
SAILS: Static Analysis of Information Leakage with Sample

Matteo Zanioli
Università Ca’ Foscari,

Venice, Italy
École Normale Supérieure,

Paris, France
zanioli@dsi.unive.it

Pietro Ferrara
ETH, Zurich, Switzerland

pietro.ferrara@inf.ethz.ch

Agostino Cortesi
Università Ca’ Foscari,

Venice, Italy
cortesi@unive.it

ABSTRACT
In this paper, we introduce Sails, a new tool that combines
Sample, a generic static analyzer, and a sophisticated do-
main for leakage analysis. This tool does not require to
modify the original language, since it works with mainstream
languages like Java, and it does not require any manual an-
notation. Sails can combine the information leakage analysis
with different heap abstractions, inferring information leak-
age over programs dealing with complex data structures. We
applied Sails to the analysis of the SecuriBench-micro suite.
The experimental results show the effectiveness of our ap-
proach.

1. INTRODUCTION
Protecting the confidentiality of information stored in a com-
puter system or transmitted over a public network is a rele-
vant problem in computer security. The aim of information
flow analysis is to prove the absence of leaks of sensitive in-
formation. Normally, there is an information flow from x to
y whenever the information stored in x is transferred to, or
used to derive information transferred to, y. Two kinds of
information flow exist: explicit flow, when there is a direct
flow between two variables (e.g., y = x), and implicit flow,
when a statement specifies an explicit flow from z to y, but
the execution depends on the value of a third variable x (e.g.,
if(x > 0) y = z;). The starting point in secure information
flow analysis is the classification of program variables into
different security levels. In the simplest case, two levels are
used: public (or low) and secret (or high). The main pur-
pose is to prevent leak of sensitive information from a high
variable to a low one. More generally, we might work with a
lattice of security levels, ensuring that sensitive information
flows only upwards in the lattice [11].

Language-based information flow security has been longly
studied during the last decades [27, 26]. Proving that a pro-
gram enforces noninterference has been the goal of several
static analyses [15, 17, 5]. Nevertheless, despite this deep
and extensive work, its practical applications have been rel-

atively poor. Usually these approaches work on an ad-hoc
programming language [3], and they do not support main-
stream languages. This means that one should completely
rewrite a program in order to apply it to some existing code.

Generally, works on information flow fall into two categories:
dynamic, instrumentation-based approaches such as taint-
ing, and static, language-based approaches such as type sys-
tems. The disadvantage of the dynamic approaches is that
they typically incur significant run-time overhead [6, 20].
The disadvantage of the static approaches is that they typ-
ically require some changes to the language and the run-
time environment, as well as non-trivial type annotations
[24], making the adoption of these approaches difficult in
practice.

On the one hand, Zanioli and Cortesi recently introduced a
novel abstract interpretation-based information flow analy-
sis [28]. This approach combines an information flow anal-
ysis with a numerical abstract domain. On the other hand,
Ferrara developed a new generic static analyzer (Sample)
based on abstract interpretation. Sample has been already
applied to a wide range of different analyses (namely, string
values [8], type information [13], and inference of access per-
missions [14]).

In this paper, we present Sails (Static Analysis of Informa-
tion Leakage with Sample), an extension of Sample1 to in-
formation leakage analysis. We slightly modify the theoreti-
cal approach to information flow analysis, presented in [28],
in order to analyze object oriented programs using different
heap abstractions (e.g., shape analysis [25, 16]), and some of
the most powerful numerical abstract domains [18]. Unlike
other works, our tool provides an information flow analysis
without any changes to the language, since it tracks infor-
mation flows between variables and heap locations over pro-
grams written in mainstream object-oriented languages like
Java and Scala. We tested Sails over a set of web applica-
tions established as security and performance benchmarks.
The experimental results show that the analysis is fast and
effective in most of the code we analyzed.

