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Abstract

In recent years, program analysis tools have been increasingly applied to real-world soft-
ware to prevent defects as early as possible. Examples of such tools include both static
analyzers and automatic test case generation tools. While the la er traditionally under-
approximate the possible program executions to find errors, the former traditionally con-
sider additional program executions that are not actually possible in the analyzed program.
This makes it possible to efficiently analyze programs with a large or infinite number of pro-
gram executions and to prove the correctness of the analyzed program in case the analysis
over-approximates the possible program executions (i.e., is sound). As a consequence, static
analyzers may report spurious errors that do not reveal real defects in the analyzed program.

In practice, many static analyzer neither under- nor over-approximate the program execu-
tions of the analyzed program. Their designers trade soundness for other qualities—such as
precision, performance, and automation—by deliberately ignoring certain checks (e.g., that
a method respects its write effect specification) or by deliberately making assumptions that
do not hold for all program executions (e.g., that no arithmetic overflow occurs).

These characteristics of static analyzers motivate why verification results are often partial in
practice: ( ) some assertions of a program have neither been verified nor have been shown
to lead to a defect (i.e., may be spurious errors) and ( ) some program executions—including
ones thatmay result in defects—have been ignored due to sources of deliberate unsoundness
in the analysis.

To express and share such results with the user or other program analysis tools, we have
developed a technique for annotating programs with partial verification results using two
new language constructs. For instance, these allow us to express if a property could not def-
initely be verified and if a property has only been verified under assumptions that might not
always hold. We describe several novel use cases for expressing partial verification results
fromdiverse areas of program analysis—such as test case generation, specification inference,
counterexample-based error reporting, and static analysis.
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In particular, we present an architecture for combining static analyzers with test case genera-
tion tools by exchanging programs that have been annotated with partial verification results
between tools. By soundly expressing what has already been verified, tools can benefit from
the results of other tools and reduce their verification effort.

To evaluate deliberate unsoundness in a practical static analyzer, we identified and docu-
mented all sources of deliberate unsoundness in the .N static analyzer Clousot. Based on
this, we developed a wrapper for Clousot that uses our technique for annotating a program
using partial verification results. By expressing most sources of unsoundness explicitly and
developing a suitable runtime instrumentation, we evaluatedwhetherClousot’s unsound as-
sumptions are violated in practice and whether such violations cause Clousot to miss bugs.
Such findings can guide users of static analyzers in using them fruitfully, and help their de-
signers in striking a good balance between soundness and other qualities of an analyzer,
such as precision, performance, and automation.

Nowadays, partial verification results are often shown to users within an integrated devel-
opment environment (IDE). We present the IDE for Dafny—a programming language, veri-
fier, and proof assistant—that addresses two issues present in most state-of-the-art IDEs for
program verifiers: low responsiveness and lack of support for understanding non-obvious
verification failures. To this end, we present both new techniques and integrate existing
technique to improve the user experience. This allows the IDE to provide verification feed-
back as the user types and to present more helpful information about the program or failed
verification a empts in a demand-driven and unobtrusive way. As a result, the user is able
to quickly gain insights about the program and the cause of partial verification results.

To increase the responsiveness of the program verifier during such interactions with the
user, we designed a system for fine-grained caching of verification results. The caching sys-
tem uses the program’s call graph and control-flow graph to focus the verification effort
on just the parts of the program that were affected by the user’s most recent modifications.
The novelty lies in how the original program is instrumented with partial verification re-
sults from the cache to avoid unnecessary work for the verifier. By using our technique for
expressing partial verification results, we are able to reuse some cached verification results
even if assumptions in the program (e.g., due to modular reasoning about calls by means of
the callee’s postcondition) are affected by a change.
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Zusammenfassung

In den le ten JahrenwurdenWerkzeuge zur Programmanalysemehr undmehr dazu einge-
se t, um Defekte in praxisnaher Software so früh wie möglich zu verhindern. Beispiele für
solche Werkzeuge sind Werkzeuge zur statischen Analyse und zur automatischen Testfall-
Generierung. Während Le tere traditionell die möglichen Programmausführungen unte-
rapproximieren um Fehler zu finden, betrachten Erstere weitere Programmausführungen,
die nicht tatsächlich im analysierten Programm auftreten. Dies ermöglicht es, Programme
mit einer grossen oder unendlichen Zahl von Programmausführungen effizient zu analy-
sieren und die Korrektheit des analysierten Programms zu beweisen, falls die Analyse die
möglichen Programmausführungen überapproximiert (d.h. sound ist). Folglich kann es dazu
kommen, dass Werkzeuge zur statischen Analyse unechte Fehler melden, die gar nicht zu
echten Defekten im analysierten Programm führen.

In der Praxis betrachten viele Werkzeuge zur statischen Analyse weder eine Unter- noch ei-
neÜberapproximation dermöglichen Programmausführungen. IhreDesignerwägen Sound-
ness gegen andere Qualitäten—wie etwa Präzision, Effizienz, und Automatisierung—ab, in-
dem sie absichtlich gewisse Überprüfungen auslassen (zum Beispiel, dass eineMethode ihre
Write-Effect-Spezifikation erfüllt) oder absichtlich Annahmen treffen, die nicht in allen Pro-
grammausführungen zutreffen (zum Beispiel, dass kein arithmetischer Overflow eintri ).

Diese Charakteristika vonWerkzeugen zur statischenAnalyse begründen, weshalb Verifika-
tionsresulte in der Praxis oft partiell sind: ( ) einige Assertions des Programms wurden we-
der verifiziert nochwurde gezeigt, dass sie zu einemDefekt führen (d.h. sie könnten unechte
Fehler sein) und ( ) einige Programmausführungen—inklusive solcher, die zuDefekten füh-
ren könnten—wurden ignoriert aufgrund von absichtlicher Unsoundness in der Analyse.

Um solche Resultat auszudrücken und mit dem Benu er oder anderen Werkzeugen zur
Programmanalyse zu teilen, haben wir eine Technik entwickelt, die es erlaubt, mi els zwei-
er neuer Sprachkonstrukte das Programmmit partiellen Verifikationsresulten zu annotieren.
Beispielsweise lässt sich damit ausdrücken, dass eine Eigenschaft nicht mit Sicherheit verifi-
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ziert werden konnte und dass eine Eigenschaft lediglich unter Annahmen verifiziert wurde,
die nicht zwangsläufig zutreffen müssen. Wir beschreiben mehrere Fälle aus verschiedenen
Gebieten der Programmanalyse—wie zum Beispiel Testfall-Generierung, Spezifikationsin-
ferenz, Gegenbeispiel-basierte Fehlermeldeverfahren und statische Analyse—in denen sich
partielle Verifikationsresulte ausdrücken lassen.

Im Speziellen stellen wir eine Architektur vor, um Werkzeuge zur statischen Analyse mit
solchen zur Testfall-Generierung zu kombinieren, indem Programme ausgetauscht werden,
die mit partiellen Verifikationsresulten annotiert wurden. Indem sound ausgedrückt wird,
was bereits verifiziert wurde, können Werkzeuge von den Resultaten anderer Werkzeuge
profitieren und ihren Verifikationsaufwand senken.

Um absichtliche Unsoundness in einem praktischen Werkzeug für statische Analyse auszu-
werten, haben wir alle Quellen von absichtlicher Unsoundness in Clousot, einemWerkzeug
zur statische Analyse für .N , identifiziert und dokumentiert. Basierend darauf haben wir
einen Wrapper für Clousot entwickelt, der unsere Technik zur Annotation von Program-
men mit partiellen Verifikationsresulten einse t. Indem die Mehrzahl aller Quellen von ab-
sichtlicher Unsoundness explizit gemacht werden und durch die Entwicklung einer geeig-
neten Laufzeitinstrumentierung, haben wir untersucht, ob Clousots unsounde Annahmen
in der Praxis verle t werden und ob solche Verle ungen dazu führen, dass Clousot Fehler
übersieht. Solche Erkenntnisse können Designern von Werkzeugen zur statischen Analyse
sowohl dabei helfen, diese nu bringend einzuse en, als auch eine gute Balance zwischen
Soundness und anderen Qualitäten solcher Werkzeuge, wie beispielsweise Präzision, Effizi-
enz und Automatisierung, zu finden.

Heu utage werden partielle Verifikationsresulte dem Benu er oft in einer integrierten Ent-
wicklungsumgebung (IDE) angezeigt. Wir stellen die IDE für Dafny—eine Programmier-
sprache, ein Verifikationswerkzeug, und ein Beweisassistent—vor, welche zwei Probleme in
aktuellen IDEs für Programmverifikationswerkzeuge angeht: geringe Reaktionsfreudigkeit
und die mangelhafte Verständnisförderung bei nicht offensichtlichen Verifikationsfehlern.
Zu diesemZweck stellenwir neue Techniken vor und integrieren existierende Techniken zur
Verbesserung der Benu erfreundlichkeit. Dies erlaubt der IDE dem Benu er Verifikations-
rückmeldungen anzuzeigen, während er tippt, und ihm unauffällig und je nach Bedarf hilf-
reiche Informationen über das Programm oder fehlgeschlagene Verifikationsversuche zu-
kommen zu lassen. Das führt dazu, dass es dem Benu er möglich ist schnell Erkenntnisse
über das Programm oder die Ursache der partiellen Verifikationsresulte zu erlangen.

Um die Reaktionsfreudigkeit des Programmverifikationswerkzeugs während solcher Inter-
aktionen mit dem Benu er zu erhöhen, haben wir ein System entwickelt, um feinkörnig
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Verifikationsresultate zwischenzuspeichern. Dieses System benu t sowohl den Call-Graph
wie auch denControl-Flow-Graph des Programms umdie Verifikationsbemühungen auf die
Teile des Programms zu konzentrieren, die von den le ten Änderungen des Benu ers be-
troffen sind. Das Novum liegt dabei darin, wie das ursprüngliche Programm mit partiellen
Verifikationsresultaten aus dem Zwischenspeicher instrumentiert wird, um unnötige Arbeit
für das Verifikationswerkzeug zu vermeiden. Indem wir unsere Technik zum Ausdrücken
von partiellen Verifikationsresultaten einse en, sind wir in der Lage Verifikationsresultate
aus demZwischenspeicher selbst dann zu verwenden,wennAnnahmen imProgramm (zum
Beispiel aufgrund von modularer Beweisführung über Aufrufe mi els der Nachbedingung
des Aufgerufenen) von der Änderung betroffen sind.
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Introduction

Software affects our everyday life in more and more ways. Our phone’s alarm clock may
wake us up such that we get to work on time; on the way there, we might take a train that
is still operated by a human, but controlled by software. Software defects may, thus, lead to
anything from minor annoyances—such as being late for work—to catastrophic disasters—
such as being injured, or worse, on our train ride to work.

Program analysis tools have shown to help programmers in preventing such defects before
they negatively affect us. In recent years, such tools have been increasingly applied to real-
world software due to major advances in the underlying program analysis techniques. Ex-
amples of such tools include both static analyzers—such as ASTREÉ [ ] for analyzing em-
bedded systems, Clousot [ ] for analyzing .N code, and SLAM [ ] for analyzing device
drivers—and automatic test case generation tools—such as Pex [ ] for automatically gen-
erating unit tests for .N code and SAGE [ , ] for automatically testing applications that
process files.

Test case generation tools traditionally explore a subset of all possible program executions
to find defects. This under-approximation of the possible program executions guarantees that
only genuine errors are reported to the user. On the other hand, static analyzers tradition-
ally consider additional program executions that are not actually possible in the analyzed
program. This makes it possible to efficiently analyze programs with a large or even infinite
number of program executions and to prove the correctness of the analyzed program in case
the analysis over-approximates the possible program executions (i.e., is sound). As a conse-
quence, static analyzers may also report spurious errors that do not reveal real defects in the
analyzed program.

In practice, many static analyzer neither under- nor over-approximate the program execu-
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possible program executions
analyzed by typical test case generation tool
analyzed by typical sound static analyzer
analyzed by typical static analyzer with sources of deliberate unsoundness

Figure . : Differences between typical representatives of program analysis tools. Typical
test case generation tools under-approximate the possible program executions,
while typical sound static analyzers over-approximate the possible program exe-
cutions. In contrast, typical static analyzers with sources of deliberate unsound-
ness neither over- nor under-approximate the possible program executions.

tions of the analyzed program. Their designers often decide to trade soundness for other
qualities—such as precision, performance, and automation—bydeliberately ignoring certain
checks (e.g., that a method respects its write effect specification) or by deliberately making
assumptions that do not hold for all program executions (e.g., that no arithmetic overflow
occurs). For instance, Clousot [ ] ignores certain side-effects due to aliasing, ESC/Java [ ]
unrolls loops a fixed number of times, HAVOC [ ] uses write effect specifications without
checking them, and Spec# [ ] ignores arithmetic overflow and does not consider exceptional
control flow, to name a few. As a result, such analyzers with deliberate sources of unsound-
nessmay not report all errors to the user and a user cannot conclude that a program is correct
if no errors are reported. Figure . summarizes the differences between typical representa-
tives of program analysis tools by illustrating the program executions that are analyzed by
each tool.

These characteristics of static analyzers motivate why verification results are often partial in
practice: ( ) some assertions of a program have neither been verified nor have been shown
to lead to a defect (i.e., may be spurious errors) and ( ) some program executions—including
ones thatmay result in defects—have been ignored due to sources of deliberate unsoundness
in the analysis.

We have already illustrated how these characteristicsmay provide the user with a false sense
of correctness unless an analyzer explicitly warns the user about sources of deliberate un-
soundness that could have affected the verification results. Obviously, the same applies if



those results are shared with other program analysis tools. In principle, such collaboration
between tools would be very tempting since it would allow users to combine the strengths
of several such tools to obtain a program analysis tool chain that outperforms each individ-
ual component. However, in practice, it has not been possible to combine most practical,
state-of-the-art tools both efficiently and soundly. Hence, most such tools are designed as
standalone tools that primarily report errors to the user.

Our treatment of partial verification results solves this important problem by making it pos-
sible to annotate programs with verification results of static analyzers such that subsequent
runs of program analysis tools can focus on properties that have not yet been verified stat-
ically; as mentioned earlier, this can be either due to failed verification a empts or due to
sources of deliberate unsoundness.

This ability to express verification results for a wide range of tools sets our work apart from
existing work on combining sound static analyzers. In other words, it provides a basis for
formally annotating an analyzed program such that the verification results of a static ana-
lyzerwith orwithout sources of deliberate unsoundness are soundly captured; i.e., a property
is only marked as verified for a given program execution if a static analyzer has soundly ver-
ified the property on this program execution. In addition, it makes it possible to determine
the complete set of errors that should be reported to the user without simply accumulating
the errors—including duplicate or contradictory ones—of each tool. More specifically, each
assertion that has not been fully verified reflects an error. Consequently, a user does not
need to worry about errors that are deliberatelymissed by a tool—as opposed to accidentally
due to bugs in a tool.

Since most tools are not completely sound by design our technique for expressing partial ver-
ification results, for the first time, enables a flexible approach for making collaborative pro-
gram analysis feasible and a ractive in practice. This opens up the possibility of developing
new tools that effectively build on existing static analyzers.

Our technique is not only important on a technical level as a way for expressing the partial
verification results of a static analyzer. It can also be seen as a tool for formally reasoning
about static analyzers that do not always live up to the text book ideal of a sound analyzer,
about which we are used to reason using techniques such as abstract interpretation [ ]. In
particular, we are now able to phrase and address fundamental research questions, such as:

• How can we soundly combine different program analysis tools such that each tool
efficiently benefits from the partial verification results of the tools that have been run
earlier?
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• How can we express the partial verification results of a practical static analyzer?

• How can we use partial verification results to evaluate the deliberate unsoundness in
a static analyzer?

• How can we help the user in understanding why the verification results of a static
analysis run are only partial?

• How canwe reduce the effort in collecting those partial verification results if a program
is only changed slightly?

We provide answers to these questions in the following chapters. More specifically, themain
contributions of this thesis can be summarized as follows:

Language constructs for encoding partial verification results To annotate programs with
partial verification results, we introduce two programming language constructs for
capturing under which unsound assumptions a property has been shown to hold by
a static analyzer. For instance, a static analyzer may insert these language constructs
into the analyzed program to express that it has verified some assertions in the pro-
gram fully (i.e., soundly), some partially (e.g., since arithmetic overflow was ignored),
and others not at all.

The semantics of the two new language constructs is defined in terms of assignments
and regular assume statements. Since both of these statements are understood by es-
sentially all existing program analysis tools, any such tool can benefit from partial ver-
ification results immediately and without changes to its inner workings.

To demonstrate that our technique for expressing partial verification results can be
applied in a wide range of se ings and provides a flexible way for sharing informa-
tion between program analysis tools, we describe several novel use cases from di-
verse areas of program analysis—such as test case generation, specification inference,
counterexample-based error reporting, and static analysis.

Architecture for collaborative static analysis and testing One such use case describes an
architecture for combining static analyzers with other analyzers andwith test case gen-
eration tools [ ]. By expressing the partial verification results of a static analyzer as an
annotated program, a subsequent static analyzer can analyze the annotated program
and, thereby, focus its verification effort on the properties that have not been fully ver-
ified yet.

The same holds for test case generation tools—such as Pex [ ]. Such tools can pick up
the annotations in the annotated program to reduce the testing effort by not checking



properties that have already been checked or inferred by static analyzers. For instance,
a test generation tool can avoid testing assertions that have been fully verified or can
only test them for cases that have not yet been checked statically.

While we do not discuss this use case in detail, test case generation tools can also be
designed or extended to specifically target properties that are not soundly checked by
static analyzers or are inherently difficult to deal with using static techniques. For in-
stance, we have developed a technique that synthesizes parameterized unit tests for
detecting object invariant violations [ , ] by specifically targeting scenarios [ , ]
which are ignored by most static analyzers. Another technique in the same spirit is
concerned with dynamic test generation in the presence of static fields and initializ-
ers [ , ]. Both of these techniques were developed in response to questions ad-
dressed in this work about the limitations in static analyzers.

To reduce the testing effort even more, we have developed two sound inference tech-
niques for inserting additional instrumentation into the program that allows test case
generation tools based on dynamic symbolic execution to focus the effort on unverified
program executions [ , ]. This is achieved by pruning verified program executions
and prioritizing unverified program executions. For instance, a test case generation
tool or a second static analyzer should focus on program executions with arithmetic
overflows if all assertions in a program have already been verified by a static analyzer
that ignores arithmetic overflow. We provide an overview of this use case for express-
ing partial verification results in Section . . .

Documentation of all sources of deliberate unsoundness in a static analyzer We describe
the first systematic effort to document all sources of deliberate unsoundness in an
industrial-strength static analyzer [ ]. We focus on Clousot, a widely-used, commer-
cial static analyzer.

Based on this documentation, we developed a wrapper for Clousot that automatically
annotates .N programs with partial verification results by expressing most sources
of deliberate unsoundness in Clousot. As described in Section . , we can also use
this wrapper to soundly share Clousot’s partial verification results with Pex in order
to reduce the test effort.

Experimental evaluation of deliberate unsoundness in a static analyzer We run an exper-
imental evaluation [ ] that, for the first time, sheds light on how often the unsound
assumptions of a static analyzer are violated in practice and whether they cause the
analyzer to miss bugs. For this purpose, we made use of our wrapper for Clousot and
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developed a suitable runtime instrumentation for detecting violations of unsound as-
sumptions.

This allowed us to detect such violations in several open-source projects. Our man-
ual inspection of all methods with such violations showed that no errors were missed
due to an unsound assumption, which suggests that Clousot’s unsoundness does not
compromise its effectiveness. Such findings can guide users of static analyzers in using
them fruitfully, and help their designers in striking a good balance between soundness
and other qualities of an analyzer, such as precision, performance, and automation.

Sharing partial verification results with users and explaining them Our technique for ex-
pressing partial verification results provides a flexible and expressive basis for integrat-
ing program analysis tools by exchanging annotated programs. However, eventually
the verification results need to be presented and explained to the user.

Nowadays, this task is frequently orchestrated by an integrated development environ-
ment (IDE) that incorporates one or more program analysis tools. In recent years, this
task has become more important and more challenging due to the fact that program
verifiers and interactive theorem provers have becomemore powerful and, thus, more
suitable for verifying large programs or proofs. As a consequence, a wider audience of
non-experts are interested in using such tools for improving software quality and cor-
rectness. This has demonstrated the need for improving the user experience of these
tools to increase productivity and to make them more accessible to non-experts.

To illustrate this, we present the IDE for Dafny—a programming language, verifier,
and proof assistant—that addresses two issues present in most state-of-the-art IDEs
for program verifiers: low responsiveness and lack of support for understanding non-
obvious verification failures [ ]. To this end, we present both new techniques and
integrate existing techniques to improve the user experience of the IDE.

We thereby push the state-of-the-art closer towards a verification environment that
can provide verification feedback as the user types and can present more helpful in-
formation about the program or failed verification a empts in a demand-driven and
unobtrusive way. This allows the user to quickly gain insights about the program and
to understand the cause of partial verification results. Such insight and understanding
is crucial for supporting users in developing fully-verified programs after a series of
interactions with the program verifier.

Fine-grained caching of verification results To increase the responsiveness of the verifier
during such interactions with the user, we designed a system for fine-grained caching



of verification results [ ]. The caching system uses the program’s call graph and
control-flow graph to focus the verification effort on just the parts of the program that
were affected by the user’s most recent modifications. The novelty lies in how the orig-
inal program is instrumented with information from the cache to avoid unnecessary
work for the verifier.

This instrumentation makes use of our technique for expressing partial verification
results to capture which cached verification results are still valid in the current version
of the program. For instance, it is designed to reuse cached verification results for the
current version of a program in two common scenarios: when an isolated part (e.g.,
one of two branches or a loop body) has been changed, and when the specification of
a callee has been changed.

A key insight behind this work is that by expressing partial verification results we are
able to reuse parts of the cached verification results even if assumptions in the program
(e.g., due to modular reasoning about calls by means of the callee’s postcondition) are
affected by a change. We describe the architecture and algorithms of the caching sys-
tem and our experimental evaluation sheds light on how much caching improves the
performance of the verifier in practice.

Outline

Chapter introduces an architecture for analyzing programs collaboratively and defines two
programming language constructs that allow us to annotate programs with partial verifica-
tion results from a wide range of static analyzers—including ones with sources of deliberate
unsoundness. It demonstrates the expressiveness of these language constructs by illustrating
how to capture common sources of unsoundness in static analyzers and program verifiers
and by outlining several other novel use cases for expressing partial verification results in
test case generation tools, static analyzers, or inference tools.

Chapter provides a more comprehensive case study for how one can express the verifica-
tion results of a practical static analyzer with sources of deliberate unsoundness and how
one can evaluate deliberate unsoundness in a static analyzer. In particular, our evaluation
sheds light on whether Clousot’s unsound assumptions are violated in practice andwhether
such violations cause Clousot to miss bugs.

Chapter presents the IDE for the Dafny programming language and verifier. The IDE’s
primary focus is on swiftly sharing partial verification results and explaining them to the
user. To this end, it provides feedback as the user types and is able to present more help-
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ful information about the program or failed verification a empts in a demand-driven and
unobtrusive way.

Chapter presents a system for fine-grained caching of verification results to improve the
responsiveness of theDafny IDE. Our technique instruments the programwith cached verifi-
cation results by expressingwhich properties still hold for the current version of the program
using partial verification results.

We discuss related work separately in each chapter and conclude in Chapter .



C ₂

Partial Verification Results

Program analysis tools are increasingly applied to detect defects in real-world programs
and are starting to make their way into the development workflow of software developers.
Among other things, this manifests itself in a deeper and more unobtrusive integration into
widely-used IDEs. These tools range from relatively simple heuristic tools, over tools based
on abstract interpretation, dynamic symbolic execution, or symbolic model checking, to ver-
ifiers based on automatic theorem proving.

Usually, the primary focus of such tools is on sharing their results (e.g., errors and inferred
invariants) with the user. In addition, one could imagine sharing those results with other
program analysis tools to effectively combine their strengths. Ideally, such collaboration
would enable a programanalysis tool chain that outperforms each individual tool. However,
in practice, it is not possible to combine most practical program analysis tools both soundly
and efficiently due to two inherent characteristics of most practical static analyzers.

First, static analyzers traditionally also consider some program executions that are actually
not possible in the analyzed program. This allows static analyzers to efficiently analyze
programs with many or even infinitely many program executions and makes them suitable
for proving the absence of errors if an over-approximation of all possible program executions
is considered (i.e., if the static analyzer is sound). However, this comes at a price: static
analyzers may end up also reporting spurious errors that cannot occur in any of the possible
program executions.

Second, in practice, many static analyzers do not always over-approximate the possible pro-
gram executions. The designers of the analyzer often decide to trade soundness for other
important qualities of static analyzers—such as precision, performance, and automation—
by deliberately ignoring certain checks (e.g., that a method respects its write effect specifi-
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cation) or by deliberately making assumptions that do not hold for all program executions
(e.g., that no arithmetic overflow occurs). For instance, Clousot [ ] ignores certain side-
effects due to aliasing, ESC/Java [ ] unrolls loops a fixed number of times, HAVOC [ ] uses
write effect specifications without checking them, and Spec# [ ] ignores arithmetic overflow
and does not consider exceptional control flow, to name a few. Consequently, static analyz-
ers with such sources of deliberate unsoundness do not provide definite guarantees about
the correctness of programs and cannot always ensure the absence of errors.

As a result of these two inherent characteristics, most practical static analyzers only provide
partial verification results since ( ) some assertions of a program have neither been verified
nor have been shown to lead to a defect (i.e., may correspond to spurious errors) and ( ) some
program executions—including ones that may result in defects—have been ignored due to
sources of deliberate unsoundness.

In practice, existing static analyzers to not make these partial verification results explicit in
their output which prevents a user from ge ing definite correctness guarantees and a pro-
gram analysis tool from making effective use of those results. More specifically, a tool can-
not easily build on the analysis of another tool to reduce its analysis effort. This is ineffective
and, instead of consolidating the set of errors that are reported to the user, each tool will only
increase the set of errors, which may include duplicate, spurious or even contradictory ones.

With this in mind, we propose a technique that enables the sound and effective combination
of multiple, complementary program analysis tools by making explicit in its output which
properties have been checked and under which unsound assumptions. In particular, by
identifying and documenting all sources of unsoundness, a static analyzer becomes sound
relatively to its sources of unsoundness. In other words, one could prove that it is sound
for program executions where all checks hold that are deliberately ignored and where all
deliberate, unsound assumptions hold.

Such a proof would ensure that all sources of deliberate unsoundness have been identified.
However, proving this for a industrial-strength static analyzer is often not practical. In such
cases, the designers need to make sure that all sources of deliberate unsoundness have been
made explicit in the tool’s output. We have used this approach for identifying the sources
of deliberate unsoundness in the static analyzer Clousot with help from their designers (see
Section . for more details on this process). Even if a tool’s output fails to capture a source
of deliberate unsoundness, the output is still more useful for subsequent tools than if none
of the sources of deliberate unsoundness were disclosed. Note that, the same applies to ac-
cidental unsoundness, for instance due to bugs in the implementation of the static analyzer.



