Formal Methods in System Design
https://doi.org/10.1007/510703-023-00427-w

ORIGINAL ARTICLE

®

Check for
updates

Concise outlines for a complex logic: a proof outline checker
for TaDA

Felix A. Wolf'® - Malte Schwerhoff! - Peter Miiller’

Received: 16 April 2022 / Accepted: 16 April 2023
© The Author(s) 2023

Abstract

Modern separation logics allow one to prove rich properties of intricate code, e.g., functional
correctness and linearizability of non-blocking concurrent code. However, this expressive-
ness leads to a complexity that makes these logics difficult to apply. Manual proofs or proofs
in interactive theorem provers consist of a large number of steps, often with subtle side
conditions. On the other hand, automation with dedicated verifiers typically requires sophis-
ticated proof search algorithms that are specific to the given program logic, resulting in
limited tool support that makes it difficult to experiment with program logics, e.g., when
learning, improving, or comparing them. Proof outline checkers fill this gap. Their input is
a program annotated with the most essential proof steps, just like the proof outlines typi-
cally presented in papers. The tool then checks automatically that this outline represents a
valid proof in the program logic. In this paper, we systematically develop a proof outline
checker for the TaDA logic, which reduces the checking to a simpler verification problem,
for which automated tools exist. Our approach leads to proof outline checkers that provide
substantially more automation than interactive provers, but are much simpler to develop than
custom automatic verifiers.

Keywords Software verification - Program verifier - Automated verification - Separation
logic - Fine-grained concurrency - Formal methods

1 Introduction

Standard separation logic enables the modular verification of heap-manipulating sequen-
tial [1, 2] and data-race free concurrent programs [3, 4]. More recently, numerous separation
logics have been proposed that enable the verification of fine-grained concurrency by incor-
porating ideas from concurrent separation logic, Owicki-Gries [5], and rely-guarantee [6].

B Felix A. Wolf
felix.wolf @inf.ethz.ch

Malte Schwerhoff
malte.schwerhoff @inf.ethz.ch

Peter Miiller
peter.mueller @inf.ethz.ch

Department of Computer Science, ETH Zurich, Zurich, Switzerland

Published online: 31 July 2023 9\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-023-00427-w&domain=pdf
http://orcid.org/0000-0002-8573-2387

Formal Methods in System Design

Examples include CAP [7], iCAP [8], CaReSL [9], CoLoSL [10], FCSL [11], GPS [12],
RSL [13], and TaDA [14] (see Brookes et al. [15] for an overview). These logics are very
expressive, but challenging to apply because they often comprise many complex proof rules.
E.g., our running example (Fig. 1) consists of two statements, but requires over 20 rule
applications in TaDA, many of which have non-trivial instantiations and subtle side condi-
tions. This complexity seems inevitable for challenging verification problems involving, e.g.,
fine-grained concurrency or weak memory.

The complexity of advanced separation logics makes it difficult to develop proofs in these
logics. It is, thus, crucial to have tools that check the validity of proofs and automate parts of
the proof search. One way to provide this tool support is through proof checkers, which take
as input a nearly complete proof and check its validity. They typically embed program logics
into the higher-order logic of an interactive theorem prover such as Coq. Proof checkers
exist, e.g., for RSL [13] and FCSL [11]. Alternatively, automated verifiers take as input
a program with specifications and devise the proof automatically. They typically combine
existing reasoning engines such as SMT solvers with logic-specific proof search algorithms.
Examples are Smallfoot [16] and Grasshopper [17] for traditional separation logics, and
Caper [18] for fine-grained concurrency.

Proof checkers and automated verifiers strike different trade-offs in the design space.
Proof checkers are typically very expressive, enabling the verification of complex programs
and properties, and produce foundational proofs: ultimately based on a language semantics,
with a minimal trusted core. However, existing proof checkers offer little automation. Auto-
mated verifiers, on the other hand, significantly reduce the proof effort, but compromise on
expressiveness and require substantial development effort, especially, to devise custom proof
search algorithms (which increase the trusted core).

Itis in principle possible to increase the automation of proof checkers by developing proof
tactics, or to increase the expressiveness of automated verifiers by developing stronger custom
proof search algorithms. However, such developments are too costly for the vast majority of
program logics, which serve mostly a scientific or educational purpose. As a result, adequate
tool support is very rare, which makes it difficult for developers of such logics, lecturers and
students, as well as engineers to apply, and gain experience with, such logics.

To remedy the situation, several tools took inspiration from the idea of proof outlines [19,
20] (see, e.g., Pierce et al. [21] for a detailed discussion): formal proof skeletons that contain
the key proof steps, but omit most of the details. Proof outlines are a standard notation to
present program proofs in publications and teaching material. Proof outline checkers such
as Starling [22] and VeriFast [23] take as input a proof outline and then check automatically
that it represents a valid proof in the program logic. They provide automation for proof
steps for which good proof search algorithms exist, and can support expressive logics by
requiring annotations for complex proof steps. Due to this flexibility, proof outline checkers
are especially useful for experimenting with a logic.

In this paper, we present Voila, a proof outline checker for TaDA [14], which goes beyond
existing proof outline checkers and automated verifiers by supporting a substantially more
complex program logic, which handles fine-grained concurrency, linearizability, abstract
atomicity, and other advanced features. We believe that our systematic development of Voila
generalizes to other complex logics. Our contributions are as follows:

e The Voila proof outline language, which supports a large subset of TaDA and enables
users to write proof outlines very similar to those used by the TaDA authors [14, 24].

@ Springer

Formal Methods in System Design

e A systematic approach to automate the expansion of a proof outline into a full proof
candidate via a normal form and heuristics. Our approach automates most proof steps
(e.g., 20 out of 22 for the running example from Fig. 1).

e An encoding of the proof candidate into Viper [25], which checks its validity without
requiring any TaDA-specific proof search algorithms.

e The Voila proof outline checker, the first tool that supports specification for lineariza-
tion points, provides a high degree of automation, and achieves good performance. Our
submission artifact [26] contains the executable Voila tool; the Voila source code is also
available [27].

Outline Sec.2 gives an overview of the TaDA logic and illustrates our approach. Section 3
presents the Voila proof outline language, and Sec. 4 summarizes how we verify proof
outlines. We explain how we automatically expand a proof outline into a proof candidate in
Sec. 5 and how we encode a proof candidate into Viper in Sec. 6. Sec.7 provides a detailed
soundness argument. In Sec. 8, we evaluate our technique by verifying several challenging
examples. We discuss related work in Sec. 9 and conclude in Sec. 10.

Our full paper [28] contains a substantial appendix with many further details, including:
the full version and Viper encoding of our running example, with TaDA levels (omitted from
this paper, but supported by Voila) and nested regions; additional inference heuristics; general
Viper encoding scheme; and the encoding of a custom guard algebra.

This paper is an extended version of a paper published at Formal Methods 2021 [29].
It has been revised to improve accessibility, particularly in Sec. 2, and extended with the
soundness argument in Sec. 7.

2 Running example and TaDA overview

Figure 1 shows the first half of our running example, adapted from the original TaDA pub-
lication [14]: the TaDA proof outline of the 1ock procedure of a spinlock, whose atomic
specifications capture its essence as a primitive for mutual exclusion. In Sec. 2.4, we then
discuss a non-atomic specification derived from lock that conceptually ties a lock to an
invariant. As in the original publication [14], the outline in Fig. 1 shows only two out of 22
proof steps, and omits most side conditions. In a TaDA proof outline, a proof step corresponds
to the application of a TaDA rule, including suitable pre- and postconditions. Our outline
shows applications of the rules MAKEATOMIC and UPDATEREGION. Deriving the shown pre-
and postconditions may require additional rule applications, which are omitted.

We use our running example to introduce the necessary TaDA background, explain TaDA
proof outlines, and illustrate the corresponding Voila proof outlines.

2.1 Regions and atomicity

TaDA targets shared-memory concurrency with sequentially-consistent memory, and TaDA
programs manipulate shared regions: data structures that are concurrently modified accord-
ing to a specified protocol (as in rely-guarantee reasoning [6]). A shared region such as
Lock, (x, s) (subscript » uniquely identifies a specific region instance) is an abstraction over
the region’s content, analogous to abstract predicates [30] in traditional separation logic. The
interpretation /(Lock,(x, s)) defines the region’s content. In our example (lines 1-2), the
lock owns memory location x (denoted by separation logic’s points-to predicate x — _), and
its abstract state s is 0 or 1, indicating whether it is unlocked or locked. Here, the abstract

@ Springer

Formal Methods in System Design

1 I(Lock,(z,0)) £ 20

2 I(Lock,(z,1)) & z+1

3 G :0~1

4 G :1~0

5 GeG is undefined

6 VWse{0,1}.

7 <L0ckr(x,s) * [G],>

8 r:sef{0,1} ~ 1k

9 {3s € {0,1} .Lock,(x, s) x 7 = ¢}

10 do {

11 {3s € {0,1} .Lock,(x,s) xr = #}
o &

12 2 5 Vs € {0,1}.

13 9 E (x> s)

14 E E b= CAS(X,(J,I):,

15 2 = <(xt—>1*s:0*b:1)\/>

16 = g (x> s*xs#0xb=0)

17 Js € {0,1} . Lock,(x, s) *

18 (r=(0,1)xb=1)V

19 r= 4xb=0))

20 } while (b = 0);

21 {r=(0,1)xb=1}

22 (Lock,(x,1) % [G], * s = 0)

Fig. 1 First half of our running example: a spinlock with atomic TaDA specifications and shared region
Lock; adapted with only minor changes from TaDA [14]. The lock region (lines 1-2) comprises a single
memory location, whose value is either O (available) or 1 (acquired). Guard G allows locking and unlocking
(lines 3—4), and is unique (line 5). The proof outline (lines 6-22) shows the implementation of a CAS-based
Lock operation with atomic specifications. Levels (denoted by A in TaDA) are omitted from the discussion in
this paper, but supported by Voila and included in the full paper [28]

state (second region parameter) and the content of the memory location (value pointed to by
x) coincide, but they may differ in general.

Unlike traditional abstract predicates, shared regions are duplicable, i.e., the equivalence
Lock(x,s) < Lock(x,s) * Lock(x, s) holds. This allows multiple threads to obtain an
instance of a Lock region, and to compete for the corresponding lock. However, note that
duplicating a shared region indirectly also allows duplicating points-to predicates, which are
unique in traditional separation logic and elsewhere in TaDA. This is nevertheless sound
because TaDA’s intricate proof rules ensure that a shared region is opened only for an
abstractly-atomic duration, and that no two instances of the same region are opened simul-
taneously.