The rest of this paper is organized as follows. Section 2
introduces the background of the existing information flow
analysis and of Sample. Section 3 presents the main issues we
solved in order to put together the two components. Section
4 shows the results of the analysis when applied to a pro-

1http://www.pm.inf.ethz.ch/research/semper/Sample

gram dealing with disjoint recursive data structures, while
Section 5 discusses the experimental results when applying
Sails to the SecuriBench-micro suite. Related work is pre-
sented in Section 6, while Section 7 concludes and depicts
future works.

2. BACKGROUND
This section introduces some background about the infor-
mation flow analysis adopted in Sails and about Sample.

2.1 Information Leakage Analysis
Zanioli and Cortesi [28] presented an information flow anal-
ysis by abstract interpretation. It combines a syntactic vari-
able dependency analysis, based on a propositional formulae
domain, with a variable value dependency using a numer-
ical abstract domain. It uses logic formulae to represent
dependencies between variables, refine the analysis in order
to reduce as much as possible false alarms through informa-
tion about numerical values, and detect information leakages
evaluating formulae on truth-assignment functions. The re-
sulting analysis has a modular construction that allows tun-
ing the granularity of the abstraction, and the complexity
of the abstract operators choosing a “good” compromise be-
tween efficiency and accuracy.

Consider, for example, the statement if(x > 0) y = z;. The
analysis adopts positive formulae, a subset of propositional
formulae, to track both explicit (between y and z) and im-
plicit (between x and y) flows. Formally, let Γ = {∧,∨,→,¬}
be a set of connectives, Ω(Γ) be the set of formulae using the
connectives in Γ, Vp the set of propositional variables, and
u : Vp → T be a truth-assignment function which assigns
to each variable the value true. Then the set of positive
formulae is defined by: Pos = {f ∈ Ω(Γ) | u � f}, as in [7].
Roughly speaking, a propositional formulae is a Pos when,
if you assign to each variables in the formulae the value T

(true), the propositional formulae is satisfied. Some obvious
examples are T, x1 ∈ Pos and F,¬x1 /∈ Pos.

An abstract state σ] ∈ Σ
] ≡ L × Pos (where L is the set

of program labels) is a pair 〈`, φ〉 which denotes the depen-
dencies that occur among program variables up to label `
expressed by the positive formula φ ∈ Pos. Obviously, the
propositional variables of Pos formulae, in this case, will be
the program variables. To better understand, consider the
command presented above. The analysis provides, at the
end of the computation, the following propositional formula:
(z → y) ∧ (x→ y).
The authors defined the abstract semantics as the set of
all finite sets of abstract states, denoted by Σ

?]
, which can

occur during one or more executions, in a finite time and
starting from an initial state. The abstract domain is the

lattice 〈Σ?]
,v], ∅,Σ]

,u],t]〉.

To improve the results, the analysis combines the abstract

domains 〈Σ?]
,v], ∅,Σ?]

,u],t]〉 and 〈Pn,⊆, ∅,Rn,],∩〉 by a
reduced product operator [10], where 〈Pn,⊆, ∅,Rn,],∩〉 is
the numerical abstract domain. The reduction is aimed at
excluding pointless dependencies for all variables which have
constant values during different executions, without loosing
purposeful relations.

Figure 1: The structure of Sample

2.2 Sample
Sample (Static Analyzer of Multiple Programming Languag-
Es) is a novel generic analyzer based on the abstract inter-
pretation theory. This theory allows one to define composi-
tional analyses [9]. Sample can be composed with different
heap abstractions, approximations of other semantic infor-
mation (e.g., numeric domains or information flow), prop-
erties of interest, and languages. Several heap analyses, se-
mantic and numerical domains have been already plugged.
The analyzer works on an intermediate language called Sim-
ple. Up to now, Sample supports the compilation of Scala
and Java bytecode to Simple.

Picture 1 depicts the overall structure of Sample. Source
code programs are compiled to Simple. A fixpoint engine
receives a heap analysis, a semantic domain, and a program,
and it produces an abstract result over a control flow graph
for each method. This result is passed to a property checker
that produces some output (e.g., warnings) to the user. In-
tegrating an analysis in Sample allows one to take advantage
of all aspects not strictly related to the analysis but that can
improve its final precision (e.g., heap or numerical abstrac-
tions).