The two contributions of the work described in this chapter are:

. We propose a simple language extension for sharing partial verification results between
program analysis tools (including ones with sources of deliberate unsoundness) by
annotating a program. These annotations are expressed via two new programming
language constructs whose semantics is defined in terms of assignments and assump-
tions. They are, thus, easy to support by a wide range of tools. The first construct is
used for expressing explicit (unsound) assumptions at the program points where they
are made during the analysis. This allows modular program analysis tools to express
their verification results locally in the checked module (for instance, locally within a
method). This is crucial for allowing subsequent analysis tools to also operate mod-
ularly. For instance, such tools may include automatic test case generation tools that
generate unit tests for the module. The second construct is used for expressing that a
property was found to hold soundly or under certain unsound assumptions at a given
program point. In particular, this allows us to mark assertions as fully verified, par-
tially verified (that is, verified under certain unsound assumptions), or not verified.
We demonstrate that our language constructs can be used to effectively express par-
tial verification results of mainstream static analyzers such that they can subsequently
be used by other tools. In particular, we show how the first construct can be used
to express and evaluate most sources of deliberate unsoundness in the static analyzer
Clousot in Chapter . To demonstrate that our technique for expressing partial veri-
fication results can be applied in a wide range of se ings and provides a flexible way
for sharing information between program analysis tools, we describe several novel use
cases from diverse areas of program analysis—such as test case generation, specifica-
tion inference, counterexample-based error reporting, and static analysis.

. We present an architecture for combining static program analysis tools with test case
generation tools by exchanging the partial verification results. Thismakes it possible to
automatically generate unit tests for execution traces that have not yet been fully ver-
ified, thereby providing the user with a choice on how much effort to devote to static
checking and how much to testing. For example, a user might run a static analyzer
without devoting any effort to making the verification succeed (for instance, without
providing auxiliary specifications, such as loop invariants). The static analyzer may
prove some properties correct, and our technique enables the effective testing of all
others. Alternatively, a user might try to verify properties about critical components
of a program and leave any remaining properties (e.g., about library components) for
testing. Consequently, the degree of static checking is configurable and may range
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from zero to complete. Our architecture enables a tool chain that directs the effort of
subsequent program analysis tools to partially-verified or unverified properties. This
makes any subsequent analysis more targeted and, therefore, more effective. In the
case of test case generation tools it may lead to smaller and more effective test suites.
We have implemented a tool chain that combines the static analyzer Clousot [ ] with
the automatic test case generation tool Pex [ ], which makes use of dynamic sym-
bolic execution [ , ]. This allowed us to identify situations in which this combina-
tion finds more errors and proves more properties than static checking alone, testing
alone, and combined static checking and testingwithout our technique. We have taken
this combination one step further by developing two static analyses that use the par-
tial verification results to infer conditions that can be used to guide dynamic symbolic
execution toward unverified executions [ , ]. This makes it possible to focus the
testing effort even more effectively. In Chapter we demonstrate how our technique
can be used for fine-grained caching of verification results in the Dafny IDE [ ] and
the underlying Boogie [ ] verification engine by directing the re-verification effort to
properties that have been affected by the most recent edits to a program.

This chapter is based on a paper that was presented at the International Conference on Formal
Methods in [ ].

Outline

Section . introduces our technique for annotating programswith partial verification results
and demonstrates how this allows us to capture common sources of deliberate unsoundness
in static analyzers. Section . provides an overview of how partial verification results can
be used to combine static analyzers with test case generation tools. Section . provides an
overview of various ways in which other tools can make use of partial verification results.
We review related work in Section . and summarize our results in Section . .

. Language Constructs for Encoding Partial Verification Results

In this section, wepresent the general technique for expressing partial verification results and
explain how it can be used for capturing common sources of deliberate unsoundness. For this
purpose, we extend the programming and specification language with two new constructs:
( ) assumed statements to make unsound assumptions of a static analyzer explicit at the
program points where they are made, and ( ) partially-justified assume statements, which
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generalize traditional assume statements, to encode properties that have been found to hold
at certain program points either soundly or under certain explicit assumptions.

For convenience, we also introduce partially-verified assertions, which generalize traditional
assertions and can be expressed using partially-justified assume statements and regular as-
sertions. We define the semantics of these new language constructs by expressing them in
terms of assignments and regular assume statements, which have a well-defined semantics
(for instance, in terms of weakest preconditions [ ]).

. . Language Constructs

An assumed statement of the form assumed 𝑃 as 𝑎 records that a static analyzer assumed
property 𝑃 at a given program point. 𝑃 is a predicate of the assertion language, and 𝑎 is
a unique assumption identifier, which can be used in partially-justified assume statements
or partially-verified assertions to express that a property has been shown to hold under a
Boolean expression over assumption identifiers. assumed statements do not affect the se-
mantics of the program, but they are used to define the semantics of partially-justified as-
sume statements and partially-verified assertions, as we discuss below. In particular, our
assumed statements are different from the classical assume statements, which express prop-
erties that any program analysis tool may take for granted and need not check.

To illustrate, let us consider the C# method of Figure . which has been annotated using
.N Code Contracts [ ]. The gray boxes express the partial verification results of a static
analyzer that ignores arithmetic overflow (e.g., Spec#). Method Transfer from class Ac-
count transfers an amount of money from the current account to a different account rcvr
provided that the positive amount is less than or equal to ’ and there is enough money
in the current account; otherwise, the transfer needs to be reviewed. The assertion on line
states that the balance of the account rcvr should be increased.

In this example, we use two assumed statements (on lines and ) to express that the static
analyzer ignored arithmetic overflowwhen verifying the method (see Section . . for more
details on how predicates NoOverflow_sub and NoOverflow_add can be implemented).
Note that we also allow programmers, in addition to static checkers, to add assumed state-
ments in their code. This application is explained in more detail in Section . . .

In order to record partial verification results, we use partially-justified assume statements
of the form assume 𝑃 provided 𝐴, where 𝑃 is a predicate of the assertion language and
𝐴 is a Boolean expression over assumption identifiers. This construct can be used to mark
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public void Transfer(Account rcvr, int amount) {
requires rcvr != null && rcvr != this;

if (amount <= 0 || 50000 < amount || balance < amount) {
ReviewTransfer(rcvr, amount);

} else {
assumed NoOverflow_sub(balance, amount) as o0;
balance -= amount;
assume rcvr != null provided o0;
assumed NoOverflow_add(rcvr.balance, amount) as o1;
rcvr.balance += amount;
assume rcvr != null provided o0 && o1;
if (balance < 500 && balance < rcvr.balance) {

SuggestLoanFrom(rcvr);
}
assume rcvr != null provided o0 && o1;
assert old(rcvr.balance) < rcvr.balance verified o0 && o1;

}
}

Figure . : Example program that shows the partial verification results of a static analyzer
that ignores arithmetic overflow. We use the keyword requires to denote pre-
conditions and we use the keyword old to denote expressions that should be
evaluated in the pre-state of the method. The assertion is violated if the addi-
tion overflows. The gray boxes represent annotations that document the partial
verification results.

an assertion assert 𝑄 as partially-verified under an expression 𝐵 by inserting a partially-
justified assumption assume 𝑄 provided 𝐵 before the assertion.

In our example from Figure . , both assumption identifiers are used later on (e.g., in the
partially-justified assume statement on line ) to express that some properties have only
been shown to hold under those assumptions.

For convenience and to support this common use case, we use partially-verified assertions
of the form assert 𝑃 verified 𝐴, where 𝑃 is a predicate of the assertion language and
𝐴 is a Boolean expression over assumption identifiers. For instance, in our example from
Figure . , the assertion on line is verified under both explicit assumptions made by the
static analyzer. In general, we mainly use partially-justified assume statements to express
properties that were inferred by a static analyzer and to mark implicit assertions (e.g., about
the absence of null-dereferences or division-by-zero) as partially-verified.

When a static analyzer verifies an assertion, it marks it as verified under all the assumptions
used for its verification. By default, an assertion is unverified; i.e.,𝐴 is the expression false
since no static analyzer has verified the assertion. To mark an assertion as verified a static
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analyzer needs to update the expression 𝐴 to be the disjunction of the old expression and
the condition under which it verified the assertion. The assertion is fully verified if the ex-
pression 𝐴 is true; e.g., this may be the case if at least one static analyzer has verified the
assertion without making any assumptions. Otherwise, the assertion is partially verified.

Note that it is up to each individual static analyzer to determine which assumptions it used
to show that a certain property holds. For instance, a verifier based onweakest preconditions
could collect all assumptions that are on any path from the start of a method to the assertion;
additionally, it could try to minimize the set of assumptions using techniques such as slicing
to determine which assumptions actually influence the truth of the assertion.

. . Semantics

The goal behind annotating programs with partial verification results is to let program anal-
ysis tools benefit from the results of previous runs of static analyzers. This is achieved by
defining a semantics for partially-justified assume statements which expresses that a prop-
erty holds under a Boolean condition over assumption identifiers. A program analysis tool
gets to assume the property provided that the Boolean condition holds.

By expressing partially-verified assertions in terms of partially-justified assume statements
and regular assertions we achieve similar benefits for partially-verified assertions. In partic-
ular, for fully verified assertions a program analysis tool does not have to show anything.
For partially-verified assertions, it is sufficient for a tool to show that the assertion holds even
if the condition under which it has been verified does not hold.

We formalize this intuition by demonstrating how to express the two new language con-
structs in terms of assignments and regular assume statements, which have a well-defined
semantics (for instance, in terms of weakest preconditions [ ]) and are available in most
existing tools. The la er allows any such tools to benefit from partial verification results
immediately and without changes to their inner workings.

For expressing explicit assumptions, we introduce a Boolean assumption variable for each as-
sumption identifier that occurs in an assumed statement; all assumption variables are initial-
ized to true. For the example from Figure . , this can be seen on line of Figure . .

For modular static checking, which checks each method individually, assumption variables
are local variables of the method that contains the assumed statement. Assumptions of
whole-program checking may be encoded via global variables, that are, for instance, ini-
tialized in a main method. Unless stated explicitly, we assume that explicit assumptions are
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public void Transfer(Account rcvr, int amount) {
requires rcvr != null;

bool o0 = true; bool o1 = true;
if (amount <= 0 || 50000 < amount || balance < amount) {

ReviewTransfer(rcvr, amount);
} else {

o0 = o0 && NoOverflow_sub(balance, amount);
balance -= amount;
assume !(o0) || (rcvr != null);
o1 = o1 && NoOverflow_add(rcvr.balance, amount);
rcvr.balance += amount;
assume !(o0 && o1) || (rcvr != null);
if (balance < 500 && balance < rcvr.balance) {

SuggestLoanFrom(rcvr);
}
assume !(o0 && o1) || (rcvr != null);
assume !(o0 && o1) || (balance < old(balance));
assert old(rcvr.balance) < rcvr.balance;

}
}

Figure . : Method Transfer after expressing partial verification results (gray boxes) in
terms of assignments and regular assume statements. Weuse Boolean assumption
variables that are initialized to true and are assigned to once (at the correspond-
ing assumed statement) to track explicit assumptions. We express partially-
justified assume statements using regular assume statements.

local. However, one may, for instance, decide to use an additional qualifier globally after
the Boolean condition in an assumed statement to distinguish global explicit assumptions. A
statement of the form assumed 𝑃 as 𝑎 can now be expressed as the following assignment,
where a is the assumption variable that corresponds to the assumption identifier 𝑎 (see, for
instance, line in Figure . ):

a = a && P;

Intuitively, we use the assumption variable to accumulate each property that is assumed
when executing the corresponding assumed statement. Note that it is necessary to accumu-
late the assumed properties, for instance, in the presence of loops. An assumption variable
will remain true until condition P evaluates to false when executing the assumed statement.
In this case, the execution has reached a state which was ignored by the static analyzer that
introduced the assumed statement. Our semantics ensures that an assumption is evaluated
in the state in which it is made rather than the state in which it is used.

The assumption variables allow us to define the semantics of partially-justified assume state-
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ments. A statement of the form assume 𝑃 provided 𝐴 can be expressed as the following
regular assume statement:

assume !A || P;

The assumed implication expresses that the property 𝑃 has been (soundly) shown to hold
provided that condition 𝐴 holds and, therefore, any subsequent tool gets to rely on this fact.
For instance, on line of Figure . we use this to express that the implicit assertion for
the field dereference on line has been verified under the both explicit assumptions o0
and o1. We can even express that a static analyzer determined a certain program point to be
unreachable under condition 𝐴 by inserting the following statement:
assume false provided A;

By expressing partially-verified assertions using partially-justified assume statements, we
effectively weaken the property that still needs to be verified. We can demonstrate this
more formally by deriving the weakest precondition under which a statement of the form
assert 𝑃 verified 𝐴will not fail and establish the postcondition 𝑅 after the assertion:

𝑤𝑝(assert 𝑃 verified 𝐴, 𝑅) ≡ 𝑤𝑝(assume 𝑃 provided 𝐴; assert 𝑃 , 𝑅)
≡ 𝑤𝑝(assume 𝐴 ⇒ 𝑃; assert 𝑃 , 𝑅)
≡ (𝐴 ⇒ 𝑃) ⇒ (𝑃 ∧ 𝑅)
≡ (𝐴 ⇒ 𝑃) ⇒ ((𝐴 ∨ 𝑃) ∧ 𝑅) ( . )

Here, the last step makes use of the additional assumption 𝐴 ⇒ 𝑃 to weaken the property
𝑃 to 𝐴 ∨ 𝑃 . More intuitively, this shows that a partially-verified assertion will not fail if
condition 𝐴 holds or the asserted property 𝑃 holds anyway. The disjunction weakens the
property that still needs to be verified and therefore, lets tools benefit from the partial results
collected during previous static analysis runs. Note that the final formula ( . ) can be further
simplified to 𝑅 in the special case that 𝐴 is true; i.e., the assertion has been fully verified and
nothing remains to be verified about the assertion itself.

Note that, due to the way in which each static analyzer marks an assertion as verified, the
expression 𝐴will be a disjunction with one disjunct 𝐴𝑖 for each static analyzer that verified
the assertion under condition 𝐴𝑖. Consequently, we do not merely accumulate the results
of independent static analysis runs. Thanks to the above semantics for partially-verified
assertions and the way in which the expression 𝐴 is updated by each static analyzer, the
property to be verified typically becomes weaker with each static analysis run. Therefore,
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many properties can eventually be fully verified, without making any further assumptions.
The remaining ones can be tested or verified interactively.

. . Capturing Common Sources of Deliberate Unsoundness

In this section, we demonstrate how our language constructs from Section . . can be used
to express partial verification results for static analyzers with sources of deliberate unsound-
ness. To this end, we describe how to capture three sources of deliberate unsoundness using
partial verification results. Chapter provides a more comprehensive description of how to
capture the sources of deliberate unsoundness in Clousot.

Unbounded Integers

A common source of unsoundness in static analyzers is caused by ignoring overflow in
bounded integer arithmetic, as in the case of Clousot, ESC/Java and Spec#. By ignoring arith-
metic overflow, a tool is able to reason about mathematical integers. This is, for instance,
more efficient when using SMT solvers in deductive verifiers or when using non-disjunctive
numerical abstract domains in static analyzers based on abstract interpretation. Indepen-
dently, since arithmetic overflows do not immediately lead to exceptions in many languages
(e.g., Java, C#) many tools decide not to report them as errors by default to avoid spurious
errors.

To capture this source of unsoundness using our language constructs, we introduce an ex-
plicit assumption for each operation that may result in an arithmetic overflow. The assumed
condition can be expressed efficiently by stating that the bounded arithmetic operation re-
turns the same result as its mathematical counterpart.

For instance, in our example from Figure . we can express the abstract condition NoOver-
flow_add(rcvr.balance, amount)more concretely as:

(long)(rcvr.balance + amount)
== (long)rcvr.balance + (long)amount

In this case, we compare the result of performing the addition on values of type int to the
result of performing the addition on value of type long, which does not lead to an overflow.
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Original loop:

while (𝐶) {
𝐵

}

Transformed loop:

if (𝐶) {
𝐵

}
assumed !𝐶 as a;
while (𝐶) {

𝐵
}

Figure . : Loop transformation and explicit assumption about loops that are unrolled .
times. The transformation actually unrolls the loop as well. However, without
changing its semantics (i.e., soundly).

Loop Unrolling

To avoid the annotation overhead of loop invariants, some static analyzers unroll loops a
fixed number of times. For instance, ESC/Java unrolls loops . times by default: first, the
condition of the loop is evaluated and in case it holds, the loop body is checked once; then, the
loop condition is evaluated again after assuming its negation. As a result, the code following
the loop is checked under the assumption that the loop iterates at most once.

There are at least two ways to capture this source of unsoundness. Both of them require
some additional transformations of the program. For the first one, we actually unroll the
loop once and subsequently introduce an assumed statement the states that the loop condi-
tion does not hold. The corresponding transformation is shown in Figure . . Any verified
assertions following the assumed statement are verified under this assumption. Note that
the loop is still part of the transformed program so that the original semantics is preserved
for downstream static analyzers, which might not make the same compromise, and test case
generation tools.

To avoid the actual loop unrolling in the annotated program, one can use an alternative en-
coding that makes use of a ghost variable for each loop which is initialized to 0 and is incre-
mented before every execution of the loop body. Thanks to this ghost variable we can intro-
duce an assumed statement after the increment operation at the beginning of the loop body
that states that the ghost variable is less than 2. The corresponding transformation is shown
in Figure . . Both approaches demonstrate a powerful way to increase the expressiveness
of partial verification results by enriching the programwith additional code instrumentation.
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Original loop:

while (𝐶) {
𝐵

}

Transformed loop:

var cnt = 0;
while (𝐶) {

cnt++;
assumed cnt < 2 as a;
𝐵

}

Figure . : Alternative loop transformation and explicit assumption about loops that are
unrolled . times. The alternative transformation does not unroll the loop, but
makes use of a ghost variable cnt to count the number of loop iterations.

Write Effects

Another source of unsoundness that can be found in several static analyzers, such asHAVOC
and ESC/Java, involves assuming write effect specifications at call sites without checking
them in the callees. We can encode this by simply leaving all the required checks unverified,
that is, by not annotating them with partial verification results.

. Collaborative Static Analysis and Testing

This section describes how our technique for expressing partial verification results can be
used to combine static analyzers with test case generation tools. To this end, we propose
a tool chain that makes it possible to focus the testing effort on execution traces that have
not yet been fully verified by taking partial verification results into account. This can lead to
smaller and more effective test suites. In contrast, without our technique, a user would need
to test programs as if no static analysis had been performed unless the analysis is actually
sound. Through a running example, we discuss the motivation behind the approach and the
stages of the tool chain.

. . Running Example

Let us consider the C# method in Figure . which is a minor variation of the example from
Figure . . Unlike in Figure . , we do not require that object rcvr is different from the
current object. Consequently, the assertion on line verifiedAssertionmay be violated in
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public void Transfer(Account rcvr, int amount) {
requires rcvr != null;

if (amount <= 0 || 50000 < amount || balance < amount) {
ReviewTransfer(rcvr, amount);

} else {
balance -= amount;
rcvr.balance += amount;
if (balance < 500 && balance < rcvr.balance) {

SuggestLoanFrom(rcvr);
}
assert old(rcvr.balance) < rcvr.balance;

}
}

Figure . : Example program that illustrates themotivation for our technique. The assertion
is violated if the addition overflows or if the current object is the same as the
object rcvrwhen performing the field updates on lines and .

two cases: ( ) an overflow happens in the addition, thereby making the balance negative or
( ) the current object and the object rcvr reference the same object, in which case the balance
will not be changed (independently of arithmetic overflows).

Checking this program with the static analyzers Clousot will detect none of those errors
because it ignores arithmetic overflow, it ignores that the field update on line may affect
the balance of object rcvr and, similarly, that the field update on line may affect the balance
of the current object. Note that the postcondition of method SuggestLoanFrom ensures that
neither the balance of object rcvr nor the balance of the current object is changed. A user
who is not familiar with the tool’s implicit assumptions does not know how to interpret the
absence of warnings. Given that errors might be missed, the code has to be tested as if the
static analyzer had not run at all.

Running Pex, an automatic test case generation tool for .N , on method Transfer happens
to generate a test case that reveals the error due to aliasing, but misses the one due to arith-
metic overflow. Which error is uncovered depends on the inputs that are generated by the
underlying constraint solver for exploring the failing branch of the assertion. So, similarly
to the static analyzer, errors may be missed. In this case, a user might decide to fix the error
(e.g., by requiring in the precondition that the current object and the object rcvr are non-
aliasing or by weakening the assertion). Only now, a second run of the testing tool would
detect the error due to arithmetic overflow which might be considered more severe.

Instead of running tools on the program independently, we propose a tool chain that uses our
technique for expressing partial verification results to share results between tools such that
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original program

Static Analyzer annotated program

Runtime Check Instrumentation

annotated program

Automatic Test Case Generation Tool

instrumented executable

Stage

Stage

Figure . : The collaborative static analysis and testing tool chain. Tools are depicted by
boxes and edges represent information that is exchanged between them (e.g.,
programs with specifications). During the first stage, zero or more static ana-
lyzers with or without sources of deliberate unsoundness annotate the program
with partial verification results. During the second phase and after instrument-
ing the program with runtime checks, zero or more automatic test case genera-
tion tools pick up the partial verification results to generate tests for execution
traces that have not been fully verified yet.

subsequent tools can focus on unverified or partially-verified properties. This tool chain is
illustrated in Figure . and consists of two stages that complement each other: collaborative
static analysis and testing.

. . Stage : Collaborative Static Analysis

The static analysis (or verification) stage allows the user to run an arbitrary number (possi-
bly zero) of static analyzers. Each analyzer reads the program, which contains the code, the
specification, and annotations that document the partial verification results of prior static
analyzers. More precisely, these annotations can express that a static analyzer found a prop-
erty to hold at a certain program point either soundly or under certain (unsound) explicit
assumptions. In particular, this makes it possible to mark assertions as either fully (that is,
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soundly) verified, partially verified under certain explicit assumptions, or not verified (that
is, not a empted or failed to verify). A subsequent analyzer can then a empt to prove the
assertions that have not yet been fully verified by upstream tools. For this purpose, it may
assume the properties that have already been fully verified. For partially-verified assertions,
it is sufficient to show that the assumptions made by a prior static analyzer hold or the asser-
tions hold regardless of the assumptions, which simplifies the verification task. For instance,
if the first checker verifies that all assertions hold assuming no arithmetic overflow occurs,
then it is sufficient for a second (possibly specialized) static analyzer to confirm this assump-
tion.

Each tool records its partial verification results in the program that serves as input to the
next downstream tool. This representation is relatively compact (usually constant overhead
in terms of the original program size) and universally understood by essentially all off-the-
shelf program analysis tools.

The intermediate versions of the program precisely track which properties have been fully
verified and which still need validation. This allows developers to stop the static analysis
cycle at any time, which is important in practice, where the effort that a developer can devote
to static checking is limited. Any remaining unverified or partially-verified assertions may
then be covered by the subsequent testing stage.

The gray boxes in Figure . illustrate the verification result of running Clousot on the ex-
ample from Figure . . The static analyzer makes implicit assumptions in four places:

• about overflows for the subtraction (captured by an explicit assumption on line ),

• about side-effects due to aliasing for the field update on line (captured by an explicit
assumption on line ),

• about overflows for the addition (captured by an explicit assumption on line ), and

• about side-effects due to aliasing for the field update on line (captured by an explicit
assumption on line ).

Note thatwe document implicit assumptions at the placewhere they occur rather thanwhere
they are used to prove an assertion. This is convenient since some assumptions depend on
the current execution state.

Running the static analyzer verifies several properties for this method:

• that no null-pointer is dereferenced for the field access on line under explicit as-
sumptions o0 and a0, which is expressed using a partially-justified assume statement
on line ,
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public void Transfer(Account rcvr, int amount) {
requires rcvr != null;

if (amount <= 0 || 50000 < amount || balance < amount) {
ReviewTransfer(rcvr, amount);

} else {
assumed NoOverflow_sub(balance, amount) as o0;
assumed NoAliasing(rcvr, this) as a0;
balance -= amount;
assume rcvr != null provided a0 && o0;
assumed NoOverflow_add(rcvr.balance, amount) as o1;
assumed NoAliasing(this, rcvr) as a1;
rcvr.balance += amount;
assume rcvr != null provided a0 && o0 && a1 && o1;
if (balance < 500 && balance < rcvr.balance) {

SuggestLoanFrom(rcvr);
}
assume rcvr != null provided a0 && o0 && a1 && o1;
assert old(rcvr.balance) < rcvr.balance verified a0 && o0 && a1 && o1;

}
}

Figure . : Example from Figure . annotated with partial verification results (in gray
boxes). The annotations document the partial verification results of Clousot, a
static analyzer that ignores arithmetic overflow and assumes that the current ob-
ject and the object rcvr are not aliased when performing the field updates.

• that no null-pointer is dereferenced for the field access on line under explicit as-
sumptions o0, a0, o1, and a1, which is expressed using a partially-justified assume
statement on line , and

• that no null-pointer is dereferenced for the field access on line under explicit as-
sumptions o0, a0, o1, and a1, which is expressed using a partially-justified assume
statement on line , and

• that the assertion on line holds under explicit assumptions o0, a0, o1, and a1, which
is expressed by turning the assertion into a partially-verified assert statement.

Here, even though this would be possible in theory, we do not track precisely if certain
explicit assumptions are indeed needed to show a given property. Instead, we conserva-
tively include all explicit assumptions that have been introduced before to the property in
the control-flow.

Note that Clousot works modularly, that is, it checks each method independently of its
clients. Therefore, all explicit assumptions are local to the method being checked; for in-
stance, method Transfer is analyzed independently of any assumptions in its callers. Con-
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sequently, the method’s verification results are suitable for subsequent modular static ana-
lyzers or test case generation tools that produce unit tests.

Since our example actually contains errors, any subsequent static analyzer will neither be
able to fully verify that all explicit assumptions always hold (this would, however, be the
case for the explicit assumption about overflow on line in Figure . ) nor that the above
properties hold in case the assumptions do not. Nevertheless, the explicit assumptions doc-
ument the partial verification results of the static analyzer, and we use this information to
generate targeted test cases in the subsequent testing stage.

. . Stage : Testing

We apply dynamic symbolic execution [ , ], also called concolic testing [ ], to automat-
ically generate parameterized unit tests from the program code, the specification, and the
partial verification results collected during the static analysis stage.

Dynamic symbolic execution collects constraints describing the test data that will cause the
program to take a particular branch in the execution or violate an assertion . To use this
mechanism, we instrument the program with assertions for those properties that have not
been fully verified. That is, we assert all properties that have not been verified at all, and for
partially-verified properties, we assert that the property holds in case the assumptions made
by the static analyzers do not hold. This way, the properties that remain to be checked as
well as the assumptions made by static checkers occur in the instrumented program, which
causes the symbolic execution to generate the constraints and test data that exercise these
properties.

In our example, the assertion on line has been partially verified under four explicit as-
sumptions. The instrumentation therefore adds the fact that this property has been shown
to hold as the following assumption to the constraints that are used for generating test cases
(where o0, a0, o1, and a1 are the corresponding assumption variables):

(a0 ∧ o0 ∧ a1 ∧ o1) ⇒ (old(rcvr.balance) < rcvr.balance).