Lines 3-5 define the protocol for modifications of alock as a labeled transition system. The
labels are guards—abstract resources that restrict when a transition may be taken. Here, guard
G allows both locking and unlocking (lines 3—4), and is unique (line 5). Using a unique guard
in a context where multiple threads compete for acquiring a lock may seem counterintuitive,
but the combination of unique guards and duplicable shared region assertions resolves this
perceived conflict, as discussed in Sec. 2.4. Note that the transition system is defined relative

@ Springer

Formal Methods in System Design

to a region’s abstract value, not its internal memory values, which is not directly apparent in
this example, since abstract and concrete values coincide.

Lines 6-22 contain the proof outline for the 1ock procedure, which updates a lock x from
an undetermined state—it can seesaw between locked and unlocked due to environment
interference—to the locked state. Importantly, this update appears to be atomic to clients of
the spinlock. These properties are expressed by the atomic TaDA triple (lines 6, 7, and 22)

Vs € {0, 1} - (Lock,(x, s) * [G],) Lock(x) (Lock, (X, 1) * [G], * s = 0)

Atomic triples (angle brackets) express that their statement is linearizable [31]. The abstract
state of shared regions occurring in pre- and postconditions of atomic triples is interpreted
relative to the linearization point, i.e., the moment in time when the update becomes visible
to other threads (here, when the CAS operation on line 14 succeeds). In contrast, pre- and
postconditions of standard Hoare triples (curly braces) are interpreted as usual: relative to
the start and the end of the specified statement’s execution. Intuitively, it is the combination
of linearizability, shared regions with abstract state, and guarded transition systems that
establishes TaDA’s abstract atomicity: operations (e.g., lock) appear atomic when interacted
with on the level of a shared region (e.g., Lock(x,s)), and TaDA’s derivation rules ensure that
the abstraction holds, even if the underlying memory is manipulated non-atomically.

The interference context Ws € {0, 1} is a special binding for the abstract region state
that forces callers of lock to guarantee that the environment keeps the lock state in the set
{0, 1} until the linearization point is reached. Correspondingly, it also requires the callees
to not take the region out of this abstract state (i.e., {0, 1}) before its linearization point is
reached. In this case, both restrictions are vacuous; in general, the interference context can
be understood as a symmetric rely-guarantee condition.

The precondition of the triple states that an instance of guard G for region r, [G],, is
required to execute 1ock(x). The postcondition expresses that, at the linearization point, the
lock’s abstract state was changed from unlocked (s = 0) to locked (Lock(x,1)). Such precise
specifications of state updates are enabled by the atomic triple’s interpretation relative to the
linearization point. In contrast, standard Hoare triples would have to account for potential
environment interference before and after the linearization point—and can thus often only
specify preservation of data structure invariants. In this paper, we refer to standard Hoare
triples also as non-atomic triples.

2.2 TaDA proof outline

Lines 6-22 of the proof outline in Fig. 1 show the main proof steps; Fig. 2 shows simplified
versions of the applied key TaDA rules. The inner rule application, UPDATEREGION, identifies
the linearization point inside an abstractly-atomic code block. The surrounding rule applica-
tion, MAKEATOMIC, then checks that there is exactly one such linearization point, ensuring
that the block of code is indeed atomic w.r.t. a shared region abstraction, and establishes an
atomic triple. This justifies the change from non-atomic premise triple (lines 9 and 21) to an
atomic conclusion triple (lines 7 and 22), around the body of the CAS-based implementation
of the lock procedure.

Rule MAKEATOMIC requires that the atomicity context of the premise triple, a set A of
pending updates (for brevity, omitted from the previously-shown triple for 1ock(x)), includes
any region updates performed by the statement of the triple. By tracking pending updates and
allowing at most one per region (r ¢ A in Fig. 2), MAKEATOMIC intuitively prevents more

@ Springer

Formal Methods in System Design

MAKEATOMIC ré¢ A {(z,y) |z € X,y € Y} C Ta(G)*
rize€X Y A-{Ire X.R.(Z,2)xr= 4} C{Iwe X,y eY.re (z,y)}

AFVz e X(R,.(Z,2)*[G],) C { Ty e Y.R,(Z,y) = [C],)

UPDATEREGION

ARV e X.<I(RT(5, 2)) * P(;r)> C <3y EYwew. ﬁgg Z%i : g;gz:z;)w)>

Vz € X(R,(Z,2) * P(x) * 7 = #)

@]

r:xeX~Y AF

R, (Z,y) xr &= (2,9) * Q1(z, y, w)
<3y€Y;w€W'\/RT(Z,$)*r@0 * Qa(z,w) >

USEATOMIC
r¢ A {(zy)|zeX yeY}CT(G)
AF Vo € X.(IR, (%)) + P(z) « [G],) C (3y € Y IR, (1)) * Qx,1))

At V2 e X(R,(Z,z) * P(z) «[G],) C By e Y R,(Z,y) * Q(z,y))

Fig. 2 Simplified versions of two key TaDA rules used in Fig. 1. MAKEATOMIC establishes an atomic triple
(conclusion) for a linearizable block of code (premise), which includes checking that a state update complies
with the region’s transition system: 7z (G)* is the reflexive, transitive closure of the transitions that G allows.
R, (Z, x) and I(R,(Z, x)) are the shared region and its content, respectively. UPDATEREGION identifies a
linearization point, for instance, a CAS statement. If successful, the diamond tracking-resource r = 4 is
exchanged for the witness tracking-resource r = (x, y) to record the performed state update; otherwise, the
diamond resource is kept, such that the operation can be attempted again. P(x), Q1(x, y, w), and Q2 (x, w)
are some TaDA assertions. USEATOMIC is a special combination of MAKEATOMIC and UPDATEREGION, where
the linearizable statements itself is the linearization point. Again, P (x) and Q(x, y) are some TaDA assertions

than one observable change to the same shared region from happening during an abstractly-
atomic operation.

In the proof outline, this requirement is reflected on line 8, which shows the intended
update of the lock’s state: r : s € {0, 1} ~» 1 (following TaDA publications, we omitted
the tail of the atomicity context from the outline). MAKEATOMIC checks that the update
is allowed by the region’s transition system with the available guards (the rule’s second
premise in Fig. 2), but following the original TaDA publication, the check is omitted from
the proof outline. Then MAKEATOMIC temporarily exchanges the corresponding guard [G],
for the diamond tracking-resource r = 4 (line 9), which serves as evidence that the intended
update was not yet performed.

Inside the loop, an application of UPDATEREGION identifies the CAS (line 14) as the
linearization point. The rule requires the diamond resource in its precondition (line 11),
modifies the shared region (lines 12-16), and case-splits in its postcondition: if the update
failed (line 19) then the diamond is kept for the next attempt; otherwise (line 18), the diamond
is exchanged for the witness tracking-resource r = (0, 1), which indicates that the region
was updated from abstract state O to 1. Intuitively, the witness resource guarantees that there
is exactly one linearization point where the relevant state update happened. This guarantee
enables MAKEATOMIC to establish atomic triples from non-atomic triples. Furthermore, the
witness resource is needed to carry sufficient information from the linearization point (which
may not be the last statement in the procedure) to the point at which the operation’s postcondi-
tion is to be established: the latter is interpreted w.r.t. the linearization point, but other threads
may have changed the shared region since then. Finally, at the end of MAKEATOMIC (lines

@ Springer

Formal Methods in System Design

21-22), the witness resource is consumed and the desired abstractly-atomic postcondition is
established, stating that the shared region was updated from O to 1 at the linearization point.

Note that the proof outline also illustrates how to convert between atomic and non-atomic
triples in TaDA. The MAKEATOMIC rule is the only rule that can establish atomic triples, justi-
fied by the single linearization point. Conversely, an atomic triple can always be converted to
a non-atomic triple by weakening its postcondition to account for the environment’s interfer-
ence. In Fig. 1, this happens around UPDATEREGION. The need for weakening postconditions
is discussed in more detail in Sec. 5, in the context of stable assertions.

2.3 Voila proof outline

Figure 3 shows the complete proof outline of our example discussed so far, in the Voila proof
outline language, which closely resembles the TaDA outline from Fig. 1. In particular, the
region declaration defines a region’s interpretation, abstract state, and transition system,
just like the initial declarations in Fig. 1. The subsequent proof outline for procedure lock
annotates the same two rule applications as the TaDA outline and a very similar loop invari-
ant. The Voila proof outline verifies automatically via an encoding into Viper, but the outline
is expressed completely in terms of TaDA concepts; it does not expose any details of the
underlying verification infrastructure. The successful verification shows that our tool auto-
matically infers the additional 20 rule applications, and all omitted side conditions, thereby
closing the gap between the user-provided proof outline and a corresponding full-fledged
proof.

2.4 Locks with resource invariants

This subsection completes our running example by showing a TaDA outline (Fig. 4) and
corresponding Voila code (Fig. 5) for a specification of lock that ties the spinlock to a
resource invariant the lock protects. The resources in this invariant are then temporarily
transferred to any threads that acquires the lock.

Following the TaDA publication, we introduce a new shared region called CAPLock
(lines 1-4 of Fig. 4), which wraps an instance of the previously declared Lock region, and
two new guards (lines 5-6): a vacuous empty guard 0 that is always available and used
to acquire a lock, and a unique guard U for releasing it. Note that 0 and U both guard
transitions of the abstract state of the CAPLock region. Transitioning the underlying Lock
region (i.e., actually acquiring and releasing the lock) still requires the previously-introduced
guard G. Consequently, an unlocked CAPLock region (lines 1-2) contains guards G and U,
and resource invariant /nv (left abstract for brevity). In contrast, when locked (lines 3—4),
both resources U and Inv are owned by the lock holder, and the shared region only contains
guard G.