3. INTEGRATION OF THE ANALYSES
In this section, we present the main issues we have to deal
with in order to combine the information leakage analysis
with Sample.

3.1 Representing Propositional Formulae
To work with object oriented languages entailed to intro-
duce some slight modifications on the domain for informa-
tion leakage analysis described in [28]. We can consider
a propositional formula φ as a conjunction of subformulae
(ζ0∧ . . .∧ζn). In the implementation, each subformula is an
implication between two identifiers (an identifier is a vari-
able abstraction, see Section 3.2). Then we represent a sub-
formula as a pair of identifiers and a formula as a set of
subformulae. Consider the simple example presented at the
end of Section 2.1; the formula obtained after the analysis
consists in two pairs: (y, z) and (x, y), where by ū we denote
the identifier of the variable u. The order relation “�” is de-
fined by: let φ0 and φ1 be propositional formulae, φ0 � φ1

is equivalent to φ0 ⊆ φ1, where “⊆” is the classical subset
relation.
Consequently, in the new abstract domain (PosDomain), the
set of propositional variables (Vp) consists in the set of iden-
tifier (Id), a propositional formulae (Pos) is represented by

℘(Id × Id) and an abstract state σ] ∈ Σ
]

is a propositional
formula (Pos).

3.2 Heap Abstraction
In Sample heap locations are approximated by abstract heap
identifiers. While the identifiers of program variables are
fixed and represents exactly one concrete variable, the ab-
stract heap identifiers may represent several concrete heap
locations (e.g., if they summarize a potentially unbounded
list), and they can be merged and split during the analysis.
In particular we have to support (i) assignments on sum-
mary heap identifiers, and (ii) renaming of identifiers.

In order to preserve the soundness of Sails, we have to per-
form weak assignments to summary heap identifiers. Since a
summary abstract identifier may represent several concrete
heap locations and only one of them would be assigned in
one particular execution, we have to take the upper bound
between the assigned value, and the old one.

Any heap abstraction requires to rename, summarize or split
existing identifiers. This information is passed through a re-
placement function rep : ℘(Id) → ℘(Id). In TVLA [25] two
abstract nodes represented by identifiers a1 and a2 may be
merged to a summary node a3, or a summary abstract node
b1 may be splitted to b2 and b3. Our heap analysis will pass
{a1, a2} 7→ {a3} and {b1} 7→ {b2, b3} to Sails respectively.
Given a single replacement S1 7→ S2, Sails removes all sub-
formulae dealing with some of the variables in S1, and for
each removed subformula s it inserts a new subformula s′ in
the resulting state renaming each of the variables in S1 to
with each of the variables in S2. Formally:

rename : (Pos× (℘(Id)→ ℘(Id)))→ Pos
rename(σ, rep) = {(i′1, i

′
2) : (i1, i2) ∈ σ∧

i′1 =

{
i1 if @R1 ∈ dom(rep) : i1 ∈ R1

k1 if ∃R1 ∈ dom(rep) : i1 ∈ R1 ∧ k1 ∈ rep(R1)
,

i′2 =

{
i2 if @R2 ∈ dom(rep) : i2 ∈ R2

k2 if ∃R2 ∈ dom(rep) : i2 ∈ R2 ∧ k2 ∈ rep(R2)
}

3.3 Implicit Flow Detection
An implicit information flow occurs when there is an infor-
mation leakage from a variable in a condition to a variable
assigned inside a block dependent on that condition. For in-

Figure 2: A CFG not supported by Sails

stance, in if(x > 0) y = z; there is an explicit flow from z to
y, and an implicit flow from x to y. To record these relations
we relate the variables in the conditions to the variables that
have been assigned in the block. When we join two blocks
coming from the same condition, we discharge all implicit
flows on the abstract state.

On the other hand, Sample programs are represented by con-
trol flow graphs (cfg), and therefore we could have conditions
that do not join in a well-defined point. For instance, in the
cfg of Figure 2 is not clear if the condition of block 1 is joined
at block 4 or 6. For this reason, Sails does not support all
cfgs that can be represented in Sample but only the ones
coming from structured programs, i.e., that corresponds to
programs with if and while statements and not with arbi-
trary jumps like goto.