Facts like the one above can help the testing tool by acting as lemmas that can be used by
the underlying constraint solver to simplify constraints. In one case, when trying to generate
inputs for the failing branch of the corresponding assertion, the lemmawill tell the constraint
solver that the branch is infeasible unless it can generate inputs that violate the assumptions.

An assertion is viewed as a conditional statement, where one branch throws an exception. A test case gen-
eration tool aiming for branch coverage will therefore a empt to generate test data that violates the assertion.
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As a consequence, the test case generation tool may spend less time trying to generate tests
for failing branches that are infeasible. In another case, where the property would results in
complex constraints when generating inputs for paths that do not take the failing branch, the
constraint solver might find it easier to generate inputs that satisfy the assumptions, which,
thanks to the lemma, will also satisfy the property itself. As a consequence, the test case
generation tool might generatemore tests (including ones that fail for subsequent assertions)
within a given time bound for the constraint solver or generate the samenumber of testsmore
quickly.

For our simple example program, the additional facts do not result in a significant differ-
ence between running Pex on the original program and the annotated one. In particular,
these facts are only used when symbolic path constraints that were collected during a con-
crete execution are solved, but not for guiding the dynamic symbolic execution to focus the
effort on unverified program executions. To take this one step further, we have developed a
technique to guide dynamic symbolic execution based on partial verification results [ , ].
We provide an overview of this technique in Section . . .

In case the code needs to be be fully verified, an alternative second stage of the tool chain
could involve proving the remaining, precisely documented program properties with an
interactive theorem prover. The intention then is to prove as many properties as possible
automatically and to direct the manual effort towards proving the remaining properties.
Yet another alternative is to use the explicit assumptions and partial verification results for
targeted code reviews.

In principle, one could even skip the second stage of the tool chain entirely. However, in
this case, the partial verification results that are encoded in the program would need to be
communicated to the user. This could, for instance, involve displaying error messages for
all assertions that have not been fully verified. Optionally, one could prioritize the error
messages based on how many static analyzers were not able to verify the corresponding
assertion. This would allow users to focus on the most critical errors first.

If a user wants to understand why an assertion has been partially verified, it would even be
possible to share under which condition it has been verified. For this purpose, it might make
sense to show parts (e.g., relevant explicit assumptions) of the annotated program since our
annotations are actually part of the programming language.
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. Other Use Cases for Partial Verification Results

In Section . , we have presented one important use cases for expressing partial verification
results: combining the partial results of several collaborative static analyzers in a way that
allows them to be complemented by test case generation tools. However, there are many
more applications of this technique in a variety of different se ings. We present two such
applications in more detail in later chapters.

First, in Chapter , we show how explicit assumptions can be used to express sources of
deliberate unsoundness in the static analyzer Clousot and how this can provide a practical
way for evaluating unsoundness in static analyzers. Second, in Chapter , we demonstrate a
very different use case that is not immediately related to sources of deliberate unsoundness.
More specifically, we use our technique for expressing partial verification results to cache
verification results that were collected by Dafny, a sound static analyzer, and Boogie, its un-
derlying (sound) verification engine. On one hand, our caching system, which is integrated
in the Dafny IDE, uses fully verified assertions to express properties that are still valid in
the current version of the program. On the other hand, it uses explicit assumptions to cap-
ture assumptions that were made after assuming the postcondition at a call site in an earlier
version of the program. Since the postcondition in the current program may be different,
we can use such explicit assumptions to mark assertions as partially-verified. This makes it
possible to reduce the effort when verifying the current version of the program.

In this section, we outline a few other promising use cases for expressing partial verification
results. While this collection of use cases is far from complete, it should demonstrate that
our technique can be applied in a wide range of se ings and for a wide range of program
analysis tools.

. . Testing Unverified Program Executions

Without built-in support for partial verification results, test case generation tools merely
benefit from partial verification results thanks to the additional facts that can be picked up
during the constraint solving (as explained in Section . . ). In particular, these facts are
merely used when symbolic path constraints that were collected during a concrete program
execution are solved. To gain additional benefits from partial verification results, we would
like to guide the dynamic symbolic execution toward unverified program executions.

For instance, assume that the current concrete execution explored the then-branch of the
outermost conditional in the program from Figure . . Since all assertions on that execu-
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tion have been explored under conditions for which they have been (soundly) verified by
a static analyzer, one can consider the corresponding test case to be redundant; i.e., it does
not explore an unverified execution. However, we only realize after already generating and
executing the corresponding test case. Ideally, we would like to realize as soon as possible
if some execution will not keep exploring assertions under conditions for which they were
already verified statically. This would allow us to abort and prune such executions early on
and guide the subsequent explorations toward unverified executions.

To achieve this, we have developed an efficient static analysis [ , ] based on abstract in-
terpretation [ ] that infers a (sufficient)may-unverified condition at each program point that
guarantees that all executions from there on will be verified. Those conditions are subse-
quently used to instrument the program that we generate tests for using dynamic symbolic
execution. Figure . shows this instrumentation for our example from Figure . . The in-
strumentation consists of additional partially-justified assume statements. As before, these
will be picked up by the dynamic symbolic execution. However, at the same time they will
abort and prune verified executions. For instance, on line the inferred may-unverified con-
dition is !true and the instrumentation tells us that the execution can be aborted unless it
holds. Since the condition is false and will therefore never hold here, this allows us to skip
the exploration of method ReviewTransfer entirely. Similarly, on line the inferred may-
unverified condition is !(a0 && o0 && a1 && o1). The corresponding instrumentation
tells us that the execution can be aborted unless one of the explicit assumptions is violated.
If one such execution is aborted the instrumentation and the corresponding additional con-
straints instruct the dynamic symbolic execution to try generating new inputs that satisfy
the may-unverified condition. In our example, this will prevent the dynamic symbolic exe-
cution from exploring the then-branch of the innermost conditional, which turns out not to
be feasible unless all explicit assumptions hold. At the same time the assertion on line will
only be explored if one of the explicit assumptions is violated, which will subsequently lead
to a failure.

In our example, the additional instrumentationwill help Pex in generating test cases for both
the error due to aliasing and the one due to arithmetic overflow. This has to do with the fact
that Pex explores two cases for the else-branch of the innermost conditional due to the use
of the short-circuiting Boolean operator: the case where !(balance < 500) holds and the
case where balance < 500 && !(balance < rcvr.balance) holds. The constraints for
the la er case will force Pex to detect the error due to aliasing, while for the former case
the constraint solver simply happens to pick inputs that reveal the error due to arithmetic
overflow. However, note that the additional instrumentation makes it impossible for Pex—
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public void Transfer(Account rcvr, int amount) {
requires rcvr != null;

if (amount <= 0 || 50000 < amount || balance < amount) {
assume false provided true;
ReviewTransfer(rcvr, amount);

} else {
assumed NoOverflow_sub(balance, amount) as o0;
assumed NoAliasing(rcvr, this) as a0;
balance -= amount;
assume rcvr != null provided a0 && o0;
assumed NoOverflow_add(rcvr.balance, amount) as o1;
assumed NoAliasing(this, rcvr) as a1;
assume false provided a0 && o0 && a1 && o1;
rcvr.balance += amount;
assume rcvr != null provided a0 && o0 && a1 && o1;
if (balance < 500 && balance < rcvr.balance) {

SuggestLoanFrom(rcvr);
}
assume rcvr != null provided a0 && o0 && a1 && o1;
assert old(rcvr.balance) < rcvr.balance verified a0 && o0 && a1 && o1;

}
}

Figure . : Example from Figure . with instrumentation (in light gray boxes) derived by
computing may-unverified conditions.

which merely tries to achieve full coverage of the method—to cover the former case without
detecting one of the errors.

One can think of this additional static analysis and the corresponding instrumentation either
as an extension of the test case generation tool or as an additional static analyzer that infers
additional verification results based on Clousot’s partial verification results (as in the first
stage of our tool chain from Figure . ). In fact, this instrumentation is not only useful for
test case generation tools, but other static analyzers (e.g., static symbolic execution tools or
deductive verifiers) may also benefit from it to avoid unnecessary work and to guide the
verification effort.

The may-unverified instrumentation is conservative since we do not want to abort or prune
executions that may be unverified. For instance, if there was an additional unverified asser-
tion at the end of method Transfer all executions may be unverified. Therefore, the may-
unverified condition would be true for all previous program points in the control flow and,
consequently, no instrumentation would be added. However, to find bugs more quickly it
may be beneficial to heuristically prefer executions that are definitely unverified.

For this purpose we have developed a second efficient static analysis that infers a must-
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unverified condition for each programpoint. This condition guarantees that ( ) all executions
from that point onward lead to an assertion and ( ) none of those assertions will be explored
under conditions for which it has been verified before.

Those must-unverified conditions are never weaker than the may-unverified conditions.
Therefore, if we were to use the same instrumentation as for the may-unverified conditions,
we might end up pruning some unverified executions (which may include failing ones). To
avoid this, we use them to instrument the program such that the dynamic symbolic exe-
cution will preferably explore executions for which the condition holds. Intuitively, this in-
strumentation adds weak constraints to the usual (strong) path constraints that are solved
when generating new test cases. The constraint solver tries to satisfy all strong constraints
and as many weak constraints as possible. Overall, unlike the may-unverified instrumenta-
tion, the must-unverified instrumentation primarily affects the order in which test cases are
generated. However, since dynamic symbolic execution usually cannot explore all program
paths (e.g., due to input-dependent loops) before reaching an exploration bound (e.g., max-
imum number of runs/paths), the order is an important factor for making the tool effective
in finding bugs quickly.

Both of these techniques can be combined to guide dynamic symbolic execution toward un-
verified executions. We were able to show [ , ] that it can lead to: ( ) smaller test suites
by reducing the number of redundant test cases, ( ) test suites that cover more unverified
executions, ( ) a reduction in testing time, and ( ) a reduction in the number of exploration
bounds that are encountered (e.g., maximum number of concrete test runs, maximum num-
ber of branches per execution path).

. . Refining Partial Verification Results

We have seen two examples of sound static analyses that specifically target partial verifica-
tion results in Section . . . Both of them work on a very coarse abstraction of the program
to make them efficient and light-weight. However, since partial verification results can be
expressed easily using standard programming language constructs, it is possible to apply
widely-used inference techniques—such as data flow analysis, abstract interpretation [ ],
or predicate abstraction [ ]—to infer additional invariants about assumption variables. This
can, for instance, allow us to determine that some assumption variable is always true since
the corresponding explicit assumption is always true or even unreachable. Such additional
invariants can be seen as refining the existing partial verification results. As before, we can
express them as partial verification results, which makes them immediately usable for any
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public void Transfer(Account rcvr, int amount) {
requires rcvr != null;

if (amount <= 0 || 50000 < amount || balance < amount) {
ReviewTransfer(rcvr, amount);

} else {
assumed NoOverflow_sub(balance, amount) as o0;
assume false provided !o0;
assumed NoAliasing(rcvr, this) as a0;
balance -= amount;
assume rcvr != null provided a0 && o0;
assumed NoOverflow_add(rcvr.balance, amount) as o1;
assumed NoAliasing(this, rcvr) as a1;
rcvr.balance += amount;
assume rcvr != null provided a0 && o0 && a1 && o1;
if (balance < 500 && balance < rcvr.balance) {

SuggestLoanFrom(rcvr);
}
assume rcvr != null provided a0 && o0 && a1 && o1;
assert old(rcvr.balance) < rcvr.balance verified a0 && o0 && a1 && o1;

}
}

Figure . : Example from Figure . after running an inference tool. The tool soundly deter-
mined that the explicit assumption about overflow always holds for the subtrac-
tion on line . The corresponding invariant can be expressed using a partially-
justified assume statement on line (in light gray box).

tool. For instance, for the example from Figure . such a tool could determine that the ex-
plicit assumption about overflow always holds for the subtraction on line . The output of
such a tool is shown in Figure . . The corresponding invariant is expressed using a partially-
justified assume statement on line . As usual, such a fact could, for instance, tell Pex not
bother with generating inputs that violate the corresponding explicit assumption.

Since predicate abstraction tools are designed for inferring invariants over a set of arbitrary
predicates, we will describe how one could use the Houdini [ ] predicate abstraction tech-
nique for inferring the invariant from above. As noted before, other inference tools and
techniques could also be used instead.

Tomake use of theHoudini approach the programfirst needs to be annotatedwith candidate
invariants. These will be rejected gradually by running a verifier that will report invariants
that do not hold. The candidate invariants can be chosen freely, but in our example we
decided to check if explicit assumptions always hold after they have been made or never
hold after they have been made. Note that there are also more systematic approaches (for
instance, using abductive inference [ ] or weakest preconditions [ ]) for selecting such
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public void Transfer(Account rcvr, int amount) {
requires rcvr != null;

if (amount <= 0 || 50000 < amount || balance < amount) {
ReviewTransfer(rcvr, amount);

} else {
assumed NoOverflow_sub(balance, amount) as o0;
assert false verified !o0; assert false verified o0;
assumed NoAliasing(rcvr, this) as a0;
assert false verified !a0; assert false verified a0;
balance -= amount;
assume rcvr != null provided true;
assumed NoOverflow_add(rcvr.balance, amount) as o1;
assert false verified !o1; assert false verified o1;
assumed NoAliasing(this, rcvr) as a1;
assert false verified !a1; assert false verified a1;
rcvr.balance += amount;
assume rcvr != null provided true;
if (balance < 500 && balance < rcvr.balance) {

SuggestLoanFrom(rcvr);
}
assume rcvr != null provided true;
assert old(rcvr.balance) < rcvr.balance verified true;

}
}

Figure . : Example from Figure . after inserting candidate invariants (in light gray
boxes). We use partially-verified assertions to express candidate invariants that
state that an assumption variable is either always true or always false after the
corresponding assumed statement.

candidate invariants. After adding the corresponding candidate invariants we end up with
the program shown in Figure . . We express the candidate invariants by inserting separate
assertions that check whether an assumption variable is true or false (e.g., on line ). Note
that we marked all implicit or explicit assertions as fully verified to prevent the verifier from
complaining that they do not hold (e.g., for the failing assertion on line ).

Now, the Houdini algorithm will repeatedly run a (sound) verifier to narrow down the can-
didate invariants we want to keep by rejecting ones that lead to verification errors. Since the
Boogie verification engine ships an implementation of the Houdini algorithm and soundly
verifies Boogie programs, we encoded our C# program as a Boogie program. Note that, un-
like in other verifiers that build on Boogie (e.g., Spec#), we have made use of bit-vectors to
model the arithmetic operations soundly. By running the Houdini algorithm on the corre-
sponding Boogie program, we were able to determine that only one candidate invariant is
an actual invariant: the one about overflows for the subtraction on line from Figure . .
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This is the candidate invariant we would keep as described earlier. Note that the Houdini
algorithm might also not reject either of the two assertions that are inserted per explicit as-
sumption. In this case, both assertions are kept and any down-stream tool can use this to
determine that the corresponding program point is unreachable. Besides keeping the candi-
date invariants that were not rejected in the program, we can also propagate such results di-
rectly to affected partially-justified assume statements and partially-verified assertions. For
instance, in our Transfer method we could replace a0 with true everywhere or we could
even eliminate the corresponding explicit assumption entirely to refine the partial verifica-
tion results.

Note that, this approach can easily be generalized for tools with sources of deliberate un-
soundness by including additional explicit assumptions (e.g., due to ignoring arithmetic
overflow) when expressing the candidate invariants.

. . Inferring Sufficient Preconditions to Justify Explicit Assumptions

In the previous section, we have seen how inference tools can be used for inferring invariants
about assumption variables. In contrast, if explicit assumptions are not guaranteed to hold it
mightmake sense to infer a sufficient precondition underwhich the explicit assumptionswill
hold. For one, such preconditions may actually be in line with the user’s design intentions
and will turn some partially-justified assume statements or partially-verified assertions into
fully-verified ones. Even if the user does not agree with the suggested preconditions (for
instance, because it is too strong), they may turn out to be useful for down-stream tools,
much like our may-unverified conditions from Section . . .

There are several tools that infer such conditions using different techniques. For instance,
Clousot infers both necessary and sufficient preconditions using abstract interpretation [ ]
and the Infer tool [ ] uses a shape analysis based on bi-abduction [ ]. Another technique
for logic programs [ ] makes use of abductive inference [ ]. In loop-free programs or ones
with loops that are annotated with loop invariants, such conditions could also be inferred
by computing weakest preconditions [ ]. While such techniques are designed to infer pre-
conditions that ensure the correctness of the corresponding method, it should be relatively
straightforward to adapt them to this use case.

In fact, one can even use the Houdini approach from the previous section provided that one
can come up with good candidate invariants. For instance, such candidate invariants may
consist of the expression in the corresponding assumed statements if they can be evaluated in
the pre-state. This can be seen in Figure . . We make use of an auxiliary Boolean variable



Chapter . Partial Verification Results

public void Transfer(Account rcvr, int amount) {
requires rcvr != null;

bool o0Pre = NoOverflow_sub(balance, amount); bool a0Pre = NoAliasing(rcvr, this);
bool o1Pre = NoOverflow_add(rcvr.balance, amount); bool a1Pre = NoAliasing(this, rcvr);
if (amount <= 0 || 50000 < amount || balance < amount) {

ReviewTransfer(rcvr, amount);
} else {

assumed NoOverflow_sub(balance, amount) as o0;
assert !o0Pre verified !o0;
assumed NoAliasing(rcvr, this) as a0;
assert !a0Pre verified !a0;
balance -= amount;
assume rcvr != null provided true;
assumed NoOverflow_add(rcvr.balance, amount) as o1;
assert !o1Pre verified !o1;
assumed NoAliasing(this, rcvr) as a1;
assert !a1Pre verified !a1;
rcvr.balance += amount;
assume rcvr != null provided true;
if (balance < 500 && balance < rcvr.balance) { SuggestLoanFrom(rcvr); }
assume rcvr != null provided true;
assert old(rcvr.balance) < rcvr.balance verified true;

}
}

Figure . : Example from Figure . after inserting candidate invariants for sufficient pre-
conditions (in light gray boxes). We use partially-verified assertions to express
candidate invariants that state that an assumption variable is true if the expres-
sion in the corresponding assumed statement holds in the pre-state.

for each assumption variable to evaluate the value of the expression in the corresponding as-
sumed statement in the pre-state (see lines – ). This allows us to insert a candidate invariant
for each explicit assumption that states that the assumption variable is true if the auxiliary
variable is true. We can now use Houdini as described in Section . . for checking those
candidate invariants from method Transfer. As a result we will learn that all candidate in-
variants are valid and, therefore, the programwould be fully verified if wewould strengthen
the precondition accordingly. Note that, much like the approach from Section . . , this ap-
proach can be generalized to work for tools with sources of deliberate unsoundness.

. . Expressing Results of Tools that Infer Preconditions

As discussed in the previous section, several approaches exist for inferring sufficient precon-
ditions to ensure the correctness of a program. Unlike static analyzers that report errors for
assertions that may fail, these tools return a preconditions that guarantees that all assertions
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public void Transfer(Account rcvr, int amount) {
requires rcvr != null;

assumed WP as a0;

if (amount <= 0 || 50000 < amount || balance < amount) {
ReviewTransfer(rcvr, amount);

} else {
balance -= amount;
assume rcvr != null provided a0;
rcvr.balance += amount;
assume rcvr != null provided a0;
if (balance < 500 && balance < rcvr.balance) {

SuggestLoanFrom(rcvr);
}
assume rcvr != null provided a0;
assert old(rcvr.balance) < rcvr.balance verified a0;

}
}

Figure . : Example from Figure . after expressing results of a tool that infers a sufficient
preconditionWP (in gray boxes). We use an explicit assumption a0 on line to
capture the inferred preconditionWP and mark all implicit and explicit asser-
tions as verified under a0.

will not fail. This precondition can, for instance, be suggested to users. Even if the user de-
cides not to add the suggested precondition to the specification of the method (e.g., because
it is too strong), the condition can alternatively be used to express partial verification results
for the method.

To this end, the inferred condition can be captured using an explicit assumption at the begin-
ning the correspondingmethod. Since this condition is sufficient for ensuring the correctness
of the method body, we can now mark all assertions as verified under the corresponding
explicit assumption. For instance, a sound verifier based on weakest preconditions, would
compute a relatively complex (e.g., due to the sound reasoning about integer arithmetic) con-
ditionWP for method Transfer from Figure . . This condition can be suggested to the user
or it can be used to express partial verification results as shown in Figure . . As discussed
before, these can be used by down-stream program analysis tools (e.g., a test case genera-
tion tool) to check if any assertions in the method may fail under the existing precondition.
This would work particularly well when used in combination with the may-unverified in-
strumentation from Section . . since the condition would help to prune the search space
already at the beginning of method.

A similar approach could be used for tools that infer necessary preconditions (for instance, as
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public void Transfer(Account rcvr, int amount) {
requires rcvr != null;

assumed NP as a0;

if (amount <= 0 || 50000 < amount || balance < amount) {
ReviewTransfer(rcvr, amount);

} else {
balance -= amount;
assume rcvr == null provided !a0;
rcvr.balance += amount;
assume rcvr == null provided !a0;
if (balance < 500 && balance < rcvr.balance) {

SuggestLoanFrom(rcvr);
}
assume rcvr == null provided !a0;
assume !(old(rcvr.balance) < rcvr.balance) provided !a0;
assert old(rcvr.balance) < rcvr.balance;

}
}

Figure . : Example from Figure . after expressing results of a tool that infers a necessary
precondition NP (in gray boxes). We use an explicit assumption a0 on line to
capture the inferred precondition NP. Additionally, we introduce a partially-
justified assume statements for every assertion that states that the assertion will
fail if the assumption variable a0 is false.

in Clousot [ ]), which ensure that the programwill definitely fail if the condition is violated.
Again, we could capture this condition using an explicit assumption a0 at the beginning of
the method. However, instead of marking assertions as verified under that explicit assump-
tion, we would introduce a statement assume !P provided !a0 for every assertion with
condition 𝑃 . Figure . shows the result of this transformation for a tool that infers the
necessary precondition NP for method Transfer.

Note that, these two approaches can easily be generalized for tools with sources of deliberate
unsoundness by including additional explicit assumptions (e.g., due to ignoring arithmetic
overflow)when producing the annotations and by not adding annotations for assertions that
are ignored or not checked soundly by the tool.

Both approaches are not strictly limited to inferred preconditions, but could also handle in-
ferred assumptions within a program that ensure its correctness. For instance, such assump-
tions are inferred in a technique for synthesizing circular compositional programproofs [ ].
The general idea of this technique is to decompose the verification task into smaller frag-
ments that may turn out to be more easily verified by some tools than others. Each fragment
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of the program may be analyzed by several tools. If one tool is able to verify the fragment
the algorithm proceeds to the next fragment (i.e., all assertions in the fragment are fully ver-
ified). If a fragment cannot be verified by any tool abductive inference is used to infer suffi-
cient assumptions under which the fragment is correct (i.e., assertions are partially-verified
under those assumptions). While the existing algorithm would now eagerly try to prove
those assumptions recursively, one could imagine to alternatively use partial verification re-
sults for capturing the fact that the assertions within a fragment are verified under those
assumptions—much like in the case of preconditions. This alternative might lend itself for
exploring a more lazy variant of the existing algorithm.

. . Expressing Verification Results based on Counterexamples

Many static analyzers—such as Boogie, Dafny, and Spec#—produce not only errors or warn-
ings, but also counterexamples. These counterexamples can provide more details about
when an error may occur; for instance, they can indicate which path leads to the error or
which conditions need to hold to trigger a failure. So far, this information was not taken into
account when producing the partial verification results, even though it can be very useful
to down-stream tools. For instance, a test case generation tool may only need to target a
particular path to check if a reported error is spurious.

To illustrate how counterexamples can be used for producing more precise verification re-
sults, we will focus on paths that lead to a failure. For simplicity, we assume that a sound
tool was run and that it reported all paths that lead to the reported errors. This would,
for instance, be the case for the Dafny verifier or for the sound Boogie encoding of method
Transfer that we used in previous sections.

The general idea is the following: instead of not marking an assertion for which the static
analyzer reported an error as verified, we canmark it as verified for all paths except the ones
that were reported. This can be achieved by “paving the path with explicit assumptions”
for each failing assertion: on the distinct path with program locations from 0 to 𝑛, where
each location’s predecessor in the control flow has more than one successor, we insert a
statement assumed false as a𝑘 for each program location 𝑘 (i.e., on the failing path all
those assumption variables will be false when reaching the failing assertion) and mark the
failing assertion as verified under a disjunction ⋁𝑛

𝑖=0 a𝑖. That is, the assertion is verified if
any of the assumption variables a𝑖 is true; if so, the program execution did not explore the
failing path, where all those assumption variables a𝑖 are false. If there is more than one
failing path to such an assertion, we instead mark it as verified under a conjunction of all
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public void Transfer(Account rcvr, int amount) {
requires rcvr != null;

if (amount <= 0 || 50000 < amount || balance < amount) {
ReviewTransfer(rcvr, amount);

} else {
assumed false as a0;
balance -= amount;
assume rcvr != null provided true;
rcvr.balance += amount;
assume rcvr != null provided true;
if (balance < 500 && balance < rcvr.balance) {

SuggestLoanFrom(rcvr);
} else {

assumed false as a1;
}
assume rcvr != null provided true;
assert old(rcvr.balance) < rcvr.balance verified a0 || a1;

}
}

Figure . : Example from Figure . after annotating it with partial verification results
based on a counterexample from a sound static analyzer. We introduce explicit
assumptions a0 and a1 along the failing path and mark the failing assertion on
line as verified under the disjunction of those assumption variables (i.e., a
non-failing path was taken).

those individual disjunctions.

Figure . demonstrates this technique on method Transfer. When we run the Boogie
verifier on the Boogie encoding for that method, we end up with one error for the assertion
on line and the path takes the else-branches of both conditionals. We therefore insert
the two explicit assumptions on lines and and mark the failing assertion as verified
under a0 || a1. If we were to subsequently use our may-unverified instrumentation from
Section . . before running a test case generation tool, we could effectively prune all other
paths to check if the reported error is spurious. Tools based on counterexample-guided
abstraction refinement (CEGAR) [ ]—such as SLAM [ ]—use a similar approach by trying
to explore the failing path to detect spurious counterexamples.

Note that this approach can be generalized for tools with sources of deliberate unsound-
ness by including additional explicit assumptions (e.g., due to ignoring arithmetic overflow)
when marking the failing assertion as verified.
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. . Expressing Intermediate Results of Static Analysis Runs

Many static techniques—such as data flow analysis, abstract interpretation [ ], predicate
abstraction [ ], or counterexample-guided abstraction refinement (CEGAR) [ ]—are based
on a fixed-point computation to converge on its results. However, most often those results
are only valid after reaching this fixed-point. Consequently, they are not suitable for being
used soundly by other tools before. Since many of these static analysis techniques, such as
the polyhedra abstract domain [ ], are computationally expensive it may take some time
until those results are available and until other tools can use them. Timeouts are a pragmatic
way for keeping such analysis tool chains reactive despite this. However, when timeouts
happen all intermediate results are simply lost. To avoid this, we show how our technique
for expressing partial verification results can be used to soundly share intermediate results
during runs of a static analyzer.

