlocked or locked. Here, the abstract state and the content of the
memory location coincide, but they may differ in general. The subscript r uniquely
identifies a region instance. Note that TaDA’s region assertions are duplicable,
such that multiple threads may obtain an instance of the Lockr resource and
invoke operations on the lock.

Lines 3–5 define the protocol for modifications of a lock as a labeled transition
system. The labels are guards – abstract resources that restrict when a transition
may be taken. Here, guard G allows both locking and unlocking (lines 3-4), and
is unique (line 5). Most lock specifications use duplicable guards to allow multiple
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Fig. 1: TaDA spinlock example with
shared region Lock; adapted with
only minor changes from TaDA [37].
The lock region (lines 1–2) comprises
a single memory location, whose
value is either 0 (available) or 1 (ac-
quired). Guard G allows locking and
unlocking (lines 3–4), and is unique
(line 5). The proof outline (lines 6–
22) shows a CAS-based lock opera-
tion with atomic specifications. An
enclosing region (CAPLock in da Rocha
Pinto et al. [37], verifiable by Voila
and shown in App. D) then estab-
lishes the usual lock semantics. Lev-
els (denoted by λ in TaDA) are omit-
ted from the discussion in this paper,
but supported by Voila and included
in App. D.

threads to compete for the lock; in this example, the usual lock semantics is
established by an enclosing region (CAPLock [37]; see App. D).

Lines 6–22 contain the proof outline for the lock procedure, which updates a
lock x from an undetermined state – it can seesaw between locked and unlocked
due to environment interference – to the locked state. Importantly, this update
appears to be atomic to clients of the spinlock. These properties are expressed
by the atomic TaDA triple (lines 6, 7, and 22)

s ∈ {0, 1} · 〈Lockr(x, s) ∗ [G]r 〉 lock(x) 〈Lockr(x, 1) ∗ [G]r ∗ s = 0〉

Atomic triples (angle brackets) express that their statement is linearizable [14].
The abstract state of shared regions occurring in pre- and postconditions of
atomic triples is interpreted relative to the linearization point, i.e. the moment
in time when the update becomes visible to other threads (here, when the CAS
operation on line 14 succeeds). The interference context s ∈ {0, 1} is a special
binding for the abstract region state that forces callers to guarantee that the
environment keeps the lock state in {0, 1} until the linearization point is reached
(a vacuous restriction in this case).

The precondition of the triple states that an instance of guard G for region
r, [G]r, is required to execute lock(x). The postcondition expresses that, at the
linearization point, the lock’s abstract state was changed from unlocked (s = 0)
to locked (Lockr(x, 1)). In general, callers must assume that a region’s abstract
state may have been changed by the environment after the linearization point
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Fig. 2: Simplified versions of two key TaDA rules used in Fig. 1. MakeAtomic
establishes an atomic triple (conclusion) for a linearizable block of code (premise),
which includes checking that a state update complies with the region’s transition
system: TR(G)∗ is the reflexive, transitive closure of the transitions that G allows.
UpdateRegion identifies a linearization point, for instance, a CAS statement.
If successful, the diamond tracking resource r Z⇒ � is exchanged for the witness
tracking resource r Z⇒ (x, y) to record the performed state update; otherwise, the
diamond resource is kept, such that the operation can be attempted again.

was reached; here, however, the presence of the unique guard [G]r enables the
caller of lock to conclude (by the transition system) that the lock remains locked.

2.2 TaDA Proof Outline

Lines 6–22 of the proof outline in Fig. 1 show the main proof steps; Fig. 2 shows
simplified versions of the applied key TaDA rules. MakeAtomic establishes
an atomic triple by checking that a block of code is atomic w.r.t. a shared
region abstraction (hence the change from non-atomic premise triple, written
with curly braces, to an atomic conclusion triple). UpdateRegion identifies the
linearization point inside this code block. Rule MakeAtomic requires that the
atomicity context , a set A of pending updates, of the premise triple includes any
region updates performed by the statement of the triple (there can be at most
one such update per region). In the proof outline, this requirement is reflected
on line 8, which shows the intended update of the lock’s state: r : s ∈ {0, 1} 1
(following TaDA publications, we omitted the tail of the atomicity context from
the outline). MakeAtomic checks that the update is allowed by the region’s
transition system with the available guards (the rule’s second premise in Fig. 2),
but the check is omitted from the proof outline. Then MakeAtomic temporarily
exchanges the corresponding guard [G]r for the diamond tracking resource r Z⇒ �
(line 9), which serves as evidence that the intended update was not yet performed.

Inside the loop, an application of UpdateRegion identifies the CAS (line 14)
as the linearization point. The rule requires the diamond resource in its precon-
dition (line 11), modifies the shared region (lines 12–16), and case-splits in its
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postcondition: if the update failed (line 19) then the diamond is kept for the next
attempt; otherwise (line 18), the diamond is exchanged for the witness tracking
resource r Z⇒ (0, 1), which indicates that the region was updated from abstract
state 0 to 1. At the end of MakeAtomic (lines 21–22), the witness resource is
consumed and the desired abstractly atomic postcondition is established, stating
that the shared region was updated from 0 to 1 at the linearization point.

2.3 Voila Proof Outline

Fig. 3 shows the complete proof outline of our example in the Voila proof outline
language, which closely resembles the TaDA outline from Fig. 1. In particular, the
region declaration defines a region’s interpretation, abstract state, and transition
system, just like the initial declarations in Fig. 1. The subsequent proof outline
for procedure lock annotates the same two rule applications as the TaDA outline
and a very similar loop invariant. The Voila proof outline verifies automatically
via an encoding into Viper, but the outline is expressed completely in terms
of TaDA concepts; it does not expose any details of the underlying verification
infrastructure. This means that our tool automatically infers the additional 20
rule applications, and all omitted side conditions, thereby closing the gap between
the user-provided proof outline and a corresponding full-fledged proof.

3 Proof Outline Language

Proof outlines annotate programs with rule applications of a given program logic.
These annotations indicate where to apply rules and how to instantiate their
meta-variables. The goal of a proof outline is to convey the essential proof steps;
ideally, consumers of such outlines can then construct a full proof with modest
effort. Consumers may be human readers [29], or tools that automatically check
the validity of a proof outline [15,23,49]; our focus is on the latter.

The key challenge of designing a proof outline language is to define annotations
that accomplish this goal with low annotation overhead for proof outline authors.
To approach this challenge systematically, we classify the rules of the program logic
(here: TaDA) into three categories: (1) For some rules, the program prescribes
where and how to apply them, i.e. they do not require any annotations. We
call such rules syntax-driven rules. An example in standard Hoare logic is the
assignment rule, where the assignment statement prescribes how to manipulate
the adjacent assertions. (2) Some rules can be applied and instantiated in many
meaningful ways. For such rules, the author of the proof outline needs to indicate
where or how to apply them through suitable annotations. Since such rules
often indicate essential proof steps, we call them key rules. In proof outlines
for standard Hoare logic, the while-rule typically requires an annotation how to
apply it, namely the loop invariant. The rule of consequence typically requires an
annotation where and how to apply it, e.g. to strengthen the precondition of a
triple or to weaken its postcondition. (3) The effort of authoring a proof outline
can be greatly reduced by applying some rules heuristically, based on information
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struct cell { int val; }

region Lock(id r, cell x)
interpretation { x.val |-> ?v && (v == 0 || v == 1) }
state { v }
guards { unique G; }
actions { G: 0 ~> 1; G: 1 ~> 0; }

abstract_atomic procedure lock(id r, cell x)
interference ?s in Set(0, 1);
requires Lock(r, x, s) && G@r;
ensures Lock(r, x, 1) && G@r && s == 0;

{
bool b;
make_atomic using Lock(r, x) with G@r {
do
invariant Lock(r, x);
invariant !b ==> r |=> <D>;
invariant b ==> r |=> (0, 1);

{
update_region using Lock(r, x) {
b := CAS(x, 0, 1);

}
} while (!b);

}
}

Fig. 3: The Voila proof outline of our example, strongly resembling the TaDA
proof outline from Fig. 1. id is the type of region identifiers; primitive types
are passed by value, structs by reference. Logical variables are introduced using
a question mark; e.g. x.val7→?v binds the logical variable v to the value of the
location x.val. && denotes separating conjunction.

already present in the outline. We call such rules bridge rules. Heuristics reduce
the annotation overhead, but may lead to incompleteness if they fail; a proof
outline language may provide annotations to complement the heuristics in such
situations, slightly blurring the distinction between key and bridge rules. E.g. the
Dafny verifier [22] applies heuristics to guess termination measures for loops, but
also offers an annotation to provide a measure manually, if necessary.

The rule classification depends on the proof search capabilities of the veri-
fication tool that is used to check the proof outline. We use Viper [24], which
provides a high degree of automation for standard separation logic and, thus,
allows us to focus on the specific aspects of TaDA.

In the rest of this section, we give an overview of the Voila proof outline
language and, in particular, discuss which TaDA rules are supported as syntax-
driven, key, and bridge rules. Voila’s grammar can be found in App. C, showing
that Voila strongly resembles TaDA, but requires fewer technical details.

Expressions and Statements. Voila supports all of TaDA’s programming language
constructs, including variables and heap locations, primitive types and operations
thereon, atomic heap reads and writes, loops, and procedure calls. Consequently,
Voila supports the corresponding syntax-driven TaDA rules.
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Background Definitions. Voila’s syntax for declaring regions and transitions
closely resembles TaDA, but e.g. subscripts are replaced by additional parameters,
such as the region identifier r. A region declaration defines the region’s content
via an interpretation assertion, and its value via a state function. The latter may
refer to region parameters, as well as values bound in the interpretation, such
as v in the example from Fig. 3. The region’s transition system is declared by
introducing the guards and the permitted actions , i.e. transitions. Voila includes
several built-in guard algebras (adopted from Caper [9]); additional ones can
be encoded, see App. H. A region declaration introduces a corresponding region
predicate, which has an additional out-parameter that yields the region’s abstract
state (e.g. s in the precondition of procedure lock in Fig. 3), as defined by the
state function. We omit this out-parameter when its value is irrelevant.

Specifications. Voila proof outlines require specifications for procedures, and in-
variants for loops; we again chose a TaDA-like syntax for familiarity. Explicit loop
invariants are required by Viper, but also enable us to automatically instantiate
certain bridge rules (see framing in Sec. 5).

Recall that specifications in TaDA are written as atomic or non-atomic triples,
and include an interference context and an atomicity context. Voila simplifies the
notation significantly by requiring these contexts only for abstractly-atomic proce-
dure specifications; for all statements and rule applications, they are determined
automatically, despite changing regularly during a proof. For procedures with
abstractly-atomic behavior (modifier abstract_atomic), the interference context is
declared through the interference clause. E.g. for procedure lock from Fig. 3, it
corresponds to TaDA’s interference context s ∈ {0, 1}.

Key Rules. In addition to procedure and loop specifications, Voila requires
user input only for the following fundamental TaDA rules: UpdateRegion,
MakeAtomic, UseAtomic, and OpenRegion; applications of all other rules
are automated. Since they capture the core ideas behind TaDA, these rules
are among the most complex rules of the logic and admit a vast proof search
space. Therefore, their annotation is essential, for both human readers [37,36] and
automatic checkers. As seen in Fig. 3, the annotations for these key rules include
only the used region and, for updates, the used guard; all other information
present in the corresponding TaDA rules is derived automatically.

Bridge Rules. All other TaDA rules are applied automatically, and thus have
no Voila counterparts. This includes all structural rules for manipulating triple
atomicity (e.g. AWeakening1, AExists), interference contexts (e.g. Substitu-
tion, AWeakening2), and levels (e.g. AWeakening3). Their applications are
heuristically derived from the program, applications of key rules, and adjacent
triples. TaDA’s frame rule is also automatically applied by leveraging Viper’s
built-in support for framing, combined with additional encoding steps to satisfy
TaDA’s frame stability side condition. Finally, TaDA entailments are bridge rules
when they can be automated by the used verification tool. For Viper, this is the
case for standard separation logic entailments, which constitute the majority
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of entailments to perform. To support TaDA’s view shifts [7,36] – entailments
similar to the classical rule of consequence, but involving arbitrary definitions of
regions and guard algebras – Voila provides specialized annotations.

4 Proof Workflow

Our approach, and corresponding implementation, enables the following workflow:
users provide a proof outline and possibly some annotations for complex entail-
ments, but never need to insert any other rule. Hence, if the outline summarizes
a valid proof, verification is automatic, without a tedious process of manually
applying additional rules. If the outline is invalid, our tool reports which specifi-
cation (e.g. loop invariant) it could not prove or which key rule application it
could not verify, and why (e.g. missing guard).

Achieving this workflow, however, is challenging: by design, proof outlines
provide the important proof steps, but are not complete proofs. Consider, e.g.
the TaDA and Voila outlines from Fig. 1 and Fig. 3, respectively. Applying
UpdateRegion produces an atomic triple in its conclusion, whereas the while-
rule requires a non-atomic triple for the loop body. A complete proof needs to
perform the necessary adjustment through additional applications of bridge rules,
which are not present in the proof outlines, and thus need to be inferred.

Our workflow is enabled by first expanding proof outlines into proof candidates ,
in two main steps: step 1 automatically inserts the applications of all syntax-
driven rules; step 2 expands further by applying heuristics to insert bridge rule
applications. The resulting proof candidate contains the applications of all rules
of the program logic. Afterwards, we check that the proof candidate corresponds
to a valid proof, by encoding it as a Viper program that checks whether all proof
rules are applied correctly. Our actual implementation deviates slightly from
this conceptual structure, e.g. because Viper does not require one to make the
application of syntax-driven rules, framing, and entailment checking explicit.

5 Expanding Proof Outlines to Proof Candidates

Automatically expanding a proof outline is ultimately a proof search problem,
with a vast search space in case of complex logics such as TaDA. Our choice
of key rules (and corresponding annotations) reduces the search space, but it
remains vast, due to TaDA’s many structural rules that can be applied to almost
all triples. To further reduce the search space, without introducing additional
annotation overhead, we devised (and enforce) a normal form for proof candidate
triples. Our normal form allows us to define heuristics for the application of
bridge rules locally, based only on adjacent rule applications, without having to
inspect larger proof parts. This locality reduces the search space substantially,
and enables us to automatically close the gap between user-provided proof outline
and finally verified proof candidate. In our running example, our heuristics infer
20 out of 22 rule applications.
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It might be helpful to consider an analogy with standard Hoare logic: its
rule of consequence can be applied to each Hoare triple. A suitable normal form
could restrict proofs to use the rule of consequence only at the beginning of the
program and for each loop (as in a weakest-precondition calculus). A heuristic
can then infer the concrete applications, in particular, the entailments used in
the rule application, treating the rule as a bridge rule.

Normal Form. Our normal is established by a combination of syntactic checks and
proof obligations in the final Viper encoding. Its main restrictions are as follows:
(1) All triples are either exclusively atomic or non-atomic, which enables us to infer
the triple kinds from statements and key rule applications. Due to this restriction,
Voila cannot express specifications that combine atomic and non-atomic behaviors.
However, such specifications do not occur frequently (see Sec. 5.2.3 in [36] for
an example) and could be supported via additional annotations. (2) All triple
preconditions, as well as the postconditions of non-atomic triples, are stable,
i.e. cannot be invalidated by (legal) concurrent operations. In contrast, TaDA
requires stability only for certain assertions. Our stronger requirement enables us
to rely on stability at various points in the proof instead of having to check it –
most importantly, when Viper automatically applies its frame rule. To enforce
this restriction, we eagerly stabilize assertions through suitable weakening steps.
(3) In atomic triples, the state of every region is bound by exactly one interference
quantifier ( ), which simplifies the manipulation of interference contexts, e.g.
for procedure calls. To the best of our knowledge, this restriction does not limit
the expressiveness of Voila proofs. (4) Triples must hold for a range of atomicity
contexts A, rather than just a single context. This stronger proof obligation rules
out certain applications of MakeAtomic – which we have seen only in contrived
examples – but it increases automation substantially and improves procedure
modularity.