The body of the proof outline (lines 8—15) uses the previously established atomic TaDA
triple for procedure lock to derive the following, non-atomic TaDA triple:

AF {3v € {0, 1} - CAPLock,(r, X, v)}1lock (x) {CAPLock, (r, X, 1) * [U], * Inv}
As before, the proof outline omits most steps, and shows only two rule applications: the
frame rule and USEATOMIC. The application of the frame rule enables us to preserve the

assertion v = 0 — [U], * Inv (abbreviated as F in the figure) across the call to lock.
For the postcondition, we use an omitted rule of consequence to derive from v = 0 and

@ Springer

Formal Methods in System Design

struct cell { int val; }

region Lock(id r, cell x)
interpretation { x.val -> ?v && (v == [| v ==1) }
state { v }
guards { unique G; }
actions { G: 0 ~> 1; G: 1 ~> 0; }

abstract_atomic procedure lock(id r, cell x)
interference ?s in Set(0, 1);
requires Lock(r, x, s) && G@r;
ensures Lock(r, x, 1) && G@r && s == 0;

{
bool b;
make_atomic using Lock(r, x) with G@r {
do
invariant Lock(r, Xx);
invariant 'b ==> r => <D>;
invariant b ==>r => (0, 1);
{
update_region using Lock(r, x) {
b := CAS(x, 0, 1);
}
} while (!'b);
}
}

Fig.3 The Voila proof outline of our example, strongly resembling the TaDA proof outline from Fig. 1. id
is the type of region identifiers; primitive types are passed by value, structs by reference. Logical variables are
introduced using a question mark; e.g., x.val > ?v binds the logical variable v to the value of the location
x . val. Operator && denotes separating conjunction

v = 0 — [U], * Inv the assertion [U], * Inv. Intuitively, the application of USEATOMIC (also
shown in Fig. 2) applies MAKEATOMIC and UPDATEREGION together at once.

The complete Voila proof outline for CAPLock is shown in Fig. 5, where procedure
caplock has the desired specification. The example verifies in Voila when combined with the
previously shown code from Fig. 3.

3 Proof outline language

Proof outlines annotate programs with rule applications of a given program logic. These
annotations indicate where to apply rules and how to instantiate their meta-variables. The goal
of a proof outline is to convey the essential proof steps; ideally, consumers of such outlines
can then construct a full proof with modest effort. Consumers may be human readers [19],
or tools that automatically check the validity of a proof outline [22, 23, 32]; our focus is on
the latter.

The key challenge of designing a proof outline language is to define annotations that
accomplish this goal with low annotation overhead for proof outline authors. To approach

@ Springer

Formal Methods in System Design

1 I(CAPLock,(r:2,0)) £

2 Lock, (x,0) * [G]r * [Ula * Inv

3 I(CAPLock,(rmr, 1)) =

4 Lock, (z,1) * [G]r

5 0 :0~1

6 U :1~0

7 UeU is undefined

8 {3ve{0,1}.CAPLock, (rx,v)}

9 Vv € {0,1}.
10 <Lock,« (x,0) * [G]r * F>
11 3 ~| (Lock,(x,v) * [G],)
12 E %J lock(x)
13 5 éﬁ (Lock,(x,1) * [G], * v =0)
14 (Lock, (x,1) % [G], * [U], * Inv)

15 {CAPLocka (rx, 1) [U],* Im)}

where F abbreviates (v = 0 — [Ul, * Inv)

Fig. 4 TaDA declarations and proof outline for a shared region CAPLock, taken (with minor changes) from
the TaDA publication [14], and building on the lock example from Fig. 1. The additional declarations and the
outline’s postcondition provide the usual semantics of a lock that protects a resource invariant: the vacuous
empty guard 0 allows arbitrarily many clients to compete for the lock, but only the holder of the unique guard
U can release the lock. Lock holders also temporarily gain ownership of the lock’s resource invariant. Levels
are again omitted, but supported by Voila and included in the full paper [28]

predicate Inv() /* Invariant, left abstract */

region CAPLock(id a, id r, cell x)
interpretation {
Lock(r, x, ?v) && G@r && (v == 0 || v == 1) && (v == 0 ==> U@a && Inv())
}
state { v }
guards { duplicable Z; unique U; }
actions { Z: 0 ~>1; U: 1 ~> 0; }

procedure caplock(id a, id r, cell x)

requires CAPLock(a, r, x) && Z@a;

ensures CAPLock(a, r, x, 1) & U@a && Inv();
{

use_atomic using CAPLock(a, r, x) with Z@a {

lock(r, x);

}

}

Fig.5 The Voila proof outline of TaDA’s CAPLock, building on our lock example from Fig. 3, and strongly
resembling the TaDA proof outline from Fig. 4. Note that Voila does not yet support TaDA’s empty guard;
instead, we use a duplicable guard Z

@ Springer

Formal Methods in System Design

this challenge systematically, we classify the rules of the program logic (here: TaDA) into
three categories: (1) For some rules, the program prescribes where and how to apply them,
i.e., they do not require any annotations. We call such rules syntax-driven rules. An example
in standard Hoare logic is the assignment rule, where the assignment statement prescribes
how to manipulate the adjacent assertions. (2) Some rules can be applied and instantiated in
many meaningful ways. For such rules, the author of the proof outline needs to indicate where
or how to apply them through suitable annotations. Since such rules often indicate essential
proof steps, we call them key rules. In proof outlines for standard Hoare logic, the while-rule
typically requires an annotation ow to apply it, namely the loop invariant. (3) The effort of
authoring a proof outline can be greatly reduced by applying some rules heuristically, based
on information already present in the outline. We call such rules bridge rules. Heuristics
reduce the annotation overhead, but may lead to incompleteness if they fail; a proof outline
language may provide annotations to complement the heuristics in such situations, slightly
blurring the distinction between key and bridge rules. E.g., the Dafny verifier [33] applies
heuristics to guess termination measures for loops, but also offers an annotation to provide a
measure manually, if necessary. Another common example is the rule of consequence: SMT-
based verifiers (such as Voila) automatically discharge most entailment checks, but may
require additional user annotations in cases where the underlying SMT solver is incomplete.

The rule classification depends on the proof search capabilities of the verification tool
that is used to check the proof outline. We use Viper [25], which provides a high degree of
automation for standard separation logic and, thus, allows us to focus on the specific aspects
of TaDA.

In the rest of this section, we give an overview of the Voila proof outline language and, in
particular, discuss which TaDA rules are supported as syntax-driven, key, and bridge rules.
Voila’s grammar can be found in the full paper [28], showing that Voila strongly resembles
TaDA, but requires fewer technical details.

Expressions and Statements. Voila supports all of TaDA’s programming language constructs,
including variables and heap locations, primitive types and operations thereon, atomic heap
reads and writes, loops, and procedure calls. Consequently, Voila supports the corresponding
syntax-driven TaDA rules.

Background Definitions. Voila’s syntax for declaring regions and transitions closely resembles
TaDA, but e.g., subscripts are replaced by additional parameters, such as the region identifier
r. Aregion declaration defines the region’s content viaan interpretation assertion, and
its value via a state function. The latter may refer to region parameters, as well as values
bound in the interpretation, such as v in the example from Fig. 3. The region’s transition
system is declared by introducing the guards and the permitted actions, i.e., transitions. Voila
includes several built-in guard algebras (adopted from Caper [18]); additional ones can be
encoded, see the full paper [28]. A region declaration introduces a corresponding region
predicate, which has an additional out-parameter that yields the region’s abstract state (e.g.,
s in the precondition of procedure lock in Fig. 3), as defined by the state function. We
omit this out-parameter when its value is irrelevant.

Specifications. Voila proof outlines require specifications for procedures, and invariants for
loops; we again chose a TaDA-like syntax for familiarity. Explicit loop invariants are required
by Viper, but also enable us to automatically instantiate certain bridge rules (see framing in
Sec. 5).

Recall that specifications in TaDA are written as atomic or non-atomic triples, and include
an interference context and an atomicity context. Voila simplifies the notation significantly by

@ Springer

Formal Methods in System Design

requiring these contexts only for abstractly-atomic procedure specifications; for all statements
and rule applications, they are determined automatically, despite changing regularly during
a proof. For procedures with abstractly-atomic behavior (modifier abstract_atomic),
the interference context is declared through the interference clause. E.g., for procedure
lock from Fig. 3, it corresponds to TaDA’s interference context Ws € {0, 1}.

Key Rules. In addition to procedure and loop specifications, Voila requires user input only
for the following fundamental TaDA rules: UPDATEREGION, MAKEATOMIC, USEATOMIC,
and OPENREGION; applications of all other rules are automated. Since they capture the core
ideas behind TaDA, these rules are among the most complex rules of the logic and admit a
vast proof search space. Therefore, their annotation is essential, for both human readers [14,
24] and automatic checkers. As seen in Fig. 3, the annotations for these key rules include
only the used region and, for updates, the used guard; all other information present in the
corresponding TaDA rules is derived automatically.

Bridge Rules. All other TaDA rules are applied automatically, and thus have no Voila counter-
parts. This includes all structural rules for manipulating triple atomicity (e.g., AWEAKENING,
AEXISTS), interference contexts (e.g., SUBSTITUTION, AWEAKENING2), and levels (e.g.,
AWEAKENING3). Their applications are heuristically derived from the program, applica-
tions of key rules, and adjacent triples. TaDA’s frame rule is also automatically applied by
leveraging Viper’s built-in support for framing, combined with additional encoding steps
to satisfy TaDA’s frame stability side condition. Finally, TaDA entailments are bridge rules
when they can be automated by the used verification tool. For Viper, this is the case for stan-
dard separation logic entailments, which constitute the majority of entailments to perform. To
support TaDA’s view shifts [24, 34]—entailments similar to the classical rule of consequence,
but involving arbitrary definitions of regions and guard algebras— Voila provides specialized
annotations.

4 Proof workflow

Our approach, and corresponding implementation, enables the following workflow: users
provide a proof outline and possibly some annotations for complex entailments. If the outline
summarizes a valid proof, verification is automatic, without a tedious process of manually
applying additional rules. If the outline is invalid, our tool reports which specification (e.g.,
loop invariant) it could not prove or which key rule application it could not verify, and why
(e.g., missing guard).

Achieving this workflow, however, is challenging: by design, proof outlines provide the
important proof steps, but are not complete proofs. Consider, e.g., the TaDA and Voila outlines
from Fig. 1 and Fig. 3, respectively. Applying UPDATEREGION produces an atomic triple in its
conclusion, whereas the while-rule requires a non-atomic triple for the loop body. A complete
proof needs to perform the necessary adjustment through additional applications of bridge
rules, which are not present in the proof outlines, and thus need to be inferred.

Our workflow is enabled by first expanding proof outlines into proof candidates, in two
main steps: step 1 automatically inserts the applications of all syntax-driven rules; step 2
expands further by applying heuristics to insert bridge rule applications. The resulting proof
candidate contains the applications of all rules of the program logic. Afterwards, we check
that the proof candidate corresponds to a valid proof, by encoding it as a Viper program
that checks whether all proof rules are applied correctly. Our actual implementation deviates

@ Springer

Formal Methods in System Design

slightly from this conceptual structure, e.g., because Viper does not require one to make the
application of all syntax-driven rules, framing, and entailment checking explicit.