As hinted at already, timeouts are not the only situation where this may be useful. At any
intermediate point during an analysis down-stream tools may already benefit from results
computed so far. A particularly promising situation where this may prove useful is points
where the analysis gives up some precision: a necessity for achieving convergence in most
practical static analyses. In data flow analysis and abstract interpretation this situation usu-
ally occurs for joins in the control flow and, in the case of abstract interpretation, when a
widening operation is performed.

In the case of joins, a static analysis may have, for instance, shown that some down-stream
assertion holds after executing one branch of a conditional, but may not be able to do so any-
more after joining the abstract states of both branches. For instance, consider method Sign
from Figure . that returns the sign of its input. A static analysis based on the interval
abstract domain [ ], which tracks the bounds of integer variables, would use a join opera-
tion for determining the state after the conditional (at program location ). In this case, the
result ([−1, 1], where −1 is the lower and 1 the upper bound) strictly over-approximates the
concrete set of possible values for variable r ({−1, 1}), which does not include the value 0.

This loss of precision happens because of the join operation and it will prevent us from prov-
ing the assertion on line , even though it holds. However, at an intermediate state (middle
column in the table from Figure . ) right before applying the join operation the abstract
value of variable r on line is still [−1, −1]. It was propagated there after the then-branch
had been analyzed and could be used to show that the assertion holds assuming that the
then-branch is executed. However, since it under-approximates the concrete set of possible
values, we cannot simply share this knowledge before reaching the fixed-point. Note that
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int Sign(int n)
{

int r = 0;
if (n < 0) {

r = -1;
} else {

r = 1;
}
assert r != 0;
return r;

}

int r = 0;

assert r != 0;

return r;

assume n < 0; assume !(n < 0);

r = -1; r = 1;

L . I r
Intermediate Final

⊥ ⊥
[0, 0] [0, 0]
[0, 0] [0, 0]

[−1, −1] [−1, −1]
[0, 0] [0, 0]
[1, 1] [1, 1]

[−1, −1] [−1, 1]
[−1, −1] [−1, 1]
[−1, −1] [−1, 1]

Figure . : Example that demonstrates loss of precision after performing a join operation
on program location . In the middle, we see the corresponding control flow
graph (program locations are depicted as nodes and edges represent control
flow with optional program instructions) and to the right we can see the corre-
sponding abstract interval state for variable r at an intermediate state and the
final one.

a fixed-point computation is also used in programs without loops, although a statement is
analyzed at most once in this case.

To express this intermediate knowledge using partial verification results we consult the in-
ternal work queue that is used by the fixed-point computation of the analysis to keep track
of program locations that still need to be (re-)analyzed. Note that the fixed-point compu-
tation terminates once this queue is empty. For these reasons, the intermediate results for
a program location in this work queue are not necessarily sound. However, the intermedi-
ate results for a program location that is not in the work queue are sound provided that the
intermediate results of all program locations in the work queue are sound. We can exploit
this by capturing the current intermediate state for all program points in the work queue
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public int Sign(int n)
{

int r = 0;
assume 0 <= r && r <= 0 provided a0;
if (n < 0) {

assume 0 <= r && r <= 0 provided a0;
r = -1;
assume -1 <= r && r <= -1 provided a0;

} else {
assume 0 <= r && r <= 0 provided a0;
r = 1;
assume 1 <= r && r <= 1 provided a0;

}
assumed -1 <= r && r <= -1 as a0;
assume -1 <= r && r <= -1 provided a0;
assert r != 0;
assume -1 <= r && r <= -1 provided a0;
return r;

}

Figure . : Annotated programafter expressing the intermediate results before performing
the join operation for program location from Figure . . We introduce an ex-
plicit assumption at that program location (on line ) and introduce partially-
justified assume statements for other program locations to express intermediate
results that are sound under that explicit assumption.

logically as an explicit assumption. Note that this step requires a function that maps an ab-
stract state to a predicate of the assertion language. For instance, in abstract interpretation
the concretization function of an abstract domain could be used for this purpose. This will
allow us to introduce partially-justified assume statements for other program points to log-
ically capture the intermediate results and the condition under which they are sound (i.e.,
the conjunction of all assumption variables that were introduced for program locations in
the work queue).

In our example from Figure . the work queue before performing the join operation only
contains program location . We therefore add the following statement at that program lo-
cation and introduce partially-justified assume statements for all other program locations
(shown in Figure . ):

assumed -1 <= r && r <= -1 as a0

The same technique can also be used before performing a widening operation. This can be
seen in the example from Figure . , where method Count iterates over an array a to count
the number of occurrences of value e. At the intermediate state shown, program location is
the only location in the work queue. Note that we do not prescribe a specific order in which
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int Count(int e, int[] a)
{

requires a != null;

int r = 0; int i = 0;
while (i < a.Length) {

if (a[i] == e) {
r++;

}
i++;

}
assert 0 <= r;
return r;

}

L . I r
Intermediate Final

⊥ ⊥
⊥ ⊥

[0, 0] ⊤
[0, 0] ⊤
[0, 0] ⊤
[1, 1] ⊤
[0, 1] ⊤
[0, 1] ⊤
[0, 0] ⊤
[0, 0] ⊤
[0, 0] ⊤

assume a != null;

int r = 0; int i = 0;

assert 0 <= r;

return r;

assume !(i < a.Length); assume i < a.Length;

assume !(a[i] == e);

assume a[i] == e;

r++;

i++;

Figure . : Example that demonstrates loss of precision after performing a widening op-
eration on program location . To the right, we see the corresponding control
flow graph (program locations are depicted as nodes and edges capture con-
trol flow and code) and below the source code we can see the corresponding
abstract interval state for variable r at an intermediate state and the final one.

program locations are retrieved from thework queue. For instance, in our example, program
locations after the loop happened to be analyzed before reaching a fixed-point for program
locations within the loop. To continue from the intermediate state, the analyzer would now
join the abstract states for the incoming edges of program location , which would result
in the new abstract state [0, 1]. To speed up convergence, it might now decide to perform
widening, which would instead result in the new abstract state⊤ if arithmetic overflowwas
taken into account. After this step, we would not be able to prove the assertion on line in
the final state, even though it holds. Note that the assertion always holds since actually no
arithmetic overflow can happen.

To preserve intermediate results despite this loss of precision due to widening, we would
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int Count(int e, int[] a)
{

requires a != null;

int r = 0; int i = 0;
assume 0 <= r && r <= 0 provided a0;

LH:
assumed 0 <= r && r <= 0 as a0;
if (i < a.Length) {

assume 0 <= r && r <= 0 provided a0;
if (a[i] == e) {

assume 0 <= r && r <= 0 provided a0;
r++;
assume 1 <= r && r <= 1 provided a0;

}
assume 0 <= r && r <= 1 provided a0;
i++;
goto LH;

}
assume 0 <= r && r <= 0 provided a0;
assert 0 <= r;
assume 0 <= r && r <= 0 provided a0;
return r;

}

Figure . : Annotated program after expressing the intermediate results before perform-
ing the widening operation for program location from Figure . . We intro-
duce an explicit assumption at that program location (on line ) and introduce
partially-justified assume statements for other program locations to express in-
termediate results that are sound under that explicit assumption.

insert an explicit assumption 0 <= r && r <= 0 (based on the old abstract state) for program
location and insert partially-justified assume statements for other program locations. The
annotated program can be seen in Figure . . Note that, to reflect the control flow graph
more closely, we rewrote the loop by introducing a label LH for the loop header on line and
inserting a goto statement on line to transfer control back to the loop header after the loop
body. Alternatively, one could introduce two separate assumed statements immediately
after the loop and at the beginning of the loop body.

Note that this approach can be generalized for tools with sources of deliberate unsound-
ness by including additional explicit assumptions (e.g., due to ignoring arithmetic overflow)
when inserting partially-justified assume statements to express properties thatwere inferred.
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. . Dealing with User-provided assume Statements more Sensibly

Most programming languages that are designed with verification in mind—such as .N
Code Contracts [ ], Dafny [ , ], or Spec# [ ]—support user-provided assume statements.
Often these are used to suppress errors that a static analyzer reports and that are (possible
wrongly) categorized as spurious errors by the user. For instance, a static analyzermight not
be able to show that some condition holds after a loop, which is necessary for proving the
correctness of subsequent assertions. While these statements are not checked by the static
analyzer, they are often checked at runtime just like assertions. We believe that this semantic
ambiguity is somewhat dissatisfactory (let alone possibly confusing to users) and we show
how user-provided explicit assumptions let us deal with this use case more sensibly.

Instead of adding an assume statement to the code, a user would add an assumed statement
(possibly with a special annotation or a more appropriate keyword to distinguish them from
ones that are inserted by tools). A static analyzer is now free to make use (e.g., by assum-
ing the condition) of any such user-provided assumed statements as long as they are taken
into account when inserting partially-justified assume statements and partially-verified as-
sertions.

Now, there is no inherent need for checking those assumed properties anymore where they
are made, since any partially-verified assertion can still fail if the assumed property indeed
does not hold. Such errors can still be caught by other program analysis tools or at runtime.

If the user prefers to check an assumed property where it is made, an assertion can be added
instead. This resolves the ambiguity by separating the two concerns of (possibly unsoundly)
assuming the property and checking the property at runtime. Consequently, this setup
would allow us not to check partially-justified assume statements at runtime since these
should only be inserted if the property has independently and soundly been shown to hold
(e.g., by a sound static analyzer or one that disclosed any deliberate unsoundness as partial
verification results).

This use of explicit assumptions would also blend nicely with other use cases presented in
earlier sections. For instance, an inference tool might be able to show that a user-provided
explicit assumption always holds (i.e., would be unnecessary if the inference tool was run
before any tools that cannot infer the property themselves), never holds (as in Section . . )
or could be added as a precondition (as in Section . . ).
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. Related Work

Many automatic static checkers analyzers target mainstream programming languages are
deliberately not fully sound to improve performance and reduce the number of false posi-
tives and the annotation overhead. We already mentioned some of the sources of deliberate
unsoundness made by HAVOC, Spec#, ESC/Java, and Clousot. In addition to those, KeY [ ]
does not soundly support multi-object invariants, Krakatoa [ ] does not handle class in-
variants and class initialization soundly, and Frama-C [ ] uses plug-ins for various analyses
with possibly conflicting assumptions. Our technique would allow these tools to collaborate
and be effectively complemented by automatic test case generation.

. . Integration of Static Analyzers

The work most closely related to ours is conditional model checking (CMC) [ , ], which
is an independently developed line of work and combines complementary model checkers
to improve performance and state-space coverage. Their approach, like ours, makes the
results of static checking precise by tracking which properties have been verified, and under
which assumptions. Moreover, they also promote the collaboration of complementary static
analyzers and direct the static checking to the properties that have not been soundly verified.
A conditional model checker takes as input the program and specification to be verified as
well as a condition that describes the states that have already been checked, and it produces
another such condition to encode the results of the verification. The focus of CMC is on
encoding the typical limitations ofmodel checkers, such as space-out and time-out, but it can
also use the condition to express that certain scenarios (e.g., arithmetic overflow) have not
been explored. This can be seen as a special case of the use case described in Section . . .
Beyer et al. performed a detailed experimental evaluation that demonstrates the benefits
of making assumptions and partial verification results explicit, which is in line with our
findings.

Despite these similarities, there are significant technical differences between CMC and our
approach. First, if their input condition holds the analyzed program is correct and, thus, a
subsequent analyzer can prune parts of the search space by essentially assuming its nega-
tion. This is not generally the case after assumed statements since some assertions may not
be verified by any static analyzer. In that sense, their input condition is conceptually closer
to the inferred may-unverified conditions from Section . . . Second, our representation
of partial verification results as program annotations is relatively compact (usually constant
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overhead in terms of the original program size) and universally understood by essentially all
off-the-shelf program analysis tools (as opposed to other conditionalmodel checkers). Third,
it is well-suited for annotating programswith inductive properties (e.g., loop invariants) that
have been discovered by a static analyzer with or without sources of unsoundness. Fourth,
as is common in model checking, CMC is presented as a whole-program analysis, and the
resulting condition may contain assumptions about the whole program. For instance, the
verification of a method may depend on assumptions made in its callers. In contrast, we
have demonstrated how to integrate modular static analyzers, such as Clousot, and deduc-
tive verifiers, such as Dafny and Spec#. Fifth, although Beyer et al. mention test case gener-
ation as a possible application of CMC, they do not explain how to generate test cases from
the conditions. Since these conditions may include non-local assumptions, they might be
used to generate system tests, whereas the generation of unit tests seems challenging. How-
ever, test case generation tools based on constraint solving (such as symbolic execution and
concolic testing) do not scale well to the large execution paths that occur in system tests. By
contrast, we have demonstrated how to use concolic testing to generate unit tests from our
local assumptions and verification results.

A common form of tool integration is to support static analyzers with inference tools, such as
Houdini [ ] for ESC/Java orDaikon [ ] for the Java PathFinder [ ] tool. Such combinations
either assume that the inference is sound and thus, are not suitable for tools with sources of
deliberate unsoundness, or they verify every property that has been inferred, which is overly
conservative and increases the verification effort. Our technique enables amore effective tool
integration by making all sources of deliberate unsoundness explicit.

Work on synthesizing circular compositional program proofs [ ] is an interesting approach
for combining sound tools with different strengthens and weaknesses by decomposing pro-
grams into smaller fragments that may turn out to be more easily verified by some tools
than others. We believe that our technique for expressing partial verification results could
be used to extend this approach to also deal with tools with sources of deliberate unsound-
ness. Additionally, as hinted at earlier, explicit assumptions might provide an alternative
way for capturing assumptions that are inferred using abductive inference.

. . Integration of Static Analyzers and Testing

Various approaches combine verification and testing mainly to determine whether a static
verification error is spurious. Check ’n’ Crash [ ] is an automated defect detection tool that
integrates the ESC/Java static checker with the JCrasher [ ] testing tool in order to decide
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whether errors emi ed by the static checker are spurious. Check ’n’ Crash was later inte-
grated with Daikon in the DSD-Crasher tool [ ]. DyTa [ ] integrates the static analyzer
Clousot with Pex to reduce the number of spurious errors compared to static verification
alone and performmore efficiently compared to dynamic test generation alone. To do so, dy-
namic symbolic execution is guided toward the errors that were reported by Clousot. How-
ever, unlike in our approach, sources of deliberate unsoundness in Clousot are not taken
into account. As a result, some defects may not be uncovered due to the way in which the
reported errors are used for pruning execution paths. Confirming whether a failing verifi-
cation a empt refers to a real error is also possible in our technique: The instrumentation
phase of the architecture introduces assertions for each property that has not been statically
verified (which includes the case of a failing verification a empt). The testing phase then
uses these assertions to direct test case generation towards the unproved properties. Even-
tually, the testing tools might generate either a series of successful test cases that will boost
the user’s confidence about the correctness of their programs or concrete counterexamples
that uncover an error.

YOGI [ ], a tool for checking properties of C programs, follows a slightly different approach
by using static analysis and dynamic symbolic execution alternately in a way that resembles
counterexample-guided abstraction refinement (CEGAR) [ ]. Like the previous approaches
and the one presented here, YOGI uses testing to prove the existence of bugs. However, it
also uses a sound static analysis to prove the absence of bugs. SANTE [ ] presents another
approach to reduce the test effort by performing a sound value analysis and then slicing
the program to eliminate paths that do not lead to assertions that resulted in errors dur-
ing the static analysis. In contrast, our approach is not limited to verification results that
were obtained by running a sound static analysis. A recent approach [ ] proposes to run
a conditional model checker on a program before using a testing tool to test the parts of the
state-space have not been explored by the model checker (e.g., due to timeouts). More pre-
cisely, they use the output condition, which is produced by the model checker and captures
the safe states, to produce a residual program that can be fed to an off-the-shelf testing tool.

EVE [ ], the Eiffel verification environment, uses correctness scores to accumulate the re-
sults of static and dynamic program analysis tools (e.g., AutoProof [ ] and AutoTest [ ])
that are run independently. The correctness scores for a static analyzer are decreased if a
program contains constructs (e.g., integer arithmetic) that are not handled soundly. Unlike
our technique for expressing partial verification results, such correctness scores are coarse-
grained and, therefore, less suitable for reducing the verification or testing effort of other
tools.
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. Summary

We have presented a technique for expressing partial verification results for a wide range
of different static analyzers, including ones with sources of deliberate unsoundness. This
technique offers a flexible way for annotating programs with results from different tools
via two new language constructs. Both constructs can be expressed easily using standard
programming language constructs and, therefore, can be supported by a wide range of pro-
gram analysis tools. Our annotations allow tools to benefit from results that were collected
by other tools by directing their effort to verifying properties that have not been verified yet
or that have only been verified partially.

As one such use case, we have presented a technique for collaborative static analysis and
testing that integrates results from different static analyzers and eventually uses test case
generation tools to test properties that have not been fully verified yet. In our approach, the
verification results give definite answers about program correctness allowing for the integra-
tion of multiple, complementary static analyzers and the generation of more effective unit
test suites. This allowed us to identify situations inwhich this combination findsmore errors
and proves more properties than static checking alone, testing alone, and combined static
checking and testing without our technique. We have also presented several other use cases
for partial verification results—including one that guides test case generation tools based
on dynamic symbolic execution to cover unverified program executions— that demonstrate
their flexibility for capturing verification results from awide range of program analysis tools.
Other use cases are presented in more detail in Chapters and .



C ₃

An Experimental Evaluation
of Deliberate Unsoundness

in a Static Analyzer

As we have seen in Chapter , many practical static analyzers are not completely sound
by design. Their designers often trade soundness in order to increase automation, improve
performance, reduce the number of false positives or the annotation overhead, and achieve a
modular analysis. By giving up soundness, such static analyzers becomeprecise and efficient
in detecting software bugs, but at the cost of making implicit, unsound assumptions about
certain program properties. For example, ESC/Java uses bounded loop unrolling to reduce
the overhead of writing loop invariants, and Spec# ignores exceptional control flow to speed
up verification.

Despite how common such design decisions are, their practical impact on the effectiveness
of static analyzers is not well understood. There are various approaches in the literature that
study the efficiency and precision of static analyzers bymeasuring, for instance, their perfor-
mance and the number of false positives [ ]. In this chapter, we focus on a different perspec-
tive: we report on the first systematic effort to document and evaluate the sources of delib-
erate unsoundness in a static analyzer. We present a code instrumentation that reflects the
sources of unsoundness in the static analyzer Clousot [ ], an abstract interpretation tool for
.N and Code Contracts [ ]. This instrumentation adapts the technique fromChapter for
making the unsound assumptions of a static analyzer explicit where they occur by automat-
ically inserting annotations into the analyzed code, in the form of assumed statements. Most
of these assumptions aremotivated by Clousot’s design goal to analyze programsmodularly
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without imposing an excessive annotation overhead. To evaluate the impact of Clousot’s
unsound assumptions, we instrumented code from six open-source projects, measured how
often the unsound assumptions were violated during executions of the projects’ test suites,
and determined whether Clousot missed bugs due to unsound assumptions.

The contributions of the work described in this chapter are the following:

• We report on the first systematic effort to document all sources of unsoundness in an
industrial-strength static analyzer. We focus on Clousot, a widely-used, commercial
static analyzer.

• We present a code instrumentation that reflects the unsoundness in Clousot. Most
sources of unsoundness in Clousot are precisely captured by our encoding.

• We perform an experimental evaluation that, for the first time, sheds light on howoften
the unsound assumptions of a static analyzer are violated in practice andwhether they
cause the analyzer to miss bugs.

In our experiments we applied our technique to code from six open-source projects. We
found that % of the instrumented methods were analyzed soundly. In the remaining
methods, Clousot made unsound assumptions, which were violated in – % of the meth-
ods during concrete executions. Three sources of unsoundness were never violated in our
evaluation. Manual inspection of those methods with violations showed that no errors were
missed due to an unsound assumption, which suggests that Clousot’s unsoundness does
not compromise its effectiveness. We expect these results to guide users of static analyzers
in using them fruitfully, for instance, in deciding how to complement static analysis with
testing, and to assist designers of static analyzers in finding good trade-offs. As described
in Chapter , our results can also facilitate collaboration of static analyzers; new analyzers
can now focus on advanced features and rely on existing tools for those properties that are
already handled in a sound way.

This chapter is based on a paper that was presented at the International Conference on Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI) in [ ].

Outline

Section . explains all sources of unsoundness in Clousot and how we instrument most of
them. Section . gives an overview of our implementation. In Section . , we present and
discuss our experimental results. We review related work in Section . and summarize our
results in Section . .
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. Unsoundness in Clousot

In this section, we present a complete list of Clousot’s sources of deliberate unsoundness
and demonstrate howmost of these can be expressed as partial verification results. We have
elicited Clousot’s unsound assumptions during the last two years by studying publications,
extensively testing the tool, and having numerous discussionswith its designers. Note that a
formal proof that Clousot is soundmodulo the issues we document here is beyond the scope
of this work. In general, for such a proof, one would need to show that the static analyzer is
sound for program executions where all checks hold that are deliberately ignored andwhere
all deliberate, unsound assumptions hold.

We make the unsoundness of a static analyzer explicit by automatically annotating the ana-
lyzed code with explicit assumptions that are expressed using assumed statements (see Chap-
ter ). Note that in the context of this chapter we do not make use of the assumptions iden-
tifiers that are usually associated with assumed statements. For simplicity, we will therefore
use statements of the form assumed 𝑃 , where 𝑃 is a Boolean expression, and denotes that a
static analyzer unsoundly assumed property 𝑃 at this point in the code; that is, the analyzer
assumed 𝑃 without checking that it actually holds.

Each unsound assumption in Clousot applies to a specific syntactic category such as a kind
of statement or expression (for instance, because Clousot’s abstract transformer does not
soundly reflect the semantics of that syntactic category). We say that an explicit assumption
precisely captures the unsound assumption for a syntactic category if for all elements 𝑒 of
that category and all executions 𝜏 of 𝑒, Clousot’s analysis is sound iff the execution 𝜏 does
not violate 𝑒’s explicit assumption. Here, soundmeans that the concrete states of 𝜏 lie within
the concretization of the corresponding abstract states. We say that an explicit assumption
over-approximates the unsound assumption if there is an element 𝑒 and an execution 𝜏 of
𝑒 such that Clousot’s analysis is sound, but the execution 𝜏 violates 𝑒’s explicit assumption.
Conversely, an explicit assumption under-approximates the unsound assumption if there is an
element 𝑒 and an execution 𝜏 of 𝑒 such that Clousot’s analysis is not sound, but the execution
𝜏 does not violate 𝑒’s explicit assumption.

In the following subsections, we present all sources of unsoundness in Clousot divided into
four categories: those related to ( ) the heap, ( ) properties local to a method, ( ) static class
members, and ( ) ones that we do not instrument.
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class C
{

bool b;

invariant !b;

void M()
{

assumed invariant(this, typeof(C));
b = true;
N();
assert !b;

}

void N()
{

assumed invariant(this, typeof(C));
assert !b;

}
}

Figure . : Example of explicit assumptions about “invariants at method entries” (IE). We
use the keywords invariant and assert to denote Code Contracts’ object
invariants and assertions. We introduce assumed statements (shown in the gray
boxes) at the beginning of methods for which Clousot assumes the invariant of
the current object without checking it at call sites .

. . Heap Properties

Clousot treats the following aspects of the heap unsoundly: object invariants, aliasing, write
effects, and method purity.

Object invariants

Code Contracts provide object (or class) invariants [ , ] to express which objects are con-
sidered valid. Clousot checks the invariant of the receiver at the end of a method or con-
structor, and assumes it in the pre-state of a method execution and after a call. However,
the checks are insufficient to justify these assumptions [ ]. That is, Clousot makes the fol-
lowing unsound assumptions to facilitate modular checking: Clousot assumes the invariant of
the receiver object in the pre-state of instance methods, without checking it at call sites; moreover
Clousot assumes the invariant of the receiver after a call to an inherited method on this, without
fully checking it.

The C# code in Figure . illustrates the first unsoundness. Method M violates the invariant
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of its receiver before calling N. (We use the keywords invariant and assert to denote Code
Contracts’ object invariants and assertions.) The gray boxes in the code are discussed later.
Clousot assumes the invariant of the receiver in the pre-state of method N, which is unsound
since it does not check this invariant at call sites of N, in particular, before the call to N in M.
Therefore, Clousot emits no warning for the assertion in N, although it will not hold when N
is called from M. The fact that there is no warning for the assertion in M is a consequence of
the same unsoundness. Clousot checks the receiver’s invariant in the post-state of method
N; this check succeeds because of the same unsound assumption in N’s pre-state. The check
in the post-state justifies assuming the invariant after the call.

We capture this unsoundness by introducing an assumed statement at the beginning of each
instance method in classes that declare or inherit object invariants. As shown in the gray
boxes in the code, these explicit assumptions use a predicate invariant(𝑜, 𝑡), which holds
iff object 𝑜 satisfies the object invariants defined in class 𝑡 in conjunction with all invariants
inherited from 𝑡’s super-classes. Here, type 𝑡 is the type of the class in which the method is
defined; the corresponding type object is retrieved with the typeof expression in C#. We
label this kind of explicit assumption as “invariants at method entries” (IE). We will refer to
such labels in our experimental evaluation.

This explicit assumption captures the first unsoundness precisely because any method ex-
ecution in which the explicit assumption is violated (that is, where the receiver’s invariant
does not hold in the pre-state), will be analyzed with an unsound abstraction of the ini-
tial state (unless Clousot’s abstract domains do not reflect the invariant anyway, which we
ignore here). This does not necessarily mean that Clousot misses errors because the un-
soundness might be irrelevant for the checks performed on the method body. Conversely,
if the abstraction of the initial state is unsound because the receiver’s invariant is violated,
the explicit assumption will be false. Note that there are programs for which this will never
happen; some explicit assumptions may always hold in these programs (and still be precise
according to our definition).

The code in Figure . illustrates the second source of unsoundness. Method M of the sub-
class calls the inherited method N of the super-class on the current receiver, and N violates
the invariant declared in the sub-class. However, since Clousot’s analysis is modular, Sub’s
invariant is not considered when analyzing Super and, therefore, Clousot does not detect
this invariant violation. Nevertheless, Clousot assumes the invariant of this after the call to
N in M, which is unsound. As a result, no warnings are emi ed.

We precisely capture this unsoundness by introducing an assumed statement after each call
to an inherited method on the current receiver in classes that declare or inherit object invari-
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class Super
{

bool b;

void N() { b = true; }
}

class Sub : Super
{

invariant !b;

Sub() { b = false; }

void M()
{

N();
assumed invariant(this, typeof(Sub));
assert !b;

}
}

Figure . : Example of explicit assumptions about “invariants at call sites” (IC). We intro-
duce assumed statements (shown in the gray box) at call sites where Clousot
assumes the invariant of the current class (here, Sub), which might not hold if
the receiver is of a different type (e.g., of type Super).

ants. The explicit assumption states that the object invariant of this holds for the enclosing
class (here, Sub) and its super-classes. We label this kind of explicit assumption as “invari-
ants at call sites” (IC).

Aliasing

To avoid the overhead of a precise heap analysis, Clousot ignores certain side-effects due to
aliasing. For operations with side-effects, such as field updates, Clousot unsoundly assumes
that heap locations not explicitly aliased in the code are non-aliasing and, thus, not affected.