By design, our normal form prevents Voila from constructing certain TaDA
proofs. However, the only practical limitation is that Voila does not support
TaDA’s combination of atomic and non-atomic behavior in a single triple. As far
as we are aware, all other normal form restrictions do not limit expressiveness
for practical examples, or can be worked around in systematic ways.

Heuristics. We employ five main heuristics: to determine when to change triple
atomicity, to ensure stable frames by construction, to compute atomicity context
ranges, to compute levels, and to compute interference contexts in procedure
body proofs. All heuristics are based on inspecting adjacent rule applications
and their proof state. We briefly discuss the first three heuristics here, and
refer readers to App. F for the remaining two heuristics. There, we give a more
detailed explanation, and illustrate our heuristics in the context of our running
example. (1) Changing triple atomicity corresponds to an application of (at least)
TaDA rule AWeakening1, necessary when a non-atomic composite statement
(e.g. the while statement in Fig. 1) has an abstract-atomic sub-statement (e.g.
the atomic CAS in Fig. 1). We infer all applications of this rule. (2) A more
complex heuristic is used in the context of framing: TaDA’s frame rule requires
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the frame, i.e., the assertion preserved across a statement, to be stable. For simple
statements such as heap accesses, it is sound to rely on Viper’s built-in support
for framing. For composite statements with arbitrary user-provided footprints
(assertions such as a loop invariant describing which resources the composite
statement may modify), we greedily infer frame rule applications that attempt to
preserve all information outside the footprint. The inferred applications are later
encoded in Viper such that the resulting frame is stable, by applying suitable
weakening steps. (3) Atomicity context ranges are heuristically inferred from
currently owned tracking resources and level information. Atomicity contexts
are not manipulated by a specific TaDA rule, but they need to be instantiated
when applying rules: most importantly, TaDA’s procedure call rule, but also e.g.
MakeAtomic and UpdateRegion (see Fig. 2).

In our experience, our heuristics fail only in two scenarios: the first are
contrived examples, concerned with TaDA resources in isolation, not properties
of actual code – where they fail to expand a proof outline into a valid proof.
More relevant is the second scenario, where our heuristics yield a valid proof
that Viper then fails to verify because it requires entailments that Viper cannot
discharge automatically. To work around such problems when they occur, Voila
allows programmers to provide additional annotations to indicate where to apply
complex entailments.

Importantly, a failure of our heuristics does not compromise soundness: if
they infer invalid bridge rule applications, e.g. whose side conditions do not hold,
the resulting invalid proof candidates are rejected by Viper in the final validation.

6 Validating Proof Candidates in Viper

Proof candidates – i.e. the user-provided program with heuristically inserted
bridge rule applications – do not necessarily represent valid proofs, e.g. when
users provide incorrect loop invariants. To check whether a proof candidate
actually represents a valid proof, we need to verify (1) that each rule is applied
correctly, in particular, that its premises and side conditions hold, and (2) that
the property shown by the proof candidate entails the intended specification. To
validate proof candidates automatically, we use the existing Viper tool [24]. In
this section, we give a high-level overview of how we encode proof candidates
into the Viper language.

Viper Language. Viper uses a variation of separation logic [40,31] whose assertions
separate access permissions from value information: separation logic’s points-
to assertion x.f 7→ v is expressed as acc(x.f) && x.f == v, and separation logic
predicates [32] are similarly split into a predicate (abstracting over permissions)
and a heap-dependent function (abstracting over values). Well-definedness checks
ensure that the heap is accessed only under sufficient permissions. Viper provides
a simple imperative language, which includes in particular two statements to ma-
nipulate the verification state: exhale A asserts all logical constraints in assertion
A, removes the permissions in A from the current state (or fails if the permissions
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Jregion R(r: id, p: t)
interpretation I
state S
guards G
actions AK ,

predicate R(r: Ref, p:JtK) { JIK }

function R_State(r: Ref, p:JtK): T
requires R(r,p)

{ unfolding R(r,p) in JSK }

foreach g(p’: t’) ∈ G:

predicate R_g(r: Ref, p’:Jt’K)
end

field diamond: Bool

field val: Int

predicate Lock(r: Ref, x: Ref) {
acc(x.val) &&
(x.val == 0 || x.val == 1)

}

function Lock_State
(r: Ref, x: Ref): Int

requires Lock(r, x)
{ unfolding lock(r, x) in x.val }

predicate Lock_G(r: Ref)

field diamond: Bool

Fig. 4: Excerpt of the Viper encoding of regions; general case (left), and for the
lock region from Fig. 3 (right). The encoding function is denoted by double square
brackets; overlines denote lists; foreach loops are expanded statically. Type T is
the type of the state expression S, which is inferred. Actions A do not induce
any global declarations. The elements of struct types and type id are encoded
as Viper references (type Ref). The unfolding expression temporarily unfolds a
predicate into its definition; it is required by Viper’s backend verifiers. The struct
type cell from Fig. 3 is encoded as a Viper reference with field val (in Viper, all
objects have all fields declared in the program).

are not available) and assigns non-deterministic values to the corresponding
memory locations (to reflect that the environment could now modify them);
inhale A analogously assumes constraints and adds permissions.

Regions and Assertions. TaDA’s regions introduce various resources such as region
predicates and guards. We encode these into Viper permissions and predicates as
summarized in Fig. 4 (left). Each region R gives rise to a corresponding predicate,
which is defined by the region interpretation. A region’s abstract state may be
accessed by a Viper function R_State, which is defined based on the region’s state

clause, and depends on the region predicate. Moreover, we introduce an abstract
Viper predicate R_g for each guard g of the region.

These declarations allow us to encode most TaDA assertions in a fairly
straightforward way. E.g. the assertion Lockr(x, s) from Fig. 1 is encoded as a
combination of a region predicate and the function yielding its abstract state:
Lock(r,x) && Lock_State(r,x) == s. We encode region identifiers as references in
Viper, which allows us to use the permissions and values of designated fields to
represent resources and information associated with a region instance. E.g. we
use the permission acc(r.diamond) to encode the TaDA resource r Z⇒ �.
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...
{ Pp } s { Qp }

(R)
{ Pc } s { Qc }

...

Rule Applications. Proof candidates are tree structures, where
each premise of a rule application R is established as the
conclusion of another rule application, as illustrated on the
right. To check the validity of a candidate, we check the validity
of each rule application. For rules that are natively supported by Viper (e.g. the
assignment rule), Viper performs all necessary checks. Each other rule application
is checked via an encoding into the following sequence of Viper instructions:
(1) Exhale the precondition Pc of the conclusion to check that the required
assertion holds. (2) Inhale the precondition Pp of the premise since it may be
assumed when proving the premise. (3) After the code s of the premise, exhale
the postcondition Qp of the premise to check that it was established by the
proof for the premise. (4) Inhale the postcondition Qc of the conclusion. Steps 2
and 3 are performed for each premise of the rule. Moreover, we assert the side
conditions of each rule. If a proof candidate is invalid, e.g. composes incompatible
rules, one of the checks above fails and the candidate is rejected.

Using this encoding of rule applications as building blocks, we can assemble
entire procedure proofs as follows: for each procedure, we inhale its precondition,
encode the rule application for its body, and then exhale its postcondition.

Example: Stabilizing Assertions. Recall that an assertion A is stable if and only
if the environment cannot invalidate A by performing any legal region updates.
In practice, this means that the environment cannot hold a guard that allows it
to change the state of a region in a way that violates A. The challenge of checking
stability as a side-condition is to avoid higher-order quantification over region
instances and guards, which is hard to automate. We address this challenge
by eagerly stabilizing assertions in the Viper encoding, i.e. we weaken Viper’s
verification state such that the remaining information about the state is stable.
We achieve this effect by first assigning non-deterministic values to the region
state and then constraining these to be within the states permitted by the region’s
transition system, taking into account the guards the environment could hold.
The Viper code for stabilizing instances of Lock can be found in App. G.3.

7 Evaluation

We evaluated Voila on nine benchmark examples from Caper’s test suite, with the
Treiber’s stack [44] variant BagStack being the most complex example, and report
verification times and annotation overhead. Each example has been verified in two
versions: a version with Caper’s comparatively weak non-atomic specifications,
and another version with TaDA’s strong atomic specifications; see Sec. 8 for a
more detailed comparison of Voila and Caper. An additional example, CounterCl,
demonstrates the encoding of a custom guard algebra not supported in Caper (see
App. B). To evaluate performance stability, we seeded four examples with errors
in the loop invariant, procedure postcondition, code, and region specification,
respectively. Our benchmark suite is relatively small, but each example involves
nontrivial specifications. To the best of our knowledge, no other (semi-)automated
tool is able to verify similarly strong specifications.
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Program LOC Stg Wk Cpr
SLock 15 2.6 2.1 1.4
TLock 23 21.8 8.1 2.4
TLockCl 16 2.9 2.6 0.5
CASCtr 25 3.9 2.7 1.5
BoundedCtr 24 8.1 5.1 63.1
IncDecCtr 28 4.2 3.1 2.9
ForkJoin 16 2.1 1.3 1.0
ForkJoinCl 28 2.9 2.3 1.6
BagStack 29 29.9 18.0 211.6
CounterCl 45 - 5.8 -

Program Err Stg Wk Cpr

CASCtr

L 1.5 1.9 1.5
P 2.5 1.9 11.2
C 1.5 1.2 0.5
R 1.2 1.1 0.3

TLock

L 3.9 7.2 2.0
P 7.2 3.4 2.4
C 15.6 1.8 0.6
R 4.1 1.8 0.7

TLockCl

P 2.9 2.6 143.4
C 2.5 2.5 115.5
R 1.8 1.7 5.0

BagStack

L 26.5 17.8 > 600
P 27.9 17.7 > 600
C 26.3 17.8 > 600
R 14.4 9.2 216.6

Fig. 5: Timings in seconds for successful (left table) and failing (right table)
verification runs; lines of code (LOC) are given for Voila programs and exclude
proof annotations. Stg/Wk denote strong/weak Voila specifications; Cpr abbre-
viates Caper. Programs include spin and ticket locks, counters (Ctr), and client
programs (Cl) using the proven specifications. Errors (Err) were seeded in loop
invariants (L), postconditions (P), code (C ), and region specifications (R).

Performance. Fig. 5 shows the runtime for each example in seconds. All mea-
surements were carried out on a Lenovo W540 with an Intel Core i7-4800MQ
and 16GB of RAM, running Windows 10 x64 and Java HotSpot JVM 18.9 x64;
Voila was compiled using Scala 2.12.7. We used a recent checkout of Viper and
Z3 4.5.0 x64 (we failed to compile Caper against newer versions of Z3). Each
example was verified ten times (on a continuously-running JVM); after removing
the highest and lowest measurement, the remaining eight values were averaged.
Caper (which compiles to native code) was measured analogously.

Overall, Voila’s verification times are good; most examples verify in under
five seconds. Voila is slower than Caper and its logic-specific symbolic execution
engine, but it exhibits stable performance for successful and failing runs, which is
crucial in the common case that proof outlines are developed interactively, such
that the checker is run frequently on incorrect versions. As demonstrated by the
error-seeded versions of TLockCl and BagStack, Caper’s performance is less stable.

Another interesting observation is that strong specifications typically do not
take significantly longer to verify, although only they require the full spectrum of
TaDA ingredients and make use of TaDA’s most complex rules, MakeAtomic
and UpdateRegion. Notable exceptions are: BagStack, where only the strong
specification requires sequence theory reasoning; and TLock and BoundedCtr, whose
complex transition systems with many disjunctions significantly increase the
workload when verifying atomicity rules such as MakeAtomic.

Automation. Voila’s annotation overhead, averaged over the programs with
strong specifications from Fig. 5, is 0.8 lines of proof annotations (not counting
declarations and procedure specifications; neither for Caper) per line of code,
which demonstrates the high degree of automation Voila achieves. Caper has an
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average annotation overhead of 0.13 for its programs from Fig. 5, but significantly
weaker specifications. Verifying only the latter in Voila does not reduce annotation
overhead significantly since Voila was designed to support TaDA’s strong specifi-
cations. The overhead reported for encodings into interactive theorem provers
such as Coq [11,19,20,48] is typically much higher, ranging between 10 and 20.

8 Related Work

We compare Voila to three groups of tools: automated verifiers, focusing on
automation; proof checkers, focusing on expressiveness; and proof outline checkers,
designed to strike a balance between automation and expressiveness. Closest
to our work in the kind of supported logic is the automated verifier Caper [9],
from which we drew inspiration, e.g. for how to specify region transition systems.
Caper supports an improved version of CAP [8], a predecessor logic of TaDA.
Caper’s symbolic execution engine achieves an impressive degree of automation,
which, for more complex examples, is higher than Voila’s. Caper’s automation
also covers slightly more guard algebras than Voila. However, the automation
comes at the price of expressiveness, compared to Voila: postconditions are often
significantly weaker because the logic does not support linearizability (or any
other notion of abstract atomicity). E.g. Caper cannot prove that the spinlock’s
unlock procedure actually releases the lock. As was shown in Sec. 7, Caper is
typically faster than Voila, but exhibits less stable performance when a program
or its specifications are wrong.

Other automated verifiers for fine-grained concurrency reasoning are Small-
footRG [6], which can prove memory safety, but not functional correctness,
and CAVE [47], which can prove linearizability, but cannot reason about non-
linearizable code (which TaDA and Voila can). VerCors [28] combines a concurrent
separation logic with process-algebraic specifications; special program annotations
are used to relate concrete program operations to terms in the abstract process
algebra model. Reasoning about the resulting term sequences is automated via
model checking, but is non-modular. Summers et al. [42] present an automated
verifier for the RSL family of logics [48,10,11] for reasoning about weak-memory
concurrency. Their tool also encodes into Viper and requires very few annotations
because proofs in the RSL logics are more stylized than in TaDA.

A variety of complex separation logics [48,25,46,39,10,11,13,21,17] are sup-
ported by proof checkers, typically via Coq encodings. As discussed in the
introduction, such tools strike a different trade-off than proof outline checkers:
they provide foundational proofs, but typically offer little automation, which
hampers experimenting with logics.

Starling [49] is a proof outline checker and closest to Voila in terms of the
overall design, but it focuses on proofs that are easy to automate. To achieve this,
it uses a simple instantiation of the Views meta-logic [7] as its logic. Starling’s logic
does not enable the kind of strong, linearizability-based postconditions that Voila
can prove (see the discussion of Caper above). Starling generates proof obligations
that can be discharged by an SMT solver, or by GRASShopper [33] if the program
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requires heap reasoning. The parts of an outline that involve the heap must be
written in GRASShopper’s input language. In contrast, Voila does not expose
the underlying system, and users can work on the abstraction level of TaDA.

VeriFast [15] can be seen as an outline checker for a separation logic with
impressive features such as higher-order functions and predicates. It has no dedi-
cated support for fine-grained concurrency, but the developers manually encoded
examples such as concurrent stacks and queues. VeriFast favors expressiveness
over automation: proofs often require non-trivial specification adaptations and
substantial amounts of ghost code, but the results typically verify quickly.