5 Expanding proof outlines to proof candidates

Automatically expanding a proof outline is ultimately a proof search problem, with a vast
search space in case of complex logics such as TaDA. Our choice of key rules (and corre-
sponding annotations) reduces the search space, but it remains vast, due to TaDA’s many
structural rules that can be applied to almost all triples. To further reduce the search space,
without introducing additional annotation overhead, we devised (and enforce) a normal form
for proof candidate triples. Our normal form allows us to define heuristics for the appli-
cation of bridge rules locally, based only on adjacent rule applications, without having to
inspect larger proof parts. This locality reduces the search space substantially, and enables
us to automatically close the gap between user-provided proof outline and finally verified
proof candidate. Out of the 22 rule applications for our running example, our heuristics infer
17 applications of bridge rules. Three syntax-driven rules are also applied automatically, such
that only two key rules require manual annotations. The complete TaDA proof shown in App.
A details all inferred applications of bridge rules and syntax-driven rules.

It might be helpful to consider an analogy with standard Hoare logic: its rule of conse-
quence can be applied to each Hoare triple. A suitable normal form could restrict proofs
to use the rule of consequence only at the beginning of the program and for each loop (as
in a weakest-precondition calculus). A heuristic can then infer the concrete applications, in
particular, the entailments used in the rule application, treating the rule as a bridge rule.
Normal Form. Our normal form is established by a combination of syntactic checks and
proof obligations in the final Viper encoding. Its main restrictions are as follows: (1) A
triple is atomic if and only if the enclosed Voila outline statement is abstract atomic, namely
a CAS operation, a call to an abstract atomic procedure, or a key rule statement. As a
consequence, we can infer the triple kinds from statements and key rule applications. Due
to this restriction, Voila cannot express specifications that combine atomic and non-atomic
behaviors. However, such specifications do not occur frequently (see Sec. 5.2.3 in [24] for
an example) and could be supported via additional annotations. (2) All triple preconditions,
as well as the postconditions of non-atomic triples, are stable, i.e., cannot be invalidated by
(legal) concurrent operations. In contrast, TaDA requires stability only for certain assertions.
Our stronger requirement enables us to rely on stability at various points in the proof instead
of having to check it—most importantly, when Viper automatically applies its frame rule. To
enforce this restriction, we eagerly stabilize assertions through suitable weakening steps. (3)
In atomic triples, the state of every region is bound by exactly one interference quantifier (W),
which simplifies the manipulation of interference contexts, e.g., for procedure calls. To the
best of our knowledge, this restriction does not limit the expressiveness of Voila proofs. (4)
Triples must hold for a range of atomicity contexts .4, rather than just a single context. This
stronger proof obligation rules out certain applications of MAKEATOMIC—which we have
seen only in contrived examples—but it increases automation substantially and improves
procedure modularity.

By design, our normal form prevents Voila from constructing certain TaDA proofs. How-
ever, the only practical limitation is that Voila does not support TaDA’s combination of atomic
and non-atomic behavior in a single triple. As far as we are aware, all other normal form

@ Springer

Formal Methods in System Design

restrictions do not limit expressiveness for practical examples, or can be worked around in
systematic ways.

Heuristics. We employ five main heuristics: (1) to determine when to change triple atomicity,
(2) to ensure stable frames by construction, (3) to compute atomicity context ranges, (4) to
compute levels, and (5) to compute interference contexts in procedure body proofs. All
heuristics are based on inspecting adjacent rule applications and their proof state. We briefly
discuss the first three heuristics here, and refer readers to the full paper [28] for the remaining
two heuristics. There, we give a more detailed explanation, and illustrate our heuristics in the
context of our running example. (1) Changing triple atomicity corresponds to an application
of (at least) TaDA rule AWEAKENING1, necessary when a non-atomic composite statement
(e.g., the while statement in Fig. 1) has an abstract-atomic sub-statement (e.g., the atomic
CAS in Fig. 1). We infer all applications of this rule. (2) A more complex heuristic is used
in the context of framing: TaDA’s frame rule requires the frame, i.e., the assertion preserved
across a statement, to be stable. For simple statements such as heap accesses, it is sound to rely
on Viper’s built-in support for framing. For composite statements with arbitrary user-provided
Jootprints (assertions such as a loop invariant describing which resources the composite
statement may modify), we greedily infer frame rule applications that attempt to preserve
all information outside the footprint. The inferred applications are later encoded in Viper
such that the resulting frame is stable, by applying suitable weakening steps. (3) Atomicity
context ranges are heuristically inferred from currently-owned tracking-resources and level
information. Atomicity contexts are not manipulated by a specific TaDA rule, but they need
to be instantiated when applying rules: most importantly, TaDA’s procedure call rule, but also
e.g., MAKEATOMIC and UPDATEREGION (see Fig. 2).

In our experience, our heuristics fail only in two scenarios: the first are contrived examples,
concerned with TaDA resources in isolation, not properties of actual code—where they fail
to expand a proof outline into a valid proof. More relevant is the second scenario, where our
heuristics yield a valid proof that Viper then fails to verify because it requires entailments
that Viper cannot prove automatically. To work around such problems when they occur, Voila
allows programmers to provide additional annotations to indicate where to apply complex
entailments.

Importantly, a failure of our heuristics does not compromise soundness: if they infer
invalid bridge rule applications, e.g., whose side conditions do not hold, the resulting invalid
proof candidates are rejected by Viper in the final validation.

For our running example from Fig. 1, four of our heuristics are necessary to complete the
proof candidate. The heuristic (1) is necessary around UPDATEREGION to change the triple
atomicity. The heuristic (2) is necessary around the CAS operation to frame information
about the arguments. The heuristic (3) is necessary so that clients can call the Lock procedure.
Lastly, the heuristic (4) is necessary around UPDATEREGION to change levels.

6 Validating proof candidates in Viper

Proof candidates—i.e., the user-provided program with heuristically inserted bridge rule
applications—do not necessarily represent valid proofs, e.g., when users provide incorrect
loop invariants. To check whether a proof candidate actually represents a valid proof, we
need to verify (1) that each rule is applied correctly, in particular, that its premises and side
conditions hold, and (2) that the property shown by the proof candidate entails the intended
specification. To validate proof candidates automatically, we use the existing Viper tool [25].

@ Springer

Formal Methods in System Design

[region R(r: id, p: t)
interpretation I

state S field val: Int
guards G
actions A]] ES predicate Lock(r: Ref, x: Ref) {
redicate R(r: Ref, p:[t I acc(x.val) &&
P (P [[]]) { [[]] ¥ (x.val == 0 OR x.val == 1)
}

function R_State(r: Ref, p:[t]): T

requires R(r,p) function Lock State

{ unfolding R(r,p) in [[S]] ¥ (r: Ref, x: Ref): Int
— requires Lock(r, x)
foreach g(p’: t’) € G: { unfolding lock(r, x) in x.val }
predicate R_g(r: Ref, p':[t’'])
end predicate Lock G(r: Ref)
field diamond: Bool field diamond: Bool

Fig. 6 Excerpt of the Viper encoding of regions; general case (left), and for the lock region from Fig. 3
(right). The encoding function is denoted by double square brackets; overlines denote lists; foreach loops are
expanded statically. Type T is the type of the state expression S, which is inferred. Actions A do not induce any
global declarations. The elements of struct types and type id are encoded as Viper references (type Re f).
The unfolding expression temporarily unfolds a predicate into its definition; it is required by Viper’s
backend verifiers. The struct type ce 11 from Fig. 3 is encoded as a Viper reference with field val (in Viper,
all objects have all fields declared in the program)

In this section, we give a high-level overview of how we encode proof candidates into the
Viper language.

Viper Language. Viper uses a variation of separation logic [35, 36] whose assertions sep-
arate access permissions from value information: separation logic’s points-to assertion
x.f+> visexpressedas acc (x.f) && x.f == v,and separation logic predicates [30]
are similarly split into a predicate (abstracting over permissions) and a heap-dependent func-
tion (abstracting over values). Well-definedness checks ensure that the heap is accessed only
under sufficient permissions. Viper provides a simple imperative language, which includes in
particular two statements to manipulate the verification state: exhale A asserts all logical
constraints in assertion A, removes the permissions in A from the current state (or fails if
the permissions are not available) and assigns non-deterministic values to the correspond-
ing memory locations (to reflect that the environment could now modify them); inhale A
conversely assumes constraints and adds permissions.

Regions and Assertions. TaDA’s regions introduce various resources such as region predicates
and guards. We encode these into Viper permissions and predicates as summarized in Fig. 6
(left). Each region r gives rise to a corresponding predicate, which is defined by the region
interpretation. A region’s abstract state may be accessed by a Viper function R_State,
which is defined based on the region’s state clause, and depends on the region predicate.
Moreover, we introduce an abstract Viper predicate R_ g for each guard g of the region.

These declarations allow us to encode most TaDA assertions in a fairly straightforward
way. E.g., the assertion Lock, (x, s) from Fig. 1 is encoded as a combination of a region
predicate and the function yielding its abstract state: Lock(r,x) && Lock_state(r,x) == s.
We encode region identifiers as references in Viper, which allows us to use the permissions
and values of designated fields to represent resources and information associated with a
region instance. E.g., we use the permission acc (r.diamond) to encode the TaDA resource
re ¢

@ Springer

Formal Methods in System Design

{Ptsp{Qp}

R
{Pc}sc{Qc}()

Rule Applications. Proof candidates are tree structures, where each premise of a rule appli-
cation R is established as the conclusion of another rule application, as illustrated above. In
TaDA, the statement of the premise s, is guaranteed to be a substatement of the statement
of the conclusion s.. To check the validity of a candidate, we check the validity of each rule
application. For rules that are natively supported by Viper (e.g., the assignment rule), Viper
performs all necessary checks. Each other rule application is checked via an encoding into the
following sequence of Viper instructions: (1) Exhale the precondition P, of the conclusion
to check that the required assertion holds. (2) Inhale the precondition P, of the premise since
it may be assumed when proving the premise. (3) After the encoding of the proof for the
premise, exhale the postcondition Q, of the premise to check that it was established by the
proof for the premise. (4) Inhale the postcondition Q. of the conclusion. Steps 2 and 3 are
performed for each premise of the rule. Moreover, we assert the side conditions of each rule.
If a proof candidate is invalid, e.g., composes incompatible rules, one of the checks above
fails and the candidate is rejected.