3.4 Property
An information flow analysis can be carried out by consid-
ering different attacker abilities. We implemented two sce-
narios: when the attacker can read public variables only at
the beginning and at the end of the computation, and when
the attacker can read public variables after each step of the
computation2. Moreover, to each attacker we implemented
two security properties: secrecy (i.e., information leakage
analysis) and integrity.
The verification of these properties is based on the following
steps: computation of the analysis, declaration of private
variables (at run time, by a text files writing the variables
name or by a graphical user interface selecting the variables
in a list) and verification of the property.

3.5 Numerical Analyses
The information flow analysis is based on the reduced prod-
uct of a dependency and a numerical analysis. Thanks to the
structure of Sample, we can naturally plug Sails with differ-
ent numerical domains. In particular, Sample supports the
Apron library [18]. In this way, we can combine Sails with
all numerical domains contained in Apron (namely, Polka,
the Parma Polyhedra Library, Octagons, and a deep imple-
mentation of Intervals).

In addition, we can apply different heap abstractions to the
analysis of a program without changing Sails. For instance,
if we are not interested to the heap structure, we can use a
less accurate domain that approximates all heap locations
with one unique summary node, as in Section 5. Instead, if
we look at a precise abstraction of the heap structure, we

2Notice that, as in [28], we assume that the attacker, in both
cases, knows the source code of the program.

1 class ListWorkers {
2 int salary ;
3 ListWorkers next;
4 ...
5 }
6

7 public void updateSalaries (ListWorkers employees, ListWorkers managers) {
8 int maxSalary = 0;
9 ListWorkers it=employees;

10 while(it !=null) {
11 if (it . salary>maxSalary)
12 maxSalary=it. salary ;
13 it=it.next;
14 }
15 it=managers;
16 while(it !=null) {
17 if (it . salary < maxSalary)
18 it . salary=maxSalary;
19 it=it.next;
20 }
21 }

Figure 3: A motivating example

Figure 4: The initial state of the heap abstraction

can adopt more precise approximations, as illustrated in the
next section.

4. EXAMPLE
Consider the Java code in Figure 3. Class ListWorkers mod-
els a list of workers of an enterprise. Each node contains
the salary earned by the worker, and some other information
(e.g., name and surname of the person).
Method updateSalaries is defined as well. It receives a list of
employees and a list of managers. These two lists are sup-
posed to be disjoint. First method updateSalaries computes
the maximal salary of an employee. Then it traverses the
list of managers updating their salary to the maximal salary
of employees if manager’s salary is smaller than that.

Usually managers would like not to leak information about
their salary to employees. This property could be expressed
in Sails specifying that we do not want to have a flow of
information from managers to employees. More precisely, we
want to prove the absence of information leakage from the
content of field salary of any node reachable from managers
to any node reachable from employees.

We combine Sails with a heap analysis that approximates all
objects created by a program point with a single abstract
node[12]. We start the analysis of method updateSalaries
with an abstract heap in which lists managers and employees
are abstracted with a summary node and they are disjoint.
Figure 4 depicts the initial state, where n2 and n4 contains

the salary values of the ListWorkers n1 and n3, respectively.
In the graphic representation we adopt dotted circles to rep-
resent summary nodes, rectangles to represent local vari-
ables, and edges between nodes to represent what is pointed
by fields of objects. Note that the structure of these two lists
does not change during the analysis of the program, since
method updateSalaries does not modify the heap structure.

Sails infers that, after the first while loop at line 15, there
is a flow of information from n2 to maxSalary. This hap-
pens because variable it points to n1 before the loop (be-
cause of the assignment at line 9), and it iterates following
field next (obtaining always the summary node n1) eventu-
ally assigning the content of it.salary (that is, node n2) to
maxSalary. Therefore, at line 15 we have the propositional
formula n2→ maxSalary.