9 Conclusion

We introduced Voila, a novel proof outline checker that supports most of TaDA’s
features, and achieves a high degree of automation and good performance. This
enables concise proof outlines with a strong resemblance of TaDA.

Voila is the first deductive verifier that can reason automatically about a
procedure’s effect at its linearization point, which is essential for a wide range
of concurrent programs. Earlier work either proves much weaker properties (the
preservation of basic data structure invariants rather than the functional behavior
of procedures) or requires substantially more user input (entire proofs rather
than concise outlines).

We believe that our systematic approach to developing Voila can be generalized
to other complex logics. In particular, encoding proof outlines into an existing
verification framework allows one to develop proof outline checkers efficiently,
without developing custom proof search algorithms. Our work also illustrates
that an intermediate verification language such as Viper is suitable for encoding
a highly specialised program logic such as TaDA. During the development of
Voila, we uncovered and fixed several soundness and modularity issues in TaDA,
which the original authors acknowledged and had partly not been aware of. We
view this as anecdotal evidence of the benefits of tool support that we described
in the introduction.

Voila supports the vast majority of TaDA’s features; most of the others can be
supported with additional annotations. The main exception are TaDA’s hybrid
assertions, which combine atomic and non-atomic behavior. Adding support for
those is future work. Other plans include an extension of the supported logic, e.g.
to handle extensions of TaDA [38,12].

Acknowledgements. We thank the anonymous referees of this paper, and earlier
versions thereof, for suggesting many improvements to the explanation of our
work. We are also thankful to Thomas Dinsdale-Young and Pedro da Rocha
Pinto for instructive discussions about their work, TaDA, and for feedback on
Voila.
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A TaDA Key Proof Rules

Fig. 6: Fig. 6 shows TaDA’s key proof rules as they are presented in da Rocha
Pinto’s thesis [36], including public and private assertions, and region levels.
Levels are omitted from the discussion in this paper, but supported by Voila.
The combination of public and private assertions in a rule triple is currently not
supported by Voila.

B Supported TaDA Ingredients

Fig. 7 provides an overview of Voila’s features, w.r.t. TaDA ingredients and Caper
guard algebras [9]. The left column lists TaDA features and to which extent their
incur annotation overhead. None means that the ingredient does not surface at
all in a Voila program. Once means that there is a one-time annotation per Voila
program, typically in the form of a background declaration such as a region. In
contrast, proc means that the feature requires a one-time annotation per Voila
procedure, typically as part of a procedure specification. Next, low means that the
feature may result in more than one annotation per procedure: for regions, these
are new-region statements (one per newly created region instance), in addition
to region declarations. Tracking resources, on the other hand, typically appear in
invariants of loops that repeat until an update succeeded. Finally, View shifts
incur a medium annotation overhead: most standard view shifts are automated
by Voila and do not require annotations, but for complex, manually encoded
examples, additional annotations may be required. See also App. H.
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Most of Caper’s guard algebras are supported by Voila, and as such, do not
incur any additional overhead (the guards themselves must still be mentioned,
e.g. in specifications). Only counting and sum guards are not directly supported
by Voila; they can be encoded, which will require additional annotations. See
also App. H for an example of a manually encoded guard algebra.

Ingredient Annotations
Regions low
Transition systems once
Triple kinds proc
Interference contexts proc
Atomicity contexts none
Levels proc
Tracking resources low
Private vs. public –
View Shifts medium
Stability none
Framing none

Guard Algebra Support
Trivial built-in
All-or-nothing built-in
Counting encodable
Indexed built-in
Product built-in
Permissions built-in
Sum encodable

Fig. 7: Supported TaDA ingredients, with a classification of the incurred annota-
tion overhead, and Caper guard algebras [9], with a classification of their support.
TaDA’s combination of public and private assertions in a rule triple is currently
not supported by Voila.
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C Voila Grammar

This section gives an overview of Voila’s grammar, and shows that Voila strongly
resembles TaDA, but requires fewer technical details in its annotation language.

t ::= id | bool | int | frac | S
e ::= x | ?x | l | e && e | e || e | !e | e⇒ e | e op e

a ::= e | x.f 7→ e | a && a | e⇒ a | R(r, e) | G(e)@r | r Z⇒ � | r Z⇒ (e, e)

Fig. 8: Voila’s core syntax for types t, expressions e, and assertions a). Types
t include the type of region identifiers id, fractions frac, and struct types S.
Expressions e include variables x, literals l, fields f , and the usual expression
operators, e.g. relational ones. They also include variable binders ?x, which are
allowed in only two places: the right-hand side of points-to assertions and the last
parameter of a region instance, binding the region’s abstract state. Assertions
a include, besides the usual separation logic assertions, region instances R(r, e),
where R denotes a region name, r a region identifier, and e the region’s abstract
state; the last argument may be omitted when the region state is unspecified. As
usual, overlines denote lists. Moreover, assertions include guards G(e)@r, where
G denotes a guard name and e the guard arguments (guards without arguments
are written as G@r), and TaDA’s two tracking resources. For brevity, we omitted
levels, collection data types (i.e. sets, sequence, maps, and tuples), and more
complex guards (but see also App. B and App. H).
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ns ::= x := e
| x := P(e)
| if (e) {s} else {s}
| while (e) invariant a {s}
| s; s

s ::= t x | ns | as

as ::= x.f := e
| y := x.f
| x := P(e)
| use_atomic using R(r, e) with G(e)@r {as}
| make_atomic using R(r, e) with G(e)@r {s}
| open_region using R(r, e) {as}
| update_region using R(r, e) {as}

Fig. 9: Voila’s core syntax for statements s, atomic statements as , and non-atomic
statements ns . Statements s comprise variable declarations as well as atomic and
non-atomic statements; the categorization of the latter follows TaDA. Atomic
statements as include field reads and writes, invocations of abstract-atomic
procedures, and key rule statements. Following TaDA, rule statements other
than make_atomic may only nest atomic statements. Non-atomic statements ns are
local variable assignments, invocations of non-atomic procedures, and compound
statements. For brevity, statements for creating struct and region instances have
been omitted, as have ghost statements useful for encoding, e.g. complex guard
algebras (see App. H).

struct S {t f} region R(id r, t x)
interpretation {a}
state {e}

guards {mod G(t x)}

actions {G(e) : e e}

abstract_atomic procedure P(t x)
returns (t y)

interference ?x in e
requires a
ensures a

{s}

Fig. 10: Voila’s core syntax for struct, region, and procedure declarations. Structs
declare fields and induce homonymous types. Region declarations include name R,
identifier r and further formal arguments t x. A region’s interpretation and state
are an assertion and expression, respectively. Each region may declare guards
G(t x), with formal arguments x and modifier unique or duplicable, and actions
that describe possible state changes. Abstract-atomic procedure declarations
include an interference clause that corresponds to TaDA’s interference context.
More complex guard and action definitions are omitted for brevity, as are non-
atomic and lemma procedures (but see also App. D and App. H).
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D Full Lock and CAPLock Example

This section complements our running example by showing TaDA outline and
Voila code for (1) region Lock and procedure lock, but with the previously omitted
levels, and (2) region CAPLock and procedure acquire, which build on the former
and provide the expected lock semantics.

 

lock

Fig. 11: TaDA declarations and proof outlines adapted from [36]: the left column
repeats our running example (region Lock, proof outline for procedure lock), but
with levels included. The right column shows the CAPLock region and a proof
outline for procedure acquire, which build on Lock and lock, respectively. The
CAPLock abstraction provides the expected lock semantics, via its guards and
actions: the vacuous zero guard 0 allows arbitrarily many clients to compete
for the lock (i.e. call acquire), but only the holder of the unique U guard can
release the lock again. Proof outlines of the latter procedures (release/unlock for
CAPLock/Lock) are straightforward and have been omitted.

The TaDA triple proved by the proof outline in the left (body of procedure
lock) and right (body of procedure acquire) column, respectively, are the following:

A ` s ∈ {0, 1} · 〈Lock0r(x, s) ∗ [G]r 〉 lock(x) 〈Lock
0
r(x, 1) ∗ [G]r ∗ s = 0〉

λ;A ` {∃v ∈ {0, 1} · CAPLockλa(r, x, v)} acquire(x) {CAPLockλa(r, x, 1) ∗ [U]a}
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region CAPLock(id a, int lvl, id r, cell x)
guards {
duplicable Z;
unique U;

}
interpretation {
0 < lvl &&
Lock(r, 0, x, ?v) && G@r && (v == 0 || v == 1) &&
(v == 0 ==> U@a)

}
state { v }
actions {
Z: 0 ~> 1;
U: 1 ~> 0;

}

procedure acquire(id a, int lvl, id r, cell x)
requires CAPLock(a, lvl, r, x) && Z@a;
ensures CAPLock(a, lvl, r, x, 1) && U@a;

{
use_atomic using CAPLock(a,lvl, r, x) with Z@a {
lock(r, 0, x);

}
}

// Repetition of our running example, but with previously omitted levels

struct cell {
int val;

}

region Lock(id r, int lvl, cell x)
guards { unique G; }
interpretation {
x.val |-> ?v && (v == 0 || v == 1)

}
state { v }
actions {
G: 0 ~> 1;
G: 1 ~> 0;

}

abstract_atomic procedure lock(id r, int lvl, cell x)
interference ?s in Set(0, 1);
requires Lock(r, lvl, x, s) && G@r;
ensures Lock(r, lvl, x, 1) && G@r && s == 0;

Fig. 12: The Voila proof outline of TaDA’s CAPLock [37], building on our lock
running example Fig. 3. Voila does not yet support TaDA’s zero guard; instead,
we use a duplicable guard Z. Following Fig. 11, CAPLock uses Lock with a fixed
level of 0, but Voila also verifiers a more general version, where Lock’s level is any
level smaller than CAPLock’s. Also following the TaDA source, Lock’s identifier r

is exposed as an argument to CAPLock. An alternative would be to existentially
quantify it; in Voila, this can be modeled via a ghost field of CAPLock.
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E Extended Discussion of our Normal Form

Recall from Sec. 5 that we impose a normal form on the rule triples of our
proof candidate, with four main restrictions: triples are exclusively atomic or
non-atomic; all triple preconditions, as well as the postconditions of non-atomic
triples, are stable; in atomic triples, the state of every region in the precondition
is bound by exactly one interference quantifier; and triples must hold for a range
of atomicity contexts. The normal form is required to hold for the premises and
conclusions of all syntax-driven and key rules, which allows our heuristics to
exploit the restrictions when inserting applications of bridge rules. Bridge rules
themselves may violate the normal form, which increases completeness.

Next, we provide additional details on the last normal form restriction: triples
must hold for a heuristically determined range of atomicity contexts A, rather
than just a single context. This stronger proof obligation rules out certain
applications of MakeAtomic – which we have seen only in contrived examples –
but it increases automation substantially: most importantly, by enabling modular
procedure specifications, which, as confirmed by the TaDA authors, was not
possible in the original logic.

TaDA proofs require a suitable instantiation of the atomicity context A, i.e.,
the set of pending region updates. Choosing a set that is too small provides
weak stability guarantees and thus, leads to unnecessary weakening of assertions,
whereas a set that is too large prevents certain applications of the MakeAtomic
rule. In both cases, the proof may fail even for correct programs. Moreover, for
procedure specifications, it is virtually impossible to chose a single atomicity A
that allows all possible clients to call the procedure, since each client would have
to establish exactly A,

To overcome these problems, Voila proves triples for all atomicity contexts
within certain bounds. These bounds are inferred by proof state already present
in the proof candidate, by partitioning the set of currently held region instances
into two sets: the first contains all regions that the triple’s statement may
update; this set corresponds to the lower bound, and is manipulated according to
MakeAtomic. The second set contains all regions that the code to verify cannot
update anyway; it corresponds to the upper bound, and is determined based on
level information.

F Extended Discussion of our Heuristics

Recall from Sec. 5 that our heuristics infer bridge rule applications locally, by
inspecting only adjacent rule applications that are to be composed, and their
proof state. We employ five main heuristics: to determine when to change triple
atomicity, to ensure stable frames by construction, to compute atomicity context
ranges, to compute levels, and to compute interference contexts in procedure
body proofs. The first three heuristics have been described briefly in Sec. 5;
here, we provide additional details and illustrate some of the heuristics on our
running example. Fig. 13 shows the Voila outline, the proof candidate, and
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  1 
 2 make_atomic  
 3     using Lock(r, x)  
 4     with G@r { 
 5   do { 
 6 
 7 
 8 
 9     update_region  
10         using Lock(r, x) { 
11       b := CAS(x, 0, 1) 
12     } 
13 
14 
15 
16   } inv I while (!b) 
17 } 

 1   INFER_INTERFERENCE(Lock(r, x))  
 2     var oldA := r.A               
 3     exhale r in update            
 4         && acc(r.A)               
 5     var oldUpdate := update       
 6     update := update minus Set(r) 
 7     exhale acc(r.diamond)         
 8     unfold Lock(r, x)             
 9     havoc Lock(r, x)              
10 
11       b := CAS(x, 0, 1) 
12     fold Lock(r, x)               
13     UPD_TRACK_RES(Lock(r, x))     
14     update := oldUpdate            
15     inhale acc(r.A)               
16         && r.A == oldA            
17 STABILIZE(Lock(r, x))             

 1 frame Lock(r, x) && G@r { 
 2   make_atomic 
 3       using Lock(r, x) with G@r { 
 4     frame I { 
 5       do { 
 6         triple_weak {                 
 7           stabilize {                 
 8             atomic_exists {           
 9               update_region           
10                   using Lock(r, x) {  
11                 b := CAS(x, 0, 1) 
12               }                       
13             }                         
14           }                           
15         }                             
16       } inv I while (!b) 
17     } 
18   } 
19 } 

Fig. 13: Left to right: the core of our running example’s lock procedure (same
as Fig. 3), the proof candidate with inferred bridge rules, and an excerpt of its
Viper encoding. Colors link operations of the proof candidate to their encoding.
I abbreviates the loop invariant from Fig. 3. The encoding uses macros such as
STABILIZE (more details later in this appendix) to abstract over Viper details.

the Viper encoding (discussed later). We visualize proof candidates by adding
steps for inferred bridge rule instantiations (e.g. triple_weak, denoting TaDA
rule AWeakening1), analogous to the user-provided key rule instantiations. For
simplicity, some of the inferred steps are omitted.

Changing Triple Kinds. Atomicity changes of a triple are necessary when a
non-atomic composite statement has an abstract-atomic sub-statement, such as
the while statement in Fig. 11 with its atomic body. In such cases, we apply
triple_weak (line 6 in Fig. 13) to obtain a non-atomic triple from an atomic one.
The corresponding TaDA rule AWeakening1 requires that the postcondition is
stable, which we achieve via stabilization, that is, by applying a specialized TaDA
entailment that weakens the postcondition to satisfy stability constructively. We
denote this step with a stabilize annotation (line 7) in the proof candidate.

Framing. TaDA’s frame rule requires the frame, i.e., the assertion preserved
across a statement, to be stable. We infer frames greedily, that is, we (actually,
Viper) frame as much information around a statement as soundly possible. For
simple statements such as heap accesses, this approach automatically leads to
stable frames. For composite statements with (arbitrary) user-provided footprints
(assertions such as loop invariants describing which resources are taken into the
composite statement), we need to ensure explicitly that our greedy approach does
not produce an unstable frame. For this purpose, we insert explicit frame bridge
steps (line 4) around composite statements; all other resources are then framed
across, and our encoding will ensure that these frames are stable. In our case, such
composite statements are loops (invariants), calls (pre- and postconditions) and
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make_atomic (using-clauses). In each case, a step frame F is inserted, indicating
that “everything but footprint F ” will be framed across and must thus be stable.