Using this encoding of rule applications as building blocks, we can assemble entire pro-
cedure proofs as follows: for each procedure, we inhale its precondition, encode the rule
application for its body, and then exhale its postcondition.

Example: Stabilizing Assertions. Recall that an assertion A is stable if and only if the environ-
ment cannot invalidate A by performing any legal region updates. In practice, this means that
the environment cannot hold a guard that allows it to change the state of a region in a way that
violates A. The challenge of checking stability as a side condition is to avoid higher-order
quantification over region instances and guards, which is hard to automate. We address this
challenge by eagerly stabilizing assertions in the Viper encoding, i.e., we weaken Viper’s
verification state such that the remaining information about the state is stable. We achieve
this effect by first assigning non-deterministic values to the region state and then constraining
these to be within the states permitted by the region’s transition system, taking into account
the guards the environment could hold. The Viper code for stabilizing instances of lock can
be found in the full paper [28].

7 Soundness

Voila is sound if the successful verification of a procedure in Voila implies that the procedure’s
specification can be derived in TaDA. That is, our soundness argument builds on the soundness
of the TaDA logic itself, which has been proven separately [37] w.r.t. an operational semantics.
Voila succeeds if the encoded proof candidate of the procedure successfully verifies in Viper.
Consequently, to show soundness of Voila, we need to show that successful verification of a
proof candidate in Viper implies the existence of a corresponding TaDA proof for the given
procedure and its specification.

Notations. Before we formalize our argument, we introduce basic terminology and notation.
As discussed in Sec. 6, proof candidates are derivation trees in the TaDA logic. We refer to
the proof candidate that is inferred for a Voila outline statement s as the proof candidate for
s. We introduce a function C to model the inference of proof candidates, where C(s) is the
proof candidate of the Voila outline statement s. The entire proof candidate for a procedure

@ Springer

Formal Methods in System Design

is obtained by applying C to the procedure’s body. For a proof candidate p, p’s root is the
last rule application of p, which derives the overall conclusion, and p’s children are the proof
candidates whose roots are rule applications to the premises of that last rule application in p.

As discussed in Sec. 6, proof candidates are encoded to Viper statements by encoding
all rule applications of the proof candidate. For a proof candidate p, [p] denotes the Viper
statement that p is encoded to. We use the same notation to encode TaDA assertions and
expressions. Viper verification states model the entire knowledge of the Viper verifier at a
specific point in a Viper program. Technically, each Viper verification state is a set of concrete
Viper states; this set can be characterized by a Viper assertion. For a Viper assertion A, T (A)
denotes the initial Viper verification state after inhaling A only. The expression post(c, v)
denotes the Viper verification state resulting from verifying a Viper statement ¢ starting from
the Viper verification state v. The function post is analogous to the strongest postcondition of
standard Hoare logic. We refer to v and post(c, v) as the Viper verification pre- and poststate
of ¢, respectively. The special error Viper verification state 4 models that an assertion failed
during verification. We use s, p, v to range over Voila outline statements, proof candidates,
and Viper verification states, respectively.

7.1 Proof overview

We split our soundness argument into five steps: (1) We determine invariants on the Viper
verification pre- and poststates of encoded rule applications. (2) We define a judgment map-
ping (v, pl), which takes a Viper verification state v satisfying our invariants from the first
step, together with a proof candidate p, and returns a TaDA judgment. We refer to (v, p)
also as the TaDA judgment of v and p, sometimes omitting v.

This judgment mapping establishes our connection between verifying a Viper program
and deriving a TaDA proof. (3) We show that the Viper encoding of single rule applications
is sound: Consider a proof candidate p whose root is a rule application for a TaDA rule r.
Let the proof candidates p1, ..., p)y be p’s children and let vy be a Viper verification state
satisfying our invariants. Since soundness considers only Voila statements, for which the
Viper encoding verifies successfully, we may assume that no assertion fails when verifying
the Viper encoding of r’s rule application starting from vy.

(]U17p/1|) (]UN7PIND
GU(JJ?D

(r)

As illustrated above, we then show that the TaDA rule r can be applied correctly to derive
p’s TaDA judgment (uvp, p|) as the conclusion. The rule application must contain the TaDA
judgments (v, p1), ..., (vy, ply) of p’s children as the premises. The Viper verification
states vy, . .., vy are the prestates of the childrens’ Viper encodings. (4) We show inductively
that the Viper encoding of proof candidates is sound: Let s be a Voila outline statement and
v be a Viper verification state satisfying our invariants. We may assume that no assertion
failed when verifying the encoded proof candidate [C(s)] of s starting from v. We then
show that the TaDA judgment (v, C(s)) of the proof candidate C (s) is derivable in TaDA.
(5) We show soundness of the specification encoding: Consider a successfully-verified Voila
procedure with precondition P, postcondition Q, and body s. We show that the procedure’s
specification can be derived in TaDA as a conclusion using the rule of consequence on the
TaDA judgment (Y ([P]), C(s)) of the Viper verification state Y ([P) from the encoded
precondition [P] and of the procedure’s proof candidate C (s).

@ Springer

Formal Methods in System Design

Combining these steps, we formally connect verification of an encoded proof candidate
to derivability of a corresponding TaDA proof, resulting in the soundness of Voila. We first
illustrate this approach in more detail on a simplified version of TaDA. Afterwards, we discuss
how we apply this approach to full TaDA.

7.2 Proof for simplified TaDA

For a simplified version of TaDA, assume that TaDA judgments are standard Hoare judgments
of the form + {P} s {Q}. We omit atomic triples, levels, atomicity contexts, interference
contexts, and the requirement that pre- and postconditions are stable. These features are
discussed in Sec. 7.3. Furthermore, for simplicity, we do not distinguish between Voila and
TaDA assertions since they differ only in syntax. For our simplified version of TaDA, we
illustrate how to instantiate our five aforementioned steps to show soundness.

Step 1: Invariants. To prove soundness, we will later (in step 2) connect Viper verification
states to TaDA pre- and postconditions. However, not every Viper verification state can be
connected to a TaDA assertion. E.g., TaDA does not support fractional permissions [38] for
points-to predicates (x.f — v), whereas fractional permissions are generally possible in
Viper verification states. We define invariants on Viper verification states that rule out Viper
verification states that do not correspond to TaDA assertions. These invariants have to hold
only for those Viper verification states that we have to connect to TaDA assertions, namely the
pre- and poststates of encoded rule applications. In particular, intermediate Viper verification
states of our Viper encoding do not have to satisfy the invariants. We use these invariants in
the definition of the judgment mapping.

Step 2: Judgment Mapping. For our simplified version of TaDA, we define a judgment
mapping for a Viper verification state v and the proof candidate of a Voila outline state-
ment s as (v, C(s))) = {¢(v)}Lsu{p(post([C(s)], v))}, where ¢ maps Viper verification
states to TaDA assertions and - maps Voila outline statements to TaDA statements. We
refer to ¢ as the TaDA assertion interpretation. The definition of ¢ is very technical
and omitted for the sake of simplicity. Conversely, the definition of -, is straightfor-
ward. The function removes all rule annotations from a Voila outline statement, e.g.,
Lupdate_region{b:= CAS(x,0,1)}1 is b:= CAS(x,0,1).Asexplained for step 1, only
Viper verification pre- and poststates of encoded rule applications are connected to TaDA
assertions. To use the judgment mapping, we have to show that the invariants hold for the
verification state-argument (v above).

To lift deductions at the level of Viper verification states to deductions at the level of TaDA
assertions, we prove that the TaDA assertion interpretation ¢ satisfies two properties: (1) An
entailment in Viper, €.g., U1 Fyiper V2 for some Viper verification states vy and vy (recall that
Viper verification states correspond to Viper assertions), implies the corresponding entailment
in TaDA, i.e., ¢ (U1) Frapa @ (v1). (2) ¢ is the inverse of the encoding, i.e., (Y ([P])) = P
for all TaDA assertions P. Using these two properties, we can show that if an encoded TaDA
assertion [P | is successfully verified starting from a Viper verification state v, then ¢ (v)
entails P in TaDA, i.e., ¢ (v) Frapa P holds. This is the basis for checking the correctness
of rule applications in Viper.

Step 3: Single Rule Applications. Consider a proof candidate p whose root is an application
of the syntax-driven rule for loops. Let the TaDA statement that the rule is applied to be
do invariant I {§} while(b) for some TaDA expression b, TaDA statement §, and TaDA
invariant /. Viper has while loops, but not do-while loops. A simplified Viper encoding

@ Springer

Formal Methods in System Design

of the loop rule application is thus [p’]; while([»]) invariant [I] {[p’]}, where the
proof candidate p’ is the child of p. If verification is successful, then the TaDA invariant 1
is preserved after the first execution of the loop body. Thus, TaDA’s do-while rule can be
applied to the TaDA judgment (v, p), where v is the Viper verification state the verification
started from. We show soundness of the Viper encoding of single rule applications separately
for each rule, obtaining a soundness lemma per rule.

Side conditions already guaranteed by neighboring rule applications, either through check-
ing or by construction, are not checked again. Therefore, for some rules, some of their
side conditions are established by the encoding of neighboring rule applications. For the
rules where neighboring rule applications guarantee some side conditions, we obtain weaker
soundness lemmas, requiring that the necessary side conditions already hold. These depen-
dencies make induction over the proof candidates difficult. Thus, instead of induction over
all proof candidates, we perform induction over the Voila outline statements, as shown in the
next step.

Step 4: Proof Candidates. The following lemma (SE) formalizes soundness of the Viper
encoding of proof candidates, as well as that our invariants on Viper verification states,
referred to as I, are maintained by the Viper encoding.

vel A post([C(s)],v) #4 = (v,C(s)) A post([C(s)],v) el (SE)

Verbally, the lemma expresses “For all Voila outline statements s and Viper verification states
satisfying our invariants v € 1, the absence of failed assertions during the verification of the
encoded proof candidate, written post([C(s) ||, v) # 4, implies that the proof candidate’s
TaDA judgment (v, C(s)]) is derivable in TaDA and that the Viper verification poststate
satisfies our Viper verification state invariants”. We apply the lemma to the body of a Voila
procedure to get that the Voila proof candidate corresponds to a correct TaDA proof.