Then updateSalaries traverses list managers. For each node,
it could potentially assign maxSalary to it.salary. Similarly
to what happened in the previous loop, variable it points to
n3 before and inside the loop, since field next always points
to the summary node n3. Therefore the assignment at line
18 could potentially affects only node n4. For this reason,
Sails discovers a flow of information from maxSalary to n4,
represented by the propositional formula maxSalary→ n4.

At the end of the analysis, Sails soundly computes that
(n2 → maxSalary) ∧ (maxSalary → n4). By the transitive
property, we know that there could be a flow of information
from n2 to n4, that is, from employees to managers. This
flow is allowed by our security policy. On the other hand,
we also discovered that there is no information leakage from
list managers to list employees, since Sails does not contain
any propositional formula containing this flow. Therefore
Sails proves that this program is safe.

Notice that, almost 10 years ago, Sabelfeld and Myers stated:
“Noninterference of programs essentially means that a vari-
able of confidential (high) input does not cause a variation
of public (low) output”[24]. Thanks to the combination be-
tween a heap abstraction and an abstract domain tracking
information flow, Sails deals directly with the structure of
the heap, extending the concept of noninterference from
variables to portions of the heap represented by abstract
nodes. This opens a new scenario since we can prove that
a whole data structure does not interfere with another one,
as we have done in this example. As far as we know, Sails is
the only tool that performs a noninterference analysis over a
heap abstraction, and therefore it can prove properties like
“there is no information flow from the nodes reachable from
v1 to the nodes reachable from v2”.

5. EXPERIMENTAL RESULTS
A well-established way of studying the precision and the
efficiency of information flow analyses is the SecuriBench-
micro suite [2], a set of small test cases designed to verify
different parts of static security analyzer. We applied Sails
to this test suite; the description and the results of these
benchmarks are reported in Table 1. Column fa reports if
the analysis did not produce any false alarm. We combined
Sails with a really rough heap abstraction that approximates
all concrete heap locations with one abstract node. Sails
detected all information leakages in all tests, but in three

Name Description fa

Aliasing1 Simple aliasing 3
Aliasing2 Aliasing false positive 3
Basic1 Very simple XSS 3
Basic2 XSS combined with a conditional 3
Basic3 Simple derived integer test 3
Basic5 Test of derived integer 3
Basic6 Complex test of derived integer 3
Basic8 Test of complex conditionals 3
Basic9 Chains of value assignments 3
Basic10 Chains of value assignments 3
Basic11 A simple false positive 3
Basic12 A simple conditional 3
Basic18 Protect agains simple loop unrolling 3
Basic28 Complicated control flow 3
Pred1 Simple if(false) test 7
Pred2 Simple correlated tests 3
Pred3 Simple correlated tests 3
Pred4 Test with an integer variable 3
Pred5 Test with a complex conditional 3
Pred6 Test with addition 7
Pred7 Test with multiple variables 7

Table 1: SecuriBench-micro suite

Name Description fa

A Simple explicit flow test 3
Account Simple explicit flow test 3
ConditionalLeak Explicit flow in if statement 3
Do Implicit flow in the loop 3
Do2 Implicit flow if and loop 3
Do3 Implicit flow loop and if 3
Do4 Implicit flow loop and if 3
Do5 Implicit flow loop and if 3
If1 Simple implicit flow 3
Implicit Simple implicit flow 3

Table 2: Jif case studies

cases (Pred1, Pred6 and Pred7) it produced false alarms.
This happens because Sails abstracts away the information
produced when testing to true or false boolean conditions
in if or while statements. We are currently investigating
how to extend the analysis with more complex propositional
formulae to avoid this kind of false alarms.

Since these benchmarks cover only problems with explicit
flows, we performed further experiments using some Jif [22]
case studies. The results are reported in Table 2: we dis-
covered all flows without producing any false alarm. These
results allow us to conclude that Sails is precise, since in 90%
of the cases (28 out of 31 programs) it does not produce any
false alarm.

About the performances, the analysis of all case studies takes
1.092 seconds (0.035 sec per method in average) without
combining it with a numerical domain. When we combine
it with Intervals it takes 3.015 seconds, whereas it takes
6.130 seconds in combination with Polka. All tests are per-
formed by a MacBook Pro, Intel Core 2 Duo 2.53 GHz, 4
GB Memory. Therefore the experimental results underline
the efficiency of Sails as well.