Interference Contexts. TaDA’s rules for opening a region and calling a procedure
(OpenRegion and FunctionCall; both not necessary for our running example)
require that the state of each involved region in the precondition is bound by
exactly one interference context ( ). This is not guaranteed in arbitrary TaDA
proofs (where a region’s state might, e.g. not be bound at all), but it is in Voila,
due to our normal form. As a consequence, no additional step is necessary before
opening a region; before calling a procedure (not used by our running example), a
substitution step is inserted to check compatibility of the caller’s and the callee’s
interference contexts. However, the frequently necessary atomicity triple changes
from non-atomic to atomic triples violate the single binder restriction of our
normal form since non-atomic triples have no interference contexts; similarly,
opening a region may violate the restriction since the state of nested regions is
typically not bound. To re-establish the normal form, we insert atomic_exists

steps in both cases, which automatically determine suitable interference contexts
for unbound region state, e.g. on line 8, where the preceding triple_weak changes
triple atomicity.

Levels. Region levels have been omitted from the core paper, but are supported
by Voila. Levels are essentially an order on region instances, and are used to
prevent circular reasoning when nesting TaDA’s duplicable regions. When a
region is opened or updated, or when a procedure is called, instantiating the
corresponding rule requires a specific triple level. E.g. to open a region (see rule
OpenRegion from Fig. 6), the current level (conclusion) must be one higher
than the level of the region to open. To meet such requirements, we infer suitable
instances of AWeakening3, to changes the triple level, for every rule – with
specific level requirements – already present in the proof candidate. Inferring and
instantiating AWeakening3 is relatively straightforward, and we believe that
our heuristic never fails to infer a suitable application, if one is possible.

G Extended Discussion of Validating Proof Candidates
in Viper

Recall from Sec. 6 that proof candidates – i.e. the user-provided program with
heuristically inserted bridge rule applications – do not necessarily represent valid
proofs, and that we check validity of a proof candidate by encoding it into Viper,
and verifying the resulting encoding. If the candidate is invalid, the latter will fail.
In this section, we provide additional – but still somewhat high-level – details
about the encoding of our running example. Later sections of this appendix build
on this, and refine the encoding further, to provide more and more technical
details.



Concise Outlines for a Complex Logic 29

G.1 Primer on Viper

Viper uses implicit dynamic frames [40], a dialect of separation logic [31] where a
points-to assertion such as x.f 7→ v is separated into access permission acc(x.f)

and heap-dependent expressions x.f == v. Similarly, a separation logic predi-
cate [32] is typically represented by a Viper predicate that denotes permissions
to a data structure, complemented by a heap-dependent mathematical function
that abstracts over the values in the data structure.

Viper provides a simple, object-based, imperative language, which includes
all statements necessary to represent TaDA programs, and makes this part of
the encoding trivial. In addition, Viper provides two statements to manipulate
assertions. For an assertion A, inhale A adds all permissions denoted A to the
current state and assumes all logical constraints in A. Conversely, exhale A

asserts all logical constraints in A and checks that the permissions in A are
available in the current state (verification fails if either check does not succeed).
Moreover, it removes these permissions and assigns non-deterministic values to
the corresponding memory locations (to reflect that other program components
may now hold the permissions and modify the memory locations). In contrast to
exhaling A, asserting A only checks that an assertion holds (and fails otherwise),
but does not remove permissions.

G.2 Regions and Assertions

TaDA’s regions introduce various resources such as region predicates and guards.
We encode those into Viper’s permissions and predicates as summarized in Fig. 14
(left). Each region R gives rise to a predicate with the same name and parameters,
which is defined by the region interpretation. A region’s abstract state may be
accessed by a Viper function R_State, which is defined based on the region’s state

clause, and depends on the region predicate since the function may refer to values
to which the predicate provides permissions. Moreover, we introduce an abstract
Viper predicate R_g for each guard g of the region; their uniqueness properties
are reflected in the encoding of proof steps such as stabilize in Fig. 13.

These declarations allow us to encode most TaDA assertions in a fairly straight-
forward way. For instance, the assertion Lockr(x, s) from Fig. 11 is encoded as a
combination of a region predicate and the function yielding its abstract state:
Lock(r,x) && Lock_State(r,x) == s. We encode region identifiers as references in
Viper, which allows us to use the permissions and values of designated fields
to represent resources and information associated with a region instance. For
instance, we use the permission to the diamond field to encode the TaDA resource
r Z⇒ �. Similarly, the permissions to the fields R_from and R_to represent TaDA’s
r Z⇒ (x, y) resource, while the fields’ values reflect the arguments x and y. There-
fore, r Z⇒ (0, 1) from Fig. 11 is encoded as acc(r.Lock_from) && acc(r.Lock_to) &&

r.Lock_from == 0 && r.Lock_to == 1.
Besides assertions, TaDA judgments include an interference context and an

atomicity context. An interference context of the form s ∈ X, associated with
a region R(r, . . .), is represented by a field r.R_X, which stores the set of values
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Jregion R(r: id, p: t)
interpretation I
state S
guards G
actions AK ,

predicate R(r: Ref, p:JtK) { JIK }

function R_State(r: Ref, p:JtK): T
requires R(r,p)

{ unfolding R(r,p) in JSK }

foreach g(p’: t’) ∈ G:

predicate R_g(r: Ref, p’:Jt’K)
end

field diamond: Bool
field R_from: T
field R_to: T

field R_X: Set[T ]
field R_A: Set[T ]

field val: Int

predicate Lock(r: Ref, x: Ref) {
acc(x.val) &&
(x.val == 0 || x.val == 1)

}

function Lock_State
(r: Ref, x: Ref): Int

requires Lock(r, x)
{ unfolding lock(r, x) in x.val }

predicate Lock_G(r: Ref)

field diamond: Bool
field Lock_from: Int
field Lock_to: Int

field Lock_X: Set[Int]
field Lock_A: Set[Int]

Fig. 14: Repetition of Fig. 4 from Sec. 6, showing the Viper encoding of regions in
the general case (left), and for the lock region from Fig. 3 (right). The encoding
function is denoted by double square brackets; overlines denote lists. The foreach
loop is expanded statically. Type T is the type of the state expression S, which
is inferred. Actions A do not induce any global declarations. The elements of
struct types and type id are encoded as Viper references (type Ref). The unfolding

expression temporarily unfolds a predicate into its definition; it is required by
Viper’s backend verifiers. The struct type cell from Fig. 3 is encoded as a Viper
reference with field val (in Viper, all objects have all fields declared in the
program).

to which the environment may set the region’s abstract state. The encoding of
an atomicity context A, which tracks pending updates and prevents multiple
such updates for the same region instance, is more involved. As explained in
App. E, we check the proof outline for all atomicity contexts within a lower and
an upper bound. The lower bound is represented by a set-typed variable update,
local to each procedure (see Fig. 13); its value is the set of all regions currently
being updated. This set is modified by make_atomic and read by update_region,
to account for the side conditions of the corresponding TaDA rules. The upper
bound, stored in variable alevel (omitted from Fig. 13 for simplicity), is used
for verifying procedure calls: specifically, to ensure that there is not already a
pending update for a region the callee might update as well.

Theoretically, procedure specifications could include the set of regions the
procedure might update, but this would require additional overhead. Moreover,
such a specification would in general have to include all potentially updated
regions, including those nested in other regions (which, for recursively defined
regions, could be arbitrarily many). As confirmed by the TaDA authors in personal
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communication, TaDA currently does not address this problem in a modular way:
instead, when a proved procedure triple is used, the proof tree essentially needs
to be inlined at call site, to recheck atomicity context side conditions.

For Voila, we devised a modular solution that piggybacks on TaDA’s levels to
overapproximate the set of regions a procedure can update: first, we determine
the highest level λmax of all regions syntactically occurring in a procedure’s
precondition; this will be the procedure’s level (each TaDA procedure specification
triple has one) and the initial upper bound of a procedure body’s, stored in alevel.
Now, due to the level-related side conditions of TaDA’s proof rules, the procedure
cannot update any region with a level higher than λmax. During procedure body
verification, alevel is updated (by make_atomic) to always reflect the lowest level
of any region for which an update is pending. When a call is encountered, it now
suffices to check that the caller’s current atomicity level (alevel) is higher than
the callee’s level (λmax) – this guarantees that the callee will not update any
region for which an update is already pending.

Lastly, the domain of an update A(r) is encoded with a set-typed field r.R_A.
Its value influences assertion stabilization: while an update is pending (i.e., inside
make_atomic), the environment may not take the region value out of r.R_A; the
latter is set to r’s interference context (r.R_X) when make_atomic is entered.

G.3 Rule Applications

Recall from Sec. 6 that our proof candidates are tree structures (analogous to
proof trees in standard Hoare logic), and that we check the validity of a proof
candidate by checking the validity of each rule application in it. For that, we
(among other things) check that the necessary triple preconditions hold, and that
the executed code establishes the necessary postconditions.

Example. We illustrate our encoding scheme on the body of the loop in our
running example, see Fig. 13. We discuss the proof top-down in the Hoare logic,
that is, inside-out in the proof candidate and Viper encoding, starting with the
CAS statement. The CAS statement itself is encoded as a Viper method whose
specification provides the semantics of the operation.

The proof candidate wraps the CAS statement inside an application of the
UpdateRegion rule (the blue part in the middle column of Fig. 13; the rule
itself is shown in Fig. 2). Lines 2-6 of the Viper encoding (right column) deal
with the atomicity context; we omit a detailed explanation for brevity, but recall
App. F. The subsequent exhale and unfold encode steps 1 and 2 of the rule
application: instead of exhaling the entire precondition of the conclusion (step 1)
and inhaling the precondition of the premise (step 2), the encoding represents only
the net effect of these two operations. Therefore, it exhales the diamond resource
r Z⇒ �. Going from the conclusion to the premise, UpdateRegion replaces the
region predicate (here, Lock(r,x)) by its interpretation. Given the region encoding
from Fig. 14, this is exactly what Viper’s unfold operation does. Note that we
instantiate the conjunct P (x) in the UpdateRegion rule to represent all other
resources and properties that hold in the prestate of the rule application. Hence,
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it does not show up in the encoding. The subsequent havoc operation assigns a
non-deterministic value to the state of all held, still folded Lock(r,x) predicates.
This step is necessary because TaDA region predicates are duplicable. P (x) thus
could contain such predicate instances (in addition to the unfolded one), and we
must prevent Viper from using those instances to frame old region state around
the CAS statement, which would be unsound. As confirmed by the authors in
personal communication, the latter problem is actually currently not addressed
in TaDA.

The first two Viper statements after the CAS statement (right column, lines 12-
13) encode steps 3 and 4 of the rule application: the fold operation replaces
the interpretation of the Lock predicate by the predicate itself. UPD_TRACK_RES

is an encoding macro (macro definitions are shown in App. K), which inhales,
depending on the success of the CAS operation, one of the tracking resources
r Z⇒ (0, 1) or r Z⇒ �. Analogously to P (x) in the precondition, we take Q1 and
Q2 to represent all other resources and properties that hold in the poststate of
the rule application in these two cases. Since they occur in both postconditions,
there is no net effect of inhaling and then exhaling them, and we can omit them
from the encoding. The final two instructions (lines 14-16) in the blue part of
the encoding maintain the atomicity context.

Besides UpdateRegion, the loop body contains three additional rule appli-
cations. atomic_exists (green section) establishes the interference context, which
we encode via macro INFER_INTERFERENCE. triple_weak (orange) weakens an atomic
triple in its premise to a non-atomic triple in its conclusion. Since our encoding
does not track the triple kind explicitly, triple_weak is not directly reflected in
the encoding. However, its conclusion – like all non-atomic triples – must be
stable. This side condition is enforced in the encoding via the STABILIZE macro.
We explain both stability and our treatment of interference contexts next.

Stability and Interference Context Inference. Recall that an assertion A is stable
if and only if the environment cannot invalidate A by performing any legal
region updates. In practice, this means that the environment cannot hold a
guard that allows it to change the state of a region in a way that violates A.
The challenge of checking stability as a side-condition is to avoid higher-order
quantification over region instances and guards, which is hard to automate. We
address this challenge by actively stabilizing assertions in the Viper encoding.
That is, we remove information from Viper’s verification state such that the
remaining information about the state is stable. We achieve this effect by first
assigning non-deterministic values to the region state, and then constraining
these to be within the states permitted by the region’s transition system, taking
into account the guards the environment could hold.

Fig. 15 shows the encoding of stabilization for instances of our Lock region
(macro STABILIZE). First, the region state is havocked, i.e., all information about
the state is thrown away. Afterwards, the new region state is assumed to be any
state reachable by the environment from the old state. We encode this property
of reachability by the environment in two steps: ENV_MAY_HOLD yields whether a
guard may be held by the environment. The encoding depends on the guard kind:
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INTERFERENCE_PERMITTED(Lock(r, x), from, to) ,
(none < perm(r.diamond) ==> Lock_State(r, x) in r.Lock_A)

&& ( from == 0 && to == 1 && ENV_MAY_HOLD(Lock_G(r))
|| from == 1 && to == 0 && ENV_MAY_HOLD(Lock_G(r)) )

ENV_MAY_HOLD(Lock_G(r)) , perm(Lock_G(r)) == none

STABILIZE(Lock(r, x)) ,
label pre_havoc
havoc Lock(r, x)
inhale INTERFERENCE_PERMITTED(Lock(r, x),

old[pre_havoc](Lock_State(r, x)), Lock_State(r, x))

INFER_INTERFERENCE(Lock(r, x)) ,
havoc r.Lock_X
inhale forall s: Int :: s in r.Lock_X

<==> INTERFERENCE_PERMITTED(Lock(r, x), Lock_State(r, x), s)

Fig. 15: Encoding of stabilization and interference inference for the Lock example.
Viper labels enable referring to the verification state at a particular point in the
program (i.e., they generalize old expressions, which refer to the prestate of a
method). We assume that symbols introduced by macros, e.g. label pre_havoc,
are always fresh and never result in name clashes. The Viper expression perm(ρ)

denotes the permission currently held to a resource ρ.

the environment can hold the unique guard G only if it is not already present
in the proof state. In contrast, duplicable guards may always be held by the
environment, in which case ENV_MAY_HOLD would be defined as true. Building on
ENV_MAY_HOLD, INTERFERENCE_PERMITTED encodes the actual reachability property: the
environment may perform a state transition if it holds at least the guard that is
required for this transition by the transition system. Furthermore, the transition
has to stay within the atomicity context if an update is still pending, which is
TaDA’s interference rely-guarantee. To avoid computing the transitive closure,
Voila requires (and checks) transition systems to be transitively closed.

The encoded reachability (macro INTERFERENCE_PERMITTED) is also essential
for the inference of interference contexts. Intuitively, the smallest interference
context, at a given program point, corresponds to the set of states that the
environment could transition to, which is exactly the set we already need for
stabilization. Therefore, as shown in macro INFER_INTERFERENCE, we can obtain a
suitable interference context by constraining r.Lock_X to be the set of all states
reachable by the environment.

G.4 Application of Built-in Viper Rules

Viper provides and automates several structural proof rules, especially the rule
of consequence and the frame rule. Soundness of our encoding requires that these
Viper rules are used only where permitted by TaDA.