As an example of this unsoundness, consider method M from Figure . . (We use the key-
word requires to denote preconditions.) Clousot assumes that the object a is not modified
during the update of field f on line , although a and b might point to the same object in
some calls to M. As a result, no warning is emi ed for the assertion on line .

Clousot abstracts the heap by a heap-graph, which maintains equalities about access paths.
The nodes of the heap-graph denote symbolic values, which represent concrete values, such
as object references and primitive values. An edge of the heap-graph denotes how the sym-



. . Unsoundness in Clousot

void M(Cell a, Cell b)
{

requires a != null && b != null;

if (a.f) {
assumed b == null || !object.ReferenceEquals(b, a);
b.f = false;
assert a.f;
...

Figure . : Example of explicit assumptions about “aliasing” (A). We introduce an assumed
statement (shown in the gray box) to capture the fact that Clousot ignores the
possible side-effect for the field update on line in case objects a and b are aliases.

bolic value of the target node is retrieved from the symbolic value of the source node, for
instance, by dereferencing a field or calling a pure method. (Programmers may declare a
method as pure to indicate that it makes no visible state changes.) All access paths in the
heap-graph are rooted in a local variable or a method parameter. When two access paths
lead to the same symbolic value, they represent the same concrete value, that is, must be
aliases. However, when two access paths lead to distinct symbolic values, they may repre-
sent the same or different concrete values, that is, may or may not be aliases. Nevertheless,
Clousot unsoundly assumes in this case that updating the heap through one path will not
affect values read through the other.

We precisely capture this unsoundness by introducing an assumed statement before every
side-effecting operation that unsoundly affects the values in the heap-graph, that is, when the
side-effect is reflected only on some symbolic values, although other symbolic values may
represent the same heap locations. Specifically, for each field, property, or array update
(side-effects via calls are discussed below), we determine the set of symbolic values that
are distinct from the symbolic value for the receiver 𝑟 of the update, but may be aliases of
𝑟. This set is computed based on the heap-graph in the pre-state of the update and on type
information. For each element 𝑠 of this set, our explicit assumption has a conjunct expressing
that the concrete values represented by 𝑟 and 𝑠 (and given by the access paths leading to the
symbolic values) are non-aliasing.

In our example, Clousot’s heap abstraction uses distinct symbolic values for the objects a
and b in the initial heap-graph (see left-most heap graph in Figure . ). Thus, for the field
update on line , 𝑟 represents b and the set of possible aliases consists of a (see middle heap
graph in Figure . ). Hence, the explicit assumption expresses that a and b are not aliases.
This allows Clousot to perform a strong-update of field f for the symbolic value pointed to
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After line :

a b

f = ⊤ f = ⊤

Before line :

a b

f = true f = ⊤

After line :

a b

f = true f = false

Figure . : Simplified heap graphs for different program points when analyzing the code
from Figure . . Nodes represent symbolic values and edges represent access-
paths. This shows that the update on line only affects the symbolic value of
object b, even though object a could also be affected in case they are aliases.

by b, thereby changing its abstract value from the unknown value ⊤ to the value false (see
right-most heap graph in Figure . ). In particular, it does not change the abstract value of
field f for the symbolic value pointed to by a. Note that we call ReferenceEquals since
the == operator may be overloaded in C#. We ensure that all explicit assumptions are well-
defined, that is, insusceptible to runtime errors, such as null dereferences in access paths. We
label this kind of explicit assumption as “aliasing” (A).

Write effects

To avoid a non-modular, inter-procedural analysis or having to provide explicit write effect
specifications, Clousot uses unsound heuristics to determine the set of heap locations that are modi-
fied by a method call. Clousot then assumes that all other heap locations are not modified. This
assumption is unsound since the heuristics in general may not include all heap locations that
are modified by a call.

The code in Figure . illustrates this unsoundness. Clousot assumes that the call to method
N in Mmodifies only the fields of the receiver object, and leaves the elements of the array un-
changed. As a result, it does not emit awarning for the assertion. Note that this unsoundness
is caused by Clousot’s heuristics for write effects, regardless of whether a and b are aliases.

We capture this unsoundness by introducing an assumed statement after each call, stating
that all heap locations in the heap-graph that Clousot assumes to remain unmodified by the
call are indeed not modified. This is achieved by comparing all symbolic values in the heap-
graph before and after the call and using their access paths to retrieve the concrete values
they represent. The explicit assumption has a conjunct for each unmodified concrete object
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class C
{

int[] a;

void M()
{

var b = new int[1];
a = b;
N();
assumed b == null || !writtenObjects().Contains(b));
assert b[0] == 0;

}

void N()
{

if (a != null && 0 < a.Length) { a[0] = 1; }
}

}

Figure . : Example of explicit assumptions about “write effects” (W). We introduce an as-
sumed statement (shown in the gray box) to capture the fact that Clousot ignores
that object bmay be modified during the call to method N.

reference stating that it is not contained in the actual write effect of the method for the last
call.

To obtain the actual write effect, we instrument the program to provide the function writ-
tenObjects, which returns the set of objects that were modified by the most recently exe-
cuted call (including any objects that weremodified indirectly throughmethod calls). We la-
bel this kind of explicit assumption as “write effects” (W). Note that this explicit assumption
subsumes the aliasing unsoundness for calls because it covers all objects Clousot assumes to
be left unchanged by a call, no ma er whether this assumption is caused by ignoring certain
aliasing situations or by the unsound heuristics for write effects. In method M above, writ-
tenObjects returns the set consisting of array a and, since a and b refer to the same array,
the explicit assumption is violated at runtime.

How precisely we capture this unsoundness depends on the definition of function writ-
tenObjects. If the function returns an over- or under-approximation of the set of heap
locations modified by the most recently executed call then our assumptions over- or under-
approximateClousot’s unsoundness, respectively. In our implementation, writtenObjects
is precise formethods thatwe instrument, but under-approximates thewrite effects of library
methods (see Section . ).
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Purity

Users may explicitly annotate a method with the Code Contracts a ribute Pure to express
that the method makes no visible state changes. To avoid the overhead of a purity analysis,
Clousot assumes that all methods annotated with the Pure a ribute as well as all property ge ers
indeed make no visible state changes. (We will refer to property ge ers and methods annotated
with Pure as “pure methods”.)

Moreover, Clousot uses unsound heuristics to determine which heap locations affect the
result of a pure method, that is, the method’s read effect. Clousot then assumes that all pure
methods deterministically return the same value when called in states that are equivalent with respect
to their assumed read effects.

We capture the first unsoundness with the explicit assumptions aboutwrite effects described
above. After each call to a pure method, we introduce an assumed statement stating that all
heap locations in the heap-graph remained unmodified.

Method M from Figure . illustrates the second unsoundness. Clousot assumes that both
calls to the puremethod Random in Mdeterministically return the same value, and nowarning
is emi ed.

Method N on the right illustrates another aspect of this unsoundness. Clousot assumes that
the result of the pure method First depends only on the state of its receiver, but not on the
state of array a. Therefore, no warning is emi ed about the assertion in N even though a[0]
is modified after the first call to First.

Clousot’s heap-graphmaintains information about which valuesmay be retrieved by calling
a pure method. For instance, after the first call to Random in M, the heap-graph maintains an
equality of r and a call to Random. This information becomes unsound if ( ) the puremethod
is not deterministic, ( ) an object is modified, but Clousot unsoundly assumes that the pure
method does not depend on that object, or ( ) an object is modified, but Clousot does not
reflect the modification correctly in the heap-graph.

The la er case is covered by the explicit assumptions for aliasing and write effects. We cap-
ture the former two cases as follows: ( ) We generate an explicit assumption after each call
to a pure method stating that the method still yields the value stored in the heap-graph. This
assumption under-approximates Clousot’s unsoundness due to non-determinism since even
a non-deterministic method might return the same result several times in a row. In our ex-
ample, it will fail for method Random. ( ) Whenever the heap-graph retains a value for a pure
method call across a statement that may modify the heap, we generate an explicit assump-
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class C {
void M() {

var r = Random();
assumed r == Random();
assert r == Random();
assumed r == Random();

}
[Pure]
int Random() { return (new object()).GetHashCode(); }

}

class D {
int[] a;
void N() {

requires a != null && 0 < a.Length;
var v = First();
assumed v == First();
a[0] = v + 1;
assumed v == First();
assert v == First();
assumed v == First();

}
[Pure] int First() {

requires a != null && 0 < a.Length;
return a[0];

}
}

Figure . : Example of explicit assumptions about “purity” (P).We add assumed statements
(shown in the gray boxes) to reflect that Clousot assumes that the call to the
puremethod Randomdeterministically returns the same value and that the return
value of the call to the pure method First does not depend on the array a.

tion stating that the method still yields the value stored in the heap-graph. This assumption
precisely captures the case that Clousot may assume a too small read effect, as for method
First. We label these explicit assumptions as “purity” (P).

. . Method-Local Properties

We now present the sources of unsoundness in Clousot that are related to properties local
to a method. We divide them into two categories, integral-type arithmetic and exceptional
control flow.
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int a = ...;
assumed (long)(a + 1) == (long)a + (long)1;
a = a + 1;
assert int.MinValue < a;

Figure . : Example of explicit assumptions about “overflows” (O). We insert an assumed
statement (shown in the gray box) to capture the fact that Clousot ignores that
the addition may lead to an arithmetic overflow.

Integral-type arithmetic

To reduce the number of false positives, Clousot ignores overflow in integral-type arithmetic
operations and conversions. That is, Clousot treats bounded integral-type expressions as un-
bounded (except for checked expressions, which raise an exception when an overflow oc-
curs).

The code in Figure . illustrates the unsoundness for operations. Although the assertion
fails when an overflow occurs, no warning is emi ed.

We precisely capture this unsoundness by introducing an assumed statement before each
bounded arithmetic operation that might overflow (and is not checked) stating that the op-
eration returns the same value as its unbounded counterpart. We encode this unbounded
counterpart by performing the operation on operands with types for which no overflowwill
occur, for instance, long instead of int as in the example above, or arbitrarily large integers
(BigInteger) instead of long. We label this kind of explicit assumption as “overflows” (O).

The code in Figure . illustrates the unsoundness for conversions. Even though the assertion
fails due to an overflow that occurs when converting a to a short integer, Clousot does not
emit any warnings.

We precisely capture this unsoundness by introducing an assumed statement for each con-
version of an integral type to a type with smaller value range stating that the value before

int a = int.MaxValue;
assumed a == (short)a;
short b = (short)a;
assert (int)b == int.MaxValue;

Figure . : Example of explicit assumptions about “conversions” (CO). We insert an as-
sumed statement (shown in the gray box) to account for the fact that Clousot
ignores that the conversion from a value of type int to a value of type short by
lead to an overflow.
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try {
throw new Exception();

}
catch (Exception) {

assumed false;
assert false;

}

Figure . : Example of explicit assumptions about “catch blocks” (C). We insert an assumed
statement (shown in the gray box) to express the fact that Clousot ignores the
catch block during the analysis.

the conversion is equal to the value after the conversion, as shown above. We label this kind
of explicit assumption as “conversions” (CO).

Exceptional control flow

Exceptions add a large number of control-flow transitions and, thus, complicate static analy-
sis. To avoid losing efficiency andprecision, many static analyzers ignore exceptional control
flow. Clousot ignores catch blocks and assumes that the code in a finally block is executed only
after a non-exceptional exit point of the corresponding try block has been reached.

The code in Figure . illustrates the unsoundness for catch blocks. Since Clousot ignores
the catch block, no warning is emi ed about the assertion.

We precisely capture this unsoundness by introducing an assumed statement at the begin-
ning of each catch block stating that the block is unreachable, as shown in the code above.
We label this kind of explicit assumption as “catch blocks” (C).

The code in Figure . illustrates the unsoundness for finally blocks. Since Clousot as-
sumes that the finally block is entered only when the try block executes normally, no
warning is emi ed about the assertion. (We use * to denote an arbitrary Boolean condition.)

We precisely capture this unsoundness by introducing an assumed statement at the begin-
ning of each finally block stating that the block is entered only when the try block termi-
nates normally. This is expressed by introducing a fresh Boolean variable for each try block,
which is initially false and set to true at all non-exceptional exit points of the try block, as
shown in the code. The assumed statement then states that this variable is true. We label this
kind of explicit assumption as “finally blocks” (F).



Chapter . An Experimental Evaluation of Deliberate Unsoundness in a Static Analyzer

bool b = false;
bool $noException$ = false;
try {

if (*) {
throw new Exception();

}
b = true;
$noException$ = true;

} finally {
assumed $noException$;
assert b;

}

Figure . : Example of explicit assumptions about “finally blocks” (F).We insert additional
instrumentation and an assumed statement (shown in the gray boxes) to cap-
ture that Clousot assumes that the finally block is executed only after a non-
exceptional exit from the corresponding try block.

. . Static Class Members

Here, we describe the sources of unsoundness for static fields and main methods.

Static fields

To avoid the complications of class initialization [ , ] and to reduce the annotation over-
head and the number of false positives,Clousot assumes that static fields of reference types contain
non-null values.

As an example of this unsoundness, consider the code in Figure . , for which no warnings
are emi ed.

We precisely capture this unsoundness by introducing an assumed statement for each read

static int[] a;

void M()
{

assumed a != null;
assert a != null;

}

Figure . : Example of explicit assumptions about “static fields” (S). We insert an assumed
statement (shown in the gray box) to account for the fact that Clousot assumes
that the static field a stores a non-null reference.
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void M()
{

Main(null);
}

public static void Main(string[] args)
{

assumed args != null && (forall arg in args • arg != null);
assert args != null;
assert args.Length == 0 || args[0] != null;

}

Figure . : Example of explicit assumptions about “main methods” (M). We insert an as-
sumed statement (shown in the gray box) to express that Clousot assumes that
both the string array args of a main method and its elements are non-null.

access to a static field of reference type stating that the field is non-null, as shown in the code.
We label this kind of explicit assumption as “static fields” (S).

Main methods

When a main method is invoked by the runtime system, the array of strings that is passed
to the method and the array elements are never null. To relieve its users from providing
preconditions for main methods, Clousot assumes that the string array passed to a main method
and its elements are non-null for all invocations of the method.

As an example, consider the code in Figure . . Although method M calls Main with a null
argument, no warning is emi ed about the assertions in Main.

We precisely capture this unsoundness by introducing an assumed statement at the begin-
ning of each main method stating that the parameter array and its elements are non-null, as
shown in the code above. (We use the forall keyword to denote Code Contracts’ universal
quantifiers.) We label this kind of explicit assumption as “main methods” (M).

. . Uninstrumented Unsoundness

In the rest of this section, we give an overview of the remaining sources of unsoundness in
Clousot, which we do not instrument:

• Concurrency: Clousot does not reason about concurrency and assumes that the ana-
lyzed code runs without interference from other threads.
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• Reflection: Clousot assumes that the analyzed method does not use reflection.

• Unmanaged code: Clousot checks memory safety for unmanaged code, but does not
consider its effects on the analyzed method.

• Static initialization: Clousot assumes that the analyzed code runs without interference
from a static initializer.

• Iterators: Clousot does not analyze iterator methods (C#’s yield statements).

• Library contracts: Clousot assumes that the contracts provided for libraries, such as the
.N API, are correct.

• Floating-point numbers: Under certain circumstances, Clousot assumes that operations
on floating-point numbers are associative and distributive.

A very coarse way of capturing the first five sources of unsoundness would be to introduce
an assumed false statement at each program point that starts a thread, invokes reflec-
tion, or contains unmanaged code, as well as in each static initializer and for each yield
statement. Such an instrumentation would grossly over-approximate Clousot’s unsound
assumptions (for instance, many static initializers do not interfere with the execution of the
analyzed method). However, a more precise instrumentation is complicated and would re-
quire explicit assumptions for most statements, for instance, to detect data races.

Incorrect library contracts could be detected by introducing an explicit assumption for the
postcondition of each call into the library. We omit these assumptions because they are or-
thogonal to the design of the static analyzer. Finally, we do not instrument the unsoundness
about floating-point numbers because we were not able to precisely determine where the
assumptions occur.

Note that we do not consider Clousot’s inference of method contracts and object invariants
here. In the presence of inference, an unsound assumption in a method 𝑚 might affect not
only the analysis of𝑚 but also of methods whose analysis assumes properties inferred from
𝑚, in particular,𝑚’s postcondition and the object invariant of the class containing𝑚.

One solution is to introduce an explicit assumption whenever Clousot assumes a postcondi-
tion or invariant that was inferred unsoundly; one can then determine easily which methods
have been analyzed soundly by inspecting the instrumented method body. Another solu-
tion is to rely on the existing instrumentation, which is sufficient to reveal unsound inference
during the execution of the program. If the postcondition of a method or constructor𝑚was
inferred unsoundly, we detect an assumption violationwhen executing a call to𝑚, and anal-
ogously if𝑚 violates an inferred invariant.
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.N program

Inspector-Clousot Clousot

Code Contracts Rewriter

Explicit-Assumption-Rewriter

Runtime Execution (.N )

Inspection of Violations

.N program

debug output

.N program with explicit assumptions

.N program with explicit assumptions

.N program with explicit assumption logging

log trace

Instrumentation

Runtime checking

Figure . : Overview of the workflow for evaluating deliberate unsoundness in Clousot.
Components and activities are depicted by boxes and edges represent informa-
tion that is exchanged between them. Off-the-shelf components are depicted
as lighter gray boxes with a dashed border. We first invoke Inspector-Clousot,
which calls Clousot, and uses its output to produces a new .N program with
explicit assumptions. We use the Explicit-Assumption-Rewriter to set up the
explicit assumption logging and run the program to produce a log trace, which
can be inspected for violations of explicit assumptions.

. Implementation

To evaluate whether Clousot’s sources of unsoundness are violated in practice, we have
implemented a tool chain that instruments code with explicit assumptions and checks them
at runtime. Figure . provides an overview of this tool chain and the overall workflow for
evaluating unsoundness in Clousot.
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Instrumentation

The instrumentation stage runs Clousot on a given .N program, which contains code and
optionally specifications expressed in Code Contracts, and instruments the sources of un-
soundness of the tool as described in the previous section. For this purpose, we have im-
plemented Inspector-Clousot, a wrapper around Clousot that uses the debug output emi ed
during the analysis to instrument the program (at the binary level).

Runtime checking

In the runtime checking stage, we first run the existing Code Contracts binary rewriter to
transform Code Contracts specifications into runtime checks. For example, method post-
conditions, which are specified at the beginning of a method body, are transformed into
runtime checks occurring at every return point of the method.

We subsequently run a second rewriter, called Explicit-Assumption-Rewriter, that transforms
all assumed statements of the instrumented program into logging operations. More specif-
ically, this rewriter replaces each explicit assumption assumed 𝑃 by an operation that logs
the program point of the assumed statement, which kind of unsoundness it expresses, and
whether the assumed property 𝑃 is violated. If 𝑃 contains method calls, we do not further
log assumed properties in the callees.

The Explicit-Assumption-Rewriter also instruments each method to compute its set of writ-
ten objects by keeping track of all object allocations and updates to instance fields and ar-
ray elements. The set of wri en objects of a method consists of the objects that have been
modified but are not newly allocated by the method. The set of wri en objects for a call to
an uninstrumented (library) method is always empty, that is, our instrumentation under-
approximates the objects actually modified by such a method.

. Evaluation

In this section, we present our experiments for evaluating whether Clousot’s unsound as-
sumptions are violated in practice andwhether these violations cause Clousot tomiss errors.
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Application Description CC Analyzed Methods
methods with violations

BCrypt.Net Password-hashing library no / ( . %)
Boogie Verification language and en-

gine
yes / ( . %)

ClueBuddy GUI application for board game yes / ( . %)
Codekicker.BBCode BBCode-to-HTML translator no / ( . %)
DSA Data structures and algorithms

library
no / ( . %)

Scrabble (for WPF) GUI application for Scrabble yes / ( . %)

Table . : Applications selected for our evaluation of deliberate unsoundness in Clousot.
The first two columns describe the C# applications. The third column indicates
whether the applications contain Code Contracts. The fourth column shows the
number of analyzed methods per project. The fifth column shows how many
of the methods with explicit assumptions that were hit at runtime contained as-
sumption violations.

For our experiments, we used code from six open-source C# projects (see Table . ) from
different application domains. We selected only applications that come with a test suite so
that the experiments achieve good code coverage. We chose three applications to contain
Code Contracts specifications to evaluate the explicit assumptions about object invariants.
We ran our tool chain on at least one substantial DLL from these applications to perform the
instrumentation described in the previous sections.

For invoking Clousot, we enabled all checks, set the warning level to the maximum, and
disabled all inference options. We subsequently ran tests from the test suite of each appli-
cation and logged which explicit assumptions were hit at runtime and which of those were
violated.

Finally, we manually inspected a large number of methods including all methods that pro-
duced assumption violations to determine whether Clousot misses any errors because of its
unsound assumptions.

http://bcrypt.codeplex.com, rev: d05159e21ce0
http://boogie.codeplex.com, rev: 8da19707fbf9
https://github.com/AArnott/ClueBuddy, rev: c1b64ae97c01fec249b2212018f589c2d8119b59
http://bbcode.codeplex.com, rev: 80132
http://dsa.codeplex.com, rev: 96133
http://wpfscrabble.codeplex.com, rev: 20226

http://bcrypt.codeplex.com
http://boogie.codeplex.com
https://github.com/AArnott/ClueBuddy
http://bbcode.codeplex.com
http://dsa.codeplex.com
http://wpfscrabble.codeplex.com
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Figure . : The percentage of analyzed methods from each project versus the number of
assumed statements in the methods.

. . Experimental Results: Instrumentation

Figure . presents the percentage of analyzed methods from each project versus the num-
ber of assumed statements in themethods. An analyzedmethod is checked byClousot but not
necessarily hit at runtime by the test suite of a project. We analyzed a total of methods
with Clousot. As shown in the figure, the majority of these methods ( ) contain less than
assumed statements, and a large number of those ( ) are soundly checked, that is, do not
contain any explicit assumptions. There are only methods with more than assumed
statements. In these methods, the prevailing sources of unsoundness are “invariants at call
sites” (IC), “write effects” (W), “purity” (P), and “overflows” (O).

Figure . shows the average number of bytecode instructions in the analyzed methods
versus the number of assumed statements in themethods. Notice thatmost soundly checked
methods contain only a small number of instructions. Amanual inspection of thesemethods
showed that many of them are se ers, ge ers, or (default) constructors. Our results indicate
that methods with more instructions contain a larger number of assumed statements.

Figure . shows Clousot’s sources of unsoundness versus the number of assumed state-
ments that are introduced in the analyzedmethods of eachproject. The results are dominated
by the assumptions that are introduced for each method (IE) or for common statements (IC,
W, P). The unsound treatment of aliasing (A) affects relatively few methods, even though
it could be introduced for each field, property, or array update. Assumptions about “main
methods” (M) were not introduced because there are either no main methods at all (for in-
stance, in libraries) or not in the portions of the code that we analyzed and instrumented.



. . Evaluation

0 1 2 3 4 5 10 15 20 25 30
0

100

200

300

Number of assumed statements

N
um
be
ro
fi
ns
tr
uc
tio
ns

BCrypt.Net
Boogie
ClueBuddy
Codekicker.BBCode
DSA
Scrabble

Figure . : The average number of bytecode instructions in the analyzed methods from
each project versus the number of assumed statements in the methods.
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Figure . : Clousot’s sources of unsoundness versus the number of assumed statements
that are introduced in the analyzed methods of each project.
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BCrypt.Net Boogie ClueBuddy Codekicker.BBCode DSA Scrabble

IE - 0/108 ( %) 7/44 ( . %) - - -
IC - 0/60 ( %) 0/59 ( %) - - -
A 0/16 ( %) 0/1 ( %) - - 16/46 ( . %) -
W 0/30 ( %) 0/32 ( %) 0/43 ( %) 2/61 ( . %) 0/51 ( %) 1/25 ( . %)
P 0/7 ( %) 1/40 ( . %) 10/81 ( . %) 0/130 ( %) 0/86 ( %) 11/85 ( . %)
O 4/11 ( . %) 0/11 ( %) 0/5 ( %) 0/25 ( %) 0/134 ( %) 0/13 ( %)
CO 0/3 ( %) - - - - 0/1 ( %)
C - - - - 1/1 ( %) -
F - 0/3 ( %) 0/5 ( %) 0/3 ( %) 0/8 ( %) 0/2 ( %)
S 0/18 ( %) 1/31 ( . %) - 0/2 ( %) 16/18 ( . %) 0/2 ( %)
M - - - - - -

IE : invariants at method entries P : purity F : finally blocks
IC : invariants at call sites O : overflows S : static fields
A : aliasing CO : conversions M : main methods
W : write effects C : catch blocks

Table . : The number and percentage (rounded to two decimal places) of violated explicit
assumptions per application and kind of assumption. These numbers are per
occurrence of a single assumed statement. Cells with non-zero values are high-
lighted; the “-” indicates that no explicit assumptions are hit at runtime.

. . Experimental Results: Runtime Checking

The experimental results for the instrumentation alone provide very limited insight into the
impact of Clousot’s unsoundness. For instance, while some explicit assumptions reflect de-
tails of the analysis (such as A and W, which are based on Clousot’s heap-graph), others
merely indicate the existence of a syntactic element (for instance, we generate one assump-
tion of kindC per catch-block). Moreover, some explicit assumptions are not violated in any
concrete program execution; for instance, the assumptions of kindM always hold if a pro-
gram does not call a main method. To be er understand the impact of Clousot’s unsound
assumptions, we measure how often the generated explicit assumptions are violated during
concrete program executions.

Table . shows the number and percentage of violated explicit assumptions per application
and kind of assumption. These numbers include all executions of a single assumed statement.
That is, different executions of the same assumed statement in different method invocations
or loop iterations are counted separately. Table . shows the corresponding numbers when
counting only per occurrence of an assumed statement rather than per execution. For exam-
ple, in BCrypt.Net, the assumption violations shown in Table . occur in only assumed
statements (see Table . ), which are all in the body of the same loop.
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. . Manual Inspection

We manually inspected a large number of explicit assumptions, including all violated as-
sumptions, and made the following observations:

• “Invariants at method entries” (IE): Only Boogie and ClueBuddy contain invariant spec-
ifications, and all violations are found in ClueBuddy. These violations are all caused by
constructors that call property se ers in their body. The object invariants are, there-
fore, violated on entry to the se ers since the constructors have not yet established the
invariants. Objects that escape from their constructors are a well-known problem; a
possible solution is to annotate methods that may operate on partially-initialized ob-
jects and, thus, must not assume their invariants [ ].

• “Invariants at call sites” (IC): These assumptions are never violated because in all of our
applications, sub-classes do not strengthen the object invariants of their super-classes
such that calls to inherited methods could violate them.

• “Aliasing” (A): These assumptions are violated only inDSA. All violations occur in nine
methods of two classes implementing singly and doubly-linked lists. For example, one
violation occurs in method AddAfter when expressions this.Tail, this.Head, and
the node to be added are aliased. The small number of these violations suggests that
there is only a limited practical need for performing a sound, but expensive heap anal-
ysis. However, an analyzer could optionally allow users to run a sound heap analysis,
for instance, for methods with violations of “aliasing” assumptions.