We prove the lemma (SE) by structural induction over Voila outline statements. In gen-
eral, the induction proceeds as follows: Consider a compound outline statement s{s’} (s is
the compound, e.g., update_region, and s’ is its body, e.g., cas (.. .)) with a Viper
encoding [C(s{s'})] = c1; [C(s")]; ca, where c| and c, are the Viper statements before
and after the Viper encoding of the body’s proof candidate, respectively. There are four
Viper verification states of interest: the prestate vg of the compound statement s, the prestate
v] = post(cy, vy,) of the body s, the poststate vy = post([s’], v1,) of s”, and the poststate
v3 = post(ca, vp,) of s. From the induction hypothesis, we get that the TaDA judgment
(v1, C(s")) = {¢p(v1)}Ls'L{@(v2)} of the body’s proof candidate is derivable in TaDA. We
have to show that the TaDA judgment (vg, C(s{s'})) = {¢(vo)} Ls{s'} s {® (v3)} of the com-
pound statement’s proof candidate is derivable in TaDA. Showing this derivation corresponds
to applying rules from TaDA to identify the missing proof steps (indicated by ?) in the TaDA
proof below.

E/ (ITH
{o(v1)}Ls'a{d(v2)}
{¢(vo)} Ls{s"}o{b(vs)}
The application of IH denotes using the induction hypothesis that {¢ (v1)} Ls' 2 {¢p (v2)} is

derivable in TaDA. The necessary rule applications for the missing proof steps are determined
by the proof candidate. For each rule application from the proof candidate, we apply the

@ Springer

Formal Methods in System Design

lemma obtained from the soundness of the Viper encoding of single rule applications (step 3),
ultimately closing the gap.

Step 5: Specification. The previous proof steps and, in particular, Lemma (SE) show the
existence of a TaDA proof for a given Voila statement, but do not yet show that this TaDA
proof also establishes the pre- and postcondition of the Voila statement, which we do next.
Consider a Voila procedure with a precondition P, postcondition O, and body s. We need to
prove that the procedure’s TaDA specification { P} Ls 1 {Q} is derivable as a conclusion using
the rule of consequence on the TaDA judgment (Y ([P]), C(s)) of the procedure’s proof
candidate C(s).

For our simplified version of TaDA discussed in this subsection, this property holds if (1)
P entails ¢(Y([P])) and (2) Q is entailed by the TaDA assertion interpretation ¢ (Upost),
where vpost is the Viper verification poststate of the encoded proof candidate [C(s) . Both
entailments follow from the properties we proved for the TaDA assertion interpretation ¢,
namely that ¢ is the inverse of the encoding and that ¢ lifts Viper entailments to TaDA
entailments. For (2), it is relevant that the Viper encoding asserts [Q] directly after the
encoded proof candidate.

Overall Soundness of Voila. The soundness of the Viper encoding of both, specification and
proof candidate, enables us to show that Voila is sound. Again, consider a Voila procedure with
a precondition P, postcondition @, and body s. Verification succeeds, if Viper successfully
verifies the encoded proof candidate. More concretely, for the Viper precondition [P], the
Viper tool verifies the Viper statement [C(s) | without failing an assertion and verifies the
Viper postcondition [Q] afterwards. For soundness, we have to show that the corresponding
TaDA specification, namely { P} s {Q}, is derivable in TaDA.

By instantiating v with Y([P]), Lemma (SE) gives us that the TaDA judgment
(T P]), C(s)) of the procedure’s proof candidate is derivable in TaDA. From the specifica-
tion encoding soundness (step 5), we get that the procedure’s TaDA judgment - {P} Ls 1 {Q}
can be derived from the TaDA judgment of the procedure’s proof candidate using TaDA’s rule
of consequence. Combining both implies that the TaDA judgment {P} s {Q} is derivable
in TaDA, completing the soundness argument.

As a technical detail, to apply lemma (SE), we need to guarantee that the initial Viper
verification state Y ([P]) from the encoded precondition satisfies the invariants I. For our
simplified version of TaDA discussed in this subsection, the invariants are guaranteed by the
syntactic restrictions of the Voila specification language. For full TaDA, syntactic restric-
tions do not suffice, since assertions also have to be stable. Voila verifies that user-provided
assertions are well-defined, i.e., that their corresponding Viper states are contained in I, using
additional Viper proof obligations.

7.3 Generalization to TaDA

The proof sketch shown in Sec. 7.2 does not account for TaDA’s atomic triples, stability
requirements, and judgment parameters, namely level, atomicity context, and interference
context. To generalize the proof to full TaDA, we introduce three extensions.

First, the semantics of a TaDA assertion differs depending on its use, i.e., whether it is a pre-
or postcondition and whether it is part of an atomic or non-atomic TaDA triple. Therefore, we
need multiple mappings from Viper verification states to TaDA assertions (previously, just ¢).
Second, we extend lemma (SE) according to point (2) of our normal form from Sec. 5. More
concretely, we add to the invariants [the restrictions enforced by our normal form about when

@ Springer

Formal Methods in System Design

Program | Err | Stg | Wk Cpr

L 1.5 1.9 1.5

Program | LOC | Stg | Wk | Cpr CASCLF P 25] 191 11.2

SLock 15 | 26| 21| 14 C | 15 1.2 05

TLock 23 |21.8| 81| 24 R | 12] 1L1] 03

TLockcl 16 | 29| 26| 05 Lo 39 720 20

cAsCtr 25 | 39| 27| 15 T S P I Bl B
BoundedCtr | 24 81| 51| 63.1 ' ' '

R 4.1 1.8 0.7

IncDecCtr 28 4.2 | 3.1 2.9 P 59 26 1434

ForkJoin 16 2.1 1.3 1.0 C 251 25| 1155

ForkJoinCl | 28 29| 2.3 1.6 TlockCl | 18] 1.7 5.0

BagStack 29 29.9 | 18.0 | 211.6 L 265 | 17.8 | = 600

CounterCl 45 - 5.8 - P 2791771 = 600

Bagstack | | 26.3 | 17.8 | > 600

R 144 9.2| 216.6

Fig. 7 Timings in seconds for successful (left table) and failing (right table) verification runs; lines of code
(LOC) are given for Voila programs and exclude proof annotations. Stg/Wk denote strong/weak Voila speci-
fications; Cpr abbreviates Caper. Programs include spin and ticket locks, counters (Ctr), and client programs
(Cl) using the proven specifications. Errors (Err) were seeded in loop invariants (L), postconditions (P), code
(C), and region specifications (R)

TaDA pre- and postconditions have to be stable. Lastly, Voila proves TaDA judgments for a
set of parameters (point (4) of our normal form from Sec. 5). As a consequence, the judgment
mapping changes. E.g., for a non-atomic Voila outline statement s, our extended judgment
mapping has the shape (v, C(s)) = VA € L(v), A € A(w). ,, A F {p(v)}Lsa{p(V)}
where IL(v) and A(v) are the set of levels and atomicity contexts that the TaDA judgment is
proved for, respectively. For atomic triples, we use a set of interference contexts as well.
Soundness for full TaDA is proved as described in Sec. 7.2. Our full paper [28] demon-
strates the four particularly challenging cases, namely calls, the change from an atomic TaDA
judgment to a non-atomic TaDA judgment, make_atomic, and update_region.

8 Evaluation

We evaluated Voila on nine benchmark examples from Caper’s test suite, with the Treiber’s
stack [39] variant Bagstack being the most complex example, and report verification times
and annotation overhead. Each example has been verified in two versions: a version with
Caper’s comparatively weak non-atomic specifications, and another version with TaDA’s
strong atomic specifications; see Sec. 9 for a more detailed comparison of Voila and Caper.
An additional example, Countercl, demonstrates the encoding of a custom guard algebra not
supported in Caper (see the full paper [28]). To evaluate the performance for both successful
and failing verification attempts, we seeded four examples with errors in the loop invariant,
procedure postcondition, code, and region specification, respectively. Our benchmark suite
is relatively small, but each example involves nontrivial specifications. To the best of our
knowledge, no other (semi-)automated tool is able to verify similarly strong specifications.

Performance. Fig.7 shows the runtime for each example in seconds. All measurements were
carried out on a Lenovo W540 with an Intel Core i7-4800MQ and 16GB of RAM, running
Windows 10 x64 and Java HotSpot JVM 18.9 x64; Voila was compiled using Scala 2.12.7. We
used a recent checkout of Viper and Z3 4.5.0 x64 (we failed to compile Caper against newer

@ Springer

Formal Methods in System Design

versions of Z3). Each example was verified ten times (on a continuously-running JVM); after
removing the highest and lowest measurement, the remaining eight values were averaged.
Caper (which compiles to native code) was measured analogously.

Overall, Voila’s verification times are good; most examples verify in under five seconds.
Voila is slower than Caper and its logic-specific symbolic execution engine, but it exhibits
stable performance for successful and failing runs, which is crucial in the common case that
proof outlines are developed interactively, such that the checker is run frequently on incorrect
versions. As demonstrated by the error-seeded versions of TLockcC1 and BagStack, Caper’s
performance is less stable.

Another interesting observation is that strong specifications typically do not take signifi-
cantly longer to verify, although only they require the full spectrum of TaDA ingredients and
make use of TaDA’s most complex rules, MAKEATOMIC and UPDATEREGION. Notable excep-
tions are: BagStack, where only the strong specification requires sequence theory reasoning;
and TLock and BoundedCtr, whose complex transition systems with many disjunctions sig-
nificantly increase the workload when verifying atomicity rules such as MAKEATOMIC.

Automation. Voila’s annotation overhead, averaged over the programs with strong specifica-
tions from Fig. 7, is 0.8 lines of proof annotations (not counting declarations and procedure
specifications; neither for Caper) per line of code, which demonstrates the high degree of
automation Voila achieves. Caper has an average annotation overhead of 0.13 for its programs
from Fig. 7, but significantly weaker specifications. Verifying only the latter in Voila does not
reduce annotation overhead significantly since Voila was designed to support TaDA’s strong
specifications. The overhead reported for encodings into interactive theorem provers such as
Coq [13, 40-42] is typically much higher, ranging between 10 and 20.

9 Related work

We compare Voila to three groups of tools: automated verifiers, focusing on automation; proof
checkers, focusing on expressiveness; and proof outline checkers, designed to strike a balance
between automation and expressiveness. Closest to our work in the kind of supported logic
is the automated verifier Caper [18], from which we drew inspiration, e.g., for how to specify
region transition systems. Caper supports an improved version of CAP [7], a predecessor logic
of TaDA. Caper’s symbolic execution engine achieves an impressive degree of automation,
which, for more complex examples, is higher than Voila’s. Caper’s automation also covers
slightly more guard algebras than Voila. However, the automation comes at the price of
expressiveness, compared to Voila: postconditions are often significantly weaker because the
logic does not support linearizability (or any other notion of abstract atomicity). E.g., Caper
cannot prove that the spinlock’s un1ock procedure actually releases the lock. As was shown
in Sec. 8, Caper is typically faster than Voila, but exhibits less stable performance when a
program or its specifications are wrong.