TaDA’s entailment rule requires entailments to be justified by view shifts [7,36],
whereas Viper’s rule of consequence may be applied for any valid entailment.



34 Felix A. Wolf, Malte Schwerhoff, and Peter Müller

We must, thus, ensure that Viper’s entailment steps are indeed permitted by
TaDA’s entailment rule. This is the case because TaDA’s view shifts impose extra
requirements only on entailments that involve region and guard assertions, which
are encoded as predicates in Viper. Since Viper does not automatically (un)fold
predicate instances, it cannot automatically establish entailments between region
assertions. Similarly for guards: encoded as abstract predicates, Viper treats
them as uninterpreted resources from which no additional information can be
deduced.

Viper automatically frames information about its verification state around
all statements. To ensure soundness, we explicitly remove information from the
state that would otherwise be framed unsoundly, as we have illustrated with the
havoc operation in Fig. 13.

H Encoding a Custom Guard Algebra

Voila provides a high degree of automation, as demonstrated by our evaluation
in Sec. 7. For concepts not directly supported and automated, it provides various
features, such as ghost code, to encode them manually. Crucially, all of these
features operate on the level of Voila; programmers do not need to understand
(or even be aware of) the encoding into Viper. In this section, we demonstrate
Voila’s support for manual encodings by an example that uses a custom guard
algebra.

Specifically, we chose a TaDA-adaptation [36] of Owicki-Gries’ classical
parallel-increment example: given multiple threads that successively increment
a shared counter in parallel, prove that the final counter state equals the sum
of the local increments. To achieve the latter, the TaDA proof uses the custom
guard algebra defined in Fig. 16, which defines resources (as guards) for tracking
increments, and laws that govern their use and allow relating local and total
increments. The example is included in our evaluation (CounterCl), and, to the
best of our knowledge, cannot be encoded in any comparable tool.

Fig. 17 shows the Voila declaration of region CClient, whose manipulation is
governed by aforementioned guard algebra. Guards INC and TOTAL are declared as
manual to indicate that they are not part of a guard algebra that Voila automates
(see also App. B). In particular, this means that Voila will not make any uniqueness
assumptions about these guards, e.g. when stabilizing region state. The laws of the
guard algebra are encoded as lemma procedures such as INC_split, which encodes
the left-to-right direction of definition 1. Region CClient abstracts over the shared
Counter(r,n,x), whose value n corresponds to the total increment count; guard G,
declared by region Counter (see Fig. 19), is needed to increment that value. The
region’s actions clause demonstrates Voila’s most general syntax for specifying
region transitions, and declares that the region state can be incremented from
any n to any larger m, by anybody holding a non-zero fraction of INC (regardless
of the latter’s local increments value k). Fig. 17 also shows the specification of
procedure single_client, whose implementation (shown in Fig. 19) loops until
it made v successive increments to the shared counter. Note that single_client



Concise Outlines for a Complex Logic 35

Inc(n1 + n2, π1 + π2) = Inc(n1, π1) • Inc(n2, π2) (1)
Total(m) • Inc(n, 1) =⇒ n = m (2)

Total(m) • Inc(n, π) = Total(m+ d) • Inc(n+ d, π) (3)

Fig. 16: Custom guard algebra (an instance of Iris’ authoritative monoid [18]) used
by the TaDA adaptation of Owicki-Gries’ classical parallel-increment example.
Guard Inc counts local increments, and can be split and merged, similar to
fractional permissions [3], in which case the local increments are split/merged as
well. Guard Total, in contrast, is exclusive and counts the overall increments.
Composing the whole Inc instance with Total allows concluding that the sum
of the local increments equals the total count. Lastly, both values can only be
changed in lockstep.

could be parametric in the permission amount required for INC (currently fixed
to 1/2), which would allow arbitrarily many parallel instances (e.g. 1/t for a
statically-unknown number of t threads).

Fig. 18 shows the central part of the verified code: first, guard INC(0,0) is split
into two equal fractions by using lemma procedure INC_split; afterwards, two
calls to single_client are run in parallel. Upon termination, lemma procedure
INC_merge (whose straightforward declaration we omitted), corresponding to the
right-to-left direction of guard algebra definition 1, is used to combine the INC

guards obtained from the postconditions of single_client into a single instance
INC(20,1f). Subsequent ghost code then opens (unfolds) region CClient to bind the
– at this point unknown – value of the counter to the logical variable n. Finally,
lemma procedure TOTAL_INC_equality, corresponding to guard algebra definition 2,
is used to learn that n’s value is equal to INC’s value, i.e. 20. Note that the lemma
application would (here) fail for values other than 20, and that it is possible to
work with statically unknown values, e.g. m1, m2 and m1 + m2 instead of constants
9, 11 and 20.

In addition to lemma procedures, Voila provides several ghost operations
for manipulating its verification state, including: in-/exhale statements for gain-
ing/giving up resources; unfold/fold statements for opening/closing regions; but
also region ghost fields, e.g. for witnessing existentials. All of these can be used
to encode TaDA proof steps that are beyond what Voila automates, and to
experiment with potential extensions. Ghost operations are always applied on the
Voila level such that users do not need to be aware of the encoding into Viper.
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region CClient(id s, id r, cell x)
guards {
manual INC(int, frac);
manual TOTAL(int);

}
interpretation {
Counter(r, x, ?n) && G@r && TOTAL(n)@s

}
state { n }
actions {
?n, ?m, ?k, ?p | 0f < p && n < m | INC(k, p): n ~> m;

}

lemma INC_split(id s, int k1, int k2, frac p1, frac p2)
requires INC(k1 + k2, p1 + p2)@s;
requires 0f < p1 && 0f < p2;
ensures INC(k1, p1)@s && INC(k2, p2)@s;

procedure single_client(id s, id r, cell x, int m)
requires CClient(s, r, x, _) && INC(0, 1/2)@s;
ensures CClient(s, r, x, _) && INC(m, 1/2)@s;

Fig. 17: Example declarations from the Voila encoding of TaDA’s counter-client ex-
ample, including the CClient region, and the signature of procedure single_client

(see also Fig. 19), which is executed by each thread. Lemma procedure INC_split

encodes the left-to-right direction of definition 1 from Fig. 16 by means of pre-
and postconditions. The remaining algebra laws are encoded analogously, and
omitted for brevity.

// Allocate memory and create region instances ...

use INC_split(s, 0, 0, 1/2, 1/2);

parallel {
single_client(s, r, x, 9);
single_client(s, r, x, 11);

}

use INC_merge(s, 9, 11, 1/2, 1/2);

unfold CClient(s, r, x);
assert Counter(r, x, ?n);

use TOTAL_INC_equality(s, n, 20);
assert n == 20;

// ... destroy region instances and deallocate memory

Fig. 18: The central part of the Voila encoding of TaDA’s Owicki-Gries adaptation:
We use a lemma method to split the guard INC before the parallel execution
of two calls to single_client. After the calls, another lemma method is used to
recombine INC and to sum up the local increments. Finally, we assert the equality
between local and total increments.
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struct cell {
int f;

}

region Counter(id r, cell x)
guards { unique G; }
interpretation { x.f |-> ?n }
state { n }
actions { ?n, ?m | n < m | G: n ~> m; }

abstract_atomic procedure incr(id r, cell x)
interference ?n in Int;
requires Counter(r, x, n) && G@r;
ensures Counter(r, x, n + 1) && G@r;

procedure single_client(id s, id r, cell x, int m)
requires CClient(s, r, x, _) && INC(0, 1/2)@s;
ensures CClient(s, r, x, _) && INC(m, 1/2)@s;

{
int i := 0;

while (i < m)
invariant CClient(s, r, x, _);
invariant INC(i, 1/2)@s;

{
use_atomic
using CClient(s, r, x, ?v) with INC(i, 1/2)@s;

{
incr(r, x);
use TOTAL_INC_inc(s, v, i, 1/2);

}

i := i + 1;
}

}

Fig. 19: Further Voila code from the parallel counter example: the Counter region
and its incr procedure, and the implementation of the single_client procedure
that is executed by each thread. We slightly simplified the loop invariant by
omitting obvious properties. The body of incr, omitted for brevity, is similar to
procedure lock from our running example in Fig. 3: a loop around a CAS that
attempts to increment the counter by one.
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I Soundness

In this section, we briefly explain how to show that our approach is sound
w.r.t. TaDA. A comprehensive proof sketch is available in App. L. Recall our
high-level approach: we take a Voila procedure proof outline with precondition,
body, and postcondition, expand it into a proof candidate by adding further
rule applications, encode the proof candidate into Viper, and verify the resulting
Viper program. To prove soundness, we need to show that for each proof outline
successfully verified in this approach, there exists a derivation in TaDA for a
TaDA triple whose precondition, statement, and postcondition correspond to
those in Voila. For this proof, we assume that the Viper verification backend
verifiers are sound; showing their soundness is an orthogonal concern.

We establish soundness in two main steps: we first prove a lemma that relates
the execution of Viper statements and states to TaDA judgments and derivations.
In a second step, we instantiate this lemma to show that, for a verified Voila
procedure, there indeed exists a corresponding TaDA derivation.

Intuitively, our lemma expresses the following property: given a Viper prestate,
a sequence of Viper statements corresponding to an encoded Voila statement, and
the Viper poststate determined by executing the sequence of Viper statements, we
can derive a valid TaDA triple. The proof goes by induction on the (program and
rule) statements of the proof candidate. It maps Viper states to TaDA assertions,
and uses the statements and rule applications in the proof candidate to construct
a TaDA proof. To enable the mapping from Viper states to TaDA assertions, we
prove that our encoding maintains several invariants on Viper states. Some of
these invariants are due to Voila’s normal form, for instance, that Viper states
correspond to stable TaDA assertions for pre- and non-atomic postconditions.
Others are due to global properties of TaDA: e.g. that a region under update
(diamond resource is held) is always in the current atomicity context, which is a
prerequisite for a successful TaDA proof. Yet other invariants are technicalities
enabling the mapping from Viper states to TaDA assertions, such as having
either no or full permission (rather than arbitrary fractions) to certain Viper
fields and predicates.

The above lemma relates the Viper encoding to a derivation of a TaDA
triple. What remains to be shown is that this triple actually corresponds to the
Voila procedure we encoded. For the triple’s precondition and statement, this
correspondence is ensured by construction, since we obtain them from the Voila
proof candidate. The latter also implies that the initial Viper state (corresponding
to the Voila precondition) satisfies aforementioned invariants. For the triple’s
postcondition (and to conclude the soundness proof), we need to show that the
user-provided Voila postcondition is implied by the TaDA postcondition that we
obtained from the final Viper state. This is also ensured by construction, since
the last Viper statement asserts the Voila postcondition.
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J Macro Definitions for our Running Example

In App. G, an overview of our encoding was given, which utilized macros to
structure the encoding, and to abstract over the generated Viper code. If a
verification backend other than Viper were to be chosen, the macro definitions
would most likely have to be adapted, but (probably) not how these macros are
combined.

In this section, we present the definitions of several core macros, i.e. the
Viper code they expand to: macros ACTION_PERMITTED and LESS are concerned
with checking that a state transition is valid and enabled by held guards;
INTERFERENCE_PERMITTED and STABILIZE simulate environment interference and en-
sure stable assertion, respectively; and INFER_INTERFERENCE is crucial for reducing
user-required annotations, by inferring all internal interference contexts.

The definitions shown in this section have been instantiated for our running
example (the lock region), and the corresponding explanations refer to the running
example to build up intuition. Subsequently, section App. K show all macros, in
their general form.

J.1 Transition System Compliance

Recall that MakeAtomic (cf. Fig. 2 and Fig. 6; likewise for UseAtomic) requires
checking that a region state change is permitted by the region’s transition system,
using a particular guard; in our example, the update from 0 to 1 (and vice versa)
using guard G. In general, checking compliance of a state change requires showing
that there exists a region transition (1) that can be instantiated such that its
pre- and poststate match the performed state change, and (2) that is enabled by
a specific guard (the one specified in the proof outline).

Fig. 20 shows how macro ACTION_PERMITTED encodes these two requirements
(as previously mentioned, the shown macro definition is specific to the running
example’s Lock region): since the number of transition options (actions) is always
finite, a disjunction of the different options suffices. A transition option with
specified guard g′ is enabled by a guard g if, according to the guard algebra, guard
g entails g′; this is encoded by macro LESS. Encoding this guard entailment for the
algebra of guard G from our running example is straightforward: G is entailed
by itself, potentially combined with other guards (e.g. in larger examples). In
general, the definition of LESS is more involved since Voila supports more complex
guard algebras (recall Fig. 7), but the general encoding is similar: e.g. given a
fractional guard algebra, g entails g′ if g’s fraction is larger.

J.2 Environment Interference and Assertion Stability

Recall from App. G that verifier state is stabilized by simulating possible transi-
tions that the environment is permitted to perform. This simulation is a construc-
tive approach to satisfying TaDA’s assertion stability requirement: an assertion A
is stable if, for each region instance R and for each guard (in general, combination
of guards) g potentially held by the environment, A does not contradict R being
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ACTION_PERMITTED(Lock, from, to, g) ,
from == to

|| from == 0 && to == 1 && LESS(Lock_G, g)
|| from == 1 && to == 0 && LESS(Lock_G, g)

LESS(Lock_G, Lock_G && _) , true

LESS(_ , _ ) , false

Fig. 20: Definition of macros ACTION_PERMITTED and LESS, instantiated for our
running example. For simplicity, macro definitions utilize structural pattern
matching as known from, e.g. Haskell. LESS encodes guard entailment, i.e. LESS(g,
g′) is true if, according to the guard algebra, guard g′ entails g. For brevity, the
definition is shown modulo commutativity of guard composition (i.e. the case for
_ && G is omitted).

in any state reachable with g. Our constructive approach eliminates the need
for higher-order quantifications over region instances and guards – which are
typically not supported by automated verification backends.

Fig. 21 shows the definition of macro STABILIZE, which encodes assertion
stabilization, and three helper macros: (1) INTERFERENCE_PERMITTED is similar to
ACTION_PERMITTED, and states that the environment is permitted to perform state
transitions if it could hold the necessary guards. (2) Correspondingly, ENV_MAY_HOLD
encodes if the environment could hold certain guards: e.g. only if not held by
the current context, for unique guards such as G; and always, for duplicable
guards (not used here). The Viper expression perm(ρ) denotes the permission
amount currently held to a resource ρ. (3) Finally, STABILIZE stabilizes verification
state by first havocking a region’s state, followed by constraining it to be any
state reachable (by the environment) from the pre-havoc state. To avoid a
fixpoint computation, Voila requires (and checks) that state transition systems
are transitively closed.

The first line of INTERFERENCE_PERMITTED accounts for the TaDA’s property that,
while an update is pending (i.e. before the linearization point is reached), the
environment may not take a region r outside the current procedure’s interference
context r.X. More details about the latter are provided in subsection App. J.3.

Lastly, note that any assertion can be checked for stability by inhaling it,
stabilizing it, and asserting it; this is done by Voila for region interpretations,
procedure specifications and loop invariants, all of which must be stable.