• “Write effects” (W): Table . shows that these assumptions are hardly ever violated.
By inspecting assumptions of this kind that are not violated, we confirmed that the
write effects assumed by Clousot are usually conservative.

• “Purity” (P): Most of these assumptions are violated for pure methods that return
newly-allocated objects, that is, for non-deterministic methods. In applications with-
out Code Contracts, these assumptions are introduced only in property ge ers, but are
never violated.

• “Overflows” (O): These assumptions are violated only in BCrypt.Net. All violations
occur in an unchecked block, which suppresses overflow exceptions. This indicates
that, in this application, overflows are actually expected to occur or even intended.

• “Conversions” (CO): These assumptions are never violated. Our manual inspection
showed that the value ranges of the converted expressions are sufficiently small such
that no overflow may occur.
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• “Catch blocks” (C): Only one assumption of this kind was introduced in a method that
removes a value from an AVL tree in application DSA. An auxiliary method throws an
exception when the AVL tree is empty. Catching this exception violates the assump-
tion. This violation could be avoided byusing an out-parameter instead of an exception
to signal that the tree was empty.

• “Finally blocks” (F): Our instrumentation introduced only assumptions about “fi-
nally blocks”. The majority of these finally blocks are added by the compiler to
desugar foreach statements. If the body of the foreach statement does not throw
an exception, these assumptions are not violated.

• “Static fields” (S): The violations of these assumptions are, in some cases, due to static
fields being lazily initialized, that is, being assigned non-null values after having first
been read. Supporting lazy initialization via a language construct, such as Scala’s “lazy
val” declarations, could help avoid such violations. In other cases, the values of static
fields are passed as arguments to library methods, which are designed to handle null
arguments.

To investigate how Code Contracts specifications influence the number of explicit assump-
tions and their violations, we also ran the test suites of the three applications with Code
Contracts after having removed these specifications. As expected, there were no assump-
tions about “invariants at methods entries” (IE) and “invariants at call sites” (IC). Moreover,
the number of assumptions about “purity” (P) and their violations were slightly reduced, as
the user-specified Pure a ributes were no longer taken into account.

Missed errors

The violation of an explicit assumption does not necessarily mean that Clousot misses errors
since the resulting unsoundness may be irrelevant for the subsequent checks. To determine
whether the assumption violations detected in our experiments might lead to missed er-
rors, we manually inspected the containing methods of all violations (computed from
Table . ).

We did not find any runtime errors or assertion violations that Clousot missed due to its
unsound assumptions. With the exception of a few cases, it was fairly straightforward to
determine whether an assumption violation could conceal an error. For instance, violations
of explicit assumptions about “purity” (P) are harmless when there is only a single call to
the pure method. The same holds for explicit assumptions about “aliasing” (A) when the
updated field, property, or array element is not accessed after the update.
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The fact that we did not find any missed errors due to assumption violations possibly in-
dicates that providing slightly weaker soundness guarantees in certain situations in favor
of performance, precision, and low annotation overhead does not compromise Clousot’s
effectiveness; its unsound assumptions are not problematic in the code and executions we
investigated.

. . Threats to Validity

We identified the following threats to the validity of our experiments:

• Instrumentation: It is possible that we missed some of Clousot’s unsound assumptions.
Since we elicited the assumptions very diligently, it seems unlikely that we overlooked
any major sources of unsoundness. There are several sources of unsoundness that we
identified, but do not capture (see Section . . ). For most of these sources, a syn-
tactic check suffices to determine whether a program might be affected. Moreover,
even though our instrumentation captures most of Clousot’s unsound assumptions
precisely, it under-approximates the unsound treatment of write effects for calls to
uninstrumented (library)methods and of non-deterministic puremethods. As a result,
it is possible that Clousot’s analysis of a method is unsound even though all runtime
checks for explicit assumptions pass (this is very unlikely for non-deterministic pure
methods).

• Runtime checking: Wemeasured assumption violations in executions of the projects’ test
suites. There were no failing tests, that is, any errors detected by the test suites have
been fixed. This explains in part why we did not find any errors missed by Clousot.
However, in our manual inspection of the violated assumptions, we checked the entire
method, that is, all executionpaths of themethod for all its input states, not just the code
covered by the test suite. Thus, we could have detected errors that the tests missed.

• Project selection and sample size: The projects in our experiments were chosen from dif-
ferent application domains. All projects were required to include a test suite. We se-
lected projects with and without Code Contracts. Since Clousot analyzes each method
modularly, we were able to pick those DLLs that have the most comprehensive test
suites. We ran Clousot on methods; assumed statements were added in meth-
ods, out of which were hit during the execution of the projects’ test suites. There-
fore, we believe that our projects are representative for a large class of C# code bases.
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. Related Work

To the best of our knowledge, there is no existingwork on experimentally evaluating sources
of deliberate unsoundness in static analyzers.

There are, however, several approaches for ensuring soundness of static analyzers and ver-
ifiers, ranging from manual proofs [ ], over interactive and automatic proofs [ , ], to less
formal techniques, such as “smoke checking” in the Boogie verification engine [ ].

Many static analyzers compromise soundness to improve on other qualities such as precision
or efficiency (see Cousot andCousot [ ] for an overview), and there is existingwork on eval-
uating these other qualities of analyzers in practice. For instance, Sridharan and Fink [ ]
evaluate the efficiency of Andersen’s pointer analysis, and Liang et al. [ ] evaluate the pre-
cision of different heap abstractions. Recently, a proof system has been proposed for identi-
fying a class of programs for which an given abstract domain is complete [ ] and, therefore,
does not report spurious errors. We show that such evaluations are also possible for the
unsoundness in static analyzers, and propose a practical approach for doing so.

Our explicit assumptions could be used to express semantic environment conditions inferred
from a base program, as in VMV [ ]; a new version of the program could then be instru-
mented with these inferred conditions (in the form of assumptions) to reduce the number
of warnings reported by Clousot. Moreover, our technique could be applied in “probabilis-
tic static analyzers” [ ] to determine the probabilities of their judgments about analyzed
code. Specifically, one could estimate the probability that an unsound assumption holds (or
is violated) based on its value along a number of concrete executions.

Finally, we refer the reader to http://soundiness.org for the “soundiness” movement in
static program analysis, which brings forward the ubiquity of unsoundness in static analyz-
ers, draws a distinction between analyzers with specific, well-defined soundness trade-offs
and tools that are not concerned with soundness at all, and issues a call to the research com-
munity to clearly identify the nature and extent of unsoundness in static analyzers [ ].

. Summary

In this chapter, we have presented the first systematic effort to document and evaluate the
sources of deliberate unsoundness in a widely-used, commercial static analyzer. Our tech-
nique is general and applicable to any analyzer whose unsoundness is expressible using a
code instrumentation. In particular, we have explained how to derive the instrumentation by

http://soundiness.org
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concretizing relevant portions of the abstract state (in our case, the heap-graph). We believe
that this approach generalizes to a large class of assumptions made by static analyzers.

Our work can help designers of static analyzers in finding good trade-offs. We encourage
them to document all compromises of soundness and to motivate them empirically. Such a
documentation facilitates tool integration since other static analyzers or test case generators
could be applied to compensate for the explicit assumptions. Information about violated
assumptions (for instance, collected during testing) could also be valuable in identifying
methods that require special a ention during testing and code reviews. Finally, our results
could be used to derive programming guidelines and language designs that mitigate the
unsoundness of a static analyzer.



C ₄

The Dafny Integrated
Development Environment

Our technique for expressing partial verification results provides a flexible and expressive
basis for integrating program analysis tools by exchanging annotated programs. However,
eventually the verification results need to be presented and explained to the user. Nowa-
days, this task is often orchestrated by an integrated development environment (IDE) that
incorporates one or more program analysis tools. In recent years, this task has become more
important and more challenging due to the fact that program verifiers and interactive the-
orem provers have become more powerful and, thus, more suitable for verifying large pro-
grams or proofs. As a consequence, a wider audience of non-experts are interested in using
such tools for improving software quality and correctness. This has demonstrated the need
for improving the user experience of these tools to increase productivity and to make them
more accessible to non-experts.

Such tools usually integrate three major subsystems. At the foundation of the tool lies the
logic it uses, for example a Hoare-style program logic or a logic centered around type the-
ory. On top of the logic sits some mechanism for automation, such as a set of cooperating
decision procedures or some proof search strategies (e.g., programmable tactics). The logic
and automation subsystems affect how a user interacts with the verification system, as is
directly evident in the tool’s input language. The third subsystem is the tool’s IDE, which in
a variety of ways tries to reduce the effort required by the user to understand and make use
of the proof system and its partial verification results.

In this chapter, we present the IDE for Dafny [ , ]—a programming language, verifier,
and proof assistant. The IDE is an extension ofMicrosoft Visual Studio (VS) and incorporates
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both new and existing techniques to improve the overall user experience. We thereby push
the state-of-the-art closer towards a verification environment that can provide verification
feedback as the user types and can present more helpful information about the program or
failed verification a empts in a demand-driven and unobtrusive way. This allows the user
to quickly gain insights about the program and to understand the cause of partial verification
results. Such insight and understanding is crucial for supporting users in developing fully-
verified programs. In the following, we present several important aspects of the IDE that
each contribute the overall goal of providing a user experience that goes beyond what has
been done in previous IDEs (for Dafny and other verification systems).

continuous processing The IDE runs the program verifier in the background, thus provid-
ing design-time feedback with every keystroke. The user does not need to reach for a
“Verify now” bu on.

Design-time feedback is common in many tools. For example, the spell checker in Mi-
crosoft Word is always on in this way. Anyone who remembers from the s having
to invoke the spell checker explicitly knows what a difference this canmake in howwe
think about the interaction with the tool; the burden of having to go through separate
spelling sessionswas transformed into the interaction process that is hardly noticeable.
Parsing and type checking in many programming-language IDEs is done this way, en-
abling completion and other kinds of IntelliSense context-sensitive editing and docu-
mentation assistance. The Spec# verifier was the first to integrate design-time feedback
for a verifier [ ]. The jEdit editor for Isabelle [ ] also provides continuous processing
in the background by running both a proof search and the Nitpick [ ] checker which
searches for counterexamples to the proof goal.

non-linear editing The text buffer can be edited anywhere, just like in usual programming-
language editors. Any change in the buffer will cause the verifier to reconsider proof
obligations anywhere in the buffer. (Since the Dafny language is insensitive to the
order of declarations, the proof obligations that have to be reconsidered can occur both
earlier and later in the buffer.)

Although such non-linear editing seems obvious, it is worth noting that it is in stark
contrast to common theorem prover IDEs like ProofGeneral and CoqIde , where the
user manually moves a high water mark in the buffer—anything preceding this mark
in the buffer has been processed by the system and is locked down to prevent editing,
and anything following the mark has not been processed and can be freely edited.

http://proofgeneral.inf.ed.ac.uk
http://coq.inria.fr

http://proofgeneral.inf.ed.ac.uk
http://coq.inria.fr


dependency analysis and caching TheDafny IDE caches verification results aswell as com-
puted dependencies of what is being verified. Before starting a new verification task,
the system first consults the cache. This feature makes the tool more responsive and
reduces the user’s wait times.

Our users have found this to be the most useful of our features for making the inter-
action between user and system more effective. It is also what makes continuous pro-
cessing desirable for large files. When a user gets stuck during a verification a empt,
a typical response is to try many li le input variations that might explain or remove
the obstacle at hand. It is during these times that the user needs the tool the most, so
supporting fluid interactions at this time is of utmost importance.

There has been a lot of work on caching, modifying, and replaying proofs for interac-
tive proof assistants. For proofs performed by SMT solvers, Grigore and Moskal have
worked on these things in the context of ESC/Java [ ]. The static analyzer Clousot [ ]
makes use of caching to retrieve the results of previous runs of its cloud-based anal-
ysis service [ ]. The SPARK tool set was also extended with light-weight support for
caching of verification results [ ].

multi-threading TheDafny IDEmakesmore aggressive and informed use of the support for
concurrency in todays hardware. The number of concurrent threads used is adjusted
dynamically, depending on what the verification tasks at hand are able to saturate.

Although conceptually an obvious thing to do, the Dafny tool chain previously lacked
the features to run separate verification tasks in parallel. The use of multiple threads
is especially noticeable when a file is just opened in the editor, since caches are cold at
that time and everything needs to be verified.

The Isabelle/jEdit editor [ , ] comes with support for multi-threading, which is
motivated by the fact that it also supports non-linear editing and therefore offers more
opportunities to parallelize verification tasks. The SPARK toolset [ ] also sup-
ports multi-threading, both in its translation from SPARK into the intermediate verifi-
cation language Why and in the Why processing itself.

showing information Commonly, a verification system can supply various associated dec-
larations automatically. For example, common induction schemes may be constructed
by default, some types and loop invariants may be inferred, and syntactic shorthands
can reduce clu er in the program text. Sometimes, a user may find it necessary to in-
spect this information. The Dafny IDE a empts to make this information available via
hover text—when the user hovers the mouse cursor over a part of the program text, say,
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an identifier, any additional information about that identifier is displayed. This makes
the information easily accessible to users, but is at the same time not clu ering up the
view of the program text.

Note that in console-based interactive tools, such as ACL [ ], the unobtrusive nature
of information in hover text is difficult to achieve. Such a tool has to either provide
a set of commands that can be used to query information gathered by the tool or op-
timistically spill out a stream of information to the console window in the off-chance
that a user wants to see some part of that information.

An important consequence of making additional information easily accessible to the
user is that it gives the verification system greater freedom in what can be computed
automatically. Users no longer need to fully understand the creative and elaborate
schemes employed to compute this information, because whatever is computed can be
viewed by the user, if needed.

This feature is also common in programming-language IDEs, where inferred types
or fully qualified identifier names are displayed as hover text. The Dafny IDE takes
this a step further, by showing information such as default termination measures, spec-
ifications of implicit methods (such as those generated for iterators), which calls are
classified as co-recursive, and code inherited by Dafny’s “… ” construct from a refined
module.

integrated debugging Verification error messages can have a lot of associated information,
some of which can be useful to users. Previously, the Dafny IDE would highlight,
directly in the IDE editor, the error trace leading to a reported error. The same holds
for other tools, such as SPARK . To get information about the possible values of
variables for the reported error, a Dafny user can use the Boogie Verification Debugger
(BVD) [ ], which presents this information in a format akin to that provided inmodern
source-level debuggers. We have done a deep integration of BVD into the Dafny IDE.

Previously, BVD was accessible for Dafny only as a standalone tool, which meant the
user manually had to correlate the source lines reported by BVD with the text buffer
containing the program in the IDE. The program verifier VCC [ ] integrates BVD into
its Visual Studio IDE. The Dafny IDE now goes further, for example, by le ing the user
select which program state to inspect by clicking in the program text itself. This allows
the user to focus its a ention on one particular verification error and it allows the IDE
to provide muchmore targeted and relevant information to the user. It also uses hover
text to present values of variables in the selected state. OpenJML [ , ] also presents



error information in this way, le ing users inspect values of any subexpression and
le ing the source code location of the expressions hovered over determine which exe-
cution state is used to look up the value to be displayed.

A alternative approach for debugging failed verification a empt has been developed
for Spec# [ ]. Unlike BVD, it uses information from counterexamples to create unit
tests which simulate the verification semantics and can be executed in a off-the-shelf
debugger. By actually executing those unit tests genuine errors can be confirmed and
spurious errors can be detected. Boogaloo [ ] pursues a similar goal. The main dif-
ference is that it does not require any output (e.g., a counterexample) from the verifier
and, instead, uses symbolic execution to produce tests for the Boogie program.

An orthogonal approach for diagnosing errors [ ] makes use of abductive inference
to compute queries that are answered by the user. The user’s answers can help the
verifier in deciding if an error is spurious or genuine.

diagnosing timeouts As most other verifiers, Dafny may fail to terminate within a given
time limit. In this case, the user is usually left with very li le information about what
might have led to the timeout. Most often, the user can avoid such timeouts bymaking
minor changes to the program, such as providing additional intermediate assertions
to help the verifier. However, coming up with such changes to the program is difficult
without useful information from the verifier. To provide such information, the Dafny
IDE uses a technique for diagnosing timeouts. In particular, it can tell a user if the
timeout can be avoided by increasing the default time limit slightly or which assertions
the verifier is struggling with.

As an alternative to running Dafny in Visual Studio, Dafny can also be run from within a
web browser and from the command line. However, the bulk of the features we mention in
this chapter are available only in the Visual Studio IDE extension. Dafny, including its IDE,
is available as open source .

This chapter is based on a paper that was presented at the Workshop on Formal Integrated
Development Environment (F-IDE) in [ ].

http://rise4fun.com/dafny
http://dafny.codeplex.com

http://rise4fun.com/dafny
http://dafny.codeplex.com
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Outline

Section . provides an overview of the architecture of the Dafny IDE and its underlying
components. We give an overview of a caching technique for avoiding unnecessary re-
verification work as programs are edited by users of the IDE in Section . . In Section . ,
we demonstrate a novel feature for reducing the amount of information about the program
that is displayed to the user and for showing more relevant information on-demand. In
Section . , we present another novel feature that makes the error reporting more focused.
We demonstrate a technique for diagnosing timeouts that happen during verification in Sec-
tion . . In Section . we evaluate the effect of parallelizing the verification effort using
multiple solver instances and our technique for diagnosing timeouts. We have presented
related work above and we summarize our results in Section . .

. Tool Architecture with Multiple Solver Instances

Before presenting the new tool architecture, we will give an overview of the underlying
components and the tool architecture that was used in the past (see Figure . ); it is similar
to the architecture of other verification tools that are built on top of the Boogie verification
engine [ ], such as Spec# [ ] and VCC [ ]. As the user is editing the program, the VS exten-
sion continuously sends snapshots of the program to the underlying Dafny verifier, which
encodes the correctness proof obligations as a translation into Boogie. Boogie is an inter-
mediate language [ ] for program verification (similar to Why [ ]). Boogie programs
typically consist of several primitive constructs (e.g., axioms, variables, procedures) that are
used to formalize programs in a higher-level language, such as Dafny.

For example, a Dafny method is translated to several Boogie constructs: ( ) a procedure (decla-
ration) that captures the specification of the method, ( ) a procedure implementation that cap-
tures the method body and checks that it adheres to the method specification, and ( ) a sec-
ond procedure implementation that captures thewell-formedness conditions for themethod
specification [ ]. As another example, a Dafny function is translated to a corresponding Boo-
gie function and a procedure implementation that captures the function’s well-formedness
conditions. Boogie functions are given meaning by axioms, but to simplify our presentation,
we omit some details of the translation of Dafny functions.

This architecture gives rise to a pleasant and highly responsive user interaction for small
programs, but does not scale well to larger programs that consist of many methods and
functions. Since the requests to the underlying solver can easily be parallelized, we have
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Initial tool architecture

VS extension

Dafny

Boogie

Z

Current tool architecture

VS extension

Dafny

Boogie

Z…Z … Z

BVD

Figure . : Comparison of initial and current tool architecture. Arrows indicate data that is
passed from one component to another, where dashed arrows indicate that data
is transferred asynchronously. Less thick, red arrows indicate error information
(including counterexamples for BVD in the current architecture) that is returned.

extended the Boogie verification engine to make use of separate tasks for verifying Boogie
implementations in parallel. Each taskmay discharge its verification conditions using one or
more solver instances that are managed in a dynamically allocated pool of solvers. To take
full advantage of this architectural change, wemade the propagation of verification errors to
the user fully asynchronous (see dashed arrows in Figure . ). This lets error messages show
up as soon as the corresponding verification condition has been processed by the solver.
(Previously, Boogie only made use of multi-threading in one place, namely in its mode for
verification-condition spli ing [ ]. We have preserved that functionality and integrated it
into the new task-based architecture.)

The Visual Studio extension for Dafny gets notified anytime there is a new snapshot, that is,
anytime the text buffer changes. Upon each such change, the extension recomputes syntax
highlighting, which is done through a simple lexical scan (that is, the parser is not invoked
and no abstract syntax tree is built). After . seconds of inactivity, the Dafny IDE invokes
the Dafny parser, resolver, and type checker on the current buffer snapshot. If the snapshot
passes these phaseswithout error, the additional information computed during these phases
(e.g., which calls are co-recursive) is made available to the user in hover text. Also, the snap-
shot is then asynchronously sent to the Dafny verifier, unless the verifier is already running
on a previous snapshot. As verification errors are reported by the asynchronously running
verifier, they are displayed in the IDE. Once a snapshot has been fully processed by the ver-
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Snapshot :

Snapshot :

Snapshot :

Figure . : Progress indication via colors in the margins. The three program snapshots of
the buffer are shown in chronological order (from top to bo om). The dark-
orange margin in Snapshot indicates that changes have not yet been sent to
the prover, while the purple margin in Snapshot indicates that the verifier has
started processing this snapshot.

ifier, a new verification task is started for the current snapshot, unless that is the snapshot
that was just verified. This guarantees that the IDE immediately starts a new verification
task in case the user made any changes to the program while the previous verification task
was still running.

A constant question that users would have about Dafny’s previous IDE was, “Is the verifier
done yet?”. To give the user a sense of the processing that is taking place in the background,
the new Dafny IDE uses colors in the margin (see Figure . ). A dark-orange color in the
margin shows a line that has been edited in a snapshot that has not yet been sent to the
verifier, and a violet color in the margin shows a line that has been edited in a snapshot that
is currently being processed by the verifier.

On top of this, we adapted the tool architecture to integrate the Boogie Verification Debug-
ger (BVD) [ ] directly. Under this change, which is independent of the parallelization, the
solver is asked to include the counterexample information needed by BVD with each verifi-
cation error.
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. On-demand Re-verification

Caching is a popular technique for improving the responsiveness of systems that would
need to repeatedly perform expensive computations whose output is a function of the given
input. Since in amodular verification approach different entities of a program (e.g., modules,
classes, or—as in Dafny—methods and functions) are verified in isolation, changes to one
program entity usually invalidate only a small fraction of the verification results previously
obtained for other program entities. More specifically, one can safely avoid re-verification
of an entity by caching previously computed verification results, except when the user has
changed some other program entity on which it depends. This optimization is crucial in
providing rapid feedback when the program is larger than just a handful of entities.

On a high level, one can see a caching mechanism for partial verification results as a verifier
that swiftly returns a valid subset of the partial verification results that were stored for the
cached program snapshot (i.e., verification results that can bemore partial than the ones that
were cached) when it is asked to verify the current program snapshot.

Our technique for avoiding re-verification ofmethods and functions in Dafny deals with two
core issues: ( ) detecting changes to program entities and ( ) tracking dependencies between
different program entities to determine what needs to be re-verified. To solve the first issue,
we extended Dafny to compute an entity checksum for each function, each method, and the
specification (e.g., pre- and postconditions) of each method. This checksum is insensitive to
various minor syntactic changes of the specific program text, because it is computed based
on the Dafny abstract syntax tree. For instance, the checksum of a method does not change
if a comment is edited by the user.

To deal with the second issue, these entity checksums are used to track dependencies by
computing dependency checksums for each program entity (function, method, ormethod spec-
ification) based on its own entity checksum and the dependency checksums of other entities
on which it depends directly (e.g., methods it calls). This lets us compare the dependency
checksum of a given entity for the current program snapshot with the one stored in our ver-
ification result cache to determine if it needs to be re-verified.

In our implementation, we keep the cache in memory and we chose to compute the de-
pendency checksums at the level of Boogie entities, thus making this feature available to
other verifiers that target Boogie. The corresponding mechanism is explained in full detail
in Chapter .

Figure . illustrates how our techniqueworks on a concrete verification session that consists
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of three program snapshot, which are sent to the prover in chronological order (i.e., snapshot
is the initial programand Snapshot is the final program). All entities of the initial program
snapshot need to be verified, since nothing has been cached yet. For Snapshot , onlymethod
Bar needs to be re-verified: the corresponding Boogie implementations (for checking the
correctness and well-definedness of the method body) are tagged with an entity checksum
that is different from the one in the cache, but the entity checksum of the corresponding
Boogie procedure (for capturing themethod specification) stays the same. For Snapshot , all
entities need to be re-verified: the entity checksum of the Boogie function that corresponds
to the Dafny function P changes with respect to the previous snapshot, which affects the
dependency checksums of all remaining Boogie implementations.

Besides this coarse-grained technique for caching verification results for each top-level pro-
gram entity, we also make use of a more fine-grained caching technique that makes use of
cached verification results for parts (e.g., one branch of a conditional statement) of a top-level
entity. This technique is more low-level and is explained in full detail in Chapter .

One interesting application of our coarse-grained caching technique has to do with priori-
tizing the program entities that are being verified. Ideally, we want to prioritize entities that
are more directly affected by the latest change to the program text, because that is where
the user is likely to want to see the effect of the re-verification first. To do that, we assign
different levels of priority to an entity based on its current checksums and the ones stored in
the verification result cache (see Section . . for more details).

Other verification systems have also used forms of checksums and dependencies in order to
reduce the need for constructing new proofs. In the heterogeneous Why system, both the
construction and verification of proof obligations can be parameterized by different trans-
formations and different solvers. To maintain such proof sessions as much as possible when
any subsystem changes, or if the program under scrutiny changes, Why uses checksums
and goal shapes, a heuristics similarity measure, for matching goals from the existing proof
session with new proof goals [ ]. For Dafny, we have focused on reducing turnaround time
for the user, rather than trying to be robust against changes in components of Dafny itself.

Change management is also important in interactive proof assistants where large parts of
proofs are authored by users. Work on such change management has been done, for exam-
ple, in the context of KIV [ ] and KeY [ ].
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Snapshot :

method Foo()
ensures P();

{ }

method Bar() { }

function P() ∶ bool { true }

Snapshot :

method Foo()
ensures P();

{ }

method Bar() { Foo(); }

function P() ∶ bool { true }

Snapshot :

method Foo()
ensures P();

{ }

method Bar() { Foo(); }

function P() ∶ bool { false }

Figure . : Example of on-demand re-verification. The three program snapshots are or-
dered chronologically (i.e., Snapshot is the initial program and Snapshot is
the final program) and changes between snapshots are highlighted in gray. All
entities in Snapshot need to be verified, while for Snapshot only method Bar
needs to be re-verified. Finally, for Snapshot all entities need to be re-verified
since all of them depend directly or indirectly on the modified function P.

. Showing Relevant Information On-demand

A verification system typically computes various properties that determine how verification
conditions are formulated. For example, Dafny uses heuristics to determine automatically
generated induction hypotheses [ ]. Sometimes, it can be unclear to the user which proper-
ties were computed. For instance, Dafny uses some rules that determine if a function self-call
is recursive or co-recursive; a user who does not know the precise rules may want to find
out which calls have been determined to be co-recursive.