Other automated verifiers for fine-grained concurrency reasoning are SmallfootRG [43],
which can prove memory safety, but not functional correctness, and CAVE [44], which can
prove linearizability, but cannot reason about non-linearizable code (which TaDA and Voila
can). VerCors [45] combines a concurrent separation logic with process-algebraic specifica-
tions; special program annotations are used to relate concrete program operations to terms
in the abstract process algebra model. Reasoning about the resulting term sequences is auto-
mated via model checking, but is non-modular. Summers et al. [46] present an automated
verifier for the RSL family of logics [13, 40, 47] for reasoning about weak-memory concur-

@ Springer

Formal Methods in System Design

rency. Their tool also encodes into Viper and requires very few annotations because proofs
in the RSL logics are more stylized than in TaDA.

A variety of complex separation logics [11-13,40,47-51] are supported by proof checkers,
typically via Coq encodings. As discussed in the introduction, such tools strike a different
trade-off than proof outline checkers: they provide foundational proofs, but typically offer
little automation, which hampers experimenting with logics. Diaframe [52] introduces a proof
search strategy for Iris [53], achieving foundational proofs and a high degree of automation.
This strategy applies rules based on the syntactic shape of the verification goal. To improve
completeness, users can provide hints that specify how certain goals are split into subgoals.
In contrast to TaDA and our work, Diaframe does not support abstract atomicity.

Starling [22] is a proof outline checker and closest to Voila in terms of the overall design,
but it focuses on proofs that are easy to automate. To achieve this, it uses a simple instanti-
ation of the Views meta-logic [34] as its logic. Starling’s logic does not enable the kind of
strong, linearizability-based postconditions that Voila can prove (see the discussion of Caper
above). Starling generates proof obligations that can be discharged by an SMT solver, or
by GRASShopper [17] if the program requires heap reasoning. The parts of an outline that
involve the heap must be written in GRASShopper’s input language. In contrast, Voila does
not expose the underlying system, and users can work on the abstraction level of TaDA.

VeriFast [23] can be seen as an outline checker for a separation logic with impressive
features such as higher-order functions and predicates. It has no dedicated support for fine-
grained concurrency, but the developers manually encoded examples such as concurrent
stacks and queues. VeriFast favors expressiveness over automation: proofs often require
non-trivial specification adaptations and substantial amounts of ghost code, but the results
typically verify quickly.

10 Conclusion

We introduced Voila, a novel proof outline checker that supports most of TaDA’s features,
and achieves a high degree of automation and good performance. This combination enables
concise proof outlines with a strong resemblance of TaDA.

Voila is the first deductive verifier that can reason automatically about a procedure’s effect
at its linearization point, which is essential for a wide range of concurrent programs. Earlier
work either proves much weaker properties (the preservation of basic data structure invariants
rather than the functional behavior of procedures) or requires substantially more user input
(entire proofs rather than concise outlines).

We believe that our systematic approach to developing Voila can be generalized to other
complex logics. In particular, encoding proof outlines into an existing verification framework
allows one to develop proof outline checkers efficiently, without developing custom proof
search algorithms. Our work also illustrates that an intermediate verification language such
as Viper is suitable for encoding a highly-specialized program logic such as TaDA. During
the development of Voila, we uncovered and fixed several soundness and modularity issues in
TaDA, which the original authors acknowledged and had partly not been aware of. We view
this as anecdotal evidence of the benefits of tool support that we described in the introduction.

Voila supports the vast majority of TaDA’s features; most of the others can be supported
with additional annotations. The main exception are TaDA’s hybrid assertions, which combine
atomic and non-atomic behavior. Adding support for those is future work. Other plans include
an extension of the supported logic, e.g., to handle extensions of TaDA [37, 54].

@ Springer

Formal Methods in System Design

Acknowledgements We thank the anonymous referees of this paper and the earlier conference paper for
suggesting many improvements to the explanation of our work. We are also thankful to Thomas Dinsdale-
Young and Pedro da Rocha Pinto for instructive discussions about TaDA and for feedback on Voila.

Funding Open access funding provided by Swiss Federal Institute of Technology Zurich.

Dataavailability Anartifact with the executable Voila tool, including source code and all our test and evaluation
programs, is openly available [26]. The Voila source repository is also available [27]. The measurements taken
for the evaluation are available from the corresponding author upon request.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Full TaDA proof

Figure 8 shows the full TaDA proof of the TaDA proof outline from Fig. 1. The purpose of
the figure is to illustrate the complexity of full TaDA proofs. We do not expect readers to be
able to understand the proof. All parts of the proof that are present in the TaDA proof outline
are colored in blue. Everything else is inferred by Voila.

@ Springer

http://creativecommons.org/licenses/by/4.0/

Formal Methods in System Design

(CAS)

0: A - Vs - vy =x*kvy =0%v3=1 cens Vi vz ks =v2kb=1
* VL8 Vo —s*xsF#vaxb=0
(FRAME)
v =zxvg=0xv3=1 vp=2xvy=0%v3=1
O;A!—\Vs~<*v1:9€*U2:0*v3:1>Ccas<*(v1’_>”3*5:v?*b:1>
* 1 8 Vo sxs#vxb=0) (AEXISTS)
Ju1,v2,v3: Fvy, v, v3-
. vy =2 xve=0%v3=1 v =xxvy=0xv3=1
0; AF Vs <*01=x*1;2:0*v3=1> Ceas *(v1>—>vg*s=v2*b=1>
Py \ = b=0
*Ug s V1 s x5 £ v xb=0) (CONSEQUENOE)
r—1lxs=0xb=1
0,AF\V.9<<J/»—>.S>Ccas <\/z|—>s*s7é0*b:0>
(SUBSTITUTION)

z»—)l*s:()*b:1>

Ve sxs#0xb=0

T sxs# (AWEAKENING3)
r—1xs=0xb=1

Ve sks#0xb=0

0; A VWs€{0,1}- (> 5) ceas <

NAEWs e {0,1}- <.’1f>—> s> Ceas <

SUBSTITUTION)
= 1xs=0xb=1

Ve sxs#0xb=0

i txs=0xb=1
Vs sxks#0xb=0

Locki‘(x,t) *s5=0
A _
M1 A F Vs € {0’1}.<Lockr(x78)> e A € {1} xb=T1xr (s,1) >

NAEVs € {0,1}-(z—s) ceas 3|t6{1}~<

(
> (CONSEQUENCE)
)

NAFVs€{0,1}- (2 5) ceas M € {1}<
(UPDATEREGION)

x4 V Lock}(x, s) * 5 # 0
b=0 =
* xri ¢ (AWEAKENING3)
Lock} (x,) ¥ s = 0
Y] Lock}(x, 5) [xb=1xr (s,1)
LA Vs e {0,1} < w4 ceas M € {1} V Lock(x, 5) # 5 2 0
b=0
* lad/ (AEXISTS)

Lock}(x,) ¥ s = 0
LockM(x. s o
l;A’F<3$€{O’1} LockT(x,5)> cca53|86{0,1},t€{1}-< xb=1x%rE (s,t) >

x4 V Lock}(x, s) * 5 # 0
*b=0x*1rEB
S ¢ (CONSEQUENCE)
LA - <Hs € {0;1T}':)Lo‘ckr (x;5) > ceas s € {0,1},¢ € {1} - (LoopInv)
5y (SUBSTITUTION)
I; A"+ (3s € {0,1} - Lock)} (x, s) * 7 >) ccas (LoopInv)
(AWEAKENING1)
LA {3s € {0,1} - LockX (x, 5) * 7 = 4} ccas { LoopInv}
(CONSEQUENCE)
I; A"+ {LoopInv * b = 0} ccas {LoopInv}
(Loorp)
I; A"+ {LoopInv} cieop {LoopInv x —(b=0)}
X (CONSEQUENCE)
LA {35 €{0,1} - Lock}(x,5) * 7 = #} cloop {7 = (0,1) % b =1}
(CONSEQUENCE)

LA {3s €{0,1} - Lock}(x,s) # T => 4} cloop {35 € {0,1},t € {1} s =047 (5,8)}
I A Ws € {0,1} - (Lock)} (x, 8) * [G],) croop M € {1} - (Lock}(x, 1) % [G], * s = 0)
LLAF Vs € {0,1} - (Lock)(x, 5) % [G],) ctoop 3 € {1} - (Lock?(x,1) [G], 5 = 0)

L A Ws € {0,1} - (Lock}(x, 8) * [G],.) cloop {Locky (x,1) * [G], % s = 0)
LA Ws € {0,1} - (Lock)}(x, 5) * [G],) Tock(x) (Lock}(x,1) * [G], * s = 0)

(MAKEATOMIC)

(CONSEQUENCE)

(SUBSTITUTION)

(FUNCTION)

Fig. 8 Simplified version of the full TaDA proof for the TaDA proof outline from Fig. 1. The parts that are
present in the TaDA proof outline are colored blue. The statements ¢ 5o and ccag are the loop and CAS
statement, respectively. The loop invariant Looplnv is 3s € {0, 1} ‘Lock*(x,) (r = (0,) xb=1VrEe
¢ x b = 0). The atomicity context A" is r : s € {0, 1} ~ 1, A. For simplicity, redundant quantifiers are
omitted and local variables are not put into the private part of atomic assertions. Furthermore, the proof uses
a variation of the MAKEATOMIC rule that can be derived in TaDA

@ Springer

Formal Methods in System Design

References

=N o

20.

21.

22.

23.

24.

25.

26.

27.

28.