J.3 Interference Context Inference

In TaDA, every rule is parametrized with an interference context (denoted by X
in the proof rules, see e.g. Fig. 6) for atomic triples, but not for non-atomic ones.
As a consequence, when going from non-atomic triples to atomic triples, e.g. when
sequentially composing atomic statements, a potentially different interference
context is newly required.
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INTERFERENCE_PERMITTED(Lock(r, x), from, to) ,
(none < perm(r.diamond) ==> Lock_State(r, x) in r.Lock_A)

&& ( from == 0 && to == 1 && ENV_MAY_HOLD(Lock_G(r))
|| from == 1 && to == 0 && ENV_MAY_HOLD(Lock_G(r)) )

ENV_MAY_HOLD(Lock_G(r)) , perm(Lock_G(r)) == none

STABILIZE(Lock(r, x)) ,
label pre_havoc
havoc Lock(r, x)
inhale INTERFERENCE_PERMITTED(Lock(r, x),

old[pre_havoc](Lock_State(r, x)), Lock_State(r, x))

Fig. 21: Encoding of stabilization, split into three macros. Viper labels enable
referring to the verification state at a particular point in the program (i.e. they
generalize old expressions, which refer to the state in which the precondition
held). The Viper expression perm(ρ) denotes the permission amount currently
held to a resource ρ, here to predicate instance Lock_G(r).

In Voila, users only need to specify interference contexts once (as part of a
procedure’s signature), whereas all other interference contexts are inferred, via
macro INFER_INTERFERENCE. More specifically, we infer the smallest interference
context (at a given program point) that accounts for all possible environment
transitions – which is exactly the set we already need for stabilizing Viper’s
verification state. Consequently, macro INFER_INTERFERENCE, shown in Fig. 22,
determines a lock’s interference context by first havocking the corresponding field
and then constraining the context to exactly those states that the environment
could reach.

Note that TaDA in principle allows arbitrarily small interference contexts,
but we have not yet found an example where our inference heuristic prevented a
successful verification. Furthermore, note that initial interference contexts from
procedure preconditions still influence (in particular, restrict) inferred contexts,
but only indirectly, via the encoding of MakeAtomic.

In addition to inferring intermediate interference contexts, Voila also auto-
matically propagates interference contexts to nested regions (region assertions
occurring in another region’s interpretation), which are not even visible in pro-
cedure specifications. To illustrate how interference contexts are propagated to
nested regions, consider a double counter region DCounter(r, x, y) whose interpre-
tation contains two counters Counter(r1, x) and Counter(r2, y), and whose region
state is the sum of the individual counter states. When opening the DCounter, we
constrain the interference context of counters r1 and r2 to contain value s1 and
s2, respectively, iff DCounter’s interference context contains s1+ s2. This approach
generalizes straightforwardly to more complex situations.
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INFER_INTERFERENCE(Lock(r, x))
havoc r.Lock_X
inhale forall s: Int :: s in r.Lock_X

<==> INTERFERENCE_PERMITTED(Lock(r, x), Lock_State(r, x), s)

Fig. 22: Viper encoding of interference context inference: a region’s interference
context r.Lock_X is inferred to be the set of states the environment could currently
reach.

K General Macro Definitions

This section presents all encoding macros, in their general form; we suggest to
read App. J first, to build up an intuition for the encoding. The macros are also
referenced from the the soundness sketch shown in App. L.
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ACTION_PERMITTED(R, from, to, g) ,
from == to || (exists A in Actions(R) :
exists xA :: from == fromA(xA) && to == toA(xA)
&& cA(xA) && LESS(gA(xA), g)

)

INTERFERENCE_PERMITTED(R(r, p), from, to) ,
(none < perm(r.diamond) ==> to in r.R_A)

&& from == to || (exists A in Actions(R) :
exists xA :: from == fromA(xA) && to == toA(xA)
&& cA(xA) && ENV_MAY_HOLD(gA(xA))

)

LESS(g, g’) , ...

ENV_MAY_HOLD(g) , ...

where R denotes a region name (e.g. Lock), and R(r, p) a region instance with identifier r and remaining
arguments p, and where fromA(xA) denotes the expression fromA, but with xA substituted for the free
(quantified) variables that occur in fromA

Fig. 23: General definitions of macros ACTION_PERMITTED and INTERFERENCE_PERMITTED

(whereas the versions shown in Fig. 20 were instantiated for our running ex-
ample). ACTION_PERMITTED encodes if a transition is valid, given a specific guard;
INTERFERENCE_PERMITTED encodes interference the environment could cause. Macros
LESS (is a guard entailed by another?) and ENV_MAY_HOLD (could the environment
hold a particular guard?) are specific per supported guard algebra, and have been
omitted for brevity. Actions(R) denotes the finite set of actions (transitions)
declared by region R. Macro function “exists A in Actions(R) : E(A)” expands
to an iterated disjunction E(A0) || E(A1) || .... Types (e.g. for xA) have been
omitted for brevity, they can be unambiguously inferred from, e.g. involved
regions. Given an action A, the expressions cA, gA, fromA and toA denote the four
components an action declaration comprises.
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STABILIZE(R) ,
label pre_stabilize
havoc forall r, p :: none < perm(R(r, p)) ==> R(r, p)
inhale forall r, p :: none < perm(R(r, p)) ==>
INTERFERENCE_PERMITTED(
R(r, p),
old[pre_stabilize](R_state(r, p)), R_state(r, p))

INFER_INTERFERENCE(R) ,
havoc forall r :: r != null ==> r.R_X
inhale forall r, p, s :: none < perm(R(r, p)) ==> (
s in r.R_X <==> INTERFERENCE_PERMITTED(R(r, p), R_state(r, p), s)

)

LINK_INTERFERENCE(R(r, p), s) ,
label pre_link
havoc (forall c in C : c.Rc_X)
inhale forall mC ::
(forall c in C : mc in c.Rc_X)
<==>

(StateFunction(R(r, p), mC) in r.R_X)
s
havoc (forall c in C : c.Rc_X)
inhale (forall c in C : c.Rc_X == old[pre_link](c.Rc_X))

where C is the finite set of region identifiers (e.g. r’) that occur in the interpretation of R(r, p), and
Rc is the region name associated with region identifier c

Fig. 24: General definitions of macros STABILIZE and INFER_INTERFERENCE (whereas
the versions shown in Fig. 15 where instantiated for our running example), and
of LINK_INTERFERENCE. STABILIZE accounts for potential environment interference
and ensures that only stable facts can be deduced. INFER_INTERFERENCE infers inter-
ference contexts and LINK_INTERFERENCE binds the interference contexts of regions
nested in another region instance’s interpretation. Intuitively, LINK_INTERFERENCE
propagates constraints on a nesting region’s interference contexts to the inter-
ference contexts of the nested regions. Recall that r.R_X (e.g. r.Lock_X) is the
interference context of an instance of a region R with identifier r. Macro func-
tion “forall c in C : E(c)” expands to an iterated conjunction E(c0) && E(c1)

&& .... Similarly, mC expands to mc0, mc1, ..., one variable mc for each c ∈ C.
StateFunction(R(r, p), mC) denotes the state of R(r, p) where the state of each
region c ∈ C occurring in the region interpretation is substituted by mc. E.g.
consider a region Sum(r, p) with an interpretation Cell(c1, p1, ?a) && Cell(c2,

p2, ?b) and the state clause a + b. Then, StateFunction(Sum(r, p), mc1, mc2)

is mc1 + mc2 . For this Sum example, the first inhale forall in the definition of
LINK_INTERFERENCE would be instantiated as forall mc1, mc2 :: (mc1 in c1.Cell_X

&& mc2 in c2.Cell_X) <==> ((mc1 + mc2) in r.Sum_X).
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ATOMIC(s) ,
label pre_atomic
foreach R in Regions do
INFER_INTERFERENCE(R)

end
s
foreach R in Regions do
havoc forall r :: r != null ==> r.R_X
inhale forall r :: r != null ==> r.R_X == old[pre_atomic](r.R_X)
STABILIZE(R)

end

Fig. 25: General definition of macro ATOMIC, which encodes changing a non-atomic
to an atomic triple and establishing the interference context in accordance with
our normal form. Macro function “foreach R in Regions do S(R) end” expands
to an iterated sequential composition of Viper statements S(R0); S(R1); ..., and
Regions denotes the finite set of regions declared by the current Voila program.
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CALL(y := M(e)) ,
label pre_call
foreach l in Levels(M) do
assert level > l && alevel > l

end
var z := e
exhale PreM[z/x]
foreach R in Regions do
STABILIZE(R)

end
havoc y
inhale PostM[z/x][y/r][old[pre_call]/old]

CALL_ATOMIC(y := M(e)) ,
label pre_call
foreach Q in Inter(M) do
assert rQ.RQ_X subset SQ

end
foreach l in Levels(M) do
assert level > l && alevel > l

end
var z := e
exhale PreM[z/x]
foreach R in Regions do
STABILIZE(R)

end
havoc y
inhale PostM[z/x][y/r][old[pre_call]/old]

where x and r are procedure M’s formal in- and out-arguments, respectively, and where e[a/b] denotes
syntactic substitution of a with b in e

Fig. 26: General definitions of macros CALL and CALL_ATOMIC. Pre_M and Post_M

denote M’s pre- and postcondition, respectively. Viper variables level and alevel

track the current judgment and atomicity level, respectively. Levels(M) denotes
the set of all levels that (directly) occur in the precondition of procedure M; they
effectively determine the level of the procedure to be called, and thus must be
smaller than the current levels. Inter(M) denotes the set of interference clauses
of procedure M. Set SQ denotes the interference set itself (e.g. Set(0, 1) in our
running example), and RQ and rQ denote the region name and identifier (e.g.
Lock and r) that identify the constrained region instance, respectively. Calls to
non-atomic procedures are encoded in the expected way, aside from the levels
check and the stabilization of the frame. Invocations of atomic procedures are
encoded analogously, with the additional check that the caller’s interference
contexts may not allow more interference than the callee permits.
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UPDATE_REGION(R(r, l, p), s) ,
label pre_update

assert level > l
var level_store := level
level := l

exhale r in update && acc(r.R_A)
var update_store := update
update := update minus Set(r)

exhale acc(r.diamond)

unfold R(r, l, p)
havoc R(r, l, p) // Havoc other instances possibly held
LINK_INTERFERENCE(R(r, l, p), s)
fold R(r, l, p)

// Note: the following if-else statement is abbreviated as
// UPD_TRACK_RES in Fig. 13
if (R_state(r, l, p) == old[pre_update](R_state(r, l, p))) {
inhale acc(r.diamond)

} else {
inhale acc(r.R_from) && r.R_from == old[pre_update](R_state(r, l, p))
inhale acc(r.R_to) && r.R_to == R_state(r, l, p)

}

update := update_store
inhale acc(r.R_A) && r.R_A == old[pre_update](r.R_A)

level := level_store

Fig. 27: General definition of macro UPDATE_REGION. Statement s is executed as
part of the expansion of LINK_INTERFERENCE. Since we are interested in the updated
region’s level, the pattern match in the macro’s signature is R(r, l, p), i.e. the
level l is split off from the remaining arguments p (analogous to the region
identifier r). Viper variable update tracks the set of region identifiers for which
an atomic update is pending, and Viper fields r.R_from and r.R_to record the
performed update; see also macro MAKE_ATOMIC in Fig. 32. The if-else statement
heuristically resolves an angelic choice, which is not supported by Viper: a region
update is assumed to have happened if the region state changed. See also Sec. 7.
Recall that r.R_A is the domain of the atomicity context for a region R with
identifier r.
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OPEN_REGION(R(r, l, p), s) ,
label pre_open

assert level > l
var level_store := level
level := l

unfold R(r, l, p)
havoc R(r, l, p) // Havoc other instances possibly held
LINK_INTERFERENCE(R(r, l, p), s)
fold R(r, l, p)

assert R_state(r, l, p) == old[pre_open](R_state(r, l, p))

level := level_store

Fig. 28: General definition of macro OPEN_REGION. Statement s is executed as part
of the expansion of LINK_INTERFERENCE. The definition is similar to UPDATE_REGION,
but the last assert statement checks that the region state was not changed by
executing s.

USE_ATOMIC(R(r, l, p), g, s) ,
label pre_atomic

assert g
assert R(r, l, p)
assert alevel > l

assert level > l
var level_store := level
level := l

unfold R(r, l, p)
havoc R(r, l, p) // Havoc other instances possibly held
LINK_INTERFERENCE(R(r, l, p), s)
fold R(r, l, p)

ACTION_PERMITTED(R, R_state(r, l, p), old[pre_open](R_state(r, l, p), g)

level := level_store

Fig. 29: General definition of macro USE_ATOMIC. Statement s is executed as part of
the expansion of LINK_INTERFERENCE. The definition is similar to UPDATE_REGION and
OPEN_REGION, but here, validity of the atomic update performed by s is checked.
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DO_WHILE(s, b, I) ,
s
WHILE(b, I, s)

WHILE(b, I, s) ,
label pre_while
exhale I
foreach R in Regions do
STABILIZE(R)

end
inhale I

var oldUpdate := update
var oldLevel := level
var oldALevel := alevel
while (b)
invariant I
invariant update == oldUpdate && level == oldLevel

&& alevel == oldALevel
invariant forall r ::

r in update ==> acc(r.A) && r.A == old[pre_while](r.A)
foreach R in Regions do
invariant forall r :: r != null ==>

acc(r.R_X) && r.R_X == old[pre_while](r.R_X)
end

{
s

}

Fig. 30: General definitions of macros DO_WHILE and WHILE. The latter is encoded
using a corresponding Viper loop, preceded by an explicit stabilization of the
loop’s frame. The additional invariants enforce that triple level, atomicity context
and interference context are preserved inside the loop.
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EXPLICIT_FRAME_OUT ,
foreach R in Regions do
exhale forall r, p :: acc(R(r, p), perm(R(r, p))

end
foreach G in Guards do
exhale forall r, p :: acc(G(r, p), perm(G(r, p))

end
foreach f in Fields do
exhale forall x :: x != null ==> acc(x.f, perm(x.f))

end

EXPLICIT_FRAME_IN(lbl) ,
foreach R in Regions do
exhale forall r, p :: acc(R(r, p), perm[lbl](R(r, p))

end
...