We devised a simple mechanism by which the Dafny resolver and type checker can asso-
ciate any information with any AST node. When Dafny is running in the IDE, this infor-
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mation then gets displayed as hover text for the region in the text buffer that corresponds
to the respective AST node. We use this mechanism to display the type and kinds of vari-
ables (e.g., “(ghost local variable) x∶ List ⟨int ⟩” or “(destructor) List.head ∶ T”), the
default decreases clauses formethods and functions [ ], the automatically generated con-
clusions of forall statements, which methods are tail recursive, which function calls are
co-recursive, the expansion of the syntactic sugar for calls to prefix predicates and prefix
methods [ ], the class expansion of iterators, and code inherited from a refined module
through Dafny’s “… ” construct. Currently, such additional information is computed dur-
ing Dafny’s resolution and type checking phases. However, in principle, one could imagine
showing information that is computed during the verification phase as well.

This mechanism allows us to make a lot more information accessible to users without over-
whelming themwith details and without clu ering up the view of the program text. Conse-
quently, it becomesmuch easier to show relevant information to the user in a demand-driven
fashion.

. Focused Error Reporting

When a verification a empt is not going through, a user has to debug the cause. Usually,
there are several options: ( ) the code itself may be wrong, ( ) the specifications may be
wrong, ( ) more information may be needed to make the proof go through, or ( ) the prob-
lem could be caused by some incompleteness of the SMT solver or of the program’s logical
encoding as verification conditions.

One way to debug such a situation is to ask the verifier questions like “does the following
condition hold here?” (which is done by adding an assert statement in the program text)
and “can the proof goal be met under this additional assumption?” (which is done by tem-
porarily adding an assume statement in the program text). This kind of interactive dialog
with the verifier is supported well in the Dafny IDE, because the caching (and sometimes
parallelization) makes the interaction swift and fluid.

It is also possible to obtain more information about the failing situation. This is done by
exploring the counterexample produced by the solver. The Boogie Verification Debugger
(BVD), via a Dafny plug-in, makes this counterexample intelligible at the source context [ ].
BVD was previously available for Dafny only as a standalone tool, but we have now inte-
grated it directly in the IDE.

Let us describe our interface to BVD. When an a empted verification fails, like the postcon-
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dition violation shown in Figure . , a red dot (and a red squiggly line) indicate the path
along which the error is reported. The error pane at the bo om of the screen shows the error
message, which also appears as hover text for the squiggly line. The error pane also lists
source locations related to the error, in this case showing the particular postcondition that
could not be verified.

By clicking on a red dot, the Dafny IDE will display more information related to that error,
resulting in the screen shown in Figure . . The blue dots that now appear in the program
text trace the control path from the start of the enclosing routine and leading to the error.
There is state information associated with each blue dot, and the user can click on a blue dot
to select a particular state (by default, the last state is selected, which is the state in which the
error was detected).

In addition to the blue dots, BVD is brought up in a pane to the right. BVD shows the vari-
ables in scope, in a familiar debugger-like fashion, but with two conspicuous differences:
some of the values shown are underspecified (the names of these values begin with an apos-
trophe, like ’7 and ’8; distinct names refer to distinct values), and some values are not shown
at all, because they are not relevant to the counterexample (like all of the array elements of
a, except the one at index 2804). Note that the Dafny plug-in for BVD currently does not
display values of functions in the counterexample, but we are hoping to add that function-
ality.

The “Value” column in the BVD pane shows values in the currently selected state, whereas
the “Previous” column shows the values in the previously selected state. This gives a simple
way to compare the values in two states. In the example in the figure, we had first had the
error state selected and then selected the state one line earlier.

Finally, the figure illustrates how values for variables of primitive types (in the currently
selected state) are also displayed as hover text.

What all of this tells us for the example is that the postcondition cannot be verified when
the bound variable i in the postcondition is 2804. That index of the array is set by the
assignment to a[end], but is then changed (from ’7 to ’8) in the next line where a recursive
call to Fill ismade. Some thinking then reveals that the cause of the verification error is that
the postcondition of Fill is too weak. We can fix the problem by adding a postcondition
about the array indices between 0 and start, in particular by saying that Fill leaves those
array elements unchanged:

ensures ∀ i • 0 ≤ i < start ⟹ a[i] = old(a[i]);

By simply adding this postcondition and then waiting a split second, the error goes away.
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Figure . : A screenshot of the Dafny IDE. The verification error is displayed in the text
buffer as a red dot, which can be selected to obtain more information.

. Diagnosing Timeouts

An important consideration for ensuring a responsive user interaction is what to do with
verification tasks that require a long time. At the moment, our IDE performs all verifica-
tion on a per-method (or per-function) basis. When a method is long and difficult, we often
wish for breaking up the verification task into smaller pieces. Boogie has some facilities
for verification-condition (VC) spli ing [ ] and selective checking of parts of procedure imple-
mentations, but our Dafny IDE is currently not taking advantage of these. In fact, since we
already cache information from the previous program snapshot, one could even consider to
adjust the parameters of VC spli ing and selective checking dynamically based on previous
verification a empts. Generally, as long as the task terminates in the end, our fine-grained
caching helps in reducing that time during the next run.

However, this does not help if the verifier actually runs out of time. Subjectively, we find
that timeouts occur in some part of any larger proof a empt, especially those that involve
large recursive functions or non-linear arithmetic, while the user is working on ge ing the
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Figure . : A screenshot showing additional information obtained by selecting an error (red
dot). The blue dots show the program states along the control path leading to
the error, and the BVD pane to the right shows values of variables in the selected
state of the selected error.

verification through. That is, timeouts are often a symptomofmissing proof ingredients, and
good performance tends to be restored once the necessary ingredients have been supplied by
the user. Timeouts during this time are bad, since they are on the user’s time. Most verifiers
struggle with the issue of timeouts. For instance, the Why system guards against timeouts
by being able to run several solvers at the same time [ ].

By default, we set the solver time limit to seconds. While we do allow this default to be
overridden through Dafny custom a ributes, it rarely seems to help in situations where the
verification a empt is actually missing information. For a user to figure out what informa-
tion is missing (let alone which proof obligations are taking a long time), the solver must end
its proof search. However, since in this case the solver is neither able to produce a proper
counterexample nor to prove that no counterexample exists, it will return an incomplete
counterexample or none at all. Consequently, the verifier usually does not produce as much
information for verification a empts that time out as it does for a empts that fail. To pro-
vide be er feedback to the user in such cases, we have developed a feature for diagnosing
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timeouts. In particular, it might turn out that the time limit is simply too low or that very
few assertions seem responsible for a time out. This allows the user to either adjust the time
limit or focus its a ention on those particular assertions.

When the verifier runs into a timeout, this is reportedmuch like errors and the usermay now
decide to re-run the verification in a diagnostic mode. This mode is different from the usual
mode in twoways: what verification conditions are generated andwhat happens during the
interaction with the solver after a timeout. The basic idea is to split up the verification condi-
tion into smaller fragments after a timeout to decompose the verification task and, thereby,
narrow down the number of assertions that seem responsible for the timeout.

To make this possible, we instruct Boogie to generate slightly different verification condi-
tions by, conceptually, marking every assertion 𝐴𝑘 as verified under 𝑈(𝑘), where 𝑈 is an
uninterpreted function that maps an assertion identifier of type integer to a Boolean value.
Since nothing is known about this function initially, the program will be verified as usual.
However, once a timeout occurs, we can feed additional constraints about applications of
that function to the solver. In particular, we can temporarily mark some assertions as fully
verified (i.e., disable the corresponding checks) to simplify the verification task.

Figure . shows our algorithm for decomposing the verification task once a timeout has
been encountered. It takes four arguments: ( ) the current verification condition VC, ( ) the
set of unverified assertion identifiers U (initially contains all assertion identifiers in the ver-
ification condition), ( ) the integer F to determine what fraction of those assertions to check
next (initially ), and ( ) the set of timed-out assertion identifiers T (initially empty).

If the setU is empty, we are done and return the result TimeOut, in case there are any assertion
identifiers in T; otherwise we return Verified. If set U is non-empty, we choose a subset of
the unverified assertion identifiers S (on line ) and check only those assertions for a fixed
time TIME_LIMIT_PER_ASSERTION. If we find a failing assertion, we terminate immediately.
If the check successfully verified the assertions in S, we recursively diagnose the remaining
assertions. Otherwise, we try to check a smaller set of identifiers by invoking procedure
diagnosewhile doubling the argument F. If the set cannot get smaller, we found an assertion
that seems to be responsible for the timeout and we try to check the remaining assertions.

The procedure check_some checks the verification condition after temporarilymarking some
assertions as fully verified. To do so, it makes use of scopes in the solver that push and later
pop additional constraints about applications of function 𝑈 for assertion identifiers that are
not in set S.

This algorithm allows us to determine the set of assertions that cannot be verified individu-
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procedure diagnose ( VC , U , F , T ) {
i f ( | U | = 0 ) {

i f ( 0 < | T | ) {
report the timed-out assertions in T;
return TimeOut ;

}
return V e r i f i e d ;

}
choose S, such that S ⊆ U ∧ |S| = max(|U| / F, 1);
var R ∶= check_some ( VC , S , TIME_LIMIT_PER_ASSERTION ) ;
i f ( R = E r r o r ) {

return R ;
} e l se i f ( R = V e r i f i e d ) {

return diagnose ( VC , U \ S , 1 , T ) ;
} e l se {

i f ( 2 ≤ ( | U | / F ) ) {
return diagnose ( VC , U , 2 * F , T ) ;

} e l se {
return diagnose ( VC , U \ S , 1 , T ∪ S ) ;

}
}

}

Figure . : Algorithm for diagnosing timeouts by decomposing the verification task. It takes
the following arguments: the current verification condition VC, the set of unver-
ified assertion identifiers U (initially all assertion identifiers in the verification
condition), an integer F to specify what fraction of those assertions to check next
(initially ), and a set of timed-out assertion identifiers (initially none). The pro-
cedure check_some checks only some assertions in a verification condition and
terminates when the specified time limit is reached.

ally within the fixed time limit TIME_LIMIT_PER_ASSERTION. These provide a clear indication
to the user about what to focus on to reduce the running time of the verifier. In practice,
we set this time limit to % of the time limit for the entire method or function. However,
one could also imagine that a user might choose this value manually; for instance, to narrow
down the set of assertions that seem responsible even further.

Note that what we presented here is essentially a black-box approach for diagnosing time-
outs; i.e., it does not require any internal information from the solver. However, this might
be an interesting alternative to explore. For instance, one could try analyzing the solver logs
that the Z Axiom Profiler gives access to.
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P T T ₍ ₎
Solver Solvers Solvers

(synthetic) (× . ) (× . )
(synthetic) (× . ) (× . )

(× . ) (× . )
(× . ) (× . )
(× . ) (× . )
(× . ) (× . )
(× . ) (× . )

Table . : Performance with parallelization. The three right-most columns show the run-
ning times for three different configurations: solver instance (i.e., no paralleliza-
tion), solver instances, and solver instances. Speedup factors over no paral-
lelization are shown in parentheses. The second column shows the number of
individual verification tasks (i.e., Boogie procedure implementations) that were
executed.

. Evaluation

The Dafny IDE has been under active development for several years. During this period
we have continuously designed new features and techniques to improve the user experi-
ence. Most of them were developed in response to feedback from users, including students
and professional developers. In this section, we focus on evaluating two aspects: paralleliz-
ing verification tasks to increase responsiveness and diagnosing timeouts to provide more
helpful feedback to users. We provide an evaluation of another important aspect, namely
on-demand re-verification, in Section . .

. . Parallelizing Verification Tasks

Table . demonstrates how parallelization with multiple solver instances affects the per-
formance of the verifier for several long-running verification tasks. Programs and are
solutions to two challenges from a verification competition [ ] that each contain a single
Dafny method. To measure the performance, we have created copies of that method for
program and copies of that method for program . We can see that the running times
are reduced significantly when using more solver instances.

The remaining programs are large Dafny programs of up to lines of code. Programs ,
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T
Low High

TimeOut ₍ %₎ . .
Error ₍ %₎ . .
Verified ₍ %₎ . .
A . .
A ₍ / ₎ . .
A . ( . %) . ( . %)

Table . : Comparison between two configurations for diagnosing timeouts. The configura-
tions only differ by the parameter TIME_LIMIT_PER_ASSERTION from the algorithm
in Figure . . The first three rows show how often the algorithm returns which
output. The fourth row shows the average number of additional prover queries
for diagnosing a timeout. The fifth row shows the average running time of the
algorithm relative to the time limit per method/function. The sixth row shows for
verification conditions that still result in a timeout the average number and per-
centage (out of all assertions in the timed-out verification condition) of timed-out
assertions that seem responsible.

, and are taken from a formalization of a build language using Dafny. Program is an
implementation [ ] of the Schorr-Waite algorithm [ ] formarking all nodes that are reach-
able from a given node in a graph, and program is an implementation of the C library’s
snapshotable tree data structure. For these the running times are also reduced significantly
when using multiple solver instances.

However, we can see that the running times do not always scale linearly with the number
of solver instances. This is due to the fact that some methods require much more time than
others. For instance, for program almost all the time is spent on a single method, which
makes it hard to balance the work load between solvers. In principle, these are cases where
verification-condition spli ing [ ] could help in balancing the work load.

On one hand, this demonstrates that multiple solver instance can help to increase the re-
sponsiveness of the IDE. On the other hand, it illustrates why our technique for caching of
verification results turned out to be even more crucial in practice. This is due to the fact that
it can reduce both the number of verification tasks and the time for verifying each task. A
detailed evaluation of our caching technique can be found in Section . .
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. . Diagnosing Timeouts

To evaluate our technique for diagnosing timeouts we have run it on programs from the
sessions that are described in Section . . We have used two different configurations that
only differ by the parameter TIME_LIMIT_PER_ASSERTION from the algorithm in Figure . :

• Low ( % of the time limit per method/function), and
• High ( % of the time limit per method/function).

Table . demonstrates the different trade-offs clearly. While configuration Low is signifi-
cantly faster by using a larger number of short prover queries, it results in timeouts more
often and is able to narrow down the set of timed-out assertions that seem responsible less
aggressively. For verification conditions that still result in a timeout, configuration Low re-
ports on average . % (at most assertions) of all assertions in that method/function as
responsible. For configuration High these numbers are significantly lower ( . % on aver-
age, at most assertions).

Independently, both configurations are able to avoid a large number of timeouts by decom-
posing the verification tasks (as shown by the first three rows in Table . ). For instance, with
configuration High the algorithm from Figure . returns the result Verified or Error for %
of the timed-out verification conditions. This means that for those verification conditions
none of the assertions required more time than the limit per assertion. This suggests that
the user could avoid the timeout by increasing the time limit for the corresponding method
or function. We believe that configuration Low is more useful in practice since it provides
feedback to users more quickly.

. Summary

The Dafny IDE represents a new generation of interaction between user and verification
system. We have built dependency analysis, caching, and concurrent verification into the
design-time feedback loop to make re-verification responsive with minimal user effort.

Besides this, we have developed several techniques to provide useful information to the user
in a demand-driven and unobtrusiveway. The IDE provides a deep integration of the Boogie
Verification Debugger which displays information about failed verification a empts in the
program text and can be controlled directly fromwithin the program text. To provide be er
feedback to the user in cases where the verifier times out, we have developed a technique for
diagnosing timeouts that is able to narrow down the set of assertions that seem responsible
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for a timeout. Finally, using hover text, we have given easy access to computed information
without clu ering up the user display with irrelevant information.





C ₅

Fine-grained Caching
of Verification Results

Making formal program verification useful in practice requires not only automated logi-
cal theories and formal programming-language semantics, but also—inescapably—a human
understanding of why the program under verificationmight actually be correct. This under-
standing is often gained by trial and error, debugging verification a empts to discover and
correct errors in programs and specifications and to figure out crucial inductive invariants.
To support this important trial and error process, it is essential that the integrated develop-
ment environment (IDE) provides rapid feedback to the user.

In this chapter, we describe the caching of verification results in the Dafny IDE (see Chap-
ter ) in more detail. In particular, we focus on how our technique for fine-grained caching
makes use of cached results from earlier runs of the verifier. As mentioned in the high-level
description from Section . , one can think of a cache for partial verification results as a ver-
ifier that swiftly returns a valid subset of the partial verification results that were stored for
the cached program snapshot (i.e., verification results that can be more partial than the ones
that were cached) when it is asked to verify the current program snapshot.

The effect of this caching is to reduce the time from user keystrokes in the editor to the re-
porting of verification errors that are gathered in the background. When editing programs
with more than just a few methods, this lag time is now often around a second where it pre-
viously took tens of seconds for the verifier to repeat the checking of proof obligations that
were not affected by the latest change.

These improvements rely on a basic caching technique that tracks dependencies using the
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program’s call graph to avoid re-verification of methods that were not affected by the most
recent change to the program (see Section . for a high-level overview from the perspective
of the user of the IDE).

Our fine-grained caching takes this a step further. It is motivated by the fact that when a
proof obligation is not automatically verified, a user tends to spend human focus and editing
in one small area of the program. Often, this area can be in one branch of a method, so if the
tool can rapidly re-verify just what has changed, the user can make progress more quickly.
Our fine-grained caching thus makes use of the program’s control-flow graph.

Like other verifiers, the Dafny verifier generates proof obligations by translating Dafny to
an intermediate verification language (IVL), namely Boogie [ , ]. We designed our fine-
grained caching to operate at the level of the IVL, which makes it possible for other Boogie
front ends to make use of the new functionality. Our novel caching approach compares
the current snapshot of a Boogie program with a previously verified snapshot. It then instru-
ments the current snapshot using our technique of partial verification results fromChapter
to adjust the proof obligations accordingly. Finally, it passes the instrumented Boogie pro-
gram to the underlying satisfiability-modulo-theories (SMT) solver in the usual way. Our
implementation is available as part of the Boogie and Dafny open source projects.

This chapter is based on a paper thatwas presented at the International Conference on Computer
Aided Verification (CAV) in [ ].

Outline

In Section . , we explain a motivating example in more detail. Section . gives background
on the architecture of the Dafny verifier and describes the basic, coarse-grained caching
based on the program’s call graph. We describe our fine-grained caching in Section . and
evaluate how both techniques improve the performance of the verifier in Section . . We
review related work in Section . and summarize our results in Section . .

. Motivating Example

Let us consider some typical steps in the interactive process of developing a verifiably cor-
rect program, indicating where our caching improvements play a role. Figure . shows an

https://github.com/boogie-org/boogie
http://dafny.codeplex.com/

https://github.com/boogie-org/boogie
http://dafny.codeplex.com/
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datatype Color = Red | White | Blue

predicate Ordered(c∶ Color, d∶ Color) { c = Red ∨ d = Blue }

method Sort(a∶ array<Color>)
requires a ≠ null
modifies a
ensures forall i,j • 0 ≤ i < j < a.Length ⟹ Ordered(a[i], a[j])

{
var r, w, b ∶= 0, 0, a.Length;
while w ≠ b

invariant 0 ≤ r ≤ w ≤ b ≤ a.Length
invariant forall i • 0 ≤ i < r ⟹ a[i] = Red
invariant forall i • r ≤ i < w ⟹ a[i] = White
invariant forall i • b ≤ i < a.Length ⟹ a[i] = Blue

{
match a[w]

case Red ⇒
a[r], a[w] ∶= a[w], a[r]; r ∶= r + 1;

case White ⇒
w ∶= w + 1;

case Blue ⇒
b ∶= b - 1;

}
}

Figure . : Incomplete a empt at implementing the Dutch Flag algorithm. As wri en, the
program contains a specification omission, a specification error, and two coding
errors. As the program is edited, our fine-grained caching of verification results
enables a more responsive user experience by avoiding re-verification of unaf-
fected proof obligations.

incomplete a empt at specifying and implementing the Dutch Flag algorithm, which sorts
an array of colors.

The program gives rise to several proof obligations, following the rules of Hoare logic. The
loop invariants are checked when control flow first reaches the loop. The loop body with its
three branches is checked to decrease a termination metric (here provided by the tool: the
absolute difference between w and b) and to maintain the loop invariants. The postcondition
of the method is checked to follow from the loop invariants and the negation of the guard
(without further inspection of the loop body). For every call to method Sort in the rest of
the program, the method’s precondition is checked and its postcondition is assumed.



Chapter . Fine-grained Caching of Verification Results

In addition, all statements and expressions, including those in specifications, are verified
to be well-formed. For example, for the assignment that swaps two array elements in the
loop body (line ), the well-formedness checks ensure that the array is not null, that the
indices are within bounds of the array, that the method is allowed to modify the heap at
these locations, and that the parallel assignment does not a empt to assign different values
to the same heap location.

To provide design-time feedback to the user, the Dafny IDE automatically runs the verifier in
the background as the program is being edited. This allows the verifier to assist the user in
ways that more closely resemble those of a background spell checker. Given the program in
Figure . , the Dafny verifier will report three errors:

. DutchFlag.dfy( , ): A postcondition might not hold on this return path.

− DutchFlag.dfy( , ): This is the postcondition that might not hold.

. DutchFlag.dfy( , ): Cannot prove termination; try supplying a decreases clause for
the loop.

. DutchFlag.dfy( , ): This loop invariant might not be maintained by the loop.

The first error message points out that themethod bodymay not establish the postcondition.
Selecting this error in the Dafny IDE brings up the verification debugger [ ], which readily
points out the possibility that the array contains two White values. To fix the error, we add
a disjunct c = d to the definition of predicate Ordered. Instead of expecting the user to
re-run the verifier manually, the Dafny IDE will do so automatically.

To speed up this process, the basic caching technique will already avoid some unnecessary
work by using the call graph: only methods that depend on the predicate Ordered will be
re-verified, which includes the body of Sort and, since the postcondition of Sort mentions
the predicate, all callers of Sort. Caller dependencies get lower scheduling priority, since
they are likely to be further away from the user’s current focus of a ention. However, we can
hope for something even be er: the maintenance of the loop invariant in Sort need not be
re-verified, but only the fact that the loop invariant and the negation of the guard establish
the postcondition. Our fine-grained caching technique makes this possible.

The second error message points out that the loop may fail to terminate. Selecting the error
shows a trace through the Red branch of the match statement, andwe realize that this branch
also needs to increment w. As we make that change, the tool re-verifies only the loop body,
whereas it would have re-verified the entire method with just the basic caching technique.

The third error message points out that the last loop invariant is not maintained by the Blue
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branch. It is fixed by swapping a[w] and a[b] after the update to b. After doing so, the
re-verification proceeds as for the second error.

Finally, it may become necessary to strengthen Sort’s postcondition while verifying some
caller—it omits the fact that the final array’s elements are a permutation of the initial ar-
ray’s. If only the basic caching was used, the addition of such a postcondition would cause
both Sort and all of its callers to be re-verified. By using the fine-grained caching, the body
of Sort is re-verified to check only the new postcondition (which in this case will require
adding the postcondition also as a loop invariant). For callers, the situation is even be er:
since the change of Sort’s specification only strengthens the postcondition, proof obliga-
tions in callers that succeeded before the change are not re-verified.

The performance improvements thatwe just gave a taste of have the effect of focusing the ver-
ifier’s a ention on those parts of the program that the user is currently, perhaps by trial and
error, editing. The result is a user experience with significantly improved response times.
In our simple example program, the time to re-verify the entire program is about . sec-
onds, so caching is not crucial. However, when programs have more methods, contain more
control paths, and involve more complicated predicates, verification times can easily reach
tens of seconds. In such cases, our fine-grained caching can let the user gain insight from the
verification tool instead of just becoming increasingly frustrated and eventually giving up
all hopes of ever applying formal verification techniques.

. Verification Architecture and Basic Caching

In this section, we describe the role of the intermediate verification language Boogie and
the basic caching technique that the fine-grained caching builds on. We have presented a
high-level overview of the basic caching technique in Section . with a focus on the user
experience within the Dafny IDE [ ]. Here, we describe the technique in more detail and
we focus on the underlying caching systemwe developed for the Boogie verification engine.

. . Architecture

We have described the overall architecture behind verifiers—such as Dafny—that make use
of the Boogie intermediate verification language to express verification conditions in Sec-
tion . . Boogie supports amodular verification approach by verifying procedure implemen-
tations individually. More precisely, calls in procedure implementations are reasoned about



Chapter . Fine-grained Caching of Verification Results

only in terms of their specification (i.e., the corresponding procedure declaration). Conse-
quently, a change to a program often does not invalidate verification results obtained for
independent program entities. In particular, a change in a given procedure implementation
does not invalidate verification results of other procedure implementations, and a change in
a procedure’s specification may invalidate verification results only of its callees and of the
corresponding procedure implementation.

. . Basic Caching

While the Boogie pipeline accepts a single program, obtains verification results, and then
reports them, the basic caching mechanism turns Boogie into more of a verification service:
it accepts a stream of programs, each of which we refer to as a snapshot. The basic caching
approach exploits themodular structure of Boogie programs by determiningwhich program
entities have been changed directly in the latest program snapshot and which other program
entities are indirectly affected by those changes.

To determine direct changes, Boogie relies on the client front end (Dafny in our case) to
provide an entity checksum for each function, procedure, and procedure implementation. For
example, the Boogie program in Figure . shows entity checksums provided by a front end
to Boogie via the ∶ checksum custom a ribute. In our implementation, Dafny computes
them as a hash of those parts of the Dafny abstract syntax tree that are used to generate the
corresponding Boogie program entities. This makes checksums insensitive to certain textual
changes, such as ones that concern comments or whitespace.

To determine indirect changes, Boogie computes dependency checksums for all functions, pro-
cedures, and procedure implementations based on their own entity checksum and the de-
pendency checksums of entities they depend on directly (e.g., callees). These checksums
allow the basic caching to reuse verification results for an entity if its dependency checksum
is unchanged in the latest snapshot.

For example, when computing dependency checksums from entity checksums in Figure . ,
Boogie takes into account that both implementations depend on the procedure declaration
of abs (implementation abs needs to adhere to its procedure declaration and main contains
a call to abs). Consequently, a change that only affects the entity checksum of procedure abs
(e.g., to strengthen the postcondition) will prevent Boogie from returning cached verification
results for both implementations. However, a change that only affects the entity checksum
of implementation abs (e.g., to return the actual absolute value) will allow Boogie to return
cached verification results for implementation main.
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procedure { ∶ checksum ”727”} abs(a ∶ int) returns (r ∶ int)
ensures 0 ≤ r;

implementation { ∶ checksum ”733”} abs(a ∶ int) returns (r ∶ int)
{

r ∶= 0;
}

implementation { ∶ checksum ”739”} main()
{

var x ∶ int;
call x ∶= abs(-585);
assert x = 585;

}

Figure . : Boogie program illustrating how front ends can use custom a ributes on decla-
rations to assign entity checksums. Their computationmay be front-end specific.

Figure . gives an architectural overview of the caching system. In terms of it, the basic
caching works as follows. First, Boogie computes dependency checksums for all entities in
a given program snapshot. Then, for each procedure implementation 𝑃 , the cache is con-
sulted. If the cache contains the dependency checksum for 𝑃 , branch ( ) is taken and the
cached verification results are reported immediately. Otherwise, branch ( ) is taken and
the procedure implementation is verified as usual by the Boogie pipeline. Our fine-grained
caching may also choose branch ( ), as we explain in Section . .

. . Prioritizing Verification Tasks using Checksums

Besides using them for determining which procedure implementations do not need to be
re-verified, we use the checksums for determining the order in which the others should be
verified. Ideally, procedure implementations that aremore directly related to the user’s latest
changes are given higher priority, since these most likely correspond to the ones the user
cares about most and wants feedback on most quickly. Note that this is mainly important if
the IDE reports errors to the user asynchronously, which is the case for the Dafny IDE (see
Section . ).