6. RELATED WORK
The approach adopted in Sails is quite different from exist-
ing tools that deal with information flow analysis. The most
known tool in this field is Jif [3]. It is a security-typed pro-
gramming language that extends Java with support for in-
formation flow and access control, enforced at compile time.
Jif is an ad hoc analysis that requires to annotate the code
with some type information. If on the one hand Jif is more
efficient than Sails, on the other hand Sails does not re-
quire any manual annotation, and it takes all advantages of
compositional analyzers (e.g., we can combine Sails with a
TVLA-based heap abstraction).

Other security-typed languages emerged over the years to
prevent insecure information flows. The possibility of regu-
lating the propagation of sensitive information by security
type systems in realistic languages came, in the early 2000,
from [4, 21, 23] and their implementations.

“Despite this rather large (and growing!) body of work on
language-based information-flow security, there has been rel-
atively little adoption of the proposed techniques”[19]. Ac-
cording to Li and Zdancewic, one of the reasons that limited
the application of these systems is that they require to re-
write the whole system in the new language. In addition,
usually only a small part of the system deals with critical
information. Therefore developers choose the programming
language that best fits the primary functionality of the sys-
tem.

Our approach does not require to change the programming
language, since it infers the flow of information directly on
the original program, and it asks what are the private data
that have not to be leaked to the user during the analysis
execution.

7. CONCLUSIONS
In this paper we presented Sails, a new tool that performs
static analysis of information flow over object-oriented pro-
grams. Sails represents the combination of Sample (a generic
static analyzer) and an information leakage analysis [28].
Thanks to this combination, Sails is modular w.r.t. the
heap abstraction, and it can verify noninterference over re-
cursive data structures using simple and efficient heap anal-
yses. In addition, it can be combined with several numerical
domains. The experimental results underline the effective-
ness of the analysis, since Sails is in position to analyze sev-
eral benchmarks in about 1 seconds without producing false
alarms in more than 90% of the programs.

7.1 Future Work
Sample interprocedural semantics relies on contracts, but it
does not yet support contracts dealing with levels of confi-
dentiality. Then we are working to extend the annotation
language to define contracts like “x.f is confidential ”. Once
we will have defined this language, we will apply Sails to
bigger (and hopefully industrial) case studies like the ones
contained in SecuriBench [1].
In addition, a plugin to interface TVLA with Sample has
been developed recently [16]. A more sophisticated shape
analysis that avoids the summarization of nodes with differ-
ent level of confidentiality may in fact enhance the precision
of the Sails analysis.

Aknowledgments
Work partially supported by RAS project ”TESLA - Tec-
niche di enforcement per la sicurezza dei linguaggi e delle
applicazioni” and by SNF project “Verification-Driven Infer-
ence of Contracts”.

8. REFERENCES
[1] Stanford SecuriBench. http://suif.stanford.edu/

˜livshits/work/securibench/.

[2] Stanford SecuriBench Micro. http://suif.stanford.edu/
˜livshits/work/securibench-micro/.

[3] A. Askarov and A. Sabelfeld. Security-typed languages
for implementation of cryptographic protocols: A case
study. In ESORICS, Lecture Notes in Computer
Science, pages 197–221, 2005.

[4] A. Banerjee and D. A. Naumann. Secure information
flow and pointer confinement in a java-like language.
In Proceedings of the IEEE Computer Security
Foundations Workshop, pages 253–267. IEEE
Computer Society Press, 2002.

[5] C. Braghin, A. Cortesi, and F. Focardi. Information
flow security in boundary ambients. Information and
Computation, 206(2-4):460–489, 2008.

[6] J. Clause, W. Li, and A. Orso. Dytan: a generic
dynamic taint analysis framework. In Proceedings of
the International Symposium on Software testing and
analysis, pages 196–206, New York, NY, USA, 2007.
ACM.

[7] A. Cortesi, G. File’, and W. Winsborough. Optimal
groundness analysis using propositional logic. The
Journal of Logic Programming, 27(2):137 – 167, 1996.