Fig. 31: General definitions for macros EXPLICIT_FRAME_OUT and EXPLICIT_FRAME_IN.
The former exhales permissions to all region instances, guards and fields that the
Voila program declares and to which the current verification state holds permis-
sions. The later is analogous, but inhales permissions relative to a given label.
In Viper, accessibility predicate acc(x.f) denotes full (i.e. write) permission to
field x.f, and is syntactic sugar for acc(x.f, write). Viper also supports fractional
permissions [3]; for such a permission π, the syntax is acc(x.f,π). Consequently,
the last exhale in the definition of EXPLICIT_FRAME_OUT instructs Viper to exhale
all permission held to a field x.f. Predicates are supported analogously, but with
additional syntactic sugar: the acc around a predicate can be omitted, and R(x)

(for some predicate R) abbreviates acc(R(x)), and thus acc(R(x), write).
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MAKE_ATOMIC(R(r, l, p), g, s) ,
label pre_atomic

exhale g
exhale R(r, l, p)
foreach R in Regions do
STABILIZE(R)

end

label pre_frame
EXPLICIT_FRAME_OUT

assert alevel > l
var alevel_store := alevel
alevel := l

assert !(r in update)
var update_store := update
inhale acc(r.R_A) && r.R_A == r.R_X
update := update union Set(r)

inhale R(r, l, p) && R_state(r, l, p) in r.R_A
inhale acc(r.diamond)

s

ACTION_PERMITTED(R, r.R_from, r.R_to, g)

EXPLICIT_FRAME_OUT

inhale R(r, l, p) && (R_state(r, l, p) == r.R_to
inhale old[pre_atomic](R_state(r, l, p)) == r.R_from
exhale acc(r.R_from) && acc(r.R_to)
inhale g

update := update_store
exhale acc(r.R_A)

alevel := alevel_store

EXPLICIT_FRAME_IN(pre_frame)

Fig. 32: General definition of macro MAKE_ATOMIC. Before statement s (which is to
be proven abstractly atomic) is executed, all regions are stabilized and all other
resources are framed out, levels and contexts are adjusted, and the diamond
resource is obtained. After the execution of s, validity of the performed atomic
update is checked, and parts of the pre-state are restored.
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PROCEDURE(M(p) returns (r), s) ,
method M(p) returns (r) {
inhale PreM

foreach R in Regions do
inhale forall r :: r != null ==> acc(r.R_X)

end

var level: Int
foreach l in Levels(M) do
inhale level > l

end
var alevel: Int := level
var update: Set[Ref] := Set()

s

exhale PostM
}

ATOMIC_PROCEDURE(M(p) returns (r), s) ,
method M(p) returns (r) {
inhale PreM

foreach R in Regions do
inhale forall r :: r != null ==> acc(r.R_X)

end
foreach Q in Inter(M) do
inhale rQ.RQ_X subset SQ

end

var level: Int
foreach l in Levels(M) do
inhale level > l

end
var alevel: Int := level
var update: Set[Ref] := Set()

s

exhale PostM
}

Fig. 33: General definition of macro PROCEDURE and ATOMIC_PROCEDURE, which are used
to encode, and thus prove, procedure specifications. For a non-atomic procedure,
PROCEDURE first inhales the precondition. Next, necessary resources are inhaled,
and local variables declared and constrained. Afterwards, the encoded procedure
body is executed. Finally, the postcondition is exhaled. ATOMIC_PROCEDURE expands
similarly, but for atomic procedures and their interference clauses, denoted by
Inter. See also CALL and ATOMIC_CALL in Fig. 26.
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L Soundness

In this section, we present a soundness argument for our Voila encoding. Our
encoding is sound when the successful verification of an encoded Voila procedure
proof outline implies that the corresponding TaDA procedure satisfies its TaDA
specification. We deduce the latter by showing that the procedure specifications
are indeed derivable in TaDA.

We argue soundness of our encoding in four steps: first, we determine invariants
on Viper’s pre- and post-verification states of encoded Voila outline statements
(programming language statements and key rules statements). Second, we define
a judgment mapping , which maps from a pair (υ, s) of Viper verification states υ,
satisfying our invariants, and Voila outline statements s to a TaDA judgment.
Third, under the assumption of successful verification, we show by structural
induction over Voila outline statements that the judgment mapping maps to
derivable TaDA judgments. Fourth, we show for each encoded Voila procedure
that the judgment mapping, applied to the encoded procedure body and a Viper
state satisfying the procedure’s precondition, maps to the desired TaDA judgment.
Combining these ingredients, we formally connect verification of an encoded proof
outline to derivability of a TaDA proof, resulting in the soundness of our encoding.

For a better overview, we first illustrate our approach in more detail on a
simplified version of TaDA. Afterwards, we instantiate our approach for normal
TaDA. We demonstrate our soundness argument on four particularly challenging
steps of our encoding: the handling of calls, triple changes, make_atomic, and
update_region.

L.1 Approach

For the sake of simplicity, before targeting full TaDA, we introduce our approach
informally on a simplified version of TaDA. For this simplified version, assume
that TaDA judgments are standard Hoare triples of the form ` {P} ŝ {Q},
where P , ŝ, and Q are the precondition, triple statement, and postcondition,
respectively. We omit atomic triples, levels, atomicity contexts, interference
contexts, and the requirement that pre- or postconditions are stable. We use xsy
to reduce a Voila outline statement s to its underlying program statement, by
stripping away potentially surrounding rule statements. E.g. the outline statement
update_region using ... { b := CAS(x,0,1) } is reduced to b := CAS(x,0,1).

To prove soundness, we need a formal connection between an encoded Voila
procedure (that successfully verified in Viper) and a TaDA proof. On the Viper
side, we have the state of a Viper program, i.e. the verification state, and the
encoding of procedures and outline statements. Conversely, on the side of TaDA,
we have syntactic judgments and proof rules. To formally connect both, we define
a judgment mapping, a mapping from pairs (υ, s) of Viper verification state υ
and Voila outline statement s to syntactic TaDA judgments. For our simplified
version of TaDA, we can define such a judgment mapping as follows: assume we
have a mapping φ(υ) from Viper verification state υ to assertions of TaDA. Then,
a judgment mapping for a Viper verification state υ and a Voila outline statement
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s can be defined as L υ, s M = {φ(υ)} xsy {φ(υ′)}, where υ′ = post(J s K, υ) is the
strongest postcondition verification state of the Viper encoding of s and the
verification state υ.

The judgment mapping is only applied to prestates of encoded Voila outline
statements because only these states, together with encoded statement and result-
ing poststate, are formally connected to triples in a TaDA proof. In particular, the
mapping is not applied to intermediate verification states of a Viper encoding. We
define invariants on Viper prestates so that the judgment mapping has stronger
guarantees on the mapped verification states. E.g. TaDA does not allow partial
ownership of points-to predicates (x.f 7→ v). However, such partial permissions
are in general possible in Viper states, making judgment mappings for such states
with partial permissions nonsensical. Therefore, for our encoding, we define the
invariant that permissions to fields are either full or none. We then have to show
that these invariants on a verification state hold, before we use the verification
state in a judgment mapping. We use I to refer to the set of all verification states
satisfying these invariants.

Using the judgment mapping, we can verbally state our soundness lemma of the
outline statement encoding: “Under the assumption of successful Viper verification,
we show that the judgment mapping maps to derivable TaDA judgments when
applied to encoded Voila outline statements and Viper verification states satisfying
our state invariants”. Before we can express this property more formally, we have
to define the meaning of a successful Viper verification. A successful verification
entails that all verification states of the verified Viper program are valid . In Viper,
a verification state is valid when it is not a special error state  . Therefore, we
refine the soundness lemma from above as follows: “Forall Voila outline statements
s and Viper verification states υ ∈ I, a valid strongest poststate post(J s K, υ) 6=  
implies that the mapped judgment L υ, s M is derivable in TaDA and that the
poststate satisfies our state invariants post(J s K, υ) ∈ I”. We first illustrate the
purpose of this lemma and then argue how to prove it.

The lemma aids us to derive that a successfully verified Voila procedure
implies that the corresponding TaDA procedure with its specification is derivable:
Consider a Voila procedure with the specification {P}m(. . . ) {Q} where m(. . . )
is the procedure itself. Let sm be its body and let υpre be the verification state
before the encoding of its body. If the procedure is encoded as inhale JP K; J sm K;
exhale JQ K, then υpre = post(inhale JP K, υzero), where υzero is the initial (empty)
verification state. Assuming υpre satisfies our state invariants (υpre ∈ I) and that
L υpre, sm M maps to {P} sm {Q′} with Q′ |= Q, we can apply the lemma to get
that {P} sm {Q}, and as such {P}m(. . . ) {Q}, is derivable in TaDA.

We can prove soundness of the outline statement encoding by straightforward
structural induction over outline statements. We illustrate a case of the induction
at an abstract level. Consider a compound outline statement s{s′} (s is the
compound, e.g. update_region, and s′ is its body, e.g. CAS(...)) with an encoding
J s{s′} K = c1;J s′ K;c2, where c1 and c2 are the Viper statements before and
after the encoding of the body, respectively. There are four Viper verification
states of interest: the prestate of the compound statement υ0, the prestate of



Concise Outlines for a Complex Logic 55

its body υ1 = post(c1, υ0,), the poststate of its body υ2 = post(J s′ K, υ1,), and
the poststate of the compound statement υ3 = post(c2, υ2,). From the induction
hypothesis, we know that L υ1, s′ M = {φ(υ1)} xs′y {φ(υ2)} is derivable in TaDA
and we have to show that L υ0, s{s′} M = {φ(υ0)} xs{s′}y {φ(υ3)} is derivable in
TaDA. Showing this derivation corresponds to applying rules to fill the (?)-gap
in the following proof tree:

...
(IH)

{φ(υ1)} xs′y {φ(υ2)}
(?)

{φ(υ0)} xs{s′}y {φ(υ3)}

The application of IH denotes using the fact from the induction hypothesis that
{φ(υ1)} xs′y {φ(υ2)} is derivable in TaDA. The necessary rule applications for the
(?)-gap are determined by our encoded proof candidate (Sec. 5), where we have
to argue that their applications are correctly encoded in the outline statement
encoding.

In the next sections, we first discuss Viper’s verification state. Afterwards, we
introduce the judgment mapping and state invariants for all of TaDA, includ-
ing atomic triples, levels, atomicity context, interference context, and stability
requirements. Last, we argue soundness of the outline statement encoding.

L.2 Viper Verification State

Viper’s verification state [31] is defined as a set of traces. Each trace consists
of a sequence of state atoms: a triple (H,P, S) of a heap H (mapping Ref and
field name pairs, as well as applied functions, to values), a permission mask P
(mapping Ref and field name pairs, as well as predicate instances, to permission
amounts; these amounts are non-negative rationals, which for fields cannot exceed
1), and a variable store S (mapping variables to values). Furthermore, a trace
consists of a label mapping lbl, mapping Viper labels to their corresponding
state atom. We have a special error verification state  , which is the result
of a verification error, e.g. the poststate of x := 5; assert x == 4. We use υ to
range over verification states. The semantics of the core logic is given in [31]. In
particular, the semantics of heap-dependent expressions such as fields accesses x.f
comes with well-definedness conditions. E.g. reading from a field is only allowed
in states with a non-zero permission for that field. The semantics of functions
and predicates follows [41].

When a Viper program verifies successfully, this implies that all assert and
exhale (removes the assertion from the verification state, introduced in Sec. 6)
assert and exhale, respectively, assertions valid in there respective verification
states. This includes implicit assertions and exhales, such as asserting non-zero
permission when accessing a field or exhaling preconditions when calling functions.
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L.3 TaDA Judgment Mapping and State Invariants

In the judgment mapping of TaDA, we distinguish between non-atomic and
abstract atomic Voila outline statements. For an abstract atomic outline statement
sa and a Viper prestate υ, the judgment mapping maps to a TaDA judgment of
the following shape:

L υ, sa M = ∀h ∈ Hυ. ∀A with Alb
υ ≤ A ≤ Aub

υ .

λυ;A ` x ∈ Xυ

〈
Preυ(h, x)

〉
xsay

〈
Postυ,υ′(h, x)

〉
where υ′ = post(J sa K, υ)

For the sake of brevity, we omit the exact judgment mapping definition; instead,
we describe the different components informally: (Hυ)(Hυ)(Hυ) Viper can deduce facts
based on knowledge of old state, e.g. from the fact that some variable had the
value 5 at a previous Viper label. To account for such deductions at the TaDA
level, we use a set Hυ, the history set , to capture Viper’s knowledge about old
state. E.g. consider a variable z whose value is one plus its old value from label
lbl. With the history set, this fact is captured as ∀(..., hz, ...) ∈ Hυ. z = hz + 1,
where hz binds the part of the history set that tracks z’s value from label lbl. In
our TaDA judgment, we do not map these facts to the pre- or postcondition of
a TaDA triple because rules such as MakeAtomic restricts the shape of pre-
and postconditions. This would force us to remove these facts from TaDA’s pre-
and postconditions, even though these facts remain in Viper’s verification state.
(A)(A)(A) As described in App. E, a TaDA triple is proven forall atomicity contexts
A within a lower bound Alb

υ and an upper bound Aub
υ ; the order on atomicity

contexts is defined as follows:

A1 ≤ A2 ⇔ ∀r ∈ dom(A1). r ∈ dom(A2)

∧ dom(A2(r)) ⊆ dom(A1(r))

∧ ∀z ∈ dom(A2(r)). img(A1(r)(z)) ⊆ img(A2(r)(z))

The operations dom(·) and img(·) denote domain and image, respectively. We
define the order such that a Viper assertion P being stable for an atomicity
context A1 implies that P is also stable for all atomicity contexts A2 with
A1 ≤ A2. Therefore, to satisfy stability of a pre or postcondition for all atomicity
contexts A that a triple is proven for (Alb

υ ≤ A ≤ Aub
υ ), it is sufficient to satisfy

stability of the pre or postcondition for Alb
υ . Regarding the mapping, the lower

bound Alb
υ has an entry for a region instance r only if, in the verification state

υ, r is contained in the value of the update variable. The domain of such an
atomicity context entry for r is the value of r.R_A, where R is the region name of
r. The image of an entry for r depends on the poststate υ′. If r.R_from = z and
r.R_to = f(z) are held in υ′ (this corresponds to r Z⇒ (z, f(z)) in TaDA), then
the image of the entry is defined by the function f , otherwise the image is the
empty set ∅. Conversely, the upper bound Aub

υ has an entry for region identifier
r only if its region level is at least the value of the alevel variable in υ. The
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domain for r is dom(Alb
υ ) if r is an entry of the lower bound Alb

υ (r ∈ dom(Alb
υ )),

otherwise the domain for r in Aub
υ is ∅. Again, the image for r depends on the

poststate. If r.R_from = z and r.R_to = f(z) are held in υ′, then the image of the
entry is defined by the function f , otherwise the image is the set of all values U.
(λυ)(λυ)(λυ) The level of the triple λυ is the value of the level variable in the prestate υ.
(Xυ)(Xυ)(Xυ) The interference context Xυ is the cartesian product of all values of r.R_X
for which the predicate R(r, p) is held in the prestate υ. (Preυ,Postυ,υ′)(Preυ,Postυ,υ′)(Preυ,Postυ,υ′) The pre
and postcondition of the TaDA triple are Preυ and Postυ,υ′ , respectively. Both
can have occurrences of quantifiers bound by the history set and the interference
context quantifier. We use different assertion mappings for pre and postconditions
because the interference context is handled for each of them differently, as they
have different restrictions in our normal form. For the precondition, if a region
predicate R(r,λ,p) is held in the prestate υ, then this is mapped to Rλr (p, xr)
where xr is the interference context quantifier for region identifier r. This way,
we guarantee that the state of regions in the precondition is bound by the
interference context. For the postcondition, we do not have this requirement.
Holding R(r,λ,p) in the poststate υ′ is mapped to Rλr (p, zr) where zr is a logical
variable, additionally introduced for binding the region state. The region state
function R_State(r,λ,p) is mapped to constraints on xr and zr for the pre and
postcondition, respectively. For all other resources the mapping is the same for
pre and postconditions. The mapping for these resources corresponds to the
inverse of the encoding: E.g. Holding a guard predicate R_G(r, p) in a verification
state is mapped to a TaDA guard instance [G(p)]r. Similarly, holding acc(x.f)

is mapped to x.f 7→ z where z is the value of x.f in the verification state. For
simplicity, we omit assertions with local program variables in the shown TaDA
triple. These are mapped to private assertions of atomic triples and can only
depend on the history set. No other resource, e.g. guards or points-to predicates,
are mapped to private assertions of atomic triples. The handling of local variables
in all rule applications is straightforward.

For a non-atomic outline statement sna and a Viper prestate υ, the judgment
mapping maps to a non-atomic TaDA judgment of the following shape:

L υ, sna M = ∀h ∈ Hυ. ∀A with Alb
υ ≤ A ≤ Aub

υ .