The checksums provide a metric for achieving this by defining four priority levels for pro-
cedure implementations:

− low (unlike the entity checksum, the dependency checksum in the cache is different from
the current one): Only dependencies of the implementation changed.
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program with entity checksums

Compute dependency checksums

Consult cache
( ) ( )

( )

Inject cached verification results

Verify implementation

Report errors

impl. 𝑃 (incl. entity and dependency checksum)

impl. 𝑃
impl. 𝑃 (incl. cached snapshot)

cached
errors

impl. 𝑃 ′

recycled
errors

errors

Figure . : Overview of the verification process for procedure implementations. Boxes cor-
respond to components and arrows illustrate data flow. The caching component
produces three possible outputs: ( ) cached errors in case the entity and de-
pendency checksums are unchanged, ( ) the implementation 𝑃 in case it is not
contained in the cache, or ( ) the implementation 𝑃 and the cached snapshot
in case either the entity or the dependency checksum have changed. Cached
snapshots are used to inject verification results into the implementation and to
identify errors that can be recycled.

− medium (entity checksum in the cache is different from the current one): The implemen-
tation itself changed.

− high (no cache entry was found): The implementation was added recently.
− highest (both the entity and the dependency checksum is the same as the one in the cache):
The implementation was not affected by the change and a cache lookup is sufficient for
reporting verification results to the user immediately, instead of waiting for other imple-
mentations to be verified.
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procedure gcd(x, y ∶ int) returns (r ∶ int)
requires 0 < x ∧ 0 < y;
ensures 0 ≤ r;

implementation gcd(x, y ∶ int) returns (r ∶ int)
{

if (x < y) {
call r ∶= gcd(x, y - x);
assert 1 ≤ r;

} else if (y < x) {
call r ∶= gcd(x - y, y);

}
assert 0 < x + y;

}

Figure . : Incomplete a empt at implementing a Boogie procedure for computing the
greatest common denominator. Boogie reports a postcondition violation for the
implementation and an assertion violation on line .

. Fine-grained Caching

Basic caching can determine which procedure implementations in a new snapshot do not
need to be re-verified at all, but it does not track enough information to allow us to reuse
verification results for parts of an implementation. In this section, we present an extension
of the basic caching that reuses verification results in fine-grained ways. In particular, our
extension avoids re-verification of checks that were not affected by the most recent change
and it recycles errors that are still present in the current snapshot.

Before giving our full algorithm, we sketch how it works in two common scenarios we want
to address: when an isolatedpart of a procedure implementation (e.g., one of twobranches or
a loop body) has been changed, andwhen the specification of a procedure has been changed.

We proceed by example, starting from the program in Figure . . Running Boogie on this
program results in two errors: a failure to establish the postcondition on line and an asser-
tion violation on line . To fix the postcondition error in the program in Figure . , the user
might add an explicit else branch on line and insert statement r ∶= x. This is an instance
of the common change-in-isolated-part scenario. In particular, the change has no effect on
the assertion on line , and thus we would hope to be able to cache and recycle the error.
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. . Fine-grained Dependency Tracking using Statement Checksums

To cache and reuse verification results at this fine granularity, we need to know what each
statement depends on. To determine this, we compute a statement checksum for every state-
ment from a hash of its pre y-printed representation and—to keep the overhead small—the
statement checksums of all statements that precede it in the control flow (as opposed to ones
that actually affect it). If a statement contains a function call in some subexpression, then the
statement depends on the callee’s definition and we include the callee’s dependency check-
sum when computing the statement checksum.

The computation of statement checksums occurs after the Boogie program has undergone
some simplifying transformations. For example, loops have been transformed using loop
invariants and back-edges of loops have been cut [ ]; thus, the computation of statement
checksums does not involve any fixpoint computation. As another example, the checks for
postconditions have beenmade explicit as assert statements at the end of the implementa-
tion body and the preconditions of procedure implementations have been transformed into
assume statements at the beginning of the implementation body; thus, these statements are
taken into account for computing the statement checksums.

After the simplifications from above, there are only two kinds of statements that lead to
checks: assertions and calls (precondition of callee). We will refer to them as checked state-
ments. We introduce a cache that associates statement checksums of such statements in a
given implementation with verification results. Before verifying a new snapshot, we com-
pute statement checksums for the new snapshot and then instrument the snapshot by con-
sulting this cache.

Let us describe this in more detail using our example. We will refer to the program in Fig-
ure . as Snapshot and the program resulting from adding the else branch and assignment
on line as Snapshot .

After verifying Snapshot , the cache will have entries for the statement checksums of the
following checked statements: the failing assertion on line , the succeeding precondition
checks for the calls on lines and , the succeeding assertion on line , and the failing
check of the postcondition from line . The statement checksums for the first three checked
statements (on lines , , and ) in Snapshot are the same as in Snapshot . Since the cache
tells us the verification results for these, we report the cached error immediately and we add
assume statements for the checked condition before these checked statements in Snapshot .
Note that, in the case of assertions, this is equivalent to marking them as fully verified.

The statement checksums of the fourth and fifth checked statement are different in Snap-
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shot , since they are affected by the modification of line . Since the new checksums are
not found in the cache, the statements are not rewri en. As a result, Boogie needs to only
verify those checks. Indeed, Boogie is now able to prove both and it updates the cache ac-
cordingly. With reference to Figure . , whatwe have just described takes place along branch
( ) after the basic cache has been consulted.

. . Injecting Partial Verification Results

To fix the failing assertion on line in Figure . , the usermight nowdecide to strengthen the
postcondition of the procedure by changing it to 1 ≤ r. This is an instance of the common
change-in-specification scenario. In this case, the change involves a strengthened postcondi-
tion, and we would therefore hope to avoid re-verifying any previously succeeding checks
downstream of call sites. We will refer to the program resulting from the user’s change as
Snapshot .

After Boogie computes the statement checksums, only the statement checksum for the asser-
tion of the postcondition will be different from the ones in the cached snapshot. However,
since the dependency checksums of the callee changed for both calls, we introduce an ex-
plicit assumption after each call to capture the condition assumed at this point in the cached
snapshot.

Note that, unlike in Chapter , we will not explain our instrumentation in terms of assumed
statements and partially-justified assume statements, but directly in terms of assignments
and regular assume statements. Since Boogie is an intermediate verification language, we
decided not to introduce new syntactic constructs to add support for expressing partial ver-
ification results. Instead, Boolean variables can simply be declared as assumption variables
by using an ∶ assumption custom a ribute. This will make sure that such variables are
initialized to true and that they are only assigned to once using a statement of the form
a ∶= a ∧ 𝑃 , where a is the assumption variable and 𝑃 is a Boolean condition.
To capture the condition 𝐶 that was assumed after the call in the cached snapshot, we in-
troduce a unique assumption variable a for each such call and assign a ∧ 𝐶 to it after the
corresponding call. The variable allows us to later refer to an assumption that was made
at a specific program point. For instance, by using a regular assume statement to mark a
check that was not failing in the corresponding cached snapshot as partially verified under
a conjunction of assumption variables.

To illustrate, consider the rewrite of Snapshot in Figure . . At this stage, the precondi-
tion is assumed explicitly on line and the postcondition is asserted explicitly on line as
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described earlier. On line , we introduce one assumption variable for each call to a pro-
cedure with a different dependency checksum. The call on line gets to assume the new
postcondition of gcd. If that call happens to return in a state that was allowed by the pre-
vious postcondition (0 ≤ r), then assumption variable a0 will remain true after the update
on line . But if the call returns in a state that does not satisfy the previously assumed post-
condition, then a0 will be set to false.

In our example, since the postcondition of the callee is strengthened, the explicit assumption
0 ≤ r will always evaluate to true. Indeed, this works particularly well when postcondi-
tions are not weakened, but, depending on the calling context, it may also simplify the veri-
fication otherwise. For instance, it would work for a call where the state is constrained such
that for this particular call site the previous postcondition holds after the call, even though
the new postcondition is indeed weaker.

Next, we inject assumptions into the program about checked statements that are found to
be non-failing in the cached snapshot based on their statement checksum. More precisely,
for each statement with checked condition 𝑃 whose statement checksum is in the cache and
that was non-failing in the cached snapshot, we inject an assumption 𝐴 ⟹ 𝑃 , where 𝐴
is the conjunction of all assumption variables. Intuitively, this tells the verifier to skip this
check if all assumption variables are true. Otherwise, the verifier will perform the check
since a state was reached for which it has not already been verified in the cached snapshot.
In other words, the check has been marked as partially verified by adding the equivalent of
a partially-justified assume statement. As an optimization, we include in 𝐴 only those as-
sumption variables whose update statement definition can reach this use; we refer to these
as relevant assumption variables.

Figure . shows the assumptions being introduced on lines , , and , preceding the pre-
condition checks and the assert statement, thus marking these checks as partially verified.
Note that the assertion on line is not marked as partially verified, since it is a failing asser-
tion in Snapshot . Since the assumption variables remain true, the partially verified checks
in effect become fully verified in this example.

In general, the verifiermay discover that only some partially verified checks are in effect fully
verified depending on the state at those checks. For instance, this may happen if the state
after some call was not always allowed by the callee’s previous postcondition, but some par-
tially verified checks after that call are in a conditional branchwhere the branching condition
constrains the state such that all states are allowed by the previous postcondition there.

In general, one could imagine making the caching even more fine-grained in cases where
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var { ∶ assumption} a0, a1 ∶ bool;

assume 0 < x ∧ 0 < y; // precondition

if (x < y) {
assume (true) ⟹ (0 < x ∧ 0 < y - x);
call r ∶= gcd(x, y - x);
a0 ∶= a0 ∧ (0 ≤ r);
assert 1 ≤ r;

} else if (y < x) {
assume (true) ⟹ (0 < x - y ∧ 0 < y);
call r ∶= gcd(x - y, y);
a1 ∶= a1 ∧ (0 ≤ r);

} else {
r ∶= x;

}
assume (a0 ∧ a1) ⟹ (0 < x + y);
assert 0 < x + y;

assert 1 ≤ r; // postcondition

Figure . : Body of the procedure implementation for Snapshot after injecting cached ver-
ification results (shown in the gray boxes). The instrumented program contains
two explicit assumptions [ ] on lines and derived from the postcondition
of the cached callee procedure. Also, all checks that did not result in errors in the
cached snapshot have been marked as partially verified by introducing assume
statements on lines , , and .

other assumptions in the program (e.g., resulting from user-provided assume statements,
preconditions, and user-provided or inferred loop invariants) are affected by a change. We
believe that—much like for procedure calls—we can use explicit assumptions to capture as-
sumptions thatweremade in the cached snapshot, and therebymarkmore checks as partially
verified.

. . Algorithm for Injecting Cached Verification Results

In this subsection, we present our algorithm for injecting cached verification results in pro-
cedure implementations of medium or low priority, for which no limit on the number of
reported errors was hit when verifying the cached implementation. At this point, most ex-
isting Boogie transformations have been applied to the implementation as described earlier
(e.g., eliminating loops using loop invariants and adding explicit checks for postconditions).
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As a first step, we compute statement checksums for all statements in an implementation as
defined earlier.

As a second step, we insert explicit assumptions for calls if the dependency checksum of
the callee has changed in the current snapshot. More precisely, for each call, we distinguish
between three different cases, in order:

. Dependency checksum of callee is the same as in the cached snapshot: We do not need
to do anything since the asserted precondition and the assumed postcondition are the
same as in the cached snapshot.
. All functions that the callee transitively depended on in the cached snapshot are still
defined and unchanged in the current snapshot: Before the call, we add the statement
assume ? ⟹ 𝑃 , where ? is a placeholder that will be filled in during the final step of
the algorithm and 𝑃 is the precondition of the callee in the cached snapshot. This may
allow us to reuse the fact that the precondition of a call has been verified in the cached
snapshot. To simplify the presentation, wewill only later determine if the precondition
has indeed been verified and under which condition. Since the dependency checksum
of the callee is different from the one in the cached snapshot, we additionally introduce
an explicit assumption to capture the condition that was assumed after the call in the
cached snapshot. This condition depends on the callee’smodifies clause (which lists the
global variables that the callee is allowed to modify) and its postcondition. To capture
the former, let 𝑉 be the set of global variables that were added to the callee’s modifies
clause since the cached snapshot. We now add ov ∶= v for each global variable v in
this set 𝑉 before the call, where ov is a fresh, local variable. This allows us to express
the explicit assumption by adding the statement a ∶= a ∧ (𝑄 ∧ 𝑀) after the call,
where a is a fresh assumption variable,𝑄 is the postcondition of the callee in the cached
snapshot and 𝑀 contains a conjunct ov = v for each global variable v in the set 𝑉 .
Note that𝑀 does not depend on global variables that were removed from the callee’s
modifies clause since the cached snapshot; the statements after the call have already
been verified for all possible values of such variables.
. Otherwise: Since we cannot easily express the pre- and postcondition of the callee in
the cached snapshot, we need to be conservative. We therefore do not add any assump-
tion about the precondition andwe add the statement a ∶= a ∧ false after the call,
where a is a fresh assumption variable.

As a third step, we transform each checked statement with the checked condition 𝑃 to ex-
press cached verification results. We distinguish four cases, in order:

. Some relevant assumption variable is definitely false when performing constant prop-
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agation: We do not do anything, since we cannot determine under which condition the
check may have been verified.
. There was an error for this check in the cached implementation and there are no rele-
vant assumption variables: Since it has previously resulted in an error under identical
conditions, we add the statement assume 𝑃 before and report the error immediately
to avoid unnecessary work.
. There was no error for this check in the cached implementation: Since it has been veri-
fied previously, we add the statement assume 𝐴 ⟹ 𝑃 before, where𝐴 is the con-
junction of all relevant assumption variables. If there are any such assumption vari-
ables, we say that the check has been marked as partially verified; otherwise, we say
that it has been marked as fully verified.
. Otherwise: We do not do anything. For instance, this may happen if we cannot deter-
mine that we have seen the same check in the cached snapshot.

As a last step, we replace the placeholder ? in each statement assume ? ⟹ 𝑃 with the
conjunction of all relevant assumption variables, if none of the relevant assumption variables
are definitely false and therewas no error for the corresponding call in the cached implemen-
tation. Otherwise, we drop the statement.

Optimization for explicit assumptions within loops.

By default, loop bodies are verified modularly in Boogie. That is, on entry to a loop body, all
variables that aremodifiedwithin the body are “havocked” by assigning a non-deterministic
value and the invariant is assumed. After the loop body, only the invariant remains to be
checked.

For this reason, an assumption (e.g., as a result of a procedure call) that was made in the
loop body when verifying the cached snapshot was neither used for verifying statements af-
ter the loop (provided there is no break statement in the loop) nor for verifying statements
within the loop that precede the assignment to the corresponding assumption variable. To
reproduce this behavior for the current snapshot, it is safe not to havoc assumption variables
that would usually be havocked in this case. By doing so, such assumption variables usu-
ally remain true at that point unless the corresponding loop has previously been unrolled a
number of times.
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. Evaluation

To evaluate the effectiveness of our caching techniques in practice, we recorded eight veri-
fication sessions during expert use of the Dafny IDE for regular development tasks. Those
sessions were not scripted and therefore cover real workloads that such a tool faces when it
is being used by a user to develop provably correct software. The sessions span awide range
of activities (including extension, maintenance, and refactoring) that are encountered when
developing programs of several hundred lines. Sessions consist of up to individual pro-
gram snapshots (see Table . ) since the Dafny IDE automatically verifies the program as the
user is editing it. To make this a pleasant experience for the user, the responsiveness of the
tool is of paramount importance.

Table . clearly shows that this user experience could not be achieved without caching. The
basic caching alone decreases the running times of the verifier tremendously (more than
an order of magnitude for many sessions) and complementing it with fine-grained caching
decreases them even more. This confirms the positive feedback that we received from users
of the Dafny IDE, including members of the Ironclad project at Microsoft Research, whose
codebase includes more than ’ lines of Dafny code [ ]. Interestingly, caching turned
out to have a more significant effect on the responsiveness of the tool than parallelization of
verification tasks in Boogie using multiple SMT solver instances (see Sections . and . ).

Figure . sheds more light on why the basic caching is so effective by showing the pri-
orities of the procedure implementations that are sent to the verifier for each snapshot in
session : most of the procedure implementations do not need to be re-verified at all and
only two implementations (originating from a single Dafny method) need to be verified for
most snapshots. This data looks very similar for the other sessions and demonstrates that
the basic caching benefits significantly from the modular verification approach in Dafny.

Generally, we can see occasional spikes with procedure implementations of low priority.
For example, snapshot consists of a change to a function that may affect all callers. In
fact, due to the way that functions are handled, all transitive callers are affected, which is not
the case for procedures. While in this case the basic caching needs to re-verify procedure
implementations from scratch, the fine-grained caching is able tomark out of checked
statements in Boogie as fully verified. This reduces the running time from seconds to
seconds and at the same time avoids a timeout (by default, seconds per procedure

implementation) for one of those procedure implementations.

Overall, Table . shows that the fine-grained caching performs even be er than the basic
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Table . : Comparison of three configurations for verifying eight recorded IDE sessions:
no caching (NC), basic caching (BC) and fine-grained caching (FGC). The sec-
ond column shows the number of program snapshots per session. The next three
columns show the running times for each configuration and the rightmost three
columns show the number of timed-out procedure implementations for each con-
figuration.

caching for all sessions ( % faster for session and on average % faster compared to the
basic caching). For session , there is no significant speedup even though the fine-grained
caching is able to mark a large number of checks as verified. It seems that, in this case, most
of the time is spent on verifying a single check (e.g., the postcondition of the edited method)
that could not be marked as verified. Such cases can come up occasionally since the times
that are needed for verifying different checks are usually not distributed uniformly.

Besides increasing responsiveness, caching helps in reducing the number of procedure im-
plementations that fail to verify due to timeouts (see Table . ). Again, the basic caching
avoids the majority of timeouts and the fine-grained caching avoids even more of them (be-
tween % and % less), which is not obvious given our program transformations. This
additional reduction over the basic caching is due to the fact that Boogie is able to focus on
fewer unverified or partially verified checks.

To provide a be er indication of how much the fine-grained caching is able to reduce the
verification effort, Figure . shows the number of checked statements for each snapshot
in session that were transformed when injecting cached verification results. This demon-
strates that for many snapshots, more than half of the checks can be marked as fully verified
or errors from the cached snapshot can be recycled (two errors each for snapshots and
and one error each for snapshots and ).

At an early development stage, fewer checks were marked as verified since statement check-
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Figure . : Priorities of procedure implementations for session . The bars show the num-
ber of procedure implementations of a given priority for each snapshot version.
Most implementations are assigned the highest priority and do not need to be
re-verified.

sums changed more often. It turned out that small changes in a Dafny program could result
in significant changes to the corresponding Boogie program due to the way in which names
(e.g., of auxiliary variables) were generated. After taking this into account during the trans-
lation of Dafny into Boogie, performance improved significantly.

. Related Work

Caching is a widely-used technique for reusing information that was computed in the past.
More specifically, there are several existing approaches for reusing results from previous
runs of static analyzers, model checkers, program verifiers, and automatic test-case gener-
ation tools. Clousot [ ], a static analyzer for .N , uses caching to retrieve the results of
previous runs of its cloud-based analysis service [ ]. Unlike our fine-grained caching, it
only reuses such results if a method itself did not change and if the specifications of all its
callees did not change. Clousot also supports “verification modulo versions” [ ], which
uses conditions inferred for a previous version of a program to only report new errors for
the current version. The SPARK tool set was also extended with light-weight support for
caching of verification results [ ]. Unlike in our approach, the caching happens on the
granularity of the verification conditions that are sent to the solver and may happen on a
dedicated caching server. The Why verification platform uses checksums to maintain pro-
gram proofs in the form of proof sessions as the platform evolves (e.g., by generating different
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Figure . : Transformed checked statements in session . The bars show the number of
checked statements for each snapshot version that are marked as fully verified,
partially verified, or not transformed at all. Additionally, a number of errors are
recycled: two errors each for snapshots and and one error each for snapshots
and .

proof obligations) [ ]. In particular, it matches goals from the existing proof with new goals
using both checksums and goal shapes, a heuristic similarity measure.

Maintenance of proofs is particularly important for interactive proof assistants since proofs
are largely constructed by users and, ideally, do not need to be changed once they have been
completed. Such work has been done for the KIV [ ] and KeY [ ] tools. Grigore and
Moskal [ ] have worked on such techniques for proofs that were generated by SMT solvers
to verify programs using ESC/Java.

There are several approaches for reusing information that was computed when running a
non-modular tool on an earlier revision of a program. In the area of model checking, such
information can consist of summaries computed using Craig interpolation [ ], derivation
graphs that record analysis progress [ ], or parts of the reachable, abstract state space [ ].
Even the precision of the analysis that was sufficient for analyzing an earlier program revi-
sionmay be used later [ ]. This can avoid the need for running amore precise analysis if the
earlier version of a program could be verified using a less precise analysis. Similarly, it can
avoid running an analysis that is not precise enough. Work on incremental compositional
dynamic test generation [ ] presents techniques for determining if function summaries that
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were obtained for an earlier version of a program can be safely reused when performing
symbolic execution on the current version of the program.

Regression verification [ ] is another area that developed techniques for reusing informa-
tion that was collected during runs of a tool on earlier versions of a program. Unlike in our
approach, the goal is to check if the behavior of the latest version of a program is equivalent
to the one of an earlier version, much like in regression testing.

In spirit, our caching scheme is an instance of a truth maintenance system [ ]. However,
the mechanisms used are quite different. For example, a truth maintenance system records
justifications for each fact, whereas our caching scheme tracks snapshots of the programs
that give rise to proof obligations, not the proofs of the proof obligations themselves.

. Summary

We have presented two effective techniques for using cached verification results to improve
the responsiveness and performance of the Dafny IDE. Both techniques are crucial for pro-
viding design-time feedback at every keystroke to users of the IDE,much like background spell
checkers.

The key novelties of our technique are its use of checksums for determining which parts of
a program are affected by a change and how a program is instrumented with cached infor-
mation to focus the verification effort. In particular, we use explicit assumptions to express
the conditions under which we can reuse cached verification results. We have designed our
technique to work on the level of an intermediate verification language. This makes it imme-
diately usable for other verifiers that use the Boogie verification engine (e.g., AutoProof [ ],
Chalice [ ], or VCC [ ]) and should make possible to adopt by other intermediate verifi-
cation languages, such as Silver [ ] and Why [ ].
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Conclusions and Future Work

We have presented a technique for expressing partial verification results of static analyzers
by annotating programs using two new language constructs. Traditionally, a static analyzer
is thought of as a tool that produces some output—usually errors or invariants—from an
input program. Alternately, our approach makes it possible to see a static analyzer as a
tool that produces an annotated program that expresses its results from an input program.
The fact that, in this se ing, both input and output are programs makes it both natural and
convenient for other tools to make efficient use of that output.

We have designed both assumed statements and partially-justified assume statements such
that they can be expressed in terms of assignments and regular assume statements. This
allowsmost state-of-the-art program analysis tools to benefit from partial verification results
immediately and without changes to their inner workings. The importance of this should
not be underestimated since it ensures that the approach can actually be adopted in practice
by a wide range of real-world program analysis tools—ranging from static analyzers, over
deductive verifiers, to test case generation tools. To demonstrate this flexibility we have
shown several novel use cases for partial verification results in test case generation tools,
static analyzers, or inference tools. In particular, we have shown how to soundly express the
results of static analyzers with sources of deliberate unsoundness. Until now, even though
such analyzers are very common in practice, it was not possible to share their results with
other tools in a practical and sound way.

We believe that integration of several program analysis tools is key to obtaining more ma-
ture andmore usable tools and tomaking advances in program analysis and formalmethods
available to a wider audience more rapidly. In particular, we hope that the community will
be able to build new and be er tools more easily by building on and integrating existing
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tools. We have seen similar developments in several other research areas. For instance,
many of the recent advances in SMT solvers have been facilitated by the Nelson-Oppen
method [ ] for combining decision procedures. The same holds for the combination of
abstract domains [ ] in the area of abstract interpretation.

Besides the use cases for expressing partial verification results thatwe outlined in Section . ,
this work has opened up several other promising directions for future work. First, wewould
like to explore how our technique for expressing partial verification results can be used to
capture more advanced properties. For instance, this might include temporal properties or
properties about concurrent programs. The la er might allow us to run a static analyzer for
sequential programs to analyze a concurrent program by capturing what implicit assump-
tions it makes that do not necessarily hold in a concurrent se ing. The same idea could be
pushed further by running a static analyzer for concurrent programs that assumes sequential
consistency to analyze concurrent programs for weaker memory models.

Second, we would like to explore how a static analyzer could track its unsound assumptions
more precisely. This would help in focusing the effort of any subsequent program analy-
sis tools even further. There are two sides to this problem: tracking more precisely if an
assumption (e.g., about arithmetic overflow) is actually unsound at a given program point
and tracking where that assumption is actually used by the analyzer. For instance, for tools
based on abstract interpretation, one could try to use taint analysis to mark values in the
abstract state as tainted if they depend on some unsound assumptions. Alternatively, as
suggested by Shuvendu Lahiri, one could inspect the unsatisfiable core that is produced by
the SMT solver to determine if certain unsound assumptions are not relevant for verifying a
program using a deductive verifier.

Third, one could use our approach from Chapter to come up with new kinds of sources of
deliberate unsoundness. In fact, this might make it possible to build tunable static analyzers
that offer different levels of unsoundness. A user might then run the same analyzer with
decreasing levels of unsoundness to catch shallow bugs very early and still look for more
intricate bugs efficiently by building on previous partial verification results. Such a static
analyzer would seem particularly well-suited for being used inside an IDE since an analyzer
with a high level of unsoundness could provide early feedback to the user very efficiently.
In such a se ing, it would also be interesting to investigate how the order of different static
analysis runs affects the partial verification results. This is particularly relevant if static ana-
lyzers are incomparable with respect to their level of unsoundness and this could shed light
on the conditions under which the results are independent of the order in which analyzers
are run.



Fourth, it would be interesting to explore ways for “fixing” programs to avoid explicit as-
sumptions in the static analyzers that are used or to ensure that those explicit assumptions
always hold. As a result, more properties could be fully verified in the “fixed” program.
We have explored a specific instance of this in Section . . by inferring sufficient precondi-
tions that justify the explicit assumptions. However, more involved techniques could target
specific sources of deliberate unsoundness. For instance, some explicit assumptions about
overflow could be avoided by rewriting the program to use arbitrary-precision integers or
by rewriting the expression that may overflow [ , ]. Similarly, some explicit assumptions
about aliasing could be avoided by using value types instead of reference types. Such work
might inspire new programming language designs that can be more easily analyzed in a
sound way.

Finally, one could explore more systematic ways for automatically identifying sources of
deliberate unsoundness in static analyzers and for proving their absence. This would help
designers of static analyzers in making sure that no sources of deliberate unsoundness were
missed and that all of them were soundly captured. To this end, it might be interesting
to phrase the problem of identifying a source of unsoundness as an application of logical
abduction with the goal of inferring a condition that explains the (possibly unsound) results
of a static analyzer.
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