[8] G. Costantini, P. Ferrara, and A. Cortesi. Static
analysis of string values. In Proceedings of the 13th
International Conference on Formal Engineering
Methods (ICFEM 2011), Lecture Notes in Computer
Science. Springer, October 2011.

[9] P. Cousot. The Calculational Design of a Generic
Abstract Interpreter. In M. Broy and R. Steinbrüggen,
editors, Calculational System Design. NATO ASI
Series F. IOS Press, Amsterdam, 1999.

[10] P. Cousot and R. Cousot. Systematic design of
program analysis frameworks. In Conference Record of
the Sixth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 269–282, San Antonio, Texas, 1979. ACM Press,
New York, NY.

[11] D. E. Denning. A lattice model of secure information
flow. Commun. ACM, 19:236–243, May 1976.

[12] P. Ferrara. A fast and precise alias analysis for data
race detection. In Proceedings of the Third Workshop
on Bytecode Semantics, Verification, Analysis and
Transformation, Electronic Notes in Theoretical
Computer Science. Elsevier, April 2008.

[13] P. Ferrara. Static type analysis of pattern matching by
abstract interpretation. In Formal Techniques for
Distributed Systems (FMOODS/FORTE), volume
6117 of Lecture Notes in Computer Science, pages
186–200. Springer-Verlag, 2010.

[14] P. Ferrara and P. Müller. Automatic inference of
access permissions. In Proceedings of the 13th
International Conference on Verification, Model
Checking, and Abstract Interpretation, Lecture Notes

in Computer Science. Springer, January 2012.

[15] R. Focardi and M. Centenaro. Information flow
security of multi-threaded distributed programs. In
Proceedings of the third ACM SIGPLAN workshop on
Programming languages and analysis for security,
pages 113–124, New York, NY, USA, 2008. ACM.

[16] R. Fuchs. Interfacing tvla and sample. Bachelor thesis,
ETH Zurich, August 2011.

[17] R. Giacobazzi and I. Mastroeni. Abstract
non-interference: parameterizing non-interference by
abstract interpretation. In Proceedings of the 31st
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 186–197, New York,
NY, USA, 2004. ACM.

[18] B. Jeannet and A. Miné. Apron: A library of
numerical abstract domains for static analysis. In
Proc. of the 21th Int. Conf. on Computer Aided
Verification (CAV 2009), volume 5643 of LNCS, pages
661–667. Springer, June 2009.

[19] P. Li and S. Zdancewic. Arrows for secure information
flow. Theor. Comput. Sci., 411:1974–1994, April 2010.

[20] Y. Liu and A. Milanova. Static information flow
analysis with handling of implicit flows and a study on
effects of implicit flows vs explicit flows. In Proceedings
of 14th European Conference on Software Maintenance
and Reengineering, pages 146–155, Washington, DC,
USA, 2010. IEEE Computer Society.

[21] A. C. Myers. Jflow: practical mostly-static
information flow control. In Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 228–241, New York,
NY, USA, 1999. ACM.

[22] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and
N. Nystrom. Jif: Java information flow. software
release., July 2001-2004.

[23] F. Pottier and V. Simonet. Information flow inference
for ml. ACM Trans. Program. Lang. Syst., 25:117–158,
January 2003.

[24] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. Selected Areas in
Communications, IEEE Journal on, 21(1):5–19, Jan.
2003.

[25] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Trans. Program.
Lang. Syst., 24:217–298, May 2002.

[26] G. Smith and D. Volpano. Secure information flow in
a multi-threaded imperative language. In Proceedings
of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 355–364,
New York, NY, USA, 1998. ACM.

[27] D. Volpano, C. Irvine, and G. Smith. A sound type
system for secure flow analysis. J. Comput. Secur.,
4:167–187, January 1996.

[28] M. Zanioli and A. Cortesi. Information leakage
analysis by abstract interpretation. In Proceedings of
the 37th international conference on Current trends in
theory and practice of computer science, volume 6543
of Lecture Notes in Computer Science, pages 545–557.
Springer-Verlag, 2011.