λυ;A `
{
Pυ(h)

}
xsnay

{
Pυ′(h)

}
where υ′ = post(J sna K, υ)

The mapping is the same as for abstract atomic outline steps, except that the
TaDA judgment has no interference context and thus the same assertion mapping
Pυ can be used for both, pre- and postcondition.

To express stability of the pre or postcondition, we additionally define a closed
form of the pre and postcondition, which has no free variables. The closed form
for Viper prestates υ and abstract atomic statements sa, as well as non-atomic
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outline statements sna, are derived from TaDA and defined as follows:

P̂reυ,sa = ∀h ∈ Hυ. ∃x ∈ Xυ. Preυ(h, x)

P̂ostυ,sa = ∀h ∈ Hυ. ∀x ∈ Xυ. Postυ,υ′(h, x)

where υ′ = post(J sa K, υ)

P̂reυ,sna = ∀h ∈ Hυ. Pυ(h)

̂Postυ,sna = ∀h ∈ Hυ. Pυ′(h)

where υ′ = post(J sna K, υ)

For stronger guarantees in the judgment mapping, we have several invariants
on Viper prestate of encoded Voila outline statements: (1) Fields, region predi-
cates, and guard predicates have either none or full permissions. In particular,
permissions for the interference context field (R_X) is always full, and permissions
to the two tracking fields R_from and R_to are either both full or both none. An
exception are guard predicates for fractional guards, which are allowed to have
partial permissions because their Viper permission amount maps to a TaDA guard
argument. (2) If permission to the diamond tracking resource field (r.diamond)
is held, then r is contained in the set of the update variable. (3) For all region
identifiers contained in update, the region level is at least the value of the alevel

variable. (4) The other invariants are more technical and required to define the
judgment mapping.

Besides invariants on single Viper verification states, we define invariants
on pairs of pre and poststates of an encoded outline statement. We use T to
denote the set of verification state pairs that satisfy these invariants. A state
pair (υ, υ′) is contained in T, when their level, interference context, and both
atomicity context bounds are equal in the judgment mapping, i.e. when λυ = λυ′ ,
Xυ = Xυ′ , Alb

υ = Alb
υ′ , and Aub

υ = Aub
υ′ holds. For full TaDA, opposed to the

simplified version, we need these additional two-state invariants to guarantee that
level, interference context, and atomicity context stay consistent for sequential
composition.

L.4 Proof Candidates

As discussed in Sec. L.1, we prove soundness of our outline statement encoding
by induction over outline statements. We use the induction predicate W :

W (s) :≡ ∀υ ∈ I. υ′ 6=  ∧ P̂reυ,s is stable for Alb
υ =⇒

L υ, s M is derivable ∧ υ′ ∈ I ∧ (υ, υ′) ∈ T

∧ (s is non-atomic =⇒ P̂ostυ,s is stable forAlb
υ )

where υ′ = post(J s K, υ)

The additional properties about stability can be included in our invariants on pre
and post Viper verification states T (by making the invariants dependent on the
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encoded Voila outline statement). We explicitly state the stability properties for
clarity. Our normal form is captured in our soundness argument as a combination
of the invariants I and T, the condition on stability in W , and the shape of TaDA
judgments in the image of our judgment mapping.

To streamline the proof argument, we add to Voila an outline statement
atomic{s}, which changes the atomicity of a triple from non-atomic to atomic.
Without this additional outline statement, for cases such as loops, we have to
make a case distinction whether the body is abstract atomic or non-atomic. By
introducing the outline statement, it is guaranteed that the atomicity of the body
is the atomicity of the non-bridge rules’ premise.

For the induction proof, we focus on the cases for atomic calls, atomic,
update_region, and make_atomic. These are particular challenging steps of our
encoding. In our presentation of the induction cases, for the sake of brevity, we
reason about Viper code at a higher, more abstract, level to focus on the proofs
themselves. In particular, we take as a lemma that the poststate υ′ after the
macro STABILIZE (See Fig. 24) is stable for Alb

υ when mapped to TaDA, where
υ is the prestate of the macro. A proof argument about a similar encoding of
stabilization was provided in [9].

Atomic Call. Fig. 34 shows the filled out TaDA proof tree for the encoding of
an abstract atomic call y := M(e), where M, e, and y are the called procedure, the
arguments, and the return variables, respectively. The encoding of atomic calls
is given in Fig. 26. Let υ and υ′ be Viper’s pre and poststate of the encoded
Voila statement, respectively. As seen in the definition of the judgment mapping,
the TaDA judgment is proven for every h ∈ Hυ and every atomicity context A
between Alb

υ and Aub
υ . The important steps of the proof snippet go as follows

(from the bottom of the tree to the top): Firstly, the current judgment level λυ
is reduced to the level of the called procedure, denoted by λ′. The side condition
of AWeakening3 (λυ ≥ λ′) is satisfied, since in the encoding we assert that
the level variable is larger than every level in M’s precondition and as such is
larger than λ′, which is one plus the maximum level in M’s precondition. Secondly,
the mapped verification state that is not part of the procedure’s precondition
R(h, x), is weakened to a stabilized version R′(h, x) (by Consequence), and
then framed off. The stability of the frame R′(h, x) is a consequence from the
use of the macro STABILIZE in the encoding. Furthermore, we know that only the
TaDA pre and postcondition of the procedure remain in the proof state since
their Viper counterparts are asserted and everything else is framed off. We denote
the procedure’s pre and postcondition with P ′(h, x) and Q′(h, x), respectively.
Thirdly, the current interference context Xυ is widened to the interference context
of the procedure, denoted as X ′, by applying Substitution. This widening is
justified since in the encoding we assert that Xυ is a subset of X ′ for the relevant
interference context parts. Lastly, we apply the call rule. We already know that
the level, interference context, and pre- and postcondition match. It remains to
argue that the current atomicity context A is contained in the set of atomicity
contexts handled by M, i.e. that A is between the lower and upper bound of M as
defined by the judgment mapping, which we denote by Alb

M and Aub
M , respectively.
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The inclusion of the lower bound is trivial since Alb
M is empty. The upper bound

is satisfied since in the encoding we check that the value of the alevel variable is
larger or equal to the M’s level, which is equal to the the value of alevel initially
set for M, hence entailing Aub

υ ≤ Aub
M .

Non-atomic calls are similar, except that interference contexts are not present.

...
(Call)

λ′;A ` x′ ∈ X ′.
〈
P ′(h, x′)[e/z]

〉
y := M(e)

〈
Q′(h, x′)[e/z][y/r]

〉
(Subst)

λ′;A ` x ∈ Xυ.
〈
P ′(h, x)[e/z]

〉
y := M(e)

〈
Q′(h, x)[e/z][y/r]

〉
(Frame)

λ′;A ` x ∈ Xυ.
〈
R′(h, x) ∗ P ′(h, x)[e/z]

〉
y := M(e)

〈
R′(h, x) ∗Q′(h, x)[e/z][y/r]

〉
(Cons)

λ′;A ` x ∈ Xυ.
〈
R(h, x) ∗ P ′(h, x)[e/z]

〉
y := M(e)

〈
R′(h, x) ∗Q′(h, x)[e/z][y/r]

〉
(Cons)

λ′;A ` x ∈ Xυ.
〈
Preυ(h, x)

〉
y := M(e)

〈
Postυ,υ′(h, x)

〉
(AWeak3)

λυ;A ` x ∈ Xυ.
〈
Preυ(h, x)

〉
y := M(e)

〈
Postυ,υ′(h, x)

〉
Fig. 34: Proof snippet for the encoding of abstract atomic calls y := M(e), where
M, e, and y are the called procedure, the arguments, and the return variables,
respectively. The encoding of atomic calls is given in Fig. 26. Note that we use
shortened TaDA rule names.

Atomicity Change. The corresponding proof tree is shown in Fig. 35, where
s′ is the TaDA statement reduced from atomic{s} (i.e. s′ = xatomic{s}y). The
encoding of atomicity changes is given in Fig. 25. Let υ0 and υ3 be Viper’s pre
and poststate of the encoded Voila statement atomic{s}, respectively. Similarly,
let υ1 and υ2 be Viper’s pre and poststate of the encoded Voila statement s,
respectively. Again, let h ∈ Hυ0 and an atomicity context A between Alb

υ0 and Aub
υ0

be arbitrary. As seen in Sec. 5, in TaDA, the atomicity of the triple is changed by
applying Consequence to stabilize the postcondition, AWeakening1 to switch
the triple kind, AExists to establish the interference context, where x ∈ Xυ1

binds all region states in P ′(h, x) and the corresponding region states from the
linearization point in Q′(h, x). As described in the definition of our judgment
mapping, Exists is applied to move Viper facts about old state out of the triple.
Afterwards, the induction hypothesis can be applied.

Update-Region. The corresponding proof tree is shown in Fig. 36, where again
s′ is the reduced Viper statement (s′ = xupdate_region using ... {s}y). Again,
let υ0 and υ3 be Viper’s pre and poststate of the encoded Voila statement
update_region using ... {s}, respectively. Furthermore, let υ1 and υ2 be Viper’s
pre and poststate of the encoded Voila statement s, respectively. Let h ∈ Hυ0

and an atomicity context A between Alb
υ0 and Aub

υ0 be arbitrary. The encoding of
update_region is given in Fig. 27. The important steps of the proof snippet go as
follows (from the bottom of the snippet to the top): Firstly, as for the atomic call,
the judgment level is reduced. We denote the new level λυ1 as λ to not clutter the
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...
(IH)

λυ1 ;A ` x ∈ Xυ1 .
〈
Preυ1(h, h

′′, x)
〉

s
′ 〈 Postυ1,υ2(h, h′′, x) 〉

(Exists)
λυ1 ;A ` x ∈ Xυ1 .

〈
∃h′′ ∈ H ′′. Preυ1(h, h′′, x)

〉
s
′ 〈 ∃h′′ ∈ H ′′. Postυ1,υ2(h, h′′, x) 〉

(Cons)
λυ0 ;A ` x ∈ Xυ0 .

〈
P ′(h, x)

〉
s
′ 〈 Q′(h, x) 〉

(AExists)
λυ0 ;A `

〈
∃x ∈ Xυ0 . P

′(h, x)
〉

s
′ 〈 ∃x ∈ Xυ0 . Q

′(h, x)
〉

(AWeak1)
λυ0 ;A `

{
∃x ∈ Xυ0 . P

′(h, x)
}

s
′ { ∃x ∈ Xυ0 . Q

′(h, x)
}
(Cons)

λυ0 ;A `
{
Pυ0(h)

}
s
′ { Pυ3(h)

}
Fig. 35: Proof snippet for the encoding of atomic, which switches from the non-
atomic triples to the atomic triples. The statement s′ is equal to xatomic{s}y. The
encoding of atomicity changes is given in Fig. 25. Note that we use shortened
TaDA rule names.

proof tree with subscripts. Again, the encoding asserts explicitly that the new level
(λ+1) is smaller or equal to the current level (λυ0). Secondly, as also seen before,
Consequence is used to get the pre- and postcondition into the right shape such
that UpdateRegion can be applied next. All specified resources are justified
since their encoding is explicitly asserted in the encoding. In the updated region
Rλr (p, x

◦), we use x◦ to denote the region’s interference context quantifier from
the sequence of all interference context quantifiers x. Thirdly, UpdateRegion
is applied, where D and I are the domain and image of the atomicity context
entry for r, respectively. Splitting the atomicity context is justified, because the
encoding tests explicitly that an entry for r exists in the atomicity context. Recall
from the judgment mapping, that we define images of atomicity context entries
such that they coincide with the target of the tracking resource r Z⇒ (x◦, w).
Therefore,W and I agree on whether or not an update happened. In the encoding,
the region instance is opened by unfolding the region predicate, which matches
the definition of our resource mapping. Fourthly, as discussed in Sec. 5, the
interference contexts of regions contained in I(Rλr (p, x◦)), denoted as X ′, is added
to the current interference context Xυ0 . Formally, we entail Z(r, λ, p, x◦, x′),
which denotes the assertion that is equivalent to I(Rλr (p, x◦)), except that the
region state of regions is explicitly bound by x′. Lastly, as seen for atomic, surplus
old Viper state is removed by applying Exists, so that the invariant can be
applied.

The cases for open_region and use_atomic are similar.

Make-Atomic. The corresponding proof tree is shown in Fig. 37, where as before
s′ is the reduced TaDA statement (s′ = xmake_atomic using ... {s}y). Again,
let υ0 and υ3 be Viper’s pre and poststate of the encoded Voila statement
make_atomic using ... {s}, respectively. Furthermore, let υ1 and υ2 be Viper’s
pre and poststate of the encoded Voila statement s, respectively. Let h ∈ Hυ0

and an atomicity context A between Alb
υ0 and Aub

υ0 be arbitrary. The encoding of
make_atomic is given in Fig. 32. The important steps of the proof snippet go as
follows (from the bottom of the proof tree to the top):
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Firstly, similar to calls, the verification state is split into resources required
for the make_atomic and the frame R(h, x), where again R′(h, x) is the stabilized
version that is framed off to the postcondition. Afterwards, MakeAtomic is
applied. The new atomicity context for the updated region is z ∈ X◦υ0 → I(z),
where X◦υ0 is the projection of Xυ0 onto the interference context for region
identifier r. The image I of the atomicity context entry for r is chosen according
to our judgment mapping. Similar to the case for update_region, I coincides with
the target of the tracking resource, thus coincides with W . We can guarantee that
r was not in the atomicity context before, since the encoding explicitly checks
that r is not in the set of update and that the region’s level is smaller than the
value of the alevel variable. Again, old facts are removed by applying Exists.
However, before we can use the induction hypothesis, we have to guarantee that
the new atomicity context (r : z ∈ X◦υ0 → I(z),A) is between Alb

υ1 and Aub
υ1 . The

lower bound follows straight forwardly from r getting added to the atomicity
context and A being between Alb

υ0 and Aub
υ0 . The upper bound follows from the

value of variable alevel in υ0 being larger then in υ1, which in the encoding is
enforced by first asserting that the new value of alevel is lower than the current
one and then assigning the new value to the alevel variable.
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M Complete Encoding of our Running Example

An overview and excerpt of the encoding of our lock running example was shown
in Fig. 13; below we show the full encoding atomicity contexts, interference
contexts and levels. The encoding uses the macros defined in App. K (see also
their example-specific definitions in App. J).

method lock(r: Ref, lvl: Int, cell: Ref) {
// Encoded precondition
inhale forall c: Ref :: c != null ==> acc(c.Lock_X)
inhale r.Lock_X == Set(0,1)
inhale Lock(r, lvl, x) && Lock_state(r, lvl, x) in r.Lock_X
inhale Lock_G(r)

// Initialize levels
var level: Int
inhale level > lvl
var alevel: Int := level
var update: Set[Ref] := Set()

var b: Bool

MAKE_ATOMIC(Lock(r, lvl, cell), Lock_G(r), {
DO_WHILE({
ATOMIC({
UPDATE_REGION(Lock(r, lvl, cell), {
CALL(b := CAS_val(x, 0, 1))

})
})

}, !b, INV)
})

// Encoded postcondition
exhale Lock(r, lvl, x) && Lock_state(r, lvl, x) == 1
exhale Lock_G(r)
exhale old(Lock_state(r, lvl, x)) == 0

}

where INV is the encoded source invariant:
Lock(r, lvl, cell) &&
(!b ==> acc(r.diamond)) &&
( b ==> acc(r.Lock_from) && acc(r.Lock_to) &&

r.Lock_from == 0 && r.Lock_to == 1)

Fig. 38: Viper encoding of procedure lock from our running example, with macros
not yet expanded.
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