O’Hearn PW, Reynolds JC, Yang H (2001) Local reasoning about programs that alter data structures. In:
CSL, vol 2142. Lecture notes in computer science. Springer, New York, pp 1-19

Reynolds JC (2002) Separation logic: a logic for shared mutable data structures. In: LICS. IEEE Computer
Society, New York, pp 55-74

O’Hearn PW (2004) Resources, concurrency and local reasoning. In: CONCUR, vol 3170. Lecture notes
in computer science. Springer, New York, pp 49-67

Brookes SD (2004) A semantics for concurrent separation logic. In: CONCUR, vol 3170. Lecture notes
in computer science. Springer, New York, pp 16-34

Owicki SS, Gries D (1976) An axiomatic proof technique for parallel programs I. Acta Inf 6:319-340
Jones CB (1983) Specification and design of (parallel) programs. In: IFIP congress, pp 321-332
Dinsdale-Young T, Dodds M, Gardner P, Parkinson MJ, Vafeiadis V (2010) Concurrent abstract predicates.
In: ECOOP, vol 6183. Lecture notes in computer science. Springer, New York, pp 504-528

Svendsen K, Birkedal L (2014) Impredicative concurrent abstract predicates. In: Shao Z (ed) European
symposium on programming (ESOP), vol 8410. Lecture notes in computer science. Springer, New York,
pp 149-168

Turon A, Dreyer D, Birkedal L (2013) Unifying refinement and Hoare-style reasoning in a logic for higher-
order concurrency. In: Morrisett G, Uustalu T (eds) International conference on functional programming
(ICFP). ACM, New York, pp 377-390

Raad A, Villard J, Gardner P (2015) CoLoSL: concurrent local subjective logic. In: Vitek J (ed) ESOP,
vol 9032. Lecture notes in computer science. Springer, New York, pp 710-735

. Sergey I, Nanevski A, Banerjee A (2015) Mechanized verification of fine-grained concurrent programs.

In: PLDI. ACM, New York, pp 77-87

Turon A, Vafeiadis V, Dreyer D (2014) GPS: navigating weak memory with ghosts, protocols, and
separation. In: OOPSLA. ACM, New York, pp 691-707

Vafeiadis V, Narayan C (2013) Relaxed separation logic: a program logic for C11 concurrency. In:
OOPSLA. ACM, New York, pp 867-884

da Rocha Pinto P, Dinsdale-Young T, Gardner P (2014) TaDA: a logic for time and data abstraction. In:
ECOQOP, vol 8586. Lecture notes in computer science. Springer, New York, pp 207-231

Brookes S, O’Hearn PW (2016) Concurrent separation logic. SIGLOG News 3(3):47-65

Berdine J, Calcagno C, O’Hearn PW (2005) Smallfoot: modular automatic assertion checking with
separation logic. In: FMCO, vol 4111. Lecture notes in computer science. Springer, New York, pp 115-137
Piskac R, Wies T, Zufferey D (2014) GRASShopper—complete heap verification with mixed specifica-
tions. In: TACAS, vol 8413. Lecture notes in computer science. Springer, New York, pp 124-139
Dinsdale-Young T, da Rocha Pinto P, Andersen KJ, Birkedal L (2017) Caper—automatic verification for
fine-grained concurrency. In: ESOP, vol 10201. Lecture notes in computer science. Springer, New York,
pp 420447

Owicki SS (1975) Axiomatic proof techniques for parallel programs. Outstanding Dissertations in the
Computer Sciences. Garland Publishing, New York

Apt KR, de Boer FS, Olderog E (2009) Verification of sequential and concurrent programs. Texts in
computer science. Springer, New York

Pierce BC, Azevedo de Amorim A, Casinghino C, Gaboardi M, Greenberg M, Hritcu C, Sjoberg V,
Tolmach A, Yorgey B (2018) Programming language foundations, vol 2. Software foundations series.
Electronic Textbook, Pennsylvania

Windsor M, Dodds M, Simner B, Parkinson MJ (2017) Starling: lightweight concurrency verification
with views. In: CAV, vol 10426. Lecture notes in computer science. Springer, New York, pp 544-569
Jacobs B, Smans J, Philippaerts P, Vogels F, Penninckx W, Piessens F (2011) VeriFast: a powerful, sound,
predictable, fast verifier for C and Java. In: NASA formal methods, vol 6617. Lecture notes in computer
science. Springer, New York, pp 41-55

da Rocha Pinto P (2016) Reasoning with time and data abstractions. PhD thesis, Imperial College London,
UK

Miiller P, Schwerhoff M, Summers AJ (2016) Viper: a verification infrastructure for permission-based
reasoning. In: VMCALI, vol 9583. Lecture notes in computer science. Springer, New York, pp 41-62
Wolf FA, Schwerhoff M, Miiller P Concise outlines for a complex logic: a proof outline checker for TaDA.
https://doi.org/10.5281/zenodo.5137791

Wolf FA, Schwerhoff M, Miiller P The Voila source repository. https://github.com/viperproject/voila
Accessed 2021-07-26

Wolf FA, Schwerhoff M, Miiller P (2020) Concise outlines for a complex logic: a proof outline checker
for TaDA (full paper). CoRR arXiv:2010.07080

@ Springer

https://doi.org/10.5281/zenodo.5137791
https://github.com/viperproject/voila
http://arxiv.org/abs/2010.07080

Formal Methods in System Design

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

Wolf FA, Schwerhoff M, Miiller P (2021) Concise outlines for a complex logic: a proof outline checker
for TaDa. In: FM, vol 13047. Lecture notes in computer science. Springer, New York, pp 407426
Parkinson MJ, Bierman GM (2005) Separation logic and abstraction. In: POPL. ACM, New York, pp
247-258

Herlihy M, Wing JM (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans
Program Lang Syst 12(3):463-492

Mooij AJ, Wesselink W (2005) Incremental verification of Owicki/Gries proof outlines using PVS. In:
Lau K, Banach R (eds) International conference on formal engineering methods (ICFEM), vol 3785.
Lecture notes in computer science. Springer, New York, pp 390-404

Leino KRM (2010) Dafny: An automatic program verifier for functional correctness. In: Clarke EM,
Voronkov A (eds) Logic for programming, artificial intelligence, and reasoning (LPAR), vol 6355. Lecture
notes in computer science. Springer, New York, pp 348-370

Dinsdale-Young T, Birkedal L, Gardner P, Parkinson MJ, Yang H (2013) Views: compositional reasoning
for concurrent programs. In: POPL. ACM, New York, pp 287-300

Smans J, Jacobs B, Piessens F (2009) Implicit dynamic frames: combining dynamic frames and separation
logic. ECOOP, vol 5653. Lecture notes in computer science. Springer, New York, pp 148-172
Parkinson MJ, Summers AJ (2012) The relationship between separation logic and implicit dynamic
frames. Log Methods Comput Sci 8(3:01):1-54

da Rocha Pinto P, Dinsdale-Young T, Gardner P, Sutherland J (2016) Modular termination verification for
non-blocking concurrency. In: ESOP, vol 9632. Lecture notes in computer science. Springer, New York,
pp 176-201

Boyland J (2003) Checking interference with fractional permissions. In: SAS, vol 2694. Lecture notes in
computer science. Springer, New York, pp 55-72

Treiber RK (1986) Systems programming: coping with parallelism. Technical Report RJ 5118, IBM
Almaden Research Center

Doko M, Vafeiadis V (2017) Tackling real-life relaxed concurrency with FSL++. In: ESOP, vol 10201.
Lecture notes in computer science. Springer, New York, pp 448-475

Kaiser J, Dang H, Dreyer D, Lahav O, Vafeiadis V (2017) Strong logic for weak memory: reasoning about
release-acquire consistency in Iris. In: ECOOP. LIPIcs, vol 74. Schloss Dagstuhl—Leibniz-Zentrum fuer
Informatik, Wadern, pp 17:1-17:29

Klein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P, Elkaduwe D, Engelhardt K, Kolanski
R, Norrish M, Sewell T, Tuch H, Winwood S (2009) selL4: formal verification of an OS kernel. In: SOSP.
ACM, New York, pp 207-220

Calcagno C, Parkinson MJ, Vafeiadis V (2007) Modular safety checking for fine-grained concurrency.
In: SAS, vol 4634. Lecture notes in computer science. Springer, New York, pp 233-248

Vafeiadis V (2010) Automatically proving linearizability. In: CAV, vol 6174. Lecture notes in computer
science. Springer, New York, pp 450—464

Oortwijn W, Blom S, Gurov D, Huisman M, Zaharieva-Stojanovski M (2017) An abstraction technique
for describing concurrent program behaviour. In: VSTTE, vol 10712. Lecture notes in computer science.
Springer, New York, pp 191-209

Summers AJ, Miiller P (2018) Automating deductive verification for weak-memory programs. In: TACAS
(1), vol 10805. Lecture notes in computer science. Springer, New York, pp 190-209

Doko M, Vafeiadis V (2016) A program logic for C11 memory fences. In: VMCALI, vol 9583. Lecture
notes in computer science. Springer, New York, pp 413—430

Nanevski A., Ley-Wild R, Sergey I, Delbianco GA (2014) Communicating state transition systems for
fine-grained concurrent resources. In: ESOP, vol 8410. Lecture notes in computer science. Springer, New
York, pp 290-310

Frumin D, Krebbers R, Birkedal L (2018) ReLoC: a mechanised relational logic for fine-grained concur-
rency. In: LICS. ACM, New York, pp 442-451

Krebbers R, Jourdan J, Jung R, Tassarotti J, Kaiser J, Timany A, Charguéraud A, Dreyer D (2018) Mosel:
a general, extensible modal framework for interactive proofs in separation logic. PACMPL 2(ICFP) 77:1—
77:30

Jung R, Krebbers R, Jourdan J, Bizjak A, Birkedal L, Dreyer D (2018) Iris from the ground up: a modular
foundation for higher-order concurrent separation logic. J Funct Program 28:20

Mulder I, Krebbers R, Geuvers H (2022) Diaframe: automated verification of fine-grained concurrent
programs in Iris. In: PLDI. ACM, New York, pp 809-824

Jung R, Swasey D, Sieczkowski F, Svendsen K, Turon A, Birkedal L, Dreyer D (2015) Iris: monoids and
invariants as an orthogonal basis for concurrent reasoning. In: POPL. ACM, New York, pp 637-650
D’Osualdo E, Farzan A, Gardner P, Sutherland J (2019) TaDA live: compositional reasoning for termi-
nation of fine-grained concurrent programs. CoRR arXiv:1901.05750

@ Springer

http://arxiv.org/abs/1901.05750

Formal Methods in System Design

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

	Concise outlines for a complex logic: a proof outline checker for TaDA
	Abstract
	1 Introduction
	2 Running example and TaDA overview
	2.1 Regions and atomicity
	2.2 TaDA proof outline
	2.3 Voila proof outline
	2.4 Locks with resource invariants

	3 Proof outline language
	4 Proof workflow
	5 Expanding proof outlines to proof candidates
	6 Validating proof candidates in Viper
	7 Soundness
	7.1 Proof overview
	7.2 Proof for simplified TaDA
	7.3 Generalization to TaDA

	8 Evaluation
	9 Related work
	10 Conclusion
	Acknowledgements
	Appendix A: Full TaDA proof
	References

